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Abstract. We express correlators of the Jacobi β ensemble in terms of (a special case
of) b-Hurwitz numbers, a deformation of Hurwitz numbers recently introduced by Chapuy
and Do lȩga. The proof relies on Kadell’s generalization of the Selberg integral. The La-
guerre limit is also considered. All the relevant b-Hurwitz numbers are interpreted (following
Bonzom, Chapuy, and Do lȩga) in terms of colored monotone Hurwitz maps.
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1 Introduction and statement of results

Hurwitz numbers count branched coverings of the sphere by a Riemann surface with prescribed
ramification profiles. Hurwitz himself [26] showed that this geometric counting problem boils
down, via monodromy representation, to a combinatorial one. The latter is the problem of
counting factorizations of the identity in the symmetric group with factors in prescribed conju-
gacy classes. Today, Hurwitz numbers have been generalized in various directions and are the
subject of renewed interest because of their connections to integrable systems [23, 25, 33] and
enumerative geometry [10, 13, 34].

There are many matrix models connected with (various versions of) Hurwitz numbers, e.g.,
the Harish-Chandra–Itzykson–Zuber integral [19] and the Brézin–Gross–Witten model [32], as
well as externally coupled Brézin–Hikami type models with a Meijer-G weight [2]. A matrix
model for simple Hurwitz numbers was given in [4]. Moreover, it has been shown [18] that
correlators (cf. (1.2) below) of a random Hermitian matrix distributed according to the Jacobi
unitary ensemble are generating functions for a type of Hurwitz numbers (triple monotone
Hurwitz numbers); this result extends the combinatorial interpretation of correlators for the
Gaussian [27] and Laguerre [8, 17, 21, 24] unitary ensembles.

Recently, a deformation of Hurwitz numbers has been constructed in [6] (see also [20]), termed
b-Hurwitz number, which count (non-orientable) generalized branched coverings of the sphere.
Generating functions of (non-deformed, b = 0) Hurwitz numbers [23, 25, 33] admit explicit
expansion in terms of Schur functions (from which it can be shown that they are tau functions
of integrable systems), whereas (roughly speaking) for b-Hurwitz numbers one replaces Schur
functions with Jack symmetric functions.

In a certain sense, this deformation mimics the deformation of unitary-invariant ensembles of
random matrices to β ensembles, where we always consider the following relation of parameters:

This paper is a contribution to the Special Issue on Evolution Equations, Exactly Solvable Mod-
els and Random Matrices in honor of Alexander Its’ 70th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Its.html
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b = 2
β − 1. For instance, in [3] it is shown that an orthogonal (i.e., β = 1) version of the

Brézin–Gross–Witten matrix integral is a generating function for monotone b-Hurwitz numbers
with b = 1. The β = 2 version of this fact, relating the Brézin–Gross–Witten integral proper
(which is an integral over unitary matrices) to monotone (b = 0) Hurwitz numbers, is due to
Novak [32] (see also [3, Section 6.1]).

Our first aim is to prove another result in this direction: correlators of the Jacobi β ensemble
are generating functions for (a type) of b-Hurwitz numbers. This recovers the aforementioned
result of [18] when β = 2. Moreover, it implies analogous results for the Laguerre β ensemble,
by taking a suitable limit.

Our second aim is to investigate the combinatorial interpretation of a general class of b-
Hurwitz numbers, namely, the class of multiparametric b-Hurwitz numbers with rational weight
generating function. This class covers all the relevant cases for the aforementioned β ensem-
bles. In particular, we will show that all these b-Hurwitz numbers count b-monotone Hurwitz
maps (introduced in [3]) equipped with a special coloring. We emphasize the parallel with or-
dinary (i.e., b = 0) multiparametric Hurwitz numbers with rational weight generating function,
which count monotone factorizations into transpositions in the symmetric group equipped with
a similar coloring (cf. Section 3.1).

We now proceed to a detailed formulation of the results.

1.1 Jacobi β ensemble

The Jacobi β ensemble (of size n) is the random point process on the unit interval (0, 1) with
(almost surely) n particles, the location of which is governed by the joint probability distribution
wJ
β(x; c, d) dx1 · · · dxn given by

wJ
β(x; c, d) =

1

ZJ
β

∏
1≤i≤n

(
x

β
2
c−1

i (1 − xi)
β
2
d−1
) ∏
1≤i<j≤n

|xi − xj |β,

where x = (x1, . . . , xn) ∈ (0, 1)n, β, c, d > 0 and the normalization is explicitly given as

ZJ
β = n!

∏
1≤i<j≤n

Γ
(β
2 (j − i + 1)

)
Γ
(β
2 (j − i)

) ∏
1≤i≤n

Γ
(β
2 (c + n− i)

)
Γ
(β
2 (d + n− i)

)
Γ
(β
2 (c + d + 2n− i− 1)

) , (1.1)

cf. Theorem 2.1 below. It arises as a natural deformation of the case β = 2, the latter being par-
ticularly relevant as it describes the eigenvalues of an n × n random Hermitian matrix M ,
positive-definite and bounded above by the identity, distributed according to the following
unitary-invariant probability measure with Jacobi weight [9, 15]:

1

Z′ det(M)c−1 det(1 −M)d−1 dM.

Here, dM is the Lebesgue measure on the space of n× n Hermitian matrices, namely

dM =
∏

1≤i<j≤n

dXijdYij
∏

1≤i≤n

dXii, M = X + iY,

and the normalization is

Z′ =
πn(n−1)/2

1!2! · · ·n!
ZJ
β=2.

This ensemble of random matrices is known as the Jacobi unitary ensemble; analogous models
are well-known for β = 1 and 4 as well, namely the Jacobi orthogonal and symplectic ensembles,
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respectively [15]; for general β, a model of tridiagonal random matrices is given in [12] (building
on earlier ideas in [29]).

We shall be in particular interested in the correlators, defined as the following expectation
values, for integers k1, . . . , kℓ:

CJ
k1,...,kℓ

(n, β, c, d) =

∫
(0,1)n

( ∏
1≤i≤ℓ

(
xki1 + · · · + xkin

))
wJ
β(x; c, d) dx1 · · · dxn. (1.2)

(In terms of matrix models, this is the expectation of a product of traces of integer powers of the
random matrix.) We will only consider the case where k1, . . . , kℓ are all positive or all negative.

Remark 1.1. It follows from Theorem 2.1 and Corollary 2.3 below that CJ
k1,...,kℓ

(n, β, c, d) are
rational functions of n, β, c, d.

