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Abstract. We study the quantum modular properties of ẐG-invariants of closed three-
manifolds. Higher depth quantum modular forms are expected to play a central role for
general three-manifolds and gauge groups G. In particular, we conjecture that for plumbed
three-manifolds whose plumbing graphs have n junction nodes with definite signature and
for rank r gauge group G, that ẐG is related to a quantum modular form of depth nr.
We prove this for G = SU(3) and for an infinite class of three-manifolds (weakly negative
Seifert with three exceptional fibers). We also investigate the relation between the quan-
tum modularity of ẐG-invariants of the same three-manifold with different gauge group G.
We conjecture a recursive relation among the iterated Eichler integrals relevant for ẐG

with G = SU(2) and SU(3), for negative Seifert manifolds with three exceptional fibers.
This is reminiscent of the recursive structure among mock modular forms playing the role
of Vafa–Witten invariants for SU(N). We prove the conjecture when the three-manifold is
moreover an integral homological sphere.

Key words: 3-manifolds; quantum invariants; higher depth quantum modular forms; low-
dimensional topology
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1 Introduction and summary

1.1 Introduction

Modular forms play an indispensable role in modern mathematics and theoretical physics, as
various topics in number theory, geometry, topology, conformal field theory, string theory, holog-
raphy and more require their presence. Extending the theory of modular forms, the past two
decades have seen the development of the theory of mock modular forms, starting with the
seminal papers [20, 21, 70, 73]. In the meanwhile, mock modular forms have found applications
in various areas in mathematics, including combinatorics, representation theory, topology, and
mathematical physics. See [10] for a selection of these applications. In physics, mock modularity
often captures the subtle adjustment of modularity properties when the appropriately defined
space of quantum states of the physical system is non-compact, for instance due to the presence
of a continuous part of the spectrum. See [34] and the references therein.

A bit more than a decade ago, the notion of modified modularity was further expanded into
that of quantum modular forms [71], which were initially introduced as a broad philosophy to
include many very different types of functions. This expanded notion encompasses that of mock
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modularity (in the sense of [28]). Another familiar family of functions that falls under this
category as specific examples is the so-called false theta functions [71], which are q-series of the
form ∑

n⃗∈µ⃗+Λ

∏
i

sgn(⟨n⃗, v⃗i⟩)q|n⃗|
2/2

for some choices of v⃗i and µ⃗ for a given lattice Λ. Roughly speaking, quantum modular forms
are functions whose modular anomalies, measured in terms of differences between the functions
and their images under the appropriate modular group action evaluated near a rational number,
behave better than the original functions themselves (cf. Definition 3.11). In particular, they are
in general not modular since these differences (the “cocycles”) do not vanish.1 Nevertheless, we
can think of them as having some sort of modular behaviour since these differences unexpectedly
have nicer analytic properties than they do. In particular, the quantum modular forms we discuss
in the context of this paper are the so-called holomorphic quantum modular forms [72], which
are holomorphic functions on the upper-half plane whose cocycles can be defined everywhere on
C with a half-line removed. Some of the initial examples of quantum modular forms arose from
quantum invariants of knots and from Chern–Simons (or Witten–Reshetikhin–Turaev, WRT)
invariants of three-manifolds [55], and we might wonder where else in physics or topology does
this type of functions play a role.

Before going into the specific mathematical context of the present paper, from the role mod-
ular and mock modular forms have so far played in two-dimensional conformal field theories
(CFTs) and in the holographic principle of quantum gravity, and from the defining properties of
quantum modular forms, we expect quantum modular forms to have the following interpretations
in theoretical physics.

� A more subtle UV/IR connection in 2d CFT and vertex operator algebra. The symmetry
Z(τ) = Z(−1/τ) under S-transformation of the partition function of a 2d CFT can be
viewed as a manifestation of the UV/IR connection of the theory. In this context, quantum
modularity of a q-series

(
as usual we write q := e2πiτ

)
indicates a more subtle UV/IR

connection: while the leading behaviour of the higher energy states is still determined by
the low-temperature limit, there are additional sub-leading contributions arising due to
the non-vanishing cocycle.

� Summing over geometries. When a q-series gives rise to a quantum modular form, it is
often the case that its Fourier coefficients can be expressed using the circle method, whose
applicability only requires a reasonable or understandable transformation of the function
of interest, generalizing the circle method to express the coefficients of modular forms.
The q-series in this case admits an expression in terms of an appropriately-regularised
sum of images of a certain function under the action of the modular group. See, for
instance, [13, 19, 26] for discussions on false theta functions and numerous work, starting
with [63], on the Rademacher sums of mock modular forms. This structure has played
a role in the gravitational black hole interpretation of the BPS indices in the context of
AdS3/CFT2 [36, 37, 38, 56] and AdS2/CFT1 [33, 45, 62], where the summation over the
modular images is interpreted as a sum over different saddle point geometries. We expect
that a similar gravitational interpretation also holds for the Rademacher sum expression
of certain quantum modular q-series playing the role of BPS indices, as we will discuss
further in Section 6 in the context of 3d indices.

Next we come to the specific context in which we will discuss quantum modularity in the present
paper. The main goal of this paper is to further investigate the quantum modular properties

1If the cocycles were to vanish, then the corresponding functions would be rather boring, only taking finitely
many values due precisely to the behaviour under the action of the congruence subgroup.
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of certain q-series topological invariants of three-manifolds. These invariants, schematically
denoted as Ẑ-invariants and sometimes also referred to as the q-series invariant or the homological
blocks, have been recently proposed in [49, 50] in terms of 3d-3d correspondence in M-theory.
This novel type of invariants has since been the subject of various recent studies in the literature.
See [23, 24, 25, 29, 30, 31, 32, 41, 42, 44, 48, 59, 61, 64, 65] for some examples. In short,
Ẑb(M3) is physically defined as the half-index (also called vortex partition function) of the three-
dimensional N = 2 supersymmetric quantum field theory T [M3] obtained by compactifying
a six-dimensional N = (2, 0) superconformal field theory on the closed three-manifold M3.
Here b labels the specific choices of boundary conditions that leave some of the supersymmetries
unbroken. That said, as the exact content of T [M3] is in general still not known, this physical
definition does not always lead to a method to explicitly compute the Ẑb(M3) invariants in
practice. On the other hand, a relation is conjectured between Ẑb(M3) and the Chern–Simons
invariant CS(M3) [49]. Specializing to the case b1(M3) = 0, this relation reads

CS(M3; k) =
1

i
√
2k

∑
a,b

e2πikCS(a)S
(A)
ab Ẑb(M3; τ)|τ→ 1

k
, (1.1)

where the sum can be thought of as over the connected components of the moduli spaces
of Abelian flat connections up to Weyl group actions, or the inequivalent Spinc structure
and S

(A)
ab is a concrete matrix whose form can be found in [25, 46, 49]. This relation sug-

gests that Ẑ-invariants can be viewed as a function that extends, and categorifies via its BPS
states counting interpretation, the WRT invariants. Using the above, the known expression
for CS(M3; k), and inspired by the localization expressions for the half-indices of certain known
theories, a mathematical definition for ẐG

b⃗
(M3) invariants has been proposed for classes of

three-manifolds M3 [49], as well as knot complements in [46]. As the six-dimensional N = (2, 0)
superconformal field theories are labelled by an ADE gauge group G, we expect ẐG

b⃗
(M3) to

be similarly defined for all ADE gauge groups G. Indeed, the mathematical definition for an
arbitrary simply-laced gauge group G is given in [64], generalizing the definition of [49] which
corresponds to G = SU(2). Concrete examples for G = SU(N) and an infinite family of Seifert
manifolds have been investigated in [29].

For G = SU(2), a relation between Ẑ
SU(2)

b⃗
(M3) and quantum modular forms, in particular

false [16, 17, 25] and mock theta functions [25, 27, 65] have been proposed.2 Generally, we have
the following conjecture [25], which can be traced all the way back to the relation between false
and mock theta functions and WRT invariants of three-manifolds [52, 53, 54, 55].

General Conjecture. ẐG
b⃗
(M3) is closely related to a quantum modular form of some kind for

any closed three-manifold M3, any ADE gauge group G, and any boundary condition label b⃗.

Consider for instance G = SU(2) and M3 a Seifert manifold, while ẐG
b⃗
(M3) is a linear combi-

nation of quantum modular forms when M3 is a Seifert manifold with three or four exceptional
fibers, it is given more generally by linear combinations of derivatives of quantum modular forms
when M3 has at least five exceptional fibers [17]. To expand our understanding of the above con-
jectural phenomenon, in this paper we study quantum modularity of ẐG

b⃗
(M3) for gauge groups G

with rank larger than one, and G = SU(3) in particular. In short, in these cases the type of
quantum modular forms will be higher depth quantum modular forms. Analogous to higher
depth mock modular forms3 (see also [1, 2, 4, 7, 12, 15, 18, 51, 57, 58]), higher depth quantum
modular forms can be defined recursively: the cocycles of a depth two quantum modular form
are sums of depth one or zero quantum modular forms multiplied by analytic functions, and so
on (cf. Definition 3.12). Before we go to the concrete results, let us mention a manifestation of
quantum modularity in this context.

2See also Cheng M.C.N., Coman I., Kucharski P., Passaro D., Sgroi G., in preparation.
3See also Zagier D., Zwegers S., unpublished.
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As discussed in [25] in the context of Ẑ invariants for G = SU(2), the transseries expression
of the WRT invariant at the semi-classical regime can be understood as a consequence of the
following two facts: (1) the relation between WRT and Ẑ invariant (1.1), and (2) the quantum
modularity of the Ẑ invariant. Schematically, when the rank-one Ẑ is a component of a vector-
valued quantum modular form (see Definition 3.11) z = (zb′) with weight w and S-matrix S(q),
the above leads to

CS(M3; k) =
1

i
√
2k

∑
a

e2πikCS(a)
∑
b

S
(A)
ab lim

τ→ 1
k

Ẑ
SU(2)

b⃗
(M3; τ)

=
1

i
√
2k

∑
a

e2πikCS(a)
∑
b

S
(A)
ab

(
kw
∑
b′

S
(q)
bb′ lim

τ→−k
zb′(τ) + rb

(
1

k

))
. (1.2)

In the second line of the above equation, the first term inside the bracket arises from the
S-transformation of Ẑ, while rb

(
1
k

)
is an asymptotic perturbative series in 1

k capturing the non-
vanishing cocycle. The above equality turns out to capture many intricate structures related to
flat SL2(C) connections onM3. Note first that the terms involving zb′(−k) are responsible for the
contributions from the saddle points corresponding to non-Abelian flat connections. Moreover,
since the summation over a can be interpreted as a summation over the Abelian flat connections,
it is clear from above that the transseries for semi-classical WRT invariants of this class of three-
manifolds has the feature that only the saddle contributions from Abelian flat connections carry
a factor given by a perturbative series, having the form e−kCS(a) 1√

k
Ra

(
1
k

)
where Ra is again

a perturbative series. When the Ẑ invariant is a depth N quantum modular form, one sees that
the above structure gets generalized. Now there are up to N “classes” of saddle points, with
different complexity of the accompanying perturbative series. For instance, as before there will
be no asymptotic series of 1

k multiplying the terms arising from the S-transformation of Ẑb, and
more generally there are saddle point contributions multiplied by products of ℓ perturbative
series, for 0 ≤ ℓ ≤ N . Again, we expect that the quantum modularity structure controls the
intricate topological structure of the flat connections on the 3-manifolds, and we will return
to this point in Section 6. Finally, in light of the proposed relation between vertex algebras
and Ẑ-invariants [24, 25], we expect it to be also fruitful to understand quantum modularity of
Ẑ-invariants in the context of vertex algebras.

1.2 Summary of results

In the remainder of this section we briefly discuss the main results of the paper.

Quantum modularity

First, we make the following conjecture about the quantum modular properties of ẐG
b⃗
(M3)

invariants for weakly-negative or weakly-positive plumbed three-manifolds M3, where we let G
to be an arbitrary ADE gauge group and b⃗ to be any allowed boundary condition as detailed in
Section 4 (cf. (4.4)). As will be explained in Section 4, a plumbed three-manifold can be defined in
terms of its plumbing matrix M encoding its plumbing graph. Following [25], we say a plumbed
manifold is weakly-negative/positive when M−1, when restricted to the subspace generated by
the “junction vertices” (those with degree at least 3), is negative/positive-definite. A Seifert
manifold can always be realized as a plumbed manifold with one junction vertex, and in this
case we will simply refer to a Seifert manifold as a negative/positive Seifert manifold depending
on the signature of the inverse plumbing matrix in the direction of the unique junction vertex.

We first make the following conjecture, specializing and refining the General Conjecture
outlined earlier.
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Conjecture 1.1. Let G be an ADE group with rank r. For M3 a weakly-negative or weakly-
positive plumbed manifold with n junction vertices, the invariant ẐG

b⃗
(M3; τ) is related to quantum

modular forms of depth up to r × n.

We also prove the following special case, where r = 2 and n = 1.

Theorem 1.2. Let G = SU(3). For a negative Seifert manifold M3 with three exceptional fibers
and for all the allowed b⃗, the invariant ẐG

b⃗
(M3; τ) is a sum of depth-one and depth-two quantum

modular forms.

In this paper, we prove the above statement by studying the so-called companion function
of ẐG

b⃗
, denoted by qZG

b⃗
which is defined as a function that has the same asymptotic expansion

near τ → Q up to a naive τ 7→ −τ transformation. See Definition 3.6. We construct this in terms
of iterated non-holomorphic Eichler integrals (cf. (3.29) and (3.30)), using a method similar to
that of [11], and we will refer to the companion function constructed in this specific way simply
as the companion function. One can also translate our analysis into the language of two-variable
completion [14] instead of the companion in a relatively straightforward fashion. Specifically, in
the language of [14], ẐG

b⃗
is a sum of depth-one and depth-two false modular forms.

In Section 6, we briefly discuss the possible forms of quantum modularity for the cases beyond
Conjecture 1.1.

A recursive structure

Next, consider changing the gauge group G while fixing the three-manifold M3 in ẐG(M3), we
ask the following question:

Question: Given a three-manifold M3, are the quantum modular properties
of Ẑ

SU(N)

b⃗
(M3) for different N related?

To motivate this question, we find it illuminating to recall the following. Higher-depth quantum
modular forms have been playing a prominent role in the study of the Vafa–Witten partition
functions ZG

VW(τ ;M4) for twisted four-dimensional N = 4 super Yang–Mills on four-dimensional
manifolds M4. In more details, when b+2 (M4) = 1, the invariant ZG

VW(τ ;M4) displays mock mod-
ular properties and the “depth” of the corresponding (mixed) modular forms is given in terms
of the rank of the gauge group G. The mock modular properties in particular imply that there
is a modular completion of ZG

VW(τ ;M4), denoted Z̃G
VW(τ ;M4), which is non-holomorphic with

a canonically defined holomorphic part equaling ZG
VW(τ ;M4). While Z̃G

VW(τ ;M4) transforms as
a modular object, it has a non-trivial τ̄ -dependence referred to as its holomorphic anomaly. In
other words, the τ̄ -dependence of the completion function Z̃G

VW(M4) captures the mock modular-
ity of the Vafa–Witten invariant ZG

VW(M4). Notably, the holomorphic anomaly of Z̃G
VW(τ ;M4)

for G = U(N) is given by Z̃G
VW(τ ;M4) for G = U(n) with 0 < n < N . Schematically, the

conjecture states [8, 60]

∂τ̄ Z̃
U(N)
VW ∼

∑
n1+n2=N

n1n2Z̃
U(n1)
VW Z̃

U(n2)
VW . (1.3)

The above recursive relation, and more generally the mock modularity in this context, has
been given a physical explanation from various perspectives including four-dimensional gauge
theories, two-dimensional sigma models [35], curve counting [60], and DT invariants [3, 5, 6, 7].
Roughly speaking, the presence of a holomorphic anomaly is related to the presence of reducible
connections from the gauge theory point of view, and to the possibility of separating multiple M5
branes from the M-theory point of view. The recursive structure (1.3) then naturally follows from
these interpretations. The similar M5 brane origin of the three-manifold invariants ẐG(τ ;M3),
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as detailed in [50], in particular motivates the question on the recursive structure of the quantum
modularity of Ẑ invariants that we mentioned earlier.

To explore this question, we now focus on negative Seifert manifolds with three exceptional
fibers, corresponding to plumbing graphs with one junction vertex of degree three. Based on
the relation between Ẑ invariants and VOA characters shown in [24, 25], we expect ẐG

b⃗
(M3)

for G = SU(r + 1) to be a linear combination of rank-r′ false theta functions, with r′ ≤ r, up
to an overall rational power of q and possibly the addition of a finite polynomial in q and q−1.
Since many statements in the remaining part of the section are true up to an overall rational
power of q and the addition of a finite polynomial in q and q−1, for the sake of simplicity we
will introduce the special notation

...
=,

...
∈, etc., where the . . . is added on top of the symbols to

denote that the relation holds when replacing Ẑ with Cq∆Ẑ + f(q), for some C ∈ C, ∆ ∈ Q,
f(q) ∈ C

[
q, q−1

]
, and similarly for qZ. As usual, we write q = e2πiτ throughout this paper.

More specifically, we expect ẐG
b (M3) to be a linear combination of functions of the following

form:

t(0),Ar =
∑

n⃗∈µ⃗+Λr

(∏
i

sgn(⟨n⃗, v⃗i⟩)q|n⃗|
2/2

)
,

t(1),Ar =
∑

n⃗∈µ⃗+Λr

⟨n⃗, σ⃗⟩

(∏
i

sgn(⟨n⃗, v⃗i⟩)q|n⃗|
2/2

)

for some chosen µ⃗, v⃗i and σ⃗ and rank r lattice Λr. We denote their companion functions, which
we expect to be given by linear combinations of iterated Eichler integrals, by ť(ν),Ar [14]. Then
the general structure of higher rank false theta functions suggests the following. Schematically,

∂

∂τ̄
qZSU(r+1)

...
∈ span

({
(Im τ)ν0−3/2 θν0 ť(ν1),Ar1 ť(ν2),Ar2 · · · | νi ∈ {0, 1}, r ≥ 1 + r1 + r2 + · · ·

})
(1.4)

with θν denotes the function of the type θνm,r, defined as the following. For m a positive integer,
let Θm be the 2m-dimensional Weil representation of the metaplectic group S̃L2(Z) spanned by
the column vector θm = (θm,r)r mod 2m with theta function components

θm,r(τ, z) :=
∑

ℓ≡r mod 2m

q
ℓ2

4m yℓ, y := e2πiz. (1.5)

Derivatives of (1.5) define unary theta functions θνm,r : H → C for ν = 0, 1, as

θνm,r(τ) :=

((
1

2πi

∂

∂z

)ν

θm,r(τ, z)

) ∣∣∣∣
z=0

. (1.6)

An important role in the study of ẐSU(2) is played by Eichler integrals unary theta functions.
The Eichler integral of a weight w ∈ 1

2Z cusp form g(τ) =
∑

n>0 ag(n)q
n is a function given by4

g̃(τ) := C(w)
∑
n>0

ag(n)n
1−wqn, (1.7)

where C(w) = i Γ(w−1)
(−2π)w−1 , or

g̃(τ) =

∫ i∞

τ
g(z′)(−i(z′ − τ))−2+wdz′,

4To avoid an unnecessary proliferation of constants we adopt a different normalization of the Eichler integral
than that chosen in [25].
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with a carefully chosen contour. In particular, the Eichler integral of θ1m,r is proportional the
false theta function

θ̃1m,r :=
∑

k≡r (2m)

sgn(k)qk
2/4m.

In the present paper we focus on the next simplest non-trivial case where G = SU(3). What
we find is an interesting recursion structure, which we will describe in terms of the Weil rep-
resentations of the metaplectic group S̃L2(Z) that are subrepresentations of Θm. We denote
by Exm the group of exact divisors of m, where a divisor n of m is exact if

(
n, mn

)
= 1 and the

group multiplication for Exm is

n ∗ n′ :=
nn′

(n, n′)2
.

