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Abstract. It is well known that for flat systems the tracking control problem can be solved
by utilizing a linearizing quasi-static feedback of generalized states. If measurements (or
estimates) of a so-called generalized Brunovský state are available, a linear, decoupled and
asymptotically stable tracking error dynamics can be achieved. However, from a practical
point of view, it is often desirable to achieve the same tracking error dynamics by feedback of
a classical state instead of a generalized one. This is due to the fact that the components of
a classical state typically correspond to measurable physical quantities, whereas a generalized
Brunovský state often contains higher order time derivatives of the (fictitious) flat output
which are not directly accessible by measurements. In this paper, a systematic solution for
the tracking control problem based on quasi-static feedback and measurements of classical
states only is derived for the subclass of (x, u)-flat systems.
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1 Introduction

The concept of flatness has been introduced in control theory by Fliess, Lévine, Martin and Rou-
chon in the 1990s, see, e.g., [9, 10, 11]. Roughly speaking, a nonlinear control system of the form

ẋ = f(x, u) (1.1)

with an n-dimensional1 state x and an m-dimensional input u is flat, if there exist m differen-
tially independent functions yj = φj

(
x, u, u̇, . . . , u(q)

)
, such that x and u can locally be expressed

by y and its time derivatives, i.e.,

x = Fx

(
y, ẏ, . . . , y(r−1)

)
, u = Fu

(
y, ẏ, . . . , y(r)

)
. (1.2)

Parameterization (1.2) of the system variables by the flat output allows for an elegant and sys-
tematic solution of both feedforward and feedback problems, which is the reason for the ongoing
popularity of flat systems, see, e.g., [7, 11]. The computation of flat outputs, however, is known
to be a difficult problem. Recent research in this field can be found, e.g., in [15, 17, 29, 30].

A typical intermediate step in the design of a flatness-based control is an exact linearization
of system (1.1) by a suitable feedback. Exact feedback linearization should not be confused with
exact feedforward linearization, which has been introduced in [18], see also [19]. In this paper,
we solely consider exact feedback linearization. The objective is that the closed-loop system

1By abuse of notation, we write, e.g., dim(x) = n, although it is actually the space containing x, which is of
dimension n. The same abuse of notation is also used for other quantities throughout the paper.
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possesses a linear input-output behavior in the form of integrator chains between a new closed-
loop input v and the considered flat output y. A standard approach is an exact linearization by
an endogenous dynamic feedback

ż = g(x, z, v), u = α(x, z, v), (1.3)

where the new input v is given by the highest time derivatives y(r) that are present in param-
eterization (1.2). The feedback (1.3) being endogenous means that g and α are such that the
state z of the feedback and the new input v which is introduced by means of this feedback
can be expressed as functions of x, u and time derivatives of u. Thus, the closed-loop sys-
tem ẋ= f(x, α(x, z, v)), ż= g(x, z, v) has a linear input-output behavior yj,(r

j)= vj , j= 1, . . . ,m
between the new input v and the flat output y. For example, in [1, 12, 21] it is shown how such
a dynamic feedback (1.3) can be constructed systematically from parameterization (1.2) (we
recall the construction in Section 3).

However, a drawback of this standard approach is that it is a dynamic feedback and that the
order of the error dynamics of a subsequently designed tracking control is given by dim(x) +
dim(z), which is higher than the order dim(x) = n of the original system (1.1). A well-established
alternative, which circumvents these drawbacks, is the exact linearization by a quasi-static
feedback of generalized states proposed in [6, 7, 37]. In contrast to the more classical static
or dynamic feedbacks, a quasi-static feedback is a feedback which may also depend on time
derivatives of the closed-loop input. The notion of quasi-static feedback and the equivalence
of two systems by a quasi-static feedback were originally defined within a differential-algebraic
framework, see, e.g., [2, 3, 6, 35] for a precise definition and further details. A consequence of
this definition is the existence of a transformation of the form

v(k) = ϕk(x, u, u̇, . . . ), u(k) = ϕ̂k(x, v, v̇, . . . ) (1.4)

for k ≥ 0, which relates the original input u and the new input v as well as their time derivatives.
Note that although x is a classical state for the original system ẋ = f(x, u), it is a generalized one
for the resulting closed-loop system ẋ = f(x, v, v̇, . . . ). The fact that one input can be calculated
directly from the other by relation (1.4), without the need to solve any differential equation,
explains the terminology quasi-static, see also [36]. In [6, 7], it has been shown that every
flat system (1.1) can be exactly linearized by a quasi-static feedback of a so-called generalized
Brunovský state x̃B =

