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Abstract. We construct a Clifford algebra bundle formed from the tangent bundle of
the smooth loop space of a Riemannian manifold, which is a bundle of super von Neumann
algebras on the loop space. We show that this bundle is in general non-trivial, more precisely
that its triviality is obstructed by the transgressions of the second Stiefel–Whitney class and
the first (fractional) Pontrjagin class of the manifold.
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1 Introduction

The bundle of Clifford algebras Cl(X) constructed from the tangent bundle over a Riemannian
manifold X is fundamental to spin geometry. In particular, X has a spinc structure if and only if
it is oriented and the Dixmier–Douady class of Cl(X) vanishes. In particular, the spinc condition
is related to (partial) triviality of Cl(X). The purpose of this paper is to obtain similar results
for the analogous bundle on the loop space LX of an oriented Riemannian manifold, which is
fundamental to string geometry (i.e., to spin geometry on the loop space).

The Riemannian metric on X (which we assume to be oriented throughout) induces a natural
metric on the smooth loop space. Forming the (infinite-dimensional) algebraic Clifford algebra
on each tangent space is unproblematic, but in order to make the setting amenable to analysis,
we must complete these algebras in some way.

It is a fact that the infinite-dimensional Clifford algebra has a unique C∗ norm, and completing
the fibers with respect to this norm yields a bundle of C∗-algebras. However, it turns out that
this bundle is always trivial, hence does not encode any information on whether the loop space
satisfies a spin condition.

Instead, we consider a fiberwise completion in a suitable weak topology, which leads to
a continuous bundle ALX of von Neumann algebras. The canonical grading of the Clifford
algebra carries over to the von Neumann completion, and in fact, the fibers are super factors of
type I, meaning that the fibers are type I von Neumann algebras with trivial graded center.

Super factors of type I come in two stable isomorphism classes: Those of even kind, which
are stably isomorphic to C, and those of odd kind, which are stably isomorphic to Cl1. It turns
out that if the dimension of X is even, then the fibers of ALX are of even kind, while otherwise,
they are of odd kind.

The classifying space of the automorphism group Aut(A) of a non-trivially graded, properly
infinite super factor of type I turns out to be a product of Eilenberg–MacLane spaces, BAut(A) ≃
K(Z, 3)×K(Z2, 1). Hence bundlesA → X with typical fiber A are classified by two characteristic
classes DD(A) ∈ H3(X,Z), or(A) ∈ H1(X,Z2), which we call the Dixmier–Douady class and
the orientation class. The first is an analog of the class first defined in [10]. The second class
comes from the fact that we work with bundles of super algebras, and that all automorphisms
considered are required to respect the grading.
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Our main result is the calculations of these characteristic classes for the loop space Clifford
algebra bundle ALX , which in particular shows that it is non-trivial in many cases. Explicitly,
we find:

Main Theorem 1.1. Let X be an oriented Riemannian manifold of dimension d ≥ 5. Then

2 ·DD(ALX) = τ(p1(X)), or(ALX) = τ(w2(X)),

where τ denotes transgression, and where p1(X) and w2(X) are the first Pontrjagin class, re-
spectively the second Stiefel–Whitney class. Moreover, if X is spin, then DD(ALX) equals the
transgression of the fractional Pontrjagin class 1

2p1(X).

In fact, we have a more refined version of the above theorem (see Theorem 4.16): There
is a canonical characteristic class S(X) ∈ H3(LX,Z) on the loop space such that 2 · S(X) =
τ(p1(X)), which we call loop spin class (see Definition 4.12), and DD(ALX) is expressed in
terms of this class. The interesting point is that while the fractional Pontrjagin class 1

2p1(X)
only exists when X is spin, the corresponding class S(X) on the loop space always exists.

The typical fiber of the bundle ALX is a suitable completion Ad of the algebraic Clifford
algebra on Hd = L2

(
S1,Rd

)
. The loop group LSO(d) acts naturally on the von Neumann

completion Ad by Bogoliubov automorphisms, and it turns out that ALX can be written as an
associated bundle to the looped frame bundle LSO(X) of X. Our proof of Theorem 1.1 is then
based on the fact that the map ΩSO(d) → Aut(Ad) induces an isomorphism on πk for k ≤ 2; in
other words, Aut(Ad) is the Postnikov truncation of ΩSO(d).

The relation of our Clifford von Neumann algebra bundle to other objects from loop space
spin geometry, such as the transgression of the Chern–Simons gerbe [34] and the loop space
spinor bundle [16, 17, 18] is best understood using the language of 2-vector bundles [15]. This
point of view is discussed in [19, Section 1].

Recall that a spin manifold X is called a string manifold if the fractional Pontrjagin class
1
2p1(X) vanishes. Our theorem therefore implies in particular that the loop space Clifford algebra
bundle ALX of a string manifold X is trivializable. Hence ALX admits a bundle of irreducible
modules, the loop space spinor bundle, so that LX is spin.

The converse of the above statement is false, as the transgression τ
(
1
2p1(X)

)
may vanish

without 1
2p1(X) being zero. It is a general fact that such converses require the extra condition

of fusion [31, 32, 33]. In the present context, it turns out that the bundleALX is the transgression
of a certain bundle of free fermion conformal nets [12], which (on a spin manifold) is classified
by 1

2p1(X). This will be discussed in future work.

2 Bundles of super von Neumann algebras

In this section, we define bundles of von Neumann algebras with fiber a super factor of type I,
a notion that will be explained in the next subsection. Throughout the paper, all Hilbert spaces
are assumed to be separable and all von Neumann algebras are σ-finite.

2.1 Super factors of type I and their classification

A super von Neumann algebra is a von Neumann algebra A together with a normal (i.e., ul-
traweakly continuous) involutive ∗-automorphism γ. Such an automorphism gives a direct sum
decomposition A = A0 ⊕A1, such that Ai ·Aj ⊂ Ai+j . The graded center of A is defined as

Z(A) = {a ∈ A | ∀b ∈ A : [a, b] = 0},

where the graded commutator is defined by [a, b] = ab − (−1)|a||b|ba on homogeneous elements
and extends to all of A by bilinearity.
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Definition 2.1 (super factor). We say that a von Neumann algebra A is a super factor of type I
if it is type I (as an ungraded von Neumann algebra) and its graded center is equal to C. We
say that A is properly infinite if its even part A0 is properly infinite in the usual sense.

Lemma 2.2. Let A be a super factor. Then the ungraded center Zun(A) is a graded subalgebra,
which is isomorphic to either C (trivially graded) or to C ⊕ C (with the grading operator given
by swapping the two summands).

Proof. Let a = a0+a1 ∈ Zun(A). Then comparing the odd and even components of ab and ba,
for b homogeneous, shows that both a0, a1 ∈ Zun(A). Hence Zun(A) is a graded subalgebra.

The subalgebra Zun(A) is an abelian von Neumann algebra, hence isomorphic to L∞(X) for
some measure space X. As it is a graded subalgebra, we can write Zun(A) = Z0 ⊕ Z1 for its
graded components. That A is a super factor implies that Z0 = C ·1, as any even element in the
ungraded center is also an element of the graded center, which is trivial by assumption. Hence
Zun(A) = C · 1⊕ Z1, where Z1 satisfies Z1 · Z1 ⊆ C · 1. Suppose that Zun(A) ̸= C. Then there
exists a projection p ̸= 0, 1 in Zun(A). Write p = λ1+ p1 with λ ∈ C, p1 ∈ Z1(A). Then λ ̸= 0,
as projections cannot be purely odd. Now, for any other non-zero projection q = µ1+ q1 with
pq = 0, we have

0 = pq = λµ1+ p1q1 + λq1 + µp1.

Considering the odd part, we obtain λq1 + µp1 = 0. Hence (as both λ, µ ̸= 0) q1 is a multiple
of p1, so that q lies in the span of 1 and p. As von Neumann algebras are generated by their
projections, this implies that Zun(A) is two-dimensional. An isomorphism Zun(A) ∼= C ⊕ C of
super von Neumann algebras is then obtained by mapping λ1+ µp1 to (λ+ µ, λ− µ) ∈ C⊕ C,
where p1 ∈ Z1(A) is a self-adjoint element of norm one. ■

Definition 2.3 (even/odd kind). We say that a super factor A of type I is of even kind if its
ungraded center Zun(A) is trivial, and of odd kind otherwise.

Example 2.4. The complex Clifford algebra Cld on Rd is a finite-dimensional super factor of
type I. It is of even kind when d is even and of odd kind when d is odd.

Example 2.5. If H is a graded Hilbert space with grading operator Γ, then B(H) is a super
factor of type I with grading automorphism given by conjugation with Γ. B(H) is always of
even kind, and it is non-trivially graded if and only if Γ is non-trivial and properly infinite if
and only if both H0 and H1 are infinite-dimensional.

Example 2.6. A type I super factor of odd kind is obtained by taking the super tensor prod-
uct B(H)⊗ Cl1, where Cl1 is the complex Clifford algebra of degree one.

Theorem 2.7. Let A be a super factor of type I. If A is of even kind, then it is isomorphic
to B(H), with the grading operator given by conjugation with some unitary involution Γ of H.
If A is of odd kind, then it is isomorphic to B(H) ⊕ B(H), with grading operator given by
exchanging the two summands.

Proof. We distinguish by the two cases of Lemma 2.2.
(i) If Zun(A) = C, then A is an ordinary type I factor, hence isomorphic to B(H). As

any automorphism of B(H) is inner, the grading automorphism γ is given by conjugation with
a unitary Γ, which must satisfy Γ2 = z · 1 for some z ∈ U(1) as γ is an involution. If w is some
square root of z, then Γ̃ = wΓ also implements γ and satisfies Γ̃2 = 1.