In what follows we consider a subgroup K of Exm. The group K labels a subrepresentation
of Θm, denoted Θm+K which we will describe in more details in Section 4. It has the property
that Θm+K′ ⊂ Θm+K when K ′ ⊃ K, and in particular Θm+K = Θm when K = {1}. In general,
we have, in terms of the projectors Pm+K defined in (4.8) and (4.9),

θm+K
r (τ, z) =

∑
r′∈Z/2m

Pm+K
r,r′ θm,r′(τ, z). (1.8)

We will write θν,m+K
r , ν = 0, 1, to be the corresponding linear combination of θνm,r (see (4.11)

for ν = 1), and write σm+K ⊂ Z/2m as the set labelling (through r) the linearly indepen-
dent θm+K

r (τ, z). Similar notations θ̃ν,m+K
r and

(
θν,m+K
r

)∗
are used for the same linear combi-

nation (1.8) of the corresponding Eichler integrals and the non-holomorphic Eichler integral

(θνm,r)
∗(τ) :=

∫ i∞

−τ̄
dw

θνm,r(−w̄)

(−i(w + τ))3/2−ν

(cf. (3.29)) which is up to an overall factor a companion for θ̃νm,r. See [25, Section 7.3] for more
details in the present context.

Now we explain the role of the representations Θm+K in the study of ẐG-invariants. It
is shown [17, 25] that for any negative Seifert M3 with three exceptional fibers, there exists
a unique m and some K ⊂ Exm such that for all allowed choices of b⃗

Ẑ
SU(2)

b⃗
(M3; τ) ∈ span

({
θ̃1,m+K
r | r ∈ σm+K

})
, (1.9)

which implies

qZ
SU(2)

b⃗
(M3; τ, τ̄) ∈ span

({(
θ1,m+K
r

)∗ | r ∈ σm+K
})

. (1.10)

From now on we will take the largest K such that the above is true. The following conjecture,
based on observations and proven for homological spheres, indicates that the recursion of ẐG

have in fact finer structure than indicated in (1.4).

Conjecture 1.3. Let M3 be a negative Seifert manifold three exceptional fibers and let b⃗ a choice
of the boundary condition. Let m be the unique positive integer and K be the largest subgroup
of Exm such that

Ẑ
SU(2)

b⃗
(M3; τ)

...
∈ span

({
θ̃1,m+K
r | r ∈ σm+K

})
.
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Let qZ
SU(3)

b⃗
(M3; τ, τ̄) be the companion of Ẑ

SU(3)

b⃗
(τ ;M3). Then it satisfies

∂

∂τ̄

(
qZ
SU(3)

b⃗
(M3; τ, τ̄) + z1d

)
...
∈ 1√

Im τ
span

({
θ1,m+K
r′

(
θνm,r′′

)∗ | ν = 0, 1, r′′ ∈ Z/2m, r′ ∈ σm+K
})

, (1.11)

where the 1d piece is of the form

z1d
...
∈ span

(
{(θνm,r)

∗ | r ∈ Z/2m, ν = 0, 1}
)
. (1.12)

We see that the same Weil representation Θm+K that governs the structure of ẐSU(2)(M3)
also governs the structure of ẐSU(3)(M3). We will comment on its potential interpretation in
Section 6.

When M3 is moreover a homological sphere, namely when H1(M3,Z) is trivial, it is topolog-
ically equivalent to a Brieskorn sphere Σ(p1, p2, p3) with coprime pi’s (4.3). In this case there is
only one homological block b⃗ = b⃗0 and it is known that [25]

∂

∂τ̄

(
qZ
SU(2)

b⃗
(M3; τ, τ̄)

) ...
= θ1,m+K

r

for m = p1p2p3, K = {1, p̄1, p̄3, p̄2}, r = m− p̄1 − p̄2 − p̄3, where p̄i := m/pi.
For this (infinite) family of M3, we explicitly show that the conjecture is true, and we have

Theorem 1.4. Conjecture 1.3 is true when M3 is a homological sphere.

In other words, in this case we have

∂

∂τ̄
qZ
SU(2)

b⃗
(M3; τ, τ̄)

...
=

1√
Im τ

θ1,m+K
r ,

∂

∂τ̄

(
qZ
SU(3)

b⃗
(M3; τ, τ̄) + z1d

) ...
=

1√
Im τ

∑
r′∈σm+K

θ1,m+K
r′ Br′ , (1.13)

where Br′ is a linear combination of (θνm,r′′)
∗ with ν = 0, 1, r′′ ∈ Z/2m. In particular, note that

while only one component of Θm+K appears to play a role in the quantum modularity of ẐSU(2),
its modular images also play a role in ẐSU(3).

Here we have stated the recursive conjecture in terms of the companion function. As be-
fore, the above analysis on the recursive relation can be translated in the language of modular
completions of higher-depth false theta functions [14]. Roughly speaking, the role of ∂

∂τ̄ will

be played by ∂
∂w , acting on the two-variable completion that depends on (τ, w) ∈ H × H and

transforms as a bi-modular form. An analogous statement should then hold also for (the ∂w
derivatives of) the completion function defined in [14] in a natural fashion.

2 Notation guide

e(x) Shorthand notation e(x) = e2πix.

Bm(x) Bernoulli polynomials with generating function text

et−1 =
∑∞

n=0Bn(x)
tn

n! .

Λ = Λg The root lattice associated to the simply-laced Lie algebra g.

Λ∨ The dual root lattice.

Φs The set of simple roots {α⃗i}rankGi=1 .
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Φ± The sets of positive and negative roots.

ρ⃗ The Weyl vector of the root system ρ⃗ := 1
2

∑
α⃗∈Φ+

α⃗.

⟨·, ·⟩ The scalar product in the dual space of the Cartan subalgebra of g.

|x⃗|2 For x⃗ ∈ C⊗Z Λ, the norm is defined by |x⃗|2 = ⟨x⃗, x⃗⟩.
{ω⃗i}rankGi=1 The set of fundamental weights, satisfying ⟨ω⃗i, α⃗j⟩ = δi,j .

P+ The set of dominant integral weights. See (3.1). For P̄+, see (3.2).

∆ω⃗ The difference ∆ω⃗ := ω⃗1 − ω⃗2 of the two fundamental weights in A2 Lie algebra.

W The Weyl group of the root system.

w(·) The action of the element w ∈ W .

ℓ(w) The length of w.

Q(m) The norm Q(m) := 1
2 |m⃗|2 =

(
3m2

1 + 3m1m2 +m2
2

)
for (m1,m2) ∈ R2 (3.3).

ϱ Shorthand notation ϱ =
(
s⃗, k⃗,m,D

)
introduced in Section 3.

σ⃗ Shorthand notation σ⃗ = s⃗− m
D k⃗.

F (ϱ) Generalized A2 false theta function defined in equation (3.5).

F
(ϱ)
ν Partial theta functions, defined for ν = 0, 1 in (3.7) and (3.10).

Fν,α Components of false theta functions, defined in equation (3.8).

Fν Fν(x) = xν2e
−Q(x) (3.4)

S The set (3.11) of parameters α (3.9) of the partial theta functions Fν,α(τ).

S̃ Subset of the set S defined in equation (3.13).

E(ϱ)
ν (τ) The companion functions of the functions F

(ϱ)
ν (τ). See (3.26).

M The adjacency matrix (4.1) of the weighted graph (V,E, a).

D Smallest positive integer such that DM−1
v0,v ∈ Z for ∀v ∈ V ; m = D2

∣∣M−1
v0,v0

∣∣.
b⃗ Generalised Spinc structure (4.4) on a plumbed three-manifold M3, labelling

the boundary conditions of T [M3].

ẐG
b⃗
(M3) Topological invariant of a plumbed three-manifold M3 (4.5).

qZG
b⃗
(M3) Companion function of ẐG

b⃗
(M3).

...
=,

...
∈, etc. relations hold when replacing Ẑ with Cq∆Ẑ + f(q), for some

C ∈ C, ∆ ∈ Q, f(q) ∈ C
[
q, q−1

]
, and similarly for qZ.

3 Generalized A2 false theta functions

Let Λ = ΛA2 be the A2 root lattice, W the corresponding Weyl group with ℓ : W → Z its length
function. We denote by W+

∼= Z/3 the rotation subgroup of W given by the kernel of the
map w 7→ (−1)ℓ(w). We also denote by Φs = {α⃗1, α⃗2} a set of simple roots and {ω⃗1, ω⃗2} the
corresponding fundamental weights, Φ± the set of positive resp. negative roots, and by

P+ :=
{
λ⃗ ∈ Λ∨ | ⟨λ⃗, α⃗⟩>0 ∀α⃗ ∈ Φ+

}
(3.1)

the set of dominant integral weights, where ⟨·, ·⟩ is a quadratic form given by the A2 Cartan
matrix. For x⃗ ∈ C⊗Z Λ, we define the norm |x⃗|2 := ⟨x⃗, x⃗⟩ as usual. We will also define

P̄+ :=
{
λ⃗ ∈ Λ∨ | ⟨λ⃗, α⃗⟩ ≥ 0∀α⃗ ∈ Φ+

}
. (3.2)
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It will be convenient to introduce the map

Z2 → Λ, m = (m1,m2) 7→ m⃗ := m2ω⃗1 + (3m1 +m2)ω⃗2,

the corresponding norm

Q(m) :=
1

2
|m⃗|2 =

(
3m2

1 + 3m1m2 +m2
2

)
, (3.3)

and the following functions on R2

Fν(x) := xν2e
−Q(x), ν = 0, 1. (3.4)

Then given a vector s⃗ in the root lattice, a positive integerm, a divisorD ofm, and k⃗ ∈ Λ/DΛ,
we define the generalized A2 false theta function

F (ϱ)(τ) =
∑
w∈W

(−1)ℓ(w)
∑

n⃗∈Λ∩P+

n⃗∈w(k⃗)+DΛ

min(n1, n2)q
1

2m
|−w(s⃗)+m

D
n⃗|2 , (3.5)

where ϱ encodes the data (s⃗, k⃗,m,D). The A2 false theta functions, whose quantum modularity
has been studied in [11] and which appear in the character of higher rank logarithmic vertex
algebra log-VΛ̄(m) [43], always have D = 1.

These generalized A2 false theta functions are the building blocks of the Ẑ
SU(3)

b⃗
(M3) invari-

ants, when M3 is a negative Seifert manifold with three exceptional fibers (4.7). The study of
their explicit quantum modular properties will be the subject of this section.

In the above and elsewhere in this paper, unless stated otherwise, we use the weight basis
notation. For instance, we use (n1, n2) to denote n⃗ := n1ω⃗1 + n1ω⃗2 ∈ Λ∨. We also write
k⃗|i:= ⟨k⃗, α⃗i⟩ for k⃗ ∈ C⊗Z Λ, so n⃗|i= ni for n⃗ = (n1, n2).

3.1 Identities

We now rewrite the generalised A2 false theta function in a form which allows us to determine its
asymptotic behaviour in the limit where the modular parameter τ approaches a rational number.
Similar to [11] we will first rewrite (3.5) as a sum over partial theta functions. Concretely, we
have the following lemma.

Lemma 3.1. With the notation of (3.5), we choose a representative of k⃗ ∈ Λ/DΛ such that
0 ≤ ⟨k⃗, ω⃗i⟩ < D for i = 1, 2, and write s⃗ = σ⃗ + m

D k⃗. Then we have

F (ϱ)(τ) = F
(ϱ)
0 (mτ) +DF

(ϱ)
1 (mτ), (3.6)

where

F
(ϱ)
0 (τ) :=

D

m

∑
w∈W+

∑
i∈{1,2}

w(s⃗)|iF0,α
(i)
w
(τ), F

(ϱ)
1 (τ) :=

∑
w∈W+

∑
i∈{1,2}

F
1,α

(i)
w
(τ) (3.7)

with

Fν,α(τ) =

( ∑
n∈α+N2

0

+(−1)ν
∑

n∈1−α+N2
0

)
nν
2q

Q(n). (3.8)

The α
(i)
w vectors are defined in terms of s⃗, k⃗, and Weyl group element w ∈ W

α(1)
w =

(
x+

∆w(σ⃗)

m
, ξw,1 −

w(σ⃗)|1
m

)
, α(2)

w =

(
1− x− ∆w(σ⃗)

m
, ξw,2 −

w(σ⃗)|2
m

)
(3.9)
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in which

ξw,i :=

⌈
−
w
(
k⃗
)
|i

D

⌉
, ∆w(σ⃗) :=

w(σ⃗)|1−w(σ⃗)|2
3

,

x =

{
0 when w

(
k⃗
)
|2≥ w

(
k⃗
)
|1,

1 otherwise.

The proof can be found in Appendix B.1.

For later convenience, we will also use the following rewriting of (3.7):

F
(ϱ)
0 (τ) =

∑
α∈S

η0(α)
∑

n∈α+N2
0

qQ(n), F
(ϱ)
1 (τ) =

∑
α∈S

η1(α)
∑

n∈α+N2
0

n2 q
Q(n), (3.10)

where we write

S =
⋃

w∈W+

{
α(1)

w , α(2)
w , ᾱ(1)

w , ᾱ(2)
w

}
, (3.11)

and

ᾱ(i)
w := 1−α(i)

w , η0
(
α(i)

w

)
= η0

(
ᾱ(i)

w

)
=

D

m
w(s⃗)|i, η1

(
α(i)

w

)
= −η1

(
ᾱ(i)

w

)
= 1, (3.12)

where 1 = (1, 1). We will also write

S̃ =
⋃

w∈W+

{
α(1)

w ,α(2)
w

}
, (3.13)

so that

F (ϱ)
ν (τ) =

∑
α∈S̃

ην(α)Fν,α.

Note that mα ∈ Z2, since σ⃗ ∈ Λ and hence ∆w(σ⃗) = ⟨∆ω⃗, w(σ⃗)⟩ ∈ Z, where we write

∆ω⃗ = ω⃗1 − ω⃗2 =
1

3
(α⃗1 − α⃗2).

To study the radial limit of F (ϱ), later we will be working with functions of the form∑
n∈α+N2

0
Fν(n) for ν = 0, 1 with 0 ≤ αi ≤ 1 for i = 1, 2. See (3.4). It will therefore be

useful to note the following result on the effect of integral shifts of α.

Lemma 3.2. Let β = α+(δα1, δα2) for δα1, δα2 ∈ Z. Consider Fν,α(τ) for ν = 0, 1 as defined
in (3.7). Then Fν,β(τ) − Fν,α(τ) is in the integral linear span of one-dimensional lattice sums{
θ̃1[κ, a], θ̃0[κ, a] | κ, a ∈ Q

}
, up to the addition of a finite polynomial p(τ) ∈ q∆Z[q], where

θ̃0[κ, a](τ) :=
∑
n∈Z

|n+ a|qκ(n+a)2 , θ̃1[κ, a](τ) :=
∑
n∈Z

sgn(n+ a)qκ(n+a)2 .

Note that θ̃0 and θ̃1 are themselves Eichler integrals of weight 1/2 resp. 3/2 theta functions,
up to finite polynomials. See (1.7). The proof can be found in Appendix B.2. Using the above
lemma to shift vectors by integers, in the following section we will consider vectors µ = (µ1, µ2)
satisfying 0 ≤ µ1, µ2 ≤ 1.
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3.2 Radial limits

In this subsection we aim to study the radial limit τ → h
k ∈ Q, approached from the upper-

half plane H, of the generalized A2 false theta functions F (ϱ)(τ). To do so, we will use the
Euler–Maclaurin summation formula, a strategy also employed in [11]. First we will recall the
following asymptotic expansion formula, which goes back to [69]5.

For µ = (µ1, µ2) with µ1, µ2 ≥ 0, and F : R2
≥0 → R a smooth rapidly decaying C∞ function,

the asymptotic expansion in the limit t → 0+ of F is given by [69]

∑
n∈N2

0

F ((n+ µ)t) ∼ IF
t2

−
∑
n∈N

tn−2

n!

∫ ∞

0
dx
(
Bn(µ1)F

(n−1,0)(0, x) +Bn(µ2)F
(0,n−1)(x, 0)

)
+
∑
n∈N2

tn1+n2−2

n1!n2!
Bn1(µ1)Bn2(µ2)F

(n1−1,n2−1)(0, 0), (3.14)

where ∼ means that the two sides agree up to O
(
tN
)
terms for any N ∈ N and IF is given by

IF :=

∫ ∞

0

∫ ∞

0
F (x1, x2)dx1dx2.

In the above expression, Bm(x) are the Bernoulli polynomials whose generating function is
given by text

et−1 =
∑∞

n=0Bn(x)
tn

n! . A key feature of these polynomials that follows directly from
the generating function is their reflection property

Bm(x) = (−1)mBm(1− x). (3.15)

In order to apply (3.14) to derive the radial limit, we will further rewrite our generalized
false theta function (3.7) for when Re τ ∈ Q: for coprime integers h, k and t ∈ R>0, we have
for ν = 0, 1

F (ϱ)
ν

(
h
k + it

2π

)
=
(√

t
)−ν

∑
µ∈S

ην(µ)
∑

ℓ∈(Z/km̄)2

e
(
h
kQ(ℓ+ µ)

) ∑
n∈ 1

km̄
(ℓ+µ)+Z2

km̄n∈µ+N2
0

Fν

(
km̄

√
tn
)
, (3.16)

where we have defined

δ := (h,m), m̄ :=
m

δ
, (3.17)

and Fν(x) is given as in (3.4). To see that the sum over ℓ is well-defined, note that mµ ∈ Z2 for
all µ ∈ S. To derive the asymptotic expansion (see Proposition 3.5) of F

(ϱ)
ν , we first establish

the following lemma.

Lemma 3.3. Let S, ην , and m̄ be as given in (3.11), (3.12) and (3.17). Then for ν = 0, 1∑
µ∈S

ην(µ)
∑

ℓ∈(Z/km̄)2

e
(
h
kQ(ℓ+ µ)

)
= 0.

See Appendix B.3 for the proof.

5To apply the formulas in [69] correctly, it is important that the shift vector, denoted ϱ in this paper, must
satisfy µ1, µ2 ≥ 0.
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Lemma 3.4. Given w ∈ W+∑
µ∈{µ(1)

w ,µ
(2)
w }

∑
0≤ℓ1,ℓ2<km̄

Bn

(
ℓ1 + µ1

km̄

)
e

(
h

k
Q (ℓ+ µ)

)
= 0

for any odd positive integer n.

See Appendix B.4 for the proof.
After establishing the above lemmas, upon using equations (3.14) and (3.16) we are now

ready to prove the following asymptotic formula.

Proposition 3.5. For ν = 0, 1, the asymptotic limit near h
k is given by

F (ϱ)
ν

(
h

k
+

it

2π

)
∼ − 2

∑
α∈S̃

ην(µ)
∑

0≤ℓ1,ℓ2<km̄

e

(
h

k
Q(ℓ+ µ)

)( ∑
n>1

n≡ν(2)

(km̄)n−2 t
n−2−ν

2

n!

×
∫ ∞

0
dx

(
Bn

(
ℓ2 + µ2

km̄

)
F (0,n−1)
ν (x, 0) +Bn

(
ℓ1 + µ1

km̄

)
× F (n−1,0)

ν (0, x)
)
−

∑
n∈N2

n1≡n2+ν(mod 2)

(km̄)n1+n2−2 t
n1+n2−2−ν

2

n1!n2!

×Bn1

(
ℓ1 + µ1

km̄

)
Bn2

(
ℓ2 + µ2

km̄

)
F (n1−1,n2−1)
ν (0)

)
. (3.18)

Proof. In (3.16), choose the sum over ℓ to be over the range 0 ≤ ℓ1, ℓ2 < km̄ and apply the
Euler–Maclaurin summation formula (3.14) to

∑
n∈N2

0
F ((n+ µ′)t′), with

µ′ =
ℓ+ µ

km̄
, t′ = km̄

√
t, F (x) = Fν(x).

