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Abstract. The Cauchy identities play an important role in the theory of symmetric func-
tions. It is known that Cauchy sums for the q-Whittaker and the skew Schur polynomials
produce the same factorized expressions modulo a q-Pochhammer symbol. We consider the
sums with restrictions on the length of the first rows for labels of both polynomials and
prove an identity which relates them. The proof is based on techniques from integrable
probability: we rewrite the identity in terms of two probability measures: the q-Whittaker
measure and the periodic Schur measure. The relation follows by comparing their Fredholm
determinant formulas.
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1 Introduction

1.1 The identity and connections to integrable probability

Symmetric polynomials have been of much interest in various fields of mathematics such as
representation theory, combinatorics etc. Among them the Schur polynomials sλ(a1, . . . , aN )
occupy an important place because of their simplicity, depth and wide applications. One of
their most well-known properties is the Cauchy identity,

∑
λ∈P

sλ(a1, . . . , aN )sλ(b1, . . . , bM ) =
N∏
i=1

M∏
j=1

1

1− aibj
, (1.1)

where P is the set of partitions. Along with a number of related summation identities, (1.1)
provides important insights into various field of mathematics such as combinatorics [37], repre-
sentation theory [20], integrable probability [15], etc.

The Cauchy identity for the Schur function (1.1) has been generalized in various different
ways. In this paper, we focus on two generalizations of (1.1) in which the Schur polynomials
in the left-hand side are replaced by the q-Whittaker functions Pλ(a1, . . . , aN ), Qλ(b1, . . . , bM )
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and the skew Schur polynomials sλ/ρ(a1, . . . , aN ). These are

∑
µ∈P

Pµ(a1, . . . , aN )Qµ(b1, . . . , bM ) =
N∏
i=1

M∏
j=1

1

(aibj ; q)∞
, (1.2)

∑
λ,ρ∈P
ρ⊂λ

q|ρ|sλ/ρ(a1, . . . , aN )sλ/ρ(b1, . . . , bM ) =
1

(q; q)∞

N∏
i=1

M∏
j=1

1

(aibj ; q)∞
, (1.3)

where |ρ| := ρ1+ρ2+· · · , ρ ⊂ λmeans ρi ≤ λi for any i = 1, 2, . . . and (x; q)∞ is defined by (A.1).
The q-Whittaker functions Pλ(a1, . . . , aN ) are a special case of the Macdonald symmetric polyno-
mials Pλ(a; q; t) defined in [31, Chapter VI], in which out of two parameters (q, t) of the latter one
puts t = 0. The dual polynomial Qµ(b1, . . . , bM ) is defined as

∏M
j=1(q; q)

−1
µj−µj+1

·Pµ(b1, . . . , bM ),
where (x; q)n is given by (A.2) and we set µM+1 ≡ 0. When q = 0, both Pλ(a1, . . . , aN )
and Qλ(a1, . . . , aN ) reduce to the Schur polynomial and (1.3) becomes (1.1). The skew Schur
polynomials sλ/ρ(a1, . . . , aN ) are labeled by skew partitions λ/ρ. For a precise definition, see,
e.g., [31, Chapter I]. When q = 0, since we have ρ = ∅ due to the weight q|ρ|, they reduce to
(non-skew) Schur polynomial sλ(a1, . . . , aN ) and (1.2) becomes (1.1). Proofs of (1.2) and (1.3)
can be found in [31, Sections VI.4 and I.5.28 (a)].

We immediately see that the right-hand sides of (1.2) and (1.3) are exactly the same up
to a factor 1/(q; q)∞. Combining this fact with (A.8), which rewrites 1/(q; q)∞ as a sum over
partitions ν, we have∑

µ,ν∈P
q|ν|Pµ(a1, . . . , aN )Qµ(b1, . . . , bM ) =

∑
λ,ρ∈P
ρ⊂λ

q|ρ|sλ/ρ(a1, . . . , aN )sλ/ρ(b1, . . . , bM ). (1.4)

This identity suggests that there may exist deeper connections between the q-Whittaker func-
tions and the skew Schur functions resulting in possible refinements of (1.4). Indeed, in this
paper, we will prove such an identity as stated in the following theorem.

Theorem 1.1. For any n ∈ Z≥0, we have∑
µ,ν∈P

µ1+ν1≤n

q|ν|Pµ(a1, . . . , aN )Qµ(b1, . . . , bM )

=
∑
λ,ρ∈P

ρ⊂λ, λ1≤n

q|ρ|sλ/ρ(a1, . . . , aN )sλ/ρ(b1, . . . , bM ). (1.5)

Summations of this type with restrictions on the length of the first row (mostly for the
Schur case) have attracted attention in the theory of symmetric functions in connection with
combinatorics and representation theory, see for instance [5, 24, 35, 36]. In this paper, the proof
of Theorem 1.1 will be based on connections of quantities on both sides to integrable probability.
In our next paper [25], we will develop a combinatorial theory which allows a bijective proof
of (1.5) and related identities.

Remark 1.2. In Theorem 1.1, our main identity is stated for complex variables a1, . . . , aN ,
b1, . . . , bM , but one easily sees that the same holds also when they are arbitrary specialization
of symmetric functions. In order to establish (1.5), it suffices to prove it for ai, bj varying in
an continuous interval, which is in fact what we will prove below using integrable probabilistic
arguments.
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Let us rewrite (1.5) in a probabilistic language. The probability measures on P related
to (1.2) and (1.3) are of much interest in integrable probability. They are defined as

MqW(µ) = Pµ(a1, . . . , aN )Qµ(b1, . . . , bM )/ZqW, (1.6)

MpS(λ) =
∑
ρ∈P
ρ⊂λ

q|ρ|sλ/ρ(a1, . . . , aN )sλ/ρ(b1, . . . , bM )/ZpS, (1.7)

where we assumed q ∈ (0, 1) ai, bj > 0, with aibj < 1 for i = 1, . . . , N and j = 1, . . . ,M
and the normalization constants ZqW and ZpS are given by the right-hand sides of the Cauchy
identities (1.2) and (1.3) respectively. MqW(µ) is called the q-Whittaker measure while MpS(λ)
is called the periodic Schur measure.

The q-Whittaker measure was introduced in [11]. It has been playing an important role
in the development of integrable probability in the past decade. Its marginals are known to
describe one point functions of certain particle systems discretizing the KPZ equation. On the
other hand, the periodic Schur measure was introduced in [8]. It can be regarded as a model of
lozenge tilings in a cylindric domain and free fermions at positive temperature [6].

We also introduce two random variables χ and S, which are independent of other random
variables and respectively have distribution,

P(χ = n) =
qn

(q; q)n
(q; q)∞, n = 0, 1, 2, . . . (1.8)

and for a fixed parameter t ∈ R>0,

P(S = ℓ) :=
tℓqℓ

2/2

(q; q)∞θ
(
−tq1/2

) , ℓ ∈ Z. (1.9)

Here the definitions of the q-Pochhammer symbols (x; q)∞ and (x; q)n are given by (A.1)
and (A.2) respectively whereas the function θ(x) is defined below (A.7). Being proportional
to qℓ

2/2, ℓ ∈ Z, the distribution defined by (1.9) is sometimes called a discrete Gaussian distri-
bution.

The random variable χ is related to the partition ν in (1.5). Namely, thanks to the summation
identity (A.9), if a partition ν is sampled with probability proportional to q|ν|, then its first
row ν1 follows the same law as χ. On the other hand the random variable S is introduced as it
unveils a determinantal structure in the periodic Schur process. This was observed by Borodin
in [8], who noticed that shifting by S all entries of a random partition λ sampled with MpS law
produces a determinantal point process called shift-mixed periodic Schur measure.

With these preparations, Theorem 1.1 can be restated as follows.

Theorem 1.3. Let µ1, λ1 be the first rows of partitions µ, λ, distributed respectively according
to the q-Whittaker measure MqW(µ) (1.6) and to the periodic Schur measure MpS(λ) (1.7). Let
also χ and S be independent random variables distributed as (1.8) and (1.9), respectively. The
following equalities hold and they are equivalent. For n ∈ Z≥0, we have

(a) P(µ1 + χ ≤ n) = P(λ1 ≤ n), (1.10)

(b) E

[
1(

−tq
1
2
+n−µ1 ; q

)
∞

]
= P(λ1 + S ≤ n). (1.11)

Dividing both sides of (1.5) by the right-hand side by ZpS and noting ZpS = ZqWZχ,
where Zχ := 1/(q; q)∞ is the normalization constant appearing in (1.8), we get (1.10). Equiva-
lence between (1.10) and (1.11) will be shown in Section 2.3 although it is rather straightforward.
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The key observation is the formula

P(χ+ S ≤ n) =
1(

−tq
1
2
+n; q

)
∞

. (1.12)

This was already shown in [6, Section 2], but we will give a more direct proof in Lemma 2.4
below. From (1.12), we easily see that (1.11) can be rewritten as

P(µ1 + χ+ S ≤ n) = P(λ1 + S ≤ n),

which is clearly equivalent to (1.10).
Now our goal is to prove (1.11). At this point we remark that, thanks to results from in-

tegrable probability [8, 26], the expectation and the probability on both sides are known to
be written as Fredholm determinants, see Propositions 2.1 for the expectation on the left-hand
side and Propositions 2.3 for the probability on the right-hand side. Crucially, the kernels of
the two Fredholm determinants turn out to be very similar: they both possess complex con-
tour integral expressions with the integrands being the same and they differ from each other
only by a choice of the contours. What we actually prove in this paper is that this differ-
ence of contours does not produce a difference to the value of the Fredholm determinants, see
Theorem 3.1.

1.2 Background from integrable probability

In integrable probability, measures on the set of partitions written in terms of a pair of symmet-
ric functions have attracted much attention. The simplest case, corresponding to the Cauchy
identity (1.1), is the Schur measure, introduced in [34]. For a partition λ ∈ P, it is de-
fined by

MS(λ) = sλ(a1, . . . , aN )sλ(b1, . . . , bM )/ZS, (1.13)

where the normalization constant ZS is the right-hand side of (1.1). From the fact that Schur
polynomials can be written as single determinants due to the Jacobi–Trudi identity, the Schur
measure defines a determinantal point process (DPP) [34], which means that all correlation
functions are written as determinants with a common kernel, see, e.g., [40].

