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Abstract. We carry the index theory for manifolds with boundary of Bär and Ballmann
over to first order differential operators on metric graphs. This approach results in a short
proof for the index of such operators. Then the self-adjoint extensions and the spectrum
of the Dirac operator on the complex line bundle are studied. We also introduce two types
of boundary conditions for the Dirac operator, whose spectrum encodes information of the
underlying topology of the graph.
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1 Introduction

Schrödinger operators on metric graphs, known as quantum graphs, have a long history of study
with applications in many fields, including mathematics, physics and engineering. They pro-
vide toy models for quantum mechanics, but also describe the motion of particles through thin
metallic wires called nanowires. We will mainly focus on the following mathematical aspects of
the theory of quantum graphs, namely self-adjoint extensions, which are realised by imposing
boundary conditions at each vertex, and the index theory of these operators. A full treatment of
self-adjoint extensions can be found in [10, 11, 13, 14], which is summarised by Kuchment [15],
the take-away being that for the Schrödinger operator self-adjoint extensions are given by a com-
bination of Dirichlet, von Neumann and Robin boundary conditions. Index theory for quantum
graphs was treated by Fulling, Kuchment and Wilson [10], relating the index to heat kernel
asymptotics. A nice overview of the study of quantum graphs is given for example by Kuch-
ment [15], the monograph [5] by Berkolaiko and Kuchment gives an introduction to the theory
of quantum graphs.

In order to study the effect of spin on the quantummechanics of graphs, the Dirac operator has
to be considered. The first ones to study a two-dimensional, quantum-mechanical Dirac operator
on graphs were Bulla and Trenkler [7]. They studied self-adjoint extensions of the Dirac operator
on directed graphs and computed its spectrum on a junction of three wires, a graph for which
the Schrödinger operator had previously been considered by Exner and Šeba [9]. Bolte and
Harrison [6] considered this Dirac operator in a similar way to the approach taken in this paper:
the graph under consideration is metric in the sense that each edge has an associated length, and
its boundary conditions are given by a unitary matrix describing complex transition probability
amplitudes. Post [16] introduced a discrete notion of the Dirac operator and computed the index
of the discrete and metric Dirac operators, by finding that it is equal to the Euler-characteristic
of the graph. For more information on the study of Dirac operators on metric graphs, see the
survey article [12] written by Harrison.

The index theory of Dirac operators on manifolds with boundary was initiated by the seminal
paper of Atiyah, Patodi and Singer [1], whose main achievement was the discovery of a non-
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local boundary condition, formulated in terms of the spectrum of the boundary operator. The
theory centred on boundary value problems for Dirac operators was then simplified and unified
by Bär and Ballmann [2, 3], in which they characterised all extensions of the Dirac operators
with linear subspaces of the Czech-space, a Banach space formed from the eigenspaces of the
boundary operator. These results were then extended by Bär and Bandara [4] to general first-
order differential operators. We will work in the spirit of the Bär–Ballmann framework, but the
theory does not apply directly to the one-dimensional case, since there is no notion of a boundary
operator in this case, since the boundary is zero-dimensional.

The point of view in this paper is as follows: A metric graph can be reinterpreted as a one-
dimensional Riemannian manifold with boundary, where each connected component is isomor-
phic to a closed interval. We then consider the Dirac operator on this one-dimensional manifold,
subject to boundary conditions that respect the underlying graph structure. The aim is to study
the self-adjoint extensions and the index of this operator, and to find interesting boundary con-
ditions.

After fixing notation, we consider general first-order differential operators on metric graphs
with coefficients in a general bundle, without specifying the boundary conditions. The Bär–
Ballmann approach leads to a new proof of the index theorem for first-order operators on graphs
(see Section 3 and Theorem 3.5), which has already been proved by different methods for Dirac
operators by Post [16] and for general operators by Fulling, Kuchment and Wilson [10].

We then turn to the scalar Dirac operator. We first study its self-adjoint extensions and
find that these are given by boundary conditions which are graphs of unitary endomorphisms,
see Theorem 4.1. Self-adjoint extensions have already been studied by Bulla and Trenkler [7]
and Bolte and Harrison [6] for another Dirac operator acting on a two-dimensional bundle over
the graph. Since the scalar Dirac operator acts on a one-dimensional bundle, the conditions
on self-adjoint extensions are more restrictive, leading to fewer but simpler such extensions. In
particular, self-adjoint extensions exist only if the graph is a directed Eulerian graph.

In Section 4.2, we take a closer look at the spectrum of the scalar Dirac operator under
boundary conditions given by graphs of endomorphisms. Here, the endomorphisms are not
necessarily unitary, so that the spectrum is no longer real. Theorem 4.5 tells us that the zero-
locus of the multidimensional characteristic polynomial of the endomorphism whose graph gives
the boundary condition completely determines the spectrum of the Dirac operator. In the case
that all lengths are commensurable, the spectrum can be computed explicitly in terms of the
eigenvalues of the endomorphism. For a reducible boundary condition, we obtain a splitting
property of the spectrum, i.e., we can find subgraphs such that the spectrum of the scalar
Dirac operator is the union of the spectra of the scalar Dirac operator of these subgraphs (see
Theorem 4.12).

In the last part, we discuss two types of boundary conditions. The first is given by certain
permutation matrices which encode decompositions of the underlying graph into directed trails,
the spectrum of the Dirac operator is then explicitly calculable and is fully determined by the
lengths of the trails appearing in the decomposition. The second boundary condition is given
by the directed adjacency matrix, which distributes the inflow at a vertex evenly among the
outgoing edges. This boundary condition is in general no longer self-adjoint, but it links the
spectrum of the Dirac operator to the appearance of cycles in the graph. Thus, both types of
boundary conditions reveal properties of the cycles and trails present in the graph, linking its
topology to the spectrum of the Dirac operator.

2 Preliminaries

A metric graph G = (V,E, l) is given by a directed multigraph with vertex set V and edge set E
and a length function l : E → (0,∞), e 7→ le. For each edge e ∈ E we denote by ∂−e the tail
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of e and by ∂+e the head of e. For our purposes, we will always assume that our metric graph
is finite and has no isolated vertices.

We associate to G the following disconnected (Riemannian) 1-manifold with boundary

Ĝ =
⊔
e∈E

[0, le],

on which we have the following function spaces:

L2
(
Ĝ,Cr

)
=
⊕
e∈E

L2([0, le],Cr),

H1
(
Ĝ,Cr

)
=
⊕
e∈E

H1([0, le],Cr),

C∞(Ĝ,Cr
)
=
⊕
e∈E

C∞([0, le],Cr).