First note that the potential divergent, ℓ- and µ-independent term IF /t2 actually vanishes
contribution due to Lemma 3.3. Second, note that the reflection property (3.15) of the Bernoulli
polynomials leads to the identity∑

0≤ℓ1,ℓ2<km̄

e

(
h

k
Q(ℓ+ µ)

)
Bn

(
ℓi + µi

km̄

)

= (−1)n
∑

0≤ℓ1,ℓ2<km̄

e

(
h

k
Q(ℓ+ 1− µ)

)
Bn

(
ℓi + 1− µi

km̄

)
(3.19)

for i = 1, 2, and∑
0≤ℓ1,ℓ2<km̄

e

(
h

k
Q(ℓ+ µ)

)
Bn1

(
ℓ1 + µ1

km̄

)
Bn2

(
ℓ2 + µ2

km̄

)

= (−1)n1+n2
∑

0≤ℓ1,ℓ2<km̄

e

(
h

k
Q(ℓ+ 1− µ)

)

×Bn1

(
ℓ1 + 1− µ1

km̄

)
Bn2

(
ℓ2 + 1− µ2

km̄

)
, (3.20)

where we have shifted the sum over ℓ to −ℓ + 1 (km̄− 1). From (3.12) and (3.13), since µ
and µ̄ := 1 − µ appear in S in pairs, we can fold the sum into a sum over S̃. Moreover,
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from ην(µ̄) = (−1)νην(µ), the above identity implies that terms in the sum in the third line
of (3.18) vanish unless n1 + n2 ≡ ν(2). Similarly, the terms in the second line of (3.18) vanish
unless n ≡ ν(2). To show that the potentially divergent term with n = 1 when ν = 1 vanishes,

we first note that F (0,0)
1 (x, 0) = F1(x, 0) = 0 and we are hence left to show that∫ ∞

0
dxF1(0, x)

∑
µ∈S̃

ην(µ)
∑

0≤ℓ1,ℓ2<km̄

e

(
h

k
Q(ℓ+ µ)

)
B1

(
ℓ1 + µ1

km̄

)

=

∫ ∞

0
dxF1(0, x)

∑
w∈W+

∑
µ∈{µ(1)

w ,µ
(2)
w }

∑
0≤ℓ1,ℓ2<km̄

e

(
h

k
Q(ℓ+ µ)

)
B1

(
ℓ1 + µ1

km̄

)
= 0,

which is true by Lemma 3.4. ■

3.3 Companions

Having established the asymptotic expansions of the functions F
(ϱ)
ν in the limit τ → h

k ∈ Q, in
this subsection we will show that certain functions E∗(ϱ)

ν (τ), consisting of generalised comple-
mentary error functions, are their companion functions in the sense that they have compatible
asymptotic behaviour.

Definition 3.6. We say two functions F̂ and qF on the upper-half plane are companions of each
other if their asymptotic expansions near the rationals satisfy

F̂

(
h

k
+

it

2π

)
∼
∑
m≥0

ah,k(m)tm,

and

qF

(
h

k
+

it

2π

)
∼
∑
m≥0

a−h,k(m)(−t)m,

for all coprime integers h, k with k > 0.

Importantly, given a function on the upper-half-plane, its companion is anything but unique;
the definition of the companion function is insensitive to the addition of functions vanishing at
all rationals.

To establish companions of the generalised A2 false theta functions, we define for ν = 0, 1

E∗(ϱ)
ν (τ) :=

1

2

∑
µ∈S

ην(µ)

( ∑
n∈µ+N2

0

gν(n1, n2) +
∑

n∈(1−µ1,µ2)+N2
0

gν(−n1, n2)

)
, (3.21)

where

gν(n1, n2) := q−Q(n)

(
nν
2M

∗
2

(√
3;
√
3v(2n1 + n2),

√
vn2

)
+ δν,1

e−πv(3n1+2n2)2

2π
√
v

M∗(√3vn1

))
(3.22)

and v := Im τ , and show that, when writing the asymptotic expansion of F
(ϱ)
ν as

F (ϱ)
ν

(
h

k
+

it

2π

)
∼
∑
m≥0

a
(ν)
h,k(m)tm,

we have the following proposition.
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Proposition 3.7. E∗(ϱ)
ν (τ) as defined in equation (3.21) is a companion of F

(ϱ)
ν (τ), whose

asymptotic expansion in the limit τ = h
k + it

2π , t → 0+ satisfies

E∗(ϱ)
ν

(
h

k
+

it

2π

)
∼
∑
m≥0

a
(ν)
−h,k (m) (−t)m .

For the proof of the proposition, it will be convenient to define the following functions and
establish the identities in Lemma 3.8. For ν = 0, 1, let the functions Gν , G̃ν : R2 → R be given by

Gν(x1, x2) =
1

2
xν2M

∗
2

(
√
3;

√
3(2x1 + x2)√

2π
,

x2√
2π

)
eQ(x) = G̃ν(−x1, x2),

where the functions M2, M
∗
2 are defined in equations (A.3) and (A.4), respectively, following

[4]. The following relations to Fν have been established in [11, Section 7].

Lemma 3.8. For ν = 0, 1 the following identities hold for n ∈ N, n ≡ ν + 1 (2):∫ ∞

0
dxF (0,n)

ν (x, 0) = (−1)⌊
n−1
2

⌋
∫ ∞

0
dx
(
G(0,n)
ν + G̃(0,n)

ν

)
(x, 0),∫ ∞

0
dxF (n,0)

ν (0, x) = (−1)⌊
n−1
2

⌋
∫ ∞

0
dx
(
G(n,0)
ν + (−1)ν G̃(n,0)

ν

)
(0, x)− 1√

2

[
dn

dyn
e

3y2

4

]
y=0

and

F (n)
ν (0) = (−1)⌊

n1+n2
2

⌋(G(n)
ν (0) + (−1)n1+1G̃(n)

ν (0)
)

for n1 + n2 ≡ ν (2).

Now we are ready to prove Proposition 3.7. As before, we can re-express E∗(ϱ)
ν (τ) when

Re τ ∈ Q as

E∗(ϱ)
ν

(
h

k
+

it

2π

)
=
(√

t
)−ν

∑
µ∈S

ην(µ)
∑

ℓ∈(Z/km̄)2

(
e

(
−h

k
Q(ℓ+ µ)

)

×
∑

n∈ 1
km̄

(ℓ+µ)+Z2

km̄n∈µ+N2
0

G′
ν

(
km̄

√
tn
)
+ e

(
−h

k
Q(−1 + µ1 − ℓ1, µ2 + ℓ2)

)

×
∑

n∈ 1
km̄

(ℓ+(1−µ1,µ2))+Z2

km̄n∈(1−µ1,µ2)+N2
0

G̃′
ν

(
km̄

√
tn
))

, (3.23)

where

G′
ν(x1, x2) = Gν(x1, x2) + δν,1

1

2
√
2π

e−( 3
2
x2
1+3x1x2+x2

2)M∗
(√

3

2π
x1

)
. (3.24)

Applying (3.14) to (3.23), from Lemma 3.3 we see that

E∗(ϱ)
ν

(
h

k
+

it

2π

)
∼ 2

∑
µ∈S̃

ην(µ)
∑

0≤ℓ1,ℓ2<km̄

e

(
−h

k
Q(ℓ+ µ)

)(
−
∑
n>1

n≡ν(2)

(km̄)n−2 t
n−2−ν

2

n!

×
[
Bn

(
ℓ2 + µ2

km̄

)∫ ∞

0
dx
(
G(0,n−1)
ν + G̃(0,n−1)

ν

)
(x, 0)
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+Bn

(
ℓ1 + µ1

km̄

)∫ ∞

0
dx
(
G(n−1,0)
ν + (−1)ν G̃(n−1,0)

ν

)
(0, x)

]
+

∑
n∈N2

n1≡n2+ν(mod2)

(km̄)n1+n2−2 t
n1+n2−2−ν

2

n1!n2!
Bn1

(
ℓ1 + µ1

km̄

)

×Bn2

(
ℓ2 + µ2

km̄

)(
G(n1−1,n2−1)
ν − (−1)n1+1G̃(n1−1,n2−1)

ν

)
(0)
)

(3.25)

holds for ν = 0, where we have also used (3.19)–(3.20) to identify the contribution from µ and µ̄.
For ν = 1, one needs to take the additional term in (3.24) into account. As shown in detail
in [11, Section 7], the contributions of these terms to the asymptotic expansion vanish due to
Lemma 3.4.

Similarly, combining Proposition 3.5 and Lemma 3.8, and again evoking Lemma 3.4, the
comparison with (3.25) shows that the Proposition 3.7 is true.

3.4 Eichler integrals

In this subsection, we will relate the companion of the generalised A2 false theta function F (ρ)

to certain Eichler integrals. More precisely, we will show that the companion function E∗(ϱ)
ν in

Proposition 3.7 is an Eichler integral given in Proposition 3.10, up to one-dimensional integrals
specified in Lemma 3.9.

To show this, for ν = 0, 1 we first define the following functions

E(ϱ)
ν (τ) :=

1

2

∑
µ∈S̃

ην(µ)
∑

n∈µ+Z2

q−Q(n)

[(
1

2πi

∂

∂z

)ν

×
(
e2πiνn2zM2

(√
3;
√
3v(2n1 + n2),

√
v

(
n2 −

2 Im(z)

v

)))]
z=0

(3.26)

that are closely related to the companion function E∗(ϱ)
ν . More precisely, their difference is given

in terms of one-dimensional error function (see (A.1)) as

Lemma 3.9.

E(ρ)
ν (τ) = E∗(ρ)

ν (τ) +
∑
µ∈S̃

ην(µ)Xν(µ),

where Xν are given by

X0(µ) =

 ∑
n∈µ+N2

0

+
∑

n∈(1,1)−µ+N2
0

−
∑

n∈(1−µ1,µ2)+N2
0

−
∑

n∈(µ1,1−µ2)+N2
0


×
(
δn1,0(1− δn2,0)M

(
2
√
vn2

)
+ δn2,0(1− δn1,0)M

(
2
√
3vn1

)
− δn1,0δn2,0

)
q−Q(n)

=


(−1)µ1

(∑
k=µ2+N0

−
∑

k=1−µ2+N0

)
M
(
2
√
vk
)
q−k2 , µ1 ∈ {0, 1} ̸∋ µ2,

(−1)µ2
(∑

k=µ1+N0
−
∑

k=1−µ1+N0

)
M
(
2
√
3vk
)
q−3k2 , µ1 ̸∈ {0, 1} ∋ µ2,

(−1)µ1+µ2+1, µ1 ∈ {0, 1} ∋ µ2,

0, µ1 ̸∈ {0, 1} ̸∋ µ2

for ν = 0 and

X1(µ) =

 ∑
n∈µ+N2

0

−
∑

n∈(1,1)−µ+N2
0

−
∑

n∈(1−µ1,µ2)−µ+N2
0

+
∑

n∈(µ1,1−µ2)−µ+N2
0


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× δn1,0

(
n2M

(
2
√
vn2

)
+

1

4π
√
v
e−4πn2

2v

)
q−n2

2

=


(−1)µ1

(∑
k∈µ2+N2

0
+
∑

k∈1−µ2+N2
0

)
×
(
kM

(
2
√
vk
)
+ 1

4π
√
v
e−4πk2v

)
q−k2 , µ1 ∈ {0, 1},

0, µ1 ̸∈ {0, 1}

for ν = 1.

The proof can be found in Appendix B.5. Note that in Section 3.3, we used E∗(ρ)
ν for the

application of Euler–Maclaurin formula, as gν(n1, n2) in (3.22) is continuous on R2
≥0 as a function

of (n1, n2), unlike the counterpart in E(ρ)
ν ; the difference between the two functions then comes

precisely from the cases when at least one of n1 and n2 vanishes. Moreover, from [73]

M(x
√
v) = i

x√
2
q

x2

4

∫ i∞

−τ̄

e
πix2w

2√
−i(w + τ)

dw

we see that Xν(µ) can be written as a linear combination of non-holomorphic Eichler integrals
of rank one theta functions (1.6), and hence

E(ρ)
ν = E∗(ρ)

ν + z1d

in the notation of (1.12).
Finally, by carefully rewriting the integrals in the rank two generalised complementary error

functions M2 in the definition of E(ϱ)
ν , we arrive at the following relation between the companion

and the Eichler integrals, as shown in Appendix B.6.

Proposition 3.10.

E(ϱ)
ν (τ) =

∑
w∈W+

E(ϱ)
ν,w(τ),

where

E(ϱ)
ν,w(τ) :=

√
3

4πν

∫ i∞

−τ̄

∫ i∞

z1

Θ
(ϱ)
ν,w(z)

(−i(z1 + τ))1/2(−i(z2 + τ))ν+1/2
dz2dz1 (3.27)

and

Θ(ϱ)
ν,w(z) = (m)2ν−3 (3D∆w(s⃗))1−ν

∑
δ∈Z/2

θ1m,mδ+⟨ρ⃗,w(σ⃗)⟩

(z1
m

)
θ1−ν
m,mδ+⟨∆ω⃗,w(σ⃗)⟩

(
3z2
m

)
(3.28)

are given by sums of products of two theta functions of one-dimensional lattices.

Combining Lemma 3.9 and identity (A.2), we establish that the companions of the gener-
alised A2 false theta functions are given in terms of Eichler integrals of rank two and rank one
theta functions.

3.5 Quantum modularity

In this subsection we review the relation between the Eichler integrals discussed in the previous
subsection and quantum modular forms.

To define quantum modular forms, we first recall the familiar definition of slash operators,
acting on a (vector-valued) function on the compactified upper-half plane Ĥ := H ∪ Q ∪ {i∞}:
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given k ∈ 1
2Z and n-dimensional multiplier χ for Γ ⊂ SL2(Z), namely a group homomor-

phism Γ → GLn(C), and for every γ =
(
a b
c d

)
∈ Γ, we define the action of the slash operator |χ,kγ

acting on f = (fr) : Ĥ → Cn as

f |k,χγ(τ) := f(γτ)χ(γ)(cτ + d)−k,

where we have written γτ = aτ+b
cτ+d as usual.

Definition 3.11 (real-analytic vector-valued quantum modular form). A function f : Q → Cn,
is a (vector-valued) quantum modular form of weight k ∈ 1

2Z with multiplier χ for Γ ⊂ SL2(Z)
if for every γ ∈ Γ the vector-valued function, the cocycle6

hγ(τ) := f(τ)− f |k,χγ(τ)

can be extended to an open subset of R and is real-analytic there. We will denote the vector
space of such forms by Qk(Γ, χ).

Definition 3.12 (vector-valued higher depth quantum modular form, see [12]). A function
f : Q → Cn is a quantum modular form of depth N ∈ N and weight k ∈ 1

2Z with multiplier χ
for Γ ⊂ SL2(Z) if for every γ ∈ Γ

hγ := f − f |k,χγ ∈
⊕
j

Q
Nj

kj
(Γ, χj)O(R),

where j runs over a finite set, kj ∈ 1
2Z, Nj ∈ N with max(Nj) = N − 1, χj are multipliers, O(R)

is the space of real-analytic functions on R ⊂ R which contains an open subset of R. We also set
Q1

k(Γ, χ) = Qk(Γ, χ), Q
0
k(Γ, χ) = 1 and QN

k (Γ, χ) denotes the space of quantum modular forms
of weight k, depth N , and with n-dimensional multiplier χ for Γ.

Eichler integrals and quantum modular forms

It is known that (holomorphic and non-holomorphic) Eichler integrals furnish examples of quan-
tum modular forms. We define the following two vector-valued functions

f∗(τ) :=

∫ i∞

−τ̄
dw

f(−w̄)

(−i(w + τ))2−k
, rf, d

c
(x) :=

∫ i∞

d
c

dw
f(−w̄)

(−i(w + x))2−k
, (3.29)

for f a vector-valued cusp form with multiplier χ, and d
c ∈ Q. We say f∗ is the non-holomorphic

Eichler integral of the cusp form f . It is easy to verify that rf, d
c
is a real analytic function on R,

which captures the error of modularity of f∗:

(f∗ − f∗|2−k,χ̄γ)(τ) = rf, d
c
(τ)

for γ ∈ Γ, where χ̄ is the conjugate multiplier χ̄(γ) = χ(γ). As a result, we have f∗ ∈ Q2−k(Γ, χ̄).
Similarly, for fi : H → Cni , i = 1, 2 a pair of vector-valued cusp forms (or modular form if the

weight is 1/2) with weight ki and multiplier system χi, we define the following matrix-valued
(valued in Cn1×n2) functions:

(f1, f2)
∗(τ) :=

∫ i∞

−τ̄
dw1

∫ i∞

w1

dw2
f1(−w̄1)f2(−w̄2)

(−i(w1 + τ))2−k1(−i(w2 + τ))2−k2
(3.30)

6The terminology “cocycle” stems from the interpretation of hγ(τ) in terms of Eichler cohomology via the
Eichler–Shimura isomorphism [39, 66].
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and

rf1,f2, dc
(x) :=

∫ i∞

d
c

dw1

∫ d
c

w1

dw2
f1(−w̄1)f2(−w̄2)

(−i(w1 + x))2−k1(−i(w2 + x))2−k2
.

The function (f1, f2)
∗ is often referred to as a non-holomorphic double Eichler integral, or

iterated non-holomorphic Eichler integral more generally.

One can show that for γ ∈ Γ,

((f1, f2)
∗ − (f1, f2)

∗|4−k1−k2,χ̄1,χ̄2γ)(τ) = rf1,f2, dc
(τ) + If1(τ)rf2, dc

(τ),

where the slash operator acts in the following way in terms of the components. Write Ii,j :=
(f1,i, f2,j)

∗ to denote the non-holomorphic double Eichler integral of the components of the
vector-valued modular forms f1 and f2. Then

(I|k,χ̄1,χ̄2γ)i,j(τ) := (cτ + d)−k
n1∑
i′=1

n2∑
j′=1

Ii′,j′(γτ)(χ1(γ))i′,i(χ2(γ))j′,j .

We have rf1,f2, dc
(τ) ∈ O(R\{−d

c}), and rf1,f2, dc
(τ) ∈ O(R) if both fi are cusp forms [11]. From

the above, we see that (f1, f2)
∗ is a vector-valued depth two quantum modular form valued

in Cn1×n2 with multiplier χ̄ given by

(χ̄(γ))(i,j),(i′,j′) = (χ1(γ))i′,i(χ2(γ))j′,j .

In this paper, we will mainly encounter modular forms with real coefficients, satisfying

f(−τ̄) = f(τ),

and we will often use this property to simply write f(τ) in the integrand.

The above-mentioned quantum modular property of the double Eichler-integral (f1, f2)
∗,

together with the form of the companion of F (ρ) as given in Proposition 3.7, its rewriting up
to one-dimensional pieces in Lemma 3.9, and the relation to double Eichler integrals shown in
Proposition 3.10, leads to the following result.

Theorem 3.13. The generalized A2 false theta functions defined in (3.5) is, up to an overall
rational power of q and possibly the addition of a finite polynomial in q and q−1, a sum of depth
two quantum modular forms.

4 Properties of ẐSU(3)

In this section we turn to the main object of our study: ẐG
b⃗
(M3) for G = SU(3) and the

simplest interesting choice of M3, namely negative Seifert manifolds with three exceptional
fibers. In Section 4.1, we explain how they are assembled using the generalized A2 false theta
functions F (ρ) as building blocks. Combining with the results of the quantum modularity of the
latter as established in the previous section, we are led to Theorems 1.2 and 1.13. While we
do not have a proof for Conjecture 1.3, we provide evidence for it through studying numerous
examples in Section 5.
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4.1 Topology

A plumbed three-manifold M3 can be defined as the boundary of glued disk bundles associated
to its plumbing graph, which is a weighted graph (V,E, a), here taken to be a planar tree-shaped
graph and no loops. The weights a(v) give the Euler number of the disk bundle corresponding
to the vertex v ∈ V . Gluing occurs when there is an edge connecting the two vertices v and v′.
The data of the weighted graph (V,E, a) is equivalent to that of the adjacency or plumbing
matrix M of the graph (V,E, a), with entries

Mv,v′ =


a(v) if v = v′,

1 if v ̸= v′, v and v′ are connected,

0 otherwise.

(4.1)

Seifert manifolds are examples of such plumbed three-manifolds. A Seifert manifold

M3 =

(
b;

{
qi
pi

}n

i=1

)
with Seifert invariants (q1, p1), . . . , (qn, pn) is specified by a star-shaped plumbing graph with
a unique junction vertex v0 from which emanate n legs, which represent the exceptional fibers
of M3. As mentioned before, we say that M3 is a negative/positive Seifert manifold depending
on the sign of M−1

v0,v0 . Along the i-th leg, the vertices v
(i)
k and the corresponding weights a

(i)
k are

given by the continued fraction expansion

qi
pi

= −
1

a
(i)
1 −

1

a
(i)
2 −

1

a
(i)
3 − · · ·

, (4.2)

while a(v0) = b and the orbifold Euler number e ∈ Q is given by

b = e−
n∑

i=1

qi
pi
.

See [24, Appendix A] for further useful relations between the Seifert data and the plumbing
graph.