The Schur measure has connections with a few variants of the totally asymmetric simple
exclusion process (TASEP) or the last passage percolation, which are typical models in the
Kardar–Parisi–Zhang universality class. Such connection was first discovered by Johansson [27],
who showed that the current of the TASEP has the same law as the marginal λ1 in the Schur
measure. For our purposes a different variant of the TASEP with a certain pushing mechanism,
called the PushTASEP, is relevant [14, 41]. The precise definition of the dynamics can be found
in the references. By using certain Markov dynamics on the Gelfand–Tsetlin cone, one can show
that the PushTASEP is associated with the Schur measure. If XN (M) is the position of the N -
th particle at time M starting from the so called step initial condition Xk(0) = k for k ∈ N, we
have the following relation:

P(XN (M)−N ≤ n) = P(λ1 ≤ n), (1.14)

where the right-hand side is the marginal of λ1 from the Schur measure and can be written as
a Fredholm determinant.

The PushTASEP possesses a solvable q-deformation called q-PushTASEP, introduced in
[18, 32]. This model is of particular interests as it interpolates between various notable mod-
els in the KPZ class including the log-gamma polymer model and the KPZ equation [12, 32].
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Employing randomized versions of the RSK correspondence or of the Yang–Baxter equation
one can relate the q-PushTASEP with the marginal µ1 of the q-Whittaker measure (1.2) in the
same way as in (1.14) [19, 32, 33]. Unlike in the q = 0 case, such matching, although useful,
does not lead immediately to explicit solutions of the model and in order to extract manageable
formulas to study the q-PushTASEP additional considerations are needed. This is because, up
to now, relations between the q-Whittaker measure and DPP had not sufficiently well under-
stood. A relevant result in this direction is a matching discovered by Borodin in [9] between
certain multiplicative expectations of the Macdonald measure and Schur measure; we are going
to comment on this in Section 4. Nevertheless, through the use of Macdonald difference opera-
tors, Markov duality, Bethe ansatz or elliptic determinants [11, 13, 26], Fredholm determinant
formulas describing interesting expectations of marginals of the q-Whittaker measure had been
found. In general, following such approaches, one arrives at the following result:

E
[

1

(ζq−µ1 ; q)∞

]
= det(1−K)ℓ2(Z), (1.15)

where µ1 is a marginal of the q-Whittaker measure, ζ is a parameter and K is some kernel.
In the references listed above several expressions for the right-hand side of (1.15) have been

obtained. Techniques involving Macdonald difference operators or Bethe ansatz lead to Fred-
holm determinant formulas where the kernel K does not suggest any immediate relation with
natural DPPs. On the other hand the elliptic determinant approach introduced in [26] produces
a substantially simpler formula where K becomes a product between a finite rank kernel and the
Fermi–Dirac distribution. Since such expressions, in particular the Fermi–Dirac distribution, are
well known to appear in the description of free fermions at finite temperature, findings of [26]
suggest a clear connections between discrete KPZ solvable models and DPP.

This observation has led us to a careful comparison between the structure of the q-Whittaker
measure and the (shift-mixed) periodic Schur measure [8], as the latter is a canonical model of
free fermions at positive temperature in one dimension [6]. In recent years the same model has
received some attention and its properties and generalizations have been considered in [2, 7, 29].
The key observation we make is that the Fredholm determinant appearing in the shift-mixed
periodic Schur measure is almost the same as the one found in [26] for the q-Whittaker measure,
the only difference being in the contours of the contour integral expression for the kernels. In
fact establishing this equivalence of the two Fredholm determinants is technically our main result
as given in Theorem 3.1.

Before our result (1.10), outside of the TASEP/Schur case described above, explicit con-
nections between KPZ solvable models and positive temperature free fermions had remained
concealed. One notable exception to this claim was presented by the KPZ equation itself. The
celebrated solution of the KPZ equation derived in 2010 by [3, 21, 23, 38, 39] provides, in fact,
a clear relation between the one point function of the random KPZ height with narrow wedge
initial condition and one point edge statistics of a system of trapped free fermions at finite
temperature [22]. See also [28, 30]. The identity (1.10) extends this fact to a much higher
level, widening substantially the bridge between solvable KPZ models and free fermions at finite
temperature.

An additional observation, relating this time the one point function of the KPZ equation to
multiplicative statistics of the Airy point process was made in [16]. A more general instance
of this finding was discovered by Borodin in [9], who proved a matching of the expectations
between the certain stochastic vertex models and multiplicative statistics of the Schur measure.
A specialization of such matching in distribution to the ASEP leads to a connection with a vari-
ant of the Laguerre ensemble, explored in [17]. Results obtained in this stream of works and
especially in [9] are indeed related to the one given in Theorem 1.3 and the connection will be
explained in Section 4.
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All the matching discussed in the previous paragraphs, as the one obtained by us in this
paper, consist essentially in comparisons between various formulas. In our upcoming paper [25],
we will further improve on this aspect developing a bijective theory providing a combinatorial
explanation of identities between models.

1.3 Outline

This paper is organized as follows. In Section 2, we give Fredholm determinant formulas for
the q-Whittaker and shift-mixed Schur measures obtained respectively in [26] and [8]. We also
discuss the equivalence between Theorems 1.1 and 1.3. The proof of Theorem 1.3 consists in the
equivalence of these Fredholm determinant formulas and it is given in Section 3. A key passage
to establish the proof is given by Lemma 3.4 (i)–(iii). In Section 4, we compare Theorem 1.3
with one of the main results in [9]. In Appendix A, we summarize some basic notions which
we frequently use in this paper including partitions, q-series. In Appendix B, we prove useful
bounds which allow us to show Proposition 3.3 (i) in Section 3.3. In Appendix C, we state and
show estimates of the q-Pochhammer symbol used in Section 3.4.

2 Fredholm determinants for q-Whittaker
and shift-mixed periodic Schur measures

The main purpose of this section is to give Fredholm determinant formulas for both sides
of (1.11); see Propositions 2.1 and 2.3. In Section 3, we will show that the two Fredholm
determinants are in fact the same, as stated in Theorem 3.1. In Section 2.3, we also give a proof
of equivalence between Theorems 1.1 and 1.3.

Hereafter, we consider set of variables a1, . . . , aN , b1, . . . , bN , i.e., we set M = N in the
notation used in Section 1. The general case M ̸= N of each result is recovered by considerations
similar to the one reported in Remark 1.2. We will denote the maximum (resp. minimum) value
of ai and bi i = 1, . . . , N by amax, bmax (resp. amin, bmin). We also always omit the factor
1/
(
2π

√
−1
)
in contour integrals.

2.1 Fredholm determinant formula for the q-Whittaker measure

We focus on the expectation value E[1/(ζq−µ1 ; q)∞] with respect to the q-Whittaker measure
defined by (1.6). This quantity is the q-Laplace transform of the marginal µ1 and it admits
explicit Fredholm determinant expressions [11, 12, 19, 26, 32]. For our arguments, we will make
use of the formula that first appeared in [26], which is conceptually different from the ones of
the other references.

The following proposition is obtained by applying a few results in [26].

Proposition 2.1. Let ζ ∈ C \ {qn}n∈Z, and ai, bi ∈ R>0, i = 1, . . . , N satisfy amaxbmax < 1
and qamax < amin. Let µ1 be the first row of µ distributed according to the q-Whittaker mea-
sure (1.6). We have

E
[

1

(ζq−µ1 ; q)∞

]
= det(1− fζK)ℓ2(Z), (2.1)

where fζ(m) = −ζqm

1−ζqm and

K(m1,m2) =

∫
C

dz

z

∫
D

dw

w
ga,b(z, w;m1,m2), (2.2)

ga,b(z, w;m1,m2) =
wm2

zm1

w

z − w

N∏
i=1

(aiz; q)∞
(aiw; q)∞

(bi/w; q)∞
(bi/z; q)∞

, (2.3)
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where the contour C encloses anticlockwise the poles at z = 0, biq
j, i = 1, . . . , N , j ∈ Z≥0

whereas D encloses anticlockwise the poles at w = 1/ai, i = 1, . . . , N but not the ones at
w = 0, 1/aiq

j, i = 1, . . . , N , j ∈ Z≥1. They are illustrated in Figure 1.

<z

=z

C

D̄

D

0 bmax
...bmin

bmaxq...

1
amax

1
amin

· · · 1
amaxq

...

Figure 1. The contours C, D, and D̄ appearing in (2.2) and (2.12). “•”s and “ ”s represent the poles

of w and z respectively.

To prove Proposition 2.1, we recall the discussions in [26, Section 3]. There we consider
a two-sided q-Whittaker measure, which is a probability measure on the set of signatures,

SN =
{
λ = (λ1, . . . , λN ) ∈ ZN | λ1 ≥ · · · ≥ λN

}
.

Note that λi, i = 1, . . . , N can be negative. Such probability measures on the extended space can
be realized by replacing the functionQµ(x) in (1.6) withQµ(ρ), where ρ is a certain specialization
of the algebra of symmetric functions. Here we state only a particular case which corresponds
to [26, Definition 3.4], setting ai = xi, i = 1, . . . , N , t = 0 and αj = bj , j = 1, . . . , N . With this
choice MqW(µ) in (1.6) becomes

Pλ(x1, . . . , xN )Qλ(ρ
−
b )/Π

(−)(x; b), (2.4)

where λ ∈ SN , the parameters xi, bi, satisfy bmax/xmin < 1 and

Qλ(ρ
−
b ) =

N−1∏
i=1

(
qλi−λi+1+1; q

)
∞

∫
CN

N∏
i=1

dzi
zi

· Pλ(1/z)Π
(−)(z; b)mq

N (z). (2.5)

Here C is the same contour as the one in (2.2), i.e., it encloses positively the poles at z = 0, biq
j ,

i = 1, . . . , N and j ∈ Z≥0, 1/z in Pλ is a shorthand notation for (1/z1, . . . , 1/zN ) and

mq
N (z) =

1

N !

∏
1≤i<j≤N

(zi/zj ; q)∞(zj/zi; q)∞, Π(−)(z; b) =

N∏
i,j=1

1

(bi/zj ; q)∞
.