(
y, ẏ, . . . , y(κ−1)

)
, which consists of suitably chosen time derivatives of

the components yj of the flat output up to the orders κj − 1 and meets dim(x̃B) = dim(x), i.e.,
κ1+· · ·+κm = n. Passing from the original state x to this generalized Brunovský state x̃B results
in a state representation of the form ˙̃xB = f(x̃B, u, u̇, . . . ), i.e., a generalized state representation.
In a next step, the system is exactly linearized by a quasi-static feedback

u = α(x̃B, v, v̇, . . . ), (1.5)

where the new input v is given by the time derivatives y(κ), and hence the closed-loop system pos-
sesses the linear input-output behavior yj,(κ

j) = vj , j = 1, . . . ,m. Note that here v corresponds
to lower-order time derivatives of the flat output than in the dynamic feedback (1.3). Under the
assumption that measurements or estimates of the generalized Brunovský state x̃B are available,
it is then straightforward to achieve in a second step a linear and decoupled tracking error dy-
namics for the components of the flat output with arbitrarily placed eigenvalues. The practical
usefulness and good performance which can be achieved with a quasi-static tracking control has
been demonstrated, e.g., in [24]. However, feedback (1.5) is not a feedback of the original state x
of (1.1), and the same applies to the additional feedback which achieves the desired tracking
error dynamics. Since except for static feedback linearizable systems a generalized Brunovský
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state x̃B is not equivalent to the original state x via a state transformation x̃B = Φx(x), de-
termining the required time derivatives of the flat output from available measurements is not
a straightforward task.

The aim of the present paper is to propose a method which combines the advantages of both
above-mentioned approaches while avoiding their drawbacks. The solution of the considered
problem requires two steps. First, a linearizing quasi-static feedback

u = α(x, v, v̇, . . . ) (1.6)

of the original, classical state x has to be derived. Second, for the exactly feedback linearized
system, an additional feedback has to be constructed which achieves the desired linear, decoupled
and asymptotically stable tracking error dynamics and again only requires the classical state x
of the open-loop system (1.1). Regarding the first step, there are already results available in
the literature. In particular, in [4, 5] conditions for the input-output linearizability by a quasi-
static feedback of classical states have been derived in a differential-algebraic setting and it can
be shown that (x, u)-flat systems satisfy these conditions. However, the exact linearization by
a quasi-static feedback of the form (1.6) is only an intermediate step in deriving a tracking
control law of the desired form u = α

(
x, yd(t), ẏd(t), . . . , yd,(r)(t)

)
, which only depends on x and

the reference trajectory yd(t). Therefore, we propose an alternative derivation of a linearizing
quasi-static feedback (1.6) within a differential-geometric framework, which as a byproduct
yields a coordinate transformation with a certain triangular structure that is essential for the
subsequent tracking control design.

At this point, it is important to emphasize that transforming a feedback of the form (1.5)
into a feedback of the form (1.6) is not a straightforward task and not generally possible.

Remark 1.1. Since the generalized Brunovský state x̃B consists of certain time derivatives of
components of the flat output, it is of course a function of x, u, and time derivatives of u, i.e.,
x̃B = ϕ(x, u, u̇, . . . ). However, simply substituting this expression into (1.5) yields in general an
implicit relation of the form2

u = α(ϕ(x, u, u̇, . . . ), v, v̇, . . . ) (1.7)

in u and its time derivatives. To obtain a quasi-static feedback of the desired form (1.6), we
would have to differentiate (1.7) in order to eventually obtain a system of equations which can
be solved for u as a function of x, v, and time derivatives of v. According to the author’s best
knowledge, it is not known whether for every flat system (1.1) there exists at least one linearizing
feedback (1.5) for which this is indeed possible.