(ii) If Zun(A) = C⊕C, then (as A is type I), we have A = B(H)⊕B(K) for Hilbert spaces H
and K. The grading operator γ of A is then given by conjugation with a unitary

Γ =

(
u z
x w

)



4 M. Ludewig

on H ⊕K. Since the restriction of γ to Zun(A) swaps the two factors, we have(
0 0
0 1K

)
=

(
u z
x w

)(
1H 0
0 0

)(
u∗ x∗

z∗ w∗

)
=

(
uu∗ ux∗

xu∗ xx∗

)
and (

1H 0
0 0

)
=

(
u z
x w

)(
0 0
0 1K

)(
u∗ x∗

z∗ w∗

)
=

(
zz∗ zw∗

wz∗ ww∗

)
.

This implies that u and w are zero, hence x and z are unitary. After modifying Γ by an element
of U(1) as above, we may assume that Γ2 = 1. Then x and z are inverses to each other, and
identifying K with H using x gives an isomorphism of A to a super factor of type I of the form
claimed. ■

Remark 2.8. A reformulation of the previous theorem is that each super factor is isomorphic
to either B(H) for some super Hilbert space H or to B(H) ⊗̄Cl1 for some ungraded Hilbert
space H.

Remark 2.9. By the isomorphism Cl1 ⊗̄Cl1 ∼= B
(
C2
)
, the previous remark implies that if A

and B are two super factors of type I, then their spatial super tensor product A ⊗̄B is again
a super factor of type I. Here the product in A ⊗̄B is on homogeneous elements defined by

a1 ⊗ b1 · a2 ⊗ b2
def
= (−1)|a2||b1|a1a2 ⊗ b1b2.

Remark 2.10. The isomorphism classification of super factors of type I is complicated by the
fact that some Hilbert spaces involved may be finite-dimensional. In particular, in the case
that A = B(H) for some super Hilbert space H, there is a variety of possibilities, as the even
and the odd part of H may have different dimensions.

Calling type I super factors A, B stably isomorphic when A ⊗̄B(H) ∼= B ⊗̄B(H) for some
super Hilbert space H, the set of equivalence classes forms a group (isomorphic to Z2 and gen-
erated by Cl1), which is an infinite-dimensional version of the graded Brauer group1 considered
in [35].

2.2 The automorphism group of super factors of type I

We will now calculate the automorphism group (i.e., the group of grading-preserving ∗-automor-
phisms) of a non-trivially graded, properly infinite super factor A of type I.2 To this end, let H
be a Hilbert space and define involutions Γev and Γodd on H ⊕H by

Γev
def
=

(
1 0
0 −1

)
, Γodd

def
=

(
0 1
1 0

)
. (2.1)

Set moreover

Aev = B(H ⊕H), Aodd = B(H)⊕ B(H),

with grading automorphisms given by conjugation with Γev, respectively Γodd. Then Aev is of
even kind, while Aodd is of odd kind. One can also show that any non-trivially graded, properly
infinite super factor of type I is isomorphic to either Aev or Aodd, assuming that the Hilbert
space H is infinite-dimensional.

1This is the group of equivalence classes of finite-dimensional central simple algebras. We remark that over C,
such algebras are the same thing as a finite-dimensional von Neumann algebras.

2We remark that ∗-automorphisms of a von Neumann algebra are automatically normal, i.e., ultraweakly
continuous.



The Clifford Algebra Bundle on Loop Space 5

Proposition 2.11. The automorphism groups of Aev and Aodd are given as follows.

(i) Aut(Aev) ∼= P(U(H)×U(H))⋊ Z2, where Z2 acts by permuting the factors.

(ii) Aut(Aodd) ∼= PU(H)× Z2.

Here the letter P denotes the corresponding projective group, i.e., the quotient by U(1) (where
U(1) acts diagonally on U(H)×U(H)).

Proof. (i) It is well known that the group of (not necessarily grading-preserving) normal ∗-
automorphisms of Aev is PU(H ⊕H), the projective unitary group of H ⊕H, which acts on Aev

by conjugation. That the conjugation with a unitary U ∈ U(H ⊕ H) is grading preserving is
equivalent to the requirement

ΓevUaU∗Γev = UΓevaΓevU
∗, ∀a ∈ Aev.

Hence ΓevU
∗ΓevU is in the (ungraded) center of Aev, which consists only of multiples of the

identity. Consequently, there exists λ ∈ U(1) such that ΓevUΓev = λU . Writing

U =

(
u z
x v

)
,

we get(
u z
x v

)
= λ

(
u −z
−x v

)
,

which implies that λ ∈ {±1} and, moreover, this implies that either x = z = 0 (when λ = 1) or
u = v = 0 (when λ = −1). Hence the non-zero entries must be unitary, and we obtain

Aut(Aev) = Gev/U(1),

where

Gev =

{(
u 0
0 v

)∣∣∣∣u, v ∈ U(H)

}
∪
{(

0 z
x 0

)∣∣∣∣x, z ∈ U(H)

}
. (2.2)

There is an obvious short exact sequence

P(U(H)×U(H)) → Aut(Aev) → Z2,

which is split by sending the generator of Z2 to the operator Γodd defined in (2.1). This real-
izes Aut(Aev) as a semidirect product of P(U(H)×U(H)) with Z2.

(ii) It is straightforward to see that the group of not necessarily grading-preserving automor-
phisms of Aodd is precisely Aut(Aev). The additional requirement that such an automorphism
preserves the grading operator means that UΓoddaΓoddU

∗ = ΓoddUaU∗Γodd for all a ∈ Aodd,
where U is a representing unitary. This is the case if and only if and only if ΓoddUΓodd = λU for
some λ in the (ungraded) center of Aodd, which in this case is generated by the identity operator
and Γev. As U is either diagonal or off-diagonal, this means that(

u 0
0 v

)
=

(
λv 0
0 µu

)
, respectively

(
0 z
x 0

)
=

(
0 λx
µz 0

)
,

for some λ, µ ∈ C. So u = λv, respectively z = λx. Hence

Aut(Aodd) = Godd/U(1),

where

Godd =

{(
u 0
0 u

)∣∣∣∣u ∈ U(H)

}
∪
{(

0 u
u 0

)∣∣∣∣u ∈ U(H)

}
. (2.3)

But clearly, Godd
∼= U(H)× Z2, hence Aut(Aodd) ∼= PU(H)× Z2. ■
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The automorphism group Aut(A) of a von Neumann algebra A will always be endowed with
Haagerup’s u-topology (see [14, Section 3]). Under the identification of Proposition 2.11, this
coincides with the (quotient of the) strong topology on Gev/U(1), respectively Godd/U(1) [14,
Corollary 3.8].

Remark 2.12. The subgroups Gev and Godd of U(H ⊕H) defined in (2.2) and (2.3) both have
two connected components. It is clear that the continuous group homomorphism i from Gev/odd

to Aut(A) (sending a unitary U to the automorphism given by conjugation with U) induces an
isomorphism on π0.

Remark 2.13. Observe that Gev equals the set of homogeneous unitaries inside Aev. It follows
that all automorphisms of Aev are inner. As Aodd ∩ Godd = (Godd)0, the identity component
of Godd, only the automorphisms in the identity component Aut(Aodd)0 are inner.

Observe that the automorphism group Aut(Aodd) is a subgroup of the automorphism group
Aut(Aev). We will need the following lemma.

Lemma 2.14. If H is infinite-dimensional, then the inclusion Aut(Aodd) → Aut(Aev) is a weak
homotopy equivalence.

Proof. Consider the commutative diagram

0 U(1) Godd Godd/U(1) = Aut(Aodd) 0

0 U(1) Gev Gev/U(1) = Aut(Aev) 0

with exact rows. It is clear that the inclusion Godd → Gev is a weak homotopy equivalence, as
it is on π0 by inspection, and the connected components of Gev and Godd are contractible. We
obtain that the first two vertical maps induce isomorphisms on πk for all k, hence so must the
third. ■

Corollary 2.15. The classifying space of the automorphism group of a non-trivially graded,
properly infinite super factor A of type I has the homotopy type

BAut(A) ≃ K(Z, 3)×K(Z2, 1),

and the map induced by the inclusion Aut(A)0 → Aut(A) of the identity component is trivial in
the second component.

Proof. If A is of odd kind, then the result follows from the isomorphism Aut(A) ∼= PU(H)× Z2

(Proposition 2.11 (ii)) and the fact that PU(H) is a K(Z, 2), hence its classifying space is
a K(Z, 3). If A is of even kind, its automorphism group is homotopy equivalent (as a group) to
the automorphism of an odd factor, i.e., to PU(H)× Z2, by Lemma 2.14. This induces a weak
homotopy equivalence between the classifying spaces. ■

In particular, we obtain that the homotopy groups of Aut(A), for A a non-trivially graded,
properly infinite super factor of type I, are given by

πk(Aut(A)) =


Z2, k = 0,

Z, k = 2,

0, otherwise.

(2.4)
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2.3 Bundles of graded type I factors

Let S be a topological space and let As, s ∈ S be a collection of super von Neumann algebras.
For a subset U ⊂ S, we write A|U for the disjoint union of all As, s ∈ U . By a local trivialization,
we mean a map φ : A|U → U × A, A a super von Neumann algebra, that restricts to grading
preserving ∗-homomorphisms As to {s} ×A for each s ∈ U . Two local trivializations are called
compatible if the corresponding transition function is continuous as a map U ∩ V → Aut(A)
(endowed with Haagerup’s u-topology).

Definition 2.16. A collection A as above together with a maximal compatible collection of
transition functions is called a (continuous) von Neumann algebra bundle with typical fiber A.

If P is a principal Aut(A)-bundle over S, then the associated bundle

A = P ×Aut(A) A

is a von Neumann algebra bundle with typical fiber A in the sense of Definition 2.16. It follows
that isomorphism classes of super von Neumann algebra bundles over S correspond bijectively to
isomorphism classes of principal Aut(A)-bundles (see, e.g., [13, Section 4]). As (for sufficiently
nice spaces S) such bundles are in turn classified by maps to the classifying space BAut(A), we
obtain the following result.