For more detail see [26, Appendix B].
From [26, Lemma 3.3, equation (3.15)], one sees that Qλ(ρ

−
b ) = 0 unless 0 ≥ λ1 ≥ · · · ≥ λN

and thus the measure (2.4) has support only on the negative region. Although the measures (1.6)
and (2.4) have different support, they enjoy the following relation:

Lemma 2.2. Set ai = 1/xi, i = 1, . . . , N and define the signature µ by the negation of λ,
µ := (−λN ,−λN−1, . . . ,−λ1). Then we have

Pλ(x1, . . . , xN )Qλ(ρ
−
b )/Π

(−)(x; b) = MqW(µ), (2.6)
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and in particular

EqW(x;ρ−b )

[
1(

ζqλN ; q
)
∞

]
= EqW(a;b)

[
1

(ζq−µ1 ; q)∞

]
, (2.7)

where EqW(x;ρ−b )[·] and EqW(a;b)[·] are averages over the measures (2.4) and (1.6), respectively.

Proof. Equation (2.6) follows straightforwardly from a combination of definition (2.4) and
relations [26, equations (3.14) and (3.15)],

Pλ(x1, . . . , xN ) = Pµ(a1, . . . , aN ), Qλ(ρ
−
b ) = Qµ(b1, . . . , bN ),

once we recall hypothesis relating ai (resp. µ) to xi (resp. λ). ■

Proof of Proposition 2.1. It follows immediately from Lemma 2.2 and the Fredholm deter-
minant formula for the left-hand side of (2.7). Changing the notations ai → xi, αj → bj , v → w,
n → −m1, m → −m2 and setting N = M and t = 0 in [26, equation (4.37)], we obtain the
Fredholm determinant formula

EqW(x;ρ−b )

[
1(

ζqλN ; q
)
∞

]
= det(1− fζM)ℓ2(Z). (2.8)

Here fζ(m) is defined above (2.2) and

M(m1,m2) =

∫
C

dz

z

∫
D

dw

w

wm2

zm1

w

z − w

N∏
i=1

(z/xi; q)∞
(w/xi; q)∞

(bi/w; q)∞
(bi/z; q)∞

,

where C is the same contour as (2.5) and D encloses positively xi, i = 1, . . . , N . Combining (2.7)
with (2.8), we get (2.1). ■

2.2 Fredholm determinant formula
for the shift-mixed periodic Schur measure

We have discussed in Section 1 how the periodic Schur measure MpS(λ) (1.7) becomes a deter-
minantal point process once all the rows of λ get shifted by an independent random quantity S
distributed as (1.9). This was originally observed by Borodin in [8] and the measure describing
the process

(λ1 + S, λ2 + S, . . . ) (2.9)

takes the name of shift-mixed periodic Schur measure. The probability distribution of the first
element λ1 + S can be represented as a single Fredholm determinant and this is reported in the
next proposition.

Proposition 2.3. Let λ1+S be the first element of (2.9) distributed according to the shift-mixed
periodic Schur measure. For k ∈ Z≥0, we have

P(λ1 + S ≤ k) = det(1 + fL)ℓ2(Z), (2.10)

where f(m) is given in terms of fζ(m) defined above (2.2),

f(m) = fζ(m)|ζ=−tq1/2+k =
tq1/2+k+m

1 + tq1/2+k+m
(2.11)
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and by using ga,b(z, w,m1,m2) (2.3), the kernel L(m1,m2) is defined by

L(m1,m2) =

∫
C

dz

z

∫
D̄

dw

w
ga,b(z, w,m1,m2). (2.12)

Here contour C is oriented counterclockwise and it encloses the origin with its radius r satisfy-
ing bmax < r < 1/amax whereas D̄ encloses C anticlockwise. C and D̄ are depicted in Figure 1
given below Proposition 2.1.

Proof. From [8, Theorem 2.2], we have, for k ∈ Z≥0,

P(λ1 + S ≤ k) = det
(
1− L̃

)
ℓ2(k+1,k+2,... )

,

where the kernel L̃ is defined as

L̃(ℓ1, ℓ2) =

∫
|w|=r

dw

w

×
∫
|z|=r′

dz

z

zℓ2−1

wℓ1−1

N∏
i=1

(aiz; q)∞
(aiw; q)∞

(bi/w; q)∞
(bi/z; q)∞

·
∑
m∈Z

tq
1
2
+m

1 + tq
1
2
+m

(w
z

)m
, (2.13)

and r, r′ satisfy1

bmax < r, r′ <
1

amax
, 1 <

r

r′
< q−1. (2.14)

We will now show that det
(
1− L̃

)
ℓ2(k+1,k+2,... )

= det(1+fL)ℓ2(Z). Note that the kernel L̃(ℓ1, ℓ2)

(2.13) can be written as the kernels of the operators A andB, which map between (k+1, k+2, . . . )
and Z:

L̃(ℓ1, ℓ2) =
∑
m∈Z

A(ℓ1,m)B(m, ℓ2),

where

A(ℓ,m) =

∫
|w|=r

dw

w
wm−ℓ+1

N∏
i=1

(bi/w; q)∞
(aiw; q)∞

,

B(m, ℓ) =
tq1/2+m

1 + tq1/2+m

∫
|z|=r′

dz

z
zℓ−1−m

N∏
i=1

(aiz; q)∞
(bi/z; q)∞

.

By a basic property of the determinant, we have

det(1−AB)ℓ2(k+1,k+2,... ) = det(1−BA)ℓ2(Z),

and evaluating the kernel in the right-hand side, we find

(BA)(n1, n2)

=
tqn1+

1
2

1 + tqn1+
1
2

∫
|z|=r′

dz

z

∫
|w|=r

dw

w

wn2

zn1

N∏
i=1

(aiz; q)∞
(aiw; q)∞

(bi/w; q)∞
(bi/z; q)∞

·
∞∑

ℓ=k+1

( z

w

)ℓ−1

=
−tq

1
2
+k+m1

1 + tq
1
2
+k+m1

∫
|z|=r′

dz

z

∫
|w|=r

dw

w

wm2

zm1

N∏
i=1

(aiz; q)∞
(aiw; q)∞

(bi/w; q)∞
(bi/z; q)∞

· w

z − w

= −f(m1)L(m1,m2).

Here in the second equality we set mi = ni − k for i = 1, 2. ■
1In [6, 8], the conditions for r, r′ are given by using the analyticity of the integrand for the periodic Schur

process with positive specializations. This condition can be translated into the explicit one (2.14) in our case (1.7).
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2.3 Equivalence of Theorems 1.1 and 1.3

This subsection is devoted to proving that Theorem 1.1 is equivalent to Theorem 1.3. Since
equivalence between Theorems 1.1 and 1.3 (a) is straightforward, the only nontrivial part is to
show the equivalence between Theorem 1.3 (a) and (b), i.e., (1.10) and (1.11). This is a conse-
quence of the computation reported in the following lemma.

Lemma 2.4. For n ∈ Z, 0 < q < 1 and t > 0, we have

P(χ+ S ≤ n) =
1(

−tq
1
2
+n; q

)
∞

, (2.15)

where χ and S are independent random variables with distributions (1.8) and (1.9), respectively.

Proof. We write the left-hand side of (2.15) as

P(χ+ S ≤ n) =
∑
ℓ∈Z

P(S = ℓ)P(χ ≤ n− ℓ). (2.16)

Applying (1.9) and

P(χ ≤ m) =

{
(q; q)∞/(q; q)m, m ∈ Z≥0,

0, m ∈ Z<0,

which follows from (1.8) and the fact
∑m

n=0 q
n/(q; q)n = 1/(q; q)m, m = 0, 1, 2, . . . , which can

be checked easily by mathematical induction, to the right-hand side of (2.16), we find

P(χ+ S ≤ n) =
1

θ
(
−q1/2t

) n∑
ℓ=−∞

tℓq
ℓ2

2

(q; q)n−ℓ
=

tnq
n2

2

(
−q

1
2
−nt−1; q

)
∞

θ
(
−q1/2t

) ,

where, in the second equality we used a version of the q-binomial theorem (A.5). Noting from the
definitions of the q-Pochhammer symbol (A.1) and (A.2), the numerator of the last expression
becomes

tnqn
2/2
(
−q

1
2
−nt−1; q

)
∞ =

(
−tq1/2; q

)
n

(
−q1/2/t; q

)
∞,

we arrive at the right-hand side of (2.15). ■

By using (2.15), we see that the left-hand side of (1.11) is expressed as

E

[
1(

−tq
1
2
+n−µ1

)] = P(µ1 + χ+ S ≤ n).

Thus (1.11) can be rewritten as

P(µ1 + χ+ S ≤ n) = P(λ1 + S ≤ n),

which is clearly equivalent to (1.10).

3 Equivalence of two Fredholm determinants
by shift of contours

In this section, we will force some conditions on parameters ai, bi, i = 1, . . . , N . Namely we
assume that ai, bi ∈ (0; 1), i = 1, . . . , N are distinct and ordered as a1 > a2 > · · · > aN
(hence amax = a1 and amin = aN ) and moreover

a1/aN < q−
1
2
+ϵ,

for a fixed ϵ ∈ (0, 1/2). Recall that for the sake of our main result Theorem 1.1 these restrictions
do not constitute a problem, see Remark 1.2.
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3.1 Restating the main theorem as a determinant identity

In the previous section, precisely in Propositions 2.1 and 2.3, we have seen that both sides
of (1.11) can be written as Fredholm determinants. By this equality (1.11) is equivalent to the
following identity for the two Fredholm determinants.

Theorem 3.1. Let K(m1,m2) be the kernel given in (2.2) and L(m1,m2) in (2.12). Also let f
be given by (2.11). Then we have

det(1− fK)ℓ2(Z) = det(1 + fL)ℓ2(Z). (3.1)

In this section, we will elaborate the proof of Theorem 3.1. Comparing the expressions of the
two kernels in (2.2) and in (2.12), we notice that both of them are written in the double integral
forms with the common integrand ga,b(z, w;m1,m2), given by (2.3). The only difference between
them is the integration contour of w: the contour D in K(m1,m2) encloses 1/aj , j = 1, . . . , N ,
while D̄ in L(m1,m2) encloses the origin and the contour of z. See Figure 1.