The contribution of the paper is threefold: First, we derive geometric conditions under which
certain time derivatives of a general flat output y = φ(x, u, u̇, . . . ) can be introduced as a new
input, and provide a systematic procedure for the construction of the corresponding feedback.
Second, we show within our differential geometric framework that for (x, u)-flat systems, i.e.,
systems with a flat output

y = φ(x, u), (1.8)

which may depend on the input but not on time derivatives of the input, the new input can
always be chosen such that the corresponding feedback is a quasi-static feedback of the sys-
tems’ original, classical state x. In contrast to [4, 5], this alternative approach reveals structural
properties which are important regarding tracking control design. Third, we show that on the

2With the exception of y being a linearizing output in the sense of static feedback linearizability, at least one
of the components of x̃B = ϕ(x, u, u̇, . . . ) explicitly depends on u or time derivatives of u.



4 C. Gstöttner, B. Kolar and M. Schöberl

basis of such an exact feedback linearization, it is possible to achieve a linear, decoupled and
asymptotically stable tracking error dynamics by an additional feedback which again requires
only measurements of the state x. Thus, in contrast to the standard approach for the track-
ing control design described in [7], the usage of a generalized Brunovský state can again be
avoided. Preliminary results addressing this topic can be found in [22] and [14]. The approach
taken therein roughly speaking consists of deriving a tracking control law based on a gen-
eralized Brunovský state and – under certain assumptions – subsequently transforming this
control law such that it depends on the original, classical state x and the reference trajectory
only. In the present contribution, in contrast, we completely avoid the usage of a general-
ized Brunovský state and show for (x, u)-flat systems how to derive a tracking control law of
the desired form u = α

(
x, yd(t), ẏd(t), . . . , yd,(r)(t)

)
, which only depends on x and the reference

trajectory yd(t), directly.

The paper is organized as follows: In Section 2, we introduce some notation and preliminar-
ies. In Section 3, we discuss the exact feedback linearization of flat systems in a differential-
geometric framework and show how to construct a feedback which introduces appropriately
chosen time derivatives of a flat output as new input. Furthermore, we prove in this framework
that for (x, u)-flat systems the new input can always be chosen in such a way that the required
feedback is a quasi-static feedback of the state x. The results of Section 3 are then illustrated
by two examples in Section 4. Subsequently, Section 5 deals with the design of a flatness-
based tracking control on the basis of the exact feedback linearization derived in Section 3.
Finally, in Section 6, the tracking control design is illustrated with the continued examples of
Section 4.

2 Preliminaries

In the following, some notation and the utilized differential-geometric framework are intro-
duced.

2.1 Notation

Let X be an n-dimensional smooth manifold, equipped with local coordinates xi, i = 1, . . . , n.
The tangent bundle and the cotangent bundle of X are denoted by (T (X ), τX ,X ) and (T ∗(X ),
τ∗X ,X ). For these bundles we have the induced local coordinates

(
xi, ẋi

)
and

(
xi, ẋi

)
with respect

to the holonomic bases
{
∂xi

}
and

{
dxi

}
, respectively. We also make use of the Einstein summa-

tion convention. A vector field is a section of the tangent bundle, i.e., a map w : X → T (X ) such
that τX ◦w = idX . In local coordinates, a vector field reads w = wi(x)∂xi . Likewise, a covector
field or (differential) 1-form is a section of the cotangent bundle, i.e., a map ω : X → T ∗(X )
which in local coordinates reads ω = ωi(x)dx

i. A codistribution on X of rank k is a map which
assigns to each p ∈ X a k-dimensional linear subspace Pp ⊂ T ∗

p (X ) of the cotangent space at p.