Next, we define a vector space in which we store boundary values of functions. As each function
has two boundary values for each edge, one at its tail and one at its head, we need a vector
space that is generated by two copies of the edge set, denoted by Ē = E+ ⊔ E−, where E± :=
{e± | e ∈ E}. Define the said vector space to be Cr,Ē = Cr ⊗ CĒ . Standard Sobolev estimates
tell us that each function in H1

(
Ĝ,Cr

)
is continuous when restricted to a single edge and that

there is a well-defined bounded operator

tr : H1
(
Ĝ,Cr

)
→ Cr,Ē , f = (fe)e∈E 7→

∑
e∈E

fe(0)⊗ e− + fe(le)⊗ e+.

This allows us to introduce boundary conditions on the graph: A boundary condition is a lin-
ear subspace B ⊆ Cr,Ē , we then denote the space of H1-functions which fulfill the boundary
condition B by

H1
B

(
Ĝ,Cr

)
=
{
f ∈ H1

(
Ĝ,Cr

)
| tr(f) ∈ B

}
.

If B = {0}, we write H1
0

(
Ĝ,Cr

)
instead.

There exists a boundary map ∂ : Ē → V , which for an edge e ∈ E sends e− ∈ Ē to the tail
∂−e ∈ V and e+ ∈ Ē to the head ∂+e ∈ V of e. Given a vertex v ∈ V , set Ēv := ∂−1({v}) ⊆ Ē,
which in turn generates a subspace Cr,Ēv of Cr,Ē .

Definition 2.1. A boundary condition B is local iff there are linear subspaces Bv ⊆ Cr,Ēv , such
that B =

⊕
v∈V Bv.

Remark 2.2. This notion of locality is different from the notion of locality introduced by Bär
and Ballmann [2, Definition 7.9]. In fact, every boundary condition on the manifold

⊔
e∈E [0, le]

is local in the sense of Bär and Ballmann, and non-locality is a phenomenon that occurs only in
higher dimensions. Locality in our sense means that the boundary condition sees the structure
of the graph and imposes a condition per vertex such that the conditions at two different vertices
are independent of each other.

We define also Cr,E := Cr⊗CE , as well as the boundary maps ∂± : E → V , mapping e → ∂±e.

The subsets E±
v := ∂−1

± ({v}) ⊆ E induce subspaces Cr,E±
v ⊆ Cr,E . Note that there are canonical

inclusions ι± : Cr,E → Cr,Ē sending e to e±. For v ∈ V , the subspace Cr,Ēv is equal to the direct

sum ι+
(
Cr,E+

v
)
⊕ ι−

(
Cr,E−

v
)
.

In the case that r = 1, we omit r in the above definitions. We equip all so far defined
vector spaces with the canonical inner products making any two elements of the generating sets
orthonormal to each other.
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CĒ

=

⊕C · e−

e−

ie−

C · e+

ie+

e+

∂−e ∂+ee

f(0) f(l)
f

CE

e

ie

ι− ι+

Figure 1. The spaces CĒ , CE for a graph consisting of a single edge e. The continuous function f has

boundary values in CĒ .

Example 2.3. Let G be a graph consisting of one edge e of length l, compare Figure 1. We
then have

CE = C · e, CĒ = C · e− ⊕ C · e+, C∞(Ĝ,C
)
= C∞([0, l],C).

For f ∈ C∞(Ĝ,C
)
,

tr(f) = f(0) · e− + f(l) · e+

holds.
There are two cases: Either we have ∂−e ̸= ∂+e, or ∂−e = ∂+e, in which case G is a loop. In

the first case, we have

CĒ∂−e = C · e−, CĒ∂+e = C · e+,

CE−
∂−e = C · e, CE−

∂+e = {0},

CE+
∂−e = {0}, CE+

∂+e = C · e,

and the local boundary conditions are given by the subspaces

{0}, CĒ∂−e , CĒ∂+e , CĒ ⊆ CĒ .

In the second case ∂−e = ∂+e = v, we have

CĒv = CĒ , CE−
v = CE , CE+

v = CE

and the local boundary conditions are given by any linear subspace B of CĒ .
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Given two endomorphism fields σ,V ∈ C∞(Ĝ,Cr×r
)
, we can define a first order differential

operator

D : C∞(Ĝ,Cr
)
→ C∞(Ĝ,Cr

)
, f 7→ σf ′ + Vf.

We will always assume that the differential operator D is elliptic, i.e., that σ is non-singular at
every point. D naturally extends to a bounded operator

Dmax : H1
(
Ĝ,Cr

)
→ L2

(
Ĝ,Cr

)
and consequently for a boundary condition B we can restrict Dmax to H1

B

(
Ĝ,Cr

)
, yielding the

operator DB. If B = {0}, write Dmin instead. These operators will be the center of our study.
It is straightforward to check that the unbounded operator

DB : H1
B

(
Ĝ,Cr

)
⊆ L2

(
Ĝ,Cr

)
→ L2

(
Ĝ,Cr

)
is closed, densely defined and a Fredholm operator. Furthermore, we have the following Green’s
formula.

Lemma 2.4. For f, g ∈ H1
(
Ĝ,Cr

)
, we have that

⟨Dmaxf, g⟩ −
〈
f,D†

maxg
〉
= ⟨σ0 tr(f), tr(g)⟩,

where D† is the formal adjoint of D and

σ0 : Cr,Ē → Cr,Ē ,
∑
e∈E

ae ⊗ e− + be ⊗ e+ 7→
∑
e∈E

−σe(0)ae ⊗ e− + σe(le)be ⊗ e+,

where σ = (σe)e∈E.

We directly obtain the following assertion.

Proposition 2.5. Let B be a boundary condition, define the adjoint boundary condition by

Bad :=
{
y ∈ Cr,Ē | ∀b ∈ B : ⟨σ0b, y⟩ = 0

}
= (σ0B)⊥.

Then, the adjoint of DB is given by D†
Bad. In particular, DB is self-adjoint iff D is formally

self-adjoint and B = Bad.

Corollary 2.6. The adjoint of Dmax is D†
min and the adjoint of Dmin is D†

max.

3 The index of DB

By elementary ODE-theory we can solve the equation

Dmaxf = g

on each edge separately for any g ∈ L2
(
Ĝ,Cr

)
. Hence Dmax is surjective. Furthermore, it is

easily seen that the dimension of the solution space of the equation

Dmaxf = 0

is equal to r on each single edge, and since the kernel of Dmax is just the direct sum of the
kernels of the single edges, we obtain

dimkerDmax = r|E|.

We have therefore proven the lemma.
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Lemma 3.1. The following equations hold:

indDmax = r|E|, indDmin = −r|E|.