Result of Theorem 3.1 is not trivial outside of the case q = 0, when the kernel themselves
are equal, i.e., K(m1,m2) = −L(m1,m2) for all m1,m2 ∈ Z≤0. This can be shown as fol-
lows. When q = 0, we notice that f(m) becomes the indicator function of Z≤0 and the inte-
grand ga,b(z, w;m1,m2) in (2.3) becomes

ga,b(z, w;m1,m2) =
wm2

zm1

w

z − w

N∏
i=1

(1− aiz)

(1− aiw)

(1− bi/w)

(1− bi/z)
,

and we see that the poles in the w variable include only w = 0, z, 1/ai, i = 1, . . . , N and in
particular ∞ is not a pole since m2 ≤ 0. Thus using Cauchy’s integral theorem, we see that the
contour D can be deformed to D̄ without changing the value of the kernel up to sign.

For general 0 < q < 1, this is no longer the case. In this case, equality does not hold for
the kernels, but it only does at the level of the Fredholm determinants (3.1). To prove this we
consider a sequence of changes of the contours of w starting from D, and including, sequentially,
poles of the form 1/ajq

k, j = 1, . . . , N starting from k = 0, 1, . . . and finally including the
singularity at infinity. We find that such modifications of the kernel do not affect its Fredholm
determinant, so that, once all the singularities have been added in the contour one can switch
such contour to D̄ by using the Cauchy theorem.

Notations for the series of contours just described, their corresponding kernels and Fredholm
determinants are provided next.

Definition 3.2. For ℓ ∈ Z≥0, we define the kernels

Kℓ(m1,m2) =

∫
C

dz

z

∫
Dℓ

dw

w
ga,b(z, w;m1,m2), (3.2)

K∞(m1,m2) =

∫
C

dz

z

∫
D∞

dw

w
ga,b(z, w;m1,m2). (3.3)

The function ga,b is given by (2.3) and the contour C encloses the origin and it has radius larger
than bmax as in (2.2), (2.12). The integration contours Dℓ and D∞ are illustrated in Figure 2.
Note Dℓ encircles poles 1/q

iaj , i = 0, . . . , ℓ, j = 1, . . . , N and no other singularities lie inside Dℓ.
Recalling the function f(m) defined by (2.11), we further define the Fredholm determinants

Fℓ := det(1− fKℓ)ℓ2(Z) for ℓ = 0, 1, 2, . . . , (3.4)

F∞ := det(1− fK∞)ℓ2(Z). (3.5)
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<w

=w

D` D̃`

D∞

−d
√
−1

d
√
−1

1/a1 1/aNq`· · ·
c`

1/a1q
`+1

Figure 2. Contours Dℓ, D̃ℓ, and D∞ are illustrated. We set cℓ to be the center of the interval[
1

aNqℓ
, 1
a1qℓ+1

]
, i.e., cℓ =

1
2qℓ

(
1

a1q
+ 1

aN

)
.

Note that by definition, we see K0(m1,m2) = K(m1,m2). Thus by Proposition 2.2, we
immediately see F0 = det(1 − fK)ℓ2(Z). In [26, Proposition 4.7], we showed that the ker-
nel K(m1,m2) is trace-class, thus det(1− fK)ℓ2(Z) is well defined. This fact will be generalized
to Fℓ for any ℓ ∈ Z≥0 and also F∞ in Lemma 3.4 (iii).

For this purpose and also for later use, we will give different representations for the ker-
nels (3.2) and (3.3). To simplify notation, we introduce a relabelling of all the inverse of poles aiq

j

in decreasing order and call them ãr, r ∈ Z>0. Namely, we write

ãr = akq
u, (3.6)

where r = uN + k with r ∈ Z>0, k ∈ {1, . . . , N} and u ∈ Z≥0. Since we assumed a1 > a2 >
· · · > aN without loss of generality, ã1 > ã2 > · · · holds.

For m ∈ Z and r ∈ Z≥0, we define two infinite-dimensional matrices, A(m; r), B(r;m), as

A(m; r) = f(m)

∫
C

dz

z1+m

1

z − ã−1
r

N∏
i=1

(aiz; q)∞
(bi/z; q)∞

, (3.7)

B(r;m) = ã−m
r Res

w=ã−1
r

N∏
i=1

(bi/w; q)∞
(aiw; q)∞

. (3.8)

For ℓ ∈ Z≥0, we also introduce their truncated version, Aℓ(m; r), Bℓ(r;m), defined by

Aℓ(m; r) := A(m; r)1{1,...,N(ℓ+1)}(r), Bℓ(r;m) := 1{1,...,N(ℓ+1)}(r)B(r;m),

where for a set A ⊂ Z≥0, 1A is the indicator function of A. By evaluating the poles inside Dℓ

of (3.2), we easily find

f(m1)Kℓ(m1,m2) =
∞∑
r=1

Aℓ(m1; r)Bℓ(r;m2). (3.9)

Below in the proof of Proposition 3.3 (iii), we will also see that

f(m1)K∞(m1,m2) =

∞∑
r=1

A(m1; r)B(r;m2). (3.10)
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In the following discussions, it is also useful to consider the conjugated matrices

Ã(m; r) = τ(m)A(m; r)σ(r), B̃(r;m) = σ−1(r)B(r;m)τ−1(m), (3.11)

where

τ(m) =

{
a−m
1 q−

m2

2N
−m

2
+ϵm, m ≥ 0,

1, m < 0,
σ(r) = q−(1−ω)u (3.12)

for ϵ ∈ (0, 1/2) and ω ∈ (0, 1/2− ϵ), and also their truncated versions Ãℓ(m; r), and B̃ℓ(r;m),

Ãℓ(m; r) := Ã(m; r)1{1,...,N(ℓ+1)}(r), B̃ℓ(r;m) := 1{1,...,N(ℓ+1)}(r)B̃(r;m). (3.13)

Note that the value of the Fredholm determinant would not change when we replace Aℓ, Bℓ, A, B
by their conjugated versions, Ãℓ, B̃ℓ, Ã, B̃ in the kernel (3.9), (3.10).

Proposition 3.3. Assume ai, bi ∈ (0, 1), i = 1, . . . , N , a1 > · · · > aN , and a1/aN < q−
1
2
+ϵ with

ϵ ∈ (0, 1/2).

(i) The operators with the kernels, Ã(m; r), B̃(r;m), Ãℓ(m; r), B̃ℓ(r;m) for m ∈ Z and
r, ℓ ∈ Z≥0 are of Hilbert–Schmidt class.

(ii) K∞(m1,m2) can be expressed as the limit ℓ → ∞ of Kℓ(m1,m2),

K∞(m1,m2) = lim
ℓ→∞

Kℓ(m1,m2). (3.14)

(iii) The Fredholm determinants Fℓ and F∞, defined by (3.4) and (3.5), respectively, are well
defined.

Proof. (i) By the estimates of Ã(m; r), B̃(r;m) in Corollary B.2, it is easy to check the condi-
tions of the Hilbert–Schmidt operators

∑
m∈Z

∞∑
r=1

∣∣Ã(m; r)
∣∣2 < ∞,

∑
m∈Z

∞∑
r=1

∣∣B̃(r;m)
∣∣2 < ∞.

Obviously, the same relations also hold for Ãℓ, B̃ℓ.
For (ii), let us introduce the notation,

K(m1,m2; ♯) =

∫
C

dz

z

∫
♯

dw

w
ga,b(z, w,m1,m2), m1,m2 ∈ Z, (3.15)

where ga,b(z, w,m1,m2) is defined by (2.3) and ♯ ∈
{
Dℓ, D̃ℓ

}
ℓ=0,1,...

∪{D∞} represents a contour
for w. They are illustrated in Figure 2. By definition, one sees

Kℓ(m1,m2) = K(m1,m2;Dℓ), K∞(m1,m2) = K(m1,m2;D∞),

Using (3.15), we show (3.14). Noting D∞ = Dℓ ∪ D̃ℓ, we see that

K(m1,m2;D∞) = K(m1,m2;Dℓ) +K
(
m1,m2; D̃ℓ

)
= lim

ℓ→∞
K(m1,m2;Dℓ) + lim

ℓ→∞
K
(
m1,m2; D̃ℓ

)
= lim

ℓ→∞
K(m1,m2;Dℓ).

Here in the second equality, we used the fact that Dℓ ∪ D̃ℓ (= D∞) does not depend on ℓ while
in the third equality we used the fact limℓ→∞K

(
m1,m2; D̃ℓ

)
= 0. This follows from estimates

of Lemma C.1 (iii): the contour D̃ℓ can be divided into three parts D̃ℓ = D̃
(1)
ℓ ∪ D̃

(2)
ℓ ∪ D̃

(3)
ℓ ,
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where D̃
(1)
ℓ

(
resp. D̃

(3)
ℓ

)
are horizontal half line from +∞+ d

√
−1 to cℓ + d

√
−1 (resp. from

cℓ − d
√
−1 to +∞− d

√
−1) while D̃

(2)
ℓ is vertical line segment from cℓ + d

√
−1 to cℓ − d

√
−1.

We get limℓ→∞K
(
m1,m2; D̃ℓ

)
= 0 applying (C.3) for the cases D̃

(1)
ℓ and D̃

(3)
ℓ and (C.4) for the

case D̃
(2)
ℓ to the part

∏N
i=1(aiw; q)

−1
∞ in the integrand (2.3).

(iii) By equations (3.9), (3.13) and (i), we see that the operators with the kernel

τ(m1)f(m1)Kℓ(m1,m2)τ
−1(m2),

ℓ = 0, 1, 2, . . . are trace-class. Since the factor τ(m1)/τ(m2) does not affect the value of the deter-
minant, then Fℓ in (3.4) is well defined. Next combining (3.9) and (3.14), we have (3.10). Then
by the same arguments used above, the operator with the kernel τ(m1)K∞(m1,m2)τ

−1(m2) is
trace-class and F∞ in (3.5) is well defined. ■

Theorem 3.1 can be immediately proved by the following lemma.

Lemma 3.4. Denote the left-hand side of (3.1) by F , i.e., F := det (1− fK)ℓ2(Z). The following
statements hold.

(i) Fℓ does not depend on ℓ = 0, 1, 2, . . . and is equal to F , i.e., we have Fℓ = F , for
any ℓ ∈ Z≥0.

(ii) We have limℓ→∞ Fℓ = F∞.

(iii) We have K∞(m1,m2) = −L(m1,m2) and thus F∞ = det(1 + fL)ℓ2(Z).