Then locally there exist k covector fields ω1, . . . , ωk such that ω1
p, . . . , ω

k
p form a basis for Pp.

We say that the codistribution P is (locally) spanned by the covector fields ω1, . . . , ωk, which
form a (local) basis for P , i.e., P = span{ω1, . . . , ωk}, with the span over the ring C∞(X ) of
smooth functions h : X → R. The k-fold Lie derivative of a function φ along a vector field w
is denoted by Lk

wφ. By ∂xh we denote the m × n Jacobian matrix of h =
(
h1, . . . , hm

)
with

respect to x =
(
x1, . . . , xn

)
. The symbols ⊂ and ⊃ are used in the sense that they also in-

clude equality. We write h[α] for the α-th time derivative of a function h. When h consists
of several components, i.e., h =

(
h1, . . . , hm

)
, then h[α] =

(
h1[α], . . . , h

m
[α]

)
. To keep expressions

involving time derivatives of different orders short we use multi-indices. Let A =
(
a1, . . . , am

)
and B =

(
b1, . . . , bm

)
be two multi-indices with aj ≤ bj , j = 1, . . . ,m, which we abbreviate
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by A ≤ B. Then

h[A] =
(
h1[a1], . . . , h

m
[am]

)
, h[0,A] =

(
h1[0,a1], . . . , h

m
[0,am]

)
,

h[A,B] =
(
h1[a1,b1], . . . , h

m
[am,bm]

)
,

where hj
[aj ,bj ]

=
(
hj
[aj ]
, . . . , hj

[bj ]

)
. We define hj

[αj ,βj ]
to be empty when αj > βj . Addition and

subtraction of multi-indices is done componentwise and we define the addition and subtraction
of a multi-index A with an integer c by A ± c =

(
a1 ± c, . . . , am ± c

)
. Furthermore, we de-

fine |A| =
∑m

j=1 a
j . Multi-indices are sometimes also used in connection with the Lie derivative,

for instance, if f is a vector field, then LA
f h =

(
La1

f h
1, . . . ,Lam

f hm
)
. When h consists of multiple

blocks, the first subscript refers to the block and a second subscript in square brackets is used
for denoting time derivatives. Consider, for instance, the function

h = (h1, h2) =
(
h1, . . . , hm1︸ ︷︷ ︸

h1

, hm1+1, . . . , hm︸ ︷︷ ︸
h2

)
,

whose components hj are grouped into the two blocks h1 and h2. Then a second subscript in
square brackets is used for denoting time derivatives, e.g.,

h[α] = (h1,[α], h2,[α]) =
(
h1[α], . . . , h

m1

[α]︸ ︷︷ ︸
h1,[α]

, hm1+1
[α] , . . . , hm[α]︸ ︷︷ ︸

h2,[α]

)

and h1,[A1] =
(
h1
1,[a11]

, . . . , hm1

1,[a
m1
1 ]

)
with some multi-index A1 =

(
a11, . . . , a

m1
1

)
.

Example 2.1. Consider the tuple h =
(
h1, h2

)
, the integer c = 2 and the multi-indices

A = (1, 3), B = (2, 3). We then have h[c] =
(
h1[2], h

2
[2]

)
, h[A] =

(
h1[1], h

2
[3]

)
, h[0,A] =

(
h1, h1[1], h

2,

h2[1], h
2
[2], h

2
[3]

)
, h[A,B] =

(
h1[1], h

1
[2], h

2
[3]

)
, as well as h[A+c] =

(
h1[3], h

2
[5]

)
and h[0,A−c] =

(
h2, h2[1]

)
.