Remark 1.2. The correlators (1.2) appear naturally when expanding the expectations∫
(0,1)n

∏
1≤i≤ℓ

( ∑
1≤j≤n

1

ζi − xj

)
wJ
β(x; c, d) dx1 · · · dxn, ℓ ≥ 1, ζ1, . . . ζℓ ∈ C \ [0, 1],

as ζi → 0,∞. Such expectations play an important role in the study of large-n asymptotics
for various statistics of the Jacobi β ensemble via the general theory of loop equations [1, 5, 7],
cf. [16] for a recent study in this direction. It would be interesting to compare the combinatorial
results of this paper with large-n limit theorems for the Jacobi β ensemble.

1.2 b-Hurwitz numbers

Let P be the set of all partitions, i.e., λ ∈ P is a weakly decreasing sequence λ = (λ1, λ2, . . . ) of
nonnegative integers which stabilizes to 0. The nonzero λi are called parts of λ. We recall the
following notations, for a given λ ∈ P:

|λ| =
∑
i≥1

λi, ℓ(λ) = |{i ≥ 1: λi ̸= 0}|,

mc(λ) = |{i ≥ 1: λi = c}|, zλ =
∏
c≥1

mc(λ)!cmc(λ).

The diagram of λ ∈ P is the set

D(λ) =
{

(i, j) ∈ Z2 : 1 ≤ i ≤ ℓ(λ), 1 ≤ j ≤ λi

}
.

Elements of D(λ) are customarily denoted □. Under the involution (i, j) 7→ (j, i) of Z2,
D(λ) is mapped into the diagram of another partition λ′, the conjugate partition. For any
□ = (i, j) ∈ D(λ), we set

armλ(□) = λi − j, legλ(□) = λ′
j − i.

The dominance relation ⪯d is the partial order relation on P defined by declaring µ ⪯d λ if and
only if

∑r
i=1 µi ≤

∑r
i=1 λi for all r ≥ 1.

Partitions provide a convenient set of labels for various bases of the ring Λ of symmetric
functions [31, Chapter I]. Concretely, we can think of Λ as the ring C[p] of polynomials in
infinitely many indeterminates p = (p1, p2, p3, . . . ), graded by deg pk = k. A basis of Λ is given
by pλ = pλ1 · · · pλℓ(λ)

, for λ ∈ P.
More precisely, as explained in [31, Chapter I], Λ is the inverse limit as n → ∞ of the inverse

system formed by the rings Λn = Cn[x1, . . . , xn]Sn of symmetric polynomials in x1, . . . , xn and
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by the maps Λm → Λn for m ≥ n which send xi 7→ 0 for n < i ≤ m. Then, the variables pk are
the elements of Λ that project to the power sum symmetric polynomials xk1 + · · · + xkn.

We also need the elements mλ ∈ Λ (for any λ ∈ P) which project to the monomial symmetric
polynomials

1∏
c≥1mc(λ)!

∑
σ∈Sn

xλ1

σ(1) · · ·x
λn

σ(n).

The mλ also form a basis of Λ, called the monomial basis.

Another basis of Λ is given by the Jack functions P
(α)
λ (p) (see [31, Chapter VI] and [36]),

which also depend (rationally) on a parameter α > 0. They reduce to Schur functions when
α = 1 and to Zonal functions when α = 2. In general, they are uniquely determined by the
following properties.

� An orthogonality property:〈
P
(α)
λ ,P(α)

µ

〉
α

= 0, λ, µ ∈ P, λ ̸= µ,

where ⟨ , ⟩α is the deformed Hall scalar product on Λ, defined by〈
pλ, pµ

〉
α

= δλµzλα
ℓ(λ).

� A triangularity condition with respect to the monomial basis: if we write

P
(α)
λ =

∑
µ∈P, |µ|=|λ|

v
(α)
λµ mµ,

we have v
(α)
λµ ̸= 0 only when µ ⪯d λ.

� A normalization condition: v
(α)
λλ = 1 .

Remark 1.3. We use the P-normalization, rather then the J-normalization adopted in [3, 6].

To compare the two, one has J
(α)
λ = hα(λ)P

(α)
λ , with the notation (1.3).

Further, we have〈
P
(α)
λ ,P

(α)
λ

〉
α

=
h′α(λ)

hα(λ)
,

where

hα(λ) =
∏

□∈D(λ)

(α armλ(□) + legλ(□) + 1),

h′α(λ) =
∏

□∈D(λ)

(α armλ(□) + legλ(□) + α). (1.3)

Following [6, Section 6] and specializing to the case of present interest, the multiparametric
b-Hurwitz numbers associated with a formal power series G(z) = 1 +

∑
i≥1 giz

i ∈ C[[z]] are
defined through the following formal generating series

τ bG(ϵ;p) =
∑
λ∈P

1

h′b+1(λ)
P
(b+1)
λ (p)

∏
□∈D(λ)

G(ϵ cb+1(□)), (1.4)

where, for □ = (i, j) ∈ D(λ),

cα(□) = α(j − 1) − (i− 1).



Jacobi Beta Ensemble and b-Hurwitz Numbers 5

Definition 1.4. The b-Hurwitz number Hb
G(λ; r) is the coefficient of ϵrpλ in τ bG(ϵ;p), namely

τ bG(ϵ;p) =
∑
λ∈P

∑
r≥0

Hb
G(λ; r)ϵrpλ. (1.5)

The geometric meaning of b-Hurwitz numbers has been unveiled in [6]. Below we report
a different combinatorial interpretation which closely follows [3] instead, see Theorem 1.16 and
Section 3.

Remark 1.5. The definition in [6] is more general. An additional set of times q = (q1, q2, . . . )
is considered and the Jack expansion (1.4) is replaced by

τ̃ bG(ϵ;p,q) =
∑
λ∈P

hb+1(λ)

h′b+1(λ)
P
(b+1)
λ (p)P

(b+1)
λ (q)

∏
□∈D(λ)

G(ϵ cb+1(□)) (1.6)

which then allows one to define more general b-Hurwitz numbers depending on two partitions λ
and µ, by extracting the coefficient in front of pλqµ. The reduction to (1.4) is performed by

setting q1 = 1 and qi = 0 for all i ≥ 2, and by using the special value P
(α)
λ (1, 0, 0, . . . ) = 1/hα(λ),

cf. [31, Chapter VI, equation (10.29)].