The proofs of the above (i)–(iii) will be given in Sections 3.2–3.4, respectively.

Proof of Theorem 3.1. This is a straightforward consequence of Lemma 3.4, which implies

det(1− fK)ℓ2(Z) = Fℓ = F∞ = det(1 + fL)ℓ2(Z),

under the assumptions given at the beginning of the section. ■

Notice that one can significantly relax conditions on parameters set at the beginning of the
section for Theorem 3.1. For this, one could relate matching of determinants to identity (1.10).
Since the latter is an equality between polynomials of bounded degree in variables a1, . . . , aN ,
b1, . . . , bN whose coefficients are rational functions in q, it can be extended to all choices of ai, bj
and in particular to all choices for which determinants in (3.1) make sense.

3.2 Proof of Lemma 3.4 (i)

The case of ℓ = 0, i.e., F0 = F , was already mentioned after (3.5). It is then sufficient to
show Fℓ = Fℓ−1 for any ℓ = 1, 2, . . . . For this purpose, we rewrite Fℓ (3.4) as a determinant with
rank N(ℓ+ 1).

Lemma 3.5. We have

Fℓ = det
(
Wn,n′

)
n,n′=1,2,...,N(ℓ+1)

. (3.16)

Here Wn,n′ is defined by

Wn,n′ = Res
w=ã−1

n

N∏
i=1

(bi/w; q)∞
(aiw; q)∞

∫
Cn

dz

z

−1

z − ã−1
n′

N∏
i=1

(aiz; q)∞
(bi/z; q)∞

θ
(
−ãnz/tq

1
2
+k
)
(q; q)2∞

θ
(
−1/tq

1
2
+k
)
θ(ãnz)

, (3.17)

where Cn is a positively oriented circle with the condition ã−1
n < |z| < (qãn)

−1 and θ(x) is
defined below (A.7).
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Proof. Let us write (3.9) as fKℓ = AℓBℓ, so that

Fℓ = det(1− fKℓ)ℓ2(Z) = det(1−AℓBℓ)ℓ2(Z).

By Proposition 3.3 (i), Aℓ, Bℓ are Hilbert–Schmidt operators and hence BℓAℓ is trace class. Thus
we can use the basic property of the determinant det(1−AℓBℓ)ℓ2(Z) = det(δi,j − (BℓAℓ)i,j)

N(ℓ+1)
i,j=1

and rewrite Fℓ as

Fℓ = det(1−AℓBℓ)ℓ2(Z) = det(δn,n′ − (BℓAℓ)n,n′)
N(ℓ+1)
n,n′=1 . (3.18)

Here

(BℓAℓ)n,n′ = Res
w=ã−1

n

N∏
i=1

(bi/w; q)∞
(aiw; q)∞

∫
C

dz

z

1

z − ã−1
n′

N∏
i=1

(aiz; q)∞
(bi/z; q)∞

∑
m∈Z

f(m)

(zãn)m

= Res
w=ã−1

n

N∏
i=1

(bi/w; q)∞
(aiw; q)∞

∫
C′

n

dz

z

1

z − ã−1
n′

N∏
i=1

(aiz; q)∞
(bi/z; q)∞

· θ
(
−ãnz/tq

1
2
+k
)
(q; q)2∞

θ
(
−1/tq

1
2
+k
)
θ(ãnz)

,

where in the second equality we applied a version of the Ramanujan summation formula (A.7)
and θ(x) is defined below (A.7). Note that to apply (A.7), we extend the contour C to C ′

n,
which represents the circle centered at the origin with radius R ∈ (q/ãn, 1/ãn).

Now we show that the entry δn,n′ − (BA)n,n′ is equal to Wn,n′ (3.17). For this, we further
extend the radius R of the contour such that R ∈ (1/ãn, 1/qãn). Recalling the notation (3.6)
and the definition of θ(x) introduced below (A.7) and noting

∏N
i=1(aiz; q)∞ =

∏∞
ℓ=1(1− ãℓz),

we see

Res
z=ã−1

n

dz

z

1

z − ã−1
n′

N∏
i=1

(aiz; q)∞
(bi/z; q)∞

· θ
(
−ãnz/tq

1
2
+k
)
(q; q)2∞

θ
(
−1/tq

1
2
+k
)
θ(ãnz)

= Res
z=ã−1

n

−ãn′

z

∏∞
ℓ=1
ℓ ̸=n′

(1− ãℓz)∏N
i=1(bi/z; q)∞

· θ
(
−ãnz/tq

1
2
+k
)
(q; q)2∞

−ãn
(
z − ã−1

n

)
(qãnz; q)∞

(
qã−1

n /z; q
)
∞θ
(
−1/tq

1
2
+k
)

= ãn

∏∞
ℓ=1
ℓ̸=n′

(
1− ãℓã

−1
n

)
∏N

i=1(biãn; q)∞
δn,n′ . (3.19)

Here in the second equality we used the fact that in the second expression all factors do not
include the residue at z = ã−1

n except the factor 1/
(
z − ã−1

n

)
and this is eliminated by the

factor
∏∞

ℓ=1
ℓ̸=n′

(1− ãℓz) unless n = n′. Similarly, we compute

Res
w=ã−1

n

N∏
i=1

(bi/w; q)∞
(aiw; q)∞

= Res
w=ã−1

n

∏N
i=1(bi/w; q)∞∏∞
ℓ=1(1− ãℓw)

= −ã−1
n

∏N
i=1(biãn; q)∞∏∞

ℓ=1
ℓ̸=n

(
1− ãℓã

−1
n

) . (3.20)

Therefore from (3.19) and (3.20), the extension of the contour cancels the term δn,n′ in the last
expression in (3.18) and we arrive at the expression (3.17). ■

Now we prove Lemma 3.4 (i). We focus on the representation (3.16) and especially on the
last (N(ℓ+ 1)-th) row of the matrix W . We decompose the elements into two parts as

WN(ℓ+1),n′ = W
(1)
N(ℓ+1),n′ +W

(2)
N(ℓ+1),n′

for n′=1, . . . , N(ℓ+1). HereW
(1)
N(ℓ+1),n′ corresponds to the residue at z= ã−1

N(ℓ+1) whileW
(2)
N(ℓ+1),n′

corresponds to the element with the shrunk contour satisfying qã−1
n < |z| < ã−1

n . As we stated
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in the last paragraph in the proof of Lemma 3.5, one easily sees W
(1)
N(ℓ+1),n′ = δN(ℓ+1),n′ . On the

other hand recalling the notation (3.6) and noting q−1ãn = ãn−N , we have

Res
w=ã−1

n

N∏
i=1

(bi/w; q)∞
(aiw; q)∞

= q−1
N∏
i=1

1

1− biãnq−1

1

1− aiã
−1
n

· Res
w=ã−1

n−N

N∏
i=1

(bi/w; q)∞
(aiw; q)∞

, (3.21)

θ(ãnx) =
−q

ãnx
θ(ãn−Nx). (3.22)

Applying (3.21) to the first factor in (3.17) and (3.22) to two factors θ
(
−ãnz/tq

1
2
+k
)
and θ(ãnz)

−1

in the same equation, we see

W
(2)
N(ℓ+1),n′ = −tq−

1
2
+k

N∏
i=1

1

1− biãN(ℓ+1)q−1

1

1− aiã
−1
N(ℓ+1)

·WNℓ,n′ .

Combining them with the multi-linearity of determinants, we get

Fℓ = det[Wn,n′ ]
N(ℓ+1)
n,n′=1 = det[Wn,n′ ]

N(ℓ+1)−1
n,n′=1 .

Repeating this procedure N − 1 times, we arrive at Fℓ = Fℓ−1.

3.3 Proof of Lemma 3.4 (ii)

From (3.9) and Corollary B.2, we find a uniform bound for the kernel

τ(m1)f(m1)Kℓ(m1,m2)τ
−1(m2),

where Kℓ(m1,m2), τ(m) and f(m) are defined by (3.2), (3.12) and (2.11) respectively. We have∣∣τ(m1)f(m1)Kℓ(m1,m2)τ
−1(m2)

∣∣ ≤ Dd|m1|+|m2| (3.23)

for some constants D > 0 and d ∈ (0, 1) which do not depend on ℓ, m1 or m2.
Lemma 3.4 (ii) is then immediately proven combining (3.23) with the Hadamard inequality

|detA| ≤
n∏

i=1

(
n∑

j=1

|ai,j |2
)1/2

, (3.24)

which holds for any for n× n matrix A = (aij)i,j=1,...,n. Note that Fℓ (3.4) can be written as

Fℓ =

∞∑
n=0

(−1)n

n!

∞∑
m1=−∞

· · ·
∞∑

mn=−∞
det
(
τ(mi)τ

−1(mj)f(mi)Kℓ(mi,mj)
)n
i,j=1

. (3.25)

By (3.23) and (3.24), the determinant in (3.25) can be bounded as∣∣det (τ(mi)τ
−1(mj)f(mi)Kℓ(mi,mj)

)n
i,j=1

∣∣
≤

n∏
i=1

(
n∑

j=1

∣∣τ(mi)τ
−1(mj)f(mi)Kℓ(mi,mj)

∣∣2)1/2

≤
n∏

i=1

(
n∑

j=1

∣∣Dd|mi|+|mj |
∣∣2)1/2

= Dn
n∏

i=1

d|mi|

(
n∑

j=1

d2|mj |

)1/2

≤ Dnn
n
2

n∏
i=1

d|mi|. (3.26)
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Note that bound (3.26) holds for any ℓ ∈ Z≥0. Moreover, we have

∞∑
m1=−∞

· · ·
∞∑

mn=−∞
Dnn

n
2

n∏
i=1

d|mi| = D′nn
n
2 < ∞,

∞∑
n=0

1

n!
D′nn

n
2 < ∞

with some constant D′ > 0. Thus by dominated convergence theorem and Proposition 3.3 (ii),
Lemma 3.4 (ii) holds. ■

3.4 Proof of Lemma 3.4 (iii)

In this subsection, we will prove K∞(m1,m2) = −L(m1,m2) by deforming the contour of w
from D∞ to C̃ going through Γc, where all contours are depicted in Figure 3. We have to
care about the behavior of the integrand ga,b(z, w;m1,m2) (2.3) when |w| is large since the
poles w = 1/aiq

j , i = 1, . . . , N , j ∈ Z≥0 accumulate at the infinite point of w producing an
essential singularity. We estimate the behavior for large |w| using Appendix C.