In order to prove the general index formula, we pursue the approach developed by Bär and
Ballmann. We need the following proposition:

Proposition 3.2. Let H be a Hilbert space, E and F Banach spaces and let L : H → E and
P : H → F be bounded linear maps. Assume that P : H → F is onto. Then, L|kerP : kerP → E
is Fredholm of index k if and only if L⊕ P : H → E ⊕ F is Fredholm of index k.

Proof. See [2, Proposition A.1]. ■

Analogous to [2, Corollary 8.7], we have the following.

Lemma 3.3. Let B be a subspace of Cr,Ē, B⊥ be the orthogonal complement to B and let
P : Cr,Ē → Cr,Ē be the orthogonal projection onto B⊥. Then,

L : H1
(
Ĝ,Cr

)
→ L2

(
Ĝ,Cr

)
⊕B⊥

g 7→ (Dmaxg, P tr g)

is a Fredholm operator with the same index as DB.

Proof. The kernel of P tr is equal to H1
B

(
Ĝ,Cr

)
. The statement then follows directly from

Proposition 3.2. ■

As in [2, Corollary 8.8], we go on to obtain the lemma.

Lemma 3.4. Let B1 ⊆ B2 ⊆ Cr,Ē be boundary conditions. Then,

indDB2 = indDB1 + dimB2/B1.

Proof. Since B1 is a subspace of B2, the orthogonal complement B⊥
2 is a subspace of B⊥

1 .
Denote the inclusion of B⊥

2 into B⊥
1 by ι. The diagram

L2
(
Ĝ,Cr

)
⊕B⊥

2� _

id⊕ ι

��

H1
(
Ĝ,Cr

)
(D,P2)

77

(D,P1)

''

L2
(
Ĝ,Cr

)
⊕B⊥

1

commutes, where, as in Lemma 3.3, the operator Pi is the composition of tr with the orthogonal
projection onto B⊥

i . Clearly, id⊕ ι is a Fredholm operator with index

ind(id⊕ ι) = ind(ι) = −dim
(
B⊥

1 /B
⊥
2

)
= −dim(B2/B1).

Since the index is additive, we have

indDB1 = ind(D,P1) = ind(D,P2) + ind id⊕ι = indDB2 − dimB2/B1. ■

Theorem 3.5. For any boundary condition B, the following formula for the index of DB holds:

ind(DB) = dimB − r|E|.

Proof. Applying Lemma 3.4, the index of DB is given by

dimDB = dimB + indD0 = dimB + indDmin = dimB − r|E|. ■
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4 The scalar Dirac operator

For the rest of the paper, we will focus on the scalar Dirac operator, that is, we take r = 1 and
set D = i d

dx . We will first study its self-adjoint extensions.

4.1 Self-adjoint extensions

Let A : CE → CE be a linear map, we can then define an associated boundary condition

Γ(A) :=
{
ι+(x) + ι−(Ax) | x ∈ CE

}
⊆ CĒ

which we call the graph of A. We say that A is a G-endomorphism, if Γ(A) is a local boundary
condition. In this case A restricts to a homomorphism

Av : CE+
v → CE−

v

for all v ∈ V .

Theorem 4.1. Let B be a boundary condition on G. Then, DB is self-adjoint iff there exists
a unitary map A : CE → CE, such that B = Γ(A).

Proof. Let B be such that DB is self-adjoint. Since the index of a self-adjoint operator is zero,
by Theorem 3.5, the dimension of B is equal to the number of edges, denoted by n. Choosing
a basis b1, . . . , bn of B, let

b±i = π±(bi) ∈ CE

for i = 1, . . . , n, where π± : CĒ → CE is the map sending e± to e and e∓ to 0. Now, assume
that there exist λ1, . . . , λn, such that

n∑
i=1

λib
+
i = 0.

Letting

b =
n∑

i=1

λibi,

we arrive at π+(b) = 0. Since B is equal to its adjoint boundary condition, by Proposition 2.5
we have

0 = ⟨σ0(b), b⟩ = i⟨π−(b), π−(b)⟩ − i⟨π+(b), π+(b)⟩ = i⟨π−(b), π−(b)⟩.

Therefore, π−(b) is also zero, which implies that b is equal to zero. Since b1, . . . , bn is a basis
of B,

λ1 = · · · = λn = 0

follows. Consequently, the vectors b+1 , . . . , b
+
n are linearly independent. Considering that the

dimension of CE is equal to n, it follows that b+1 , . . . , b
+
n forms a basis of CE . Define A as the

linear map sending b+i to b−i for i ∈ {1, . . . , n}. Since B = Bad, we have〈
σ0(bi), bj

〉
= 0
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for i, j ∈ {1, . . . , n}, hence

i
〈
b−i , b

−
j

〉
− i
〈
b+i , b

+
j

〉
= 0.

Rearranging this equation and using the definition of A, this yields〈
b+i , b

+
j

〉
=
〈
Ab+i , Ab

+
j

〉
,

which proves that A is unitary. It is easily checked that A is a G-endomorphism. Therefore,
each bi is contained in Γ(A) for i ∈ {1, . . . , n} and, consequently, the same can be said for B.
Equality, then, holds by equality of dimensions.

Conversely, it is easily checked that for a given unitary map A : CE → CE , the graph Γ(A)
is a boundary condition such that Γ(A)ad = Γ(A). ■

Unfortunately, the existence of local, self-adjoint boundary conditions poses quite some re-
strictions on the graph itself:

Proposition 4.2. If there exists a local boundary condition B such that DB is self-adjoint, then
every connected component of G is an Eulerian directed multigraph.

Proof. By Theorem 4.1, there exists a unitary G-endomorphism A such that B is the graph
of A. Restricting A to each vertex space, we then obtain isometries Av from CE+

v to CE−
v , and

hence the dimensions of the two spaces must be equal, implying that each vertex has as many
ingoing as outgoing edges. ■

4.2 The spectrum of the Dirac operator

We proceed with the study of the spectrum σ(DB) of DB and start with some general properties:

Proposition 4.3. Let B be a boundary condition on G. If the dimension of B is not equal to
the number of edges n of G, then the spectrum of DB is equal to C. Otherwise, the spectrum
of DB is equal to the point spectrum, i.e., σ(DB) = σp(DB).

Proof. Assume that λ is an element of the resolvent set of DB. Then the operator DB − λI
is bijective, and hence the index of (D − λI)B = DB − λI must be zero. Theorem 3.5 implies
that the dimension of B is equal to n. Consequently, if the dimension of B is not equal to n,
the resolvent set of DB is empty.