Proposition 2.17. Isomorphism classes of von Neumann algebra bundles with typical fiber A
over a paracompact Hausdorff space S are in bijection with homotopy classes of maps S →
BAut(A).

Cohomology classes over BAut(A) provide characteristic classes for bundles with typical
fiber A via pullback. If A is a non-trivially graded, properly infinite super factor of type I,
Corollary 2.15 implies that

H3(BAut(A),Z) ∼= Z, H1(BAut(A),Z2) ∼= Z2.

Denote by or the generator of H1(BAut(A),Z2). There is also a preferred generator DD
of H3(BAut(A),Z), defined as the transgression of the first Chern class of the canonical U(1)-
bundle over Aut(A) (which over the identity component is U

(
A0
)
→ Aut(A)0); see Appendix A

for more details.

Definition 2.18 (characteristic classes). Let A be a non-trivially graded, properly infinite super
factor of type I and let A be a von Neumann algebra bundle with typical fiber A and classifying
map f : S → BAut(A). The characteristic classes

DD(A)
def
= f∗DD ∈ H3(S,Z), or(A)

def
= f∗or ∈ H1(S,Z2)

will be called the Dixmier–Douady class, respectively the orientation class of A.

The terminology for DD(A) follows that for the analogous class for bundles with typical fiber
the algebra of compact operators, first defined by Dixmier and Douady [10].

By Corollary 2.15, for a non-trivially graded, properly infinite super factor of type I, BAut(A)
is a product of Eilenberg–MacLane spaces. As these are classifying spaces for cohomology, we
obtain the following result.

Proposition 2.19. Suppose that S has the homotopy type of a CW complex and let A be a von
Neumann algebra bundle with typical fiber A over S, where A is a super factor of type I. Then A
is trivializable if and only if the characteristic classes DD(A) and or(A) are zero.
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Remark 2.20. For CW-complexes S, the characteristic classes of Definition 2.18 can be con-
veniently described using Čech cohomology, as follows. Over a suitable open cover {Oα}α∈I , we
can choose super Hilbert spaces Hα and grading-preserving ∗-isomorphisms ϕα : A|Oα → B(Hα).
Over two-fold intersections, we can choose families Uαβ : (Oα ∩Oβ)×Hα → Hβ of homogeneous
unitaries such that ϕα ◦ ϕ−1

β is given by conjugation with Uαβ. A Z2-valued Čech 1-cocycle is
obtained by defining εαβ = {±1}, depending on whether Uαβ is grading preserving or grading
reversing. Over Oα ∩Oβ ∩Oγ , we have

UγαUβγUαβ = λαβγ · idα

for some function λαβγ : Oα ∩ Oβ ∩ Oγ → U(1), so we obtain a U(1)-valued Čech cochain
{λαβγ}αβγ∈I . One checks that this cochain is closed with respect to the Čech coboundary, and
that a cochain obtained from another choice of unitaries {Ũαβ}αβ∈I differs from this cochain
by a coboundary. Hence we obtain a well-defined element in Ȟ2(S,U(1)). Under the Bockstein
homomorphism for the sequence Z → R → U(1), this element corresponds to the Dixmier–
Douady class.

The Dixmier–Douady class can also be defined for bundles A with typical fiber a finite-
dimensional non-trivially graded super factor A of type I. One way to do this is through the
Čech picture from Remark 2.20. A second, equivalent, way is via stabilization: We replace A
by the bundle A⊗̄B(H) for some infinite-dimensional super Hilbert space H such that both H0

and H1 are infinite-dimensional and take the characteristic classes in the sense of Definition 2.18
of this bundle.

Remark 2.21. Let A = Aev or Aodd be one of the super factors from Section 2.1, constructed
in terms of a finite-dimensional Hilbert H. In this case, it turns out that

H1(BAut(A),Z2) = Z2 and H3(BAut(A),Z) = Zn,

where n = dim(H). We get a group homomorphism Aut(A) → Aut(A⊗̄B(H ′)) (where H ′

is an infinite-dimensional Hilbert space as above) by sending φ → φ ⊗ id, and one can show
that pullback along this homomorphism induces an isomorphism on H1 and is reduction mod n
on H3. If now A is a bundle over S with typical fiber A, the classifying map for A⊗̄B(H ′) factors
through BAut(A), which shows that the Dixmier–Douady class of such a bundle is n-torsion.

Remark 2.22. A bundle A with typical fiber a properly infinite super factor of type I is
trivial if and only if A = B(H) for some bundle H of super Hilbert spaces over S. For the
class DD(A) to be zero it suffices that H exists as a bundle of Hilbert spaces which is not
necessarily globally graded (i.e., H does split locally into two subbundles but not necessarily
globally). The class or(A) is zero if H splits into the direct sum of two subbundles, but may
only be a projective bundle. In the ungraded setting, projective bundles of Hilbert spaces were
discussed in [3].

Let A and B be two von Neumann algebra bundles over a space S with typical fibers type I
super factors A and B. Then the fiberwise spatial super tensor product A⊗̄B has a canonical
structure of a von Neumann algebra bundle with typical fiber A ⊗̄B, which is again a type I
super factor (see Remark 2.9). The proof of the following result is analogous to that of Lemma 9
(respectively, Lemma 4) in [11].

Proposition 2.23. We have

or(A⊗̄B) = or(A) + or(B), DD(A⊗̄B) = DD(A) + DD(B) + β(or(A) ⌣ or(B)),

where β : H2(S,Z2) → H3(S,Z) is the Bockstein homomorphism.
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3 Clifford von Neumann algebras

In this section, we explain the construction of the von Neumann algebra completion of the
algebraic Clifford algebra, given the choice of an equivalence class of (sub-)Lagrangians, and we
recall the action by restricted orthogonal transformations on this algebra. General references
for the theory of Clifford (and, closely related, CAR) algebras and Fock representations are,
e.g., [2, 24, 26, 27, 28, 29, 36]. The completion of the Clifford algebra to a hyperfinite factor
of type II1 is considered in [24, Section 1.3], but the subsequent discussion of a completion to
a factor of type I∞ seems to be new.

3.1 Clifford algebras and Fock spaces

Let H be a real Hilbert space and denote its complexification by HC. Let Clalg(H) be the
algebraic Clifford algebra, generated by elements of HC, subject to the relation

v · w + w · v = −2⟨v, w⟩.

In order to make the situation accessible to analysis, we have to complete Clalg(H) to C∗-algebra,
using the ∗-operation given by

(v1 · · · vn)∗ = vn · · · v1, v, w ∈ HC.

In fact, any ∗-representation of Clalg(H) induces the same C∗-norm on Clalg(H) [28, Propo-
sition 1], and it follows that the Clifford algebra has a unique norm-completion Cl(H) to
a C∗-algebra, which turns out to be isomorphic to the infinite tensor product M2(C)⊗∞ [2].
It is moreover a Real C∗-algebra, as the complex conjugation of H extends to an anti-linear
∗-automorphism of Cl(H).

The situation is quite different when we ask for completions of Clalg(H) to a von Neumann
algebra. Such a completion can be obtained by the choice of a Lagrangian, which is a com-
plex subspace L ⊂ HC such that L⊥ = L. The Clifford algebra Clalg(H) then has a natural
representation πL on the Fock space FL = ΛL (the Hilbert space exterior power of L) where el-
ements v ∈ L ⊂ HC act by exterior multiplication and elements v ∈ L ⊂ HC act by contraction.
We can therefore take the von Neumann completion

ClL(H) := πL(Clalg(H))′′

in the space B(FL) of bounded operators on FL. The Fock space is a super Hilbert space with
its even/odd grading and the Fock representation is a graded representation, hence ClL(H)
is naturally a super von Neumann algebra. However, the real structure on Clalg(H) does not
extend to a real structure on ClL(H) if H is infinite-dimensional. It follows from irreducibility
of the Fock representation FL [24, Theorem 2.4.2] that any bounded operator on FL commuting
with the Clifford action is scalar, hence

ClL(H)
def
= πL(Clalg(H))′′ = B(FL), (3.1)

is a super factor of type I, of even kind.
The choice of Lagrangian can be partially eliminated as follows: Two Lagrangians L1, L2 ⊂ H

are equivalent if the difference PL1 − PL2 is a Hilbert–Schmidt operator, where PLi denotes the
orthogonal projection onto Li. By the Segal–Shale equivalence criterion, two Fock represen-
tation πL1 and πL2 are unitarily equivalent if and only if L1 and L2 are equivalent [24, The-
orem 3.4.1]. Moreover, the unitary implementing the equivalence is grading-preserving if and
only if dim

(
L1 ∩ L2

)
is even (see [25, Theorem 1.22] and [24, Theorem 3.5.1]). We denote the

equivalence class of a Lagrangian L by [L].
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For any L′ ∈ [L], ClL′(H) is a completion of Clalg(H) with respect to the pullback via πL′

of the weak operator topology on B(FL′). However, as all representations πL′ , L′ ∈ [L], are
equivalent, all these topologies coincide. As any two completions of a topological vector space
are canonically isomorphic, we obtain a universal Clifford algebra associated to an equivalence
class of Lagrangians.

Remark 3.1. An explicit description of this von Neumann algebra is as the set of equivalence
classes (aL′)L′∈[L] with aL′ ∈ ClL′(H), which are related by φL′,L′′(aL′) = aL′′ , with φL′,L′′ the
unique normal ∗-homomorphism B(FL′) → B(FL′′) sending πL′(v) to πL′′(v) for every v ∈ H.
Another approach is to take the abstract completion of Clalg(H) with respect to the ultraweak
topology induced by any πL, defined in terms of equivalence classes of Cauchy nets.

A sub-Lagrangian is a closed subspace L ⊂ HC such that L ⊆ L⊥ and such that L + L has
finite codimension in HC. Again, two sub-Lagrangians L1, L2 are called equivalent if PL1 −PL2

is a Hilbert–Schmidt operator. Associated to an equivalence class of sub-Lagrangians, we still
have a canonical completion of Clalg(H), constructed as follows. First we need the following
lemma.