2.2 Geometric framework, flatness
and quasi-static feedback of classical states

Throughout this contribution, we use a finite-dimensional differential-geometric framework like,
e.g., in [23]. All our definitions and results are generically local, that is, they hold locally
in open and dense subsets. Thus, we can assume that all considered Jacobian matrices and
(co-)distributions have locally constant rank. In order to compute time derivatives of func-
tions of the system variables along trajectories of (1.1), a manifold X × U[0,lu] with coor-
dinates (x, u, u[1], . . . , u[lu]) is introduced, where u[α] denotes the α-th time derivative of the
input u and lu is some large enough but finite integer. The time derivative of a function
h(x, u, u[1], . . . , u[lu−1]), which does not explicitly depend on u[lu], is then given by the Lie deriva-
tive Lfuh along the vector field3

fu =
n∑

i=1

f i(x, u)∂xi +
m∑
j=1

lu−1∑
α=0

uj[α+1]∂uj
[α]
. (2.1)

In the remainder of the paper, we assume that lu is chosen large enough such that fu acts as
time derivative on all functions considered. An appropriate bound on lu for the computations in
this paper is given below Definition 2.2. Within this differential-geometric framework, flatness
can be defined as follows.

3To be precise, we have d
dt
(h◦ (x(t), u(t), u[1](t), . . . )) = (Lfuh)◦ (x(t), u(t), u[1](t), . . . ). Therefore, we identify

the Lie derivative of a function on X × U[0,lu] along fu with its time derivative.
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Definition 2.2. System (1.1) is called flat if there exists an m-tuple of smooth functions

yj = φj(x, u, u[1], . . . , u[q]), j = 1, . . . ,m, (2.2)

defined on X × U[0,lu] and smooth functions F i
x and F j

u such that locally

xi = F i
x

(
φ,Lfuφ, . . . ,L

R−1
fu

φ
)
, i = 1, . . . , n,

uj = F j
u

(
φ,Lfuφ, . . . ,L

R
fuφ

)
, j = 1, . . . ,m, (2.3)

with some multi-index R =
(
r1, . . . , rm

)
. The m-tuple (2.2) is called a flat output.

The highest time derivative of each component yj which may be needed throughout the
derivations in this paper is given by rj , where rj are the integers which form the multi-
index R =

(
r1, . . . , rm

)
in Definition 2.2. Therefore, a bound on lu is given by r + q with

r = max
{
r1, . . . , rm

}
. A bound on r in terms of the number of state variables n, the number

of inputs m and the highest order q of time derivatives of the input occurring in (2.2) can be
found in [23], namely r ≤ n+ (m− 1)q. Hence, in total we have n+ (m− 1)q + q = n+mq as
a bound on lu.

We call a flat output y = φ(x, u), which may depend on the input u but not on time
derivatives of the latter, an (x, u)-flat output and a system possessing such a flat output an
(x, u)-flat system. It should be stressed that we do not require an (x, u)-flat output to explicitly
depend on u. Therefore, every x-flat output y = φ(x), resp. x-flat system, is also an (x, u)-flat
output, resp. (x, u)-flat system (whereas the converse is obviously wrong). Our main results are
derived for (x, u)-flat outputs and thus also apply to x-flat outputs.

By taking the exterior derivative of expressions (2.3), we find that flatness implies

dx ∈ span
{
dφ,dLfuφ, . . . ,dL

R−1
fu

φ
}

and du ∈ span
{
dφ,dLfuφ, . . . ,dL

R
fuφ

}
,

where throughout this section, span denotes the span over smooth functions on X × U[0,lu], i.e.,
smooth functions of (x, u, u[1], . . . ). Under the assumption that ranks are constant (which we
assume throughout), the converse is also true. This is a consequence of the following more
general result relating the functional dependence of functions and the linear dependence of their
differentials.

Lemma 2.3. Consider a set of smooth functions g1, . . . , gk as well as another smooth function h
which are all defined on the same manifold. The following conditions are equivalent:

(1) Locally dh ∈ span
{
dg1, . . . ,dgk

}
.

(2) There exists a smooth function ψ : Rk → R such that locally h = ψ
(
g1, . . . , gk

)
holds

identically.

Furthermore, if the differentials dg1, . . . ,dgk are linearly independent, then the function ψ is
unique.

