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Abstract. We study obstructions to the existence of Riemannian metrics of positive scalar
curvature on closed smooth manifolds arising from torsion classes in the integral homology
of their fundamental groups. As an application, we construct new examples of manifolds
which do not admit positive scalar curvature metrics, but whose Cartesian products admit
such metrics.
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1 Introduction

In his construction of counterexamples to the Gromov–Lawson–Rosenberg conjecture, Thomas
Schick in [31] discovered a purely homological obstruction to the existence of metrics with pos-
itive scalar curvature on closed oriented smooth manifolds. We say that a smooth manifold
is ∃PSC, if it admits a Riemannian metric of positive scalar curvature, and ∄PSC, if it does
not admit such a metric. Schick’s construction is based on the observation that by the de-
scent method of Schoen–Yau [33, 34], the ∃PSC-property of a closed oriented manifold V of
dimension n ≤ 7 implies that the Poincaré dual of a class c ∈ Hn−ℓ(V ;Z) which is the product
of 1-dimensional integral cohomology classes can be represented by a closed oriented smoothly
embedded ∃PSC-submanifold Σ ⊂ V of dimension ℓ. Now, if ℓ = 2 and the fundamental class
of Σ can be detected by a product of two 1-dimensional cohomology classes in V with coef-
ficients in some field F, then Σ is ∄PSC by the Gauss–Bonnet theorem. This cohomological
condition on the fundamental class of Σ is satisfied if there exist classes c1, c2 ∈ H1(V ;F) such
that c ∪ c1 ∪ c2 ∈ Hn(V ;F) evaluates to nonzero on the fundamental class of V . It follows by
contraposition that in this case V is ∄PSC.

In the present paper, we generalize these “toral” ∃PSC-obstructions in two directions. First,
we combine the torality condition on the Poincaré dual of c with an enlargeability condition
on V , see Definition 2.3. The resulting largeness property depends only on the image of the
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fundamental class of V in Hn(π1(V );F) under the classifying map, see Proposition 2.12. Sec-
ond, we allow the case dimΣ = 3 by exploiting the restricted nature of ∃PSC-3-manifolds, see
Proposition 3.1. In Theorem 4.3, we obtain a general ∃PSC-obstruction in this setting.

As an application, in Theorem 5.1, we construct new examples of ∄PSC-manifolds whose
Cartesian products are ∃PSC, thus challenging our geometric intuition that ∄PSC-manifolds are
“large” while ∃PSC-manifolds are “small”.

Some fundamental questions remain unanswered, most notably whether there exist toral
∃PSC-manifolds of dimension n ≥ 4 and with fundamental group (Z/p)n for some odd prime p,
see Conjecture 4.6 and [26, Problem 9]. We hope that this note will stimulate some interest in
this and related problems, some of which we address in Section 6.

In an appendix, we prove homological invariance of the ∃PSC-property of closed oriented
manifolds of dimension at least 5 with non-spin universal covers, filling a gap in an earlier
treatment in the literature [30]. This result is of independent interest.

2 F-torality and tor-ℓ/F-enlargeability

Definition 2.1. Let X be a topological space, let ℓ be a non-negative integer and let F be
a field, e.g., Q or the finite field Fp for some prime p.

In the line of [18, 20], a homology class h ∈ Hℓ(X;F) is called F-toral if it is detected by
a product of 1-dimensional cohomology classes, i.e., there exist classes c1, . . . , cℓ ∈ H1(X;F)
such that

⟨c1 ∪ · · · ∪ cℓ, h⟩ ≠ 0 ∈ F.

Here we use the Kronecker pairing (evaluation pairing) of cohomology and homology. We agree
that all h ̸= 0 ∈ H0(X;F) are F-toral. Otherwise, the class h is called F-atoral. Obviously, the
subset of F-atoral classes forms a linear subspace of Hℓ(X;F).

A closed, i.e., compact-without-boundary, F-orientable1 n-dimensional manifold V is called
F-toral, if, after choosing some F-orientation, its fundamental class [V ]F ∈ Hn(V ;F) is F-toral.
Otherwise, V is called F-atoral.

In the following, let Sn denote the unit n-sphere equipped with the standard round metric,
and let ∞ ∈ Sn be some base point. We call a continuous map f : X → Sn compactly supported,
if there exists a compact subset K ⊂ X with f(X \K) = {∞}.

Remark 2.2.

(a) If char(F) ̸= 2, then the classes c1, . . . , cℓ appearing in Definition 2.1 span an exterior
algebra on ℓ generators of dimension 1 in the F-algebra H∗(X;F).

(b) A closed oriented n-manifold V is Q-toral, if and only if it admits a map of non-zero
degree to the n-torus Tn. In other words, V is overtorical. This follows from the universal
coefficient formula H∗(V ;Q) = H∗(V ;Z)⊗Q and the one-to-one correspondence of classes
in H1(V ;Z) and homotopy classes of maps V → S1.

Definition 2.3. Let n ≥ 1 and 0 ≤ ℓ ≤ n. An F-orientable Riemannian n-manifold (V, g) is
called tor-ℓ/F-enlargeable, if for all ε > 0, there exists a Riemannian covering V̄ = V̄ε → V
and a compactly supported smooth ε-Lipschitz map f = fε : V̄ → Sn−ℓ, which is of non-zero F-
toral degree. By definition, this means that for some, hence every, regular value s ∈ Sn−ℓ \ {∞}
of f , the homology class

[
f−1(s)

]
∈ Hℓ

(
V̄ ;F

)
represented by the closed F-orientable submani-

fold f−1(s) ⊂ V̄ is F-toral.
For ℓ = n, this means that a finite cover of V is F-toral.
1This condition is empty for char(F) = 2 and equivalent to orientability for char(F) ̸= 2.
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Remark 2.4.

(a) In the case of closed V , this property is independent of the choice of g. Thus, it is an
invariant of the diffeomorphism type of V .

(b) In fact, if V is closed, connected and F-oriented, this property depends only on the image
of the fundamental class [V ]F ∈ Hn(V ;F) under the classifying map V → Bπ1(V ), see
Proposition 2.12. In particular, for closed V , tor-ℓ/F-enlargeability is an invariant of the
homotopy type of V .

(c) Tor-0/Q-enlargeable n-manifolds V are enlargeable in the classical sense of [16, Section 5],
i.e., for all ε > 0, there exists a Riemannian covering V̄ → V together with a compactly
supported ε-Lipschitz map V̄ → Sn of non-zero degree.

(d) “Tor-ℓ/F-enlargeable” generalizes “SYS-enlargeable” from [13], where SYS stands for
Schoen–Yau–Schick.

Example 2.5.

(a) For all n ≥ 1 and all F, the n-torus V = Tn = S1 × · · · × S1 is F-toral.
(b) For all n ≥ 1, the real projective space RPn is F2-toral.

(c) Let 0 ≤ ℓ ≤ n and let V be a closed F-orientable n-manifold together with a map f : V →
Tn−ℓ of non-zero F-toral degree. Then V is F-toral and tor-ℓ/F-enlargeable. Such V are
called tor-ℓ/F-overtorical.

(d) Let V be tor-ℓ/F-enlargeable and let W be a an F-orientable Riemannian manifold ad-
mitting a proper 1-Lipschitz map W → V of non-zero F-toral degree. Then W is tor-ℓ/F-
enlargeable.

For a group G, let BG be the classifying space of G and let H∗(G) = H∗(BG) be the group
homology of G. For a connected topological space X, let φ : X → Bπ1(X) be the classifying
map of the universal cover of X. It is unique up to homotopy.

Definition 2.6. Let V be a closed connected manifold of dimension n.

(a) Let F be a field. V is called F-essential if it is F-orientable and the classifying map
φ : V → Bπ1(V ) sends some fundamental class [V ]F ∈ Hn(V ;F) to a non-zero homology
class in Hn(π1(V );F).

(b) V is called (integrally) essential if it is orientable and φ sends some integral fundamental
class [V ] ∈ Hn(V ;Z) to a non-zero homology class in Hn(π1(V );Z).

Any oriented F-essential manifold V n is essential, since φ∗([V ]F) ∈ Hn(π1(V );F) is just the
F-reduction of φ∗([V ]) ∈ Hn(π1(V );Z). However, the last class may be a torsion class, see
Example 2.13. Hence, the title of our paper.

In the following, for n ≥ 0, let σn ∈ Hn
c (Sn \ {∞};F) be the non-zero compactly supported

cohomology class Poincaré dual to the class in H0(Sn\{∞};F) = F represented by a point. Note
that for each compactly supported map f : X → Sn, the cohomology class f∗(σn) ∈ Hn

c (X;F)
is compactly supported.

Proposition 2.7. Each connected tor-ℓ/F-enlargeable manifold V is F-essential.

Proof. We construct a CW model of Bπ1(V ) by attaching cells of dimension ≥ 3 to V , killing
all homotopy groups in dimension ≥ 2. In this description, the classifying map φ : V → Bπ1(V )
becomes an inclusion.

Let n = dimV and assume that φ∗([V ]F) = 0 ∈ Hn(π1(V );F). Then there exists a connected
finite subcomplex V ⊂ S ⊂ Bπ1(V ) such that the inclusion map ι : V ↪→ S satisfies ι∗([V ]F) =
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0 ∈ Hn(S;F). Since V and S have the same 2-skeleton, the map ι induces an isomorphism of
fundamental groups.