Lemma 3.2. If L1, L2 are two equivalent sub-Lagrangians, then dim
(
L1⊕L1

)⊥
and dim

(
L2⊕

L2

)⊥
have the same parity.

Proof. Consider the operators JC
i = i(PLi − PLi

) on HC. Since PLi = PLi
, the operators JC

i

commute with complex conjugation, hence are the complex linear extension of operators onH de-
noted by Ji. Observe that these operators are skew-adjoint, hence by [4], they have a well-defined
index ind(Ji) = dimker(Ji) mod 2 ∈ Z2. Observe that ker(Ji)⊗R C = ker

(
JC
i

)
=
(
Li ⊕ Li

)⊥
,

hence ind(Ji) = dim
(
Li ⊕ Li

)⊥
mod 2. However, by the assumption that L1 and L2 are equiv-

alent, the difference J1 − J2 is a Hilbert–Schmidt operator, in particular compact. This implies
that ind(J1) = ind(J2), so the lemma follows. ■

For a sub-Lagrangian L, consider the complex subspace K =
(
L⊕L

)⊥
of HC. The construc-

tion of the desired completion of Clalg(H) depends on the dimension of K.

(i) If K is even-dimensional, we can find a Lagrangian F ⊂ K, and L+F ∈ [L] is a Lagrangian
in HC. This yields the completion ClL+F (H) of Clalg(H). If L′ is a sub-Lagrangian equiv-
alent to L, then by Lemma 3.2, K ′ =

(
L′ ⊕ L

′)⊥
is still even-dimensional, and for any

Lagrangian F ′ ⊂ K ′, L′ + F ′ is equivalent to L + F . Hence ClL′+F ′(H) is canonically
isomorphic to ClL+F (H).

(ii) If K is odd-dimensional, then K ⊕ C is even-dimensional and admits a Lagrangian F ⊂
K ⊕C. Then L+F is a Lagrangian in HC⊕C, equivalent to the sub-Lagrangian L⊕{0}.
Hence we obtain the completion ClL+F (H) of Clalg(H⊕R) ∼= Clalg(H)⊗Cl1. In particular,
we get a completion of Clalg(H), as a closed subalgebra of ClL+F (H). If L′ ⊂ HC is a sub-
Lagrangian equivalent to L, K ′ =

(
L′ ⊕ L

′)⊥
is still odd-dimensional, by Lemma 3.2, and

for any Lagrangian F ′ ⊂ K ′ ⊕ C, L′ + F ′ is equivalent to L + F . Hence ClL′+F ′(H)
is canonically isomorphic to ClL+F (H), and the isomorphism induces an isomorphism
between the corresponding completions of Clalg(H).

We denote by Cl[L](H) the canonical von Neumann completion of Clalg(H), determined by
the equivalence class [L] of sub-Lagrangians, as constructed above.

Observe that in the case that K is even-dimensional, (3.1) implies that Cl[L](H) ∼= B(FL′),
for any Lagrangian L′ ∈ [L]. Hence Cl[L](H) is of even kind. If K is odd-dimensional, then
Cl[L](H)⊗Cl1 ∼= B(FL) for some Lagrangian L in HC⊕C equivalent to L⊕{0}. Hence Cl[L](H)
is of odd kind.
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3.2 The restricted orthogonal group

The algebraic Clifford algebra Clalg(H) has an action of the orthogonal group O(H) by Bo-
goliubov automorphisms, by its universal property. This action extends to an action on the
C∗-Clifford algebra Cl(H). In contrast, by the Segal–Shale equivalence criterion, the Clifford
algebra Cl[L](H) does no longer have an action of the entire orthogonal group O(H).

Definition 3.3 (restricted orthogonal group). The restricted orthogonal group of H with re-
spect to an equivalence class [L] of sub-Lagrangians, denoted by Ores(H, [L]), consists of those
orthogonal transformations g of H such that the commutator [g, PL] with the orthogonal pro-
jection PL onto L is a Hilbert–Schmidt operator. If the equivalence class [L] is clear from the
context, we write just Ores(H).

That Ores(H, [L]) acts on Cl[L](H) is well known in the case that L is equivalent to a La-
grangian (see, e.g., [2, Section 6]). To get the same statement in the odd case, embed

Ores(H, [L]) −→ Ores(H ⊕ R, [L⊕ 0])

with the upper left corner embedding. Then L⊕ 0 is equivalent to a Lagrangian and the latter
group now acts on the Clifford von Neumann algebra Cl[L](H ⊕ R) ∼= Cl[L](H) ⊗ Cl1 of even
kind. Then Ores(H, [L]) preserves the subalgebra

Cl[L](H) ∼= Cl[L](H)⊗ C ⊂ Cl[L](H)⊗ Cl1.

We always consider Ores(H, [L]) with the coarsest topology finer than the norm topology
induced from O(H) that makes the group homomorphism

θ : Ores(H) → Aut(Cl[L](H)) (3.2)

continuous, which sends an orthogonal transformation to its Bogoliubov automorphism. In fact,
Ores(H, [L]) is a Banach Lie group with this topology [26, Sections 6.2 and 2.4].

Theorem 3.4. The map θ from (3.2) induces an isomorphism on πk for k ≤ 5.

The proof uses the bundle of implementers, defined as follows. Depending on whether the
equivalence class [L] contains a Lagrangian or not, we may choose a Lagrangian L either in HC
or in HC ⊕ C and let FL be the corresponding Fock space. For g ∈ Ores(H, [L]), define

Impg = {U ∈ U(FL) | ∀v ∈ H : πL(gv) = UπL(v)U
∗}.

By irreducibility of the Fock representation, Impg is a U(1)-torsor. It follows from the proof of
Proposition 2.11 that U is either even or odd. Let Imp be the union of all Impg, a subgroup
of U(FL). Then Imp can be equipped with the structure of a Banach Lie group such that the
map Imp → Ores(H) is a central extension of Banach Lie groups (where the fiber over g is Impg),
see [18, Section 3.5].

Proof. First suppose that Cl[L](H) is of even kind. In this case, we may assume that L is
a Lagrangian, so that Cl[L](H) ∼= B(FL). Now, the group Ores(H) is well known to have the
homotopy type of the based loop space of the infinite orthogonal group [26, Proposition 12.4.2].
In particular, the first few homotopy groups are

πk(Ores(H)) =


Z2, k = 0,

0, k = 1,

Z, k = 2,

0, k = 3, 4, 5.

(3.3)
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Comparing with (2.4), we observe that it has the same homotopy groups as Aut(Cl[L](H))
for k ≤ 5. For k /∈ {0, 2}, the statement of the theorem is therefore automatic, and it remains
to consider the cases k = 0 and k = 2.

For k = 0, we use that when g does not lie in the identity component of Ores(H), then
dim

(
gL∩L

)
is odd [24, Theorem 3.5.1]. Hence the (projectively unique) unitary U : FgL → FL

with πgL(a) = UπL(a)U
∗ (which exists as gL and L are equivalent) is parity reversing. Let

Λg : FL → FgL be the unitary map given by taking the exterior power of g. As Λg is parity
preserving, the unitary UΛg on FL is still parity reversing. By Remark 2.12, this implies that
the ∗-automorphism of Aut(Cl[L](H)) ∼= B(FL) given by conjugation with UΛg lies in the non-
identity component of Aut(Cl[L](H)). But UΛg implements θ(g), hence [θ(g)] is the non-trivial
element in π0(Aut(Cl[L](H))).

We now consider k = 2. Here we use the fact that Imp is a generator for the group of line
bundles over the identity component Ores(H)0, i.e., the first Chern class of Imp is a generator
for H2(Ores(H)0,Z) ∼= π2(Ores(H)) ∼= Z [29, Proposition 1.2].

On the other hand, Imp is (by definition) the pullback of the canonical line bundle over
Aut(Cl[L](H))

(
given over the identity component by U

(
A0
))
, the first Chern class of which is

a generator for H2(Aut(Cl[L](H))0,Z) ∼= Z.
But this implies that θ is an isomorphism on H2, hence also on π2 (applying the Hurewicz

isomorphism to the identity component).

This finishes the proof in the even case, so we now discuss the odd case. Then there exists
a sub-Lagrangian L in the fixed equivalence class such that K =

(
L⊕ L

)⊥
is one-dimensional.

The Clifford algebra Cl[L](H
′), is then of even kind, where H ′ ⊂ H is the real subspace of K⊥.

We now have the commutative diagram

Ores(H
′) Aut(Cl[L](H

′))

Ores(H) Aut(Cl[L](H)),

where the right vertical map is θ 7→ θ⊗ idCl1 (using the isomorphism Cl[L](H) ∼= Cl[L](H
′)⊗Cl1)

and the left vertical map is the upper corner embedding Ores(H
′) → Ores(H). The latter is

a homotopy equivalence, as the quotient Ores(H
′)/Ores(H) is homeomorphic to the unit sphere

in H, which is contractible. The long exact sequence for homotopy groups therefore implies that
the map Ores(H

′) → Ores(H) is a weak homotopy equivalence. By the first part of the proof,
the bottom horizontal map induces an isomorphism on πk for k ≤ 5. The same statement for
the top horizontal map now follows from commutativity of the diagram and the fact that all
groups involved are either Z or Z2. ■

4 The loop space Clifford algebra bundle

In this section, we define the loop space Clifford algebra bundle and calculate its characteristic
classes. We also discuss transgression and define the loop spin class.

