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Abstract. We introduce (quantum) twist automorphisms for upper cluster algebras and
cluster Poisson algebras with coefficients. Our constructions generalize the twist auto-
morphisms for quantum unipotent cells. We study their existence and their compatibility
with Poisson structures and quantization. The twist automorphisms always permute well-
behaved bases for cluster algebras. We explicitly construct (quantum) twist automorphisms
of Donaldson–Thomas type and for principal coefficients.
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1 Introduction

1.1 Background

Cluster algebras

The theory of cluster algebras were introduced by Fomin and Zelevinsky [13] as a combinatorial
framework to study the dual canonical bases of quantum groups [28, 34, 35]. In this theory,
one has the cluster A-variety A (also called the cluster K2-variety). It is a scheme equipped
with a cluster structure: A is the union of many tori which are glued by birational maps called
mutations [24]. Let UA denote the “function ring” of A (by which we mean the ring of global
sections of its structure sheaf; it is the coordinate ring when A is affine). Then UA is called
the upper cluster algebra (or upper cluster A-algebra). Under a mild assumption (full rank
assumption), one can endow A with a Poisson structure [19, 20]. Correspondingly, the upper
cluster algebra UA becomes a Poisson algebra, which can be naturally quantized [5].

One also has the cluster X-variety X (also called the cluster Poisson variety). It is a scheme
equipped with the same cluster structure: X is the union of many dual tori which are glued by
mutations. It has a canonical Poisson structure. Let UX denote its function ring, which is called
the cluster Poisson algebra (or upper cluster X-algebra). Then UX is a Poisson algebra, and
one can quantize it naturally.

Fock and Goncharov [9, 10] found that the cluster varieties A and X naturally arise in the
study of the (higher) Teichmüller theory of a surface. They further conjectured that the upper
cluster algebra UA should possess a basis naturally parametrized by the tropical points of the
cluster X-variety associated to the Langlands dual cluster structure and, conversely, the cluster
Poisson algebra UX should possess a basis naturally parametrized by the tropical points of the
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cluster A-variety associated to the Langlands dual cluster structure. (By [25], Fock–Goncharov
conjecture is true for many cases, but might not be true in general.)

In view of Fock–Goncharov conjecture, it is important to understand the upper cluster A-
algebras, upper cluster X-algebras and their bases.

On the one hand, many well-known cluster A-varieties (strictly speaking, the sets of their
rational points) are smooth manifolds. Examples include the unipotent cells Nw

− [15], double
Bruhat cells [3], and top dimensional cells of the Grassmannians Gr(k, n), k ≤ n ∈ N [50]. On
the other hand, there exists few literature on cluster X-varieties. [26, 49, 51] embedded the
Drinfeld double quantum groups of Dynkin types to quantized UX . [48] embedded a subalgebra
of a K-theoretic Coulomb branch to quantized UX .

The bases for (quantized) UA have been extensively studied and they have been related to
representation theory and geometry (see the survey [46]). Not much is known for the bases of
(quantized) UX (see [1, 9, 25] for some results).

Twist automorphisms

[2, 4] introduced an automorphism η̃w on the unipotent cell Nw
− . Its gives rise to an automor-

phism ηw on the coordinate ring C[Nw
− ]. ηw was called a twist automorphism and has been

studied via cluster algebras [16]. A quantum unipotent cell Aq[N
w
− ] is a quantum analog of the

coordinate ring C[Nw
− ], which is defined for all Kac–Moody types. In a joint work [33], the first

author introduced the quantum twist automorphism ηw on Aq[N
w
− ] and further showed that the

dual canonical basis B∗ of Aq[N
w
− ] is permuted by ηw.

By [15, 17, 21, 23], Aq[N
w
− ] is a (quantum) upper cluster algebra UA. By a motivational

conjecture of Fomin and Zelevinsky [13] and its natural generalization [32], the dual canonical
basis of Aq[N

w
− ] should contain all cluster monomials, i.e., the monomials of coordinate functions

in some toric chart which are globally regular on A. With the help of the existence of the twist
automorphism ηw and the fact that it permutes the dual canonical basis B∗, the second author
gave a proof of the generalized conjecture for all cases [47]. (See [27, 37, 44] for other approaches
and the corresponding results.)

In view of the successful application of the twist automorphism ηw to the (quantum) upper
cluster algebra Aq[N

w
− ], it is natural to ask for a twist automorphism in general cases.

1.2 Main results

Preliminaries

Let I denote a finite set of vertices and I = Iuf ⊔ If a partition of I. Choose skew-symmetrizers
di ∈ Z>0, i ∈ I. The vertices in Iuf and If are called unfrozen and frozen, respectively. A seed t is
a collection ((Ai)i∈I , (Xi)i∈I , B) whose matrixB = (bij)i,j∈I is Z-valued such that 1

di
bij = − 1

dj
bji,

and Ai, Xi are indeterminates called cluster A-variables and cluster X-variables, respectively.

Choose a base ring k = Z or Z
[
v±

1
d′
]
for the classical cases or the quantum cases, respectively,

where d′ is a sufficiently divisible positive integer. We associate to t two Laurent polynomial
rings LPA = k

[
A±
i

]
i∈I , LP

X = k
[
X±
i

]
i∈I . Then, if we take k = C, LP• is the coordinate ring

of the corresponding torus T • := SpecLP•, where • stands for A or X. We denote the Laurent
monomials by Am for any m = (mi)i∈I ∈ ZI and, similarly, Xn for any n = (ni)i∈I ∈ ZI .

Unless otherwise specified, we will use a v-twisted product on LP• (see Section 2.3). We will
set v = 1 if we work at the classical level. Let F• denote the skew-field of fractions of LP•.
A monomial map between LP• is an algebra homomorphism sending Laurent monomials to
Laurent monomials. We have a canonical a monomial map p∗ : LPX → LPA. Following [43, 44],
we consider the pointed elements, i.e., the elements of the form SAm = Am · Fm|Zk 7→p∗Xk

in LPA
and SXn = Xn · Fn|Zk 7→Xk

in LPX , where Fm and Fn are polynomials in indeterminates Zk,
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k ∈ Iuf , with constant term 1 (called F -polynomials). Here, Zk 7→ p∗Xk and Zk 7→ Xk denote
the evaluation of Zk, respectively, and · denotes the commutative product.

For any unfrozen vertex k ∈ Iuf , we have an algorithm called mutation which generates a new
seed

µkt = ((Ai(µkt))i∈I , (Xi(µkt))i∈I , B(µkt)).

In particular, we have an isomorphism µ•k : F•(µkt)
∼→ F•(t) called a mutation birational

map.

Let ∆+
t denote the set of seeds t′ = µt obtained from t by any finite sequence of mutations µ,

where µ takes the form µks · · ·µk2µk1 and starts from the seed t. Note that the mutation
sequence µ depends on t, but we omit the symbol t as in standard literature. Recall that
the cluster •-variety is the union ∪t′∈∆+

t
T •(t′) such that the tori (local charts) are glued by

mutation birational maps (µ•)∗ (coordinate change). The upper cluster •-algebra U• is defined
to be its function ring, which turns out to be U•(t) = ∩t′∈∆+

t
µ∗LP•(t′) by choosing any initial

seed t (local chart). It is known that, up to identification by mutation maps, these objects are
independent of the choice of the initial seed t. So we can simply write U•.

Constructions and results

Let t = ((Ai), (Xi), B) and t′ = µt = ((A′
i), (X

′
i), B

′) denote two similar seeds, i.e., there exists
a permutation σ on Iuf such that bi,j = b′σi,σj , di = dσi, ∀i, j ∈ Iuf . We can relabel the vertices Iuf
when working with t′, so that we can assume σ = Id from now on.

Let prIuf denote the natural projection from ZI to ZIuf . Following [43, 44], two pointed
elements SAm ∈ LPA(t) and SAm′ ∈ LPA(t′) are said to be similar if prIuf m = prIuf m

′ and they
have the same F -polynomial. Similarly, we define two pointed elements SXn ∈ LPX(t) and
SXn′ ∈ LPX(t′) to be similar if prIuf B(t)n = prIuf B(t′)n′ and they have the same F -polynomial.

Following [43, 44], a variation map (or a correction map, a coefficient twist map) var•t is a map
sending pointed elements in LP•(t) to similar pointed elements in LP•(t′), where • stands for A
or X, see Remarks 3.5 and 4.5. For the purpose of this paper, we require that var•t is an algebra
homomorphism from LP•(t) to LP•(t′).

We define a twist endomorphism tw•
t on U•(t) to be the composition µ∗ var•t of the mutation

map µ∗ with a variation map var•t . In the classical case, it is called Poisson if it preserves the
Poisson structure. We can show that the construction is independent of the choice of the initial
seed, so we can simply say that tw• acts on U• (Propositions 3.14 and 4.12). Note that different
choices of variation maps still give different twist endomorphisms.

Let ZQ denote the multiplicative group generated by the roots of coefficients (frozen clus-
ter A-variables Aj , j ∈ If). Let UAZQ denote the ring UA ⊗ k

[
ZQ]. The notion of the twist

endomorphism twA can be naturally generalized for UAZQ .

In the classical case, the existence of the twist endomorphisms twA is given by Theorem 3.19(
see Remark 4.21 for the existence of twX

)
:

� Assume that the full rank assumption holds. Then the twist endomorphisms twA on UAZQ

exist, and they are in bijection with the solutions of an inhomogeneous linear equation
system.

Let varXt′ denote a monomial map from LPX(t′) to LPX(t) and varAt the corresponding mono-
mial map from LPA(t)ZQ to LPA(t′)ZQ constructed using the pullback (see Theorem 4.19).
Let tw• denote their compositions with the mutation maps, respectively. Then tw• are related
by Theorem 4.19:
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� twX is a twist endomorphism (resp. twist automorphism) on UX if and only if twA is
a twist endomorphism (resp. twist automorphism1) on UAZQ .

� Assume that twX is a twist automorphism on UX . Then it is Poisson if and only if twA and(
twX

)−1
commute with the natural homomorphism p∗ : UX→ UA, i.e., p∗

(
twX

)−1
= twA p∗.

Note that a variation map varXt′ is Poisson if and only if the corresponding linear map satisfies
the quadratic equation in Lemma 4.10.

We also explicitly construct Poisson (or quantum) twist automorphisms tw• on U• in the
following cases:

� The case t′ = t[1] (see Definition 2.19 and Theorem 5.2): the corresponding twist auto-
morphisms are said to be of Donaldson–Thomas type (DT-type for short). The original
twist automorphism ηw is of this type [47].

� The case when there is a seed of principal coefficients (see Section 2.10 and Theorem 5.4).

We prove general results that well-behaved bases for U• satisfying Assumptions 6.1 or 6.3 are
permuted by twist automorphisms tw• (see Theorems 6.2 and 6.4). In addition, we proposed
a method for constructing bases of UX in Theorem 6.6.

Recall that we can naturally quantize U• if a compatible Poisson structure is given. Then
we can lift a Poisson twist endomorphism to a quantum twist endomorphism. Conversely,
the classical limit of a quantum twist endomorphism is a Poisson twist endomorphism. See
Remarks 3.7 and 4.7.

Remark 1.1 (a comparison with the previous literature). The second author introduced the
correction technique to compare similar pointed elements for similar seeds t and t′ in [43]. In
order to facilitate the comparison, in [44], he introduced a variation map varAt sending pointed el-
ements in LPA(t) to similar pointed elements in LPA(t′). The variation map varA : LPA(t)ZQ →
LPA(t′)ZQ considered in this paper is defined in the same spirit, but chosen slightly differently,
such that it becomes an algebra homomorphism. The variation map varX : LPX(t′)→ LPX(t)
has not been considered before.

In the classical case k = Z, it is easy to see that a variation map varA : LPA(t) → LPA(t′)
in this paper is the same as a quasi-homomorphism introduced by Fraser [14]. When one
identifies FA(t) and FA(t′) using the mutation map µ∗, a twist endomorphism twA on UA
becomes the same as a quasi-homomorphism for a normalized seed pattern in the sense of [14].
[6] studied the group of the twist automorphisms on UA for principal coefficient cases and several
other special cases.

To the best of the authors’ knowledge, the Poisson or quantum twist endomorphisms as well
as the twist endomorphisms twX have not been introduced in the previous literature (although
specific examples have risen from Lie theory and from higher Teichmüller theory, see Section 7).

Remark 1.2 (morphisms for schemes). Consider the classical cases.

On the one hand, our twist endomorphism tw• provides an endomorphism for the affine
scheme SpecU•.

On the other hand, a cluster variety might not be affine, and we do not know if tw• provide
an endomorphism for it. While the variation map is always a scheme morphism, the mutations
might be not.

See [24] for the comparison between the schemes.

1While we only consider upper cluster algebras in this paper, Proposition 3.14 implies that our twist auto-
morphism twA restricts to an automorphism on the k[ZQ]-subalgebra (cluster algebra) generated by the cluster
variables.
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1.3 Contents

We provide preliminaries for the theory of cluster algebras in Section 2.

In Sections 3 and 4, we introduce (Poisson, quantum) twist endomorphisms for upper cluster
A-algebras and upper cluster X-algebras, respectively. We discuss their existence.

In Section 5, we explicitly construct (quantum) twist automorphisms for two special cases:
the Donaldson–Thomas type and the principal coefficients.

In Section 6, we prove that a basis with nice properties is permuted by a twist automorphism.
We also construct bases for cluster Poisson algebras.

In Section 7, we give some explicit examples for Poisson twist automorphisms.

1.4 Convention

We fix a finite set of vertices I together with a partition I = Iuf ⊔ If . The elements in Iuf
and If are said to be unfrozen and frozen, respectively. We also fix skew-symmetrizers di ∈ Z>0

for i ∈ I. Let D denote the diagonal matrix whose diagonal entries are 1
di
, i ∈ I.

We choose a base ring k of characteristic 0 and a unit v ∈ k. For classical cluster algebras,
we choose k = Z and v = 1. For quantum cluster algebras, we choose k = Z

[
v±

1
d′
]
where v is an

indeterminate and d′ ∈ N>0 is sufficiently divisible. The ring multiplication for cluster algebras
will be the v-twisted product ∗. We will also use the commutative product ·.

An I × I matrix H is said to be skew-symmetrizable by D if DH is skew-symmetric.

For any I × I-matrix H and any J1, J2 ⊂ I, let HJ1,J2 denote the J1 × J2-submatrix of H.
Then we can denote H as a block matrix:

H =

(
HIuf ,Iuf HIuf ,If

HIf ,Iuf HIf ,If

)
=:

(
Huf Huf,f

Hf,uf Hf

)
.

Let coliH and rowiH denote the i-th column and the i-th row of H, respectively. For any
permutation σ of I (resp. of Iuf), let Pσ denote the I × I-matrix (resp. the Iuf × Iuf-matrix)
such that coli Pσ is the σi-th unit vector. Then we have colk(HPσ) = colσkH as column vectors
and rowi(PσH) = rowσ−1iH as row vectors. We work with column vectors unless otherwise
specified.

