| 
 SIGMA 20 (2024), 061, 47 pages       arXiv:2206.03137     
https://doi.org/10.3842/SIGMA.2024.061 
 
Reduction of $L_\infty$-Algebras of Observables on Multisymplectic Manifolds
Casey Blacker a, Antonio Michele Miti b and Leonid Ryvkin c
 a) Department of Mathematical Sciences, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA
 b) Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
 c) Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbann, France
 
 
Received October 24, 2023, in final form June 24, 2024; Published online July 03, 2024
 Abstract 
We develop a reduction scheme for the $L_\infty$-algebra of observables on a premultisymplectic manifold $(M,\omega)$ in the presence of a compatible Lie algebra action $\mathfrak{g}\curvearrowright M$ and subset $N\subset M$. This reproduces in the symplectic setting the Poisson algebra of observables on the Marsden-Weinstein-Meyer symplectic reduced space, whenever the reduced space exists, but is otherwise distinct from the Dirac, Śniatycki-Weinstein, and Arms-Cushman-Gotay observable reduction schemes. We examine various examples, including multicotangent bundles and multiphase spaces, and we conclude with a discussion of applications to classical field theories and quantization.
 Key words: $L_\infty$-algebras; multisymplectic manifolds; moment maps. 
pdf (795 kb)  
tex (64 kb)  
 
 
References 
- Abraham R., Marsden J., Foundations of mechanics, 2nd ed., Benjamin, Reading,  MA, 1978.
 
- Albert C., Le théorème de réduction de Marsden-Weinstein en  géométrie cosymplectique et de contact, J. Geom. Phys.  6 (1989), 627-649.
 
- Alekseev A., Malkin A., Meinrenken E., Lie group valued moment maps,  J. Differential Geom. 48 (1998), 445-495,  arXiv:dg-ga/9707021.
 
- Arms J.M., Reduction of Poisson algebras at nonzero momentum values,  J. Geom. Phys. 21 (1996), 81-95.
 
- Arms J.M., Cushman R.H., Gotay M.J., A universal reduction procedure for  Hamiltonian group actions, in The Geometry of Hamiltonian Systems  (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., Vol. 22,  Springer, New York, 1991, 33-51.
 
- Arms J.M., Gotay M.J., Jennings G., Geometric and algebraic reduction for  singular momentum maps, Adv. Math. 79 (1990), 43-103.
 
- Atiyah M.F., Bott R., The Yang-Mills equations over Riemann surfaces,  Philos. Trans. Roy. Soc. London Ser. A 308 (1983),  523-615.
 
- Baez J.C., Hoffnung A.E., Rogers C.L., Categorified symplectic geometry and the  classical string, Comm. Math. Phys. 293 (2010), 701-725,  arXiv:0808.0246.
 
- Barnich G., Fulp R., Lada T., Stasheff J., The sh Lie structure of Poisson  brackets in field theory, Comm. Math. Phys. 191 (1998),  585-601, arXiv:hep-th/9702176.
 
- Barron T., Serajelahi B., Berezin-Toeplitz quantization, hyperkähler  manifolds, and multisymplectic manifolds, Glasg. Math. J.  59 (2017), 167-187, arXiv:1406.5159.
 
- Barron T., Shafiee M., Multisymplectic structures induced by symplectic  structures, J. Geom. Phys. 136 (2019), 1-13.
 
- Blacker C., Reduction of multisymplectic manifolds, Lett. Math. Phys  111 (2021), 64, 30 pages, arXiv:2002.10062.
 
- Bursztyn H., Cavalcanti G.R., Gualtieri M., Reduction of Courant algebroids  and generalized complex structures, Adv. Math. 211 (2007),  726-765, arXiv:math.DG/0509640.
 
- Bursztyn H., Martinez Alba N., Rubio R., On higher Dirac structures,  Int. Math. Res. Not. 2019 (2019), 1503-1542,  arXiv:1611.02292.
 
- Callies M., Frégier Y., Rogers C.L., Zambon M., Homotopy moment maps,  Adv. Math. 303 (2016), 954-1043, arXiv:1304.2051.
 
- Cantrijn F., Ibort A., de León, M., On the geometry of multisymplectic  manifolds, J. Aust. Math. Soc. 66 (1999), 303-330.
 
- Cendra H., Marsden J.E., Ratiu T.S., Geometric mechanics, lagrangian reduction,  and nonholonomic systems, in Mathematics Unlimited - 2001 and Beyond,  Springer, Berlin, 2001, 221-273.
 
- Cushman R., Śniatycki J., Differential structure of orbit spaces,  Canad. J. Math. 53 (2001), 715-755.
 
- da Silva A.C., Lectures on symplectic geometry, Lecture Notes in  Math., Vol. 1764, Springer, Berlin, 2008.
 
- de León M., Lainz Valcázar M., Contact Hamiltonian systems,  J. Math. Phys. 60 (2019), 102902, 18 pages,  arXiv:1811.03367.
 