4.1 Definition of the bundle

Let X be an oriented Riemannian manifold of dimension d and let LX = C∞(S1, X
)
be its

smooth loop space. LX is an infinite-dimensional manifold, modeled on the nuclear Fréchet
space C∞(S1,Rd

)
. Its tangent space TγLX at a loop γ ∈ LX can be identified with the

space C∞(S1, γ∗TX
)
of vector fields along γ. It has a natural inner product coming from
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the standard parametrization of S1 and the Riemannian metric of X, turning it into a pre-
Hilbert space. As we will form completed Clifford algebras (which are insensitive to whether the
underlying pre-Hilbert space is complete or not [24]), it is natural to consider the completion

Hγ
def
= L2

(
S1, γ∗TX

)
,

of the tangent space. These Hilbert spaces fit together to a bundle H of Hilbert spaces over LX.
To describe the bundle structure ofH, let SO(X) be the oriented frame bundle ofX and LSO(X)
its loop space. LSO(X) is a principal LSO(d)-bundle as X is orientable.3 Now, LSO(d) acts on
the Hilbert space

Hd def
= L2

(
S1,Rd

)
(4.1)

by pointwise multiplication, and we have the canonical identification

H = LSO(X)×LSO(d) H
d.

Here we interpret elements q ∈ LSO(X) as orthogonal transformations Hd → Hγ . As the
group LSO(d) acts smoothly on Hd, this bundle is a smooth bundle of Hilbert spaces.4

For each γ ∈ LX, we can form the algebraic Clifford algebra Clalg(Hγ) and its canonical C∗-
completion Cl(Hγ). These algebras fit together to a continuous bundle of C∗-algebras, which,
as above, can be identified with the associated bundle LSO(X)×LSO(d) Cl

(
Hd
)
, where LSO(d)

acts on Cl
(
Hd
)
through O

(
Hd
)
, by Bogoliubov automorphisms. Here it is important that the

homomorphism LSO(d) → O
(
Hd
)
→ Aut

(
Cl
(
Hd
))

is continuous when O
(
Hd
)
carries the norm

topology [1, Proposition 4.35]; this implies that Cl(H) has the structure of a continuous bundle
of C∗-algebras. However, this bundle seems rather uninteresting for loop space spin geometry,
by the following.

Theorem 4.1. The bundle Cl(H) is trivial.

Proof. The action of LSO(d) extends to an action of the orthogonal group O
(
Hd
)
of Hd,

which is contractible by Kuiper’s theorem. So Cl(H) is an associated bundle for the principal
O
(
Hd
)
-bundle LSO(X)×LSO(d) O

(
Hd
)
, which must be trivial by contractibility of O

(
Hd
)
and

its classifying space BO
(
Hd
)
. Hence Cl(H) is trivial as well. ■

Remark 4.2. As an infinite tensor product algebra, Cl
(
Hd
)
is an example of a so-called strongly

self-absorbing C∗-algebra, which has a contractible automorphism group [8, 9]. Hence any
bundle with typical fiber Cl

(
Hd
)
must in fact be contractible. However, this argument does

not take into account the grading or the real structure, while the above argument also shows
that Cl(H) is trivial as a bundle of graded, real C∗-algebras.

In order to obtain a non-trivial bundle, we now construct a suitable completion of Clalg(H)
to a bundle of von Neumann algebras. To this end, we observe that the model space Hd

C admits
a canonical sub-Lagrangian

Ld = span
{
ξ ⊗ eint | n ∈ N, ξ ∈ Cd

}
. (4.2)

3Here one only needs to show that any loop γ has a lift to LSO(X). Such a lift exists precisely if γ∗TX is
trivializable. Now, a vector bundle E over S1 is trivializable if and only if w1(E) = 0. For E = γ∗TX, we have
w1(γ

∗TX) = γ∗w1(TX), which is zero for all loops γ if and only if X is orientable.
4We remark that often, Hilbert spaces bundles are only continuous (namely when they have the structure

group U(H) with its strong topology, which is not a Lie group). But in this case, the map LSO(d) → O
(
Hd

)
is

smooth when the latter group carries its Banach Lie group structure.
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The space
(
Ld+L

d)⊥
is just the space of constant functions on the circle, which has dimension d.

By the discussion in Section 3.1, we therefore obtain a canonical von Neumann completion

Ad
def
= Cl[Ld]

(
Hd
)
, (4.3)

which is of even kind when d is even and of odd kind when d is odd.
To obtain a von Neumann completion Aγ of Clalg(Hγ) for γ ∈ LX, we observe that any

lift q ∈ LSO(X) gives a Lagrangian qLd ⊂ Hγ . It is now crucial that the multiplication ac-
tion of LSO(d) on Hd is in fact by elements of the restricted orthogonal group Ores

(
Hd
)
=

Ores

(
Hd,

[
Ld
])

and that we get a continuous group homomorphism

LSO(d) −→ Ores

(
Hd
)
, (4.4)

see [26, Proposition 6.3.1], [18, Proposition 3.23]. Hence for any two lifts q, q′ ∈ LSO(X) of γ,
the Lagrangians qLd and q′Ld are equivalent. We therefore obtain a well-defined von Neumann

completion Aγ
def
= Cl[qLd](Hγ), independent of the choice of q. These algebras can be canonically

identified with the fibers of the bundle

ALX
def
= LSO(X)×LSO(d) Ad. (4.5)

This is a continuous bundle of von Neumann algebras as the homomorphism

θ̃ : LSO(d) Ores

(
Hd
)

Aut(Ad) (4.6)

obtained by composing (4.4) with the Bogoliubov action (3.2) is continuous.

Remark 4.3. An alternative construction of the von Neumann completion of Clalg(Hγ) is the
following. Let Dγ = i∇dt be the operator acting on the bundle γ∗TX ⊗ C using the pullback of
the Levi-Civita connection on TX. Let Lγ be the Hilbert space direct sum of eigenspaces to
negative eigenvalues of Dγ . This is a sub-Lagrangian in HC

γ , which can be shown to be equivalent

to qLd for any q ∈ LSO(d). For details, see [19, Section 1.3].

Remark 4.4. A closely connected bundle of Clifford algebras on LX has recently been consid-
ered in the somewhat different context of rigged von Neumann algebra bundles by Kristel and
Waldorf [16].

For a Lie group G, we denote by ΩG ⊂ LG the based loop space of G, i.e., the set of smooth
loops γ : S1 → G with γ(0) = e, the neutral element of G. For G = SO(d), the restriction
of (4.4) to based loops gives a continuous group homomorphism ΩSO(d) −→ Ores

(
Hd
)
.

Lemma 4.5. If d ≥ 5, the above homomorphism induces an isomorphism on πk for k ≤ 2.

Proof. For d even, this statement is well known: By [26, Proposition 12.5.2], for any m ∈ N,
the map ΩSO(2m) → Ores(H

2m) is (2m−3)-connected. This shows the claim in even dimensions
d = 2m ≥ 6. For d ≥ 5 odd, we consider the commutative diagram

ΩSO(d) Ores

(
Hd
)

ΩSO(d+ 1) Ores

(
Hd+1

)
,

(4.7)

the bottom map of which is an isomorphism on πk for k ≤ d− 3 by the discussion for the even
case. The right vertical map in (4.7) is the restriction of the map

O
(
Hd
)
→ O

(
Hd
)
×O

(
H1
)
⊂ O

(
Hd+1

)
.
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The left vertical map of the diagram is induced by the canonical embedding SO(d) → SO(d+1),
which induces an isomorphism on πk for k ≤ 3. By [6, Proposition 7.1], the inclusion of ΩSO(d)
into the continuous based loop space of SO(d) is a homotopy equivalence. Hence ΩSO(d) →
ΩSO(d+ 1) induces an isomorphism on πk for k ≤ 2.

By the above considerations and the commutativity of (4.7), the map

πk(ΩSO(d)) → πk
(
Ores

(
Hd
))

is injective, and the right vertical map in (4.7) is surjective on πk, for k ≤ 2. As seen in (3.3),
the first few homotopy groups of Ores

(
Hd
)
are Z2, 0 and Z, which implies that all maps in the

diagram must be isomorphisms on πk. ■

Combining the above result with Theorem 3.4, we obtain the following result.

Corollary 4.6. If d ≥ 5, the composition

θ̃ : ΩSO(d) Ores

(
Hd
)

Aut(Ad)

induces an isomorphism on πk for k ≤ 2.

4.2 Transgression and the loop spin class

For a manifold Y and a coefficient group R, transgression is the composition

τ : Hk(Y,R) Hk
(
LY × S1, R

)
Hk−1(LY,R),ev∗

∫
S1

where the left map is pullback with the evaluation map ev : LY × S1 → Y and the right map
is fiber integration over the S1 factor. Transgression is natural, in the sense that for a smooth
map f : Y → Y ′, the diagram

Hk(Y ′, R) Hk−1(LY ′, R)

Hk(Y,R) Hk−1(LY,R)

f∗

τ

Lf∗

τ

commutes. Let G = SO(d) or Spin(d). The classifying spaces BG and the universal bundle EG
admit an infinite dimensional manifold model, so that their smooth loop space LBG is well-
defined. As LEG is again contractible and LG acts freely on it, the quotient LBG is a model
for the classifying space BLG. We therefore have transgression homomorphisms

τ : Hk(BG,R) −→ Hk−1(BLG,R).

Remark 4.7. Of course, transgression is also defined for general topological spaces, using the
continuous loop space instead of the smooth version. However, as we work with the smooth loop
space throughout, we presented the construction in this case. We recall that the smooth loop
space of a manifold is homotopy equivalent to the continuous loop space, and the same is true
for based loop spaces [6, Proposition 7.1].

The base loop group ΩG is the kernel of the evaluation-at-zero map ev0 : LG → G, so we
have the short exact sequence

ΩG LG G,

ι

(4.8)
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which is split via the inclusion ι : G → LG as constant loops. This induces a fibration of the
corresponding classifying spaces, and an exact sequence

H3(BSO(d),Z) H3(BLSO(d),Z) H3(BΩSO(d),Z) (4.9)

on the corresponding cohomology groups. The first group here is Z2, generated by the third
universal integral Stiefel–Whitney class W3 (i.e., the Bockstein image of the second universal
Stiefel–Whitney class w2). As BΩSO(d) ≃ SO(d), the right group equals H3(SO(d),Z) ∼= Z.