Assume that σ is a permutation on Iuf . If w = (wk)k∈Iuf is a vector in RIuf , we define σw ∈ RIuf
such that (σw)σk = wk. Similarly, if µ = µkr · · ·µk2µk1 is a sequence of mutations with ki ∈ Iuf ,
then σµ denotes µσkr · · ·µσk2µσk1 .

For a Z-lattice L, we denote LQ = L ⊗Z Q. If L has an I-labeled basis {ui | i ∈ I}, let Luf

and Lf denote its sublattices spanned by {ui | i ∈ Iuf} and {ui | i ∈ If}, respectively.
Let prIuf denote the natural projection from ZI to ZIuf .

2 Preliminaries

2.1 Seeds and tori

Definition 2.1 (seeds). A seed t is a collection ((Ai)i∈I , (Xi)i∈I , B), where Ai and Xi are
indeterminates called cluster A-variables and clusterX-variables, respectively, and B = (bij)i,j∈I
is a Z-valued matrix such that DB is skew-symmetric.

Define Laurent polynomial rings LPA = k
[
A±
i

]
i∈I and LPX = k

[
X±
i

]
i∈I . For any vector

m,n ∈ ZI , denote the Laurent monomials Am =
∏
Ami
i and Xn =

∏
Xni
i . We use · to denote

their commutative multiplication, which is often omitted for simplicity.

We associate to t a lattice N = ZI with the natural basis ei, i ∈ I, whose elements n =∑
niei = (ni) ∈ ZI are viewed as the Laurent degrees for Xn ∈ LPX . Let M denote its
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dual lattice with the dual basis e∗i . Let ⟨ , ⟩ denote the natural pairing between NQ and MQ.
Define fi =

1
di
e∗i and the sublattice M◦ = ⊕i∈IZfi ⊂ MQ. We identify M◦ with ZI such that fi

become the unit vectors. View its elements m =
∑
mifi = (mi) ∈ ZI as the Laurent degrees

for Am ∈ LPA.
Let e and f denote the I-labeled bases (ei)i∈I and (fi)i∈I , respectively. We can view them

as matrices whose columns are the basis elements. Define the linear map p∗ : N → M◦ such
that p∗ej =

∑
i bijfi, ∀j. It has the following matrix presentation:

p∗(e) = fB.

In the classical case, extend k to a field containing Z. Denote the affine schemes T A =
SpecLPA and T X = SpecLPX . We will call T A and T X the tori associated to t, since T A(k)
and T X(k) coincide with the split algebraic torus (k×)I .

2.2 Poisson structures

Recall that d is the least common multiplier of all di. We can associate to N a 1
dZ-valued

canonical skew-symmetric bilinear form −ω such that ω(ei, ej) =
1
dj
bji, ∀i, j. The corresponding

canonical Poisson structure on T X is given by{
Xn, Xn′}

= −ω(n, n′)Xn+n′
. (2.1)

Let W denote the Q-valued matrix (ω(ei, ej))i,j . Recall that the diagonal entries of D are 1
di
.

Then we have WD−1 = BT.

Remark 2.2. For any i ∈ I, we have p∗ei( ) = ω(ei, ).

Remark 2.3. Following [19, 20], the Poisson structure of the form (2.1) is usually called log-
canonical in the sense that the following holds (for k = R):{

lnXn, lnXn′}
= −ω(n, n′).

We often impose the following assumption. Denote the matrix B̃ := (bik)i∈I,k∈Iuf .

Assumption 2.4 (full rank assumption). We assume that the linear map p∗ restricts to an
injective map on Nuf . Equivalently, the matrix B̃ is of full rank.

Definition 2.5 ([5]). By a (compatible) Poisson structure on T A, we mean a collection of
strictly positive numbers d′k ∈ Q>0, k ∈ Iuf , and a Q-valued skew-symmetric bilinear form λ
on M◦ such that

λ(fi, p
∗ek) = −δik d′k

for any i ∈ I, k ∈ Iuf .
The corresponding Poisson bracket on T A is defined as{

Am, Am
′}

= λ(m,m′)Am+m′
.

The bilinear form λ is represented by the Λ-matrix Λ = (Λij)i,j∈I := (λ(fi, fj))i,j∈I .

Note that the existence of a compatible Poisson structure implies the full rank assumption
(see Assumption 2.4). Conversely, by [19, 20], when the full rank assumption is satisfied, we can
always choose a (not necessarily unique) compatible Poisson structure.
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From now on, we will make the choice such that d′k =
1
dk
, ∀k ∈ Iuf (see [5, Proposition 3.3]).

Correspondingly, λ is 1
d′
Z-valued for some sufficiently divisible d′ ∈ N>0. We choose d′ such

that d| d′.
Note that the bilinear form λ on M◦(t) naturally induces a bilinear form λ on Nuf such that

λ(n, n′) := λ(p∗n, p∗n′).

It is easy to check that λ on Nuf coincides with −ω (see [47, Lemma 2.1.11 (2)]).

Definition 2.6 (connected matrix). An I×I matrix B is said to be connected, if for any i, j ∈ I,
there exists finitely many vertices is ∈ I, 0 ≤ s ≤ l, such that i0 = i, il = j, and bisis+1 ̸= 0 for
any 0 ≤ s ≤ l − 1.

It is straightforward to check the following result.

Lemma 2.7. Assume that B is a connected I × I matrix. If DB and D′B are both skew-
symmetric for some invertible diagonal matrices D, D′, then there exists some 0 ̸= α ∈ Q such
that D = αD′.

2.3 Quantum torus algebras

Recall that we have chosen d| d′ and ω on N is 1
dZ-valued. Using the canonical Poisson structure

on T X , we equip LPX with an extra multiplication ∗, called the v-twisted product, such that

Xn ∗Xn′
= v−ω(n,n

′)Xn+n′
.

Then LPX is called a quantum torus algebra for the quantum case k = Z
[
v±

1
d′
]
. The canonical

Poisson bracket (2.1) can be recovered from the twisted product by{
Xn, Xn′}

= lim
v→1

1

2(v − 1)
(Xn ∗Xn′ −Xn′ ∗Xn).

If there exists a 1
d′
Z-valued compatible Poisson structure λ on T A (see Definition 2.5), we

can equip LPA with an extra multiplication ∗, called the v-twisted product, such that

Am ∗Am′
= vλ(m,m

′)Am+m′
.

Then LPA is called a quantum torus algebra for the quantum case k = Z
[
v±

1
d′
]
. As before, the

compatible Poisson structure can be recovered from the twisted product by{
Am, Am

′}
= lim

v→1

1

2(v − 1)
(Am ∗Am′ −Am′ ∗Am).

For the classical case k = Z, we have v = 1 and we simply define the v-twisted product ∗
of LP• to be the commutative products ·. From now on, we always view LP• as a k-algebra
whose multiplication is the v-twisted product.

Let LP = k[L] = ⊕ku∈Lχu and LP ′ = k[L′] = ⊕ku′∈L′χu
′
be two quantum torus algebras as

above, viewed as k-modules. Here L and L′ denote the lattices of Laurent degrees, respectively,
and χ can denote X or A. By a monomial map Φ from LP to LP ′ we mean a k-linear map such
that, there exists some linear map Ψ : L → L′ satisfying Φ(χu) = χΨ(u) ∀u ∈ L. In this case,
Φ is called the monomial map associated to Ψ and Ψ the linear map associated to Φ.

In particular, the linear map p∗ : N → M◦ determines a monomial map LPX → LPA send-
ing Xn to Ap

∗n, which is still denoted by p∗ for simplicity. Then p∗ is an algebra homomorphism
preserving the v-twisted products.

Let T denote the subalgebra k[Xk]k∈Iuf of the quantum torus algebra LPX . We introduce the
k-algebra L̂P

X
= LPX ⊗T T̂ , where T̂ is the completion of T with respect to its maximal ideal

generated by Xk, k ∈ Iuf . Similarly, define L̂P
A
:= LPA ⊗p∗T p∗T̂ . The elements in L̂P

•
will

be called formal Laurent series. Note that p∗ extends to a homomorphism from L̂P
X

to L̂P
A
.
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2.4 Mutation maps

Denote [ ]+ = max( , 0). For any vector (gi), denote [(gi)]+ = ([gi]+).

Let t denote a given seed and k any chosen unfrozen vertex. Choose any sign ε ∈ {1,−1}.
We define a new seed t′ = µkt = ((A′

i), (X
′
i), B

′), such that the matrix B′ = (b′ij) is given by

b′ij =

{
−bij , k ∈ {i, j},
bij + bik[εbkj ]+ + [−εbik]+bkj , k /∈ {i, j}.

Let F• denote the fraction fields of the Laurent polynomial rings LP• for classical cases and
the skew fields of fractions of the quantum torus algebras LP• for quantum cases. We always
call F• fraction fields for simplicity.

We further relate the cluster variables for t′ with those for t, by introducing isomorphisms for
the fraction fields

(
µXk
)∗

:
(
FX
)′ ≃ FX and

(
µAk
)∗

:
(
FA
)′ ≃ FA. For classical cases, we define

(
µXk
)∗
X ′
i =

{
XiX

[εbki]+
k (1 +Xε

k)
−bki , i ̸= k,

X−1
k , i = k

=


Xi(1 +Xk)

−bki , bki ≤ 0,

XiX
bki
k

1

(1 +Xk)bki
, bki > 0,

X−1
k , i = k,

(
µAk
)∗
A′
i =


Ai, i ̸= k,

A−1
k

∏
j

A
[−εbjk]+
j (1 + p∗Xε

k), i = k

=


Ai, i ̸= k,

A−1
k

∏
j

A
[−bjk]+
j (1 + p∗Xk), i = k.

Following [45, equation (2.6)] and [47, equations (2.2) and (2.4)], for quantum cases, we define(
µAk
)∗

such that

(
µAk
)∗
A′
i =

{
Ai, i ̸= k,

A−fk+
∑

j [−bjk]+fj +A−fk+
∑

i[bik]+fi , i = k.

We define
(
µXk
)∗

such that

(
µXk
)∗
X ′
i =



Xi ·
−bki∑
s=0

(
−bki
s

)
vk

Xs
k, bki ≤ 0,(

bki∑
s=0

(
bki

s

)
vk

X−1
i ·X

−bki
k ·Xs

k

)−1

, bki > 0,

X−1
k , i = k,

where · denotes the commutative product. Here, we denote vk := vd
′
k = v

1
dk . The quantum

numbers for b ≤ a ∈ N are defined as

[a]v :=
va − v−a

v − v−1
, [a]v! := [a]v[a− 1]v · · · [1]v,

(
a
b

)
vk

:=
[a]v!

[b]v![a− b]v!
.



Twist Automorphisms and Poisson Structures 9

The maps (µ•k)
∗ are called the mutation maps, where • stands for A or X. For classical cases,

they induce birational maps µ•k : T •(t) 99K T •(t′).2

It is straightforward to check the well-known fact that B′ does not depend on the choice of
the sign ε. Moreover, mutation is an involution on the seeds, and the compositions

((µ•k)
∗)2 : (F•)′ ≃ F• ≃ (F•)′

are the identity. One can also check that mutations commute with the monomial map p∗:(
µAk
)∗ ◦ p∗(t′)(Xi(t

′)) = p∗(t) ◦
(
µXk
)∗
(Xi(t

′)), ∀i ∈ I. (2.2)

For simplicity, we might omit the symbol • when there is no confusion.

Hamiltonian formalism

For classical cases, let us recall the Hamiltonian formalism for the mutation maps following [18]
(see also [11, 25]). Recall that the Euler dilogarithm function is given by

Li2(z) =
∑
n≥1

zn

n2
.

Let
(
ρXk,ε
)∗

denote the automorphism exp{εdk Li2(−Xε
k), } on FX . When FA possesses

a compatible Poisson structure, let
(
ρAk,ε
)∗

denote its automorphism exp
{
ε Li2

(
−Aεp∗ek

)
,
}
.

One can check that(
ρXk,ε)

∗(Xn
)
= Xn

(
1 +Xε

k

)ω(n,−dkek), (
ρAk,ε
)∗
(Am) = Am

(
1 +Aεp

∗ek
)−mk .

In particular, we have

(
ρXk,ε
)∗
(Xi) =

{
Xi(1 +Xε

k)
−bki , i ̸= k,

Xk, i = k,(
ρAk,ε
)∗
(Ai) =

{
Ai, i ̸= k,

Ak(1 + (p∗Xk)
ε)−1, i = k.

We define monomial maps ψXk,ε :
(
LPX

)′ ≃ LPX and ψAk,ε :
(
LPA

)′ ≃ LPA such that

ψXk,εX
′
i =

{
Xi ·X [εbki]+

k , i ̸= k,

X−1
k , i = k,

ψAk,εA
′
i =


Ai, i ̸= k,

A−1
k ·

∏
j

A
[−εbjk]+
j , i = k,

where the commutative products are used. Then the mutation map (µ•k)
∗ decomposes as the

composition (ρ•k,ε)
∗◦ψ•

k,ε. The factor ψ
•
k,ε is called its monomial part and (ρ•k,ε)

∗ its Hamiltonian
part. Note that we have (ρ•k,ε)

∗ ◦ ψ•
k,ε = ψ•

k,ε ◦ (ρ•k,−ε)∗.
By [5], if t is endowed with a compatible Poisson structure, then we have a unique compatible

Poisson structure for t′ such that the homomorphism ψAk,ε is a Poisson homomorphism. In
addition, it is independent of ε. We still use λ to denote the corresponding skew-symmetric
bilinear form on (M◦)′, and denote the corresponding matrix by Λ′ = (λ(f ′i , f

′
j))i,j∈I .

2We use dashed arrows to denote rational maps.
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Mutation sequences

Let k = (k1, . . . , kl) denote a finite sequence of unfrozen vertices. A sequence of mutations
µ = µk is the composition of mutations µkl · · ·µk2µk1 (read from right to left). The correspond-
ing mutation map is (µ•)∗ = (µ•k1)

∗(µ•k2)
∗ · · · (µ•kl)

∗, which we often write µ∗ for simplicity. Note

that µ−1 = µk1µk2 · · ·µkl and (µ∗)−1 =
(
µ−1

)∗
.

We deduce the following equality in FA(t) from (2.2):(
µA
)∗ ◦ p∗(t′)(X(t′)n) = p∗(t) ◦

(
µX
)∗
(X(t′)n), ∀n ∈ ZI . (2.3)

Formal Laurent series expansions

We recall the maps ι• taking formal Laurent series expansions following [45, Section 3.3]. They
will only be used in Lemma 6.5.

Take t′ = µt for any mutation sequence µ. The mutation map (µ•)∗ : F•(t′)→ F•(t) induces
an algebra homomorphism ι•(t′) from LP•(t′) to L̂P

•
(t), sending the Laurent monomials (X ′)n

to
(
µX
)∗
(X ′)n

(
or (A′)m to

(
µA
)∗
(A′)m

)
. It is injective, see [45, Lemma 3.3.7 (1)]. In addition,

the image of the Laurent monomials are pointed elements in the sense of Section 2.11, see [45,
Lemma 3.3.6].

Lemma 2.8. For any Z ∈ LP•(t′), the following statements are true.

(1) If (µ•)∗Z ∈ LP•(t), then ι(Z) = (µ•)∗Z.

(2) If ιZ ∈ LP•(t), then ι(Z) = (µ•)∗Z.