Remark 1.6 (connections to integrable systems). The case β = 2, i.e., b = 0, falls back to the
theory of multiparametric weighted Hurwitz numbers of Guay-Paquet, Harnad, Orlov [23, 25]. It
is known in this case that the generating function τ b=0

G satisfies the KP hierarchy in the times p
(in the same case b = 0, the more general version in (1.6) satisfies the 2D Toda hierarchy in the
times p, q), a far-reaching generalization of Okounkov’s seminal result [33]. When β = 1, i.e.,
b = 1, a relation to the BKP hierarchy has been established by Bonzom, Chapuy, and Do lȩga [3].

1.3 Jacobi β ensemble and b-Hurwitz numbers

For λ ∈ P, let us introduce the following notation for the correlators in (1.2):

CJ
λ(n, β, c, d) = CJ

λ1,...,λℓ(λ)
(n, β, c, d), CJ

−λ(n, β, c, d) = CJ
−λ1,...,−λℓ(λ)

(n, β, c, d). (1.7)

Theorem 1.7. Let λ ∈ P. We have the following Laurent expansions as n → +∞ of the
correlators defined in (1.7):

1

zλ

(
β

2

)ℓ(λ)(γ + δ

γn

)|λ|
CJ
λ(n, β, c = n(γ − 1) + 1, d = n(δ − 1) + 1)=

∑
r≥0

1

nr
Hb

GJ
+

(λ; r), (1.8)

1

zλ

(
β

2

)ℓ(λ)( γ

(γ + δ)n

)|λ|
CJ
−λ(n, β, c = nγ + 2

β , d = n(δ − 1) + 1)=
∑
r≥0

1

nr
Hb

GJ
−

(λ; r), (1.9)

where b = 2
β − 1, γ, δ are arbitrary complex variables, and

GJ
+(z) =

(1 + z)
(
1 + z

γ

)
1 + z

γ+δ

, GJ
−(z) =

(1 + z)
(
1 − z

γ+δ

)
1 − z

γ

. (1.10)

The proof is contained in Section 2.
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1.4 Laguerre limit

The Laguerre β ensemble (of size n) is the random point process on the positive half-line (0,+∞)
with (almost surely) n particles, the location of which is governed by the joint probability
distribution wL

β(y; c) dy1 · · · dyn given by

wL
β(y; c) =

1

ZL
β

∏
1≤i≤n

(
y

β
2
c−1

i e−yi
) ∏
1≤i<j≤n

|yi − yj |β, y = (y1, . . . , yn) ∈ (0,+∞)n,

where β, c > 0 and the normalization is explicitly given as

ZL
β = n!

∏
1≤i<j≤n

Γ
(β
2 (j − i + 1)

)
Γ
(β
2 (j − i)

) ∏
1≤i≤n

Γ
(β
2 (c + n− i)

)
. (1.11)

Again, the cases β = 1, 2, 4 correspond to eigenvalue distributions of well-known random matrix
ensembles (respectively, orthogonal, unitary, and symplectic Laguerre ensembles, see, e.g., [15])
while for general β a model of tridiagonal random matrices has been given in [11].

We analogously define correlators as the following expectation values, for integers k1, . . . , kℓ:

CL
k1,...,kℓ

(n, β, c) =

∫
(0,+∞)n

( ∏
1≤i≤ℓ

(
yki1 + · · · + xyin

))
wL
β(y; c) dy1 · · · dyn. (1.12)

The Laguerre β ensemble is a limit of the Jacobi β ensemble. For instance, (1.11) can be
deduced from (1.1) by a change of integration variables and the limit d → +∞. Moreover, we
have

lim
d→+∞

(
β

2
d

)k1+···+kℓ

CJ
k1,...,kℓ

(n, β, c, d) = CL
k1,...,kℓ

(n, β, c)

for all integers k1, . . . , kℓ. Hence, Theorem 1.7 implies the following expansions of Laguerre
correlators.

Theorem 1.8. Let λ ∈ P. We have the following Laurent expansions as n → +∞ of the
correlators defined in (1.12):

1

zλ

(
β

2

)ℓ(λ)−|λ|(
γn2

)−|λ|
CL
λ1,...,λℓ(λ)

(n, β, c = n(γ − 1) + 1) =
∑
r≥0

1

nr
Hb

GL
+

(λ; r), (1.13)

1

zλ

(
β

2

)ℓ(λ)+|λ|
γ|λ|CL

−λ1,...,−λℓ(λ)

(
n, β, c = nγ + 2

β

)
=
∑
r≥0

1

nr
Hb

GL
−

(λ; r), (1.14)

where b = 2
β − 1, γ is an arbitrary complex variable, and

GL
+(z) = (1 + z)

(
1 + z

γ

)
, GL

−(z) =
1 + z

1 − z
γ

.

Remark 1.9. The expansions of Theorem 1.8 are known for β = 2 in terms of (b = 0) Hurwitz
numbers [8, 21, 24]. The result for the positive Laguerre correlators is also mentioned in [3,
Appendix A], in which case, the relevant b-Hurwitz numbers are given an equivalent combina-
torial meaning in terms of bipartite (possibly non-orientable) maps. It would be interesting to
compare with the results of [22] for the Laguerre orthogonal ensemble (i.e., β = 1) and the
hyperoctahedral group.
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1.5 Colored monotone Hurwitz maps

We now give a combinatorial model for the above expansions, inspired by [3]. We will consider
arbitrary rational weight generating functions G, covering all cases considered above.

Remark 1.10. In principle, a combinatorial interpretation for b-Hurwitz numbers for arbi-
trary G is implicit from [6, Theorem 6.2] in terms of a weighted count of (non-orientable)
generalized branched coverings of the sphere, but we prefer to give a (perhaps) more explicit
description when G is rational following [3].

The notion of monotone non-orientable Hurwitz map has been proposed in [3, Section 3]. We
recall it here for the reader’s convenience and refer to loc. cit. for more details.

Definition 1.11 (monotone Hurwitz maps [3]). A monotone Hurwitz map Γ is an embedding
of a loopless multigraph in a compact (possibly non-orientable) surface with the following prop-
erties.

1. The complement of the multigraph in the surface is homeomorphic to a disjoint union of
disks, called faces.

2. The n vertices of Γ are labeled with the numbers in {1, . . . , n} and the r edges of Γ are
labeled e1, . . . , er. For each ei we denote ai, bi the vertices connected by ei such that ai < bi.