By assumption and Poincaré duality, for all ε > 0, there exists a connected covering πV : V̄ =
V̄ε → V , a compactly supported smooth ε-Lipschitz map fε : V̄ → Sn−ℓ, and classes c1, . . . , cℓ ∈
H1

(
V̄ ;F

)
so that(

f∗ε
(
σn−ℓ

)
∪ (c1 ∪ · · · ∪ cℓ)

)
∩ π!V ([V ]F) ̸= 0 ∈ H0

(
V̄ ;F

)
. (2.1)

Here H lf
∗ is locally finite homology and π!V : Hn(V ;F) → H lf

n

(
V̄ ;F

)
is the homological transfer.

Note that f∗ε
(
σn−ℓ

)
∪ (c1 ∪ · · · ∪ cℓ) ∈ Hn

c

(
V̄ ;F

)
, so that the class considered in (2.1) indeed lies

in H0

(
V̄ ;F

)
.

Let G := π1
(
V̄
)
< π1(V ) and let π : BG → Bπ1(V ) be the corresponding covering map.

Let S̄ := π−1(S) ⊂ BG. Since S ↪→ Bπ1(V ) induces an isomorphism of fundamental groups, S̄ is
connected and the inclusion V̄ ↪→ S̄ induces an isomorphism of fundamental groups. Hence, we
obtain H1

(
S̄;F

) ∼= H1
(
V̄ ;F

)
, and the classes c1, . . . , cℓ ∈ H1

(
V̄ ;F

)
extend to classes c′1, . . . , c

′
ℓ ∈

H1
(
S̄;F

)
.

By [3, Lemma 3.2] and since S is a finite complex, one can choose ε > 0 at the beginning
of this argument so small that the map fε : V̄ → Sn−ℓ extends to a compactly supported map
F : S̄ → Sn−ℓ.

Let π!S : Hn(S;F) → H lf
n

(
S̄;F

)
be the homological transfer map for the covering πS : S̄ → S.

Then (2.1) together with the naturality of the transfer map implies(
F ∗(σn−ℓ) ∪ (c′1 ∪ · · · ∪ c′ℓ)

)
∩ π!S(ι∗([V ]F)) ̸= 0 ∈ H0

(
S̄;F

)
.

This contradicts our assumption ι∗([V ]F) = 0 ∈ Hn(S;F). ■

Extending this line of thought, in Proposition 2.12, we will show a homological invariance
property of tor-ℓ/F-enlargability. This is similar in spirit to [3, Section 3]. In the following,
we equip connected simplicial complexes with their canonical path metrics whose restriction to
each k-simplex is the standard metric on ∆k ⊂ Rk+1.

Definition 2.8. Let 0 ≤ ℓ ≤ n. Let X be a connected simplicial complex with finitely presented
fundamental group. A homology class h ∈ Hn(X;F) is called tor-ℓ/F-enleargeable, if there exists
a finite connected subcomplex S ⊂ X and a class hS ∈ Hn(S;F) such that

(a) The inclusion S ↪→ X induces an isomorphism of fundamental groups2 and the induced
map Hn(S;F) → Hn(X;F) sends hS to h;

(b) for all ε > 0, there exists a connected cover πS : S̄ = S̄ε → S, a compactly supported
ε-Lipschitz map fε : S̄ → Sn−ℓ and classes c1, . . . , cℓ ∈ H1

(
S̄;F

)
that satisfy(

f∗ε
(
σn−ℓ

)
∪ (c1 ∪ · · · ∪ cℓ)

)
∩ π!S(hS) ̸= 0 ∈ H0

(
S̄;F

)
.

Let H
tor-ℓ/F-enl
∗ (X;F) ⊂ H∗(X;F) be the subset of tor-ℓ/F-enlargeable homology classes.

The complex S in Definition 2.8 can be made arbitrarily large:

Lemma 2.9. Let h ∈ Hn(X;F) be tor-ℓ/F-enlargeable. Let S ⊂ X and hS ∈ Hn(S;F) as in
Definition 2.8 and let K ⊂ X be a finite subcomplex.

Then there exists a finite connected subcomplex S∪K ⊂ T ⊂ X such that the inclusion T ↪→ X
induces an isomorphism of fundamental groups.

Given such a subcomplex T ⊂ X, let hT ∈ Hn(T ;F) be the image of hS under the inclu-
sion S ↪→ T . Then T and hT satisfy properties (a) and (b) in Definition 2.8.

2We implicitly assume that S contains the base point of X.
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Proof. The existence of T is clear. Obviously, the induced map Hn(T ;F) → Hn(X;F) sends hT
to h. Let ε > 0, let fε : S̄ → Sn−ℓ be an ε-contracting compactly supported map where S̄ → S
is a connected cover and let c1, . . . , cℓ ∈ H1

(
S̄;F

)
such that(

f∗ε
(
σn−ℓ

)
∪ (c1 ∪ · · · ∪ cℓ)

)
∩ π!S(hS) ̸= 0 ∈ H0

(
S̄;F

)
. (2.2)

Let T̄ → T be the uniquely determined connected cover which restricts to S̄ → S. The
inclusion ι : S̄ ↪→ T̄ induces an isomorphism of fundamental groups, hence an isomorphism
H1

(
T̄ ;F

) ∼= H1
(
S̄;F

)
.

We claim that, for small enough ε, the map fε extends to a compactly supported (C · ε)-
contracting map FCε : T̄ → Sn−ℓ where C > 0 depends only on S and T , but not on ε.

The proof is by induction on the k-skeleta T (k) ⊂ T relative to S, where k ∈ N0. If S
(0) = T (0),

this is achieved by applying [3, Lemma 3.2] finitely many times. If S(0) ⊊ T (0), the proof is a bit
more complicated as the cases k = 0 and k = 1 have to be treated simultaneously. We refer the
reader to the detailed argument in [3, p. 474f.], which carries over to our case.

Let c′1, . . . c
′
ℓ ∈ H1

(
T̄ ;F

) ∼= H1
(
S̄;F

)
correspond to c1, . . . , cℓ ∈ H1

(
S̄;F

)
. Using the natural-

ity of the transfer map, (2.2) implies(
(FCε)

∗(σn−ℓ) ∪ (c′1 ∪ · · · ∪ c′ℓ)
)
∩ π!T (hT ) ̸= 0 ∈ H0

(
T̄ ;F

)
.

Since ε > 0 can be chosen arbitrarily small, this implies property (b) of Definition 2.8 for the
class hT ∈ Hn(T ;F). ■

Corollary 2.10. The complement H∗(X;F)\Htor-ℓ/F-enl
∗ (X;F) ⊂ H∗(X;F) is a linear subspace.

Proof. The most important part is to show that if h1, h2 ∈ H∗(X;F) such that h1 + h2 ∈
H

tor-ℓ/F-enl
∗ (X;F), then at least one of h1 or h2 is contained in H

tor-ℓ/F-enl
∗ (X;F). This follows

because for the subcomplex S ⊂ X witnessing h1 + h2 ∈ H
tor-ℓ/F-enl
∗ (X;F) we can assume by

Lemma 2.9 that both h1 and h2 lie in the image of H∗(S;F) → H∗(X;F). The remaining details
are left to the reader. ■

Lemma 2.11. Let X and X ′ be connected simplicial complexes with finitely presented funda-
mental groups. Let η : X → X ′ be a map inducing an isomorphism of fundamental groups.
Then

(η∗)
−1

(
H

tor-ℓ/F-enl
∗ (X ′;F)

)
= H

tor-ℓ/F-enl
∗ (X;F).

Proof. We first show the inclusion “⊂”. This also implies the inverse inclusion, if η is a ho-
motopy equivalence, by considering a homotopy inverse of η. Suppose h ∈ H∗(X;F) such
that h′ := η∗(h) ∈ H

tor-ℓ/F-enl
∗ (X ′;F). We need to show that h ∈ H

tor-ℓ/F-enl
∗ (X;F).

There exists a finite connected subcomplex S ⊂ X such that the inclusion S ↪→ X induces
an isomorphism of fundamental groups and a class hS ∈ Hn(S;F) which maps to h ∈ Hn(X;F).

Using Lemma 2.9, there exists a finite connected subcomplex S′ ⊂ X and h′S′ ∈ Hn(S
′;F)

satisfying the properties (a) and (b) of Definition 2.8 for h′ such that, in addition, η(S) ⊂ S′

and η∗(hS) = h′S′ . Since S is compact, the restriction η|S : S → S′ is, up to homotopy, λ-
Lipschitz for some λ > 0.

Let ε > 0, let c′1, . . . , c
′
ℓ ∈ H1

(
S̄′;F

)
, let πS′ : S̄′ → S′ be a connected cover and let f : S̄′ →

Sn−ℓ be a compactly supported ε
λ -contracting map satisfying(

f∗
(
σn−ℓ

)
∪ (c′1 ∪ · · · ∪ c′ℓ)

)
∩ π!S′(h′S′) ̸= 0 ∈ H0

(
S̄′;F

)
. (2.3)

Since η induces an isomorphism of fundamental groups, there is a unique connected cover
πS : S̄ → S such that η lifts to a proper map η̄ : S̄ → S̄′ which induces an isomorphism of
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fundamental groups, hence an isomorphism H1
(
S̄′;F

) ∼= H1
(
S̄;F

)
. The lift η̄ is still λ-Lipschitz

continuous (recall that S̄ is equipped with the canonical path metric). Then f ◦ η̄ : S̄ → Sn−ℓ is
ε-Lipschitz and compactly supported since η̄ is proper.