Proof. (1) See [45, Lemma 3.3.7 (2)].
(2) We prove it for the X-side, and the proof for the A-side is the same. Our proof is similar

to that of [45, Lemma 3.3.7 (2)].
We can write (X ′)n ∗ Z = F for some F ∈ k[X ′

i]i∈I , n ∈ NI . On the one hand, we have
ι(X ′)n ∗ ι(Z) = ι(F ) in LPX(s). On the other hand, we have µ∗(X ′)n ∗ µ∗(Z) = µ∗(F )
in FX(s). By the definition of ι, we have ι(X ′)n = µ∗(X ′)n and ι(F ) = µ∗(F ). It follows that
ι(Z) = µ∗(Z). ■

2.5 Cluster algebras

Let there be any given initial seed t0. We use ∆+ = ∆+
t0

to denote the set of seeds t =
((Ai(t))i∈I , (Xi(t))i∈I , B(t)) obtained from t0 by sequences of mutations. If we work with the
quantum cases, we also choose a compatible Poisson structure and consider the associated quan-
tization as in Section 2.3. Recall that the cluster variables Aj(t0), j ∈ If , are unchanged by
mutations, which are denoted by Aj and are called the frozen variables. We use Z to denote
the multiplicative group generated by A±

j , j ∈ If .
Using the v-twisted product ∗, the partially compactified (quantum) cluster algebra A(t0)

with the initial seed t0 is defined to be the k-subalgebra of FA(t0) generated by all the cluster
variables µ∗Ai(t), i ∈ I, t = µt0 ∈ ∆+

t0
. The (localized) cluster algebra A(t0) is defined to be its

localization A(t0)
[
A−1
j

]
j∈If

.

The upper cluster algebra (or upper cluster A-algebra) UA(t0) with the initial seed t0 is defined
as the intersection ∩t=µt0∈∆+µ∗LPA(t) inside FA(t0). By the Laurent phenomenon [5, 13],
it contains the cluster algebra A(t0). For classical cases, if a compatible Poisson structure
on LPA(t0) is given, then UA(t0) inherits the Poisson structure.

The cluster Poisson algebra (or upper cluster X-algebra) UX(t0) with the initial seed t0 is
defined as the intersection ∩t=µt0∈∆+µ∗LPX(t) inside FX(t0). For classical cases, it inherits

the canonical Poisson structure from that of LPX(t0).
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We often identify fraction fields F•(t) and F•(t0) via the mutation map µ∗ for simplic-
ity. Correspondingly, we omit the symbol t0 and µ∗ in the above notations, and we can
write UA = ∩tLPA(t) and UX = ∩tLPX(t).

2.6 Cluster varieties

Let us work at the classical cases. Given two seeds t′ = µt. Using the mutation birational
maps µ : T A(t) 99K T A(t′), we can glue the tori T A(t), t ∈ ∆+, into a scheme A (see [24,
Proposition 2.4]), which is called the cluster A-variety or cluster K2 variety. Note that the upper
cluster algebra UA is the ring of global sections of its structure sheaf. A choice of compatible
Poisson structure on LPA(t0) gives rise to a Poisson structure on A. It often happens that A
is a smooth manifold, for example, for many well-known the cluster algebra arising from Lie
theory (unipotent cells [15], double Bruhat cells [3, 22]).

Similarly, using the mutation birational maps µ : T X(t) 99K T X(t′), we can glue the tori
T X(t), t ∈ ∆+, into a scheme X called the cluster X-variety or the cluster Poisson variety. The
cluster Poisson algebra UX is the ring of global sections of its structure sheaf. Note that X has
the canonical Poisson structure.

2.7 Transition matrices

We use ( )T to denote matrix transpose.
Given seeds t′ = µkt and a mutation sign ε ∈ {+,−}. Let us describe the monomial part of

mutation using transition matrices.3

Define the following I × I-matrix PNk,ε(t):

(
PNk,ε(t)

)
ij
=


−1, i = j = k,

[εbkj ]+, i = k, j ̸= k,

δij , else.

Then it represents the linear map

ψNk,ε : N(t′)→ N(t), ψNk,ε(e
′) = ePNk,ε(t).

We see that ψNk,ε induces the monomial part ψXk,ε of the mutation from FX(t′) to FX(t).
Similarly, define the following I × I-matrix PMk,ε(t):

(
PMk,ε(t)

)
ij
=


−1, i = j = k,

[−εbik]+, i ̸= k, j = k,

δij , else.

Then it represents the linear map

ψMk,ε : M◦(t′) ≃M◦(t), ψMk,ε(f
′) = f PMk,ε(t).

We see that ψMk,ε induces the monomial part ψAk,ε of the mutation from FA(t′) to FA(t).
The following results were known by [5, 41], see [31, Section 5.6] for a summary.

Proposition 2.9. We have the following equalities:

(1) PNk,ε(t)
2 = Id, PNk,−ε(t

′) = PNk,ε(t), P
N
k,−ε(t

′)PNk,ε(t) = Id.

3In [5], our matrices PN
ε and PM

ε are denoted by Fε and Eε, respectively.
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(2) PMk,ε(t)
2 = Id, PMk,−ε(t

′) = PMk,ε(t), P
M
k,−ε(t

′)PMk,ε(t) = Id.

(3) D PMk,−ε(t
′)D−1 = D PMk,ε(t)D

−1 =
(
PNk,ε(t)

)−T
.

(4) B′ = PMk,ε(t) ·B · PNk,ε(t).

(5) Λ′ = PMk,ε(t)
T · Λ · PMk,ε(t), where Λ is the matrix of the Poisson structure.

Remark 2.10. It is straightforward to check that we have

(
PMk,ε(t

′)PMk,ε(t)
)
ij
=

{
−εbik, i ̸= k, j = k,

δij , else.

and similarly

(
PNk,ε(t

′)PNk,ε(t)
)
ij
=

{
−εbkj , i = k, j ̸= k,

δij , else.

2.8 Cluster expansions, g-vectors, c-vectors

Let there be given an initial seed t0 = ((Ai), (Xi), B). Take any sequence of unfrozen vertices
k = (k0, k1, . . . , kr). Denote the corresponding mutation sequence by µ = µk = µkr · · ·µk0 and
the resulting seed by t = µt0.

Recall that a vector is said to be sign-coherent if its coordinates are all non-negative or all
non-positive.

Theorem 2.11 ([7, 25, 52]). There exist I × I invertible Z-matrices

E(t) =

(
E(t)uf E(t)uf,f

0 Idf

)
and F (t) =

(
F (t)uf 0
F (t)f,uf Idf

)
,

such that the following statements hold.

(1) Any cluster A-variable Ai(t), i ∈ I, has the following Laurent expansion in LPA(t0):

µ∗Ai(t) = Acoli F (t) ∗
∑
n∈NIuf

cnA
p∗n,

such that c0 = 1.

(2) Any cluster X-variable Xi(t), i ∈ I, has the following expression in FX(t0):

µ∗Xi(t) = Xcoli E(t) ∗ P ∗Q−1,

where P , Q are polynomials in k[Xk]k∈Iuf with constant term 1.

(3) The row vectors of F (t) are sign-coherent.

(4) The column vectors of E(t) are sign-coherent.

The Iuf × Iuf-submatrices C(t) := E(t)uf and G(t) := F (t)uf are usually called the C-matrix
and the G-matrix of t (with respect to the initial seed t0), respectively.

Definition 2.12 ([45]). For any pair of seeds t, t′ ∈ ∆+, let t be the initial seed and E(t′)
(resp. F (t′)) denote the corresponding E-matrix (resp. F -matrix) of t′. We define the linear
map:

ψNt,t′ : N(t′)→ N(t), ψNt,t′(e(t
′)) = e(t)E(t′);

ψMt,t′ : M◦(t′)→M◦(t), ψMt,t′(f(t
′)) = f(t)F (t′).
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Example 2.13. Take the index set I = {1, 2} such that 1 is the only unfrozen vertex. Choose
d1 = 2, d2 = 1. The initial seed t = ((X1, X2), B) is given such that B =

(
0 2

−1 0

)
.

Then W = BT
(

1
2
0

0 1

)
=
(
0 −1
1 0

)
. We choose Λ = −1

2W , so that (ΛB)i1 = −δi,1 1
d1

for i = 1, 2.

The seed t′ = µ1t is the only non-initial seed. Using the commutative product ·, we can write
A′

1 = A−f1+f2 +A−f1 = A−1
1 ·A2 ·

(
1+A−1

2

)
= A−1

1 ·A2 · (1+ p∗X1) and A
′
2 = A2. It follows that

ψMt,t′ : M
◦(t′)→M◦(t) is represented by F (t′) =

(−1 0
1 1

)
. We also have

X ′
1 = X−1

1 , (X ′
2)

−1 = X−1
2 ·X

−2
1 ·

(
1 +

(
v

1
2 + v−

1
2
)
X1 +X2

1

)
or, equivalently,

X ′
2 =

(
X−2e1−e2 +

(
v

1
2 + v−

1
2
)
X−e1−e2 +X−e2

)−1
.

So ψNt,t′ : N(t′)→ N(t) is represented by E(t′) =
(−1 2

0 1

)
.

Note that, for any k ∈ Iuf , ψ•
t,µkt

is represented by the matrix P•
k,+(t), where • stands for M

or N . In particular, ψ•
t,µkt

ψ•
µkt,t

might not be the identity by Remark 2.10.

Identify N(t) with N(t0) by using the linear map ψNt0,t. Then the basis vector ei(t) has the

coordinate vector coliE(t) in N(t0) ≃ ZI . Similarly, identify M(t) with M(t0) by using the
linear map ψMt0,t. Then the basis vector fi(t) has the coordinate vector coli F (t) in M

◦(t0) ≃ ZI .
We will often work with vectors, linear maps and bilinear forms in the fixed lattices N(t0)

and M(t0). We refer the reader to [24] for more details on the fixed data.

2.9 Canonical mutation signs

For any k ∈ Iuf , recall that the k-th c-vector colk C(t) is sign coherent. Then we define the
canonical mutation sign ε for the mutation of t at the vertex k to be the sign of colk C(t). From
now on, we always choose the canonical mutation sign unless otherwise specified.

For k = (k0, k1, . . . , kr), denote k≤s = (k0, . . . , ks) for any 0 ≤ s ≤ r − 1 and ts = µk≤s−1
t0.

Let εs denote the canonical sign for the mutation of ts at the direction ks.

Proposition 2.14 ([25, 41]). We have the following

E(t) = PNk0,ε0(t0)P
N
k1,ε1(t1) · · ·P

N
kr−1,εr−1

(tr−1),

F (t) = PMk0,ε0(t0)P
M
k1,ε1(t1) · · ·P

M
kr−1,εr−1

(tr−1).

By Proposition 2.14, the matrices C(t) and G(t) only depend on Buf and k.

Using Proposition 2.9, we obtain

E(t)T = DF (t)−1D−1. (2.4)

Its restriction gives C(t)T = DufG(t)
−1D−1

uf .

Lemma 2.15. The following statements are true.

(1) F (t)B(t)(E(t))−1 = B(t0) or, equivalently, ψ
M
t0,t(p

∗e(t)) = p∗
(
ψNt0,te(t)

)
.

(2) F (t)TΛ(t0)F (t) = Λ(t) or, equivalently, λ
(
ψMt0,t(f(t)), ψ

M
t0,t(f(t))

)
= λ(f(t), f(t)).

(3) E(t)TW (t0)E(t) =W (t) or, equivalently, ω
(
ψNt0,t(e(t)), ψ

N
t0,t(e(t))

)
= ω(e(t), e(t)).

Proof. (1)–(2) follow from Propositions 2.9 and 2.14.

(3) follow from (1), W (t)D−1 = B(t)T and E(t)T = DF (t)−1D−1. ■
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2.10 Principal coefficients

Let us recall the seeds with principal coefficients and their relation with the C-matrix and the
G-matrix. This part will only be used in Sections 5.2 and 6.3.

Denote a copy of Iuf by I
′
uf = {k′|k′ ∈ Iuf}. We extend the corresponding principal B-matrix

Buf to the (Iuf ⊔ I ′uf)× (Iuf ⊔ I ′uf) matrix Bprin =
(
Buf −IdIuf
IdIuf 0

)
, which is called the principal co-

efficient B-matrix, where IdIuf represents the natural isomorphism Iuf ≃ I ′uf . The corresponding
diagonal matrices are

Dprin =

(
Duf

Duf

)
and W prin =

(
Wuf Duf

−Duf 0

)
.

We denote by tprin0 the seed obtained from t0 by changing the fixed data as above.
Let k denote a sequence of vertices and t = µkt0. Then it is known that the C-matrix and

the G-matrix can be computed using principle coefficients:

F
(
µkt

prin
0

)
=

(
G(t) 0
0 IdIuf

)
,

E
(
µkt

prin
0

)
=
(
Dprin

)−1
F (µkt0)

−TDprin =

(
C(t) 0
0 IdIuf

)
,

where C(t) = D−1
uf G(t)

−TDuf . Then, using Lemma 2.15, we obtain

B
(
µkt

prin
0

)
= F

(
µkt

prin
0

)−1
B
(
tprin0

)
E(µkt0) =

(
G(t)−1BufC(t) −G(t)−1

C(t) 0

)
=

(
B(t)uf −G(t)−1

C(t) 0

)
=

(
B(t)uf −D−1

uf C(t)
TDuf

C(t) 0

)
.

2.11 Degrees and pointedness

We endow Nuf(t) = ⊕Zek ≃ ZIuf with the natural partial order such that n ≥ n′ if n− n′ ≥ 0.
Denote N≥0

uf (t) = ⊕Nek ≃ NIuf . Recall that we have the linear map p∗ : Nuf(t) → M◦(t)
represented by the matrix B̃ =

(
Buf
Bf,uf

)
.

Definition 2.16 (pointedness). A formal Laurent series Z ∈ L̂P
X
(t) is said to have degree n,

denoted by degt Z = n, if it takes the form Z = X(t)n ·
(∑

n′∈N≥0
uf (t)

cn′X(t)n
′)

for some c0 ̸= 0,
cn′ ∈ k. Its F -function is defined as

∑
n′∈N≥0

uf (t)
cn′X(t)n

′
. It is further said to be pointed at n

or n-pointed if c0 = 1.

Now assume that t is a seed such that ker p∗ ∩N≥0
uf (t) = 0. This condition is satisfied when

the seed t satisfies the full rank assumption (see Assumption 2.4). We recall the degrees and
pointedness introduced in [44, 45].

Definition 2.17 (dominance order [44]). For any m,m′ ∈M◦(t), we say m′ is dominated by m,
denoted by m′ ⪯t m, if m′ = m+ p∗n for some n ∈ N≥0

uf (t).

Definition 2.18 (pointedness [44]). A formal Laurent series Z ∈ L̂P
A
(t) is said to have de-

gree m, denoted by degt Z = m, if it takes the form Z = A(t)m ·
(∑

n′′∈N≥0
uf (t)

cnA(t)
p∗n′′)

for
some c0 ̸= 0, cn′′ ∈ k, i.e., its ≺t-maximal Laurent degree is m. Its F -function is defined as∑

n′′∈N≥0
uf (t)

cn′′X(t)n
′′
. It is further said to be pointed at m or m-pointed if c0 = 1.