3. We have b1 ≤ · · · ≤ br.

4. A neighborhood of each vertex of Γ is equipped with an orientation.

5. Each vertex of Γ is equipped with a distinguished sector between consecutive half-edges,
which is termed active corner.

6. For each i ∈ {1, . . . , r}, let Γi be obtained from Γ by removing the edges ei+1, . . . , er. Note
that Γi might be embedded in a different compact surface. In the map Γi the following
conditions must be met:

– the active corner at bi immediately follows ei;

– the active corner at ai is opposite (with respect to ei) to the active corner at bi;

– if the edge ei is disconnecting in Γi, the local orientations at ai, bi are compatible
(i.e., they extend to an orientation of a neighborhood of ei).

The degree of a face is the number of active corners in that face. The profile of a monotone
Hurwitz map is the partition whose parts are the degrees of its faces.

See Figure 1 for an example. Note that the definition allows maps containing connected
components consisting of a single point embedded in the sphere.

Remark 1.12. This definition allows one to iteratively construct monotone Hurwitz maps by
adding an extra vertex of maximum label and edges incident to it with increasing labels (the
possible ways of attaching these new edges are specified by property 6 above). This key fact
is used in the proof of [3, Proposition 3.2], and we will similarly employ it in the proof of
Theorem 1.16 below. Moreover, it is clear by this inductive construction that any face has at
least one active corner. Therefore, a monotone Hurwitz map with r edges and profile λ has
Euler characteristic

χ = |λ| − r + ℓ(λ). (1.15)

One of the main constructions in [6] is the definition of weight of monotone Hurwitz maps1

which is monomial in a variable b, termed b-weight.

1Actually, in loc. cit. the b-weight is defined for more general combinatorial objects, namely non-orientable
constellations. The restriction to this case is done in [3].
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Definition 1.13 (b-weight of monotone Hurwitz maps [3]). Let a monotone non-orientable
Hurwitz map Γ be given. We iteratively remove either the vertex of maximum label (if it is
isolated) or the edge of maximum label (which is necessarily incident to the vertex of maximum
label). Doing so we also record a weight 1 or b each time we delete an edge, chosen as follows.
Let e the edge being deleted and Γ′ the graph after deletion of e. The weight is decided according
to the following rules:

� if e joins two active corners in the same face of Γ′, the weight is 1 if e splits the face into
two, and b otherwise;

� if e joins two active corners in different faces of Γ′, the weight is 1 if the local orientations
at the joined vertices are compatible (i.e., they extend to an orientation of a neighborhood
of e), and b otherwise.

The product of all weights recorded during this procedure (performed until the graph is empty)
is the b-weight of Γ, which is a power of b denoted bν(Γ).

Note that ν(Γ) = 0 if and only if Γ is orientable.

Remark 1.14. The b-weight is a necessary ingredient to give an enumerative interpretation
to (1.4), cf. Theorem 1.16 below. Remarkably, the b-weight is neither unique nor canonical
(even if the generating function is). More precisely, such a b-weight is only subject to the
constraints of a measure of non-orientability in the sense of [6, Section 3] which however do not
fix it uniquely.

In the definition above, we have exploited the fixed local orientations at the vertices to make
a choice in order to uniquely define a b-weight. More generally, when the edge e joins two active
corners in different faces, the b-weight could be arbitrarily chosen to be 1 or b, with the caveat
to choose different b-weights for different twists of the edge e and to choose 1 in the orientable
case. We content ourself with the practical definition above and refer to [3, 6] for more details.

We need one last definition.

Definition 1.15 (colored monotone Hurwitz maps). Let L,M be nonnegative integers. An
(L|M)-coloring of a monotone Hurwitz map Γ is a mapping c : {1, . . . , r} → {1, . . . , L + M}
such that:

� if 1 ≤ i < j ≤ r and 1 ≤ c(i) = c(j) ≤ L, then bi < bj ;

� if 1 ≤ i < j ≤ r and bi = bj , then c(i) ≤ c(j).

An (L|M)-colored monotone Hurwitz map is a monotone Hurwitz map with an (L|M)-coloring.

For example, a (0|1)-colored monotone Hurwitz map is just a monotone Hurwitz map. See
Figure 1 for another example.

Theorem 1.16. For a set of parameters u1, . . . , uL+M , let

G(z) =

∏L
i=1(1 + uiz)∏M

i=1(1 − uL+iz)
.

Then, for all λ ∈ P and r ≥ 0,

Hb
G(λ; r) =

1

|λ|!
∑
(Γ,c)

bν(Γ)

(1 + b)|π0(Γ)|
uc(1) · · ·uc(r),

where (Γ, c) runs in the set of (L|M)-colored monotone Hurwitz maps with r edges and pro-
file λ (hence, |λ| vertices). Moreover, bν(Γ) is the b-weight of Γ and π0(Γ) the set of connected
components of Γ.
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1

2

3

e1

e2

e2

e3

e4

e4
1

2

3

e1

e2

e3

e4

Figure 1. On the left, a monotone Hurwitz map with n = 3 vertices and r = 4 edges embedded in

the Klein bottle. Active corners are indicated by red arrows and local orientation around vertices are

indicated by blue arrows. It has b-weight b and profile (3). On the right, the same non-orientable labeled

Hurwitz map depicted as a ribbon graph, which is a small open neighborhood of the graph in the surface.

For this example, the mapping c(1) = 1 = c(3), c(2) = 2 = c(4) is simultaneously a (2|0)-, (1|1)-, or

(0|2)-coloring; the mapping c(1) = 1 = c(2), c(3) = 2 = c(4) is a (0|2)-coloring.

The proof is contained in Section 3 and is a generalization of the argument in [3, Proposi-
tion 3.2]. We consider the reduction to the orientable case (b = 0) in Section 3.1.

Remark 1.17. We consider the redundant parameter ϵ in (1.4) to make clear the large-n ex-
pansion of correlators (1.8)–(1.9) and (1.13)–(1.14). Because of (1.15), these large-n expansions
can be interpreted as topological expansions (over not necessarily orientable geometries) after
a global rescaling of correlators by a power of n.

2 Proof of Theorem 1.7

In this section, we will denote

P̃
(α)
λ (x1, . . . , xn) = P

(α)
λ (p)|pk=∑n

i=1 x
k
i
.

A crucial ingredient in the proof is the following formula for the expectation of Jack polyno-
mials with respect to the Jacobi weight which is due to Kadell [28] (see also [30, Conjecture C5]
and [31, Chapter VI.10]) and which generalizes the celebrated Selberg integral [35].