For such manifolds, define D to be the smallest positive integer such that DM−1
v0,v ∈ Z for

all v ∈ V , and letm = D2
∣∣M−1

v0,v0

∣∣.7 Examples are given by Brieskorn spheresM3 = Σ(p1, p2, p3),
which have trivial integral homology and are determined by three coprime integers p1, p2, p3
through the defining equation

Σ(p1, p2, p3) =
{
(x, y, z) ∈ C3 | xp1 + yp2 + zp3 = 0

}
∩ S5. (4.3)

The Seifert data that specify the plumbing diagram are related to the integers {p1, p2, p3} by
the following relation

b+

3∑
i=1

qi
pi

= − 1

p1p2p3
.

For Brieskorn spheres, which satisfy |det(M)|= 1, we have D = 1 and m =
∣∣M−1

v0,v0

∣∣.
7Comparison of conventions: m in this paper is what is written as mD in [24].



Quantum Modular ẐG-Invariants 21

For a weakly-negative plumbed three-manifold M3, we define the Ẑ
G-invariants for any ADE

gauge group G in the following way, where we mostly adopt the same notation of as in [24]. In
particular, for a given simply-laced Lie group G and a plumbing graph (V,E, a), we let Λ be the
root lattice and

ΓM,G := MZ⊗|Z| ⊗Z Λ.

For x⃗ ∈ R⊗|Z| ⊗Z Λ, we define its norm to be given by the inverse plumbing matrix in the
direction along the vertices and by the Cartan matrix in the root lattice directions:

||x⃗||2 :=
∑

v,v′∈V
M−1

v,v′⟨x⃗v, x⃗v′⟩.

Definition 4.1 (higher rank Ẑ invariants [24, 29, 64]). LetG be a simply-laced Lie group andM3

a weakly negative plumbed three-manifold with plumbing matrixM . Let b⃗ be a generalized Spinc

structure on the manifold, given by

b⃗ ∈
(
Z|V | ⊗Z Λ + b⃗0

)
/ΓM,G, (4.4)

where b⃗0,v = deg(v)ρ⃗.

We define

ẐG
b⃗
(M3; τ) := CG(q)

∫
C
dξ⃗

(∏
v∈V

∆
(
ξ⃗v
)2−deg v

)

×
∑
w∈W

∑
ℓ⃗∈ΓM,G+w(⃗b)

q−
1
2
||ℓ⃗||2

( ∏
v′∈V

e⟨ℓ⃗v′ ,ξ⃗v′ ⟩

)
, (4.5)

where W denotes the Weyl group of the root lattice of G, w
(⃗
b
)
denotes the diagonal action

w
(⃗
b
)
=
(
w
(⃗
bv
)
, w
(⃗
bv′
)
, . . .

)
and the integration measure is given by∫

C
dξ⃗ := p.v.

∫ ∏
v∈V

rankG∏
i=1

dzi,v
2πizi,v

,

with the contour C given by the Cauchy principal value integral around the unique circle in the
zi,v-plane. Letting πM be the number of positive eigenvalues of M and σM the signature of M ,
according to [64],

CG(q) = (−1)|Φ+|πM q
3σM−TrM

2
|ρ⃗|2 ,

where Φ+ is a set of positive roots for G and ρ⃗ is a Weyl vector for G. Lastly, ∆ is the Weyl
determinant.

As shown in [24], the Ẑ-invariants for negative Seifert manifolds with three exceptional fibers
and for G = SU(3) can be expressed as combinations of the generalized A2 false theta func-
tions (3.5) in the following way. Given b⃗ and a choice of ŵ = (w1, w2, w3) ∈ W⊗3, one of the
following two statements is true. Either there does not exist any root vector ℓ⃗0 such that

b⃗−
(
ℓ⃗0, w1(ρ⃗), w2(ρ⃗), w3(ρ⃗)

)
∈ MZ|V | ⊗Z Λ (4.6)

or there exists a unique k⃗ŵ ∈ Λ/DΛ such that such that (4.6) holds if and only if k⃗ŵ = ℓ⃗0/DΛ.
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Now, let W
b⃗
⊆ W⊗3 be the subset consisting of all ŵ for which the latter is true. For ŵ ∈ W

b⃗
,

let

s⃗ŵ = D
∑

vi∈{v1,v2,v3}

M−1
v0,viwi(ρ⃗).

The above defines σ⃗ŵ ∈ Λ/mΛ via

s⃗ŵ = σ⃗ŵ +
m

D
k⃗ŵ.

The Ẑ-invariant is then given by

Ẑ
SU(3)

b⃗
(M3; τ) = C(q)

∑
ŵ∈W

b⃗

(−1)ℓ(ŵ)F (ρŵ)(τ), (4.7)

where ℓ(ŵ) :=
∑3

i=1 ℓ(wi) is the total Weyl length, ρŵ =
(
σ⃗ŵ, k⃗ŵ,m,D

)
specifies the functions

F (ρŵ)(τ) from equation (3.5), and

C(q) = (−1)πM q3σM−TrM+δM , δM =
∑
v∈V1

((
M−1

v0,v

)2
M−1

v0,v0

−M−1
v,v

)
,

with πM and σM denoting the number of positive eigenvalues resp. the signature of the adja-
cency matrix M . The additional power qδM comes from performing the integral (4.5) along the
directions corresponding to the “non-junction” vertices with v with degree less than three.

4.2 Companions

In this subsection we will put the results obtained so far together and derive the form of the
companion function for Ẑ

SU(3)

b⃗
(M3) for negative Seifert M3 with three exceptional fibers, before

we further specialize to the case of Brieskorn spheres.

Combining 1) (4.7), the expression of Ẑ
SU(3)

b⃗
(M3) in terms of the generalized A2 false theta

function F (ϱ), 2) Lemma 3.2 and (3.6), the splitting of F (ϱ) into components, 3) Proposition 3.7,
the companion of the components, and 4) Proposition 3.10 and Lemma 3.9, the iterated non-
holomorphic Eichler integral expressions for the companions, we finally obtain the following.

Proposition 4.2. For a negative Seifert manifold M3 with three exceptional fibers, a companion
function qZ

SU(3)

b⃗
(M3) of the rank two homological blocks Ẑ

SU(3)

b⃗
(M3) is, up to potential one-

dimensional pieces, given by the following non-holomorphic double Eichler integral

qZ
SU(3)

b⃗
(M3; τ, τ̄) = z1d +

D

m
C(q−1)

∑
ŵ∈W

b⃗

(−1)ℓ(ŵ)
∑
ν=0,1

√
3

4πν

(
3∆s⃗ŵ
m

)1−ν

×
∑

w∈W+

∑
δ∈Z/2

(
ϑ′
w,ŵ,δ, ϑ

1−ν
w,ŵ,δ

)∗
(τ),

where the non-holomorphic double Eichler integral is of the theta functions

ϑ′
w,ŵ,δ(τ) = θ1m,mδ+⟨ρ⃗,w(σ⃗ŵ)⟩(τ), ϑ1−ν

w,ŵ,δ(τ) = θ1−ν
m,mδ+⟨∆ω⃗,w(σ⃗ŵ)⟩(3τ).

Note that the above, together with the quantum modular properties of the non-holomorphic
double Eichler integrals discussed in Section 3.5, leads immediately to Theorem 1.2.
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Weil representations

From the fact that θνm = (θνm,r) is a vector-valued modular form for ν = 0, 1, we see from the
discussion in Section 3.5 that, potentially up to certain one-dimensional pieces, qZ

SU(3)

b⃗
(M3) is

a linear combination of components of vector-valued quantum modular forms of depth two. In
what follows, we will investigate the recursive structure relating the quantum modular properties
of Ẑ

SU(2)

b⃗
(M3) and Ẑ

SU(3)

b⃗
(M3), or equivalently qZ

SU(2)

b⃗
(M3) and qZ

SU(3)

b⃗
(M3). In order to do that,

we need to take a closer look at the underlying representations of the metaplectic group S̃L2(Z).
For this purpose, we will introduce specific Weil representations specified by a positive integer m
and a subgroup K of the group of its exact divisors Exm, as mentioned in Section 1.

To such a group K we associate a subrepresentation of Θm (1.6), which we write as Θm+K ,
in the following way. First we make use of the fact that the space of matrices commuting with
the S- and T -matrices of Θm is spanned by [22]

Ωm(n)r,r′ =

{
1 if r ≡ −r′ mod 2n and r ≡ r′ mod 2m/n,

0 otherwise, r, r′ ∈ Z/2m

for n|m. Note that Ωm(n) and Ωm(n′) commute for every pair of divisors n and n′. For
instance, Ω(1) = 1m is the identity matrix of size 2m× 2m.

Now define the corresponding projection operators

P±
m(n) := (1m ± Ωm(n)) /2, n ∈ Exm, (4.8)

satisfying
(
P±
m(n)

)2
= P±

m(n).
Since in our application we are mostly interested in Eichler integrals involving

θ1m,r(τ) =
1

2πi

∂

∂z
θm,r(τ, z)|z=0,

which has the property θ1m,r = −θ1m,−r, or P−
m(m)θ1m = θ1m, we will from now on focus on the

subgroups K satisfying m ̸∈ K and define the projector

Pm+K =

(∏
n∈K

P+
m(n)

)
P−
m(m), (4.9)

using the notation of [25]. When K is maximal, in the sense that Exm = K ∪ (m∗K), Θm+K :=
Pm+KΘm furnishes an irreducible representation of S̃L2(Z) when m is square-free. In general,
Θm+K,irred := Pm+K,irredΘm with K maximal and

Pm+K,irred :=

(∏
n∈K

P+
m(n)

)∏
f2|m

(
1m − 1

f
Ωm(f)

)P−
m(m) (4.10)

is irreducible [67, 68].
Using the above, we introduce the notation

θ1,m+K
r :=

∑
r′∈Z/2m

Pm+K
r,r′ θ1m,r′ , (4.11)

which will be used extensively below.
In what follows, we will focus on the manifolds M3 that are homological spheres, to obtain

Theorem 1.4. First, we simplify the expression for the companions of Ẑ
SU(3)

b⃗
(M3) given in

Proposition 4.2 in these cases.
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Lemma 4.3. For Brieskorn spheres Σ(p1, p2, p3), we have

qZ
SU(3)

b⃗
(M3; τ, τ̄) = z1d +

|W |
2mC

(
q−1
) ∑
ŵ∈W⊗3

(−1)ℓ(ŵ)

×
∑
ν=0,1

√
3

4πν

(
3∆s⃗ŵ
m

)1−ν ∑
δ∈Z/2

(
ϑ′
ŵ,δ, ϑ

1−ν
ŵ,δ

)∗
(τ),

where the non-holomorphic double Eichler integral is of the theta functions

ϑ′
ŵ,δ(τ) = θ1m,mδ+⟨ρ⃗,σ⃗ŵ⟩(τ), ϑ1−ν

ŵ,δ (τ) = θ1−ν
m,mδ+⟨∆ω⃗,σ⃗ŵ⟩(3τ),

for m = p1p2p3, p̄i = m/pi and

σ⃗ŵ = s⃗ŵ = −
3∑

i=1

p̄iwi(ρ⃗).

The proof of this lemma can be found in Appendix B.7.8

It is know that the SU(2) companion for Brieskorn spheres with three exceptional fibers is
given by [25]

qZ
SU(2)

b⃗
(M3; τ, τ̄)

...
=
(
θ1,m+K
r

)∗
up to an overall rational power of q (and the addition of a finite polynomial in q−1 for the
case M3 = Σ(2, 3, 5)), where

m = p1p2p3, K = {1, p̄1, p̄2, p̄3}, (4.12)

and r = m − p̄1 − p̄2 − p̄3. For the SU(3) companions, we have the following non-holomorphic
double Eichler integral.

Proposition 4.4. For Brieskorn spheres Σ(p1, p2, p3), using the same notation as in Lemma 4.3
and in (4.12), we have

qZ
SU(3)

b⃗
(M3; τ, τ̄) = z1d +

3
√
3

2m
C
(
q−1
) ∑
ν=0,1

π−ν
∑
δ∈Z/2

∑
r∈R

( r

m

)1−ν (
ϑ′
r,δ, ϑ

1−ν
r,δ

)∗
(τ),

where the non-holomorphic double Eichler integral is of the theta functions

ϑ′
r,δ(τ) = 4θ1,m+K

mδ+
∑

i p̄ic
(r)
i

(τ), ϑ1−ν
r,δ (τ) = θ1−ν

m,mδ+r(3τ).

In the above, R ⊂ Z/2m is given by

R = R0 ∪R1 ∪R2 ∪R3

and

R0 = {0}, R1 = P+{p̄1}, R2 = P+{p̄1 + p̄2, p̄1 − p̄2},
R3 = P+{p̄1 + p̄2 − p̄3,−p̄1 − p̄2 + p̄3},

where we denote by P+ by the group of even permutations of (p1, p2, p3). For each r ∈ R, we
set c

(r)
i := 2− |ri| if r =

∑
i rip̄i.

8Regarding the one-dimensional non-holomorphic Eichler integral z1d, we also comment that, when all σ⃗ŵ

satisfy 0 ≤ ⟨σ⃗ŵ, ω⃗i⟩ ≤ m, the different contributions from Xν in Lemma 3.9 to ẐSU(3)(M3) cancel for M3 =
Σ(p1, p2, p3).
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From the above, we see that (1.13) holds, and in particular Theorem 1.4 holds. That is, up to
possible one-dimensional terms, the same S̃L2(Z) representation Θm+K governs not just ẐSU(2)

but also the SU(3) quantum modularity. Note, when all pis are square free, the underlying rep-
resentation Θm+K is irreducible. Furthermore, when 22 ̸ |m, one can replace θ1,m+K

r in Propo-
sition 4.4 with the irreducible representation Θm+K,irred (cf. (4.10)). The proof of the above
proposition is given in Appendix B.8.

5 Examples

In this section we present in detail the structure of Ẑ invariants discussed in Section 4. We
further show the recursive structure, proven in Section 4 for homological spheres, is also present
for other non-spherical negative Seifert manifolds with three exceptional fibers. In particular,
we compute explicitly the underlying S̃L2(Z) Weil representations.

5.1 Example: M
(
−1; 1

4
, 3
5
, 1
7

)
We begin with the spherical Seifert manifold X = M

(
−1, 14 ,

3
5 ,

1
7

) ∼= Σ(4, 5, 7). To determine the
plumbing matrix M we compute continued fraction expansions of the Seifert data (4.2). From

3

5
=

− 1

−2−
1

−3

,

we have

M =


−1 1 0 1 1
1 −4 0 0 0
0 0 −3 0 1
1 0 0 −7 0
1 0 1 0 −2

 .

The corresponding plumbing graph has one junction vertex connecting to three legs. Since X
is a homological sphere, the adjacency matrix M is unimodular and consequently the only
inequivalent generalized Spinc structure is

b⃗0 =
(
ρ⃗,−ρ⃗,−ρ⃗,−ρ⃗, 0⃗

)
.

The unimodularity also leads to the parameters D = 1 and m = −M−1
v0,v0 = 140.

Since X is a spherical Seifert manifold the condition (4.6) is always satisfied so W
b⃗
in equa-

tion (4.7) is equal to W⊗3. Because

(−1)ℓ(wŵ)F ϱwŵ(τ) = (−1)ℓ(ŵ)F ϱŵ(τ),

where wŵ = (ww1, ww2, ww3), we may simplify the sum over W
b⃗
in (4.7) to a sum over repre-

sentatives ŵ in the conjugacy classes of W⊗3/W

Ẑ
SU(3)

b⃗
(M3; τ) = |W |C(q)

∑
ŵ∈W⊗3/W

(−1)ℓ(ŵ)F (ρŵ)(τ).

For this manifold, we can choose the representatives ŵ such that s⃗ŵ = (s1, s2) have components
si ∈ {1, . . . ,m}. These parameters and their associated total Weyl length (−1)ℓ(ŵ) in (4.7) are
collected in Table 1.
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s⃗ŵ = (s1, s2), (−1)ℓ(ŵ) = 1

(43, 103) (103, 43) (43, 43)

(27, 111) (27, 51) (111, 27)

(51, 27) (43, 19) (19, 43)

(27, 27) (13, 118) (13, 58)

(1, 82) (61, 22) (1, 22)

(13, 34) (118, 13) (58, 13)

(22, 61) (82, 1) (22, 1)

(34, 13) (27, 6) (6, 27)

(13, 13)

s⃗ŵ = (s1, s2), (−1)ℓ(ŵ) = −1

(83, 83) (83, 23) (23, 83)

(47, 71) (71, 47) (33, 78)

(41, 62) (41, 2) (78, 33)

(62, 41) (2, 41)

Table 1. s⃗ŵ and its parity (−1)ℓ(ŵ) for the 36 inequivalent representatives of W⊗3/W for M3 =

M
(
−1; 1

4 ,
3
5 ,

1
7

)
.

Since D = 1 and we can set k⃗ŵ = 0⃗, and therefore σ⃗ŵ = s⃗ŵ, whereby the Ẑ invariant in
equation (4.7) is

C(q)
∑

ŵ∈W
b⃗

(−1)ℓ(ŵ)F (ϱŵ)(τ) = 6q26 − 12q37 − 12q43 − 12q49 +O
(
q50
)
.

For each s⃗, we can then compute the set S̃ (3.13). These values are collected in Table 2.
As a selected example, consider (s1, s2) = (83, 83) which correspond to ŵ = (aba, aba, aba),
where a, b are Weyl group elements given as in (B.1). Using equation (3.9), we find the set S̃
contains

α
(1)
w α

(2)
w(

0, − 83
140

) (
1, − 83

140

)(
83
140 , −

83
140

) (
57
140 ,

83
70

)(
− 83

140 ,
83
70

) (
223
140 , −

83
140

)
.

The α for all choices of s⃗ are collected in Table 2.
For α ∈ S̃, let β be the unique vector satisfying α ≡ β

(
Z2
)
and β1, β2 ∈ [0, 1). Lemma 3.2

justifies the splitting of the generalized A2 false theta function into 1D and 2D contributions

F 1D
ν (τ) :=

∑
w∈W

b⃗

(−1)ℓ(ŵ)F (ϱŵ),1D
ν (τ), F (ϱ),1D

ν (τ) :=
∑
α∈S̃

ην(α)
(
F

(ϱ)
ν,α(τ)− F

(ϱ)
ν,β(τ)

)
,

F 2D
ν (τ) :=

∑
w∈W

b⃗

(−1)ℓ(ŵ)F (ϱŵ),2D
ν (τ), F (ϱ),2D

ν (τ) :=
∑
α∈S̃

ην(α)F
(ϱ)
ν,β(τ).

For X this splitting gives

F̃ = − 9

14
q4 − 18

35
q5 − 33

35
q7 − 81

70
q8 − 57

35
q10 − 39

35
q13 − 81

35
q14

− 261

70
q16 − 3

35
q19 +

123

35
q22 +

69

35
q25,

C(q)F 1D
0 (mτ) = −F̃ − 99

35
q26 − 141

35
q28 +

18

7
q37 +

39

35
q40 +

81

35
q41 +O

(
q42
)
,

C(q)F 2D
0 (mτ) = F̃ +

447

70
q26 +

141

35
q28 − 309

35
q37 − 39

35
q40 − 81

35
q41 +O

(
q42
)
,
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C(q)F 1D
1 (mτ) = F̃ +

99

35
q26 +

141

35
q28 − 18

7
q37 − 39

35
q40 − 81

35
q41 +O

(
q42
)
,

C(q)F 2D
1 (mτ) = −F̃ − 27

70
q26 − 141

35
q28 − 111

35
q37 +

39

35
q40 +

81

35
q41 +O

(
q42
)
.

Here the one-dimensional contribution is

C(q)
(
F 1D
0 (mτ) + F 1D

1 (mτ)
)
= 6q109−6q113−6q121−6q131 + 6q157 +O

(
q160

)
and the total Ẑ

SU(3)

b⃗
(X) has integral coefficients

Ẑ
SU(3)

b⃗
(X; τ) = −6q26 + 12q37 + 12q43 + 12q49 +O

(
q50
)
.