Theorem 2.11 implies that degt0 Xi(t) = coliE(t) and degt0 Ai(t) = coli F (t). By definition,
ψNt0,t is the linear map sending ei(t) = degtXi(t) to degt0 µ

∗Xi(t). Similarly, ψMt0,t is the linear
map sending fi(t) = degtAi(t) to degt0 µ

∗Ai(t).



Twist Automorphisms and Poisson Structures 15

2.12 Injective-reachable

Definition 2.19 (injective-reachable [44, Section 2.3]). A seed t0 is said to be injective-reach-
able, if there exists another seed t0[1] = µt0 ∈ ∆+

t0
and a permutation σ of Iuf , such that for

any k ∈ Iuf , we have

ψNt0,t0[1]eσk(t0[1]) = −ek(t0). (2.5)

The sequence µ is also called a green to red sequence from t0 to t0[1] in the sense of Keller [30].
Assume that t0 is injective-reachable. Then all t ∈ ∆+

t0
are injective-reachable, i.e., we can

always find a seed t[1], see [44, Proposition 5.1.4] or [38].
By [44, Proposition 2.3.3], for any k ∈ Iuf , we have

ψNt0,t0[1]fσk(t0[1]) ∈ −fk0(t0) +⊕j∈IfZfj , dk = dσk.

We will see that t0[1] ∈ ∆+ is similar to t0 up to σ in the sense of Definition 3.1.

3 Twist endomorphisms for upper cluster A-algebras

In this section, we introduce the notion of a twist endomorphisms for a pair of similar seeds t, t′,
which is defined as the composition of a mutation map with a monomial map called a variation
map.

3.1 Similar seeds and variation maps

We first recall the definition of similar seeds.

Definition 3.1 (similar seeds [43, 44]). Two seeds t, t′ are called similar, if there is a permu-
tation σ of Iuf such that for any i, j ∈ Iuf , we have bij(t) = bσi,σj(t

′) and skew-symmetrizers
di = dσi, ∀i, j ∈ Iuf .

If t and t′ are similar, in our choices of compatible Poisson structures, we automatically have
d′k(t) = d′σk(t

′) for k ∈ Iuf (see Definition 2.5).
Note that we can always trivially extends σ to a permutation on I.

Proposition 3.2. Assume that Buf is connected Definition 2.6. Let t = µt0 be a given seed. If
there is a permutation σ of Iuf such that bij(t) = bσi,σj(t0) for any i, j ∈ Iuf , then dk = dσk for
any k ∈ Iuf .

Proof. Let Pσ be the permutation matrix associated to σ of rank Iuf , i.e., the i-th column of Pσ
is the σi-th unit vector. Notice that PT

σ = P−1
σ = Pσ−1 .

Rewrite the equality bσi,σj(t) = bij(t0) as P
−1
σ B(t)ufPσ = B(t0)uf . Since DufB(t0)uf is skew-

symmetric,(
PσDufP

−1
σ

)
B(t)uf = PσDufB(t0)ufP

−1
σ

is skew-symmetric.
On the other hand, we have B(t) = F (t)−1B(t0)E(t) by Lemma 2.15. Using DF (t)−1 =

E(t)TD by (2.4), we obtain

DB(t) = E(t)TDB(t0)E(t).

Since DB(t0) is skew-symmetric, so is DB(t). It follows that DufB(t)uf is also skew-symmetric.
Then Lemma 2.7 implies that P−1

σ DufPσ = αDuf for some α ̸= 0. Since Duf is of full rank,
by taking the determinant, we see that α = 1. The claim follows. ■
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Assume t, t′ are similar up to a permutation σ. In view of the correction technique [43], it is
often useful to compare pointed elements in LPA(t) with those in LPA(t′). As in [44], we define
a variation map sending pointed elements in LPA(t) to those in LPA(t′), which differ only by
the frozen variables.

In this paper, we will allow roots of frozen variables. For any given integer number r > 0, we
define Z

1
r to be the multiplicative group generated by the r-th roots A

± 1
r

j , j ∈ If . Define ZQ to
be the multiplicative group generated by any A

± 1
r

j , j ∈ If , r > 0 .
For any k[Z]-algebra R, we use RZQ to denote R⊗k[Z] k[ZQ]. Define R

Z
1
r
similarly.

Definition 3.3. Let t, t′ be two seeds similar up to a permutation σ. A k-algebra homomorphism
varAt : LP(t)ZQ → LP(t′)ZQ is called a (monomial) variation map from t to t′ if, ∀k ∈ Iuf , j ∈ If ,
it takes the form

varAt (Ak) = pσk ·A′
σk, varAt

(
Acolk B

)
= (A′)colσk B

′
, varAt (Aj) = pj ,

for some pσk, pj ∈ ZQ.
For classical cases, if t and t′ are similar seeds with compatible Poisson structures, then varAt

is called a Poisson variation map if it further preserves the Poisson structures:

varAt {Ai, Aj} =
{
varAt Ai, var

A
t Aj

}
, ∀i, j ∈ I.

Definition 3.4. In L̂P
A
(t), take any pointed formal Laurent series Z = Am · F |Xn 7→Ap∗n , where

m ∈ ZI , F =
∑

n∈N≥0
uf
cnX

n, cn ∈ k, c0 = 1. We say Z and Z ′ ∈ L̂P
A
(t′)ZQ are similar if

Z ′ = (A′)m
′ · F |Xn 7→(A′)p∗(t′)(σn) with prIuf m

′ = σ prIuf m.

Remark 3.5. The variation map varAt is a k-algebra homomorphism such that it sends a pointed
element Z ∈ LPA(t) to a similar element in LPA(t′)ZQ .

The variation map in Definition 3.3 is the monomial map associated to the following linear
variation map.

Denote M◦
uf(t) = ⊕k∈IufZfk, M◦

f (t) = ⊕j∈IfZfj .

Definition 3.6. Let t, t′ be two seeds similar up to a permutation σ. A linear map varMt : M◦(t)Q
→ M◦(t′)Q is called a (linear) variation map from t to t′, for any k ∈ Iuf , j ∈ If , if it takes the
following form

varMt (fk) = f ′σk + uσk, varMt (fj) = uj , varMt

(∑
bikfi

)
=
∑

b′i,σkf
′
i , (3.1)

for some uk,uj ∈ (M◦
f (t

′))Q.
If t and t′ are similar seeds with compatible Poisson structures λ, then it is called a Poisson

variation map if we have

λ(fi, fj) = λ
(
varMt fi, var

M
t fj

)
, ∀i, j ∈ I.

Note that (3.1) can be written as

varMt (p∗ek) = p∗e′σk. (3.2)

Remark 3.7. Assume the existence of compatible Poisson structures, i.e, Assumption 2.4 holds.
Then the following statements are equivalent:

� A linear map Ψ : M◦(t)→M◦(t′) is a Poisson variation map.

� For the quantum case k = Z
[
v±

1
d′
]
, the monomial map Φv associated to Ψ is a variation

map. In particular, it preserves the v-twisted products.



Twist Automorphisms and Poisson Structures 17

� For the classical case k = Z, the monomial map Φ1 associated to Ψ is a Poisson variation
map.

Therefore, a Poisson variation map is the classical limit of a quantum variation map at v = 1,
see Section 2.3. Conversely, a Poisson variation map gives rise to a quantum variation map by
the above equivalent statements.

Let Pσ denote the permutation matrix associated to σ of rank Iuf .

Lemma 3.8.

(1) The variation map varMt has the following matrix representation in the bases f , f ′:

varMt (f) = f ′ ·
(
Iduf 0
Uf,uf Uf

)(
Pσ

Idf

)
,

where colk Uf,uf (resp. colj Uf) are the coordinates of uk (resp. uj) in the basis {fj′ , j′ ∈ If},
for k ∈ Iuf (resp. j ∈ If).

(2) Moreover, equation (3.1) is equivalent to the following(
Uf,uf Pσ Uf

)( Buf

Bf,uf

)
= B′

f,uf Pσ . (3.3)

Proof. (1) Recall that colk(HPσ) = colσkH for any matrix H. The first statement follows.
(2) For any k ∈ Iuf , we have

varMt (p∗ek) = varMt (f colk B) = f ′ ·
(
Iduf 0
Uf,uf Uf

)(
Pσ 0
0 Idf

)
colk B

= f ′ ·
(

Pσ 0
Uf,uf Pσ Uf

)
colk

(
Buf

Bf,uf

)
= f ′ · colk

((
Pσ 0

Uf,uf Pσ Uf

)(
Buf

Bf,uf

))
.

We have

p∗e′σk = f ′ colσk B
′ = f ′ colk

(
B′
(
Pσ 0
0 Idf

))
= f ′ colk

(
B′

uf Pσ
B′

f,uf Pσ

)
.

Note that P−1
σ B′

uf Pσ = Buf since b′σi,σj = bi,j for i, j ∈ Iuf . So Pσ Buf = B′
uf Pσ. The claim

follows. ■

Lemma 3.9. If a (Poisson) variation map varMt is invertible, its inverse is still a (Poisson)
variation map.

Proof. Since varMt is represented by an invertible matrix(
Iduf 0
Uf,uf Uf

)(
Pσ

Idf

)
,

its inverse
(
varMt

)−1
is represented by(

Pσ−1

Idf

)(
Iduf 0

−U−1
f Uf,uf U−1

f

)
=

(
Iduf 0

−U−1
f Uf,uf Pσ U−1

f

)(
Pσ−1

Idf

)
.

Thus
(
varMt

)−1
is a variation map with permutation σ−1.

Since varMt is a variation map, we have varMt p∗ek = p∗e′σk for any k ∈ Iuf , it follows that(
varMt

)−1
p∗e′k = p∗eσ−1k. So (3.2) holds. Finally, if varMt preserves the compatible Poisson

structures, so does its inverse. ■
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Lemma 3.10. A variation map varAt : LPA(t)→ LPA(t′) restricts to an algebra homomorphism
from UA(t) to UA(t′).

Proof. Take any mutation sequence µ = µkr · · ·µk1 , which is the identify if the sequence
(kr, . . . , k1) is empty. Denote σµ = µσkr · · ·µσk1 . Then s = µt and s′ = (σµ)t′ are similar
up to σ. To prove the claim, it suffices to show that, for any z ∈ LPA(t) ∩ µ∗LPA(s), we
have varAt (z) ∈ (σµ)∗LPA(s′). If so, we obtain that, for any

z ∈ UA(t) = LPA(t)
⋂

(∩s=µtµ
∗LPA(s)),

varAt (z) ∈ ∩s′=(σµ)t′(σµ)
∗LPA(s′) = UA(t′).

By the Laurent expansion of z in the seed s, we have z∗
(
µ∗A(s)d

)
=
∑
cm(µ

∗A(s)m) for some
cm ∈ k, d,m ∈ NI . By [44, Lemma 4.2.2 (ii)], the variation map varAt sends cluster monomials
of s to the cluster monomials of s′ up to frozen factors: we have varAt

(
µ∗A(s)d

)
= (σµ)∗A(s′)d

′

and varAt (µ
∗A(s)m) = (σµ)∗A(s′)m

′
, prIuf d

′, prIuf m
′ ≥ 0. Therefore, varAt (z) is contained in

(σµ)∗LPA(s′). ■

3.2 Existence of variation maps

Assume that there is a linear variation map varMt : M◦(t)Q → M◦(t′)Q. Then it restricts
to a linear map from M◦(t) to M◦

uf(t
′) ⊕ 1

rM
◦
f (t

′) for some r > 0. Similarly, the corre-
sponding variation map varAt : LPA(t)ZQ → LPA(t′)ZQ restricts to an algebra homomorphism
varAt : LPA(t)→ LPA(t′)Z 1

r
. The restriction of a linear variation map to sublattices (resp. the

restriction of a monomial variation maps to subalgebras) will be still called a variation map.

Proposition 3.11. Let there be given two seeds t, t′ similar up to a permutation σ. Assume
that the full rank assumption holds.

(1) There exists a variation map varMt : M◦(t)Q →M◦(t′)Q.

(2) The set of variation maps from M◦(t)Q to M◦(t′)Q takes the form
{
varMt +z | z ∈ ZQ

}
,

where ZQ is a Q-vector space of dimension |If | · |Iuf |.

(3) If an order |Iuf | minor of B̃ is ±1, then there exists a variation map varMt : M◦(t) →
M◦(t′). Moreover, the set of variation maps from M◦(t) to M◦(t′) takes the form

{
varMt

+z | z ∈ ZZ
}
, where ZZ is a lattice of rank |If | · |Iuf |.

Proof. Relabeling the vertices σk by k for t′ if necessary, we assume σ = Id in this proof.
(1) We need to construct a linear map varMt : M◦(t)Q → M◦(t′)Q represented by a matrix(

Iduf 0
Uf,uf Uf

)
in the bases f , f ′ such that (3.3) holds. The unknown matrix U :=

(
Uf,uf Uf

)
needs

to satisfy the following inhomogeneous equation:

UB̃ = B′
f,uf . (3.4)

Notice that B̃ =
(
Buf
Bf,uf

)
is of full rank. Then we can always choose a (not necessarily unique)

size-|Iuf | subset J ⊂ I such that the submatrix BJ,Iuf is full rank. Its inverse matrix (BJ,Iuf )
−1

has entries in 1
detBJ,Iuf

Z. Let ui, i ∈ I, denote the (unknown) columns of U and bi, i ∈ I, denote
the rows of B̃, then

UB̃ =
∑
i∈I

uibi.

Taking ui = 0 for i ∈ I\J and letting ui, i ∈ J equal the columns of the If × J-matrix
B′

f,uf(BJ,Iuf )
−1, we obtain a special solution U0 for (3.4), whose entries lie in 1

detBJ,Iuf
Z.
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(2) Let U0 denote the special solution in (1). Let ZQ denote the set of solutions of the
homogeneous linear system

UB̃ = 0, or equivalently
∑
i∈J

uibi = −
∑
i∈I\J

uibi. (3.5)

Equation (3.5) has a unique solution ui, i ∈ I, for any given ui, i ∈ I\J . Hence the set of
Q-solutions is a vector space of dimension |If | · |Iuf |. It follows that the solutions for (3.4) take
the form U + U0, U ∈ ZQ.

(3) It is a direct consequence of the above argument since detBJ,Iuf is ±1. ■

3.3 Change of seeds

We treat latticesM◦(t) and the corresponding quantum torus algebras LPA(t) in this subsection.
Our arguments and results remain valid after the extension to M◦(t)Q and LPA(t)ZQ .

Let t′, t ∈ ∆+ denote seeds similar up to a permutation σ. Let there be given a linear
variation map varMt : M◦(t) → M◦(t′). Choose any k ∈ Iuf and denote s = µkt, s

′ = µσkt
′.

Recall that we have linear isomorphisms ψMt,s : M
◦(s) ≃ M◦(t) and ψMt′,s′ : M

◦(s′) ≃ M◦(t′),

which are represented by the matrices PMk,+(t) and PMσk,+(t
′), respectively. Define

varMs =
(
ψMt′,s′

)−1
varMt ψMt,s : M◦(s) ≃M◦(s′)

so that the following diagram commutes:

M◦(t)
varMt−−−→ M◦(t′)

↑ ψMt,s ↑ ψMt′,s′

M◦(s)
varMs−−−→ M◦(s′).