Lemma 4.8. If d ≥ 5, the sequence (4.9) is split exact, hence we have a canonical isomorphism

H3(BLSO(d),Z) ∼= Z× Z2.

Proof. As (4.8) is split exact, with G = SO(d) including into LG as constant loops, the corre-
sponding fibration of classifying spaces admits a section Bι. This induces a left split of (4.9).
That the sequence (4.9) is exact in the middle follows from the Serre spectral sequence for the
classifying space fibration of (4.8). The right map in (4.9) is surjective by the following argu-
ment. By Corollary 4.6, the map Bθ̃ : BΩSO(d) → BAut(Ad) induces an isomorphism on πk
for k ≤ 3. It is moreover trivially surjective on π4 as π4(BAut(Ad)) = 0. Hence pullback induces
an isomorphism

Bθ̃∗ : H3(BAut(Ad,Z))
∼=−→ H3(BΩSO(d),Z).

On the other hand, the group homomorphism θ̃ : ΩSO(d) → Aut(Ad) extends to all of LSO(d),
hence the above isomorphism factors through H3(BLSO(d),Z). This shows that the right map
in (4.9) must be surjective. ■

We are now interested in the following commutative diagram

H3(BLSO(d),Z) H3(BLSpin(d),Z)

H4(BSO(d),Z) H4(BSpin(d),Z),

τ

·2

τ ∼= (4.10)

where d ≥ 5. The bottom left group is Z, generated by the universal Pontrjagin class p1. The
bottom right group is also Z, generated by the fractional Pontrjagin class 1

2p1, and the bottom
horizontal map has been shown to be multiplication by two on generators by McLaughlin [21,
proof of Lemma 2.2], more specifically it sends p1 to the class 2 · 1

2p1. The right transgression
map is an isomorphism as BSpin(d) is 2-connected [21, p. 149].

Proposition 4.9. If d ≥ 5, the top horizontal map in (4.10) is surjective.

For the proof, we need the following lemma.

Lemma 4.10. The map H3(BΩSO(d),Z) → H3(BΩSpin(d),Z) is an isomorphism.

Proof. Observe that ΩSpin(d) is canonically identified with the identity component of ΩSO(d).
We therefore obtain the commutative diagram

ΩSpin(d) = ΩSO(d)0 Aut(Ad)0

ΩSO(d) Aut(Ad).
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The horizontal maps of this diagram induce isomorphisms on πk for k ≤ 2, by Corollary 4.6.
It follows that in the corresponding diagram on classifying spaces, the horizontal maps induce
isomorphisms on πk for k ≤ 3. They are moreover trivially surjective on π4 (since this group is
trivial for the right-hand side). By Whitehead’s theorem [30, Theorem 10.28], these maps also
induce isomorphisms on Hk, for k ≤ 3 (and a surjection on H4). From the universal coefficient
theorem and the five lemma, we obtain that they also induce isomorphisms on Hk, for k ≤ 3
(and a surjection on H4). Moreover, the map H3(BAut(Ad),Z) → H3(BAut(Ad)0,Z) is an
isomorphism by Corollary 2.15. The lemma follows. ■

Proof of Proposition 4.9. Consider the commutative diagram

H3(BLSO(d),Z) H3(BLSpin(d),Z)

H3(BΩSO(d),Z) H3(BΩSpin(d),Z).
∼=

The bottom horizontal map is an isomorphism by Lemma 4.10. The left horizontal map is
surjective by Lemma 4.8. Now the counterclockwise composition is surjective, hence so must
be the clockwise composition. As the two rightmost groups are isomorphic to Z, we obtain in
particular that the top horizontal map must be surjective, as claimed. ■

We conclude that the square (4.10) takes the following form:

Z× Z2 Z

Z Z.

pr1

(·2,0)

·2

(4.11)

Corollary 4.11. If d ≥ 5, there is a unique class S ∈ H3(BLSO(d),Z) such that

2 ·S = τ(p1) and Bι∗S = 0,

where Bι : BSO(d) → BLSO(d) is induced by the splitting (4.8). Moreover, under the homo-
morphism H3(BLSO(d),Z) → H3(BLSpin(d),Z), this class is sent to τ

(
1
2p1
)
.

Proof. Using Lemma 4.8, an inspection of the diagram (4.11) shows that there are two solu-
tions for the equation 2 · S = τ(p1), which differ by the 2-torsion class ev∗0W3. The condition
Bι∗S = 0 removes this ambiguity. The additional statement also follows from the commutative
diagram (4.11). ■

Definition 4.12 (universal loop spin class). We call the class S ∈ H3(BLSO(d),Z) from
Corollary 4.11 the universal loop spin class.

4.3 Proof of the main theorem

In this section, we express the characteristic classes of ALX in terms of transgression and hence
prove the main theorem from the introduction. Let X be an oriented Riemannian manifold
of dimension d ≥ 5 and let f : X → BSO(d) be the classifying map for its oriented frame
bundle SO(X). Then the looped map Lf : LX → LBSO(d) = BLSO(d) classifies the principal
LSO(d)-bundle LSO(X).

Definition 4.13 (loop spin class). The loop spin class of X is

S(X)
def
= Lf∗S ∈ H3(LX,Z).
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Let ALX be the Clifford von Neumann algebra bundle on LX constructed in Section 4.1.
Its typical fiber is the Clifford von Neumann algebra Ad from (4.3). By Proposition 2.17, the
bundle is therefore classified by a map

h : LX −→ BAut(Ad).

The characteristic classes of ALX are then by definition the pullback along h of the universal
classes or and DD on BAut(Ad). On the other hand, by (4.5), ALX is an associated bundle
to LSO(X), via the action (4.6) of LSO(d) on Ad. This means that the classifying map h of the
bundle ALX admits the factorization

h : LX BLSO(d) BAut(Ad).
Lf Bθ̃

Proof of Main Theorem 1.1. We first consider the orientation class. To this end, we consider
the following commutative diagram:

H1(BAut(Ad),Z2)

H1(LX,Z2) H1(BLSO(d),Z2) H1(BΩSO(d),Z2)

H2(X,Z2) H2(BSO(d),Z2).

Bθ̃∗ ∼=

h∗

Lf∗

τ

f∗

τ ∼=

(4.12)

Here all groups independent of X are Z2, and all the maps independent of X are isomor-
phisms: Indeed, it is well known that H2(BSO(d),Z2) = Z2, generated by the universal Stiefel–
Whitney class w2. That the right transgression map is an isomorphism has been shown by
McLaughlin [21, proof of Proposition 2.1]. This implies H1(BLSO(d),Z2) ∼= Z2. That also
H1(BAut(Ad),Z2) = Z2 follows from (2.4) and the Hurewicz isomorphism. The rightmost ver-
tical map is an isomorphism by Corollary 4.6. It follows that the map H1(BLSO(d),Z2) →
H1(BΩSO(d),Z2) is surjective. That it is also injective is clear as all groups involved are Z2.

The above discussion implies that Bθ̃∗or = τ(w2). Hence using commutativity of the left
rectangle in (4.12), we obtain

h∗or = Lf∗Bθ̃∗or = Lf∗τ(w2) = τ(f∗w2) = τ(w2(X)),

where we recall that the pullback f∗w2 is by definition the second Stiefel–Whitney class w2(X)
of X. This proves the claim.

For the third integer cohomology, we consider the commutative diagram

H3(BAut(Ad),Z)

H3(LX,Z) H3(BLSO(d),Z) H3(BLSpin(d),Z)

H4(X,Z) H4(BSO(d),Z) H4(BSpin(d),Z).

Bθ̃∗
h∗

∼=

Lf∗

τ

f∗

τ

·2

τ∼=

(4.13)

Here we use that LSpin(d) acts on Ad along the homomorphism Lp : LSpin(d) → LSO(d), which
induces a map BLSpin(d) → BAut(Ad). The bottom right square is just (4.10).

Lemma 4.14. The top right vertical map in (4.13) is an isomorphism.
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Proof. Consider the following commutative diagram:

H3(BAut(Ad),Z) H3(BLSpin(d),Z)

H3(BΩSO(d),Z) H3(BΩSpin(d),Z).

∼=

∼=

(4.14)

The left vertical map is an isomorphism by Corollary 4.6. The bottom horizontal map is an
isomorphism by Lemma 4.10. Hence the diagonal map in (4.14) is an isomorphism. The fact that
all groups involved are isomorphic to Z then implies that also the right vertical map in (4.14) is
an isomorphism. ■

Both the top and bottom right groups in (4.13) are canonically isomorphic to Z, with gener-
ators the universal Dixmier–Douady class DD, respectively the fractional universal Pontrjagin
class 1

2p1. By Lemma 4.14 and the fact that the bottom right map is an isomorphism (see the
discussion below (4.10)), we observe that the transgression of 1

2p1 equals the pullback of DD
along the top right vertical map in (4.13), up to a possible sign. This sign turns out to be +1,
but establishing this involves rather intricate calculations which we defer to the appendix. By
a diagram chase, we then get that 2 ·Bθ̃∗DD = τ(p1), hence

τ(p1(X)) = τ(f∗p1) = Lf∗τ(p1) = 2 · Lf∗Bθ̃∗DD = 2 · h∗DD = 2 ·DD(ALX).

This finishes the proof of Main Theorem 1.1. ■

Remark 4.15. Replacing the Lagrangian Ld with
(
Ld
)⊥

results in a different von Neumann

algebra bundle ÃLX , satisfying DD
(
ÃLX

)
= −DD(ALX). This follows from the fact that the

Lie algebra cocycle for the group extension Imp → Ores

(
Hd
)
is replaced by its negative under

this change, by the calculation in [2, Theorem 6.10]. Hence any choice of sign for the Dixmier–
Douady class (in comparison to τ(p1)) can be achieved by a modification of the Clifford algebra
construction.

The following is a more refined version of Main Theorem 1.1.