The companion functions to the 2D contributions F 2D
ν (mτ) are double Eichler integrals, whose

integrands computed using Lemma 4.2 contain

1

4

∑
ŵ∈W⊗3

(−1)ℓ(ŵ)Θ(ϱŵ)
ν,e (z) =

(
63θ1140,63 + 7θ1140,7

)
θ1,140+K
23 +

(
15θ1140,15 + 55θ1140,55

)
θ1,140+K
1

−
(
7θ1140,133 + 63θ1140,77

)
θ1,140+K
37

+
(
8θ1140,132 + 48θ1140,48 + 8θ1140,8 + 48θ1140,92

)
θ1,140+K
118

+
(
27θ1140,113 + 13θ1140,127 + 83θ1140,57 + 43θ1140,97

)
θ1,140+K
57

+
(
20θ1140,120 + 20θ1140,20

)
θ1,140+K
6

−
(
28θ1140,112 + 28θ1140,28

)
θ1,140+K
2

+
(
15θ1140,125 + 55θ1140,85

)
θ1,140+K
29

+ 35θ1140,105θ
1,140+K
9 − 35θ1140,35θ

1,140+K
19

−
(
13θ1140,13 + 27θ1140,27 + 43θ1140,43 + 83θ1140,83

)
θ1,140+K
13 (5.1)

using the shorthand notation

θ1m,rθ
1,140+K
r′ ≡ θ1m,r (3z2) θ

1,140+K
r′ (z1) ,

and similarly

1

4

∑
ŵ∈W⊗3

(−1)ℓ(ŵ)Θ
(ϱŵ)
1,e (z) =

(
θ0140,63 + θ0140,7

)
θ1,140+K
23 +

(
θ0140,15 + θ0140,55

)
θ1,140+K
1

−
(
θ0140,0 − θ0140,140

)
θ1,140+K
26 +

(
θ0140,133 + θ0140,77

)
θ1,140+K
37

−
(
θ0140,132 − θ0140,48 − θ0140,8 + θ0140,92

)
θ1,140+K
22

− θ0140,105θ
1,140+K
9 −

(
θ0140,113 + θ0140,127 + θ0140,57

+ θ0140,97
)
θ1,140+K
57 − θ0140,35θ

1,140+K
19

−
(
θ0140,120 − θ0140,20

)
θ1,140+K
6 +

(
θ0140,112 − θ0140,2

)
θ1,140+K
2

−
(
θ0140,125 + θ0140,85

)
θ1,140+K
29

−
(
θ0140,13 + θ0140,27 + θ0140,43 + θ0140,83

)
θ1,140+K
13 , (5.2)

where θ0m,rθ
1,140+K
r′ ≡ θ0m,r(3z2)θ

1,140+K
r′ (z1) and K = {1, p1p2, p1p3, p2p3} = {1, 20, 28, 35}. This

example makes manifest the recursive structure described in Proposition 4.4.
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5.2 Example: M
(
−1; 1

5
, 1
2
, 1
4

)
Consider the Seifert manifold X = M

(
−1; 15 ,

1
2 ,

1
4

)
, which has the plumbing matrix

M =


−1 1 1 1
1 −5 0 0
1 0 −2 0
1 0 0 −4

 ,

with det(M) = 2, D = 1 and m = 20. Since now | detM | > 1, W
b⃗
(cf. (4.7)) will generically be

a proper subset of W⊗3.
The manifold X admits two inequivalent generalized Spinc structures: the trivial one b⃗0 and

b⃗1 = ((1,−2), (1, 1), (−1, 2), (−3, 3)).

We focus on b⃗0 for simplicity. Using the same techniques as described above we can compute
the set of s⃗, the Ẑ invariant and the companions E(ϱ)

ν (τ). The s⃗ and α parameters are collected
in Table 3. The sum (4.7) is

Ẑ
SU(3)

b⃗
(M3; τ) = C(q)

∑
ŵ∈W

b⃗

(−1)ℓ(ŵ)F (ϱŵ) (q) = −6q + 12q2 − 12q4 + 6q5 + 6q7 +O
(
q10
)
,

C(q)
(
F 1D
0 (mτ) + F 1D

1 (mτ)
)
= −12q16 + 12q20 + 12q22−12q34−12q38 +O

(
q40
)
,

C(q)F 2D
0 (mτ) = −6q + 12q2−12q4 + 6q5 + 6q7 +O

(
q10
)
,

C(q)F 2D
1 (mτ) = O

(
q500

)
,

while the double Eichler integral form of the companion has as integrand

1

80

∑
ŵ∈W

b⃗

∑
w∈W

(−1)ℓ(ŵ)Θ
(ϱŵ)
0,w (z) =

(
θ120,1 + θ120,9

)
θ1,20+4
11 − θ120,5θ

1,20+4
7

−
(
θ120,11 + θ120,19

)
θ1,20+4
1 + 2θ120,10

(
θ1,20+4
8 + θ1,20+4

12

)
− θ120,15θ

1,20+4
5 − 2

(
θ120,6 + θ120,14

)(
θ1,20+4
4 + θ1,20+4

16

)
(5.3)

and ∑
ŵ∈W

b⃗

∑
w∈W

Θ
(ϱŵ)
1,w (z) = 0.

The vanishing of the companion E2D
1 and the vanishing of F 2D

1 to the order at which it is
computed

(
O
(
q500

))
are necessary (but not sufficient) conditions for F 2D

1 = 0. In equation (5.3),
we used the same shorthand notation of equations (5.1) and (5.2). For both cases, the Weil
representations are labelled by the set K = {1, 4} which is the same as for the rank-one invariant
Ẑ

SU(2)

b⃗
(X; τ) [25]. Furthermore, we find θ1,20+4

1 and θ1,20+4
11 in this sum which are found in the

rank-one invariant too.

5.3 Example: M
(
−2; 1

2
, 1
2
, 3
4

)
Surprisingly for certain manifolds the sum of the two-dimensional contributions to the general-
ized A2 false theta function vanishes to the order at which we can compute it. One such example
is the Seifert manifold X = M

(
−2; 12 ,

1
2 ,

3
4

)
, with det(M) = 4, D = 1, m = 4 and K = {1}.

Equation (3.9) leads to α in Table 4 and

C(q)
∑

ŵ∈W
b⃗

(−1)F (ϱŵ)(q) = −36q−1 + 36q1−36q10 + 36q14 +O
(
q20
)
,

C(q)F 2D
0 (mτ) = C(q)F 2D

1 (mτ) = O
(
q500

)
,
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for b⃗ = (−ρ⃗, ρ⃗, ρ⃗, ρ⃗). Here the recursive structure is particularly simple to identify as

1

36
Ẑ

SU(3)

b⃗
(M3; τ) = q−4 +

q21/2

2
Ẑ

SU(2)

b⃗
SU(2)(M3; τ) +O

(
q500

)
,

where, b⃗
SU(2)

= (−ρ⃗ ′, ρ⃗ ′, ρ⃗ ′, ρ⃗ ′), where ρ⃗ ′ is the Weyl vector of the A1 root lattice.

5.4 Further examples

The above subsections have shown in great detail that the Ẑ-invariant of Seifert manifolds,
including non-spherical manifolds for which Conjecture 1.3 is not yet proven, display a recursion
relation across different ranks. In particular the companions for ẐSU(2) and ẐSU(3) are carefully
analyzed.

In the following Table we provide further evidence of this phenomenon. We organize examples
in blocks. In each block the data is organized as follows: where σm+K is the set of r giving

Seifert data σm+K

m, D σm+K
A1

m+K σm+K
A2

or σ̄m+K
A2

inequivalent θ1,m+K
r (4.11), σm+K

A1
is the minimal subset of σm+K such that (1.9) and (1.10) hold

also when σm+K is replaced by σm+K
A1

, for all inequivalently choices of boundary conditions b⃗.
Similarly, σm+K

A2
is the minimal subset of σm+K such that (1.11) holds also when σm+K is

replaced by σm+K
A1

, for all inequivalently choices of boundary conditions b⃗. Note that we have
σm+K ⊂ σm+K

A2
⊂ σm+K

A1
in all cases we study.

6 Discussions

In the paper we continue the study of quantum modular properties of ẐG-invariants, extending
the analysis to higher rank G. The results and conjectures of this paper lead to many further
research questions and open questions, some of them we will hopefully report on in the future,
which we list below.

� Conjecture 1.1 is plausible. Starting from the Definition 4.1 of the rank-r Ẑ-invariants,
after straightforwardly performing the contour integration in the directions spanned by all
non-junction vertices, we are left with a rank N = r × n lattice sum in the integrand of
the remaining contour integral. In the weakly-negative/positive case, the signature of the
lattice is purely positive/negative. In particular, in the weakly-negative case we obtain
a sum over (derivatives of) rank N false-theta-like function. It should be interesting
to prove their quantum modularity explicitly. Similarly, for the weakly-positive case we
expect to obtain a close cousin of higher depth mock modular form, though at present we
do not have a universal recipe for defining Ẑ-invariants for these cases.

� Beyond Conjecture 1.1, it would be very interesting to analyse quantum modularity of
Ẑ-invariants when the plumbed manifold is neither weakly-negative now weakly-positive,
in other words when the space spanned by junction vertices has signature (k,N − k)
when k ̸= 0. For this purpose, it should be interesting to generalize the generalized error
function [4, 14] to accommodate both the “false” as well as the “mock” directions.

� As mentioned in the introduction, Rademacher sum expressions are interesting for many
purposes and are often available for holomorphic quantum modular forms of the kind
we study here. It would be interesting to systematically develop the Rademacher sum
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(−2; 1/2, 1/2, 3/5) σ40 = {1,−, 39}
40, 4 σ40

A1
= {28, 32, 38}

40 σ̄40
A2

= {5, 10, 15, 16, 20, 24, 25, 30, 35}
(−1; 1/2, 1/3, 1/8) σ24+8 = {1, 2, 4, 5, 7, 8, 10, 13, 16}
24, 1 σ24+8

A1
= {1, 7}

24 + 8 σ24+8
A2

= {1, 2, 7, 10}
(−1; 1/2, 1/7, 2/7) σ14+7 = {1, 3, 5, 7}
14, 1 σ14+7

A1
= {3}

14 + 7 σ14+7
A2

= {1, 3, 5}
(−1; 1/4, 1/7, 4/7) σ28+7 = {1, 2, 3, 5, 6, 7, 9, 10, 13, 14, 17, 21}
28, 1 σ28+7

A1
= {13, 21}

28 + 7 σ28+7
A2

= {1, 2, 3, 5, 6, 7, 9, 10, 13, 14, 17, 21}
(−1; 1/3, 1/5, 2/5) σ15+5 = {1, 2, 4, 5, 7, 10}
15, 1 σ15+5

A1
= {4}

15 + 5 σ15+5
A2

= {1, 2, 4, 7}
(−1; 1/3, 1/3, 1/4) σ12+3 = {1, 2, 3, 5, 6, 9}
12, 1 σ12+3

A1
= {1, 9}

12 + 3 σ̄12+3
A2

= {4, 7, 8, 10, 11}
(−2; 1/2, 1/2, 12/13) σ52 = {1,−, 51}
52, 2 σ52

A1
= {24, 28, 50}

52 σ52
A2

= {2, 4, 9, 11, 15, 17, 22, 24, 28, 30, 35, 37, 41, 43, 48, 50}
(−1; 1/3, 1/11, 6/11) σ33 = {1,−, 32}
33, 1 σ33

A1
= {16, 22, 28}

33 σ̄33
A2

= {3, 4, 6, 7, 9, 12, 15, 18, 21, 24, 26, 27, 29, 30}
(−2; 1/2, 2/3, 2/3) σ6+3 = {1, 3}
6, 1 σ6+3

A1
= {1, 3}

6 + 3 σ6+3
A2

= {1, 3}
(−2; 1/2, 1/2, 8/9) σ36 = {1,−, 35}
36, 2 σ36

A1
= {16, 20, 34}

36 σ36
A2

= {2, 4, 5, 7, 11, 13, 14, 16, 20, 22, 23, 25, 29, 31, 32, 34}
(−2; 1/2, 1/2, 4/5) σ20 = {1,−, 19}
20, 2 σ20

A1
= {8, 12, 18}

20 σ̄20
A2

= {5, 10, 15}
(−2; 1/2, 2/3, 3/4) σ12+4 = {1, 2, 4, 5, 8}
12, 1 σ12+4

A1
= {1, 5}

12 + 4 σ12+4
A2

= {1, 4, 5, 8}
(−1; 1/2, 1/3, 1/9) σ18+9 = {1, 3, 5, 7, 9}
18, 1 σ18+9

A1
= {1, 5}

18 + 9 σ18+9
A2

= {1, 5, 7}
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(−1; 1/2, 1/5, 1/5) σ10+5 = {1, 3, 5}
10, 1 σ10+5

A1
= {1, 5}

10 + 5 σ10+5
A2

= {1, 3, 5}
(−1; 1/2, 2/5, 1/15) σ30+15 = {1, 3, 5, 7, 9, 11, 13, 15}
30, 1 σ30+15

A1
= {7, 11}

30 + 15 σ30+15
A2

= {1, 5, 7, 11}
(−1; 1/2, 1/11, 4/11) σ22 = {1,−, 21}
22, 1 σ22

A1
= {7, 11, 15}

22 σ22
A2

= {3, 5, 7, 11, 15, 17, 19}
(−2; 1/2, 1/2, 6/7) σ28 = {1,−, 27}
28, 2 σ28

A1
= {12, 16, 26}

28 σ̄28
A2

= {1, 6, 7, 8, 13, 14, 15, 20, 21, 22, 27}
(−1; 1/2, 1/4, 1/5) σ20+4 = {1, 2, 3, 4, 6, 7, 8, 11, 12, 16}
20, 1 σ20+4

A1
= {1, 11}

20 + 4 σ20+4
A2

= {1, 3, 4, 7, 8, 11, 12, 16}
(−2; 1/2, 1/3, 1/2) σ24 = {1,−, 23}
24, 4 σ24

A1
= {16, 20, 22}

24 σ̄24
A2

= {3, 6, 9, 12, 15, 18, 21}

techniques for general quantum modular forms. In terms of the physics on the field theory
side, we wish to compare the S2 × S1 superconformal indices of the 3d theory T [M3],
conjectured to be related to Ẑ by

IG(τ) ∼
∑
b

ẐG
b (τ)ẐG

b (−τ),

with a summing over saddle point contributions from different gravity solutions. As argued
in [25], it is tempting to define ẐG

b (M3;−τ) by identifying it with ẐG
b (−M3; τ). On the

gravity side, while we do not yet have a complete catalogue of supergravity solutions, the
solutions described recently [9] in the AdS4 × S7 context encouragingly take the form as
geometries that might be matched with the different Rademacher contributions.

� Often, Ẑ-invariants admit totally different expressions, arising from realizing M3 not by
plumbing but by surgery along knots [32, 40, 41, 46, 64], or from alternative ways of
expressing characters of logarithmic vertex algebras [24], leading to interesting q-series
identities. While so far the analysis of quantum modularity relies mostly on the connection
to lattice theta functions, it will be very interesting if modular properties can also be
analyzed directly through these other expressions as well, as they are connected to yet
different areas of mathematics and will lead to different applications.

� It will be very interesting to understand the nature of the recursive relation we observed
in more concrete terms. We can think of the following routes for exploration. 1) Work
out the recursion at higher rank in order to gain a more complete understanding of the
recursive structure. 2) We already mentioned the analogy to the structure in higher rank
Vafa–Witten theory (1.3). It would be helpful to develop a similar interpretation for the 3d
case. 3) Apart from the geometrical M-theory perspective, the Vafa–Witten recursion also
admits an interpretation in terms of the reducible connections of the higher rank gauge
group. From the SL(N,C) Chern–Simons point of view, we believe it would be illuminating



32 M.C.N. Cheng, I. Coman, D. Passaro and G. Sgroi

to work out the higher rank/higher depth analogue of (1.2), from which we should be able
to see explicitly the role played by the lower rank flat connections. It is also desirable to
compare with the resurgence analysis analogous to [47]. It will be particularly interesting
to see what it means for the proposal in [25] to view the orbits of Weil representation
as corresponding to the non-Abelian SU(2) flat connections on M3, or relatedly to the
different Wilson line insertions [50].

� According to the false-mock conjecture [25] and its higher rank generalization, the recursion
relation reported in Conjecture 1.3 and Theorem 1.4 should hold for −M3, the orientation-
flipped cousin of M3, in a completely analogous way. It would be interesting to compute
ẐG(−M3) for higher rank G and check it.

A Special functions

In this appendix we collect the definitions of the special functions used in the main text, as well
as properties and relations that they satisfy. As for notations, we use throughout q := e2πiτ ,
where τ ∈ H and v := Im τ . The functions

E(u) := 2

∫ u

0
e−πw2

dw, u ∈ R

and

M(u) :=
i

π

∫
R−iu

e−πw2−2πiuww−1dw, u ̸= 0 (A.1)

are closely related to the error and the complementary error functions. A useful rewriting
of M(u) is [73]

M(x
√
v) = i

x√
2
q

x2

4

∫ i∞

−τ̄

e
πix2w

2√
−i(w + τ)

dw. (A.2)

They satisfy the relation

M(u) = E(u)− sgn(u),

where

sgn(u) :=


1 if u > 0,

−1 if u < 0,

0 if u = 0.

We also define

M∗(u) = E(u)− sgn∗(u),

where

sgn∗(x) := sgn(x) if x ̸= 0 and sgn∗(0) := 1.

The generalised error function E2 : R× R2 → R is defined by

E2(κ;u) = E2(κ;u1, u2) :=

∫
R2

sgn(w1)sgn(w2 + κw1)e
−π((w1−u1)2+(w2−u2)2)dw1dw2.
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For u2, u1 − κu2 ̸= 0, the generalised complementary error function is

M2(κ;u) = M2(κ;u1, u2) := − 1

π2

∫
R−iu2

∫
R−iu1

e−πw2
1−πw2

2−2πi(u1w1+u2w2)

w2(w1 − κw2)
dw1dw2. (A.3)

These functions satisfy the following relation

M2(κ;u) = E2(κ;u1, u2) + sgn(u1 − κu2)sgn(u2)

− sgn(u2)E(u1)− sgn(u1 − κu2)E

(
κu1 + u2√
1 + κ2

)
,

and

M∗
2 (κ;u1, u2) := sgn∗(u1 − κu2)sgn

∗(u2) + E2(κ;u1, u2)

− sgn∗(u2)E(u1)− sgn∗(u1 − κu2)E

(
κu1 + u2√
1 + κ2

)
. (A.4)

The following identities hold for derivatives of the function M2(κ;u) [4]:

M
(0,1)
2 (κ;u) =

2√
1 + κ2

e
−π(u2+κu1)

2

1+κ2 M

(
u1 − κu2√
1 + κ2

)
,

M
(1,0)
2 (κ;u) = 2e−πu2

1M(u2) +
2κ√
1 + κ2

e
−π(u2+κu1)

2

1+κ2 M

(
u1 − κu2√
1 + κ2

)
.

Error function complements as integrals of theta functions

Let θi(µ,w) be the following theta functions

θ1(µ;w) =
∑

n∈µ+Z2

(2n1 + n2)n2e
πi
2 (3(2n1+n2)2w1+n2

2w2),

θ2(µ;w) =
∑

n∈µ+Z2

(3n1 + 2n2)n1e
πi
2 ((3n1+2n2)2w1+3n2

1w2),

θ3(µ;w) =
∑

n∈µ+Z2

(2n1 + n2)e
πi
2 (3(2n1+n2)2w1+n2

2w2),

θ4(µ;w) =
∑

n∈µ+Z2

(3n1 + 2n2)e
πi
2 ((3n1+2n2)2w1+3n2

1w2),

θ5(µ;w) =
∑

n∈µ+Z2

n1 e
πi
2 ((3n1+2n2)2w1+3n2

1w2). (A.5)

We can rewrite the error function complement M2 (κ,u) from equation (A.3) as an iterated
Eichler integral like in [11]

M2

(√
3;
√
3v(2n1 + n2),

√
vn2

)
= −

√
3

2
(2n1 + n2)n2q

Q(n)

∫ i∞

−τ

e
3πi
2

(2n1+n2)2w1√
−i(w1 + τ)

∫ i∞

w1

e
πin2

2w2
2√

−i(w2 + τ)
dw2dw1

−
√
3

2
(3n1 + 2n2)n1q

Q(n)

∫ i∞

−τ

e
πi
2
(3n1+2n2)2w1√
−i(w1 + τ)

∫ i∞

w1

e
3πin2

1w2
2√

−i(w2 + τ)
dw2dw1,
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whereby∑
n∈µ+Z2

M2

(√
3;
√
3v(2n1 + n2),

√
vn2

)
= −

√
3

2

∫ i∞

−τ̄

∫ i∞

w1

θ1(µ,w) + θ2(µ,w)√
−i(w1 + τ)

√
−i(w2 + τ)

dw2dw1

and

1

2πi

[
∂

∂z

(
M2

(√
3;
√
3v(2n1 + n2),

√
v

(
n2 −

2 Im(z)

v

))
e2πin2z

)]
z=0

=

√
3

2π
(2n1 + n2)

∫ i∞

−τ̄

e
3iπ
2

(2n1+n2)2w1√
−i(w1 + τ)

∫ i∞

w1

e
iπn2

2w2
2

(−i(w2 + τ))
3
2

dw2dw1

−
√
3

4π
(3n1 + 2n2)

∫ i∞

−τ̄

e−
iπ
2
(3n1+2n2)2w1√
−i(w1 + τ)

∫ i∞

w1

e
3iπn2

1w2
2

(−i(w2 + τ))
3
2

dw2dw1

−
√
3n1

4π

∫ i∞

−τ̄

e
iπ
2
(3n1+2n2)2w1

(−(w1 + τ))
3
2

∫ i∞

w1

e
3iπn2

1w2
2√

−i(w2 + τ)
dw2dw1,

which implies

1

2πi

∑
n∈µ+Z2

[
∂

∂z

(
M2

(√
3;
√
3v(2n1 + n2),

√
v

(
n2 −

2 Im(z)

v

))
e2πin2z

)]
z=0

=

√
3

4π

∫ i∞

−τ̄

∫ i∞

w1

2θ3(µ,w)− θ4(µ,w)√
−i(w1 + τ)(−i(w2 + τ))

3
2

dw2dw1

+

√
3

4π

∫ i∞

−τ̄

∫ i∞

w1

θ5(µ,w)

(−i(w1 + τ))
3
2

√
−i(w2 + τ)

dw2dw1.