(3.6)

The following properties for varMs are analogous to those in [47, Proposition 5.1.6].

Proposition 3.12.

(1) The linear map varMs is a variation map.

(2) If varMt is invertible, so is varMs .

(3) If varMt is a Poisson variation map, so is varMs .

Proof. As before, we can assume σ = Id by relabeling the vertices for t′ and s′. Then PMk,+(t)uf
coincides with PMk,+(t

′)uf by the similarity between t and t′. It is of the block matrix form(
Puf 0
Pf,uf Idf

)
.

(1) The statement can be translated from [47, Proposition 5.1.6] by using Lemma 3.13. Let us
give a direct proof.

The linear map varMs has the following matrix representation:

varMs (f(s)) =
(
ψMt′,s′

)−1
varMt ψMt,s(f(s)) =

(
ψMt′,s′

)−1
varMt (f(t)PMk,+(t))

=
(
ψMt′,s′

)−1
(
f(t′)

(
Iduf 0
Uf,uf Uf

)
PMk,+(t)

)
= f(s′)PMk,+(t

′)−1

(
Iduf 0
Uf,uf Uf

)
PMk,+(t).

We see that the matrix PMk,+(t
′)−1

(
Iduf 0
Uf,uf Uf

)
PMk,+(t) is block diagonal, such that its Iuf × Iuf

submatrix is Iduf (by the similarity between t, t′) and its Iuf × If submatrix is 0.
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We need to check (3.2). Let euf denote the matrix (ei)i∈Iuf where ei are column vectors. Then
PNk,+(t)uf coincides with PNk,+(t

′)uf by the similarity between t and t′. Recall that, for j ∈ Iuf , we
have

colj
(
e(t)PNk,+(t)

)
=

{
ej(t) + [bkj ]+ek(t), j ̸= k,

−ek(t), j = k.

We deduce that colj
(
e(t)PNk,+(t)

)
= colj

(
e(t)uf P

N
k,+(t)uf

)
. Using Lemma 2.15, we have

ψMt′,s′ var
M
s (p∗ej(s)) = varMt ψMt,s(p

∗ej(s)) = varMt p∗
(
ψNt,sej(s)

)
= varMt p∗

(
colj(e(t)P

N
k,+(t))

)
= varMt p∗

(
colj(e(t)uf P

N
k,+(t)uf)

)
= colj var

M
t p∗

(
e(t)uf · PNk,+(t)uf

)
.

We also have

ψMt′,s′(p
∗ej(s

′)) = p∗
(
ψNt′,s′ej(s

′)
)
= p∗

(
colj

(
e(t′)PNk,+(t

′)
))

= p∗
(
colj

(
e(t′)uf P

N
k,+(t

′)uf
))

= colj p
∗(e(t′)uf · PNk,+(t′)uf).

Recall that varMt (p∗ej(t)) = p∗ej(t
′) for any j ∈ Iuf . Then

varMt
(
p∗(e(t)uf · PNk,+(t)uf)

)
= p∗

(
e(t′)uf · PNk,+(t′)uf

)
.

Therefore ψMt′,s′ var
M
s (p∗ej(s)) = ψMt′,s′(p

∗ej(s
′)), ∀j ∈ Iuf . It follow that varMs is a variation map.

(2) The statement is obvious.
(3) By Lemma 2.15, ψMt,s and ψ

M
t′,s′ preserve the bilinear form λ. The claim follows. ■

Let varAt : LPA(t) → LPA(t′) denote the monomial map associated to varMt . We further
assume that it is a variation map (equivalently, varMt needs to be Poisson if we work at the
quantum level, see Remark 3.7).

Lemma 3.13. We have varMs fi(s) = degs′
((
µAσk
)∗)−1

varAt
(
µAk
)∗
Ai(s).

Proof. On the one hand, the i-th cluster variable
(
µAk
)∗
Ai(s) of s, i ∈ I, is pointed at

degt
(
µAk
)∗
Ai(s) = ψMt,sfi(s) in LPA(t). Since varAt is a variation map, varAt

(
µAk
)∗
Ai(s) is pointed

at varMt ψMt,sfi(s) in LP(t′). In particular, we have

degt′ var
A
t

(
µAk
)∗
Ai(s) = varMt ψMt,sfi(s).

On the other hand, by the similarity between t and t′, the image varAt
(
µAk
)∗
Ai(s) of the i-th

cluster variable
(
µAk
)∗
Ai(s) agrees with the σi-th cluster variable

(
µAσk
)∗
Aσi(s

′) up to a frozen
factor, see [44, Lemma 4.2.2]. It follows that, similar to the cluster variable

(
µAσk
)∗
Aσi(s

′),
the degree of varAt

(
µAk
)∗
Ai(s) in t′ can be computed from the degree of its Laurent expansion((

µAσk
)∗)−1

varAt
(
µAk
)∗
Ai(s) in s

′ by using the linear map ψMt′,s′ :

degt′ var
A
t

(
µAk
)∗
Ai(s) = ψMt′,s′ degs′

((
µAσk
)∗)−1

varAt
(
µAk
)∗
Ai(s).

Therefore, we obtain varMt ψMt,sfi(s) = ψMt′,s′ degs′
((
µAσk
)∗)−1

varAt (µ
A
k )

∗Ai(s). The desired
claim follows from the definition varMs =

(
ψMt′,s′

)−1
varMt ψMt,s. ■

We define the monomial map varAs : LPA(s)→ LPA(s′) to be the monomial map associated
to varMs =

(
ψMt′,s′

)−1
varMt ψMt,s. Since varAt is a variation map, it is also a variation map, see

Remark 3.7.
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Proposition 3.14. The map varAt
(
µAk
)∗

agrees with
(
µAσk
)∗

varAs , i.e., the following diagram
commutes:

UA(t)
varAt−−−→ UA(t′)

↑
(
µAk
)∗ ↑

(
µAσk
)∗

UA(s) varAs−−−→ UA(s′).

Proof. It suffices to show
((
µAσk
)∗)−1

varAt
(
µAk
)∗
Ai(s) = varAs Ai(s), ∀i.

Both
((
µAσk
)∗)−1

varAt
(
µAk
)∗
Ai(s) and varAs Ai(s) are cluster variables in s′ up to a frozen

factor by [44, Lemma 4.2.2]. By Lemma 3.13, they have the same degree. The claim follows. ■

We can given a different proof for Proposition 3.14 by straightforward computation (see
Proposition 4.12).

Take any mutation sequence µ and denote s = µt, s′ = (σµ)t′. By using Proposition 3.14
recursively, varAt and µ uniquely determine a variation map varAs such that the following diagram
is commutative:

UA(t)
varAt−−−→ UA(t′)

↑ (µ)∗ ↑ (σµ)∗

UA(s) varAs−−−→ UA(s′).

By tracking the degrees of cluster variables, we see that the variation map varMs associated
to varAs is determined by varMt and µ. It still makes (3.6) commutative.

3.4 Twist endomorphisms

We are now ready to define twist endomorphisms. Notice that the mutation maps always
preserves the compatible Poisson structures and the v-twisted products. Let t and t′ = µt be
two seeds similar up to σ as before. Let there be given a variation map varAt from LPA(t)ZQ

to LPA(t′)ZQ . Note that it induces a homomorphism varAt : UA(t)ZQ → UA(t′)ZQ .

Definition 3.15. The composition µ∗ varAt : UA(t)ZQ → UA(t)ZQ is called a twist endomorphism
passing through the seed t′ = µt, which is denoted by twAt .

For classical cases, if t and t′ are equipped with compatible Poisson structures which are
preserved by twAt , then twAt is called a Poisson twist endomorphism.

Note that varAt restricts to a variation map varAt : LP(t)→ LP(t′)Z 1
r
for some integer r > 0.

So the twist endomorphism twAt restricts to an algebra homomorphism from UA(t) to UA(t)
Z

1
r
.

Propositions 3.12 and 3.14 have the following consequence.

Corollary 3.16. A twist endomorphism twAt on UA(t)ZQ (resp. on UA(t)) gives rise to twist
endomorphisms twAs on UA(s)ZQ (resp. on UA(s)) for all seeds s ∈ ∆+ via the mutation maps.
For classical cases, if twAt is Poisson, so are twAs .

Correspondingly, we can simply denote the twist endomorphisms twAt by twA when we do
not want to choose a specific seed t.

Proposition 3.17. The twist endomorphism twA restricts to an endomorphism on AZQ.

Proof. Recall that varAt sends cluster variables to cluster variables up to a frozen factor, see
[44, Lemma 4.2.2]. The claim follows. ■
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If varAt is an invertible variation map, then we have a twist automorphism twAt := µ∗ varAt
on UA(t)ZQ . Lemma 3.9 implies that

(
varAt

)−1
is still a variation map. So η := (µ∗)−1

(
varAt

)−1

is a twist automorphism on UA(t′)ZQ .

Lemma 3.18. We have µ∗η(µ∗)−1 =
(
twAt

)−1
. Namely, by identifying the fraction fields by

mutations, the twist automorphisms associated to invertible variation maps varAt : LPA(t)ZQ →
LPA(t′)ZQ and

(
varAt

)−1
: LPA(t′)ZQ → LPA(t)ZQ are inverse to each other.

Proof. We have

µ∗η(µ∗)−1 = µ∗ ◦ (µ∗)−1
(
varAt

)−1 ◦ (µ∗)−1 =
(
varAt

)−1 ◦ (µ∗)−1 =
(
twAt

)−1
. ■

Proposition 3.11 implies the following result.

Theorem 3.19. Consider the classical case k = Z. Assume that t, t′ ∈ ∆+ are similar and the
full rank assumption holds, then the following statements are true.

(1) There exists a twist endomorphism twAt on UAZQ passing through the seed t′. The set of
such twist endomorphisms is in bijection with a Q-vector space of dimension |Iuf | · |If |.

(2) If an order |Iuf | minor of B̃ is ±1, then there exists a twist endomorphism twAt on UA
passing through the seed t′. The set of such twist endomorphisms is in bijection with
a lattice of rank |Iuf | · |If |.

4 Twist endomorphisms for upper cluster X-algebras

4.1 Variation maps

Let t, t′ be similar seeds as before. In the following calculation, we choose t as the initial
seed. We want to construct twist endomorphism on UX(t′) preserving the canonical Poisson
structure (2.1).

Let us first investigate linear maps between lattices N(t) which arise as the pullback of those
between M◦(t). Let varMt denote a Z-linear map M◦(t) → M◦(t′)Q, its pullback between the
dual lattices gives rise to a Z-linear map

(
varMt

)∗
from N(t′) to N(t)Q. Recall that the diagonal

entries of D are 1
di
, i ∈ I.

Lemma 4.1. The pullback
(
varMt

)∗
: N(t′)→ N(t)Q is represented by the matrix

D−1

(
Pσ−1 0
0 Idf

)(
Iduf UT

f,uf

0 UT
f

)
D

with respect to the bases e and e′.

Proof. By assumption, we have varMt (f) = f ′ ·
(

Iduf 0
Uf,uf Uf

)(
Pσ 0
0 Idf

)
. Then its pullback with re-

spect to the dual bases is represented by the transpose:(
varMt

)∗
((f ′)∗) = (f∗) ·

(
Pσ−1 0
0 Idf

)(
Iduf UT

f,uf

0 UT
f

)
.

Since f∗i = diei and the diagonal entries of D are 1
di
., we have f∗ = eD−1 and, similarly,

(f ′)∗ = (e′)D−1. So we obtain(
varMt

)∗(
e′D−1

)
= eD−1 ·

(
Pσ−1 0
0 Idf

)(
Iduf UT

f,uf

0 UT
f

)
,

and, equivalently,
(
varMt

)∗
(e′) = eD−1

(
Pσ−1 0

0 Idf

)(
Iduf U

T
f,uf

0 UT
f

)
D. ■
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Since t and t′ are similar, we have dk = dσk by definition. Then it follows that

D−1

(
Pσ−1 0
0 Idf

)
=

(
Pσ−1 0
0 Idf

)
D−1.

In view of Lemma 4.1, we propose the following definition.

Definition 4.2. A linear map varNt′ : N(t′)Q → N(t)Q is said to be a variation map, if it has the
following Q-valued matrix representation in the basis e′ = {e′i | i ∈ I}, e = {ei | i ∈ I}:

varNt′ (e
′) = e ·

(
Pσ−1 0
0 Idf

)(
Iduf Vuf,f
0 Vf

)
, (4.1)

and it satisfies

ω
(
varNt′ e

′
i, var

N
t′ e

′
k

)
= ω(e′i, e

′
k), ∀i ∈ I, k ∈ Iuf . (4.2)

It is said to be Poisson if it further preserves the Poisson structures:

ω
(
varNt′ e

′
i, var

N
t′ e

′
j

)
= ω(e′i, e

′
j), ∀i, j ∈ I.

We will see in Proposition 4.8 that (4.2) is natural.

Definition 4.2 will be naturally deduced from the definition of the following monomial varia-
tion map, see Remark 4.6. Note that we always have varNt′ (e

′
σk) = ek for k ∈ Iuf . In particular,

(4.2) is an inhomogeneous linear system of equations on varNt′ .

Definition 4.3. A k-algebra homomorphism varXt′ : LP
X(t′)→ LPX(t) is called a (monomial)

variation map if, for any k ∈ Iuf , j ∈ If , we have

varXt′ ((X
′)k) = Xσ−1k, varXt′ ((X

′)j) = Xn(j)
,

for some n(j) ∈ ZI satisfying, ∀n′ ∈ ZI ,

σ prIuf B(t)n = prIuf B(t′)(n′), (4.3)

where Xn := varXt′ (X
′)n

′
.

For classical cases, varXt′ is called a Poisson variation map if it further preserves the Poisson
structures:

varXt′ {(X ′)i, (X
′)j} =

{
varXt′ (X

′)i, var
X
t′ (X

′)j
}
, ∀i, j ∈ I.

Definition 4.4. In L̂P
X
(t′), take any pointed formal Laurent series Z ′ = (X ′)n

′ · F , where

n′ ∈ ZI , F =
∑

n′′∈N≥0
uf

cn′′(X ′)n
′′
, cn′′ ∈ k, c0 = 1.

We say Z ′ and Z ∈ L̂P
X
(t) are similar if Z takes the form

Xn · F |
(X′)n′′ 7→(X)σ−1n′′ with σ prIuf B(t)n = prIuf B(t′)n′.

Remark 4.5. The variation map varXt′ is a k-algebra homomorphism such that it sends a pointed
element Z ′ ∈ LPX(t′) to a similar element in LPX(t).
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Remark 4.6. Let varXt′ be a monomial variation map and varNt′ the associated linear map.
Then varNt′ must satisfies (4.1). We can study condition (4.3) by taking n′ to be e′i and consider
the k-th rows of both sides for all i ∈ I, k ∈ Iuf . Recall that ω(n, eσ−1k) =

1
dσ−1k

(Bn)σ−1k,
ω(e′i, e

′
k) =

1
dk
b′ki, and dk = dσ−1k. Then condition (4.3) is equivalent to

ω
(
varNt′ e

′
i, eσ−1k

)
= ω(e′i, e

′
k).