Theorem 2.1 ([28]). For all β, c, d > 0 and all λ ∈ P, we have

1

n!

∫
(0,1)n

P̃
(2/β)
λ (x)

∏
1≤i≤n

(
x

β
2
c−1

i (1 − xi)
β
2
d−1
) ∏
1≤i<j≤n

|xi − xj |β dx1 · · · dxn

=
∏

1≤i<j≤n

Γ
(
λi − λj + β

2 (j − i + 1)
)

Γ
(
λi − λj + β

2 (j − i)
) ∏

1≤i≤n

Γ
(
λi + β

2 (c + n− i)
)
Γ
(β
2 (d + n− i)

)
Γ
(
λi + β

2 (c + d + 2n− i− 1)
) .

When λ is the empty partition, i.e., λ = (0, 0, . . . ), we obtain the value for ZJ
β claimed in (1.1).

To consider negative correlators, a further property is needed. Let us introduce the notation

x−1 =
(
x−1
1 , . . . , x−1

n

)
.

Lemma 2.2. Let n ≥ 0 be an integer and let λ ∈ P be such that ℓ(λ) ≤ n. Define another
partition2 λ̂ ∈ P by λ̂i = λ1 − λn−i+1. Then

P̃
(α)
λ

(
x−1

)
= (x1 · · ·xn)−λ1P̃

(α)

λ̂
(x).

2Geometrically, the complement of the diagram of λ in the rectangle {(i, j) ∈ Z2 : 1 ≤ i ≤ n, 1 ≤ j ≤ λ1} is

(up to a rotation) the diagram of λ̂.
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Proof. It is known [36, Theorem 3.1] that P̃
(α)
λ (x) are uniquely characterized as the eigenvectors

of the Calogero–Sutherland operator

H (α) =
α

2

n∑
i=1

D2
xi

+
1

2

∑
1≤i<j≤n

xi + xj
xi − xj

(Dxi −Dxj ), Dz = z
∂

∂z
,

also satisfying the triangularity and normalization properties mentioned above. Namely, they
are uniquely characterized by

H (α) P̃
(α)
λ (x) = E

(α)
λ P̃

(α)
λ (x), E

(α)
λ =

n∑
i=1

(
α

2
λ2
i +

n + 1 − 2i

2

)
,

and the fact that P̃
(α)
λ (x) is a linear combination of monomial symmetric functions of x1, . . . , xn

associated with partitions smaller than λ in the dominance relation ⪯d.

It is clear that P̃
(α)
λ

(
x−1

)
(x1 · · ·xn)λ1 is a symmetric polynomial of x1, . . . , xn satisfying the

same triangularity and normalization conditions as P̃
(α)

λ̂
(x). Moreover, a direct computation

shows that

H (α)
(
P̃
(α)
λ

(
x−1

)
(x1 · · ·xn)λ1

)
=

(
E
(α)
λ +

α

2
nλ2

1 − αλ1|λ|
)

P̃
(α)
λ

(
x−1

)
(x1 · · ·xn)λ1 ,

and it is straightforward to check that E
(α)
λ + α

2nλ
2
1 − αλ1|λ| = E

(α)

λ̂
. Hence, we conclude that

P̃
(α)
λ

(
x−1

)
(x1 · · ·xn)λ1 = P̃

(α)

λ̂
(x). ■

Corollary 2.3. For all β, d > 0, λ ∈ P, and c > 2
βλ1, we have

1

n!

∫
(0,1)n

P̃
(2/β)
λ

(
x−1

) ∏
1≤i≤n

(
x

β
2
c−1

i (1 − xi)
β
2
d−1
) ∏
1≤i<j≤n

|xi − xj |β dx1 · · · dxn

=
∏

1≤i<j≤n

Γ
(
λi − λj + β

2 (j − i + 1)
)

Γ
(
λi − λj + β

2 (j − i)
) ∏

1≤i≤n

Γ
(
−λi + β

2 (c + i− 1)
)
Γ
(β
2 (d + n− i)

)
Γ
(
−λi + β

2 (c + d + n + i− 2)
) .

Proof. According to Lemma 2.2, we have∫
(0,1)n

P̃
(2/β)
λ

(
x−1

) ∏
1≤i≤n

(
x

β
2
c−1

i (1 − xi)
β
2
d−1
) ∏
1≤i<j≤n

|xi − xj |β dx1 · · · dxn

=

∫
(0,1)n

P̃
(2/β)

λ̂
(x)

∏
1≤i≤n

(
x

β
2
(c− 2

β
λ1)−1

i (1 − xi)
β
2
d−1
) ∏
1≤i<j≤n

|xi − xj |β dx1 · · · dxn

such that it suffices to apply Theorem 2.1 after replacing c by c− 2
βλ1 and λ by λ̂. ■

We consider an infinite sequence of variables t = (t1, t2, . . . ) and denote tλ = tλ1 · · · tλℓ(λ)
for

all λ ∈ P. Let us introduce the following formal generating functions of correlators

Υ±
β (t;n) =

∑
λ∈P

CJ
±λ1,...,±λℓ(λ)

(n, β, c, d)

(
β

2

)ℓ(λ) tλ
zλ

=

∫
(0,1)n

exp

(
β

2

∑
k≥1

tk
k

(
x±k
1 + · · · + x±k

n

))
wJ
β(x; c, d) dx1 · · · dxn, (2.1)
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the last equality stemming from the well-known identity (cf. [31, Chapter I.2])

exp

(∑
k≥1

tk
k

(
xk1 + · · · + xkn

))
=
∑
λ∈P

tλ
zλ

(
n∑

i=1

xλ1
i

)
· · ·

(
n∑

i=1

x
λℓ(λ)

i

)
.

Let us also recall the Cauchy identity for Jack polynomials [36, formula (6)]

exp

(
1

α

∑
k≥1

tk
k

(
xk1 + · · · + xkn

))
=

∑
λ∈P, ℓ(λ)≤n

hα(λ)

h′α(λ)
P
(α)
λ (t)P̃

(α)
λ (x1, . . . , xn). (2.2)

Lemma 2.4. We have

Υ±
β (t;n) =

∑
λ∈P, ℓ(λ)≤n

1

h′2/β(λ)
f±
λ P

(2/β)
λ (t), (2.3)

with coefficients

f+
λ =

∏
□∈D(λ)

(n + c2/β(□))(c− 1 + n + c2/β(□))

c + d− 2 + 2n + c2/β(□)
,

f−
λ =

∏
□∈D(λ)

(n + c2/β(□))(c + d + n− 1 − 2
β − c2/β(□))

c− 2
β − c2/β(□)

.