Here for convenience we also use the notation (3.15) where we set ♯ to be some contours
depicted in Figure 3. Note that by definition, one sees K∞(m1,m2) = K(m1,m2;D∞), and
L(m1,m2) = −K

(
m1,m2; C̃

)
. Note that C̃ goes around the origin in negative direction. We

now show that, from the properties of the q-Pochhammer symbol discussed in Appendix C, the
following holds,

K(m1,m2; ♯) = 0, when ♯ = Ad, A−d, Cd, C−d and Γc− . (3.27)

In Figure 3, these contours are displayed in grey. These facts can be seen in the following way.
In (3.15), we focus on the integration of w,∫

♯
dw

wm

z − w

N∏
i=1

(bi/w; q)∞
(aiw; q)∞

, (3.28)

with m ∈ Z and z ∈ C fixed. Here the contour C is illustrated in Figure 1. Hereafter, we will
explain the case ♯ = Γc− in detail whereas in other cases we will give an outline only in the
paragraph below (3.30) since the other cases follow in a similar way.

First we note that (3.28) does not depend on the value of c−, as can be seen as follows. We
consider the contour integral (3.28) with ♯ = R1∪R2∪R3∪R4 where Ri, i = 1, 2, 3, 4 are depicted
in Figure 3. Since there are no singularities inside the rectangle, the value of this integral is zero
by the Cauchy’s theorem. On the other hand from Lemma C.1 (ii) we find the contributions
from both R2 and R4 are bounded by cdm exp

[
−Nc′ log2 d

]
when d > 1 for some constants c

and c′, thus they vanish when d → ∞. Combining these facts, we find the contribution from R1

is equal to that from R3 as d → ∞ up to sign.
Next, we will show that (3.28) with ♯ = Γc− vanishes when c− → −∞. Combining Lem-

ma C.1 (i) and (ii), we see that for z = a+ b
√
−1 with a < −1 and b ∈ R,

|(z; q)∞| ≥ c1 exp
[
c2 log

2(|a| ∨ |b|)
]
, (3.29)

where x ∨ y = max(x, y). Applying (3.29) to (3.28) with ♯ = Γc− , we have∣∣∣∣ ∫
Γc−

dwh(w)

∣∣∣∣ ≤ ∫
Γ
(1)
c−

dw|h(w)|+
∫
Γ
(2)
c−

dw|h(w)|

≤ c3|c−|m2 exp
(
−Nc2 log

2(|c−|)
)

+ c4

∫
Γ
(2)
c−

dw|w|m2 exp
(
−Nc2 log

2 |w|
)
, (3.30)
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where h(w) is the integrand of (3.28), Γ
(1)
c− is the vertical line from c− + c−

√
−1 to c− − c−

√
−1

and Γ
(2)
c− is its complement Γc− \ Γ(1)

c− . Thus we find that in the last expression in (3.30), both
two terms vanishes as |c−| → ∞ and we arrive at the conclusion.

We can also obtain (3.27) with the other contours ♯ = Ad, A−d, Cd, C−d in a similar way, i.e.,
they follow from the following two facts: (I) The integration value (3.28) does not depend on
the value of d > 1 for any m ∈ Z and z ∈ C. (II) (3.28) vanishes as d → ∞ for any m ∈ Z
and z ∈ C. For proving (I), as in the case of Γc−, we introduce a positively-oriented rectangu-
lar contour R̃ := R̃1 ∪ R̃2 ∪ R̃3 ∪ R̃4, where R̃1, R̃2, R̃3 and R̃4 represents the right, top, left,
and bottom edge respectively. In the case Ad (resp. A−d), we put R̃ such that its lower-left
corner match the corner of Ad (resp. A−d). Then by using (C.3) in Lemma C.1 (iii), we see
that (3.28) with ♯ = R̃1 vanishes as the length of the horizontal sides goes to infinity. In the
case Cd (resp. C−d), we set the length of the horizontal sides in R̃ to be c − c− and place
it in a way that its two bottom (resp. top) corners match the corners in Cd (resp. C−d) and
show that (3.28) with ♯ = R̃2 (resp. ♯R4) vanishes as the length of the vertical sides goes to
infinity using Lemma C.1 (ii). On the other hand one can show the property (II) just by using
Lemma C.1 (ii) and (C.3) in Lemma C.1 (iii) in the cases Ad and A−d while in the case Cd

and C−d, we use Lemma C.1 (ii).

Now we will prove Lemma 3.4 (iii) by showing the following two relations:

K(m1,m2; Γc) = K∞(m1,m2), (3.31a)

K(m1,m2; Γc) = −L(m1,m2). (3.31b)

First, we prove (3.31a). Noting Γc = Ad ∪D∞ ∪A−d, and (3.27), we have

K(m1,m2; Γc) = K(m1,m2;D∞) +K(m1,m2;Ad) +K(m1,m2;A−d)

= K(m1,m2;D∞).

Recalling by definition K(m1,m2;D∞) = K∞(m1,m2), we arrive at (3.31a).

Next we show the relation (3.31b). Noting the decomposition C̃ = Γc ∪ Cd ∪ C−d ∪ Γc− ,
and (3.27), we have

K
(
m1,m2, C̃

)
= K(m1,m2,Γc).

Combining this with the fact L(m1,m2) = −K
(
m1,m2; C̃

)
, we arrive at (3.31b). ■

4 Comparison with Borodin’s matching

This section stems from conversations we had in separate occasions with Alexei Borodin and
Guillaume Barraquand, soon after posting the first version of this paper on arXiv. We are going
to compare results proven in the previous sections and especially Theorem 1.3 with the matching
between the distribution of the length of a random partition in the Hall–Littlewood measure
and a certain multiplicative statistics of the Schur measure proven in [9]. The Hall–Littlewood
measure is defined by

MHL(µ) = Pµ(a1, . . . , aN ; 0, t)Qµ(b1, . . . , bM ; 0, t)/ZHL, (4.1)

where Pµ(a1, . . . , aN ; 0, t) and Qµ(b1, . . . , bM ; 0, t) are the Hall–Littlewood polynomials, which
are the case q = 0 of the Macdonald polynomials Pµ(a1, . . . , aN ; q, t) and Qµ(b1, . . . , bM ; q, t)

defined in [31, Chapter VI] and ZHL =
∏N

i=1

∏M
j=1(1 − taibj)/(1 − aibj) is the normalization

constant.
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<w

=w

C̃

Cd

R1

R2

R3

R4

C−d

Γc−

Γc

D∞

Ad

A−d

−d
√
−1

d
√
−1

c− c 1/a1 1/aNq`· · · 1/a1q
`+1

Figure 3. All of the contours appearing in the proof of Lemma 3.4. We set c > 0, c− < 0.

Proposition 4.1 ([9]). Let a, b be specializations of the algebra of symmetric functions such
that 0 < |ZHL| < ∞ and 0 < |ZS| < ∞, where

ZHL =
∑
µ

Pµ(a; 0, t)Qµ(b; 0, t) and ZS=
∑
λ

sλ(a)sλ(b).

Let HL(a, b) and S(a, b) denote respectively the Hall–Littlewood and the Schur (possibly signed)
measure. Let EHL(a,b)[·] and ES(a,b)[·] denote the average over the Hall–Littlewood measure
MHL(µ) (4.1) and the Schur measure MS(µ) (1.13) respectively. Then we have

EHL(a,b)

[
1(

−vt−ℓ(µ); t
)
∞

]
= ES(a,b)

[∏
i≥1

1

1 + vt−1+i−µ′
i

]
. (4.2)

In his original paper [9, Corollary 4.4], Borodin proves a variant of identity (4.2) relating
certain averages with respect to the stochastic six vertex model and the Macdonald measure.
One can replace the average with respect to the stochastic six vertex model with the Hall–
Littlewood measure thanks to the equivalence in law between the height function and the length
of a Hall–Littlewood random partition (this equivalence was proven in [10]). On the other hand
one can also replace the average over the Macdonald measure with the Schur measure since the
identity holds for arbitrary t, which is the one of the parameters (q, t) in Macdonald polynomial
thus one can set t = q. From these properties, we see that the identity in [9, Corollary 4.4] leads
to (4.2). Below we report a different proof that was suggested to us by Guillaume Barraquand
and that to the best of our knowledge has not appeared in published literature before, although
it has been known for a few years.2

2For instance, the same argument we present here had been used in 2019 by Corwin in the lecture series in
Kyushu https://www2.math.kyushu-u.ac.jp/~osada-labo/msj-si2019/slides/Corwin2.pdf.

https://www2.math.kyushu-u.ac.jp/~osada-labo/msj-si2019/slides/Corwin2.pdf
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Proof. Hereafter, we set N = M = n in (4.1) and (1.13). It was observed in [31] that the
summation of Macdonald polynomials

1

Π(a, b; q, t)

∑
µ

n∏
i=1

(
1− uqµitn−i

)
Pµ(a; q, t)Qµ(b; q, t), (4.3)

where

Π(a, b; q, t) =
∑
µ

Pµ(a; q, t)Qµ(b; q, t) =
n∏

i,j=1

(taibj ; q)∞
(aibj ; q)∞

does not depend on q, when a = (a1, . . . , an) and b = (b1, . . . , bn) are n-tuples of complex
numbers. More precisely, the proof of the q-independence of (4.3) is contained in the proof
of [31, Chapter VI, Section 3, equation (3.12)]. Setting q = t, this fact produces a matching
between expectations of Schur and Macdonald measures (the latter denoted by M(a, b))

EM(a,b)

[
n∏

i=1

(
1− uqµitn−i

)]
= ES(a,b)

[
n∏

i=1

(
1− utµi+n−i

)]
.

Setting q = 0, the left-hand side becomes an expectation over the Hall–Littlewood measure and
after simple algebraic manipulation, we obtain

EHL(a,b)

[
1(

utn−ℓ(µ); t
)
∞

]
= ES(a,b)

[∏n
i=1

(
1− utµi−i+n

)∏
i≥0

(
1− uti

) ]
= ES(a,b)

[∏
i≥1

1

1− utn−1+i−µ′
i

]
.