We see that this equation is equivalent to (4.2) by using eσ−1k = varNt′ e
′
k.

Remark 4.7. By using Remark 4.6, we obtain the following equivalent statements:

� A linear map Ψ : N(t′)→ N(t) is a Poisson variation map.

� For the quantum case k = Z
[
v±

1
d′
]
, the monomial map Φv associated to Ψ is a variation

map.

� For the classical case k = Z, the monomial map Φ1 associated to Ψ is a Poisson variation
map.

Therefore, a Poisson variation map is the classical limit of a quantum variation map at v = 1,
see Section 2.3. Conversely, a Poisson variation map gives rise to a quantum variation map by
the above equivalent statements.

Proposition 4.8. A linear map varNt′ : N(t′)Q → N(t)Q is a variation map if and only if its
pullback

(
varNt′

)∗
: M◦(t)Q →M◦(t′)Q is a variation map.

Proof. Relabeling the vertices σk by k for t′ if necessary, we assume that σ is the identity.
Denote the pullback of varNt′ by varMt .

By Lemma 4.1, varNt′ takes the form of (4.1) if and only if varMt takes the form of (3.2). It
remains to show that varMt p∗(ek) = p∗e′k is equivalent to ω

(
varNt′ e

′
i, var

N
t′ e

′
k

)
= ω(e′i, e

′
k), ∀i ∈ I,

k ∈ Iuf .
Recall that p∗ei( ) = ω(ei, ), we have

ω
(
varNt′ e

′
i, var

N
t′ e

′
k

)
= ω

(
varNt′ e

′
i, ek

)
= −p∗(ek)

(
varNt′ e

′
i

)
= − varMt p∗(ek)(e

′
i).

On the other hand, ω(e′i, e
′
k) = −p∗(e′k)(e′i).

Therefore, the condition

ω
(
varNt′ e

′
i, var

N
t′ e

′
k

)
= ω(e′i, e

′
k), ∀i ∈ I,

is equivalent to varMt p∗(ek) = p∗(e′k). ■

The following result is analogous to Lemma 3.9.

Lemma 4.9. An invertible linear map varNt′ : N(t)→ N(t′) is a (Poisson) variation map if and
only if its inverse is.

Proof. Assume that varNt′ : N(t′)→ N(t) is represented by an invertible matrix(
Pσ−1 0
0 Idf

)(
Iduf Vuf,f
0 Vf

)
as in 4.1. Then its inverse

(
varNt′

)−1
is represented by(

Iduf −Vuf,fV −1
f

0 V −1
f

)(
Pσ 0
0 Idf

)
=

(
Pσ 0
0 Idf

)(
Iduf −P−1

σ Vuf,fV
−1
f

0 V −1
f

)
.

So
(
varNt′

)−1
is also of the form in (4.1). The other conditions in Definition 4.2 can be checked

easily. ■
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Lemma 4.10. Assume that varNt′ : N(t′)Q → N(t)Q is a linear map. Let varMt denote its pullback.
The following diagram commutes if and only if varNt′ preserves ω

M◦(t)Q
varMt−−−→ M◦(t′)Q

↑ p∗ ↑ p∗

N(t)Q
varN

t′←−−− N(t′)Q.

(4.4)

Note that, by taking the matrix presentations, the commutative diagram (4.4) is represented
by a quadratic equation on the entries of varNt′ .

Proof. Take any i, j ∈ I. On the one hand, we have p∗e′i(e
′
j) = ω(e′i, e

′
j). On the other hand,

we have

varMt p∗ varNt′ (e
′
i)(e

′
j) = p∗ varNt′ (e

′
i)
(
varNt′ e

′
j

)
= ω

(
varNt′ e

′
i, var

N
t′ e

′
j

)
.

Therefore, p∗ = varMt p∗ varNt′ if and only if varNt′ preserves ω. ■

4.2 Change of seeds

Let t′, t ∈ ∆+ denote seeds similar up to a permutation σ. For any k ∈ Iuf , consider the
seeds s = µkt and s

′ = µσkt
′.

We define the linear map varNs′ : N(s′)→ N(s) to be
(
ψNt,s
)−1

varNt′ ψ
N
t′,s′ such that the following

diagram commutes:

N(t)
varN

t′←−−− N(t′)
↑ ψNt,s ↑ ψNt′,s′

N(s)
varN

s′←−−− N(s′).

(4.5)

By Proposition 2.9 (3), the pullback
(
ψMt,s
)∗

is represented by the matrix D−1
(
PMk,+(t)

)T
D =

PNk,+(t)
−1. So we have

(
ψMt,s
)∗

=
(
ψNt,s
)−1

. Diagram (4.5) should be compared with the pullback
of (3.6). We have the following result in analogous of Proposition 3.12.

Proposition 4.11.

(1) If varNt′ is a variation map, so is varNs′ .

(2) If varNt′ is invertible, so is varNs′ .

(3) If varNt′ is Poisson, so is varNs′ .

Proof. (2) The statement is obvious.
(1)–(3) As in the proof of Proposition 3.12 (1), straightforward computation shows that varNs′

is a block triangular matrix of the form in (4.1). By Lemma 2.15, ψNs,t and ψNs′,t′ preserve
the Poisson structure ω. So if ω

(
varNt′ ei(t

′), varNt′ ej(t
′)
)
= ω(ei(t

′), ej(t
′)) for some i, j, then

ω
(
varNs′ ei(s

′), varNs′ ej(s
′)
)
= ω(ei(s

′), ej(s
′)). The desired claims follow. ■

Let varXt′ and varXs′ be the monomial maps associated to the linear maps in Proposition 4.11.
Assume that varXt′ is a variation map. Combining Proposition 4.11 and Remark 4.7, we obtain
that varXs′ is also a variation map.

Let T denote the subalgebra k[Xk]k∈Iuf of the quantum torus algebra LPX(t). Let FXuf (t)
denote the subalgebra of the fraction field FX(t) such that its elements take the form P ∗Q−1

with P ∈ LPX(t), Q ∈ T . Then it is easy to check
(
µXk
)∗FXuf (t′) = FXuf (t) by using the

invertibility of µXk .
We naturally extend the variation map varXt′ : LP

X(t′) → LPX(t) to an algebra homomor-
phism varXt′ from FXuf (t′) to FXuf (t).
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Proposition 4.12. We have
(
µXk
)∗

varXs′ = varXt′
(
µXσk
)∗
, i.e., the following diagram commutes:

FXuf (t)
varX

t′←−−− FXuf (t′)(
µXk
)∗ ↑ ↑

(
µXσk
)∗

FXuf (s)
varX

s′←−−− FXuf (s′).

Proof. We will denote µ∗k =
(
µXk
)∗

and ψ = ψN below for simplicity. Relabeling the vertices for
s′, t′ if necessary, we can assume σ = Id. It suffices to show varXt′ µ

∗
kXi(s

′) = µ∗k var
X
s′ Xi(s

′), ∀i.
(i) Let us first consider classical cases. We have

µ∗kXi(s
′) =

{
Xi(t

′) ·Xk(t
′)[bki(t

′)]+ · (1 +Xk(t
′))−bki(t

′), i ̸= k,

Xk(t
′)−1, i = k

= X(t′)ψt′,s′ei(s
′) · (1 +Xk(t

′))bki(s
′)

= X(t′)ψt′,s′ei(s
′) · (1 +Xk(t

′))−ω(ek(s
′),ei(s′))dk . (4.6)

We set ε = 1 if −ω(ek(s′), ei(s′)) ≥ 0 and ε = −1 otherwise. Then we have

varXt′ µ
∗
kXi(s

′)ε = X(t)ε var
N
t′ ψt′,s′ei(s

′) · (1 +Xk(t))
−εω(ek(s′),ei(s′))dk . (4.7)

Similar to (4.6), we have

µ∗k var
X
s′ Xi(s

′)ε
′
= µ∗kX(s)ε

′ varN
s′ ei(s

′)

= X(t)ε
′ψt,s varNs′ ei(s

′) · (1 +Xk(t))
−ε′ω(ek(s),varNs′ ei(s

′))dk , (4.8)

where we set ε′ = 1 if −ω
(
ek(s), var

N
s′ ei(s

′)
)
≥ 0 and ε′ = −1 otherwise.

Note that varNt′ ψt′,s′ei(s
′) = ψt,s var

N
s′ ei(s

′) by the definition of varNs′ . Moreover, since varNs′
is a variation map by Proposition 4.11, we have

ω
(
ek(s), var

N
s′ ei(s

′)
)
= ω

(
varNs′ ek(s

′), varNs′ ei(s
′)
)
= ω(ek(s

′), ei(s
′)).

It follows that ε = ε′ and varXt µ
∗
kXi(s

′)ε = µ∗k var
X
s′ Xi(s

′)ε
′
.

(ii) In the quantum case, we can obtain varXt µ
∗
kXi(s

′)ε and µ∗k var
X
s′ Xi(s

′)ε
′
by replacing the

binomial coefficients ( ab ) in polynomial expansions of the right hand sides of (4.7) and (4.8) by
the quantum numbers ( ab )vk . Therefore, we still have

varXt µ
∗
kXi(s

′) = µ∗k var
X
s′ Xi(s

′). ■

The following statement follows from Proposition 4.12 by tracking the degrees of X-variables.
It is an analog of Lemma 3.13.

Lemma 4.13. The variation map varNs′ : N(s′) → N(s) is the linear map sending ei(s
′) to

degs
((
µXk
)∗)−1

varXt′
(
µXσk
)∗
Xi(s

′).

Take any mutation sequence µ and denote s = µt, s′ = (σµ)t′. By using Proposition 4.12
recursively, varXt′ and µ uniquely determine a variation map varXs′ such that the following diagram
is commutative:

FXuf (t)
varX

t′←−−− FXuf (t′)
↑ µ∗ ↑ (σµ)∗

FXuf (s)
varX

s′←−−− FXuf (s′).

(4.9)
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By tracking the degrees of cluster variables, we see that linear the variation map varNs′ associated
to varXs′ is determined by varNt′ and µ. It still makes (4.5) commutative.

Note that, by the commutative diagrams (4.9), the variation maps varXs′ , s
′ ∈ ∆+

s′ , defined
using varXt′ , are identified via the mutation maps.

We have the following result in analogous to [44, Lemma 4.2.2 (ii)].

Lemma 4.14. For any i ∈ I, the variation map varXt′ sends the cluster X-variable (σµ)∗Xi(s
′)

to a Laurent monomial of the form (µ)∗X(s)n, n ∈ ZI .

Proof. By (4.9), we have µ∗ varXs′ = varXt′ (σµ)
∗, where varXs′ is also a variation map. In the

seed s′, the variation map varXs′ sends the X-variable Xi(s
′) to some Laurent monomial X(s)n

by definition. The desired statement follows by applying mutations (σµ)∗ and µ∗. ■

We have the following result in analogous to Lemma 3.10.

Lemma 4.15. A variation map varXt′ restricts to an algebra homomorphism from UX(t′)
to UX(t).

Proof. The proof is similar to Lemma 3.10, where we replace [44, Lemma 4.2.2 (ii)] by Lem-
ma 4.14. ■

We have extended the variation map varXt′ to a homomorphism from FXuf (t′) to FXuf (t). We
can also extend it to a homomorphism from L̂P

X
(t′) to L̂P

X
(t). Let FXuf (t′) ∩ L̂P

X
(t′) denote

the set of formal Laurent series Z ∈ L̂P
X
(t′) such that Z ∗ Q = P for some P ∈ k[(X ′)i]i∈I ,

Q ∈ k[(X ′)k]k∈Iuf . Then Z is identified with the element P ∗Q−1 in FXuf (t′).

Proposition 4.16. The above two extended maps restrict to the same homomorphism from
FXuf (t′) ∩ L̂P

X
(t′) to FXuf (t) ∩ L̂P

X
(t).

Proof. We denote the above two extended maps by f : FXuf (t′)→ FXuf (t) and g : L̂P
X
(t′)→

L̂P
X
(t), respectively. Take any element Z ∈ FXuf (t′) ∩ L̂P

X
(t′) described as above. Then we

have g(Z) ∗ g(Q) = g(P ). In addition, we have f(P ) = varXt′ (P ) = g(P ) ∈ k[Xi]i∈I and

f(Q) = varXt′ (Q) = g(Q) ∈ k[Xk]k∈Iuf .

It follows that g(Z) ∗ f(Q) = f(P ), i.e, g(Z) is contained in FXuf (t) ∩ L̂P
X
(t) and it is identified

with f
(
P ∗Q−1

)
. ■

4.3 Twist endomorphisms

Let t′ = µt be two seeds similar up to σ as before. Note that the canonical Poisson structure
on LPX(t) naturally gives rise to a Poisson structure on UX(t).

Definition 4.17. Let varXt′ : LP
X(t′)→ LPX(t) be any variation map.4 Then the composition

twXt′ =
(
µ−1

)∗ ◦ varXt′ is called a twist endomorphism on UX(t′) passing through t.
For classical cases, if varXt′ is Poisson, then twXt′ is said to be Poisson.

Note that, by Proposition 4.12, when twXt′ is a twist endomorphism, it gives rise to twist
endomorphisms twXs′ , s

′ ∈ ∆+. They are identified via mutations. So we can simply denote
them by twX .

Assume that varXt′ is an invertible variation map. We have a twist automorphism twXt′ :=(
µ−1

)∗
varXt′ on UX(t′). Lemma 4.9 implies that

(
varXt′

)−1
is still a variation map. So η :=

µ∗(varXt′ )−1
is a twist automorphism on UX(t).

4If we work with varNt′ : N(t′)Q → N(t)Q, the corresponding twist map should be defined on an algebra such
that we allow roots of all the cluster X-variables, which are roots of rational functions. We do not consider this
situation here.
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Lemma 4.18. We have µ∗(twXt′ )−1
(µ∗)−1 = η. Namely, by identifying the fraction fields by

mutations, the twist automorphisms associated to invertible variation maps varXt′ : LP
X(t′) →

LPX(t) and (varXt′ )
−1 : LPX(t)→ LPX(t′) are inverse to each other.

Proof. The proof is similar to that of Lemma 3.18. ■

Theorem 4.19. Consider the classical case k = Z. Assume that we have a linear map
varNt′ : N(t′) → N(t). Let varMt denote its pullback from M◦(t)Q to M◦(t′)Q and varXt′ , varAt
denote the associated monomial maps. Define twXt′ =

(
µ−1

)∗ ◦ varXt′ and twAt = µ∗ ◦ varAt .

(1) twXt′ is a twist endomorphism on UX(t′) if and only if twAt is a twist endomorphism
on UA(t)ZQ.

(2) If twXt′ is a twist automorphism, then
(
twXt′

)−1
is also a twist automorphism by Lemma 4.9.

Let
(
twXt

)−1
:= µ∗(twXt′ )−1

(µ∗)−1 denote the corresponding twist automorphism on UX(t).
Then

(
twXt

)−1
preserves the Poisson structure if and only if p∗

(
twXt

)−1
= twAt p

∗.