Theorem 4.16. Let d ≥ 5. Then we have

or(ALX) = τ(w2), DD(ALX) = S(X) + ev∗0W3(X).

Proof. With a view on Lemma 4.8, it follows from Main Theorem 1.1 that

DD(ALX) = S(X) + n ev∗0W3(X), for n ∈ {0, 1}.

We have ι∗XS(X) = 0 and ι∗Xev∗0W3(X) = W3(X), where ιX : X → LX is the inclusion as
constant loops and ev0 : LX → X is evaluation at zero. For the proof of Theorem 4.16, it is
therefore left to show that ι∗XDD(ALX) = W3(X). By naturality of the Dixmier–Douady class,
we have ι∗XDD(ALX) = DD(ι∗XALX).

Now, the bundle ι∗XALX over X can be written as an associated bundle,

ι∗XALX
∼= SO(X)×SO(d) Ad,

where SO(d) acts on Ad through Bogoliubov automorphisms, induced by the multiplication
with constant loops on Hd. Denote by K ⊂ Hd the subspace of constant functions. Then
both KC and Ld are invariant under the action of SO(d) and Ld is a Lagrangian in H ′ = K⊥

C .
Let A′

d = B(FLd) be the von Neumann algebra completion of Clalg(H
′) with respect to this

Lagrangian. Then identifying Cl(K) ∼= Cld, we have Ad = A′ ⊗̄Cld and ι∗XALX splits as a tensor
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product, ι∗XALX
∼= A′⊗̄Cl(X), where A′ = SO(X) ×SO(d) A

′ and Cl(X) is the usual complex
Clifford algebra bundle on X. By Theorem 2.23, we have

DD(ι∗XALX) = DD(A′) + DD(Cl(X)) + β(or(A′) ⌣ or(Cl(X))).

It is well known that DD(Cl(X)) = W3(X) (see [11, Lemma 7] and [20]).
We show that A′ is trivializable, which finishes the proof. To this end, observe that as A′

is associated to SO(X), its classifying map X → BAut(A′) factors through BSO(d). We now
show that the map BSO(d) → BAut(A′) is contractible. To this end, observe that the action
of ι(SO(d)) ⊂ LSO(d) preserves Ld. This means that for each q ∈ SO(d), multiplication by ι(q)
commutes with the complex structure J = i

(
PLd − P

L
d

)
. The image of ι(SO(d)) in Ores

(
Hd
)

therefore lies in the subgroup U
(
Hd

J

)
⊂ Ores

(
Hd
)
, which is contractible. Hence the classifying

map SO(d) → LSO(d) → Ores

(
Hd
)
→ Aut(A′) of A′ is null-homotopic, and so is the induced

map on classifying spaces. This proves the claim. ■

4.4 A twisted Clifford algebra bundle

There is a variant for the construction of the loop space Clifford algebra bundle which takes
the model space Hd

S = L2
(
S1,Rd ⊗ S

)
as input, where S is the Möbius bundle over S1. This

has been considered, e.g., in [16, Section 6.2]. The main difference here is that this space has
a canonical Lagrangian Ld

S, which under the identification of Hd
S with 2π-anti-periodic functions

on R can be written as

Ld
S =

{
ξ ⊗ eit(n+

1
2
) | n ∈ N0, ξ ∈ Rd

}
. (4.15)

Hence the corresponding Clifford von Neumann algebra AS
d = Cl[Ld

S ]

(
Hd

S
)
is of even kind in

any dimension d. In a similar fashion to before, we obtain a bundle AS
LX of super type I factors.

Theorem 4.17. Let d ≥ 5. Then the characteristic classes of AS
LX are

or
(
AS

LX

)
= τ(w2(X)), DD

(
AS

LX

)
= S(X).

Proof. This is shown analogously to the proof of Theorem 4.16. The only difference is the
calculation of ι∗XDD

(
ALX

)
= DD

(
ι∗XAS

LX

)
. In this case, ι∗XAS

LX can be identified with the
associated bundle SO(X)×SO(d) A

S
d. The point is now that the action of SO(d) preserves the

Lagrangian Ld
S, hence the homomorphism SO(d) → Ores

(
Hd

S
)
→ Aut

(
AS

d

)
factors through the

contractible subgroup U
((
Hd

S
)
J

)
, with J the complex structure determined by Ld

S. Therefore,
ι∗XAd

LX is trivializable and DD
(
ι∗XAS

LX

)
= 0. ■

A Sign discussion

In this appendix, we fix the sign indeterminacy present in the proof of Theorem 4.16 above.
Precisely, we prove the following.

Proposition A.1. For d ≥ 5, the transgression

τ(p1) ∈ H3(LBSO(d),Z) = H3(BLSO(d),Z)

of the universal first Pontrjagin class equals two times the pullback of the universal Dixmier–
Douady class DD ∈ H3(BAut(Ad),Z) along the map on classifying spaces induced by the com-
position

θ̃ : LSO(d) Ores

(
Hd
)

Aut(Ad).
j θ
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For definiteness, we emphasize that we use the (standard) convention for Pontrjagin classes
that for any complex line bundle L with underlying real bundle LR, we have p1(LR) = c1(L)

2.
We recall the definition of the universal Dixmier–Douady class DD. To begin with, recall

that for a topological group G with classifying space fibration G → EG → BG, there is a ho-
momorphism

τ̃ : Hk(BG,R) −→ Hk−1(G,R),

natural in G, which is called transgression and should not be confused with the notion of
transgression discussed in Section 4.2.5 In the case of G = Aut(Ad) and k = 3, the transgression
homomorphism

τ̃ : H3(BAut(Ad),Z) −→ H2(Aut(Ad),Z) (A.1)

is an isomorphism, and the universal Dixmier–Douady class DD is by definition the class that
is sent to the first Chern class c1(Gd) ∈ H2(Aut(Ad),Z) of the canonical U(1)-bundle Gd

over Aut(Ad).
As the classes we are interested in are not torsion, we may work over real coefficients. We

consider the diagram

H3(BAut(Ad),R) H3
(
BOres

(
Hd
)
,R
)

H3(BLSO(d),R) H4(BSO(d),R)

H2(Aut(Ad),R) H2
(
Ores

(
Hd
)
,R
)

H2(LSO(d),R) H3(SO(d),R),

Bθ∗

∼=

τ̃

Bj∗

∼=

τ̃ τ̃

τ
∼=

τ̃

θ∗ j∗

∼=
τ

which commutes by naturality of the transgression maps (A.1). By the results of Section 4 and
the universal coefficient theorem, all groups in this diagram are isomorphic to R and all maps
are isomorphisms.

In a first step, we observe that the pullback of the bundle Gd under the map θ is precisely the
implementer bundle Imp → Ores

(
Hd
)
, so that the statement of Proposition A.1 is equivalent to

the equality

2 · j∗c1(Imp) = τ(τ̃(p1)).

Since the three groups on the right are all Fréchet Lie groups, we may work with de Rham
cohomology instead of singular cohomology. Here the transgression homomorphisms τ̃ may be
described as follows. Let α ∈ Hk

dR(BG) and let π∗α ∈ Hk
dR(EG) be its pullback. Then since EG

is contractible, π∗α = dβ for some β ∈ Ωk(EG). The transgression of α is then defined by

τ̃(α) = ι∗β, (A.2)

where ι : SO(d) → ESO(d) is the inclusion of a fiber.
The de Rham cohomology groups Hk

dR(SO(d)) are best understood using the isomorphism
with the Lie algebra cohomology group Hk(so(d),R), which identifies a Lie algebra k-cocycle α
with the left-invariant 3-form α on SO(d) that coincides with α at the identity. We now have
the following general statement.

Lemma A.2. We have τ̃(p1) = σ, the left invariant 3-form corresponding to the Lie algebra
cocycle

σ(x, y, z) =
1

8π2
⟨x, [y, z]⟩, x, y, z ∈ so(d).

5Both this notion of transgression and the one discussed in Section 4.2 are special cases of the more general
notion of transgression in a fiber bundle [5].
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The proof uses the theory of Chern and Simons [7], which we recall now. Let ω be a connection
1-form on a principal G-bundle E over B with curvature Ω. Let P ∈ Sym2(g∗)G be an invariant
polynomial on g. Then the corresponding Chern–Simons form is TP (ω) ∈ H3(E,R) defined by

TP (A) = P (ω ∧ Ω)− 1

6
P (ω ∧ [ω, ω]),

see [7, formula (3.5)]. Denoting by ι : G → E the inclusion of a fiber (for some fixed base
point e ∈ E), one uses that the curvature form Ω is horizontal, so that ι∗Ω = 0, while ι∗ω = ωG,
the Maurer–Cartan form of G. Hence

ι∗TP (ω) = −1

6
P (ωG ∧ [ωG, ωG]),

which differs from the formula (3.11) in [7] by a factor of 2. Going through the conventions used
in [7] for the wedge product and commutator of g-valued differential forms (see [7, p. 50]), one
obtains that ι∗TP (ω) is the left-invariant form corresponding to the Lie algebra cocycle

α(x, y, z) = −1

3
P (x⊗ [y, z] + y ⊗ [z, x] + z ⊗ [x, y]). (A.3)

Proof. We take G = SO(d) and E = ESO(d), B = BSO(d), the universal bundles. Choos-
ing models for these that are infinite-dimensional Fréchet manifolds (for example, the infinite
Grassmannian and Stiefel manifold), we may choose a connection 1-form ω ∈ H1(ESO(d), so(d)).
Setting P (X ⊗ Y ) = −tr(XY )/8π2, [7, Proposition 3.2] states that

dTP (ω) = P (Ω⊗ Ω) = − 1

8π2
tr
(
Ω2
)
.

By the usual Chern–Weil formulas for Pontrjagin classes, we see that this equals the pull-
back π∗p1 of the de Rham representative of the universal first Pontrjagin class along the bundle
projection π : ESO(d) → BSO(d).