B Proofs

B.1 Proof of Lemma 3.1

Let a, b ∈ W be the Weyl group elements whose action on a root k⃗ =
∑

i=1,2 k
r
i α⃗i reads

a : k⃗ 7→ (kr2 − kr1)α⃗1 + kr2α⃗2, b : k⃗ 7→ kr1α⃗1 + (kr1 − kr2)α⃗2. (B.1)

They represent reflections with respect to the planes orthogonal to the simple roots α⃗1 resp. α⃗2.
In terms of these, we have W = {1, a, b, ab, ba, aba = bab} and W+ = {1, ab, ba}.

From 0 ≤ ⟨k⃗, ω⃗i⟩ for i = 1, 2, we conclude that at least one of the triple k⃗, a
(
k⃗
)
and b

(
k⃗
)
is

in P̄+. Evoking the identity

(−1)ℓ(w
′)F (ϱ′)(τ) = F (ϱ)(τ)

for ϱ =
(
s⃗, k⃗,m,D

)
and ϱ′ =

(
w′(s⃗), w′(k⃗),m,D

)
, from now on we assume that k⃗ ∈ P̄+ without

loss of generality.

In the sum over n⃗ in (3.5), write n⃗ = Dm⃗+ w
(
k⃗
)
for m⃗ ∈ Λ. We have

m⃗+ w
(
k⃗
)
∈ P̄+ ⇔ mi ≥ ξw,i, i = 1, 2,
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where ξw,i are defined by

ξw,i :=

⌈
−
w
(
k⃗
)
|i

D

⌉
.

Since 0 ≤ ⟨k⃗, ω⃗i⟩ < D, we have∣∣(w(k⃗)|1−w
(
k⃗
)
|2
)∣∣ ≤ max(2k1 + k2, k1 + 2k2) < 3D,

and hence |ξw,1 − ξw,2| ≤ 3. The function min(ni) is then given by

min
(
Dmi + w

(
k⃗
)
|i
)
=

{
Dmi + w

(
k⃗
)
|i, for mi < mj , i, j ∈ {1, 2},

Dn+min(w
(
k⃗
)
|i), for m1 = m2 = n.

For a given w, write the sum in (3.5) as F (ϱ) =
∑

w(−1)ℓ(w)F
(ϱ)
w . We now discuss F

(ϱ)
w in the

following two cases.

� Case 1: w
(
k⃗
)
|2≥ w

(
k⃗
)
|1.

In this case ξw,1 ≥ ξw,2 and

F (ϱ)
w (τ) =

∑
m2≥m1≥ξw,1

m1≡m2(mod3)

(
Dm1 + w

(
k⃗
)
|1
)
qpw,m⃗ +

∑
m1>m2≥ξw,2

m1≡m2(mod3)

(
Dm2 + w

(
k⃗
)
|2
)
qpw,m⃗ ,

where pw,m⃗ = 1
2m | − w(σ⃗) + m(m⃗)|2. By redefining the summation indices in the above

equation in the following way

(n1, n2) :=

{(
1
3 (m1 −m2) ,m2

)
, m1 > m2,(

1
3 (m2 −m1) ,m1

)
, m2 ≥ m1,

and shifting the summation ranges by ξw,1 resp. ξw,2, F
(ϱ)
w (τ) can be rewritten as

F (ϱ)
w (q) =

∑
n1,n2≥0

(
D(n2 + ξw,1) + w

(
k⃗
)
|1
)
q
pw,(n2+ξw,1,3n1+n2+ξw,1)

+
(
D(n2 + ξw,2) + w

(
k⃗
)
|2
)
q
pw,(3n1+3+n2+ξw,2,n2+ξw,2) .

Introducing then the quadratic form

Q(n) := Q(n1, n2) =
1

2
|(n2, 3n1 + n2)|2 =

(
3n2

1 + 3n1n2 + n2
2

)
,

we can write the function F
(ϱ)
w (q) in terms of this notation

F (ϱ)
w (q) =

∑
i=1,2

∑
n1,n2≥0

(
D(n2 + ξw,i) + w

(
k⃗
)
|i
)
qmQ(n+α

(i)
w ) (B.2)

with α
(i)
w given by (3.9) with x = 0.

� Case 2: w
(
k⃗
)
|2< w

(
k⃗
)
|1.

This case can be treated analogously to Case 1, and gives (B.2) with α
(i)
w given by (3.9)

with x = 1.
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The pairs of Weyl group elements w,w′ ∈ W

(w,w′) = (1, aba), (a, ba), (b, ab)

satisfy w
(
k⃗
)
|i= −w′(k⃗)|j for i ̸= j.

Since the condition w
(
k⃗
)
|2≥ w

(
k⃗
)
|1 is satisfied if and only if w′(k⃗)|2≥ w′(k⃗)|1, we have the

relations

α
(1)
w′ = 1−α(2)

w ≡ ᾱ(2)
w , α

(2)
w′ = 1−α(1)

w ≡ ᾱ(1)
w .

Moreover, by shifting the summand we obtain

F (ϱ)
w (τ) =

∑
i=1,2

∑
n∈N2

0+α
(i)
w

(
Dn2 +

w(s⃗)|iD
m

)
qmQ(n).

Summing over all w, we arrive at the expressions in Lemma 3.1.

B.2 Proof of Lemma 3.2

In the first step we consider α′ = α+ (δα1, 0). Then a routine computation shows that

F0,α′ − F0,α =
∑

0≤k≤δα1−1

q
3
4
(α1+k)2

∑
n∈Z

sgn(n+ 1
2)q

(
n+α2+

3
2
(α1+k)

)2
,

F1,α′ − F1,α = −
∑

0≤k≤δα1−1

q
3
4
(α1+k)2

∑
n∈Z

sgn(n+ 1
2)(n+ α2)q

(
n+α2+

3
2
(α1+k)

)2
,

while∑
n∈Z

sgn(n+ 1
2)q

(n+α2+
3
2(α1+k))2 − θ̃1

[
1, α2 +

3

2
(α1 + k)

]
(τ) ∈ Z[q]

since sgn
(
n+ 1

2

)
− sgn

(
n+ α2 +

3
2(α1 + k)

)
has finite support. Similarly,

∑
n∈Z

sgn
(
n+ 1

2

)
(n+ α2)q

(n+α2+
3
2(α1+k))2 +

3

2
(α1 + k)θ̃1

[
1, α2 +

3

2
(α1 + k)

]
(τ)

− θ̃

[
1, α2 +

3

2
(α1 + k)

]
(τ) ∈ Z[q].

Second, we consider β = α′ + (0, δα2) = α+ (δα1, δα2). We have

F0,β − F0,α′ =
∑

0≤k≤δα2−1

q
1
4
(α2+k)2

∑
n∈Z

sgn
(
n+ 1

2

)
q3(n+α′

1+
1
2
(α2+k))2 ,

F1,β − F1,α′ = −
∑

0≤k≤δα2−1

q
1
4
(α2+k)2(k + α2)

∑
n∈Z

sgn
(
n+ 1

2

)
q3(n+α′

1+
1
2
(α2+k))2

and ∑
n∈Z

sgn
(
n+ 1

2

)
q3(n+α′

1+
1
2
(α2+k))2 − θ̃1

[
3, α′

1 +
1

2
(α2 + k)

]
∈ Z[q].

Combining the above two steps proves the statement.
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B.3 Proof of Lemma 3.3

First note∑
ℓ∈(Z/km̄)2

e

(
h

k
Q(ℓ+α)

)
=

∑
ℓ∈(Z/km̄)2

e

(
h

k
Q(ℓ+ 1−α)

)

and the statement for ν = 1 immediately follows since η1(α) + η1(1 − α) = 0 for all α ∈ S.
Similarly, from the above identity we have∑

α∈S
η0(α)

∑
ℓ∈(Z/km̄)2

e

(
h

k
Q(ℓ+α)

)
= 2

∑
α∈S̃

η0(α)
∑

ℓ∈(Z/km̄)2

e

(
h

k
Q(ℓ+α)

)
(B.3)

since η0(α) = η0(1−α) for all α ∈ S.
More generally, the sum over ℓ is invariant if one replaces the α in summand with any α′ as

long asα+α′∈ Z2 orα−α′ ∈ Z2, as one can simultaneously shift ℓ. Here we chooseα
(i)′
w = 1

ma
(i)
w ,

where

a(1)w = (∆w(σ⃗),−w(σ⃗)|1) , a(2)w = (−∆w(σ⃗),−w(σ⃗)|2)

satisfy a ∈ Z2 and

Q (a) =
1

3

(
σ2
1 + σ2σ1 + σ2

2

)
=

1

2
|σ|2. (B.4)

Let ⟨·, ·⟩Q be twice the inner product induced by the quadratic form Q

⟨v,w⟩Q := Q(v +w)−Q(v)−Q(w) = 3 (2v1 + v2)w1 + (3v1 + 2v2)w2 = ⟨w,v⟩Q .

Splitting the sum over ℓ into a sum over N and ν by writing ℓ = N+ kν, we arrive at∑
ℓ∈(Z/km̄)2

e

(
h

k
Q(ℓ+α)

)
=

∑
ℓ∈(Z/km̄)2

e

(
h

k
Q(ℓ+

a

m
)

)

=
∑

ν∈(Z/m̄)2

∑
N∈(Z/k)2

e

(
h

k
Q
(
N+ kν +

a

m

))

= e

(
h

km2
Q(a)

) ∑
ν∈(Z/m̄)2

e

(
h/δ

m̄
⟨ν,a⟩Q

)

×
∑

N∈(Z/k)2
e

(
h

k
Q(N)

)
e

(
h

km
⟨N,a⟩Q

)
.

Focus on the factor
∑

ν∈(Z/m̄)2 e
(
h/δ
m̄ ⟨ν,a⟩Q

)
, we see that the sum vanishes unless m̄|3a1, a2,

which is equivalent to σ⃗ ∈ m̄Λ, in which case∑
ν∈(Z/m̄)2

e

(
h/δ

m̄
⟨ν,a⟩Q

)
= m̄2.

As a result, next we study the factor∑
N∈(Z/k)2

e

(
h

k
Q(N)

)
e

(
h

km
⟨N,a⟩Q

)
,
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when σ⃗ ∈ m̄Λ. Let δ∗ be the modular inverse of δ mod k. This exists because δ is a divisor of h,
which is coprime with k. Shifting the summation over N to N−δ∗ a

m̄ , we can cancel the ⟨N,a⟩Q
term and arrive at the result that∑

ℓ∈(Z/km̄)2

e

(
h

k
Q(ℓ+α)

)
= m̄2e

(
h/δ

k

(
δ∗ +

1

δ

)
Q(a)

)
,

where c and c′ are a-independent constants that only depend on h, k and m, D. Using the
fact Q(a) is a constant over S (see (B.4)), we obtain from (B.3)∑

α∈S
η0(α)

∑
ℓ∈(Z/km̄)2

e

(
h

k
Q(ℓ+α)

)
= 2ce

(
c′

2
|σ|2

)∑
α∈S̃

η0(α),

which vanishes as a result of
∑

w∈W+
w(v⃗) = 0 for any v⃗, and hence

∑
α∈S̃ η0(α) = 0.

B.4 Proof of Lemma 3.4

Proof. We first rewrite, using ai := mαi and writing ℓ = N+ kν∑
0≤ℓ1,ℓ2<km̄

Bn

(
ℓ1 + α1

km̄

)
e

(
h

k
Q(ℓ+α)

)

= e

(
h

k
Q(α)

) ∑
0≤N<k

e

(
h/δ

km̄
(m̄δQ(N) + 3N1(2a1 + a2) +N2(3a1 + 2a2))

)

×
∑

0≤ν<m̄

Bn

(
N1 + kν1 + α1

m̄

)
e

(
h/δ

m̄
(3ν1(2a1 + a2) + ν2(3a1 + 2a2))

)
.

The sum over ν2 shows that the quantity vanishes when 3a1 + 2a2 is not divisible by m̄. For
both α = α

(1)
w or α = α

(2)
w , the condition is equivalent to the condition m̄|

∑
i=1,2w(σ⃗)|i. Writing∑

i=1,2w(σ⃗)|i= m̄y, we write

α(1)
w = (α1, α2) mod (0, 1), α(2)

w =
(
1− α1, 1− α2 −

y

δ

)
mod (0, 1).

Invoking the reflection property (3.15) of the Bernoulli polynomials, we have for α = α
(2)
w∑

0≤ℓ1<km̄
ℓ2∈Z/km̄

Bn

(
ℓ1 + 1− α1

km̄

)
e

(
h

k
Q
(
ℓ+ 1−α− y

δ
(0, 1)

))

=
∑

0≤ℓ1<km̄
ℓ2∈Z/km̄

Bn

(
1− ℓ1 + α1

km̄

)
e

(
h

k
Q
(
ℓ+α+

y

δ
(0, 1)

))

= −
∑

0≤ℓ1<km̄
ℓ2∈Z/km̄

Bn

(
ℓ1 + α1

km̄

)
e

(
h

k
Q

(
ℓ+α+ y

(
1

δ
− δ∗

)
(0, 1)

))

= −
∑

0≤ℓ1<km̄
ℓ2∈Z/km̄

Bn

(
ℓ1 + α1

km̄

)
e

(
h

k
Q (ℓ+α)

)
.

Going from the first to the second line, we have relabeled ℓ by (km̄−1)1−ℓ. Going to the third
line, we have invoked the reflection property (3.15) of the Bernoulli polynomials, and shifted ℓ2
in the sum by δ∗y, where δ∗δ ≡ 1 (k). In the last step, we used that ⟨α, (0, 1)⟩Q = −1

δy. From
this, we immediately see that the contributions from α

(1)
w and α

(2)
w cancel. ■
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B.5 Proof of Lemma 3.9

For ν = 0 and ε ∈ {1,−1}, we have

E(ϱ)
0 (τ) =

1

2

∑
ε∈{1,−1}

∑
µ∈S̃

η0(µ)
∑

n∈µ+Z
q−Q(n)M2

(√
3;
√
3v(2εn1 + n2),

√
vn2

)

=
1

2

∑
ε∈{1,−1}

∑
µ∈S

η0(µ)

 ∑
n∈µ+N2

0

q−Q(n)M2

(√
3;
√
3v(2εn1 + n2),

√
vn2

)

+
∑

n∈(1−µ1,µ2)+N2
0

q−Q(−n1,n2)M2

(√
3;
√
3v(2εn1 + n2),

√
vn2

)
=

1

2

∑
µ∈S

η0(µ)

 ∑
n∈µ+N2

0

q−Q(n)
(
M∗

2

(√
3;
√
3v(2n1 + n2),

√
vn2

)
+δn1,0(1− δn2,0)M

(
2
√
vn2

)
+ δn2,0(1− δn1,0)M

(
2
√
3vn1

)
− δn1,0δn2,0

)
+

∑
n∈(1−µ1,µ2)+N2

0

q−Q(−n1,n2)
(
M∗

2

(√
3;
√
3v(−2n1 + n2),

√
vn2

)
− δn1,0(1− δn2,0)M

(
2
√
vn2

)
− δn2,0(1− δn1,0)M

(
2
√
3vn1

)
+ δn1,0δn2,0

))
= E∗(ϱ)

0 (τ) +
1

2

∑
µ∈S̃

η(µ)

 ∑
n∈µ+N2

0

+
∑

n∈(1,1)−µ+N2
0

−
∑

n∈(1−µ1,µ2)+N2
0

−
∑

n∈(µ1,1−µ2)+N2
0


×
(
δn1,0(1− δn2,0)M

(
2
√
vn2

)
+ δn2,0(1− δn1,0)M

(
2
√
3vn1

)
− δn1,0δn2,0

)
q−Q(n)

= E∗(ϱ)
0 (τ) +

1

2

∑
µ∈S̃

η0(µ)X0(µ).

For ν = 1, we have

E(ϱ)
1 (τ) =

1

2

∑
µ∈S

η1(µ)
∑

n∈µ+N2
0

n2M2

(√
3;
√
3v(2n1 + n2)

)
q−Q(n)

+
1

2

∑
µ∈S̄

η̄1(µ)
∑

n∈µ+N2
0

n2M2

(√
3;
√
3v(−2n1 + n2)

)
q−Q(−n1,n2)

+
1

4π
√
v

∑
µ∈S

η1(µ)
∑

n∈µ+N2
0

e−π(3n1+2n2)2vM
(√

3vn1

)
q−Q(n)

+
1

4π
√
v

∑
µ∈S̄

η̄1(µ)
∑

n∈µ+N2
0

e−π(−3n1+2n2)2vM
(
−
√
3vn1

)
q−Q(−n1,n2)

=
1

2

∑
µ∈S

η1(µ)

[ ∑
n∈µ+N2

0

(
n2M2

(√
3;
√
3v(2n1 + n2),

√
vn2

)
+

1

4π
√
v
e−π(3n1+2n2)2v

×M
(√

3vn1

))
q−Q(n) +

∑
n∈(1−µ1,µ2)+N2

0

(
n2M2

(√
3;
√
3v(−2n1 + n2),

√
vn2

)
+

1

4π
√
v
e−π(−3n1+2n2)2vM

(
−
√
3vn1

))
q−Q(−n1,n2)

]
= E∗(ϱ)

1 (τ) +
1

2

∑
µ∈S̃

η1(µ)X1(µ).
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B.6 Proof of Proposition 3.10

Following [11], we can rewrite E(ϱ)
0 and E(ϱ)

1 as

E(ϱ)
0 (τ) = −

√
3

4

∑
α∈S̃

η0(α)

∫ i∞

−τ̄

∫ i∞

z1

θ1(α, z) + θ2(α, z)√
−i(z1 + τ)

√
−i(z2 + τ)

dz2dz1

and

E(ϱ)
1 (τ) =

√
3

8π

∑
α∈S̃

∫ i∞

−τ̄

∫ i∞

z1

2θ3(α, z)− θ4(α, z)√
−i(z1 + τ)(−i(z2 + τ))

3
2

dz2dz1

+

√
3

8π

∑
α∈S̃

∫ i∞

−τ̄

∫ i∞

z1

θ5(α, z)

(−i(z1 + τ))
3
2

√
−i(z2 + τ)

dz2dz1.

The functions θℓ(α, z) are defined in equations (A.5) and can be equivalently written as

θ1(α, z) =
1

m2

∑
δ∈Z/2

θ1m,m(2α1+α2+δ)

(
3z1
m

)
θ1m,m(α2+δ)

(z2
m

)
,

θ2(α, z) =
1

m2

∑
δ∈Z/2

θ1m,m(3α1+2α2+δ)

(z1
m

)
θ1m,m(α1+δ)

(
3z2
m

)
,

θ3(α, z) =
1

m

∑
δ∈Z/2

θ1m,m(2α1+α2+δ)

(
3z1
m

)
θ0m,m(α2+δ)

(z2
m

)
,

θ4(α, z) =
1

m

∑
δ∈Z/2

θ1m,m(3α1+2α2+δ)

(z1
m

)
θ0m,m(α1+δ)

(
3z2
m

)
,

θ5(α, z) =
1

m

∑
δ∈Z/2

θ0m,m(3α1+2α2+δ)

(z1
m

)
θ1m,m(α1+δ)

(
3z2
m

)
.