Let c1, . . . , cℓ ∈ H1
(
S̄;F

)
correspond to c′1, . . . , c

′
ℓ∈H1

(
S̄′;F

)
. By (2.3) and since η∗(hS)=h

′
S′ ,

we get

η̄∗
((
(f ◦ η̄)∗

(
σn−ℓ

)
∪ (c1 ∪ · · · ∪ cℓ)

)
∩ π!S(hS)

)
̸= 0 ∈ H0

(
S̄′;F

)
.

Since η̄∗ : H0

(
S̄;F

)
→ H0

(
S̄′;F

)
is an isomorphism, this shows that property (b) of Definition 2.8

holds for (S, hS). We conclude h ∈ H
tor-ℓ/F-enl
∗ (X;F), which was our claim.

To show the reverse inclusion “⊃” in general, after replacing X ′ by a homotopy equiv-
alent simplicial complex, we may assume that η : X → X ′ is a simplicial inclusion. Let
h ∈ H

tor-ℓ/F-enl
∗ (X;F) and let S ⊂ X and hS ∈ Hn(S;F) be such that the properties (a) and (b)

of Definition 2.8 hold for (S, hS). Then S ↪→ X ′ induces an isomorphism of fundamental groups
and Hn(S;F) → Hn(X

′;F) sends hS to η∗(h). This shows η∗(h) ∈ H
tor-ℓ/F-enl
∗ (X ′;F), finishing

the proof of the reverse inclusion. ■

For each finitely presented group G, we now define a subset

H
tor-ℓ/F-enl
∗ (G;F) ⊂ H∗(G;F)

of tor-ℓ/F-enleargeable classes in the group homology of G by setting

H
tor-ℓ/F-enl
∗ (G;F) := H

tor-ℓ/F-enl
∗ (X;F),

where X is an arbitrary connected simplicial complex representing BG. By Lemma 2.11, this
definition is independent of the choice of X.

Proposition 2.12. A connected closed F-oriented manifold V is tor-ℓ/F enlargeable if and only
if the image of the fundamental class [V ]F ∈ Hn(V ;F) under the classifying map V → Bπ1(V )
lies in H

tor-ℓ/F-enl
∗ (π1(V );F).

Proof. Choose a triangulation of V . Then V is tor-ℓ/F-enlargeable if and only if the fundamen-
tal class [V ]F ∈ Hn(V ;F) is tor-ℓ/F-enlargeable. This holds because the path metric induced
by any Riemannian metric on V is bi-Lipschitz equivalent to the simplicial path metric for the
chosen triangulation on V and each compactly supported ε-Lipschitz map V̄ → Sn of non-zero
F-toral degree is homotopic to a smooth compactly supported 2ε-Lipschitz map V̄ → Sn−ℓ of non-
zero F-toral degree. Furthermore, the classifying map V → Bπ1(V ) induces an isomorphism of
fundamental groups. Thus the claim follows from Lemma 2.11 for X = V and X ′ = Bπ1(V ). ■

Example 2.13. Let p ≥ 2 be a prime, let ℓ ≥ 1 and let τℓ ∈ Hℓ

(
(Z/p)ℓ;Fp

)
be represented

by the map Tℓ = BZℓ → B(Z/p)ℓ which is induced by the canonical projection Zℓ → (Z/p)ℓ.
Apparently, τℓ ∈ Hℓ

(
(Z/p)ℓ;Fp

)
is Fp-toral.

Next, let (W0, g) be a closed connected oriented Riemannian manifold of dimension n where g
has non-positive sectional curvature. Let W̃0 → W0 be the universal cover. By the Cartan–
Hadamard theorem, for any x ∈ W̃0, the exponential map TxW̃0 → W̃0 is a diffeomorphism
with 1-Lipschitz inverse with respect to the lifted metric on W̃0. In particular, W0 is a model
for Bπ1(W0), and for all ε > 0 there exists a compactly supported ε-contracting map W̃0 → Sn
of degree 1. We claim that τℓ × [W0] ∈ H

tor-ℓ/Fp-enl
ℓ+n

(
(Z/p)ℓ × π1(W0);Fp

)
.

To prove this, choose a simplicial complex X representing B(Z/p)ℓ. Since (Z/p)ℓ is a finite
group, one can choose X finite in each dimension. Let K = X(2ℓ) ⊂ X be the 2ℓ-skeleton of X.
The inclusion K ↪→ X is 2ℓ-connected. In particular there is a unique hK ∈ Hℓ(K;Fp) mapping
to τℓ under the map H∗(K;Fp) → H∗(X;Fp).
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Choose some triangulation of W0 and notice that the canonical path metric on W0 is bi-
Lipschitz equivalent to the metric induced by g. Equip X ×W0 with the product triangulation.
Then K×W0 with its product triangulation is a finite connected subcomplex of X×W0 and the
class hK × [W0] ∈ Hℓ+n(K ×W0;Fp) maps to τℓ × [W0]. Furthermore, the inclusion K ×W0 ↪→
X ×W0 induces an isomorphism of fundamental groups.

Let ε > 0, and let f : W̃0 → Sn be a compactly supported ε-contracting map of degree 1.
Then the composition

K × W̃0 → W̃0 → Sn

is compactly supported, ε-contracting (the first map is 1-Lipschitz) and of non-zero Fp-toral
degree, as required.

As an application, assume that ℓ + n ≥ 4 and let an oriented manifold V be obtained by
surgery along ℓ pairwise disjoint embedded circles in Tℓ ×W0 representing the p-multiples of
generators of the fundamental group π1

(
Tℓ

)
= Zℓ ⊂ π1

(
Tℓ ×W0

)
.

Then π1(V ) ∼= (Z/p)ℓ × π1(W0) and the classifying map φ : V → Bπ1(V ) is oriented bordant
over Bπ1(V ) to the map Tℓ ×W0 = BZℓ ×W0 → B(Z/p)ℓ × Bπ1(W0) = Bπ1(V ). In particular,
we obtain φ∗([V ]Fp) = τℓ × [W0]. By Proposition 2.12, the manifold V is tor-ℓ/Fp-enlargeable.

Note that φ∗([V ]) ∈ Hℓ+n(π1(V );Z) is a p-torsion class.

Remark 2.14. One may define a quantitative version of tor-ℓ/F-enlargeability based on the
notion of □̃⊥-spread of F-toral homology classes rather than enlargeability, compare [14, Sec-
tion 7.1].

3 Atorality of ∃PSC-3-manifolds

We will show the following homological property of ∃PSC-3-manifolds.

Proposition 3.1. Let F be a field with char(F) ̸= 2. Then closed orientable ∃PSC-3-manifolds
are F-atoral.

For the proof, we recall the following classification result of ∃PSC-3-manifolds [16].

Proposition 3.2. Closed connected orientable ∃PSC-3-manifolds are diffeomorphic to connected
sums of manifolds of the following type:

▷ closed connected 3-manifolds with universal covers homotopy equivalent to S3,

▷ copies of S2 × S1.

In particular, they are not Q-essential.

Indeed, by the Kneser–Milnor prime decomposition [25], every closed connected orientable
3-manifold V is diffeomorphic to the connected sum of manifolds of the form described in
Proposition 3.2 and aspherical manifolds, i.e., manifolds with contractible universal covers.

It remains to show that if V is ∃PSC, then aspherical summands cannot occur. This non-
trivial fact can be proved in several ways, see

▷ [33, Theorem 5.2], based on the theory of minimal hypersurfaces, together with the reso-
lution of Waldhausen’s surface subgroup conjecture [21];

▷ [16, Theorem 8.1], using the index theory of the Dirac operator on a (possibly non-compact)
cover of V ;
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▷ [28, Theorem 3.4], showing that the Rosenberg index α(V ) ∈ KO3(C
∗
R(π1(V ))) vanishes,

together with the validity of the real Baum–Connes conjecture for 3-manifold groups [24],
which in turn follows from the hyperbolization theorem of Thurston–Perelman;

▷ [14, Corollary 3.10.1 (F′′)], estimating the Uryson width of the universal cover of V and
using the fact that groups which are quasi-isometric to trees are virtually free, see [11,
Theorem 7.19].3

Proposition 3.3. Let V be a closed connected n-manifold, n ≥ 2, with universal cover homotopy
equivalent to Sn. Then dimFH

1(V ;F) ≤ 2 for any field F.

Proof. Let G = π1(V ) and write V = Ṽ /G where Ṽ → V is the universal cover. Note that Ṽ is
closed and orientable. If the (free) action of G on Ṽ ≃ Sn is orientation reversing, then n is even
and G = Z/2 by the Lefschetz fixed point theorem. In this case, we have dimFH

1(V ;F) = 1
if char(F) = 2 and dimFH

1(V ;F) = 0 if char(F) ̸= 2.