Proof. By Theorem 2.1 and (2.2), we infer that (2.3) holds, in the + case, with

f+
λ =

n!h2/β(λ)

ZJ
β

∏
1≤i<j≤n

Γ
(
λi − λj + β

2 (j − i + 1)
)

Γ
(
λi − λj + β

2 (j − i)
)

×
n∏

i=1

Γ
(
λi + β

2 (c + n− i)
)
Γ
(β
2 (d + n− i)

)
Γ
(
λi + β

2 (c + d + 2n− i− 1)
) .

Recall the Pochhammer symbol

(z)m =
Γ(m + z)

Γ(z)
=

m∏
j=1

(z + j − 1),

for nonnegative integer m. We use (1.1) to rewrite

f+
λ = h2/β(λ)

∏
1≤i<j≤n

(β
2 (j − i + 1)

)
λi−λj(β

2 (j − i)
)
λi−λj

∏
1≤i≤n

(β
2 (c + n− i)

)
λi(β

2 (c + d + 2n− i− 1)
)
λi

.

We reason separately for the two products. The second one is

∏
1≤i≤n

(β
2 (c + n− i)

)
λi(β

2 (c + d + 2n− i− 1)
)
λi

=
∏

1≤i≤ℓ(λ)

∏
1≤j≤λi

β
2 (c + n− i) + j − 1

β
2 (c + d + 2n− i− 1) + j − 1

=
∏

□∈D(λ)

c− 1 + n + c2/β(□)

c + d− 2 + 2n + c2/β(□)
. (2.4)
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About the first one instead, we claim that, due to many cancellations, we have the identity3

∏
1≤i<j≤n

(β
2 (j − i + 1)

)
λi−λj(β

2 (j − i)
)
λi−λj

=

∏
□∈D(λ)(n + c2/β(□))

h2/β(λ)
, (2.5)

which would complete the proof for f+
λ . In the interest of clarity, this claim is proved below, see

Appendix A.
Similarly, thanks to Corollary 2.3 and (2.2) we infer that (2.3) holds, in the − case, with f−

λ

equal to

n!h2/β(λ)

ZJ
β

∏
1≤i<j≤n

Γ
(
λi − λj + β

2 (j − i + 1)
)

Γ
(
λi − λj + β

2 (j − i)
) n∏

i=1

Γ
(
−λi + β

2 (c + i− 1)
)
Γ
(β
2 (d + n− i)

)
Γ
(
−λi + β

2 (c + d + n + i− 2)
)

= h2/β(λ)
∏

1≤i<j≤n

(β
2 (j − i + 1)

)
λi−λj(β

2 (j − i)
)
λi−λj

∏
1≤i≤n

(β
2 (c + d + n + i− 2) − λi

)
λi(β

2 (c + i− 1) − λi

)
λi

.

The first part of this expression is again (2.5), whereas the last part can be rewritten similarly
as (2.4):

∏
1≤i≤n

(β
2 (c + d + n + i− 2) − λi

)
λi(β

2 (c + i− 1) − λi

)
λi

=
∏

1≤i≤ℓ(λ)

∏
1≤j≤λi

β
2 (c + d + n + i− 2) − j

β
2 (c + i− 1) − j

=
∏

□∈D(λ)

c + d + n− 1 − 2
β − c2/β(□)

c− 2
β − c2/β(□)

,

and the proof is complete. ■

Proof of Theorem 1.7. By Lemma 2.4 and (1.4), we obtain the following identities of gener-
ating functions:

Υ+
β (t;n)

∣∣
c=n(γ−1)+1, d=n(δ−1)+1

= τ
2
β
−1

GJ
+

(
1
n ;p

)∣∣∣
pk=
(

γn
γ+δ

)k
tk
,

Υ−
β (t;n)

∣∣
c=nγ+ 2

β
, d=n(δ−1)+1

= τ
2
β
−1

GJ
−

(
1
n ;p

)∣∣∣
pk=
(

(γ+δ)n
γ

)k
tk
,

where GJ
± are given in (1.10).

(
Note that the restriction ℓ(λ) ≤ n in the sum in (2.3) can be

lifted because f±
λ are automatically zero when ℓ(λ) > n.

)
To complete the proof it suffices to

compare the expansions (1.5) and (2.1). ■

3 Colored monotone Hurwitz maps

In this section, we give a combinatorial model for the b-Hurwitz numbers of Definition 1.4,
when G is (the expansion of) a rational function, in terms of colored monotone Hurwitz maps,
introduced in Section 1.5.

Theorem 3.1. Let g1, . . . , gL+M be formal parameters and let

T(t,p; b) =
∑
λ∈P

t|λ|

h′b+1(λ)
P
(b+1)
λ (p)

∏
□∈D(λ)

G(cb+1(□)), G(z) =

∏L
i=1(1 + giz)∏M

i=1(1 − gL+iz)
.

3Cf. [14, Theorem 5.17.1] for the well-known case β = 2, where dimλ is computed in terms of the hook-length
formula from the Frobenius determinant formula.
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We have

T(t,p; b) =
∑
λ∈P

t|λ|

|λ|!
pλ
∑
(Γ,c)

bν(Γ)

(1 + b)|π0(Γ)|

L+M∏
i=1

g
|c−1(i)|
i ,

where (Γ, c) runs in the set of (L|M)-colored monotone Hurwitz maps with profile λ.

Proof. The argument is similar to the one in the proof of [3, Proposition 3.2], to which we refer
for more details. In this proof we write “CMHM” in place of “(L|M)-colored monotone Hurwitz
map”.

The key property is that a CMHM with n vertices can always be obtained, in a unique way,
from a CMHM with n − 1 vertices by first adding an extra isolated vertex of label n, then
adding a number of edges incident to n of each color {1, . . . , L+M}; the second property in the
definition of coloring is ensured by adding edges with increasing label and (weakly) increasing
color, and the first property by adding 0 or 1 edges (and no more) of color ≤ L. We have to
track this process at the level of generating functions.