We can finally rescale the u parameter as u = −vt−n to obtain the equality (4.2), which holds
for a, b, being n-tuples of complex numbers of modulus smaller than 1. Note that (4.2) can
be regarded as an identity for the symmetric polynomials with n variables. In addition using
stability properties (i.e., the property that the identity for variables (a1, . . . , an−1) is equal to
the identity for (a1, . . . , an−1, an = 0)) of the Hall–Littlewood and Schur polynomials we can
extend the identity of the symmetric polynomials to that of the symmetric functions. Thus we
see that (4.2) holds in the algebra of symmetric functions; for more information about stability
and inverse limit procedures, see [31, Chapter I.2]. Through this extension a and b become
specializations of the algebra of symmetric functions and we assume the condition that the
Macdonald measure is absolutely summable. This completes the proof. ■

We would now like to transform the identity (4.2) into an analogous identity relating the
q-Whittaker measure and the Schur measure. For this, we introduce the specialization of the
algebra of symmetric functions defined by its action on (the algebraic basis of) power sum
symmetric functions pn as

ã : pn 7→ (−1)n−1

1− tn
pn(a),

where a represents a collection of complex numbers and we recall that, under such special-
ization the Hall–Littlewood functions are turned into q-Whittaker functions (with q = t) as
Pµ(ã; 0, t) = Pµ′(a; t, 0). Considering the Hall–Littlewood measure in (4.2) with specializations
set to ã, b̃, we get

EtW(a,b)

[
1

(−vt−µ1 ; t)∞

]
= ES(a′,b′)

[∏
i≥1

1

1 + vt−1+i−µi

]
, (4.4)
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where tW(a, b) denotes the t-Whittaker measure. Above the specialization of the Schur mea-
sure is

a′ : pn 7→ 1

1− tn
pn(a)

and we used the fact that

sµ(ã) = sµ′(a′) = sµ′(α),

where in the right-hand side α is the collection of the complex numbers whose set {αi}i=1,2,... is
given by

{αi}i=1,2,... =
⊔

j=1,2,...

{
aj , ajt, ajt

2, . . .
}
.

Through (4.4) one can write Fredholm determinant expressions for the t-Laplace transform
of the probability distribution of the first row of a partition µ distributed according to the t-
Whittaker measure. This is because the right-hand side of (4.4) is a multiplicative observable
of a determinantal point process, namely (λi − i + 1/2)i=1,2,... when λ is distributed according
to the Schur measure. We have, changing all t parameters to q

EqW(a,b)

[
1

(−vq−µ1 ; q)∞

]
= det

(
1− f̄vL

∗)
ℓ2(Z), (4.5)

where f̄v(x) =
1

1+vqx+1/2 and L∗(i, j) = −L(−1 − j,−1 − i), where L was defined in (2.12). To

check that L∗ is the correlation kernel of a Schur measure (with specializations a′, b′) see, for
instance [1, Theorem 1.1]. Now, simple algebraic manipulations of the right-hand side of (4.5)
show that

det
(
1− f̄vL

∗)
ℓ2(Z) = det(1 + f−vq1/2L)ℓ2(Z), (4.6)

where the function fζ was defined in Proposition 2.1. We can now compare the expression in
the right-hand side of (4.6) with that in the right-hand side of (2.10) to discover that they differ
by a change of parameter v → tk.

The argument outlined in the previous paragraphs yields another proof of the correspon-
dence between the first row of the q-Whittaker measure and the edge of the periodic Schur
measure. Furthermore, we can also obtain (4.2) from our relation (1.5). Noting (1.5) holds for
general specialization of symmetric functions as stated in Remark 1.2 and applying the special-
ization pn 7→ (−1)n−1(1− tn)pn(a) to our relation, we arrive at (4.2). This shows the equivalence
between Borodin’s matching (4.2) and our Theorem 1.3.

A Notations and formulas

In this sections, we summarize the notations and formulas which we frequently use in this paper.

A.1 Partitions

A partition λ is a sequence of nonnegative integers λ = (λ1, λ2, . . . ), λj ∈ Z≥0 with non decreas-
ing orders λ1 ≥ λ2 ≥ · · · . The length of partition ℓ(λ) is the number of nonzero elements in λ
and the size of λ is defined as |λ| =∑j λj . Let P be the set of the partitions whose lengths are fi-
nite. The partition λ ∈ P can be expressed in another way λ = 1m12m2 · · · , where mj represents
the number of the elements λks such that λk = j. Note that

∑
j mj = n and |λ| =∑j jmj . For

example, λ = (3, 3, 2, 2, 1, 1, 1, 0, . . . ) is expressed as 132232. We write λ = ∅ if all λj ’s are 0’s.
For λ, µ ∈ P, we denote µ ⊂ λ if µi ≤ λi, i = 1, 2, . . . .
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A.2 q-Series and sum over partitions

Here we summarize a few formulas for q-series and related summations over partitions. For more
detail, we refer the reader to [4, Sections 10 and 11]. Define

(a; q)∞ =
∞∏
j=0

(
1− aqj

)
, (A.1)

(a; q)n =
(a; q)∞
(aqn; q)∞

=

(1− a)(1− aq) · · ·
(
1− aqn−1

)
, n ≥ 0,

1

(1− a/q)(1− a/q2) · · · (1− a/qm)
, n = −m, m > 0.

(A.2)

Note that (q; q)−1
−m = 0 for m ∈ Z>0.

Next we give some formulas for the q-series. First, we state the q-binomial theorem: For
|z| < 1, |q| < 1 and a ∈ C,

∞∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

. (A.3)

For the proof, see, e.g., [4, Theorem 10.2.1]. In this paper, we use the two special cases,

∞∑
n=0

zn

(q; q)n
=

1

(z; q)∞
, (A.4)

∞∑
n=0

(−1)nq
n(n−1)

2

(q; q)n
zn = (z; q)∞. (A.5)

The first equality (A.4) holds for |z| < 1 while the second one (A.5) holds for arbitrary z ∈ C.
They are written in [4, Corollary 10.2.2 (a) and (b)]. One immediately obtains (A.4) (resp. (A.5))
by setting a = 0 (resp. replacing a → 1/a x → ax, then taking the limit a → 0) in (A.3).

The Ramanujan’s summation formula is a generalization of the q-Binomial theorem (A.3) to
the sum over Z: For |q| < 1, |b/a| < |z| < 1,

∑
n∈Z

(a; q)n
(b; q)n

zn =
(az; q)∞

( q
az ; q

)
∞(q; q)∞

(
b
a ; q
)
∞

(z; q)∞
( q
a ; q
)
∞(b; q)∞

(
b
az ; q

)
∞

. (A.6)

For a proof, see, e.g., in [4, Theorem 10.5.1]. In this paper, we use the special case a = −t,
b = −qt, z = q/w with t ∈ C \ {0},∑

n∈Z

tqnw−n

1 + tqn
=

θ(−w/t)(q; q)2∞
θ(−1/t)θ(w)

, (A.7)

where θ(x) is defined by using (A.1) as θ(x) = (x; q)∞(q/x; q)∞ and according to the condition
on z in (A.6), w should satisfy |q| < |w| < 1.

Finally, we present a well-known formula for the generating function of λ:∑
λ∈P

q|λ| =
1

(q; q)∞
(A.8)

and its refinement with a fixed λ1:∑
λ∈P
λ1=n

q|λ| =
qn

(q; q)n
. (A.9)



Identity between Restricted Cauchy Sums 23

(A.9) is obtained as follows. Switching to the notation of partition as λ = 1m12m2 · · · , and
noting |λ| =∑j jmj , we have

∑
λ∈P
λ1=n

q|λ| =
n−1∏
j=1

∞∑
mj=0

qjmj ·
∞∑

mn=1

qnmn =
n−1∏
j=1

1

1− qj
· qn

1− qn
.

(A.8) follows immediately from (A.9) by taking the sum over n and noting (A.4).

B Properties of the kernels A(m; r) and B(r;m)

In this appendix, we give upper bounds for matrix elements of A(m; r) (3.7) and B(r;m) (3.8),
which are useful to prove the well-definedness of the Fredholm determinants Fℓ(3.4) and F∞(3.5)
in Proposition 3.3 (ii) and Lemma 3.4 (ii) in Section 3.3.

Lemma B.1. Recall the assumption on ai, bi, i = 1, . . . , N stated at the beginning of Section 3.
Recall also the notation (3.6), ãr = akq

u. Then there exist constants C+, C−, D+, and D−
which do not depend on m or r such that the following inequalities hold.

(i) Assume b satisfies bmax < b < 1. We have

|A(m; r)|
{
< C+a

m
1 q

m2

2N
+m

2
+u, m ≥ 0,

< C−b
−mqu, m < 0.

(B.1)

(ii) Assume a1/aN < q−
1
2
+ϵ with ϵ ∈ (0, 1/2). We have

|B(r;m)|
{
< D+a

−m
N q−

m2

2N
+ϵm−( 1

2
+ϵ)u, m ≥ 0,

< D−a
−m
1 qu, m < 0.

(B.2)

From (B.1), (B.2), we immediately obtain the bounds for Ã(m; r) and B̃(r;m) defined
by (3.11).

Corollary B.2. With the same notation and assumptions as in Lemma B.1, we have

∣∣Ã(m; r)
∣∣{< C+q

ϵm+ωu, m ≥ 0,

< C−b
−mqωu, m < 0,

∣∣B̃(r;m)
∣∣{< D+q

ϵm+( 1
2
−ϵ−ω)u, m ≥ 0,

< D−a
−m
1 qu, m < 0.

Note that both Ã(m; r) and B̃(r;m) are bounded exponentially for m and r.

Proof of Lemma B.1. In this proof, Ci, i = 1, . . . , 4 and Dj , j = 1, 2, 3 will denote constants
which do not depend on m or r (i.e., k, u).