So we can assume that the G-action on Ṽ is orientation preserving. A transfer argument
shows that H∗(V ;Q) ∼= H∗(Sn;Q) and it remains to study the case when F is of finite character-
istic p ≥ 2. Let P < G be a Sylow p-subgroup and let π : Ṽ /P → Ṽ /G be the induced covering
map.

Since Ṽ is a homology n-sphere, it follows from [4, Section XVI.9, Application 4] that P has
periodic group cohomology of period n+1. Using the classification of finite p-groups with periodic
cohomology in [4, Theorem XII.11.6], we conclude that P is a cyclic p-group or generalized
quaternion group.4 Hence, dimFH

1
(
Ṽ /P ;F

)
= dimFH

1(P ;F) ≤ 2. In fact, if p ≥ 3, then P is
cyclic (since generalized quaternion groups are of even order), and hence dimFH

1
(
Ṽ /P ;F

)
≤ 1.

The induced map π∗ : H∗(Ṽ /G;F) → H∗(Ṽ /P ;F) is injective since its composition with the
cohomological transfer map H∗(Ṽ /P ;F) → H∗(Ṽ /G;F) is multiplication by deg π = [G : P ],
which is prime to p.

From this follows the assertion of the proposition. ■

Corollary 3.4. Let char(F) ̸= 2 and let V be a closed connected F-toral 3-manifold. Then V is
diffeomorphic to a connected sum K♯V ′ where K is an aspherical 3-manifold. In particular, V
is Q-essential.

Proof. By Proposition 3.3, and since for char(F) ̸= 2, every class in H1(V ;F) squares to 0, the
prime decomposition of V must contain aspherical summands. ■

The proof of Proposition 3.1 follows from the combination of Proposition 3.2 and Corol-
lary 3.4.

Remark 3.5.

(a) It is easy to see that for n ≤ 2 and all fields F, all orientable connected F-toral n-manifolds
are aspherical, hence Q-essential, and are ∄PSC. The F2-toral ∃PSC-manifold RP 2 shows
that the orientability assumption cannot be dropped if char(F) = 2.

(b) Let p be a prime, let n ≥ 4 and let the oriented manifold V n be obtained by surgery along n
pairwise disjoint embedded circles in Tn which represent the p-multiples of generators of
the fundamental group π1(Tn) = Zn. Then π1(V ) ∼= (Z/p)n, V is Fp-toral, but V is not
Q-essential. This shows that Corollary 3.4 does not hold for Fp-toral n-manifolds if n ≥ 4.

(c) The F2-toral ∃PSC-manifold RP 3 shows that Proposition 3.1 does not hold for p = 2.

3For a remarkable generalization of this argument to manifolds in dimensions 4 and 5, see [6].
4Also compare [1, Chapter IV.6].
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4 Torsion ∃PSC-obstructions in higher dimensions

Using generalized minimal hypersurfaces (µ-bubbles) and a Schoen–Yau-Schick descent, we prop-
agate the ∃PSC-obstruction from Section 3 to dimensions ≥ 4.

We start with the following version of an overtorical band width inequality. In the following,
the scalar curvature of a Riemannian manifold (V, g) is denoted by Scg(V ) : V → R.

Proposition 4.1. Let F be a field, let 2 ≤ n ≤ 7 and let 0 ≤ ℓ < n. Also assume that one of
the following conditions holds:

▷ char(F) = 0,

▷ char(F) = 2 and ℓ ≤ 2,

▷ char(F) > 2 and ℓ ≤ 3.

Let (B, g) be a compact oriented Riemannian n-manifold with boundary satisfying Scg(B) ≥
n(n−1). Let f : B → [−1,+1]×Tn−1−ℓ be a smooth map satisfying f(∂B) ⊂ {−1,+1}×Tn−1−ℓ

such that there exist classes c1, . . . , cℓ ∈ H1(B;F) and a regular value s ∈ [−1,+1]×Tn−1−ℓ of f
with5 〈

c1 ∪ · · · ∪ cℓ,
[
f−1(s)

]
F
〉
̸= 0 ∈ F.

Put ∂±B := ∂B ∩ f−1
(
{±1} × Tn−1−ℓ) ⊂ ∂B. Then we have distg(∂−B, ∂+B) ≤ 2π

n .

Remark 4.2. The assumption n ≤ 7 in Proposition 4.1 and Theorem 4.3 can be weakened, see
Remark 4.4.

Proof of Proposition 4.1. Without loss of generality, we can assume that B is connected.
Suppose distg(∂−B, ∂+B) > 2π

n . We will show that this leads to a contradiction.

Up to homotopy relative to ∂B, f respects some collar structures near ∂+B ⊂ B and near
{+1}×Tn−1−ℓ ⊂ [−1,+1]×Tn−1−ℓ. Let s ∈ {+1}×Tn−1−ℓ be a regular value of f |∂+B : ∂+B →
{+1} × Tn−1−ℓ. Then s is also a regular value of f and f−1(s) ⊂ ∂+B. So, by assumption and
setting ϑ := c1 ∪ · · · ∪ cℓ ∈ Hℓ(B;F), we obtain〈

ϑ,
[
(f |∂+B)−1(s)

]
F
〉
̸= 0 ∈ F. (4.1)

Let π : [−1,+1]× Tn−1−ℓ → Tn−1−ℓ be the projection and let ωn−1−ℓ ∈ Hn−1−ℓ(Tn−1−ℓ;Z
)
be

the cohomological fundamental class. By (4.1) and Poincaré duality, we have〈(
(π ◦ f)∗

(
ωn−1−ℓ)) ∪ ϑ, [∂+B]F

〉
̸= 0 ∈ F. (4.2)

The triple (B, ∂−B, ∂+B) is a band in the sense of [27, Definition 1.1]. We claim that there
exists a closed oriented smooth hypersurface Σn−1 ⊂ int(B) which separates ∂−B and ∂+B and
admits a metric gn−1 of positive scalar curvature. Indeed, if this is not the case, then the 2π

n -in-
equality [27, Theorem 2.8], see also [14, Sections 3.6, 3.7 and 5.2], implies that distg(∂−B, ∂+B) ≤
2π
n , which contradicts our assumption. Hence, there exists a hypersurface Σn−1 with the stated
properties, and in particular it follows that n ≥ 3.

Possibly after removing some components, the hypersurface Σn−1 is homologous to ∂+B in B,
that is,[

Σn−1
]
= [∂+B] ∈ Hn−1(B;Z). (4.3)

5As f(∂B) ⊂ {−1,+1} × Tn−1−ℓ, the preimage f−1(s) ⊂ B is a closed smooth oriented submanifold, even
if s ∈ {−1,+1} × Tn−1−ℓ.
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Consider the composition

Ψn−1 : Σn−1 f |Σn−1−→ [−1,+1]× Tn−1−ℓ π−→ Tn−1−ℓ.

Furthermore, let ϑΣn−1 ∈ Hℓ(Σn−1;F) be the restriction of ϑ ∈ Hℓ(B;F).
By (4.2) and (4.3), we have〈(

Ψn−1
)∗(

ωn−1−ℓ) ∪ ϑΣn−1 ,
[
Σn−1

]
F
〉
̸= 0 ∈ F.

Let ℓ′ := max{ℓ, 2}. Now we do a Schoen–Yau–Schick descent to construct closed oriented
smooth Riemannian i-manifolds

(
Σi, gi

)
, ℓ′ ≤ i ≤ n− 2, satisfying Scgi

(
Σi

)
> 0 and

Σℓ
′ ⊂ Σℓ

′+1 ⊂ · · · ⊂ Σn−2 ⊂ Σn−1,

together with maps Ψi : Σi → Ti−ℓ so that, for ℓ′ ≤ i ≤ n− 2,

(i) Σi ⊂
(
Σi+1, gi+1

)
is a closed oriented stable minimal smooth hypersurface representing

the dual of the cohomology class in H1
(
Σi+1;Z

)
represented by the composition

Σi+1 Ψi+1

−→ Ti−ℓ+1 −→ S1,

where the second map is the projection onto the second factor in Ti−ℓ+1 = Ti−ℓ × S1.
(ii) Ψi is given by the composition Ψi : Σi

Ψi+1

−→ Ti−ℓ+1 −→ Ti−ℓ where the second map is the
projection onto the first factor in Ti−ℓ+1 = Ti−ℓ × S1.

(iii) The metric gi is conformal to the metric on Σi induced by gi+1.

For details of this construction, see [33, Theorem 5.1] for i = 2, the proof of [34, Theorem 1]
for i ≥ 3, and the discussion in [31].

Let ωi−ℓ ∈ H i−ℓ(Ti−ℓ;Z) be the cohomological fundamental class and let ϑΣi be the restric-
tion of ϑΣi+1 to Σi. By induction, it follows from (i) and (ii) that〈(

Ψℓ′
)∗(

ωℓ
′−ℓ) ∪ ϑΣℓ′ ,

[
Σℓ

′]〉 ̸= 0 ∈ F.

In particular, since
(
Ψℓ′

)∗(
ωℓ

′−ℓ) and ϑΣℓ′ are products of classes in H1
(
Σℓ

′
;F

)
, we see that(

Σℓ
′
, gℓ

′)
is an ℓ′-dimensional oriented smooth F-toral ∃PSC-manifold. After we have passed to

an appropriate connected component, we can assume that Σℓ
′
is connected.