Introduce the generating function, for n ≥ 0,

T[n](p; b) =
∑
λ∈P
|λ|=n

pλ
∑
(Γ,c)

bν(Γ)

(1 + b)|π0(Γ)|

L+M∏
i=1

g
|c−1(i)|
i ,

where (Γ, c) runs in the set of CMHM with profile λ (hence, with n vertices).
We have

z1
1 + b

T[n−1](p; b) =
∑
λ∈P

|λ|=n−1

z1pλ
∑
(Γ,c)

bν(Γ)

(1 + b)|π0(Γ)|

L+M∏
i=1

g
|c−1(i)|
i ,

where (Γ, c) runs in the set of CMHM with n vertices, where the nth vertex is isolated and
whose profile is λ ⊔ {1}, the extra 1 being the degree of the face containing the nth vertex.

We next attach either 0 or 1 edges with color 1 incident to the nth vertex: the argument
in [3, Proposition 3.2] shows that4

(1 + g1Λ)
z1

1 + b
T[n−1](p; b) =

∑
j≥1

∑
λ∈P

|λ|=n−j

zjpλ
∑
(Γ,c)

bν(Γ)

(1 + b)|π0(Γ)|

L+M∏
i=1

g
|c−1(i)|
i ,

where now (Γ, c) runs in the set of CMHM with n vertices, where edges incident to the nth
vertex only have color 1, and whose profile is λ ⊔ {j}, j being the degree of the face containing
the active corner at n. Indeed, it is proven in loc. cit. that the action of adding an edge incident
to the last vertex n to a Hurwitz map and counting the degree of the face containing the active
corner at n with variables zi instead of pi corresponds to the action of the operator Λ given by

Λ = (1 + b)
∑
i,j≥1

izi+j
∂2

∂pi∂zj
+
∑
i,j≥1

zipj
∂

∂zi+j
+ b

∑
i≥2

(i− 1)zi
∂

∂zi
.

By iterating this argument L times, we obtain

(1 + gLΛ) · · · (1 + g1Λ)
z1

1 + b
T[n−1](p; b) =

∑
j≥1

∑
λ∈P

|λ|=n−j

zjpλ
∑
(Γ,c)

bν(Γ)

(1 + b)|π0(Γ)|

L+M∏
i=1

g
|c−1(i)|
i ,

4We have yi = zi+1 with respect to the notation in loc. cit.
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where now (Γ, c) runs in the set of CMHM with n vertices, where edges incident to the nth vertex
have colors ≤ L only, and whose profile is λ⊔ {j}, j being the degree of the face containing the
active corner at n.

Next, we attach edges incident to the nth vertex of color L + 1; by the same argument as
before, taking into account that we can now add as many such edges as we wish, we get

+∞∑
p=0

(gL+1Λ)p(1 + gLΛ) · · · (1 + g1Λ)
z1

1 + b
T[n−1](p; b)

=
1

1 − gL+1Λ
(1 + gLΛ) · · · (1 + g1Λ)

z1
1 + b

T[n−1](p; b)

=
∑
j≥1

∑
λ∈P

|λ|=n−j

zjpλ
∑
(Γ,c)

bν(Γ)

(1 + b)|π0(Γ)|

L+M∏
i=1

g
|c−1(i)|
i ,

where now (Γ, c) runs in the set of CMHM with n vertices, where edges incident to the nth
vertex only have colors ≤ L + 1, and whose profile is λ ⊔ {j}, j being the degree of the face
containing the active corner at n.

Finally, iterating this step M -times (and restoring the variables pi for the degree of the face
containing active corner at the nth vertex) we get

T[n](p; b) = G(Λ)
z1

1 + b
T[n−1](p; b)

∣∣∣∣
zi=pi

.

On the other hand, we know from identity [6, equation (62)] that

∂

∂t
T(t,p; b) = G(Λ)

z1
1 + b

T(t,p; b)

∣∣∣∣
zi=pi

,

and thus we can show (inductively in powers of t) that T(t,p; b) =
∑

n≥0
tn

n!T
[n](p; b). ■

Proof of Theorem 1.16. It suffices to note that, by Definition 1.4, when G(z)=
∏L

i=1(1+uiz)∏M
i=1(1−uL+iz)

,

Hb
G(λ; r) is the coefficient of ϵrpλ in T(t,p; b)

∣∣
t=1, gi=ϵui

, where T(t,p; b) is defined in Theo-
rem 3.1. ■

3.1 Comparison with the orientable case

To illustrate the reduction to the orientable case, we recall the group theoretical interpretation
of the Hurwitz numbers Hb=0

G (λ; r).
Let Sn be the group of permutations of {1, . . . , n} and let, for all λ ∈ P with |λ| = n,

C(λ) ⊆ Sn be the conjugacy class of permutations whose disjoint cycles have lengths equal to
the parts of λ. Let C[Sn] be the group algebra of Sn, and Ji ∈ C[Sn] for i = 1, . . . , n, be the
Young–Jucys–Murphy elements, namely

J1 = 0, J2 = (1, 2), . . . , Jn = (1, n) + (2, n) + · · · + (n− 1, n). (3.1)

(We denote (a, b) ∈ Sn the transposition that exchanges a, b.) Let us recall that although
the elements Ji are not central, they form a (maximal) commutative subalgebra. Moreover,
any symmetric polynomial in n variables evaluated at J1, . . . ,Jn is central, hence it can be
expanded (uniquely) as a linear combination of

Cλ =
∑

σ∈C(λ)

σ

for λ ∈ P with |λ| = n.
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It is well-known, cf. [23] or, for a review, [18, Sections 2.1 and 2.2], that Hb=0
G (λ; r) is the

coefficient of ϵrCλ in

1

zλ

n∏
i=1

G(ϵJi), (3.2)

provided that this expression is expanded as a linear combination of the elements Cλ.

Definition 3.2 (colored monotone factorizations). Let λ ∈ P with |λ| = n. A monotone
factorization of length r and type λ is an ordered r-tuple of transpositions (π1, . . . , πr) in Sn

such that π1 · · ·πr ∈ C(λ) and that, writing πi = (ai, bi) with ai < bi, we have bi ≤ bi+1 for
i = 1, . . . , r − 1.

Let L, M be nonnegative integers. An (L|M)-coloring of a monotone factorization of length r
and type λ is a mapping c : {1, . . . , r} → {1, . . . , L + M} such that

� if 1 ≤ i < j ≤ r and 1 ≤ c(i) = c(j) ≤ L, then bi < bj ;

� if 1 ≤ i < j ≤ r and bi = bj , then c(i) ≤ c(j).

An (L|M)-colored monotone factorization of length r and type λ is a monotone factorization of
length r and type λ with an (L|M)-coloring.