Because we can quantized a Poisson variation map to a quantum variation map Remark 4.7,
by Theorem 4.19 (2), the equality p∗

(
twXt

)−1
= twAt p

∗ provides a criterion for
(
twXt

)±
be-

ing quantum twist automorphisms for quantum cases. This equality can be presented by the
quadratic equation in Lemma 4.10.

Proof of Theorem 4.19. (1) The statement follows from Proposition 4.8.

(2) On the one hand, we have twAt p
∗ = µ∗ varAt p

∗. On the other hand, we have

p∗
(
twXt

)−1
= p∗µ∗(twXt′ )−1

(µ∗)−1 = p∗µ∗(varXt′ )−1

by construction, which equals µ∗p∗
(
varXt′

)−1
. Moreover, Lemma 4.10 implies that varAt p

∗ =
p∗
(
varXt′

)−1
if and only if varNt′ preserves ω. The claim follows. ■

Remark 4.20 (cluster Poisson algebras without coefficients). Let t′ = µt be seeds similar up
to σ. Let us restrict to the unfrozen cluster Poisson algebra UXuf , which consists of P ∗ Q−1

with P,Q ∈ k[Xk]k∈Iuf . Then there is only one twist automorphism twXt on UXuf (t) passing
through t′. It sends Xk(t) to µ∗Xσk(t

′) and it preserves the Poisson structure when k = Z.
Assume I = Iuf . Take any twist endomorphism twAt on UA(t) passing through t′. Then we

have twAt p
∗Xk(t) = µ∗p∗Xσk(t

′) for any k ∈ Iuf by (3.2). Since µ∗p∗ = p∗µ∗, it follows that

twAt p
∗Xk(t) = µ∗p∗Xσk(t

′) = p∗µ∗Xσk(t
′) = p∗ twXt Xk(t),

i.e., Theorem 4.19 (2) always hold true.

Remark 4.21 (existence of twX). If all skew-symmetrizers di are equal, we can work with
lattices N and M◦ instead of Q-vector spaces in Lemma 4.1 and Proposition 4.8.

By using Proposition 4.8, we can describe the set of all linear variation maps varNt′ : N(t′)Q →
N(t)Q as in Proposition 3.11 (1)–(2).

Recall that W denotes the matrix of ω. If
(
Wuf
Wf,uf

)
is Z-valued and an order |Iuf | minor of

it equals ±1, we can describe the set of all linear variation maps varNt′ : N(t′) → N(t) as in
Proposition 3.11 (3). In the classical case k = Z, these linear variation maps give rise to twist
endomorphisms twX on UX in analogous to Theorem 3.19 (2).
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5 Twist automorphisms in special cases

5.1 Twist automorphism of Donaldson–Thomas type

Assume that t is injective-reachable such that t′ = t[1] is similar to t up to a permutation σ. Then
a twist automorphism on t passing through t[1] is called a twist automorphism of Donaldson–
Thomas type5 (DT-type for short).

Proposition 5.1. There exists an invertible Poisson variation map varNt and an invertible vari-
ation map varMt passing through t[1]. Moreover, when T A(t) has a compatible Poisson structure,
we can choose varMt to be Poisson.

Proof. Relabel the vertices for t[1] so that we can assume σ = Id. By (2.5), we have ψNt,t[1]e
′ =

e
(

−Iduf Euf,f

0 Idf

)
=: eE and, correspondingly, ψMt,t[1]f

′ = f
(

−Iduf 0
Ff,uf Idf

)
=: fF . Note that ψMt,t[1] is the

identity on M◦
f .

(1) Let us define the linear isomorphism varMt : M◦(t)→M◦(t′) such that

varMt (f) = f ′
(

Iduf 0
−Ff,uf −Idf

)
.

Then we have ψMt,t[1] var
M
t (f) = −f .

On the one hand, for any k ∈ I, we have

ψMt,t[1] var
M
t (p∗ek) = ψMt,t[1] var

M
t

(∑
i∈I

bikfi

)
= −

∑
i∈I

bikfi = −p∗ek.

On the other hand, by Lemma 2.15, for any k ∈ Iuf , we have

ψMt,t[1]p
∗(e′k) = p∗

(
ψNt,t[1]e

′
k

)
= p∗(−ek) = −p∗ek.

It follows that varMt (p∗ek) = p∗(e′k) for any k ∈ Iuf . In particular, varMt is a variation map.
Assume there is a compatible Poisson structure λ. For any i, j ∈ I, we have

λ
(
varMt fi, var

M
t fj

)
= λ

(
ψMt,t[1] var

M
t fi, ψ

M
t,t[1] var

M
t fj

)
= λ(−fi,−fj) = λ(fi, fj).

Therefore, varMt preserves λ.
(2) Define varNt : N(t)→ N(t[1]) such that varNt (e) = e′

(
Iduf −Euf,f

0 −Idf

)
. It follows that

ψNt[1],t var
N
t (e) = −e.

Then, for any i, j ∈ I, we have

ω
(
varNt ei, var

N
t ej

)
= ω

(
ψNt,t[1] var

N
t ei, ψ

N
t,t[1] var

N
t ej

)
= ω(−ei,−ej) = ω(ei, ej).

Therefore, varNt preserves ω. ■

Theorem 5.2. Assume that t is injective-reachable such that t′ = t[1] is similar to t up to
a permutation σ.

(1) There exists a twist automorphism twAt on UA(t) of Donaldson–Thomas type.

(2) There exists a twist automorphism twXt on UX(t) of Donaldson–Thomas type.

(3) We can choose twAt and twXt in (1)–(2) such that p∗ twXt = twAt p
∗.

5The mutation maps µ∗ from FA(t[1]) to FA(t) is often called a Donaldson–Thomas transformation in cluster
theory. See [40] for the relation between Donaldson–Thomas theory and cluster algebras.
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Proof. (1)–(2) The statements follow from Proposition 5.1.
(3) We claim that the two variation maps in the proof of Proposition 5.1 are related by

the pullback construction. The variation map varMt is represented by
(

Iduf 0
−Ff,uf −Idf

)
. Then its

pullback
(
varMt

)∗
satisfies

(
varMt

)∗
(e′) = eD−1

(
Iduf −FT

f,uf

0 −Idf

)
D

by Lemma 4.1. By (2.4), E = D−1F−TD. It follows that Euf,f = D−1
uf F

T
f,ufDf . Define

varNt : N(t)→ N(t[1]) to be the inverse of
(
varMt

)∗
. We obtain

varNt (e) = e′D−1

(
Iduf −FT

f,uf

0 −Idf

)
D = e′

(
Iduf −Euf,f

0 −Idf

)
as in the previous proof.

The desired claim follows from Theorem 4.19 (2). ■

Example 5.3. Let us continue Example 2.13. Then we have t′ = t[1].
We can choose the variation map varMt : M◦(t)→M◦(t[1]) such that it is represented by the

matrix
(

1 0
−1 −1

)
. Then ψMt,t[1] var

M
t is −Id on M◦(t).

We can choose the variation map varNt : N(t) → N(t[1]) such that it is represented by the
matrix

(
1 −2
0 −1

)
. Then ψNt,t[1] var

N
t is −Id on N(t).

We refer the reader to Example 7.1 for an alternative example.

5.2 Twist automorphism for principal coefficients

Let t0 denote an initial seed with principal coefficients, see Section 2.10. We denote its B-matrix
by B =

(
Buf −Iduf
Iduf 0

)
. Recall that D =

(
Duf

Duf

)
in this case. We endow t0 with the canonical

Poisson structure whose Λ-matrix is

Λ := B−TD =

(
0 −Iduf

Iduf BT
uf

)
D.

Then, for any seed t′ ∈ ∆+, we can check that Λ(t′) = B(t′)−TD by using Proposition 2.9
recursively.

Assume that t ∈ ∆+
t0

is similar to the principal coefficients seed t0 up to a permutation σ.

Theorem 5.4.

(1) There exists a twist automorphism twAt0 on the (quantum) upper cluster algebra on UA(t0)
passing through t.

(2) There exists a twist automorphism twXt0 on UX(t0) passing through t.

(3) We can choose twAt0 and twXt0 such that p∗ twXt0 = twAt0 p
∗.

Proof. Relabeling the vertices in t if necessary, we can assume σ = Id. Since t0 has principal
coefficients, we have B(t) =

(
Buf −G−1

C 0

)
, where C and G denote the C-matrix and the G-matrix

of the seed t with respect to the initial seed t0, respectively, and we have CTDuf = DufG
−1 (see

Section 2.10).
(1) Define the linear map varMt0 : M◦(t0)→M◦(t) such that

varMt0 (f(t0)) = f(t)

(
Iduf 0
0 C

)
.

It is clear that ( 0 C )
(
Buf
Id

)
= C. So varMt is a variation map by Lemma 3.8.
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We have Λ(t) = B(t)−TD =
(

0 −GT

C−T C−TBT
ufG

T

)
D. Recall that varMt0 is represented by

(
Iduf 0
0 C

)
.

We have(
Id 0
0 C

)T

Λ(t)

(
Id 0
0 C

)
=

(
Id 0
0 CT

)(
0 −GT

C−T C−TBT
ufG

T

)
D

(
Id 0
0 C

)
=

(
0 −GTDufC
Duf BT

ufG
TDufC

)
=

(
0 −Duf

Duf BT
ufDuf

)
= Λ.

Therefore, varMt0 preserves λ. The associated twist automorphism provides a desired solution.

(2) Let
(
varMt0

)∗
: N(t) → N(t0) denote the pullback of varMt0 in the proof of (1). Then(

varMt0
)∗
(e(t)) = e(t0)D

−1
(
I 0
0 CT

)
D. Define varNt0 as the inverse:

varNt0 (e(t0)) = e(t)D−1

(
I 0
0 CT

)−1

D = e(t)

(
Iduf

G

)
.

We have W = BTD =
(
BT

uf Id
−Id 0

)
D and W (t) = B(t)TD =

(
BT

uf CT

−G−T 0

)
D.

Using DufG = C−TDuf , we obtain(
Iduf 0
0 G

)T

W (t)

(
Iduf

G

)
=

(
Iduf 0
0 GT

)(
BT

uf CT

−G−T 0

)
D

(
Iduf

G

)
=

(
Iduf 0
0 GT

)(
BT

uf CT

−G−T 0

)(
Iduf

C−T

)
D

=

(
BT

uf Id
−Id 0

)
D =W.

Therefore, varNt0 preserves ω. The associated twist automorphism provides a desired solution.

(3) We choose twist automorphisms as in the proof of (1)–(2). Then the claim follows from
Theorem 4.19 (2). ■

Example 5.5. We can verify that varNt0 and varMt0 constructed in the proof of Theorem 5.4 make
the diagram (4.4) commutative, which is equivalent to the following:

M◦(t0)
varMt0−−−→ M◦(t)

↑ p∗ ↑ p∗

N(t0)
varNt0−−−→ N(t).

(5.1)

More precisely, varMt0 p
∗ : N(t0) → M◦(t) is represented by the matrix

(
Iduf 0
0 C

)
B(t0) =(

Buf −Id
C 0

)
, and p∗ varNt0 is also represented by the matrix B(t)

(
Iduf 0
0 G

)
=
(
Buf −Id
C 0

)
.

Equivalently, varNt0 and varMt0 are determined by each other such that the diagram (5.1) is
commutative.

6 Permutations on bases

6.1 Bases for UA

For any seed t ∈ ∆+, assume that we have chosen a collection of polynomials for m ∈ ZI :

Fm(t) =
∑
n∈NIuf

cn(m; t)X(t)n
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with c0(m; t) = 1, cn(m; t) ∈ k. Define the corresponding subset S(t) =
{
Sm(t) | m ∈ ZI

}
of LPA(t), such that the elements Sm are given by

Sm(t) = A(t)m · Fm(t)|X(t)n 7→A(t)p
∗(t)n .

We often omit the symbol t for simplicity. Fm(t) are called the F -polynomials of Sm(t). Note
that we use the commutative product · here, so that the F -polynomials are defined as in standard
literature.

Note that, if the full rank assumption (see Assumption 2.4) holds, Sm(t) are m-pointed
and S(t) is be k-linearly independent. Otherwise, S(t) is not necessarily linearly independent
and different choices of Fm(t) might produce the same Sm(t).

Assumption 6.1. We assume the following conditions hold.

(1) The sets S(t), t ∈ ∆+, are identified by mutations: ∀t′ = µt, we have µ∗S(t′) = S(t).
(2) The chosen functions Fm(t) only depend on prIuf m and B(t)uf :

� If m′ = m+ u for some u ∈M◦
f , then Fm′(t) = Fm(t).

� If t′ and t are similar up to σ and prIuf m
′ = σ prIuf m for some m,m′ ∈ ZI , we have

cσn(m
′; t′) = cn(m; t), ∀n.

Note that Assumption 6.1 implies S(t) ⊂ UA(t).
We have the following important examples of S(t) satisfying Assumption 6.1:

� The set of generic cluster characters: When B(t)uf is skew-symmetric and the correspond-
ing cluster category satisfies some finiteness condition, we can construct the set of generic
cluster characters L(t) = {Lm(t)|m ∈ M◦(t)} in UA using algebra representation theory.
By [42], they satisfy the above assumptions.

– By [45], when t is injective-reachable, L(t) is a basis of UA, called the generic basis
in the sense of [8]. This family of bases includes the dual semicanonical basis [36] of
a unipotent cell with symmetric Cartan datum [16].

� The common triangular basis [44]: this basis is known to satisfy the above assumptions [44].
Its existence is known for some cluster algebras with a Lie theoretic background. This
family of bases includes the dual canonical basis of a quantum unipotent cell [29, 44, 47].

� The set of theta functions [25]: the set of the theta functions, under the assumption that
they are Laurent polynomials,6 satisfies the above assumption. They are known to form
a basis of UA(t) under appropriate conditions, for example, when t is injective-reachable.

Theorem 6.2. Let twA denote any twist endomorphism on the (quantum) upper cluster alge-
bra UA. Assume the sets S(t), t ∈ ∆+, satisfy Assumption 6.1, then the following statements
are true.

(1) We have twA S(t) ⊂ S(t).
(2) If twA is a twist automorphism, we have twA S(t) = S(t).

Proof. Recall that twA = µ∗ varAt for some t′ = µt and some variation map varAt from LPA(t)
to LPA(t′).

6In general, the theta functions are formal Laurent series, see [45] for the formal completion. Our arguments
for variation maps remain valid for formal Laurent series. For simplicity, we only treat Laurent polynomials in
this paper.
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(1) Denote S(t) =
{
Sm | m ∈ ZI

}
and S(t′) =

{
S′
m′ | m′ ∈ ZI

}
for simplicity. Take

any Sm = Am · Fm|Xn 7→Ap∗n from S(t), where Fm =
∑
cn(m; t)Xn. Then varAt (Sm) = AvarMt m ·

F ′|(X′)n 7→(A′)p∗(t′)n , where F
′ =

∑
cn(m; t)(X ′)σn. Note that prIuf var

M
t m = σ prIuf m. By As-

sumption 6.1 (2), we have F ′ = FvarMt m(t
′). So varAt (Sm) = S′

varMt m
.