Most of these terms however sum to zero as proved in the following lemma.

Lemma B.1. Using the above definitions,∑
α∈S̃

η0(α)θ1(α, z) = 0,
∑
α∈S̃

θ3(α, z) = 0,
∑
α∈S̃

θ5(α, z) = 0.

Proof. Due to the symmetries of the theta series and the sum over δ, we only need to focus on
the non-integer part of the α defined in equation (3.9). By direct computation one can see that

η0
(
α(1)

w

)
θ1
(
α(1)

w , z
)
= −η0

(
α

(1)
baw

)
θ1
(
α

(2)
baw, z

)
,

θ3
(
α(1)

w , z
)
= −θ3

(
α

(2)
baw, z

)
, θ5

(
α(1)

w , z
)
= −θ5

(
α(2)

w , z
)
.

The result follows from the fact that ba and 1 are in W+. ■

This yields

E(ϱ)
ν (τ) = −

√
3

4
(2π)−ν

∑
µ∈S̃

ην(µ)

∫ i∞

−τ̄

∫ i∞

z1

Θν(µ; z)

(−i(z1 + τ))1/2(−i(z2 + τ))ν+1/2
dz2dz1,

where

Θν(µ, z) = (m)−2+ν
∑
δ∈Z/2

θ1m,m(3µ1+2µ2+δ)

(z1
m

)
θ1−ν
m,m(µ1+δ)

(
3z2
m

)
.
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Substituting then the elements α
(1)
w and α

(2)
w of the set S̃ for each w ∈ W+ and using the shift

and symmetry properties of theta functions θνm,r for ν = 0, 1 allows to reduce the summation
over µ ∈ S̃ to a summation over w ∈ W+ in the expression for E(ϱ)

ν (τ) in terms of Θ
(ϱ)
ν,w(z).

B.7 Proof of Lemma 4.2

Proof. When M3 = Σ(p1, p2, p3) we have the unique b⃗ = b⃗0, D = 1, and m = p1p2p3. Using
equation (4.7), Proposition 3.7 and Lemma 3.9, we can express the rank two part of companion
of the Ẑ-invariant in terms of the functions E(ϱ)

ν (τ) defined in (3.26) as

qZ
SU(3)

b⃗0
(τ) = C

(
q−1
) ∑
ŵ∈W⊗3

(−1)ℓ(ŵ)
(
E(ϱŵ)
0 (mτ) + E(ϱŵ)

1 (mτ)
)
,

up to a one-dimensional piece, where we have

ρŵ =
(
σ⃗ŵ, k⃗ŵ,m,D

)
= (s⃗ŵ, 0, p1p2p3, 1).

Together with E(ϱ)
ν,w̃ = −E(ϱ)

ν,w̃(aba) in the notation of (B.1), which can easily be seen from

aba ρ⃗ = −ρ⃗, aba∆ω⃗ = ∆ω⃗,

we can extend the sum in Proposition 3.10 to write

E(ϱ)
ν (τ) =

1

2

∑
w∈W

(−1)ℓ(ŵ)E(ϱ)
ν,w(τ).

We then have the following identity

C
(
q−1
) ∑
ν=0,1

∑
ŵ∈W⊗3

(−1)ℓ(ŵ)E(ϱŵ)
ν (mτ)

=
1

2
C(q−1)

∑
ν=0,1

∑
ŵ∈W⊗3

∑
w∈W

(−1)ℓ(ŵ)(−1)ℓ(w)E(ϱŵ)
ν,w (mτ)

=
1

2
C
(
q−1
) ∑
ν=0,1

∑
ŵ∈W⊗3

∑
w∈W

(−1)ℓ(wŵ)E(ϱwŵ)
ν,e (mτ)

=
1

2
|W |C(q−1)

∑
ν=0,1

∑
ŵ∈W⊗3

(−1)ℓ(ŵ)E(ϱŵ)
ν,e (mτ),

where we have used E(ϱŵ)
ν,w̃ = E(ϱw̃ŵ)

ν,e in the third line, which is manifest from (3.28). Combining
the above with the double Eichler integral expression in (3.27) for E(ϱŵ)

ν,w̃ leads to the statement
of the lemma. ■

B.8 Proof of Proposition 4.4

We take as our starting point Lemma 4.3, which states

qZ
SU(3)

b⃗0
(M3; τ) = z1d +

|W |
2mC

(
q−1
) ∑
ŵ∈W⊗3

(−1)ℓ(ŵ)
∑
ν=0,1

√
3

4πν

(
3∆s⃗ŵ
m

)1−ν

×
∑
δ∈Z/2

(
ϑ′
w,δ, ϑ

1−ν
w,δ

)∗
(τ),
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where the non-holomorphic double Eichler integral is of the theta functions

ϑ′
w,δ(τ) = θ1m,mδ+⟨ρ⃗,σ⃗⟩(τ), ϑ1−ν

w,δ (τ) = θ1−ν
m,mδ+⟨∆ω⃗,σ⃗⟩(3τ),

for

σ⃗ŵ = s⃗ŵ = −
3∑

i=1

p̄iwi(ρ⃗).

From (aba)ρ⃗ = −ρ⃗, we have

σ⃗(w1(aba)ε1 ,w2(aba)ε2 ,w3(aba)ε3 ) = −
3∑

i=1

(−1)εi p̄iwi(ρ⃗)

for εi ∈ Z/2. Then

qZ
SU(3)

b⃗0
(M3; τ) = z1d +

|W |
2mC

(
q−1
) ∑
ŵ∈W⊗3

+

∑
ν=0,1

√
3

4πν

∑
δ∈Z/2

Ẽ(ϱŵ)
ν,δ (τ),

where Ẽν,δ is the integral

Ẽ(ρŵ)
ν,δ (τ) := −

∫ i∞

−τ̄

∫ i∞

z1

Θ̃
(ϱŵ)
ν,δ (z)

(−i(z1 + τ))1/2(−i(z2 + τ))ν+1/2
dz2dz1

of

Θ̃
(ϱŵ)
ν,δ (z) =

∑
ε1,ε2,ε3∈Z/2

(−1)
∑

i εi

(∑
i

1
pi
(−1)εi⟨∆ω⃗, wi(ρ⃗)⟩

)1−ν

× θ1m,mδ+
∑

i(−1)εi p̄i⟨ρ⃗,wi(ρ⃗)⟩(z1)θ
1−ν
m,mδ−

∑
i(−1)εi p̄i⟨∆ω⃗,wi(ρ⃗)⟩(3z2m)

= 2
∑

ε1,ε2∈Z/2

Θ̃
(ϱŵ)
ν,δ,(ε1,ε2)

(z),

where we have used that the summand is invariant under (ε1, ε2, ε3) 7→ (1, 1, 1)+(ε1, ε2, ε3), and
we write

Θ̃
(ϱŵ)
ν,δ,(ε1,ε2)

(z) :=

(
(−1)

∑
i εi

(∑
i

1
pi
(−1)εi⟨∆ω⃗, wi(ρ⃗)⟩

)1−ν

× θ1m,mδ+
∑

i(−1)εi p̄i⟨ρ⃗,wi(ρ⃗)⟩(z1)θ
1−ν
m,mδ−

∑
i(−1)εi p̄i⟨∆ω⃗,wi(ρ⃗)⟩(3z2)

)
|ε3=0.

To simplify notation, in this appendix we will often skip writing the arguments of the func-
tions, with the understanding that θ1−ν

r = θ1−ν
r (3z2) and θ1r = θ1r (z1).

Using

⟨abρ⃗, ρ⃗⟩ = ⟨baρ⃗, ρ⃗⟩ = ⟨abρ⃗,∆ω⃗⟩ = −⟨baρ⃗,∆ω⃗⟩ = −1

and ⟨ρ⃗, ρ⃗⟩ = 2, ⟨ρ⃗,∆ω⃗⟩ = 0, as well as

θ1−ν
m,mδ+r = (−1)ν−1θ1−ν

m,mδ−r for all δ ∈ Z/2, ν ∈ {0, 1}, r ∈ Z/2m,

it is straightforward to discuss the separate contributions individually.
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Case 1: ŵ = (e, e, e). From ⟨ρ⃗,∆ω⃗⟩ = 0, we see Θ̃
(ϱŵ)
ν,δ (z) = 0 for ν = 0, and

Θ̃
(ϱ(e,e,e))

ν,δ (z) = 2θ1−ν
m,mδ

∑
ε1,ε2∈Z/2

(−1)
∑

i εiθ1m,mδ+2
∑

i (−1)εi p̄i+2p̄3

= 2θ1−ν
m,mδ

∑
ϵ,ϵ′

ϵϵ′θ1m,mδ+2ϵp̄1+2ϵ′p̄2+2p̄3

for ν = 1.
Case 2: ŵ = (ab, e, e), ŵ = (ba, e, e) and permutations. In the case of ŵ = (ab, e, e), we have

Θ
(ϱ(ab,e,e))

ν,δ (z) =

(
1

p1

)1−ν

θ1−ν
m,mδ+p̄1

∑
ϵ,ϵ′∈{1,−1}

ϵϵ′θ1m,mδ+ϵp̄1+2ϵ′p̄2+2p̄3 .

Similarly, ŵ = (ba, e, e) renders the same answer and we get

Θ̃
(ϱ(ba,e,e))

ν,δ (z) =

(
1

p1

)1−ν

θ1−ν
m,mδ+p̄1

∑
ϵ,ϵ′∈{1,−1}

ϵϵ′θ1m,mδ+ϵp̄1+2ϵp̄2+2p̄3 .

All other six choices of ŵ ∈ W⊗3
+ where only one of the three elements is different from e ∈ W

can be treated in exactly the same way, and we get the sum

∑
ŵ=(w1,w2,w3)
one of the wi ̸=e

Θ̃
(ϱŵ)
ν,δ = 2P+

( 1

p1

)1−ν

θ1−ν
m,mδ+p̄1

∑
ϵ,ϵ′∈{1,−1}

ϵϵ′θ1m,mδ+ϵp̄1+2ϵ′p̄2+2p̄3

 ,

where we denote by P+ by the group of even permutations of (p1, p2, p3).
Case 3: ŵ = (ab, ab, e), ŵ = (ba, ba, e), ŵ = (ab, ba, e), ŵ = (ba, ab, e) and permutations. We

observe that (−1)ε⟨∆ω⃗, w(ρ⃗)⟩ is invariant under ε ↔ ε+ 1, ab ↔ ba.
From this, we obtain∑

ε∈Z/2

Θ
(ϱ(ab,ab,e))

ν,δ,(ε,ε) +Θ
(ϱ(ba,ba,e))

ν,δ,(ε,ε) +Θ
(ϱ(ab,ba,e))

ν,δ,(ε,1+ε) +Θ
(ϱ(ba,ab,e))

ν,δ,(1+ε,ε)

= 2

(
1

p1
+

1

p2

)1−ν

θ1−ν
m,mδ+p̄1+p̄2

∑
ϵ,ϵ′∈{1,−1}

ϵϵ′θ1m,mδ+ϵp̄1+ϵ′p̄2+2p̄3

and similarly∑
ε∈Z/2

Θ
(ϱ(ab,ab,e))

ν,δ,(ε,1+ε) +Θ
(ϱ(ba,ba,e))

ν,δ,(ε,1+ε) +Θ
(ϱ(ab,ba,e))

ν,δ,(ε,ε) +Θ
(ϱ(ba,ab,e))

ν,δ,(ε,ε)

= 2

(
1

p1
− 1

p2

)1−ν

θ1−ν
m,mδ+p̄1−p̄2

∑
ϵ,ϵ′∈{1,−1}

ϵϵ′θ1m,mδ+ϵp̄1+ϵ′p̄2+2p̄3 .

We also have images of the above under even permutations, corresponding to the cases where
w1 = e or w2 = e.

Case 4: ŵ = (ab, ab, ab), ŵ = (ba, ba, ba). Similarly as before, we have

Θ
(ϱ(ab,ab,ab))

ν,δ,(ε,ε) = Θ
(ϱ(ba,ba,ba))

ν,δ,(ε,ε)

(
(−1)ε+1(p̄1 + p̄2)− p̄3

m

)1−ν

× θ1−ν
m,mδ+(−1)ε(p̄1+p̄2)+p̄3

θ1m,mδ+(−1)ε+1(p̄1+p̄2)−p̄3
,
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Θ
(ϱ(ab,ba,ab))

ν,δ,(ε,ε+1) = Θ
(ϱ(ba,ab,ba))

ν,δ,(ε,ε+1) = −
(
(−1)ε+1(p̄1 + p̄2)− p̄3

m

)1−ν

× θ1−ν
m,mδ+(−1)ε(p̄1+p̄2)+p̄3

θ1m,mδ+(−1)ε+1(p̄1−p̄2)−p̄3
,

Θ
(ϱ(ba,ab,ab))

ν,δ,(ε+1,ε) = Θ
(ϱ(ab,ba,ba))

ν,δ,(ε+1,ε) = −
(
(−1)ε+1(p̄1 + p̄2)− p̄3

m

)1−ν

× θ1−ν
m,mδ+(−1)ε(p̄1+p̄2)+p̄3

θ1m,mδ+(−1)ε+1(−p̄1+p̄2)−p̄3
,

Θ
(ϱ(ab,ab,ba))

ν,δ,(ε+1,ε) = Θ
(ϱ(ba,ba,ab))

ν,δ,(ε+1,ε) = −
(
(−1)ε+1(p̄1 − p̄2)− p̄3

m

)1−ν

× θ1−ν
m,mδ+(−1)ε(p̄1−p̄2)+p̄3

θ1m,mδ+(−1)ε(p̄1−p̄2)−p̄3
,

Θ
(ϱ(ab,ab,ab))

ν,δ,(ε,ε+1) = Θ
(ϱ(ba,ba,ba))

ν,δ,(ε,ε+1) = −
(
(−1)ε+1(p̄1 − p̄2)− p̄3

m

)1−ν

× θ1−ν
m,mδ+(−1)ε(p̄1−p̄2)+p̄3

θ1m,mδ+(−1)ε+1(p̄1−p̄2)−p̄3
,

Θ
(ϱ(ba,ab,ab))

ν,δ,(ε,ε) = Θ
(ϱ(ab,ba,ba))

ν,δ,(ε,ε) = −
(
(−1)ε(p̄1 − p̄2)− p̄3

m

)1−ν

× θ1−ν
m,mδ+(−1)ε+1(p̄1−p̄2)+p̄3

θ1m,mδ+(−1)ε+1(p̄1+p̄2)−p̄3
,

Θ
(ϱ(ab,ab,ba))

ν,δ,(ε,ε) = Θ
(ϱ(ba,ba,ab))

ν,δ,(ε,ε) =

(
(−1)ε(p̄1 + p̄2)− p̄3

m

)1−ν

× θ1−ν
m,mδ+(−1)ε+1(p̄1+p̄2)+p̄3

θ1m,mδ+(−1)ε+1(p̄1+p̄2)−p̄3
.

Summing up, we get

Θ
(ϱ(ab,ab,ab))

ν,δ,(ε,ε) +Θ
(ϱ(ba,ab,ab))

ν,δ,(ε+1,ε) +Θ
(ϱ(ab,ba,ab))

ν,δ,(ε,ε+1) +Θ
(ϱ(ab,ab,ba))

ν,δ,(ε+1,ε+1) + (a ↔ b)

= 2

(
1

p1
+

1

p2
+ (−1)ε

1

p3

)1−ν

θ1−ν
m,mδ+(p̄1+p̄2)+(−1)εp̄3

∑
ϵ,ϵ′

ϵϵ′θ1m,mδ+ϵp̄1+ϵ′p̄2−p̄3 ,

Θ
(ϱ(ab,ba,ab))

ν,δ,(ε,ε) +Θ
(ϱ(ba,ba,ab))

ν,δ,(ε+1,ε) +Θ
(ϱ(ab,ab,ab))

ν,δ,(ε,ε+1) +Θ
(ϱ(ab,ba,ba))

ν,δ,(ε+1,ε+1) + (a ↔ b)

= 2

(
1

p1
− 1

p2
+ (−1)ε

1

p3

)1−ν

θ1−ν
m,mδ+(p̄1−p̄2)+(−1)εp̄3

∑
ϵ,ϵ′

ϵϵ′θ1m,mδ+ϵp̄1+ϵ′p̄2−p̄3 .

Finally, summing up the contributions from all the above four cases, we define a set R ⊂
Z/2m, with

R = R0 +R1 +R2 +R3

and

R0 = {0}, R1 = P+{p̄1}, R2 = P+{p̄1 + p̄2, p̄1 − p̄2},
R3 = P+{p̄1 + p̄2 − p̄3,−p̄1 − p̄2 + p̄3}.

For each r ∈ R, we set a
(r)
i := 2− |ri| if r =

∑
i rip̄i. For instance, we have(

a
(p̄1+p̄2)
1 , a

(p̄1+p̄2)
2 , a

(p̄1+p̄2)
3

)
=
(
a
(p̄1−p̄2)
1 , a

(p̄1−p̄2)
2 , a

(p̄1+p̄2)
3

)
= (1, 1, 2).

Using the above definition, we can write∑
ŵ∈W⊗3

+

Θ̃
(ϱŵ)
ν,δ = 2

∑
r∈R

( r

m

)1−ν
θ1−ν
m,mδ+r

∑
ϵ,ϵ

ϵϵ′θ1
m,mδ+ϵp̄1a

(r)
1 +ϵ′p̄2a

(r)
2 +p̄3a

(r)
3



Quantum Modular ẐG-Invariants 45

=
∑
r∈R

( r

m

)1−ν
θ1−ν
m,mδ+r

∑
ε1,ε2,ε3∈Z/2

(−1)
∑

i εiθ1
m,mδ+

∑
i(−1)εi p̄ia

(r)
i

.

From (pi, pj) = 1, we see that Ωm(p̄i) has precisely one non-zero entry in each row, since

r + r′ ≡ 0(2p̄i), r − r′ ≡ 0(2pi)

has a unique solution in Z/2m for r′ for any given r ∈ Z/2m.
In particular, one can show that∑

r′∈Z/2m

(Ωm(p̄i))mδ+
∑

j(−1)εj p̄ja
(r)
j ,r′

Xr′ = X
mδ+

∑
j(−1)εj+δi,j+1p̄ja

(r)
j

for all δ, a
(r)
j ∈ Z. Consider the representation of the metapletic group S̃L2(Z) corresponding to

the subgroup K = {1, p̄1, p̄2, p̄3} of the group of exact divisors. This representation is irreducible
when all three pi are square-free. We have(

Pm+Kθm
)
mδ+p̄1a1+p̄2a2+p̄3a3

=
1

4
(θm,mδ+p̄1a1+p̄2a2+p̄3a3 + θm,mδ+p̄1a1−p̄2a2−p̄3a3

+ θm,mδ−p̄1a1+p̄2a2−p̄3a3 + θm,mδ−p̄1a1−p̄2a2+p̄3a3).

Again using θ1m,r = −θ1m,−r, we see that

θ1,m+K

mδ+
∑

i p̄ia
(r)
i

:=
(
Pm+Kθ1m

)
mδ+

∑
i p̄ia

(r)
i

=
1

4

∑
ϵ,ϵ

ϵϵ′θ1
m,mδ+ϵp̄1a

(r)
1 +ϵ′p̄2a

(r)
2 +p̄3a

(r)
3

.

As a result, we obtain the following expression∑
ŵ∈W⊗3

+

Θ̃
(ϱŵ)
ν,δ = 8

∑
r∈R

( r

m

)1−ν
θ1−ν
m,mδ+rθ

1,m+K

m,mδ+
∑

i p̄ia
(r)
i

.

C Tables

In this appendix, we collect tables with computational data for the examples presented in Sec-
tion 5. Each of these tables is organized following in blocks with the same format, where each
block specifies the contribution to the function qZ which comes from a generalised A2 false theta
function. We remind the reader that the definition of a generalised A2 false theta function can
be found in Section 3; this function is a building block for the companion function Ẑ and is
associated to a set S = S̃ŵ, which is in turn determined with respect to Ẑ by a triplet of Weyl
group elements ŵ.

Symbolically, each block is organized in the following way

(w1, w2, w3) α
(1)
1 α

(2)
1

(s1, s2) α
(1)
ab α

(2)
ab

(k1, k2) α
(1)
ba α

(2)
ba

using again the same notation (B.1) for Weyl group elements. The first column contains the
triplet of Weyl elements ŵ and the vectors s⃗ and k⃗, while the second and third columns contain

the values of α
(1)
w , α

(2)
w , with w restricted to elements of the rotation subgroup W+ ⊂ W .