- de Lucas J., Gràcia X., Rivas X., Román-Roy N., Vilariño S., Reduction  and reconstruction of multisymplectic Lie systems, J. Phys. A  55 (2022), 295204, 34 pages, arXiv:2202.13748.
 
- DeBellis J., Sämann C., Szabo R.J., Quantized Nambu-Poisson manifolds  and $n$-Lie algebras, J. Math. Phys. 51 (2010), 122303,  34 pages, arXiv:1001.3275.
 
- DeBellis J., Sämann C., Szabo R.J., Quantized Nambu-Poisson manifolds in  a 3-Lie algebra reduced model, J. High Energy Phys. 2011  (2011), no. 4, 075, 23 pages, arXiv:1012.2236.
 
- Dehling M., On weak Lie 3-algebras, arXiv:1710.11104.
 
- Dippell M., Esposito C., Waldmann S., Coisotropic triples, reduction and  classical limit, Doc. Math. 24 (2019), 1811-1853,  arXiv:1812.09703.
 
- Dirac P.A.M., Lectures on quantum mechanics, Belfer Grad. Sch. Sci.  Monogr. Ser., Vol. 2, Belfer Graduate School of Science, New York, 1967.
 
- Echeverría-Enríquez A., Muñoz Lecanda M.C., Román-Roy N., Remarks on  multisymplectic reduction, Rep. Math. Phys. 81 (2018),  415-424, arXiv:1712.09901.
 
- Esposito C., Poisson reduction, in Geometric Methods in Physics, Trends Math.,  Birkhäuser, Cham, 2013, 131-142, arXiv:1106.3878.
 
- Fiorenza D., Rogers C.L., Schreiber U., $L_\infty$-algebras of local  observables from higher prequantum bundles, Homology Homotopy Appl.  16 (2014), 107-142, arXiv:1304.6292.
 
- Fiorenza D., Rogers C.L., Schreiber U., Higher $U(1)$-gerbe connections in  geometric prequantization, Rev. Math. Phys. 28 (2016),  1650012, 72 pages, arXiv:1304.0236.
 
- Frégier Y., Laurent-Gengoux C., Zambon M., A cohomological framework for  homotopy moment maps, J. Geom. Phys. 97 (2015), 119-132,  arXiv:1409.3142.
 
- Gotay M.J., Isenberg J., Marsden J.E., Momentum maps and classical relativistic  fields. Part II: Canonical analysis of field theories,  arXiv:math-ph/0411032.
 
- Gotay M.J., Isenberg J., Marsden J.E., Montgomery R., Momentum maps and  classical relativistic fields. Part I: Covariant field theory,  arXiv:physics/9801019.
 
- Guillemin V., Sternberg S., Symplectic techniques in physics, 2nd ed.,  Cambridge University Press, Cambridge, 1990.
 
- Hélein F., Hamiltonian formalisms for multidimensional calculus of variations  and perturbation theory, in Noncompact Problems at the Intersection of  Geometry, Analysis, and Topology, Contemp. Math., Vol. 350, American  Mathematical Society, Providence, RI, 2004, 127-147,  arXiv:math-ph/0212036.
 
- Hélein F., Multisymplectic formalism and the covariant phase space, in  Variational Problems in Differential Geometry, London Math. Soc.  Lecture Note Ser., Vol. 394, Cambridge University Press, Cambridge, 2012,  94-126, arXiv:1106.2086.
 
- Herman J., Existence and uniqueness of weak homotopy moment maps,  J. Geom. Phys. 131 (2018), 52-65, arXiv:1711.02572.
 
- Kijowski J., A finite-dimensional canonical formalism in the classical field  theory, Comm. Math. Phys. 30 (1973), 99-128.
 
- Krepski D., Vaughan J., Multiplicative vector fields on bundle gerbes,  Differential Geom. Appl. 84 (2022), 101931, 31 pages,  arXiv:2003.12874.
 
- Lada T., Markl M., Strongly homotopy Lie algebras, Comm. Algebra  23 (1995), 2147-2161, arXiv:hep-th/9406095.
 
- Lazarev A., Models for classifying spaces and derived deformation theory,  Proc. Lond. Math. Soc. 109 (2014), 40-64,  arXiv:1209.3866.
 
- Lee J.M., Introduction to smooth manifolds, 2nd ed., Grad. Texts in Math., Vol. 218, Springer, New York, 2013.
 
- Loday J.-L., Une version non commutative des algèbres de Lie: les algèbres  de Leibniz, Enseign. Math. 39 (1993), 269-293.
 
- Marrero J.C., Román-Roy N., Salgado M., Vilariño S., Reduction of  polysymplectic manifolds, J. Phys. A 48 (2015), 055206,  43 pages, arXiv:1306.0337.
 
- Marsden J., Weinstein A., Reduction of symplectic manifolds with symmetry,  Rep. Math. Phys. 5 (1974), 121-130.
 