(i) First, we consider the case m ≥ 0. We note that the singularities of the integrand of (3.7)
are 0 and biq

j , i = 1, . . . , N , j ∈ Z≥0 and do not include ã−1
r because of the presence of the

factor
∏N

i=1(aiz; q)∞. Thus we can extend the contour C arbitrarily without changing the value
of A(m; r). First we give an estimate setting the radius to be q−n with n ∈ Z>0 and then
specify n giving an optimal estimate. With this choice of the radius |z| = q−n, f(m) in (2.11)
and some factors in the integrand in A(m; r) can be estimated as

|f(m)| < qm,
2πq−n

|z1+m| = 2πqnm,∣∣∣∣∣∣
N∏
j=1

1

(bj/z; q)∞

∣∣∣∣∣∣ <
N∏
j=1

1

(bjqn; q)∞
<

N∏
j=1

1

(bj ; q)∞
, (B.3)
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where the factor 2πq−n represents the circumference with radius q−n. We rewrite the remaining
factor as

1

z − ã−1
r

N∏
i=1

(aiz; q)∞ = −akq
u

N∏
i=1
i ̸=k

(aiz; q)∞ · (akz; q)u
(
akq

u+1z; q
)
∞. (B.4)

The factor −akq
u
∏N

i=1
i ̸=k

(aiz; q)∞ in (B.4) can be estimated as∣∣∣∣∣−akq
u

N∏
i=1
i ̸=k

(aiz; q)∞

∣∣∣∣∣
< akq

u
N∏
i=1
i ̸=k

(
−ai/q

n; q
)
∞ = akq

u−(N−1)
n(n+1)

2

N∏
i=1
i ̸=k

ani (−q/ai; q)n(−ai; q)∞

< akq
u−(N−1)

n(n+1)
2

N∏
i=1
i ̸=k

ani (−q/ai; q)∞(−ai; q)∞ < C1q
u−(N−1)

n(n+1)
2 a

(N−1)n
1 , (B.5)

where in the second equality we used the relation(
x/qn; q

)
∞ = (−x)nq−

n(n+1)
2 (q/x; q)n(x; q)∞. (B.6)

For the remaining factors in (B.4), we find∣∣(akz; q)u(akqu+1z; q
)
∞
∣∣

<
(
−ak/q

n; q
)
u

(
−akq

u−n+1; q
)
∞ =

(
−akq

−n; q
)
∞

1 + akqu−n
= ankq

−n(n+1)
2

(−q/zk; q)n(−ak; q)∞
1 + akqu−n

<

{
C2a

n
kq

−n(n+1)
2 , u ≥ n,

C3a
n
kq

−n(n+1)
2

+n−u, n > u.

Here in the third equality we used (B.6). Thus we have a bound regardless of the order of n
and u∣∣(akz; q)u(akqu+1z; q

)
∞
∣∣ < C4a

n
1q

−n(n+1)
2 . (B.7)

Putting together (B.3), (B.5), and (B.7), we have

|A(m; r)| < C+a
Nn
1 qnm−N

n(n+1)
2

+u+m

= C+a
Nn
1 q−

N
2 (n−

m
N
+ 1

2)
2
+N

2 (
m
N
− 1

2)
2
+u+m. (B.8)

Now we specify n which gives an optimal estimate. From the last expression in (B.8), a simple
computation shows that such optimal bound is given by the nonnegative integer which is closest
to m/N − 1/2 and this proves the first inequality in (B.1).

Next we consider the case m < 0. In this case, we set the radius of contour C to be b
appearing in the assumption of (i). We find

|f(m)| < C4
2πb

|z|1+m
= 2πb−m,

1∣∣z − ã−1
r

∣∣ < akq
u

1− akbqu
<

ak
1− ak

qℓ,∣∣∣∣∣
M∏
j=1

(aiz; q)∞
(bj/z; q)∞

∣∣∣∣∣ <
N∏
i=1

(−aib; q)∞
(bi/b; q)∞

.

Combining these estimates, we arrive at the bottom estimate of (B.1).
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(ii) Recalling the notation ãr = akq
u (3.6) and calculating explicitly the residue in (3.8), we

have

B(r;m) =− a
−(m+1)
k q−u(m+1)

∏
i=1
i ̸=k

1

(aiq−u/ak; q)∞
· 1

(1/qu; q)u(q; q)∞
·

N∏
j=1

(akbjq
u; q)∞

=− a
−(m+1)
k q−u(m+1)+N

u(u+1)
2

∏
i=1
i ̸=k

(−ak/ai)
u

(qak/ai; q)∞(ai/ak; q)∞
· (−1)u

(q; q)u(q; q)∞

×
N∏
j=1

(akbjq
u; q)∞,

where in the second equality we used (B.6). Using the condition a1/aN < q−1/2+ϵ, we have the
following estimate,

|B(r;m)| < D1a
−(m+1)
k q−um+N

u(u+1)
2

−N( 1
2
−ϵ)u−( 1

2
+ϵ)u. (B.9)

For m ≥ 0, combining (B.9) with the following bound

q−um+N
u(u+1)

2
−N( 1

2
−ϵ)u = q

N
2 (u−

m
N
+ϵ)

2−N
2 (

m
N
−ϵ)

2

< D2q
−m2

2N
+ϵm,

we have the desired estimate. On the other hand for m < 0, we use

q−um < qu, qN
u(u+1)

2
−N( 1

2
−ϵ)u−( 1

2
+ϵ)u < D3. (B.10)

From (B.9) and (B.10), we obtain the bottom relation in (B.2). ■

C Decay estimates of q-Pochhammer symbols

In this section, we provide simple bounds for the q-Pochhammer symbol (z; q)∞, where z ∈ C
and 0 < q < 1. For our purpose, it is sufficient to have bounds in the following three cases
though they are not exclusive nor exhaustive.

Lemma C.1. Let us write z = a+
√
−1b with a, b ∈ R. For 0 < q < 1 fixed, there exist positive

constants c1 = c1(q) and c2 = c2(q) such that

(i) for a ≤ −1,

|(z; q)∞| ≥ c1 exp
[
c2 log

2 |a|
]
, (C.1)

(ii) for a < 1 and |b| > 1,

|(z; q)∞| ≥ c1 exp
[
c2 log

2 |b|
]
, (C.2)

(iii) for a > 1, the following two types of lower bounds hold

|(z; q)∞| ≥ c1b
2a−

3
2 exp

[
c2 log

2 a
]
, (C.3)

|(z; q)∞| ≥ c1
(
qα−1 − 1

)(
1− qα

)
exp

[
c2 log

2 a
]
, (C.4)

where α =
⌈
logq−1 a

⌉
− logq−1 a with ⌈x⌉ being the minimum integer greater than x.
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Proof. We repeatedly use the simple estimate

|1− w| =
√

(1−ℜw)2 + (ℑw)2 ≥
{
|1−ℜw|,
|ℑw|,

(C.5)

which hold for any w ∈ C. We use the top or bottom estimate depending on the situations.
(i) In terms of α ∈ [0, 1) and J ∈ Z>0, we express a(< −1) as a = −qα−J . Applying the top

estimate in (C.5) to the factor
∣∣1− zqk

∣∣, we have

∣∣1− zqk
∣∣ =√(1 + aqk

)2
+
(
bqk
)2 ≥ 1 + qα−J+k ≥

{
qα−J+k,

1− qk+1−J ,
(C.6)

where both estimates holds for ∀k = 0, 1, 2, . . . . Choosing the top (resp. bottom) estimate
for k < J (resp. k ≥ J), we have

|(z; q)∞| ≥ qαJ−
J(J+1)

2 (q; q)∞ = q−
1
2
(α−J)2+ 1

2
(α−J)+α2−α

2 (q; q)∞ ≥ q−
1
2
(α−J)2(q; q)∞, (C.7)

where in the last inequality we used the fact 0 ≤ α < 1 and 1 ≤ J . Recalling α − J = logq |a|,
one easily sees

q−
(α−J)2

2 = e
−(log |a|)2

2 log q . (C.8)

From (C.7) and (C.8), we obtain (C.1).
(ii) We adopt the same strategy as above. In this case we write |b| = qα−J , where 0 ≤ α < 1

and J ∈ Z>0. Using (C.5), we have for k = 0, 1, 2, . . .

∣∣1− zqk
∣∣ ≥ {|b|qk = qα−J+k,

1− aqk ≥ 1− qk+1−J .
(C.9)

Applying the top (resp. bottom) estimate in (C.9) to the case k < J (resp. k ≥ J) and noting
that the estimate (C.9) is exactly the same as (C.6) except that α − J represents logq |b|, we
get (C.2) similarly to the case (i).

(iii) As in the case (i), we express a as a = qα−J with a ∈ [0, 1) and J ∈ {1, 2, . . . }. First, we
prove (C.3). We choose the estimates as follows:∣∣1− zqk

∣∣
≥



∣∣1− aqk
∣∣ = qα−J+k

(
1− qJ−α−k

)
≥ qα−J+k

(
1− qJ−k−1

)
, for 0 ≤ k ≤ J − 2,

bqk, for k = J − 1, J,∣∣1− aqk
∣∣ = 1− qα−J+k ≥ 1− q−J+k, for J + 1 ≤ k.

(C.10)

Thus we have

|(z; q)∞| ≥
J−2∏
k=0

qα−J+k
(
1− qJ−k−1

)
·

J∏
k=J−1

bqk ·
∞∏

k=J+1

(
1− q−J+k

)
= qα(J−1)−J(J+1)

2
+2Jb2(q; q)J−1(q; q)∞ ≥ q−

(J−α)2

2
+ 3

2
(J−α)+α2

4
+ 3α

2 b2(q; q)2∞.

Thus from a = qα−J and (C.8), we obtain the desired form (C.3).
The other estimate (C.4) can be readily obtained by replacing the second inequality in (C.10)

(corresponding to the case k = J − 1, J) with
∣∣1− zqk

∣∣ ≥ ∣∣1− aqk
∣∣ = ∣∣1− qα−J+k

∣∣. ■
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Poincaré 19 (2018), 3663–3742, arXiv:1704.05809.

[8] Borodin A., Periodic Schur process and cylindric partitions, Duke Math. J. 140 (2007), 391–468,
arXiv:math.CO/0601019.

[9] Borodin A., Stochastic higher spin six vertex model and Macdonald measures, J. Math. Phys. 59 (2018),
023301, 17 pages, arXiv:1608.01553.

[10] Borodin A., Bufetov A., Wheeler M., Between the stochastic six vertex model and hall-littlewood processes,
J. Combin. Theory Ser. A, to appear, arXiv:1611.094863.

[11] Borodin A., Corwin I., Macdonald processes, Probab. Theory Related Fields 158 (2014), 225–400,
arXiv:1111.4408.
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