If ℓ′ = 2, this leads to a contradiction, see Remark 3.5 (a), so we can assume ℓ′ = ℓ ≥ 3.
If char(F) = 0, this implies that Σℓ is overtorical (see Remark 2.2 (b)), and we can do the
Schoen–Yau–Schick descent again to show that Σℓ is ∄PSC, contradiction. If char(F) is finite,
we have ℓ = 3 and hence char(F) > 2 by assumption. So we get a contradiction to Proposi-
tion 3.1. ■

We obtain the following ∃PSC-obstruction.

Theorem 4.3. Let F be a field and 0 ≤ ℓ ≤ n ≤ 7. Let V be a closed orientable tor-ℓ/F-
enlargeable n-manifold and assume that one of the following conditions holds:

▷ char(F) = 0,

▷ char(F) = 2 and ℓ ≤ 2,

▷ char(F) > 2 and ℓ ≤ 3.

Then V is ∄PSC.
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Proof. Suppose there is a counterexample (V, g) with Scg(V ) > 0 of dimension 2 ≤ n ≤ 7.
Choose an orientation of V . By a scaling of g we can assume Scg(V ) ≥ n(n− 1).

If ℓ = n, then a finite Riemannian covering V̄ of V is F-toral. If char(F) = 0 then there exists
a map of non-zero degree V̄ → Tn, see Example 2.2 (b). Applying a Schoen–Yau–Schick descent
as in the proof of Proposition 4.1, this implies that V̄ is ∄PSC. If char(F) = 2 and n = ℓ = 2,
then V̄ is ∄PSC by Remark 3.5 (a). If char(F) > 2 and n = ℓ ≤ 3, then V̄ is ∄PSC, by
Proposition 3.1 for n = 3, or Remark 3.5 (a) for n = 2. In summary, for ℓ = n we see that V̄
and hence V are ∄PSC.

So we can assume that ℓ < n. Choose a smooth embedding

ψ : [−1,+1]× Tn−1−ℓ ↪→ Sn−ℓ \ {∞},

where [−1,+1] × Tn−1−ℓ carries the product of the standard metrics. For δ ∈ (0, 1], we obtain
the smooth submanifold Aδ := ψ

(
[−δ,+δ]× Tn−1−ℓ) ⊂ Sn−ℓ with boundary

∂Aδ = ∂−Aδ ∪ ∂+Aδ, ∂±Aδ = ψ
(
{±δ} × Tn−1−ℓ).

We equip Aδ with the Riemannian metric induced from Sn−ℓ. Since A1 ⊂ Sn−ℓ is compact, the
inverse ψ−1 : A1 → [−1,+1]× Tn−1−ℓ is Λ-Lipschitz for some Λ > 0. Hence, for each δ ∈ (0, 1],
we have

2δ ≤ Λ · distAδ
(∂−Aδ, ∂+Aδ). (4.4)

By assumption, there exist a connected cover V̄ → V , cohomology classes c1, . . . , cℓ ∈ H1
(
V̄ ;F

)
,

an ε := n
2πΛ -contracting compactly supported map f : V̄ → Sn−ℓ and a regular value s ∈ A1/2 ⊂

Sn−ℓ \ {∞} of f such that〈
c1 ∪ · · · ∪ cℓ,

[
f−1(s)

]
F
〉
̸= 0 ∈ F. (4.5)

Let δ ∈
(
1
2 , 1

)
be such that f is transverse to ∂Aδ ⊂ Sn−ℓ and let B := f−1(Aδ) ⊂ V̄ . This

is a smooth compact oriented submanifold of codimension 0 with boundary ∂B = ∂−B ∪ ∂+B,
∂±B := f−1(∂±Aδ). We equip B with the Riemannian metric from V . By our choice of ε and
using (4.4) together with δ > 1

2 , we have

distB(∂−B, ∂+B) ≥ 2πΛ

n
· distAδ

(∂−Aδ, ∂+Aδ) ≥
2πΛ

n
· Λ−1 · 2δ > 2π

n
. (4.6)

Let c′1, . . . , c
′
ℓ ∈ H1(B;F) denote the restrictions of c1, . . . , cℓ ∈ H1

(
V̄ ;F

)
. We obtain by (4.5)〈

c′1 ∪ · · · ∪ c′ℓ,
[
f−1(s)

]
F
〉
̸= 0 ∈ F.

Using Scg(B) ≥ n(n − 1) and (4.6), this contradicts Proposition 4.1 since Aδ is diffeomorphic
to [−1,+1]× Tn−1−ℓ. ■

Remark 4.4.

(a) If n = 8, then [36] implies that the µ-bubble construction underlying the proof of [27,
Theorem 2.8] can be performed after a small C∞-perturbation of g. In view of the recent
results in [7], this can also be achieved for n = 9, 10. Higher dimensions n ≥ 11 may
possibly be covered by the results in [22]. Thus the condition n ≤ 7 in Theorem 4.3 can
be weakened accordingly.

(b) The real projective spaces RPn are F2-toral for all n, are ∃PSC for n ≥ 2, and orientable
for all odd n ≥ 3. Thus, if char(F) = 2, then neither the orientability of V nor the
assumption ℓ ≤ 2 in Theorem 4.3 can be dropped.
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Example 4.5. Let 4 ≤ n ≤ 7, let 0 ≤ ℓ ≤ n and let the orientable manifold W be obtained
from Tn = Tℓ × Tn−ℓ by killing the 2-multiples of generators of π1

(
Tℓ

)
= Zℓ by surgery along

pairwise disjoint embedded circles in Tn. Let V be the connected sum of W and CP 2 × Sn−4.
Then V is an orientable tor-ℓ/F2-enlargeable manifold (compare Example 2.13) which is ∃PSC,

if and only if ℓ ≥ 3.
The ∄PSC property for ℓ ≤ 2 follows from Theorem 4.3 while the ∃PSC property for 3 ≤ ℓ ≤ n

is shown as follows: We have π1(V ) = (Z/2)ℓ × Zn−ℓ and the classifying map φ : V → Bπ1(V )
sends the integral fundamental class of V to the cross product of the toral homology classes
in Hℓ

(
(Z/2)ℓ;Z

)
and Hn−ℓ

(
Zn−ℓ;Z

)
. Since ℓ ≥ 3, by [20, Theorem A] the toral homology class

in Hℓ

(
(Z/2)ℓ;Z

)
can be represented by a closed oriented ∃PSC ℓ-manifold, and so the same

holds for φ∗([V ]) ∈ Hn(π1(V );Z). Using the fact that the universal cover of V is non-spin,
Theorem A.1 implies that V is ∃PSC.

The following fundamental conjecture remains open.

Conjecture 4.6. Let F be a field of odd characteristic, let n ≥ 4 and let 4 ≤ ℓ ≤ n. Then each
closed tor-ℓ/F-enlargeable n-manifold is ∄PSC.

Recall that Corollary 3.4 is specific to 3-dimensional manifolds, see Remark 3.5 (b), and thus
our proof of Theorem 4.3 does not generalize to ℓ ≥ 4 if char(F) > 2.

Table 1 collects our knowledge about the existence of closed orientable tor-ℓ/F-enlargeable
∃PSC-manifolds of dimension n ≤ 7 (or more general n as in Remark 4.4 (a)).

char(F) = 0 char(F) = 2 char(F) > 2

ℓ ≤ 2 no no no

ℓ = 3 no yes no

ℓ > 3 no yes open

Table 1. Existence of ∃PSC-manifolds.

5 ∃PSC-products of ∄PSC-manifolds

Given a closed connected oriented manifold V , we denote by

ΦV = φ∗([V ]) ∈ H∗(π1(V );Z)

the image of the homological fundamental class of V under the classifying map φ : V → Bπ1(V ).
As an application of our discussion we obtain many ∄PSC-manifolds whose Cartesian products

are ∃PSC.

Theorem 5.1. Let V1, V2 be closed oriented connected manifolds such that

▷ dim(V1 × V2) ≥ 5;

▷ the universal cover of V1 × V2 is non-spin;

▷ ΦV1 ∈ H∗(π1(V1);Z) and ΦV2 ∈ H∗(π1(V2);Z) are of finite, coprime order.

Then V1 × V2 is ∃PSC.

Proof. The class ΦV1×V2 ∈ H∗(B(π1(V1) × π1(V2));Z) is the image of ΦV1 ⊗ ΦV2 under the
cross-product homomorphism

H∗(π1(V1);Z)⊗H∗(π1(V2);Z) → H∗(π1(V1)× π1(V2);Z).

Hence, this class is equal to 0, since ΦV1 and ΦV2 are elements of coprime order in the left-hand
tensor factors. Now the claim follows from Theorem A.1. ■
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Example 5.2. Let p1, p2 be different odd primes, let 4 ≤ n ≤ 7, let 1 ≤ ℓ ≤ 3 and let V1, V2
be tor-ℓ/Fpi-enlargeable manifolds of dimension n obtained from Tn = Tℓ × Tn−ℓ by killing
the pi-multiples of the ℓ generators in π1

(
Tℓ

)
= Zℓ by surgery, see Example 2.13. Replace V1

by V1♯
(
CP 2 × Sn−4

)
in order to make sure that the universal cover of V1×V2 is non-spin. Then

▷ V1 and V2 are ∄PSC by Theorem 4.3.