Now, let the dimension of B be equal to n. For λ ∈ C, we need to show that injectivity
of DB − λI implies surjectivity. Assuming that DB − λI is injective, by Theorem 3.5, the
codimension of ran(DB−λI) is zero. Furthermore, DB−λI has closed range since it is Fredholm.
Together, this implies that DB − λI is surjective. ■

We now turn to boundary conditions given by G-endomorphisms. The spectrum of the Dirac
operator under such boundary conditions is closely related to the eigenvalues of the defining G-
endomorphism. However, the different lengths of the edges distort the powers of the variables in
the characteristic polynomial, such that it is necessary to introduce a multi-dimensional version.
To this end, introduce the coordinate functions

xe : CE → C, xe

(∑
e′∈E

ae′e
′
)

= ae.

Definition 4.4. For a G-endomorphism A, define the multi-dimensional characteristic polyno-
mial PA of A to be the polynomial on CE given by

PA(x) = det(diag(x)−A),
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where diag(x) is the linear map on CE given by
∑

e∈E xee ⊗ e∗. The characteristic function
PA,l : C → C with respect to the length function l is given by

PA,l(λ) = PA(exp(iλl)),

where exp(iλl) =
∑

e∈E exp(iλle)e.

The next theorem relates the eigenvalues of the Dirac operator to the zeroes of the charac-
teristic function of A.

Theorem 4.5. Let A be a G-endomorphism. Then the spectrum of DΓ(A) is equal to the set of
zeroes of PA,l, i.e.,

σ
(
DΓ(A)

)
= P−1

A,l ({0}).

The multiplicity of an eigenvalue λ is given by

mΓ(A)(λ) = dimker(diag(exp(iλl))−A).

Remark 4.6. Note that PA,l(λ) does not capture the kernel of A. For instance, if A = 0, then
the spectrum of DΓ(0) is empty.

Proof. Let λ ∈ σ
(
DΓ(A)

)
. Since the dimension of Γ(A) is equal to the number of edges of G,

by Proposition 4.3, there exists an eigenvector ϕ ∈ C∞(Ĝ) to the eigenvalue λ, i.e., ϕ fulfills

Dϕ = λϕ, trϕ ∈ Γ(A).

The first condition implies that on each edge ϕ is of the form we exp(−iλxe) for some we ∈ C
and together with the second condition we obtain the equation

A
∑

we exp(−iλle)e =
∑

wee,

which implies PA,l(λ) = 0. Conversely, it is easy to see that any element of ker(diag(exp(iλl))−A)
defines an eigenfunction of DΓ(A) to the eigenvalue λ. ■

If all edges of the directed multigraph have the same length, the spectrum of DΓ(A) is par-
ticularly easy to compute:

Corollary 4.7. Let all edges have the same length l and A be a G-endomorphism. Let µ1, . . . , µm

be the non-zero eigenvalues of A. Then, there exist unique α1, . . . , αm ∈ R and φ1, . . . , φm ∈
[0, 2π) such that

µj = exp(αj + iφj).

The spectrum of DΓ(A) is then given by

σ
(
DΓ(A)

)
= {(φj − iαj + 2πk)/l | j ∈ {1, . . . ,m}, k ∈ Z}.

Remark 4.8. Similar results exist for the Laplace operator on metric graphs, see for exam-
ple [5, Theorem 2.1.8], [14, Theorem 19] and the main theorems in [18].

Proof. By Theorem 4.5, λ is an eigenvalue of DΓ(A) if and only if eiλl ∈ C is an eigenvalue of A.
This proves the corollary. ■
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The following lemma allows us to delete vertices that have exactly one in-coming and one
outgoing edge when dealing with the multi-dimensional characteristic polynomial. This will
facilitate future arguments and calculations regarding the spectrum of the Dirac operator.

Consider the following setup: Let G be a metric directed multigraph and assume that there
exists a vertex v ∈ V with in- and out-degree being one. Furthermore, assume that the ingoing
edge at v is different from the outgoing edge. Enumerate the edges of G by e1, e2, . . . , en such
that e1 is the ingoing and e2 is the outgoing edge at v, defining a basis of CE . Let G̃ =

(
Ṽ , Ẽ

)
be the graph obtained out of G by replacing e1 and e2 with a single edge e running from the
tail of e1 to the head of e2. We define a length function l̃ : Ẽ → (0,∞) by

l̃e = le1 + le2 ,

l̃ei = lei ∀i > 2.

G. . .

. . .

. . .

• v •

. . .

. . .

. . .

e1 e2

G̃. . .

. . .

. . .

• •

. . .

. . .

. . .

e

Figure 2. Removal of a vertex.

Lemma 4.9. Consider the above setup and let A be a G-endomorphism. The transformation
matrix of A with respect to the basis e1, . . . , en of CE is then of the form

A =


0 α12

α 0
. . . α1n

. . . 0
0 α32
...

...
0 αn2

Â

 .

Let Ã be the endomorphism on CẼ that with respect to basis e, e3, . . . , en has the transformation
matrix

Ã =


αα12 . . . αα1n

α32
...

αn2

Â

 .

Then Ã is a G̃-endomorphism such that for the multi-dimensional characteristic polynomials

PA(x1, x2, . . . , xn) = PÃ(x1x2, . . . , xn)

holds. In particular, we have

PA,l = PÃ,l̃.

Proof. The lemma follows from a quick calculation using the Laplace expansion along the first
column and the multilinearity of determinants:

PA(x1, x2, . . . , xn) = det


x1 −α12

−α x2

. . . −α1n

. . . 0
0 −α32
...

...
0 −αn2

diag(x̂)− Â


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= x1 det


x2 0 . . . 0

−α32
...

−αn2

diag(x̂)− Â

+ α det


−α12 . . . −α1n

−α32
...

−αn2

diag(x̂)− Â



= det


x1x2 − αα12 . . . −αα1n

−α32
...

−αn2

diag(x̂)− Â

 = PÃ(x1x2, . . . , xn).

It is easily checked that Ã indeed defines a G̃-automorphism. The equality of the characteristic
functions follows from

PA,l(λ) = PA

(
eiλl1 , eiλl2 , . . . , eiλln

)
= PÃ

(
eiλ(l1+l2), . . . , eiλln

)
= PÃ,l̃(λ). ■

Example 4.10. Let Cn be the directed cycle with n edges and let A be a unitary Cn-endo-
morphism. Enumerating the edges e1, . . . , en in cyclic order, it is easily seen that there exists
φ1, . . . , φn ∈ [0, 2π) such that the transformation matrix with respect to this basis is of the form

A =


0 eiφn

eiφ1 0
. . .

eiφn−1 0

 .

By removing all vertices but one, according to Lemma 4.9, the multi-dimensional characteristic
polynomial is of the form

PA(x1, . . . , xn) = x1 · · ·xn − exp(iφ1) · · · exp(iφn) =

n∏
i=1

xi − exp

(
i

n∑
i=1

φi

)
.

Hence, the characteristic function is given by

PA,l(λ) = exp

(
iλ

n∑
j=1

lj

)
− exp

(
i

n∑
j=1

φj

)
.