Proposition 3.3. Let G(z) =
∏L

i=1(1+uiz)∏M
i=1(1−uL+iz)

, for a set of parameters u1, . . . , uL+M . For all

λ ∈ P and r ≥ 0, we have

Hb=0
G (λ; r) =

1

|λ|!
∑
(Π,c)

uc(1) · · ·uc(r),

where the sum on (Π, c) runs over the set of (L|M)-colored monotone factorizations of length r
and type λ.

Remark 3.4. This combinatorial model is different from the one given, e.g., in [18, Section 2.5].

In the interest of clarity, let us first prove a simple lemma.

Lemma 3.5. We have
n∏

i=1

(1 + ϵu1xi) · · · (1 + ϵuLxi)

(1 − ϵuL+1xi) · · · (1 − ϵuL+Mxi)
=
∑
r≥0

ϵr
∑

1≤b1≤···≤br≤n

xb1 · · ·xbr
∑
c

uc(1) · · ·uc(r),

where the inner sum runs over mappings c : {1, . . . , r} → {1, . . . , L+M} satisfying the following
constraints:

� if 1 ≤ i < j ≤ r and 1 ≤ c(i) = c(j) ≤ L, then bi < bj;

� if 1 ≤ i < j ≤ r and bi = bj, then c(i) ≤ c(j).

Proof. Let us recall that for any finite totally ordered set (S,⪯), we have∏
s∈S

1

1 − ϵys
=
∑
r≥0

ϵr
∑

s1,...,sr∈S,
s1⪯···⪯sr

ys1 · · · ysr .

Applying this identity to the set S = {1, . . . , n} × {1, . . . , L + M} with lexicographic order, we
get

n∏
i=1

L+M∏
j=1

1

(1 − ϵxiuj)
=
∑
r≥0

ϵr
∑

1≤b1≤···≤br≤n

xb1 · · ·xbr
∑

c1,...,cr=1,...,L+M

ci≤cj whenever bi=bj

uc1 · · ·ucr .

Finally, we retain only terms of degree at most one in xbuc for b = 1, . . . , n and c = 1, . . . , L. ■
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Proof of Proposition 3.3. The coefficient of ϵr in (3.2) is

1

zλ

∑
1≤b1≤···≤br≤n

Jb1 · · ·Jbr

∑
c

uc(1) · · ·uc(r)

=
1

zλ

∑
1≤b1≤···≤br≤n

b1−1∑
a1=1

· · ·
br−1∑
ar=1

(a1, b1) · · · (ar, br)
∑
c

uc(1) · · ·uc(r),

where the inner sum over c is as in the statement of the lemma above. In the equality, we used
the definition (3.1) of Young–Jucys–Murphy elements. Finally we extract the coefficient of Cλ

in this expression by recalling that |C(λ)| = |λ|!/zλ. ■

It can be shown (cf. [3, Remark 3]) that an orientable monotone Hurwitz map with profile λ
is uniquely characterized by a monotone factorization of type λ. Since the notions of coloring
are exactly parallel in the two settings (Hurwitz maps or factorizations), we obtain a different
proof of Theorem 1.16 in the orientable case.

Moreover, we have recalled the group theoretical interpretation of Hurwitz numbers in the
b = 0 case, such that Theorems 1.7 and 1.8 reduce, when β = 2, to the known combinatorial
interpretation of large-n expansions of (positive and negative) correlators of the Jacobi and
Laguerre unitary ensembles in terms of monotone factorizations in the symmetric group [8, 18]
(although in the equivalent formulation in terms of colored monotone factorizations).

A Proof of (2.5)

We wish to show that for any λ ∈ P with ℓ(λ) ≤ n, we have

n−1∏
i=1

n∏
j=i+1

(β
2 (j − i + 1)

)
λi−λj(β

2 (j − i)
)
λi−λj

=
∏

□∈D(λ)

n + c2/β(□)
2
β armλ(□) + legλ(□) + 1

. (A.1)

We first consider the part of the product in the left-hand side of (A.1) with i = 1, which is

n∏
j=2

(β
2 j
)
λ1−λj(β

2 (j − 1)
)
λ1−λj

=

(β
2n
)
λ1−λn(β

2

)
λ1−λ2

n−1∏
j=2

(β
2 j
)
λ1−λj(β

2 j
)
λ1−λj+1

=

(β
2n
)
λ1−λn∏n−1

j=1

(β
2 j + λ1 − λj

)
λj−λj+1

.

Let D1(λ) = {(1, 1), (1, 2), . . . , (1, λ1)} be the first row of the diagram of λ. The numerator of
the last expression is equal to∏

□∈D1(λ)

(β
2n + β

2 c2/β(□)
)∏λ1

v=λ1−λn+1

(β
2n + v − 1

) , (A.2)

(
note that c2/β(□) = 2

β (j − 1) for □ = (1, j) ∈ D1(λ)
)
. On the other hand, we expand the

denominator

n−1∏
j=1

(β
2 j + λ1 − λj

)
λj−λj+1

=

(
λ1−λ2−1∏

k=0

(β
2 + k

))(λ1−λ3−1∏
k=λ1−λ2

(β
2 2 + k

))
· · ·

×

(
λ1−λn−1∏

k=λ1−λn−1

(β
2 (n− 1) + k

))

and we quickly realize that the factors in the first product (on the right-hand side) correspond to
boxes □ ∈ D1(λ) with legλ(□) = 0, those in the second one to boxes □ ∈ D1(λ) with legλ(□) = 1,
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and so on until the last group of factors, corresponding to boxes □ ∈ D1(λ) with legλ(□) = n−2,
such that this product equals∏

□∈D1(λ)

(β
2 (legλ(□) + 1) + armλ(□)

)∏
□∈D1(λ), legλ(□)=n−1

(β
2 (legλ(□) + 1) + armλ(□)

)
=

∏
□∈D1(λ)

(β
2 (legλ(□) + 1) + armλ(□)

)∏λ1
v=λ1−λn+1

(β
2n + v − 1

) . (A.3)

Taking the ratio of (A.2) by (A.3), we get

n∏
j=2

(β
2 j
)
λ1−λj(β

2 (j − 1)
)
λ1−λj

=
∏

□∈D1(λ)

n + c2/β(□)
2
β armλ(□) + legλ(□) + 1

,

which implies that the validity of (A.1) for the partition (λ1, λ2, . . . ) follows from the validity
of the same formula for the partition (λ2, λ3, . . . ). Therefore, the proof proceeds by induction
on the length of the partition, the base case of the empty partition being trivial. ■
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