▷ V1 × V2 is ∃PSC by Theorem 5.1 and the final statement in Example 2.13.

Remark 5.3.

(a) Examples 5.2 elaborates on the SYS×SYS-remark from [13]. They are the first examples
of their kind in dimensions greater than 4 and with non-spin universal covers.

(b) Complex surfaces of odd degree ≥ 5 in CP 3 are ∄PSC by Seiberg–Witten theory, while
their products are ∃PSC, as are all simply connected non-spin n-manifolds for n ≥ 5,
see [15].

(c) A referee pointed out the following class of spin examples. Recall the graded coefficient
ring of connective real K-homology,

ko∗ ∼= Z[η, ω, µ]/
(
2η, η3, ωη, ω2 − 4µ

)
, |η| = 1, |ω| = 4, |µ| = 8.

By [37, Theorem A], a simply connected closed spin manifold of dimension n ≥ 5 is ∃PSC if
and only if the Hitchin index [19] vanishes, α(M) = 0 ∈ kon. Since ko∗ has zero divi-
sors, one obtains simply connected closed spin ∄PSC manifolds V1 and V2 whose products
are ∃PSC.
For example, it is well known, see [19, p. 44], that for n ≡ 1, 2 mod (8), there are exotic
spheres Σn with α(Σn) ̸= 0 ∈ kon ∼= Z/2. Let K4 be the K3 surface. It is simply connected
and satisfies α(K4) = ω ∈ ko4 ∼= Z. Since η ·ω = 0 and the Hitchin index is multiplicative,
the products Σn ×K4 are ∃PSC, whereas Σn and K4 are ∄PSC.

6 Four conjectures

Conjecture 6.1 (short/long neck torality inequality6). Let 0 ≤ ℓ < n be natural numbers,
let (V, g) be a compact oriented Riemannian n-manifold with boundary and let f : V → Sn−ℓ
be a smooth area decreasing map7 which is constant on the boundary ∂V ⊂ V , say f(∂V ) =
{∞} ⊂ Sn−ℓ. Suppose char(F) ̸= 2 and there are classes c1, . . . , cℓ ∈ H1(V ;F) such that for
some regular value s ∈ Sn−ℓ \ {∞} of f we get〈

c1 ∪ · · · ∪ cℓ,
[
f−1(s)

]〉
̸= 0 ∈ F.

Setting k := n− ℓ, suppose that for all x ∈ supp(df) = {x ∈ V | df(x) ̸= 0}, we have

Scg(V, x) ≥ k(k − 1).

If the scalar curvature of V is bounded from below by σ > 0, i.e.,

Scg(V, x) ≥ σ > 0 for x ∈ V,

then the distance from the support of df to the boundary of V satisfies

distg(supp(df), ∂V ) < const ·
√

1
σ ,

possibly for const = π
√

n−1
n where this constant is optimal.

6This is motivated by Cecchini’s long neck inequality [5].
7That is area(f(Σ)) ≤ area(Σ) for all smooth surfaces Σ ⊂ X.



14 M. Gromov and B. Hanke

Remark 6.2. There is a significant mismatch between distance and area domination with
positive scalar curvature. Namely, given an orientable n-manifold V = (V, g) with Scg(V ) ≥
σ > 0, then, for all ε > 0, there exists a metric gε on V , such that

▷ Vε = (V, gε) admits an area decreasing diffeomorphism V → Vε;

▷ no Riemannian manifold (W,h) which 1-Lipschitz dominates Vε, i.e., which admits a proper
1-Lipschitz map of non-zero degree W → Vε, has Sch ≥ ε.

The simplest example is where V = S2×Tn−2 and Vε = S2ε,D×Tn−2
ε , where S2ε,D is the (smoothed)

boundary of the cylinder with base of radius ε and height D = 10
√

1
ε , i.e.,

S2ε,D = ∂
(
B2(ε)× [0, D]

)
,

Tn−2 = S1 × · · · × S1 is the (n − 2)-torus with the standard metric and Tn−2
ε is the product

of circles with radius ε. Here, the existence of an area-decreasing diffeomorphism V → Vε,
(for ε≪ 0.01) is elementary, while the non-existence of 1-Lipschitz domination with Sc ≥ ε
follows from the 2π

n -inequality as 10 > 2π, see [14, Section 3.6] and [27, Theorem 2.8 and
Proposition 2.21].8

Now, for an arbitrary (V, g), let Tn−1 ⊂ V be a smoothly embedded torus and let us modify
the metric g in a small neighborhood Tn−1 × [−δ,+δ] ⊂ V of the torus by ε′-shrinking g along
the torus and

√
1
ε′ -stretching g normally to the torus. For sufficiently small ε′ = ε′(g, ε) > 0, this

decreases the areas of the surfaces in V , while the 2π
n -inequality prevents 1-Lipschitz domination

of Vε with Sc ≥ ε.

Conjecture 6.3 (tor-non-enlargeability of foliations with Sc > 0). Let V be a closed n-manifold
and F be a smooth foliation on V equipped with a leafwise Riemannian metric gF , i.e., gF is
a smooth bundle metric on the integrable subbundle TF ⊂ TV tangent to the leaves of F .

Let Sc(F ) : V → R be defined as Sc(F , x) = ScgF (Fx, x) where Fx is the leaf passing through
x ∈ V equipped with the Riemannian metric induced by gF .

If V is tor-ℓ/F-enlargeable for some non-negative integer ℓ and some field F of char(F) ̸= 2,
then Sc(F ) ≯ 0.

For foliations of codimension 1, we have the following partial answer.

Proposition 6.4. Let F be a field, let 1 ≤ n ≤ 6 and let 0 ≤ ℓ ≤ n. Also assume that one of
the following conditions holds:

▷ char(F) = 0,

▷ char(F) = 2 and ℓ ≤ 2,

▷ char(F) > 2 and ℓ ≤ 3.

Let V be a closed orientable tor-ℓ/F-overtorical9 n-manifold.
Then V does not admit a smooth orientable codimension-1 foliation F = (F , gF ) together

with a leafwise Riemannian metric such that Sc(F ) > 0.

Sketch of proof. Suppose V carries a smooth leafwise Riemannian metric gF with ScgF (F )>0.
After scaling gF , we can assume that ScgF (F ) > (n+1)n. Let V ∗ → V be the (one-dimensional
for codim(F ) = 1) Connes bundle of F , which in this case is equivalent to the trivial R-
bundle V × R → V , see [12, Sections 17

8 and 92
3 ] and [14, Section 6.5.2]. Recall [12, p. 9]

that the total space V ∗ of this bundle has an induced codimension-2 foliation F ∗ whose leaves
correspond to leaves in F , and that V ∗ has a Riemannian metric g̃ such that

8The case of n ≤ 7 is classical, while the case 8 ≤ n ≤ 10 uses the methods of [36] and [7], respectively. For
n ≥ 11, see [35, Theorem 4.6] and [22]. If Vε is spin, then the full 2π

n
-inequality is proved in [42, Theorem 1.4],

[41, Corollary 1.5], [5, Theorem D] and [17, Theorem 1.3].
9See Example 2.5 (c).
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▷ on each leaf of F ∗, the metric induced by g̃ coincides with the metric induced by gF on
the corresponding leaf of F ,

▷ the restriction of g̃ to (TF ∗)⊥ ⊂ TV ∗ is transversally Riemannian, i.e., it is a bundle
metric which is parallel with respect to the Bott connection on (TF ∗)⊥ → V ∗ along F ∗.

For λ > 0, we define a new Riemannian metric g̃ε on V
∗ ∼= V × R as the bundle metric on

TV ∗ = TF ∗ ⊕ (TF ∗)⊥

equal to

g̃λ = g̃|TF∗ + λ2g̃|(TF∗)⊥ .

The discussion in [14, p. 315] shows that there exist λ≫ 0 such that

▷ Scg̃λ(V × [−1,+1]) ≥ (n+ 1)n,

▷ distg̃λ(V × {−1}, V × {+1}) > 2π
n+1 .

Since V is tor-ℓ/F-overtorical, this contradicts Proposition 4.1. ■

The above suggests the following.

Conjecture 6.5 (domination of foliations). If a closed orientable manifold V admits a smooth
foliation F with Sc(F ) > 0, then V can be dominated by an orientable manifold W with
Sc(W ) > 0.10

We conclude by bringing together Conjectures 6.1 and 6.3 as follows, compare [39].

Conjecture 6.6 (foliated short/long neck torality inequality). Let V be a compact oriented
Riemannian n-manifold with boundary and F be a smooth m-dimensional foliation on V .

Let char(F) ̸= 2 and let f : V → Sn−ℓ be a smooth map which decreases the areas of
smooth surfaces in the leaves of F such that f(∂V ) = {∞} ⊂ Sn−ℓ and such that there are
classes c1, . . . , cℓ ∈ H1(V ;F) with〈

c1 ∪ · · · ∪ cℓ,
[
f−1(s)

]〉
̸= 0 ∈ F

for some regular value s ∈ Sn−ℓ \ {∞}.
Setting k := n− ℓ, let

Sc(F , x) ≥ min {k(k − 1),m(m− 1)}

for all x ∈ V with x ∈ supp(dfF ) = {x ∈ V | df(x)|TF ̸= 0}.
If the scalar curvature of F is bounded from below by σ > 0, i.e.,

Sc(F , x) ≥ σ > 0 for x ∈ V,

then the leaf-wise distance from the support of df on TF to the boundary of V satisfies

distF (supp(dfF ), ∂V ) = inf
x∈supp (dfF )

distFx(x,Fx ∩ ∂X) < const
√

1
σ ,

where Fx ⊂ V is the leaf of F through x.