This implies that the spectrum of the canonical Dirac operator with respect to the boundary
condition Γ(A) is given by

λk =
1

L

(
n∑

j=1

φj + 2πk

)
for k ∈ Z,

where L =
∑n

j=1 lj . By deleting the last column of diag
(
eiλkl

)
− A, we obtain a matrix of the

form

Ãk =


eiλkl1

−eiφ1 eiλkl2

−eiφ2
. . .

eiλkln−1

−eiφn−1

 .

Clearly, Ãk has rank n − 1. Thus, the kernel of diag
(
eiλkl

)
− A can only be one-dimensional,

which implies that the multiplicity of λk is one.
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In the following, we will be dealing with multiple graphs at once, so it is necessary to establish
a notation for this situation. Given a graph G, we denote the set of edges of G by E(G) and
the set of vertices of G by V (G).

A matrix A is reducible if there exists a permutation matrix P such that P−1AP is of the
form (

X 0
Y Z

)
,

where X and Z are square matrices. Otherwise, A is said to be irreducible [8, p. 18]. We transfer
this definition to linear maps on G.

Definition 4.11. A G-endomorphism A is said to be reducible with respect to a proper subset ∆
of E(G) if A maps C∆ :=

{∑
e∈∆ ce · e | ce ∈ C

}
into itself. If no such ∆ exists, A is said to be

irreducible.

In the case that G is disconnected and G′ is a connected component of G, then all G-
endomorphisms A are reducible with respect to E(G′).

Given ∆ ⊆ E(G), we denote its complement by ∆c and by G[∆] the subgraph of G induced
by ∆. By the restriction of a G-endomorphism A to C∆ we mean the restriction of

π∆ ◦A

to C∆, where π∆ : CE → C∆ is the canonical projection map.

Theorem 4.12. Let A be a G-endomorphism. If A is reducible with respect to ∆ ⊊ E(G), then
the spectrum of DΓ(A) is given by

σ
(
DΓ(A)

)
= σ

(
D1

Γ(A1)

)
∪ σ
(
D2

Γ(A2)

)
,

where A1 is the restriction of A to C∆ and A2 is the restriction of A to C∆c
. The operators D1

and D2 are the Dirac operators on G[∆] and G[∆c], respectively.

Proof. Enumerate the edges e1, . . . , en of G such that {e1, . . . , ek} = ∆. Then, the transfor-
mation matrix of A with respect to this basis is of the form(

A1 C
0 A2

)
,

where A1 and A2 are square matrices. The matrix A1 represents the restriction of A to C∆

and A2 represents A restricted to C∆c
. These matrices give boundary conditions on G[∆]

and G[∆c], respectively. Denote the induced length function on G[∆] and G[∆c] by l1 and l2,
respectively. We then have

PA,l(λ) = det

(
diag(exp(iλl1))−A1 −C

0 diag(exp(iλl2))−A2

)
= PA1,l1(λ) · PA2,l2(λ).

Therefore, PA,l(λ) is zero if either PA1,l1(λ) or PA2,l2(λ) is zero and, hence,

σ(DA) = σ
(
D1

Γ(A1)

)
∪ σ
(
D2

Γ(A2)

)
. ■

Example 4.13. Let G be a directed multigraph such that there exists a partition {V1, V2} of
the vertex set V of G so that there is no edge running from V1 to V2. For i, j ∈ {1, 2}, define

Eij =
{
e ∈ E | ∂−e ∈ Vi, ∂+e ∈ Vj

}
.
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G1

•

•

•

G22

•

• •

•

••
E11 E21 E22

Figure 3. An example of a graph that has two subgraphs G1, G22 with no edge going from G1 to G22.

By the assumptions on G we have E12 = ∅ and a partition

E = E11 ∪ E21 ∪ E22.

Consider the subgraphs

G1 = G[E11], G2 = G[E21 ∪ E22],

G21 = G[E21], G22 = G[E22].

Then every G-endomorphism A is reducible with respect to E11. If A2 denotes the restriction
of A to CE21∪E22 , we also have that A2 is reducible with respect to E21 with the restriction A21

to CE21 being zero. According to Theorem 4.12 and 4.5, we obtain for the spectrum

σ
(
DΓ(A)

)
= σ

(
D1

Γ(A1)

)
∪ σ
(
D21

Γ(A21)

)︸ ︷︷ ︸
=∅

∪σ
(
D22

Γ(A22)

)
= σ

(
D1

Γ(A1)

)
∪ σ
(
D22

Γ(A22)

)
,

where D1, D21, D22 are the scalar Dirac operators of G1, G21, G22 and A1, A21, A22 are the
restrictions to CE1 , CE21 , CE22 respectively.

5 Boundary conditions

In this section, we will look at special boundary conditions for the scalar Dirac operator.

5.1 Decompositions of Eulerian directed multigraphs

Recall that a directed walk is a sequence of edges

W := e1, e2, . . . , ek,

where ∂+ei−1 = ∂−ei. Denote by E(W ) the set of edges appearing in W . A directed walk is
said to be closed if ∂+ek = ∂−e0. A trail is a walk in which all edges are distinct. A closed
directed trail that does not pass a vertex twice, except for ∂−e0, is called a cycle. A cycle/trail
decomposition of G is a family

S = {C1, . . . , Cm}

of cycles/trails such that every edge of G appears in a unique cycle/trail of S.

Definition 5.1. Let G be a directed multigraph. We call a bijective map P : E(G) → E(G)
a permutation of the edges of G, the set of permutations of its edges are denoted by S(E(G)).
If P satisfies that P (e) = e′ implies ∂+e = ∂−e

′, then P is called a G-permutation. We denote
the set of all G-permutations by S(G).
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Remark 5.2. We have S(G) ⊆ S(E(G)). By enumerating E(G), we assign to every permuta-
tion P ∈ S(E(G)) a corresponding element in the symmetric group Sn, where n is the number
of edges of G.

Lemma 5.3. A permutation P ∈ S(G) of G induces for each vertex v a bijection Pv from the
ingoing edges of v to the outgoing edges of v. In particular, S(G) is empty if G is not a Eulerian
directed multigraph.

Proof. Fix v ∈ V (G). Let e be an ingoing vertex at v. By the definition of G-permutations,
P (e) is then an outgoing vertex of v. Therefore, Pv is well-defined. Injectivity of P implies
injectivity of Pv and, since P is surjective, for every outgoing edge e′ at v, there exists an edge e
of G mapped by P onto e′. This implies that the head of e is the tail of e′. Therefore, e is an
ingoing edge of v and Pv maps e onto e′, which proves that Pv is bijective. ■

It is clear that every G-permutation P ∈ S(G) induces a unitary G-endomorphism, and
hence, a local self adjoint boundary condition. We will now investigate the spectrum of the
Dirac operator subject to such a boundary condition.