4
6

M
.C

.N
.
C
h
en

g,
I.
C
om

an
,
D
.
P
assaro

an
d
G
.
S
groi

(e, e, e)
(
0,− 83

140

) (
1,− 83

140

)
(e, e, a)

(
− 1

7 ,−
43
140

) (
8
7 ,−

103
140

)
(e, e, b)

(
1
7 ,−

103
140

) (
6
7 ,−

43
140

)
(83, 83)

(
83
140 ,−

83
140

) (
57
140 ,

83
70

)
(43, 103)

(
83
140 ,−

103
140

) (
57
140 ,

73
70

)
(103, 43)

(
9
20 ,−

43
140

) (
11
20 ,

73
70

)
(0, 0)

(
− 83

140 ,
83
70

) (
223
140 ,−

83
140

)
(0, 0)

(
− 9

20 ,
73
70

) (
29
20 ,−

43
140

)
(0, 0)

(
− 83

140 ,
73
70

) (
223
140 ,−

103
140

)
(e, e, ab)

(
1
7 ,−

83
140

) (
6
7 ,−

23
140

)
(e, e, ba)

(
− 1

7 ,−
23
140

) (
8
7 ,−

83
140

)
(e, e, aba)

(
0,− 43

140

) (
1,− 43

140

)
(83, 23)

(
43
140 ,−

23
140

) (
97
140 ,

53
70

)
(23, 83)

(
9
20 ,−

83
140

) (
11
20 ,

53
70

)
(43, 43)

(
43
140 ,−

43
140

) (
97
140 ,

43
70

)
(0, 0)

(
− 9

20 ,
53
70

) (
29
20 ,−

83
140

)
(0, 0)

(
− 43

140 ,
53
70

) (
183
140 ,−

23
140

)
(0, 0)

(
− 43

140 ,
43
70

) (
183
140 ,−

43
140

)
(e, a, e)

(
− 1

5 ,−
27
140

) (
6
5 ,−

111
140

)
(e, a, b)

(
− 2

35 ,−
47
140

) (
37
35 ,−

71
140

)
(e, a, ab)

(
− 2

35 ,−
27
140

) (
37
35 ,−

51
140

)
(27, 111)

(
83
140 ,−

111
140

) (
57
140 ,

69
70

)
(47, 71)

(
9
20 ,−

71
140

) (
11
20 ,

59
70

)
(27, 51)

(
43
140 ,−

51
140

) (
97
140 ,

39
70

)
(0, 0)

(
− 11

28 ,
69
70

) (
39
28 ,−

27
140

)
(0, 0)

(
− 11

28 ,
59
70

) (
39
28 ,−

47
140

)
(0, 0)

(
− 1

4 ,
39
70

) (
5
4 ,−

27
140

)
(e, b, e)

(
1
5 ,−

111
140

) (
4
5 ,−

27
140

)
(e, b, a)

(
2
35 ,−

71
140

) (
33
35 ,−

47
140

)
(e, b, ba)

(
2
35 ,−

51
140

) (
33
35 ,−

27
140

)
(111, 27)

(
11
28 ,−

27
140

) (
17
28 ,

69
70

)
(71, 47)

(
11
28 ,−

47
140

) (
17
28 ,

59
70

)
(51, 27)

(
1
4 ,−

27
140

) (
3
4 ,

39
70

)
(0, 0)

(
− 83

140 ,
69
70

) (
223
140 ,−

111
140

)
(0, 0)

(
− 9

20 ,
59
70

) (
29
20 ,−

71
140

)
(0, 0)

(
− 43

140 ,
39
70

) (
183
140 ,−

51
140

)
(e, ab, a)

(
2
35 ,−

43
140

) (
33
35 ,−

19
140

)
(e, ba, b)

(
− 2

35 ,−
19
140

) (
37
35 ,−

43
140

)
(e, aba, e)

(
0,− 27

140

) (
1,− 27

140

)
(43, 19)

(
27
140 ,−

19
140

) (
113
140 ,

31
70

)
(19, 43)

(
1
4 ,−

43
140

) (
3
4 ,

31
70

)
(27, 27)

(
27
140 ,−

27
140

) (
113
140 ,

27
70

)
(0, 0)

(
− 1

4 ,
31
70

) (
5
4 ,−

43
140

)
(0, 0)

(
− 27

140 ,
31
70

) (
167
140 ,−

19
140

)
(0, 0)

(
− 27

140 ,
27
70

) (
167
140 ,−

27
140

)
(a, e, e)

(
− 1

4 ,−
13
140

) (
5
4 ,−

59
70

)
(a, e, b)

(
− 3

28 ,−
33
140

) (
31
28 ,−

39
70

)
(a, e, ab)

(
− 3

28 ,−
13
140

) (
31
28 ,−

29
70

)
(13, 118)

(
83
140 ,−

59
70

) (
57
140 ,

131
140

)
(33, 78)

(
9
20 ,−

39
70

) (
11
20 ,

111
140

)
(13, 58)

(
43
140 ,−

29
70

) (
97
140 ,

71
140

)
(0, 0)

(
− 12

35 ,
131
140

) (
47
35 ,−

13
140

)
(0, 0)

(
− 12

35 ,
111
140

) (
47
35 ,−

33
140

)
(0, 0)

(
− 1

5 ,
71
140

) (
6
5 ,−

13
140

)
(a, b, e)

(
− 1

20 ,−
41
140

) (
21
20 ,−

31
70

)
(a, b, a)

(
− 27

140 ,−
1

140

) (
167
140 ,−

41
70

)
(a, b, b)

(
13
140 ,−

61
140

) (
127
140 ,−

11
70

)
(41, 62)

(
11
28 ,−

31
70

) (
17
28 ,

103
140

)
(1, 82)

(
11
28 ,−

41
70

) (
17
28 ,

83
140

)
(61, 22)

(
1
4 ,−

11
70

) (
3
4 ,

83
140

)
(0, 0)

(
− 12

35 ,
103
140

) (
47
35 ,−

41
140

)
(0, 0)

(
− 1

5 ,
83
140

) (
6
5 ,−

1
140

)
(0, 0)

(
− 12

35 ,
83
140

) (
47
35 ,−

61
140

)
(a, b, ab)

(
13
140 ,−

41
140

) (
127
140 ,−

1
70

)
(a, b, aba)

(
− 1

20 ,−
1

140

) (
21
20 ,−

11
70

)
(a, ab, e)

(
− 1

20 ,−
13
140

) (
21
20 ,−

17
70

)
(41, 2)

(
3
28 ,−

1
70

) (
25
28 ,

43
140

)
(1, 22)

(
3
28 ,−

11
70

) (
25
28 ,

23
140

)
(13, 34)

(
27
140 ,−

17
70

) (
113
140 ,

47
140

)
(0, 0)

(
− 1

5 ,
43
140

) (
6
5 ,−

41
140

)
(0, 0)

(
− 2

35 ,
23
140

) (
37
35 ,−

1
140

)
(0, 0)

(
− 1

7 ,
47
140

) (
8
7 ,−

13
140

)
(b, e, e)

(
1
4 ,−

59
70

) (
3
4 ,−

13
140

)
(b, e, a)

(
3
28 ,−

39
70

) (
25
28 ,−

33
140

)
(b, e, ba)

(
3
28 ,−

29
70

) (
25
28 ,−

13
140

)
(118, 13)

(
12
35 ,−

13
140

) (
23
35 ,

131
140

)
(78, 33)

(
12
35 ,−

33
140

) (
23
35 ,

111
140

)
(58, 13)

(
1
5 ,−

13
140

) (
4
5 ,

71
140

)
(0, 0)

(
− 83

140 ,
131
140

) (
223
140 ,−

59
70

)
(0, 0)

(
− 9

20 ,
111
140

) (
29
20 ,−

39
70

)
(0, 0)

(
− 43

140 ,
71
140

) (
183
140 ,−

29
70

)
(b, a, e)

(
1
20 ,−

31
70

) (
19
20 ,−

41
140

)
(b, a, a)

(
− 13

140 ,−
11
70

) (
153
140 ,−

61
140

)
(b, a, b)

(
27
140 ,−

41
70

) (
113
140 ,−

1
140

)
(62, 41)

(
12
35 ,−

41
140

) (
23
35 ,

103
140

)
(22, 61)

(
12
35 ,−

61
140

) (
23
35 ,

83
140

)
(82, 1)

(
1
5 ,−

1
140

) (
4
5 ,

83
140

)
(0, 0)

(
− 11

28 ,
103
140

) (
39
28 ,−

31
70

)
(0, 0)

(
− 1

4 ,
83
140

) (
5
4 ,−

11
70

)
(0, 0)

(
− 11

28 ,
83
140

) (
39
28 ,−

41
70

)
(b, a, ba)

(
− 13

140 ,−
1
70

) (
153
140 ,−

41
140

)
(b, a, aba)

(
1
20 ,−

11
70

) (
19
20 ,−

1
140

)
(b, ba, e)

(
1
20 ,−

17
70

) (
19
20 ,−

13
140

)
(2, 41)

(
1
5 ,−

41
140

) (
4
5 ,

43
140

)
(22, 1)

(
2
35 ,−

1
140

) (
33
35 ,

23
140

)
(34, 13)

(
1
7 ,−

13
140

) (
6
7 ,

47
140

)
(0, 0)

(
− 3

28 ,
43
140

) (
31
28 ,−

1
70

)
(0, 0)

(
− 3

28 ,
23
140

) (
31
28 ,−

11
70

)
(0, 0)

(
− 27

140 ,
47
140

) (
167
140 ,−

17
70

)
(ab, a, e)

(
1
20 ,−

27
140

) (
19
20 ,−

3
70

)
(ba, b, e)

(
− 1

20 ,−
3
70

) (
21
20 ,−

27
140

)
(aba, e, e)

(
0,− 13

140

) (
1,− 13

140

)
(27, 6)

(
13
140 ,−

3
70

) (
127
140 ,

33
140

)
(6, 27)

(
1
7 ,−

27
140

) (
6
7 ,

33
140

)
(13, 13)

(
13
140 ,−

13
140

) (
127
140 ,

13
70

)
(0, 0)

(
− 1

7 ,
33
140

) (
8
7 ,−

27
140

)
(0, 0)

(
− 13

140 ,
33
140

) (
153
140 ,−

3
70

)
(0, 0)

(
− 13

140 ,
13
70

) (
153
140 ,−

13
140

)
Table 2. α of M

(
−1; 1

4 ,
3
5 ,

1
7

)
for values of s⃗ with components in {1, . . . , 139}.
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(e, e, e)
(
0,− 19

20

) (
1,− 19

20

)
(e, e, aba)

(
0,− 9

20

) (
1,− 9

20

)
(e, a, a)

(
− 3

4 ,
11
20

) (
7
4 ,−

17
10

)
(19, 19)

(
19
20 ,−

19
20

) (
1
20 ,

19
10

)
(9, 9)

(
9
20 ,−

9
20

) (
11
20 ,

9
10
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20

) (
39
20 ,−

19
10

)
(0, 0)

(
19
20 ,−

23
20

) (
1
20 ,

17
10

)
(0, 0)

(
9
20 ,−

9
10

) (
11
20 ,

9
20

)
(0, 0)

(
19
20 ,−

19
10

) (
1
20 ,

19
20

)
Table 3. α of M

(
−1; 1

3 ,
1
2 ,

1
4

)
for each s⃗.
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(e, e, e)
(
0,− 5

4

) (
1,− 5

4

)
(e, e, aba)

(
0,− 3

4

) (
1,− 3

4

)
(e, aba, e)

(
0,− 1

4

) (
1,− 1

4

)
(5, 5)

(
5
4 ,−

5
4

) (
− 1

4 ,
5
2

)
(3, 3)

(
3
4 ,−

3
4

) (
1
4 ,

3
2

)
(1, 1)

(
1
4 ,−

1
4

) (
3
4 ,

1
2

)
(0, 0)

(
− 5

4 ,
5
2

) (
9
4 ,−

5
4

)
(0, 0)

(
− 3

4 ,
3
2

) (
7
4 ,−

3
4

)
(0, 0)

(
− 1

4 ,
1
2

) (
5
4 ,−

1
4

)
(e, aba, aba)

(
0, 1

4

) (
1, 1

4

)
(a, a, a)

(
− 5

4 ,
5
4

) (
9
4 ,−

5
2

)
(a, a, ab)

(
− 3

4 ,
3
4

) (
7
4 ,−

3
2

)
(−1,−1)

(
− 1

4 ,
1
4

) (
5
4 ,−

1
2

)
(−5, 10)

(
5
4 ,−

5
2

) (
− 1

4 ,
5
4

)
(−3, 6)

(
3
4 ,−

3
2

) (
1
4 ,

3
4

)
(0, 0)

(
1
4 ,−

1
2

) (
3
4 ,

1
4

)
(0, 0)

(
0, 5

4

) (
1, 5

4

)
(0, 0)

(
0, 3

4

) (
1, 3

4

)
(a, ab, a)

(
− 1

4 ,
1
4

) (
5
4 ,−

1
2

)
(a, ab, ab)

(
1
4 ,−

1
4

) (
3
4 ,

1
2

)
(b, b, b)

(
5
4 ,−

5
2

) (
− 1

4 ,
5
4

)
(−1, 2)

(
1
4 ,−

1
2

) (
3
4 ,

1
4

)
(1,−2)

(
− 1

4 ,
1
2

) (
5
4 ,−

1
4

)
(10,−5)

(
0, 5

4

) (
1, 5

4

)
(0, 0)

(
0, 1

4

) (
1, 1

4

)
(0, 0)

(
0,− 1

4

) (
1,− 1

4

)
(0, 0)

(
− 5

4 ,
5
4

) (
9
4 ,−

5
2

)
(b, b, ba)

(
3
4 ,−

3
2

) (
1
4 ,

3
4

)
(b, ba, b)

(
1
4 ,−

1
2

) (
3
4 ,

1
4

)
(b, ba, ba)

(
− 1

4 ,
1
2

) (
5
4 ,−

1
4

)
(6,−3)

(
0, 3

4

) (
1, 3

4

)
(2,−1)

(
0, 1

4

) (
1, 1

4

)
(−2, 1)

(
0,− 1

4

) (
1,− 1

4

)
(0, 0)

(
− 3

4 ,
3
4

) (
7
4 ,−

3
2

)
(0, 0)

(
− 1

4 ,
1
4

) (
5
4 ,−

1
2

)
(0, 0)

(
1
4 ,−

1
4

) (
3
4 ,

1
2

)
(ab, a, a)

(
− 1

4 ,
1
4

) (
5
4 ,−

1
2

)
(ab, a, ab)

(
1
4 ,−

1
4

) (
3
4 ,

1
2

)
(ab, ab, a)

(
3
4 ,−

3
4

) (
1
4 ,

3
2

)
(−1, 2)

(
1
4 ,−

1
2

) (
3
4 ,

1
4

)
(1,−2)

(
− 1

4 ,
1
2

) (
5
4 ,−

1
4

)
(3,−6)

(
− 3

4 ,
3
2

) (
7
4 ,−

3
4

)
(0, 0)

(
0, 1

4

) (
1, 1

4

)
(0, 0)

(
0,− 1

4

) (
1,− 1

4

)
(0, 0)

(
0,− 3

4

) (
1,− 3

4

)
(ab, ab, ab)

(
5
4 ,−

5
4

) (
− 1

4 ,
5
2

)
(ba, b, b)

(
1
4 ,−

1
2

) (
3
4 ,

1
4

)
(ba, b, ba)

(
− 1

4 ,
1
2

) (
5
4 ,−

1
4

)
(5,−10)

(
− 5

4 ,
5
2

) (
9
4 ,−

5
4

)
(2,−1)

(
0, 1

4

) (
1, 1

4

)
(−2, 1)

(
0,− 1

4

) (
1,− 1

4

)
(0, 0)

(
0,− 5

4

) (
1,− 5

4

)
(0, 0)

(
− 1

4 ,
1
4

) (
5
4 ,−

1
2

)
(0, 0)

(
1
4 ,−

1
4

) (
3
4 ,

1
2

)
(ba, ba, b)

(
− 3

4 ,
3
2

) (
7
4 ,−

3
4

)
(ba, ba, ba)

(
− 5

4 ,
5
2

) (
9
4 ,−

5
4

)
(aba, e, e)

(
0,− 1

4

) (
1,− 1

4

)
(−6, 3)

(
0,− 3

4

) (
1,− 3

4

)
(−10, 5)

(
0,− 5

4

) (
1,− 5

4

)
(1, 1)

(
1
4 ,−

1
4

) (
3
4 ,

1
2

)
(0, 0)

(
3
4 ,−

3
4

) (
1
4 ,

3
2

)
(0, 0)

(
5
4 ,−

5
4

) (
− 1

4 ,
5
2

)
(0, 0)

(
− 1

4 ,
1
2

) (
5
4 ,−

1
4

)
(aba, e, aba)

(
0, 1

4

) (
1, 1

4

)
(aba, aba, e)

(
0, 3

4

) (
1, 3

4

)
(aba, aba, aba)

(
0, 5

4

) (
1, 5

4

)
(−1,−1)

(
− 1

4 ,
1
4

) (
5
4 ,−

1
2

)
(−3,−3)

(
− 3

4 ,
3
4

) (
7
4 ,−

3
2

)
(−5,−5)

(
− 5

4 ,
5
4

) (
9
4 ,−

5
2

)
(0, 0)

(
1
4 ,−

1
2

) (
3
4 ,

1
4

)
(0, 0)

(
3
4 ,−

3
2

) (
1
4 ,

3
4

)
(0, 0)

(
5
4 ,−

5
2

) (
− 1

4 ,
5
4

)
Table 4. α of M

(
−2; 1

2 ,
1
2 ,

3
4

)
for each s⃗.
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4173–4203, arXiv:2009.11874.

[49] Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, J. Knot Theory Ramifications
29 (2020), 2040003, 85 pages, arXiv:1701.06567.

[50] Gukov S., Putrov P., Vafa C., Fivebranes and 3-manifold homology, J. High Energy Phys. 2017 (2017),
no. 7, 071, 80 pages, arXiv:1602.05302.

[51] Gupta R.K., Murthy S., Nazaroglu C., Squashed toric manifolds and higher depth mock modular forms,
J. High Energy Phys. 2019 (2019), no. 2, 064, 44 pages, arXiv:1808.00012.

[52] Hikami K., Mock (false) theta functions as quantum invariants, Regul. Chaotic Dyn. 10 (2005), 509–530,
arXiv:math-ph/0506073.

[53] Hikami K., On the quantum invariant for the Brieskorn homology spheres, Internat. J. Math. 16 (2005),
661–685, arXiv:math-ph/0405028.

[54] Hikami K., Quantum invariant, modular form, and lattice points, Int. Math. Res. Not. 2005 (2005), 121–154,
arXiv:math-ph/0409016.

[55] Lawrence R., Zagier D., Modular forms and quantum invariants of 3-manifolds, Asian J. Math. 3 (1999),
93–107.

[56] Maldacena J., Strominger A., AdS3 black holes and a stringy exclusion principle, J. High Energy Phys. 1998
(1998), no. 12, 005, 24 pages, arXiv:hep-th/9804085.

[57] Males J., Mono A., Rolen L., Higher depth mock theta functions and q-hypergeometric series, Forum Math.
33 (2021), 857–866, arXiv:2101.04991.

[58] Manschot J., Vafa–Witten theory and iterated integrals of modular forms, Comm. Math. Phys. 371 (2019),
787–831, arXiv:1709.10098.

[59] Matsusaka T., Terashima Y., Modular transformations of homological blocks for Seifert fibered homology
3-spheres, arXiv:2112.06210.

[60] Minahan J.A., Nemeschansky D., Vafa C., Warner N.P., E-strings and N = 4 topological Yang–Mills
theories, Nuclear Phys. B 527 (1998), 581–623, arXiv:hep-th/9802168.

[61] Murakami Y., A proof of a conjecture of Gukov–Pei–Putrov–Vafa, arXiv:2302.13526.

[62] Murthy S., Pioline B., A Farey tale for N = 4 dyons, J. High Energy Phys. 2009 (2009), no. 9, 022, 27 pages,
arXiv:0904.4253.

[63] Niebur D., Construction of automorphic forms and integrals, Trans. Amer. Math. Soc. 191 (1974), 373–385.
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