10This is hardly to be expected from leaf-wise smooth Riemannian foliations F which are (only) continuous
transversally to the leaves. However, the standard examples of such F – the stable/unstable foliations of Anosov
systems – are easily shown to be ∄PSC.
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A ∃PSC-manifolds with non-spin universal covers

In [15], it was proved that closed simply connected non-spin manifolds of dimension ≥ 5
are ∃PSC. Here we prove the corresponding result for non-simply connected manifolds.

Theorem A.1. Let n ≥ 5 and let V be a closed connected oriented smooth n-manifold with
non-spin universal cover. Let φ : V → Bπ1(V ) be the classifying map and assume that there
exists a map f : V ′ → Bπ1(V ) where V ′ is a closed oriented n-dimensional ∃PSC-manifold such
that

φ∗([V ]) = f∗([V
′]) ∈ Hn(π1(V );Z).

(This includes the case φ∗([V ]) = 0.)
Then V is ∃PSC.

The proof is based on the following generic construction of ∃PSC-manifolds, compare [37]
and [9]. Consider the action of G := SU(3)⋊ Z/2 on CP 2 where SU(3) acts on CP 2 by matrix
multiplication and Z/2 acts by complex conjugation. This action is transitive, its stabilizer
group at [0 : 0 : 1] ∈ CP 2 is equal to H = S(U(2)U(1)) ⋊ Z/2 < G, and it is isometric with
respect to the Fubini study metric on CP 2. Hence, we obtain a fibre bundle

CP 2 = G/H ↪→ BH → BG (A.1)

with structure group G. Let B be a closed oriented smooth manifold, let X be a CW complex
and let f × ω : B → X × BG be a continuous map. The map ω : B → BG classifies a smooth
fiber bundle CP 2 ↪→ Mω

π−→ B with structure group G, which is unique up to fibre bundle
diffeomorphism. The total space Mω is a closed oriented smooth manifold and it is ∃PSC, by
the O’Neill formula. Furthermore, the assignment (f × ω : B → X ×BG) 7→ (f ◦ π : Mω → X)
respects the oriented bordism relation, and we obtain a group homomorphism which is natural
in X,

ψ(X)∗ : ΩSO
∗−4(X × BG) → ΩSO

∗ (X). (A.2)

Let T∗(X) := im(ψ(X)∗) ⊂ ΩSO
∗ (X) and let ΩSO,+

∗ (X) ⊂ ΩSO
∗ (X) be the subgroup consisting

of oriented bordism classes [M → X] where M is ∃PSC. We obtain T∗(X) ⊂ ΩSO,+
∗ (X). Now

consider the homological orientation, which is natural in X,

u(X)∗ : ΩSO
∗ (X) → H∗(X;Z), [f : M → X] 7→ f∗([M ]) ∈ H∗(X;Z). (A.3)

For dimension reasons, π : Mω → B sends the fundamental class of Mω to zero, hence T∗(X) ⊂
keru(X)∗. We will next show that 2-locally, the reverse inclusion holds as well.

For an abelian group A, we will use the shorthand A(2) = A⊗ Z(2) for the 2-localisation.

Proposition A.2. We have T∗(X)(2) = (keru(X)∗)(2). In particular, for all x ∈ keru(X)∗
there is an odd k ∈ N with kx ∈ T∗(X).

Proof. Only the inclusion “⊃” remains to be shown. It is well known, see [8, Chapter 2], that
the Atiyah–Hirzebruch spectral sequence for 2-local oriented bordism

E2
p,q

∼= Hp

(
X; ΩSO

q

)
(2)

=⇒ ΩSO
n (X)(2)

collapses at E2. There is a decreasing filtration

ΩSO
n (X)(2) = Fn,0 ⊃ · · · ⊃ F0,n = H0(X; Ωn)(2)
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with E2
p,q

∼= Fp,q/Fp−1,q+1. Furthermore, the usual ΩSO
∗ -module structure on ΩSO

∗ (X) induces
maps ΩSO

µ × Fp,q 7→ Fp,q+µ so that the isomorphism E2
p,∗

∼= Hp

(
X; ΩSO

∗
)
is ΩSO

∗ -linear.
The homological orientation u(X)∗ corresponds 2-locally to the projection

ΩSO
n (X)(2) = Fn,0 → Fn,0/Fn−1,1 = Hn

(
X; ΩSO

0

)
(2)

= Hn(X;Z(2)).

Thus, by the collapsing of the Atiyah–Hirzebruch spectral sequence, u(X)∗ is 2-locally surjective.
Let Tor∗ ⊂ ΩSO

∗ be the torsion subgroup. The short exact sequence

0 → Tor∗ → ΩSO
∗ → ΩSO

∗ /Tor∗ → 0

splits, and hence it induces short exact sequences

0 → Hp(X; Torq)(2) ↪→ E2
p,q −→ Hp

(
X; ΩSO

q /Torq
)
(2)

→ 0. (A.4)

It is well known that ΩSO
∗ contains no odd torsion, so we have Hp(X; Torq)(2) = Hp(X; Torq).

The proof of Proposition A.2 is complete once we show that every element in E2
p,q with

p+ q = n and q > 0 can be represented by an element in Tn(X)(2) ∩ Fp,q. According to (A.4),
we decompose this claim into the following two assertions.

Assertion A.3. Let q > 0. Then the image of Tn(X)(2) ∩ Fp,q in E2
p,q is mapped surjectively

to Hp

(
X; ΩSO

q /Torq
)
(2)

.

To show this, consider a simple tensor

h⊗ ξ ∈ Hp

(
X; ΩSO

q /Torq
)
(2)

= Hp(X;Z(2))⊗ ΩSO
q /Torq.

There exists an odd k ∈ N such that k · h ∈ Hp(X;Z(2)) lifts to a bordism class [f : Mp → X] ∈
ΩSO
p (X). Furthermore, by constructing appropriate CP 2-bundles, see [10, Proposition 8.2], one

shows that for q > 0, the composition

ΩSO
q−4(BG)

ψ(pt.)∗−→ ΩSO
q → ΩSO

q /Torq

is surjective. Hence, the class ξ ∈ ΩSO
q /Torq is represented by the total space of a fibre bundle

with structure group G,

CP 2 ↪→ N q π−→ Bq−4.

Now, in (A.4), the class in E2
p,q represented by

[f : Mp → X] · [N q] =
[
Mp ×N q id×π−→ Mp ×Bq−4 (x,y)7→f(x)−→ X

]
∈ Tn(X)(2) ∩ Fp,q

maps to k(h⊗ ξ) ∈ Hp

(
X; ΩSO

q /Torq
)
(2)

, finishing the proof of Assertion A.3.

Assertion A.4. Each element in Hp(X; Torq) ⊂ E2
p,q is represented by some class in Tn(X)(2)∩

Fp,q.

To show this, we use a homotopy-theoretic argument inspired by [38]. For an abelian group A,
let HA denote the Eilenberg–MacLane spectrum for A, and let A ∗ = H∗(HF2;F2) be the
Steenrod algebra of stable F2-cohomology operations. Recall that for any spectrum M, the
cohomology H∗(M;F2) is an A ∗-module.

Let MSO be the oriented bordism spectrum and let MSO(2) be its 2-localisation. Recall that
the Pontrjagin–Thom construction yields a natural isomorphism

ΩSO
∗ (X) ∼= π∗(MSO ∧ Σ∞X+),
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where ∧ denotes the smash product and Σ∞X+ is the suspension spectrum of X with a disjoint
base point. From this perspective, the homological orientation u(X)∗ from (A.3) corresponds
to a spectrum map

u : MSO → HZ (A.5)

and the map ψ(X)∗ from (A.2) is identified with

(T ∧ idΣ∞X+)∗ : π∗
(
Σ4MSO ∧ Σ∞BG+ ∧ Σ∞X+

)
→ π∗(MSO ∧ Σ∞X+).

Here, the spectrum map T : Σ4MSO ∧ Σ∞BG+ → MSO is the composition

Σ4MSO ∧ Σ∞BG+
id∧α−→ Σ4MSO ∧ Th(−TvBH)

id∧β−→ Σ4MSO ∧ Σ−4MSO
γ−→ MSO,

where Th(−TvBH) is the Thom spectrum of the stable fiberwise normal bundle of (A.1),
α : Σ∞BG+ → Th(−TvBH) is the Pontrjagin–Thom map, β : Th(−TvBH) → Σ−4MSO is the
homological orientation, and γ is multiplication in the ring spectrumMSO. For more information
on the construction of T , compare [10], in particular, Section 3 and Lemma 6.1.