Using the description (A.2) of the transgression homomorphism, we see that τ̃(p1) = ι∗TP (ω).
As discussed above, the pullback ι∗TP (ω) is the left invariant differential form that corresponds
to the Lie algebra cocycle α given by (A.3). For our particular choice of P , we get

α(x, y, z) =

(
−1

3

)
·
(
− 1

8π2

)
tr(x[y, z] + y[z, x] + z[x, y]) = σ(x, y, z). ■

Lemma A.3. We have τ(σ) = −ω/2π, where ω is the left-invariant 2-form on LSO(d) corre-
sponding to the Lie algebra cocycle

ω(X,Y ) =
1

2π

∫
S1

tr(X(t)Y ′(t)), X, Y ∈ Lso(d).

This result can be found as [26, Proposition 4.4.4], but with incorrect prefactors and an
incomplete proof, which is why we repeat the proof below.

Proof. Tangent vectors X, Y at γ ∈ LSO(d) can be identified with those elements of LMatd×d

such that X̃ ∈ Lso(d), where X̃(t) = γ(t)−1X(t). We now calculate

τ(σ)γ(X,Y ) =

∫
S1

σ(γ′(t), X(t), Y (t))dt =

∫
S1

σ
(
γ(t)−1γ′(t), γ(t)−1X(t), γ(t)−1Y (t)

)
dt

=
1

8π2

∫
S1

tr
(
γ(t)−1γ′(t)

[
X̃(t), Ỹ (t)

])
dt.
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Let β ∈ Ω1(LSO(d)) be given by

βγ(X) =

∫
S1

tr
(
γ(t)−1γ′(t)X̃(t)

)
dt.

For the exterior derivative of β, we find

dβγ(X,Y ) = ∂X{β(Y )}γ − ∂Y {β(X)}γ − βγ([X,Y ])

=

∫
S1

(
tr
(
X̃ ′(t)Ỹ (t)

)
− tr

(
Ỹ ′(t)X̃(t)

)
− tr

(
γ(t)−1γ′(t)[X̃(t), Ỹ (t)]

))
dt

for suitable extensions of X and Y to vector fields on LSO(d). Integrating by parts, we see that
dβ = −2 · 2π · ω − 8π2 · τ(σ), hence 2π · τ(σ) and −ω are cohomologous. ■

Let G̃ → G be a central U(1)-extension of a Fréchet Lie groups, inducing a Lie algebra
homomorphism g̃ → g. Choosing a linear section of the Lie algebra homomorphism g̃ → g gives
an identification g̃ = g⊕ R. With respect to this choice, the Lie bracket of g̃ is given by

[(X,λ), (Y, µ)] = ([X,Y ],Ω(X,Y ))

for some continuous Lie algebra cocycle 2-cocycle Ω, which represents a class in H2
c (g,R). The

first Chern class of the principal U(1)-bundle G̃ → G is then given by

c1(G̃) =
1

2π
Ω, (A.4)

where Ω denotes the associated left-invariant 2-form, see for example [26, Proposition 4.5.6].
In the case that G = Ores(H, [L]) and G̃ = ImpL for some real Hilbert space with a La-

grangian L ⊂ HC, the relevant Lie algebra cocycle has been computed in several places; see,
e.g., [2, Theorem 6.10], [22, Theorem 10.2] or [23, Theorem 6]. The result is

Ω(X,Y ) =
1

8
tr(J [J,X][J, Y ]), X, Y ∈ ores

(
Hd
)
, (A.5)

where Γ = i(PL − PL) is the complex structure determined by the Lagrangian L.
When trying to apply these results to the specific Hilbert space Hd defined in (4.1), we face

the difficulty that the subspace Ld ⊂ Hd defined in (4.2) is only a sub-Lagrangian. We deal
with this issue as follows:

(i) If d is even we let K =
(
Ld⊕L

d)⊥
be the even-dimensional subspace of constant functions

and choose a Lagrangian L0 ⊂ K. Then L = Ld + L0 ⊂ Hd
C is a Lagrangian.

(ii) If d is odd, we let K =
(
Ld ⊕ L

d)⊥ ⊕ C and again choose a Lagrangian L0 ⊂ K.
Then L = Ld + L0 is a Lagrangian in Hd

C ⊕ C. By definition, the implementer bundle
over Ores

(
Hd
)
is the restriction of the implementer bundle over Ores

(
Hd ⊕ R

)
, hence

the group cocycle associated to this extension is the restriction of the cocycle (A.5)
to ores

(
Hd
)
⊂ ores

(
Hd⊕R

)
. Given an element g ∈ LSO(d), the element j(g) acts onHd⊕R

through multiplication by g on the first summand and the identity on the second, and con-
sequently, for X ∈ Lso(d), the operator j∗X acts by multiplication with X on the first
summand and by zero on the second.

To have a uniform notation, we write H for either the Hilbert space Hd or for Hd ⊕ R in the
case that d is odd and let L ⊂ H be the Lagrangian described above.

Lemma A.4. We have 2 · j∗c1(Imp) = −ω/2π.
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A similar computation, for the Lagrangian (4.15) instead of L, can be found in [18]; unfor-
tunately, the result is off by a factor of ±i. Proposition 6.7.1 in [26] is an analogous result for
the basic central extension of restricted unitary group Ures(H) of a polarized complex Hilbert
space H.

Proof. We will establish the cocycle identity

2 · j∗Ω = −ω, (A.6)

which gives the result by (A.4). By continuity and bilinearity, it suffices to verify that both Lie
algebra cocycles evaluate identically on the specific Lie algebra elements X,Y ∈ Lso(d) of the
form

X(t) = ae−ikt, Y (t) = be−iℓt, a, b ∈ so(d), k, ℓ ∈ Z.

On these elements, the right-hand side of (A.6) is given by

ω(X,Y ) =
1

2π

∫ 2π

0
tr(X(t)Y ′(t))dt

= − iℓ

2π

∫ 2π

0
tr(ab)e−i(k+ℓ)tdt =

{
−iℓ · tr(ab) k + ℓ = 0,

0 otherwise.
(A.7)

To calculate the left-hand side of (A.6), we write

j∗X =

(
x′ x
x x′

)
, j∗Y =

(
y′ y
y y′

)
with respect to the decomposition HC = L⊕ L. In other words, x′ = PLXPL and x = PLXPL

and similarly for y′ and y, while x denotes the conjugation of x by the real structure of HC.
Then since j∗X and j∗Y are restricted, the off-diagonal entries x and y are Hilbert–Schmidt
operators and a straightforward calculation gives

Ω(j∗X, j∗Y ) =
i

2
tr(xy − yx). (A.8)

Write Vn =
{
ξ ⊗ eint | ξ ∈ Cd

}
⊂ Hd

C. We observe that j∗X sends Vn to Vn+k and j∗Xj∗Y
sends Vn to Vn−k−ℓ. On the other hand, PL and PL preserve the subspaces Vn for n ̸= 0 and
send V0 to K (where K = V0 if d is even, while K = V0⊕C if d is odd). We conclude that both xy
and xy send Vn to Vn−k−ℓ, respectively Vn−k−ℓ ⊕ C if d is odd. Choosing an orthonormal basis
adapted to the decomposition HC =

⊕
n∈Z Vn, respectively HC = (

⊕
n∈Z Vn) ⊕ C to calculate

the trace on the right-hand side of (A.8), we see that the result can be non-zero only if k+ℓ = 0.

So suppose now that k = −ℓ and let ξ ⊗ eint ∈ V C
n , n ≥ 1. Then we have

xy(ξ ⊗ χn) =


abξ ⊗ χn 1 ≤ n ≤ ℓ− 1,

aP 0bξ ⊗ χn n = ℓ,

0 otherwise,

yx(ξ ⊗ χn) =


baξ ⊗ χn, 1 ≤ n− 1 ≤ −ℓ− 1,

bP 0aξ ⊗ χn, n = −ℓ,

0, otherwise,
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where P0 is the orthogonal projection onto L0 in K. For ξ ⊗ 1 ∈ V0, we find

xy(ξ ⊗ 1) =


P0abξ ⊗ 1, ℓ > 0,

P0aP 0bξ ⊗ 1, ℓ = 0,

0, otherwise,

yx(ξ ⊗ 1) =


P0baξ ⊗ 1, ℓ < 0,

P0bP 0aξ ⊗ 1, ℓ = 0,

0, otherwise.

Concluding, if ℓ > 0, we obtain

Ω(j∗X, j∗Y ) =
i

2
tr(xy) =

i

2

(
ℓ−1∑
n=1

tr(ab) + tr
(
aP 0b

)
+ tr(P0ab)

)
=

iℓ

2
tr(ab).

Here we used that

tr
(
aP 0b

)
+ tr(P0ab) = tr(ab),

which follows from the following calculation. First, because a and b are real and skew-adjoint
and P0 is self-adjoint, we get

tr(aP0b) = tr(baP0) = tr((baP0)∗) = tr(P0(−a)(−b)) = tr
(
P 0ab

)
,

hence

tr
(
aP 0b

)
+ tr(P0ab) = tr

(
P 0ab

)
+ tr(P0ab) = tr(ab),

using P 0 + P0 = id. If ℓ < 0, we obtain in a similar fashion

Ω(j∗X, j∗Y ) = − i

2
tr(yx) = − i

2

|ℓ|−1∑
n=1

tr(ba) + tr
(
bP 0a

)
+ tr(P0ba)

 = − i|ℓ|
2
tr(ab).

Finally, if ℓ = 0, then

Ω(j∗X, j∗Y ) =
i

2
tr(xy − yx) =

i

2

(
tr
(
P0aP 0b

)
− tr

(
P0bP 0a

))
=

i

2

(
tr(P0ab)− tr(P0aP0b)− tr(P0ba) + tr(P0bP0a)

)
=

i

2

(
tr(P0ab)− tr(ba) + tr

(
P 0ba

))
= 0.

Comparing with (A.7), this establishes (A.6). ■
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