- Marsden J.E., Misiolek G., Ortega J.P., Perlmutter M., Ratiu T.S., Cotangent  bundle reduction, in Hamiltonian Reduction by Stages, Lecture Notes  in Math., Vol. 1913, Springer, Berlin, 2007, 43-99.
 
- Marsden J.E., Ratiu T., Reduction of Poisson manifolds, Lett. Math.  Phys. 11 (1986), 161-169.
 
- Marsden J.E., Weinstein A., Comments on the history, theory, and applications  of symplectic reduction, in Quantization of Singular Symplectic Quotients,  Progr. Math., Vol. 198, Birkhäuser, Basel, 1-19.
 
- Meyer K.R., Symmetries and integrals in mechanics, in Dynamical Systems  (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New  York, 1973, 259-272.
 
- Miti A., Ryvkin L., Multisymplectic observable reduction from the viewpoint of  constraint triples, in preparation.
 
- Ortega J.-P., Ratiu T.S., Momentum maps and Hamiltonian reduction,  Progr. Math., Vol. 222, Birkhäuser, Boston, MA, 2004.
 
- Ortega J.-P., Ratiu T.S, Cotangent bundle reduction, in Encyclopedia of  Mathematical Physics, Academic Press, Oxford, 2006, 658-667,  arXiv:math.SG/0508636.
 
- Rogers C.L., Higher symplectic geometry, Ph.D. Thesis, University of  California, 2011, arXiv:1106.4068.
 
- Rogers C.L., $L_\infty$-algebras from multisymplectic geometry, Lett.  Math. Phys. 100 (2012), 29-50, arXiv:1005.2230.
 
- Ryvkin L., Wurzbacher T., An invitation to multisymplectic geometry,  J. Geom. Phys. 142 (2019), 9-36, arXiv:1804.02553.
 
- Ryvkin L., Wurzbacher T., Zambon M., Conserved quantities on multisymplectic  manifolds, J. Aust. Math. Soc. 108 (2020), 120-144,  arXiv:1610.05592.
 
- Schreiber U., Higher prequantum geometry, in New Spaces in Physics. Formal and  Conceptual Reflections, Cambridge University Press, Cambridge, 2021,  202-278, arXiv:1601.05956.
 
- Sevestre G., Wurzbacher T., On the prequantisation map for 2-plectic manifolds,  Math. Phys. Anal. Geom. 24 (2021), 20, 31 pages,  arXiv:2008.05184.
 
- Shabazi C.S., Zambon M., Products of multisymplectic manifolds and homotopy  moment maps, J. Lie Theory 26 (2016), 1037-1067,  arXiv:1504.08194.
 
- Sikorski R., Differential modules, Colloq. Math. 24 (1971),  45-79.
 
- Sikorski R., Wstep do geometrii ró.zniczkowej, Bibl. Mat., Vol. 42,  Państwowe Wydawnictwo Naukowe, Warsaw, 1972.
 
- Sjamaar R., Lerman E., Stratified symplectic spaces and reduction, Ann.  of Math. 134 (1991), 375-422.
 
- Śniatycki J., Constraints and quantization, in Nonlinear Partial Differential  Operators and Quantization Procedures (Clausthal, 1981), Lecture  Notes in Math., Vol. 1037, Springer, Berlin, 1983, 301-334.
 
- Śniatycki J., Multisymplectic reduction for proper actions, Canad. J.  Math. 56 (2004), 638-654.
 
- Śniatycki J., Poisson algebras in reduction of symmetries, Rep. Math.  Phys. 56 (2005), 53-76.
 
- Śniatycki J., Weinstein A., Reduction and quantization for singular momentum  mappings, Lett. Math. Phys. 7 (1983), 155-161.
 
- Stacey A., Comparative smootheology, Theory Appl. Categ. 25  (2011), 64-117, arXiv:0802.2225.
 
- Stasheff J., Homological (ghost) approach to constrained Hamiltonian systems,  in Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991),  Contemp. Math., Vol. 132, American Mathematical Society, Providence,  RI, 1992, 595-609, arXiv:hep-th/9112002.
 
- Stiénon M., Xu P., Reduction of generalized complex structures,  J. Geom. Phys. 58 (2008), 105-121,  arXiv:math.DG/0509393.
 
- Sussmann H.J., Orbits of families of vector fields and integrability of  distributions, Trans. Amer. Math. Soc. 180 (1973),  171-188.
 
- Tu L.W., Differential geometry. Connections, curvature, and characteristic  classes, Grad. Texts in Math., Vol. 275, Springer, Cham, 2017.
 
- Vaisman I., Reduction and submanifolds of generalized complex manifolds,  Differential Geom. Appl. 25 (2007), 147-166,  arXiv:math.DG/0511013.
 
- Whitney H., Analytic extensions of differentiable functions defined in closed  sets, Trans. Amer. Math. Soc. 36 (1934), 63-89.
 
- Willett C., Contact reduction, Trans. Amer. Math. Soc. 354  (2002), 4245-4260, arXiv:math.SG/0104080.
 
 
 | 
 |