To this end, recall the following facts concerning permutations: for every permutation π ∈ Sn

and x ∈ {1, . . . , n} there exists a k ∈ N such that πk(x) = x. If k is the smallest such integer, then
x, π(x), π2(x), . . . , πk−1(x) is said to be a k-cycle in π. Every permutation can be decomposed
into a disjoint union of its cycles.

Theorem 5.4. Let G be a Eulerian directed multigraph. Every decomposition of the directed
multigraph into directed closed trails corresponds to a G-permutation P and vice versa. Each
trail of length k then corresponds to a k-cycle of P , i.e., the trail containing the edge e is given by

e, P (e), P 2(e), . . . , P k−1(e).

Proof. Given a decomposition of the directed multigraph into closed directed trails, define
a map P : E(G) → E(G) by P (e) = e′, where e′ is the edge that comes after e in the closed
trail containing e. In order to show that P is a permutation, it remains to be shown that it is
injective. Hence, assume that

P (e) = e′ = P (ẽ)

and, therefore, there is a trail C that contains e and a trail C̃ that contains ẽ such that e′ is the
subsequent edge in both trails. Hence, C and C̃ both contain e′ and, since the decomposition
demands the trails be disjoint, we get C = C̃. A trail cannot contain an edge twice and,
therefore, e is equal to ẽ. Consequently, injectivity of P follows.

Now, let P be a G-permutation. For an edge e, define a directed walk

T (e) = e, P (e), P 2(e), . . . , P k−1(e), (5.1)

where k is the minimum number such that P k(e) = e. The fact that P is a permutation of the
set of edges of G ensures that such a k exists. It is, indeed, a directed walk since, by definition
of P , the head of P i(e) is the tail of P i+1(e). It is closed, since the head of P k−1(e) is the
tail of P k(e) = e. It remains to be shown that it is a trail, i.e., that there exists no l < j in
{0, . . . , k − 1} such that P l(e) = P j(e). This would imply P j−l(e) = e, which would contradict
the definition of k, since j − l < k.

Hence, equation (5.1) defines, for every edge, a directed closed trail that contains this edge.
To show that these trails are a decomposition of the directed multigraph, it remains to be proven
that two distinct trails do not share any edges. So, let

T1 = e, P (e), P 2(e), . . . , P k1(e), T2 = e′, P (e′), P 2(e′), . . . , P k2(e′)
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be two trails that share an edge, i.e., Pm1(e) = Pm2(e′) for some 1 ≤ mi ≤ ki. Without loss of
generality, let m1 ≥ m2. We then arrive at Pm1−m2(e) = e′. Applying P k1 , which commutes
with Pm1−m2 , to both sides of this equation, we see that

Pm1−m2(e) = P k1(e′).

Therefore, P k1(e′) is equal to e′, which implies that k1 ≥ k2. The inequality k2 ≥ k1 follows
analogously, which shows that k1 = k2. Therefore, P

m1−m2 gives a bijection between the edges
of T1 and T2. Therefore, they are the same trail.

It is clear that these constructions are inverse to each other and, hence, this correspondence
is one to one. ■

Proposition 5.5. Let P be a G-permutation. Then, the trace of P is equal to the number of
loops in the decomposition of G that corresponds to P .

Proof. The trace of P is equal to

trP =
∑

e∈E(G)

⟨e, P (e)⟩

and further

⟨e, P (e)⟩ =

{
1 if P (e) = e,

0 else.

Hence, the trace of P is equal to the number of edges such that P (e) = e. For this to hold, e must
be a loop, and furthermore by the proof of Theorem 5.4, it is the closed trail containing e. ■

Given a closed trail T = e1, . . . , ek, let its length be

LT =

k∑
i=1

lei .

Lemma 5.6. Let P be a G-permutation. Then, for each closed trail T in the decomposition
defined by P , P is reducible with respect to E(T ).

Proof. Let T be a closed trail in the decomposition defined by P and let e be an edge that
appears in T . Then, by definition of T , P (e) is again an edge that appears in T , which shows
that P is reducible with respect to E(T ). ■

We say that α ∈ R is divisible by β ∈ R if there exists a k ∈ Z such that α = k · β.

Theorem 5.7. Let G be a Eulerian directed multigraph and let P be a linear G-permutation.
If T1, . . . , Tm are the closed trails of the decomposition defined by P , then the spectrum of DΓ(P )

is given by

λk,i =
2πk

Li
with i ∈ {1, . . . ,m}, k ∈ Z,

where Lj is the length of Tj. The multiplicity m(λk,i) is, for k ̸= 0, equal to the number of cycles
whose length is divisible by Li/k. Furthermore, m(0) is equal to the total number of closed trails
in the decomposition defined by P .

Remark 5.8. If we choose all edges to have unit length, then Lj is the actual number of edges
appearing in the closed trail Tj .
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Proof. By Lemma 5.6, P is reducible with respect to each Ti and, hence, by Theorem 4.12, we
have that

σ
(
DΓ(P )

)
=

m⋃
i=1

σ
(
DΓ(Pi)

)
,

where Pi is the restriction of P to E(Ti). Hence we can assume that we have only one trail T .
Enumerate the edges of T in such a way that P (ei) = ei+1 mod |E(T )|. The transformation

matrix of P with respect to the basis e0, . . . , e|E(T )|−1 is equal to
0 1
1 0

1 0
. . .

. . .

1 0

 .

As in Example 4.10, the spectrum of P can be easily calculated to be

σ(DΓ(P )) =

{
2πk

L
| k ∈ Z

}
,

with each eigenvalue having multiplicity one. ■

Corollary 5.9. Let P be a G-permutation. Let λ0 be the smallest positive eigenvalue of DΓ(P ).

Then, L = 2π
λ0

is the length of the longest cycle in the decomposition associated with P . The
multiplicity of λ0 is equal to the number of cycles of length L.

Proof. Let λ0 be the smallest positive eigenvalue of DΓ(P ). By Theorem 5.7, it is of the

form λ0 = 2πk
L , where k is an integer and L is the length of a closed trail appearing in the

decomposition defined by P . In order for λ0 to be the smallest positive eigenvalue, k has to be
one and L must be the maximum of the lengths of the closed trails. ■

5.2 The directed adjacency matrix

As we have seen, the spectrum of the Dirac operator is closely tied to the boundary condition it
is subjected to. Boundary conditions involve choices which are a priori not canonical. In order
to obtain a theory that ties the spectrum of the Dirac operator to properties of the underlying
graph, we need to come up with an intrinsic boundary condition. By Proposition 4.2, this
boundary condition will in general not be self adjoint. However, canonical boundary conditions
on graphs are given by directed adjacency matrices:

Definition 5.10. The directed adjacency matrix A(G) of a directed multigraph G is given by

A(G) =
∑

e,e′∈E
Ie,e′e⊗ (e′)∗ ∈ CE ⊗

(
CE
)∗

= End
(
CE
)
,

Ie,e′ =

{
1 if ∂+e

′ = ∂−e,

0 otherwise.