By [40, Theorem 5], also compare [8, proof of Theorem 14.1], there are splittings of spectra

MSO(2) ≃ P ∨ Q, Q ≃ Q′ ∨ HZ(2), (A.6)

where P is a sum of positive suspensions of HF2 and Q′ is a sum of 4ℓ-fold suspensions of HZ(2),
ℓ > 0. The induced projection MSO(2) → HZ(2) is the 2-localisation of the map u : MSO → HZ
appearing in (A.5). In particular, denoting by M̂SO ⊂ MSO the homotopy fibre of u, we
have (M̂SO)(2) ≃ P ∨ Q′. Furthermore, with respect to (A.6), we have

H∗(MSO;F2) = H∗(P;F2)⊕H∗(Q;F2), ΩSO
∗ (X)(2) = P∗(X)⊕ Q∗(X). (A.7)

For X = {pt.}, the second equality specializes to
(
ΩSO
∗

)
(2)

= π∗(P)⊕ π∗(Q) with π∗(P) = Tor∗ ⊂
ΩSO
∗ .
Since the composition u ◦ T represents an element in H−4(MSO ∧ Σ∞BG+;Z) = 0, it is

null-homotopic, and hence the map T lifts to a map T̂ : Σ4MSO ∧ Σ∞BG+ → M̂SO. According
to [10, Theorem 2.2],11 T̂ induces a split injection of A ∗-modules

T̂ ∗ : H∗(M̂SO;F2

)
→ H∗(Σ4MSO ∧ Σ∞BG+;F2

)
.

Since
(
M̂SO

)
(2)

≃ P ∨ Q′, this implies that there exists a graded A ∗-module M∗ and a direct
sum decomposition of A ∗-modules

H∗(Σ4MSO ∧ Σ∞BG+;F2

) ∼= H∗(P;F2)⊕M∗, (A.8)

so that the restriction of T ∗ : H∗(MSO;F2) → H∗(Σ4MSO∧Σ∞BG+;F2

)
toH∗(P;F2), see (A.7),

is equal to the inclusion H∗(P;F2) ↪→ H∗(Σ4MSO ∧ Σ∞BG+;F2

)
.

SinceH∗(P;F2) is a free A ∗-module, according to [23, Theorem 2 (a)], which applies to the lo-
cally finite spectrum Σ4MSO∧Σ∞BG+, the splitting (A.8) can be realised on the spectrum level,
i.e., there is a spectrum M with H∗(M;F2) ∼= M∗ as A ∗-modules and a homotopy equivalence
(of unlocalized spectra)

Σ4MSO ∧ Σ∞BG+ ≃ P ∨M, (A.9)

which induces the splitting (A.8) in F2-cohomology. Consider the map

Ξ: P
(A.9)
↪→ Σ4MSO ∧ Σ∞BG+

T−→ MSO → MSO(2)

(A.6)
≃ P ∨ Q.

11This reference works with the dual notion of A∗-comodules where A∗ is the dual F2-Steenrod algebra.



Torsion Obstructions to Positive Scalar Curvature 19

In F2-cohomology, the composition of this map with the projection onto P induces the identity
on H∗(P;F2), while the composition with the projection onto Q induces the 0-map. Hence, by
[23, Theorem 3] and using that P is a sum of suspensions of HF2, the map Ξ is homotopic to
the inclusion P → P ∨ Q onto the first summand.

We conclude that the composition

P∗(X) → π∗
(
Σ4MSO ∧ Σ∞BG+ ∧ Σ∞X+

) ψ(X)∗−→ π∗(MSO ∧ Σ∞X+) = P∗(X)⊕ Q∗(X)

is equal to the inclusion P∗(X) ⊂ P∗(X)⊕Q∗(X). In particular, in the decomposition (A.7), we
have P∗(X) ⊂ T∗(X)(2).

The splitting MSO(2) ≃ P ∨Q in (A.6) induces a splitting Erp,q = EP,r
p,q ⊕EQ,r

p,q of the Atiyah–

Hirzebruch spectral sequence for ΩSO
∗ (X)(2). Clearly, the Atiyah–Hirzebruch spectral sequences

for P and Q collapse at E2, and we obtain an induced decomposition

Hp

(
X; ΩSO

q

)
(2)

= E2
p,q = E(P)2p,q ⊕ E(Q)2p,q = Hp(X;πq(P))⊕Hp(X;πq(Q)),

where

E(P)2p,q = (Fp,q ∩ Pn(X)) / (Fp−1,q+1 ∩ Pn(X)) .

Since Hp(X;πq(P)) = Hp(X; Torq) ⊂ E2
p,q and Pn(X) ⊂ Tn(X)(2), this finishes the proof of

Assertion A.4. ■

We obtain the following bordism theoretic description of H∗(X;Z(2)) whose analogue for spin
bordism and ko-homology was shown in [38, Theorem B (2)].

Corollary A.5. For each CW complex X, the orientation u(X)∗ induces an isomorphism(
ΩSO
∗ (X)/T∗(X)

)
(2)

∼= H∗(X;Z)(2).

Proof of Theorem A.1. By the bordism principle [29, Theorem 1.5], which follows from the
surgery principle in scalar curvature geometry [15, 34], and since the universal cover of V is
non-spin, it would suffice to show that the oriented bordism class

[φ : V → Bπ1(V )] ∈ ΩSO
∗ (Bπ1(V ))

lies in ΩSO,+
∗ (Bπ1(V )). We will achieve this goal for an odd multiple of [φ : V → Bπ1(V )], while

the rest of the proof relies on a version of the bordism principle for manifolds with Baas–Sullivan
singularities worked out in [18].

By assumption, the class

β := [φ : V → Bπ1(V )]− [f : V ′ → Bπ1(V )] ∈ Ω∗(Bπ1(V ))

is in the kernel of u(Bπ1(V ))∗ : Ω∗(Bπ1(V )) → H∗(π1(V );Z). By Proposition A.2, there is an
odd k ∈ N with kβ ∈ T∗(Bπ1(V )) ⊂ ΩSO,+(Bπ1(V )). Write kβ = [M → Bπ1(V )] where M
is ∃PSC. Since [f : V ′ → Bπ1(V )] ∈ ΩSO,+

∗ (Bπ1(V )) by assumption, we obtain

k · [φ : V → Bπ1(V )] ∈ ΩSO,+
∗ (Bπ1(V )).

We now use the bordism principle for ∃PSC-manifolds based on manifolds with Baas–Sullivan
singularities [18, Proposition 3.11]. Let ΩSO,Q

∗ (−) denote oriented bordism with Baas–Sullivan
singularities in Q, where Q = (Q0 = ∗, Q1, Q2, . . .) is a family of closed oriented manifolds Qi
of dimension 4i which are equipped with fixed positive scalar curvature metrics and such
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that ΩSO
∗ /Tor = Z[[Q1], [Q2], . . .]. Note that Q is a positive family of singularity types in the

sense of [18, Definition 3.2], also compare the remarks before [18, Definition 3.12].
Recall from [2] and [18, Proposition 2.6] that for any space X, there exists a canonical

isomorphism

ΩSO,Q
∗ (X)⊗ Z

[
1
2

] ∼= H∗
(
X;Z

[
1
2

])
.

This implies that the image of β in ΩSO,Q
∗ (Bπ1(V ))⊗ Z

[
1
2

]
is equal to zero.

Thus there exists some d ≥ 0 such that the image of 2d · β in ΩSO,Q
∗ (Bπ1(V )) is equal to 0.

Let s, t ∈ Z be integers with s · k + t · 2d = 1. This implies

sk · β = β ∈ ΩSO,Q
∗ (Bπ1(V )).

LetW → Bπ1(V ) be a compact Q-bordism between sk ·β and β. More precisely,W is a compact
oriented Qn-manifold for some n ≥ 0 (see [18, p. 503]) and W → Bπ1(V ) compatible with the
singularity structure ofW (see [18, Definition 2.3]). Furthermore, along the boundary ∂0V ofW
with its induced orientation (see [18, Definition 2.1]), this map restricts to the disjoint union
of s copies of M → Bπ1(V ), of φ : V op → Bπ1(V ) and of f : V ′ → Bπ1(V ). Here, V op is the
manifold V with the opposite orientation.

By applying surgeries in the interior of W , we can assume that the inclusion V ↪→ W is
a 2-equivalence, i.e., it induces bijections on π0 and π1 and a surjection on π2. This follows by
a similar argument as in the smooth case, see [29, Theorem 1.5].12

Now, since M and V ′ are ∃PSC, and Q is a positive family of singularity types, the Q-
bordism principle [18, Proposition 3.11] shows that the manifold V is ∃PSC, completing the
proof of Theorem A.1. ■

Remark A.6. Theorem A.1 together with a short proof has already appeared in [30, Theo-
rem 4.11]. However, this discussion is incomplete if H∗(π1(V );Z) contains 2-torsion, which may
produce Tor terms in the Künneth formula for the E2-terms Hp

(
Bπ1(V ); ΩSO

q

)
(2)

in the Atiyah–
Hirzebruch spectral sequence for ΩSO

∗ (Bπ1(V ))(2). This is covered by Assertion A.4 in the proof
of our Proposition A.2.
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Vol. 83, Birkhäuser, Boston, MA, 1990.

[12] Gromov M., Positive curvature, macroscopic dimension, spectral gaps and higher signatures, in Functional
Analysis on the Eve of the 21st Century, Vol. II (New Brunswick, NJ, 1993), Progr. Math., Vol. 132,
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