By Assumption 6.1 (1), we have µ∗S′
varMt m

∈ S(t). Therefore, twA Sm ∈ S(t).
(2) Recall that the inverse of twAt is also a twist automorphism, the claim follows. ■

6.2 Bases for UX

Similarly, for any t, assume that we have a subset Z(t) =
{
Zn(t) | n ∈ ZI

}
in LPX(t), such

that its elements Zn(t) are n-pointed. Then we can denote Zn(t) = X(t)n · Fn(t), whose F -
polynomials take the form Fn(t) =

∑
e∈NIuf ce(n; t)X(t)e with c0(n; t) = 1, ce(n; t) ∈ k.

Note that Z(t) must be k-linearly independent.

Assumption 6.3. We assume the following conditions hold.

(1) The sets Z(t), ∀t ∈ ∆+, are identified by mutations: for any t′ = µt, we have µ∗Z(t′) =
Z(t).

(2) The F -polynomials Fn(t) only depend on prIuf p
∗n and B(t)uf :

� If p∗n′ = p∗n+ u for some u ∈M◦
f , then Fn′(t) = Fn(t).

� If t′ and t are similar up to σ and prIuf B(t′)n′ = σ prIuf B(t)n for some n, n′ ∈ ZI , we
have cσe(n

′; t′) = ce(n; t), ∀e.

Assumption 6.3 (1) implies Z(t) ⊂ UX(t).

Theorem 6.4. Let twX denote any twist endomorphism on UX . Assume the sets Z(t), ∀t ∈ ∆+,
satisfy Assumption 6.3. Then the following statements are true.

(1) We have twX Z(t) ⊂ Z(t).
(2) If twX is a twist automorphism, we have twX Z(t) = Z(t).

Proof. The proof is similar to that of Theorem 6.4. ■

6.3 Construction of bases for UX

There is few literature on the bases for UX . Let us explain how to construct a basis for UX from
a basis for UA following the idea of [25].

Let tprin denote the principal coefficient seed constructed from t by adding a copy I ′={i′|i ∈ I}
of I as extra frozen variables, such that B

(
tprin

)
=
(
B(t) −Id
Id 0

)
. Assume that a set S

(
tprin

)
⊂

UA
(
tprin

)
as in Section 6.1 has been given. Then we can construct a set Z(t) ⊂ LPX(t) such

that Zn(t) = X(t)n·Fn where Fn is the F -polynomial of Sm
(
tprin

)
form = B

(
tprin

)
( n0 ) =

(
B(t)n
n

)
.

Lemma 6.5. If the sets
(
µA
)∗S(tprin) ⊂ UA(µ−1tprin), for all mutation sequences µ, satisfy

Assumption 6.1, then the sets Z
(
µ−1t

)
:=
(
µX
)∗Z(t), ∀µ, are contained in UX(t) and satisfy

Assumption 6.3.

Proof. We claim that µ∗Z(t) is contained in LPX
(
µ−1t

)
for any mutation sequence µ. If

so, we deduce that the Z(t) ⊂ ∩∀µ(µ∗)−1LPX
(
µ−1t

)
= UX(t). Then the sets Z

(
µ−1t

)
, ∀µ,

satisfy Assumption 6.3 (1) by definition. In addition, they satisfy Assumption 6.3 (2) because
the sets S

(
µ−1tprin

)
, for all µ, satisfy Assumption 6.1 (2).

Denote s = tprin, t′ = (µ)−1t, and s′ = (µ)−1s. Then we have the natural inclusions LPX(t) ⊂
LPX(s) and LPX(t′) ⊂ LPX(s′).
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Note that the monomial maps p∗(s) : LPX(s)→ LPA(s) and p∗(s′) : L̂P
X
(s)→ L̂P

A
(s) are

injective. We also have injective maps ι• : LP•(s)→ L̂P
•
(s′) taking the formal Laurent series

after mutations (see Section 2.4).
Take any Z ∈ Z(t). Then we have p∗(s)Z = Sm ∈ S(s) for somem. So we get

(
µA
)∗
p∗(s)Z =

S′
m ∈ S(s′) for some m′. Therefore, ιA(s)p∗(s)Z = Sm′ . But we also have ιA(s)p∗(s)Z =
p∗(s′)ιX(s)Z. So the formal series ιX(s)Z is sent to a Laurent polynomial Sm′ by the injective
map p∗(s′). It follows that ιX(s)Z is a Laurent polynomial. Therefore,

(
µX
)∗
Z = ιXZ is

contained in LPX(s′). ■

Using this construction, by taking S
(
tprin

)
as the set of generic cluster characters, the common

triangular basis, or the set of the theta functions which are assumed to be Laurent polynomials,
we obtain the corresponding set Z(t) ⊂ UX(t).

Finally, let us discuss when Z(t) becomes a basis of UX(t).

Theorem 6.6. Under the assumption of Lemma 6.5, if p∗UX
(
tprin

)
is contained in the free k-

module ⊕mkSm
(
tprin

)
⊂ UA

(
tprin

)
, then Z(t) is a k-basis of UX(t). In particular, when S

(
tprin

)
is a basis of UA

(
tprin

)
, Z(t) is a basis of UX(t).

Proof. On the one hand, we know that
{
Sm
(
tprin

)
| ∃n, m =

(
B(t)n
n

)}
is contained in

p∗UX
(
tprin

)
.

On the other hand, let us endow LP
(
tprin

)
with the M◦(t)-grading such that, ∀i ∈ I,

degAi(t) = fi and degAi′(t) = −
∑

j∈I bjifj . Then Sm
(
tprin

)
are homogeneous elements, and

they have degree 0 if and only if m =
(
B(t)n
n

)
for some n. So

{
Sm
(
tprin

)
| ∃n, m =

(
B(t)n
n

)}
is

a basis for the degree-0 subspace of ⊕mkSm
(
tprin

)
. Moreover, since p∗Xi

(
tprin

)
has degree 0 for

any i ∈ I, p∗UX
(
tprin

)
consists of degree 0 elements.

Therefore,
{
Sm
(
tprin

)
| ∃n, m =

(
B(t)n
n

)}
is a basis of p∗UX

(
tprin

)
. It implies the desired

claim. ■

7 Examples

We work at the classical level k = Z in this section for simplicity.

7.1 Twist automorphisms on unipotent cells

[2, 4] introduced an automorphism ηw on the unipotent cell C[Nw
− ], which was called a twist

automorphism. The quantized twist automorphism ηw was introduced by [33]. We refer the
reader to loc. cit. for further details.

Moreover, it is known that (quantized) C[Nw
− ] is a (quantum) upper cluster algebra UA by

[15, 17, 21, 23]. By [47], the (quantum) twist automorphism η is a twist automorphism in our
sense.

Let us illustrate the twist automorphism ηw by an example.

Example 7.1. Consider the algebraic group G = SL3(k) where k is a field of characteristic 0.
Let B+ (resp. B−) denote its Borel subgroup consisting of the upper (resp. lower) triangular
matrices in G. Let N± denote the subgroups of B± whose diagonal entries are 1, respectively.

We take w to be the longest element w0 in the permutation group of 3 elements. It can be
represented by the matrix

Pw0 =

0 0 1
0 1 0
1 0 0

 .

The corresponding (negative) unipotent cell is Nw0
− := B+ Pw0 B+ ∩N−.
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Let us denote an element x ∈ N− by

x =

 1 0 0
x1 1 0
x2 x′1 1

 .

Let x3 denote the minor
∣∣( x1 1

x2 x′1

)∣∣ = x1x
′
1 − x2. By [4], there exists a unique element y in

N− ∩ B+ Pw0 x
T when x ∈ Nw0

− . The twist automorphism η̃w0 on N− is defined such that
η̃w0(x) = y.

Let us compute y explicitly. Take any element

z =

a b c
d e

f

 ∈ B+.

Note that

Pw0 x
T =

0 0 1
0 1 x′1
1 x1 x2

 .

We have

z Pw0 x
T =

c b+ cx1 a+ bx′1 + cx2
e d+ ex1 dx′1 + ex2
f fx1 fx2

 .

If z Pw0 x
T ∈ N−, then we must have c = 1, f = x−1

2 , b = −cx1, a = −bx′1 − cx2, and{
d+ ex1 = 1,

dx′1 + ex2 = 0.

The last linear system gives us d = x2
x2−x1x′1

= x2
x3
, e =

−x′1
x2−x1x′1

=
x′1
x3
. We deduce that N− ∩

B+ Pw0 x
T consists of a single element

y =

 1 0 0

x′1x
−1
3 1 0

x−1
2 x1x

−1
2 1


if x2, x3 ̸= 0, and it is empty if not.

It is easy to check that
{
N− ∩ B+ Pw0 x

T | ∀x ∈ N−
}
= N− ∩ B+ Pw0 B+ =: Nw0

− . Then we
can deduce from the above computation of y that Nw0

− = {x ∈ N− | x2 ̸= 0, x3 ̸= 0}.
Define A1 to be the function on Nw0

− sending a point x to x1. Similarly define A′
1, A2, A3.

Then the coordinate ring k[Nw0
− ] is an (upper) cluster algebra with four cluster variables:

A1, A
′
1, A2, A3, see [46, Example 2.2]. Then η̃w0 gives rise to an automorphism ηw such that

ηw0(A1) = A′
1A

−1
3 =

A2 +A3

A1
A−1

3 ,

ηw0(A
′
1) = A1A

−1
2 =

A2 +A3

A′
1

A−1
2 ,

ηw0(Xi) = A−1
i , i = 2, 3.
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7.2 Dehn twists for surface cases

Let Σ denote a triangulable surface S with finitely many marked point. For any of its (tagged)
triangulation ∆, one can construct a seed t∆, whose frozen vertices are contributed from curves
on the boundary ∂S. We refer the reader to [12, 39] for details.

The punctures are the marked point in the interior S◦ of S. By [39], the seed t∆ satisfies the
full rank condition when Σ has no punctures.

Let L denote any closed loop in the interior of S which does not pass a marked point or
is contractible to a marked point. A Dehn twist twL around L produces a new (tagged) tri-
angulation twL∆ from ∆. By [12], we have ttwL ∆ = µt∆ for some mutation sequence µ. By
construction, B(t∆) = B(ttwL ∆). In particular, t∆ and ttwL ∆ are similar.

Then one can construct the variation maps varMt∆ : M◦(t∆)→M◦(ttwL ∆) and varNt∆ : N(t∆)→
N(ttwL ∆) represented by the identity matrices, respectively. The corresponding twist automor-
phisms are determined by

varAt∆(Ai(t∆)) = µ∗Ai(ttwL ∆), varXt∆(Xi(t∆)) = µ∗Xi(ttwL ∆).

They give rise to automorphisms on UA(t∆) and UX(t∆) associated to the Dehn twist twL.

7.3 Once-punctured digon

Example 7.2. The following cluster Poisson algebra arises from PGL3-local systems on a once-
punctured digon [49].

Take I = {1, 2, 3, 4}, with Iuf = {2, 4} and If = {1, 3}. Define the initial seed t such that its
B-matrix is

B =


0 −1 0 1
1 0 −1 0
0 1 0 −1
−1 0 1 0

 .

Note that Buf = 0. So we cannot endow a compatible Poisson structure λ for LPA(t). We have
W = −B.

Let t′ denote the seed µt where µ = µ2µ4. Its B-matrix is B′ = −B. We have W ′ = −W .
We can check the following mutation rule:

µ∗X ′
2 = X−1

2 , µ∗X ′
4 = X−1

4 , µ∗X ′
1 = X1 ·X2 · (1 +X2)

−1 · (1 +X4),

µ∗X ′
3 = X3 ·X4 · (1 +X2) · (1 +X4)

−1.

Then t′ = t[1] with σ = Id, W ′ = −W .

Let us construct Poisson automorphisms on UX(t). Note that we have W =
(

0 −WT
f,uf

Wf,uf 0

)
with row and column indices (2, 4, 1, 3), where Wf,uf =

(
1 −1
−1 1

)
with row indices {1, 3} and

column indices {2, 4}. We want to construct a linear isomorphism varNt :=: N(t) → N(t′)
represented by an Z-valued invertible matrix

(
Iduf Vuf,f
0 Vf

)
, such that(

Iduf Vuf,f
0 Vf

)T

W ′
(
Iduf Vuf,f
0 Vf

)
=W.

The desired equation is equivalent to

−
(
Iduf Vuf,f
0 Vf

)T(
0 −WT

f,uf

Wf,uf 0

)(
Iduf Vuf,f
0 Vf

)
=

(
0 −WT

f,uf

Wf,uf 0

)
.
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By computing its block submatrices, we reduce the equation to the equations

−V T
f Wf,uf =Wf,uf , V T

uf,fW
T
f,ufVf − V T

f Wf,ufVuf,f = 0.

For the first equation (for varNt to be a variation map), the solution takes the form Vf =(
λ−1 µ
λ µ−1

)
for any λ, µ. Since we are looking for a bijection varNt between lattices, we must

have λ+ µ = 0, 2.

The second equation (for varNt to further be Poisson) is equivalent to

−V T
uf,fW

T
f,uf +Wf,ufVuf,f = 0

by the first equation. Then its solution takes the form Vuf,f =
(
α β
α β

)
for any α, β.

The resulting twist automorphism on the fraction field takes the following form:

twX2 = X−1
2 , twX4 = X−1

4 ,

twX1 = µ∗((X ′)(λ−1,α,λ,α)) = X(λ−1,λ−1−α,λ,λ−α)(1 +X2)(1 +X4)
−1,

twX3 = µ∗((X ′)(µ,β,µ−1,β)) = X(µ,µ−β,µ−1,µ−1−β)(1 +X2)
−1(1 +X4).

Note that tw(X1X3) = (X1X3)
λ+µ−1(X2X4)

λ+µ−1−α−β.

Let us consider elements E = X1 · (1 + X4), F = X3 · (1 + X2), K = X1 · X3 · X4 and
K ′ = X1 ·X2 ·X3 (the Chevalley generators, see [49]). It is straightforward to check that(

µ−1
)∗
E = X ′

1 · (1 +X ′
2),

(
µ−1

)∗
F = X ′

3 · (1 +X ′
2),

(
µ−1

)∗
K = X ′

1X
′
2X

′
3,(

µ−1
)∗
K ′ = X ′

1X
′
3X

′
4,

so they are elements in the cluster Poisson algebra UX .
We check that

twE = X(λ−1,λ−1−α,λ,λ−α)(1 +X2)(1 +X4)
−1
(
1 +X−1

4

)
= (X1X3)

λ−1(X2X4)
λ−1−αF,

twF = X(µ,µ−β,µ−1,µ−1−β)(1 +X4)(1 +X2)
−1
(
1 +X−1

2

)
= (X1X3)

µ−1(X2X4)
µ−1−βE,

twK = (X1X3)
λ+µ−1(X2X4)

λ+µ−1−α−βX−1
4 ,

twK ′ = (X1X3)
λ+µ−1(X2X4)

λ+µ−1−αβX−1
2 .

For the special case λ = µ = 1, α = β = 0, we recover the following automorphism in (Drinfeld
double) quantum groups:

twE = F, twF = E, twK = K ′, twK ′ = K.
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