Lemma 5.11. The directed adjacency matrix A(G) is a G-endomorphism.

Proof. Let v ∈ V be a vertex of G and e′ be an edge in CE+
v . Therefore, ∂+e

′ = v, and

A(G)e′ =
∑

e∈E(G)

Ie,e′e =
∑
e

∂−e=v

e ∈ CE−
v ,

which proves the lemma, since CE+
v is spanned by {e′ | ∂+e′ = v}. ■
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Lemma 5.11 shows that the adjacency matrix defines a boundary condition for the Dirac
operator. We denote the Dirac operator subject to the boundary condition Γ(A(G)) by DG. As
we will see, the spectrum of DG highly depends on the directed cycles present in G. We use the
notation G′ ⊆ G to say that G′ is a subgraph of G with no isolated vertices.

Definition 5.12. A disjoint collection of cycles is a directed multigraph C, whose connected
components consist of directed cycles. The connectedness α(C) of C is the number of connected
components of C, the size η(C) of C is the number of edges of C. For a directed multigraph G,
set

C(G) := {C ⊆ G | C is a disjoint collection of cycles}.

Remark 5.13. The empty subgraph ∅ with no vertices and edges is always an element of C(G).
Its connectedness and size equal zero.

The following lemma gives a characterization of disjoint collections of cycles:

Lemma 5.14. If G is a directed multigraph such that for every vertex v ∈ V (G) the in-
degree id(v) and the out-degree od(v) are both equal to one, then G is a disjoint collection
of cycles.

Proof. It is easily checked that, in this case, A(G) is a G-permutation. By Theorem 5.4, the
directed adjacency matrix defines a decomposition S of G into directed trails. However, if a trail
in S passes a vertex twice or two distinct trails intersect at a vertex, then the in- and out-degrees
of the vertex would be greater than one, which would contradict the assumption. Consequently,
G is a disjoint collection of cycles. ■

Proposition 5.15. The directed adjacency matrix A(G) of G is non-singular if and only if G
is a disjoint collection of directed cycles. In this case, the determinant of A(G) is given by the
formula

detA(G) = (−1)α(G)−η(G).

Proof. Let v be a vertex of G. If the in-degree/out-degree of v is equal to zero, then the
out-degree/in-degree must be unequal zero as G has no isolated vertices. Then, for every edge e
starting/ending in v, the row/column of A(G) that corresponds to e is equal to zero, which
implies that A(G) is singular. Therefore, in order for A(G) to be non-singular, the in-degree
and the out-degree of every vertex of G must be greater or equal to one.

Now, assume that the in-degree/out-degree of a vertex v is greater than or equal to two
and let e1 and e2 be two edges ending/starting in v. Then, the columns/rows of A(G) that
correspond to e1 and e2 are equal, which implies that A(G) is singular. Consequently, A(G) can
only be non-singular if the in-degree and the out-degree of all vertices are equal to one.

Lemma 5.14 implies that G is a disjoint collection of cycles and A(G) is a G-permutation,
where each cycle of G corresponds to a cycle of A(G) of the same size. Writing G as the disjoint
union of cycles

G = Ck1 ⊔ · · · ⊔ Cks ,

where α(G) = s and η(G) = k1 + · · · + ks, it follows that A(G) is the product of cycles of
size k1, . . . , ks. Since the signature of a cycle of size k is given by (−1)k−1, the signature
sgn(A(G)) of A(G) is given by −1 to the power of

s∑
i=1

(ki − 1) = η(G)− α(G).
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The determinant of a permutation matrix is equal to the signature of the underlying permutation,
which implies that

detA(G) = sgn(A(G)) = (−1)η(G)−α(G) = (−1)α(G)−η(G),

and proves the proposition. ■

For a subgraph H of G, define a monomial in the polynomial ring over the variables {xe |
e ∈ E(G)} by

xH :=
∏

e̸∈E(H)

xe.

It seems counter-intuitive to multiply over the edges that are not contained in E(H), however,
it is the most convenient notation for the next theorem.

Theorem 5.16. The multi-dimensional characteristic polynomial PA(G) of the directed adja-
cency matrix A(G) is given by

PA(G)(x) =
∑

C∈C(G)

(−1)α(C)xC . (5.2)

Proof. First, assume that G has no loops. The multi-dimensional characteristic polynomial is
given by

PA(G)(x) = det(diag(x)−A(G)) =
∑

σ∈S(E(G))

sgn(σ)
∏

e∈E(G)

(diag(x)−A(G))σ(e),e.

For a subgraph H ⊆ G, let SH be the subset of S(E(G)), which consists of all permutation
whose fixed point set is equal to E(G) \E(H). We can regard SH as the subset of S(E(H)) of
permutations without fixed points. We can rewrite PA(G) as

PA(G)(x) =
∑
H⊆G

∏
e/∈E(H)

(xe − Ie,e)
∑

σ∈SH

sgn(σ)
∏

e∈E(H)

(−Iσ(e),e),

where we sum over all induced subgraphs of G. Since G has no loops, Ie,e is always zero, which
simplifies the above formula to

PA(G)(x) =
∑
H⊆G

(−1)|E(H)|xH
∑

σ∈SH

sgn(σ)
∏

e∈E(H)

A(G)σ(e),e.

Moreover, whenever σ ∈ S(E(H)) has a fixed point, the product
∏

e∈E(H)A(G)σ(e),e is equal
to zero. Therefore, we can sum over all σ ∈ S(E(H)) instead of SH . Further, the restriction
of A(G) to the edges of H gives us the directed adjacency matrix of H, i.e.,

A(H) =
∑

e,e′∈E(H)

Ie,e′e⊗ e′.

Altogether, this implies that

PA(G) =
∑
H⊆G

(−1)|E(H)|xH detA(H).
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Using Proposition 5.15, the multi-dimensional characteristic polynomial takes the form

PA(G) =
∑

C∈C(G)

(−1)η(C)xC(−1)α(C)−η(C) =
∑

C∈C(G)

(−1)α(C)xC ,

which proves the theorem for the case in which G has no loops.
Now, assume that G has exactly one loop e. Split the loop into two edges e1, e2 by adding

a vertex v to the loop to obtain a loopless graph H, see Figure 4. We want to use Lemma 4.9:
note that the graph H̃ obtained by removing v is equal to G and, moreover, the reduction
of A(H) to G is equal to the directed adjacency matrix of G. We therefore have that

PA(G)(xe, x3, . . . , xn) = PI(H)(xe, 1, x3, . . . , xn) =
∑

Ĉ∈C(H)

(−1)α(Ĉ)(xe, 1, x3, . . . , xn)
Ĉ .

By replacing the cycle e1, e2 with e, it is clear that every collection of disjoint cycles Ĉ ∈ C(H)
corresponds to a unique collection C ∈ C(G) of same connectedness such that e1, e2 is a cycle
in Ĉ if and only if e is a cycle in C.

. . .

. . .

. . .

• e

. . .

. . .

. . .

• • v

e1

e2

Figure 4. Adding a vertex v to a loop e.

Then, the monomial (xe, x3, . . . , xn)
C is equal to (xe, 1, x3, . . . , xn)

Ĉ and, consequently, we
conclude that

PA(G)(xe, x3, . . . , xn) =
∑

Ĉ∈C(H)

(−1)α(Ĉ)(xe, 1, x3, . . . , xn)
Ĉ

=
∑

C∈C(G)

(−1)α(C)(xe, x3, . . . , xn)
C .

If G has multiple loops, by repeating this argument inductively, one can prove the theorem for
the most general case. ■

We continue by examining the consequences of formula (5.2) for the spectrum of DG. Unfor-
tunately, a complete characterization of σ(DG) cannot be given. However, it only depends on the
structure of C(G) and the lengths of the cycles present in G. The total length of a subgraph H
of G is given by the sum of the lengths of the edges of H, i.e.,

LH =
∑

e∈E(H)

le.

Corollary 5.17. The characteristic function PA(G),l of the directed adjacency matrix is given by

PA(G),l(λ) =
∑

C∈C(G)

(−1)α(C) exp(iλ(LG − LC)).

The spectrum of DG is given by the solutions to the equation∑
C∈C(G)

(−1)α(C) exp(−iλLC) = 0.
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Proof. The first statement follows from a short calculation that uses formula (5.2):

PA(G),l(λ) =
∑

C∈C(G)

(−1)α(C)
∏

e/∈E(C)

exp(iλle) =
∑

C∈C(G)

(−1)α(C) exp(iλ(LG − LC)).

The second statement follows by multiplying the equation PA(G),l(λ) = 0 by exp(−iλLG). ■

If all edges have length 1, the characteristic function of the directed adjacency matrix is
determined by the characteristic polynomial pA(G) of A(G) by

PA(G),1(λ) = pA(G)

(
eiλ
)

and we can obtain the characteristic polynomial from the multi-dimensional characteristic poly-
nomial by

pA(G)(t) = PA(G)(t, . . . , t).

This is a well-known object in spectral graph theory (see, e.g., [17]), we will prove a few basic
facts to illustrate the connection of the characteristic polynomial and hence the spectrum of the
Dirac operator to the topology of the graph.

Corollary 5.18. Let G be a directed multigraph with n edges. The characteristic polyno-
mial pA(G) of the directed adjacency matrix is given by

pA(G)(t) =
∑

C∈C(G)

(−1)α(C)tn−η(C).

Proof. The corollary follows directly from formula (5.2). ■

By expressing the characteristic polynomial in the usual form

pA(G)(t) =
n∑

k=0

akt
k,

Corollary 5.18 implies that the k-th coefficient of pA(G)(t) is given by

ak =
∑

C∈C(G)
η(C)=n−k

(−1)α(C).

Recall that the girth g(G) is the size of the shortest directed cycle in G and that the edge-
connectivity of G is equal to k if k is the least number of edges that have to be removed such
that the remaining graph is disconnected or consists of an isolated vertex. In this case, we say
that G is k-connected.

Proposition 5.19. Let G be a directed multigraph with n edges that contains at least one cycle.
The girth of G is given by

g(G) = min{l ∈ {1, . . . , n} | an−l ̸= 0}.

Moreover, −an−l is equal to the number of cycles of size l in G for 0 ≤ l < 2g(G). Furthermore,
if G is k-connected, then, for 0 ≤ l < k, the coefficient al is the negative of the number of cycles
of size n− l in G.
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Proof. Let l < g(G) and assume that an−l is not equal to zero. Then, there exists a collection of
disjoint cycles C ∈ C(G) of size l. Consequently, C contains a cycle whose size is less than g(G),
which is a contradiction. Therefore, an−l must be zero.

If a disjoint collection of cycles C ∈ C(G) is of size l, where l satisfies 0 ≤ l < 2g(G), then
the connectedness of C must be equal to one, otherwise it would contain a cycle of size smaller
than g(G). Consequently,

an−l =
∑

C∈C(G)
η(C)=l

−1 = −#{cycles of size l}.

Now, let G be k-connected and let 0 ≤ l < k. If C ∈ C(G) is of size n − l, then C cannot be
disconnected, since only l edges have been removed from G in order to obtain C. Therefore,
C is a cycle and

al =
∑

C∈C(G)
η(C)=n−l

−1 = −#{cycles of size n− l}. ■

We now characterize some high-order coefficients of the characteristic polynomial.

Corollary 5.20. Let G be a graph with n edges. For the following coefficients of pA(G), the
following holds:

� an = 1,

� an−1 = −#{loops in G},
� an−2 = −#{2-cycles}+#{pairs of loops that are disjoint},
� an−3 = −#{3-cycles}+#{pairs of loops and 2-cycles that are disjoint}

−#{triples of loops that are disjoint}.

Proof. This follows directly from the above considerations. ■

Example 5.21. To conclude this section, we give some examples of characteristic polynomials
of graphs:

� The characteristic polynomial of the n-rose Rn is given by pA(Rn) = tn − ntn−1.

� The characteristic polynomial of the n-cycle Cn is given by pA(Cn) = tn − 1.

� Let G1 be the graph given in Figure 5. The characteristic polynomial of G1 is given by
pA(G1) = t4 − 2t3. The reason that the second-order coefficient is equal to zero is due to
the fact that the cycle of size 2 in the middle cancels out the pair of peripheric loops.

• •

Figure 5. The graph G1.

� Let G2 be the graph given in Figure 6. The characteristic polynomial of G2 is given by
pA(G2) = t4 − 2t3 and, therefore, is equal to the characteristic polynomial of G1.
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•

•

•

Figure 6. The graph G2.

� Let G3 be the graph given in Figure 7. The characteristic polynomial of G3 is given by
pA(G3) = t6 − 3t4 − 2t3, which, since no two cycles of G3 are disjoint, represents the cycles
present in G3, i.e., we have three cycles of size 2 and two cycles of size 3.

• • •

Figure 7. The graph G3.
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