The proof is straightforward and follows immediately by introducing a maximal number
of independent functions of the set g1, . . . , gk as local coordinates on the underlying mani-
fold, see, e.g., [21]. Another well-known important implication of Definition 2.2 is that the
differentials dφ,dLfuφ, . . . ,dL

β
fu
φ of derivatives of a flat output up to an arbitrary order β

are linearly independent.4 This in turn implies that there exists a unique minimal multi-
index R =

(
r1, . . . , rm

)
, where rj is the order of the highest derivative of yj needed for ex-

pressing x and u. Because of Lemma 2.3, it furthermore follows that the corresponding maps Fx

and Fu in (2.3) are unique. From now on, R always denotes this unique minimal multi-index.

4The integer lu needs to be chosen large enough such that the Lie derivative Lβ
fu
φ indeed yields the cor-

rect expression for the β-th time derivative of the functions φ. The linear independence of the differen-
tials dφ,dLfuφ, . . . , dL

β
fu
φ implies that the time evolution of the flat output is not constrained by any autonomous

differential equation χ(y, y[1], . . . , y[β]) = 0. We refer to the latter property as differential independence of the
components of a flat output.
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Finally, let us give definitions for the notions of endogenous feedback and quasi-static feedback
of a classical state.

Definition 2.4. Consider system (1.1) and a feedback of the form

ż = g(x, z, v, v[1], . . . ), u = α(x, z, v, v[1], . . . ), (2.4)

which contains the dynamic feedback (1.3) and the quasi-static feedback (1.6) as special cases.
The feedback (2.4) is called endogenous if its state z and the new input v =

(
v1, . . . , vm

)
can be

expressed as functions of x, u and time derivatives of u, see also [25, Definition 2.3].

Definition 2.5. Consider system (1.1) with state x, control input u and an invertible transfor-
mation of the form

u = α(x, v, v[1], . . . ), v = α̂(x, u, u[1], . . . ),

u[1] = α1(x, v, v[1], . . . ), v[1] = α̂1(x, u, u[1], . . . ),

u[2] = α2(x, v, v[1], . . . ), v[2] = α̂2(x, u, u[1], . . . ),

...
... (2.5)

such that the differentials dx,dv,dv[1], . . . are linearly independent. We refer to u = α(x, v,
v[1], . . . ) in (2.5) as a quasi-static feedback of the state x.5

Remark 2.6. A quasi-static feedback of a classical state as in Definition 2.5 is a special case
of a quasi-static feedback as considered, e.g., in [6, 7]. The major difference is that our point of
departure is always a system of the form (1.1) in classical state representation, whereas in [6, 7]
generalized state representations ˙̃x = f(x̃, u, u[1], . . . ) are considered. The transformation (2.5)
would be the same in the case of generalized state representations with x replaced by x̃.

3 Exact feedback linearization of flat systems

In this section, we discuss the exact feedback linearization of a system (1.1) with respect to
a given flat output (2.2) by a suitable feedback. The feedback-modified system shall possess
a linear input-output behavior of the form yj

[aj ]
= vj , j = 1, . . . ,m – with suitable integers aj –

between a newly introduced input v and the flat output y. Such an exact feedback linearization
is used, e.g., as an intermediate step in the design of a flatness-based tracking control. For the
design of a tracking control, it is desirable to choose the orders aj of the time derivatives of the
components of the flat output which are used as new (closed-loop) input v as low as possible
to obtain tracking error dynamics of minimal order. In Theorem 3.1 below, we provide easily
verifiable conditions which assure that a selection of time derivatives of a flat output can be
introduced as new (closed-loop) input v. The construction of a corresponding feedback which
introduces these time derivatives as new input is similar to the construction of the classical
linearizing endogenous dynamic feedback (1.3) as proposed, e.g., in [1, 12, 21]. So let us first
briefly recall its construction, which is as follows.

We have to extend the flat parameterization Fx of the state of the system to a diffeomorphism,
i.e., we have to choose |R|−n functions zl = F l

z(φ[0,R−1]) such that the map (Fx, Fz) : R|R| → R|R|

is a diffeomorphism. We then have

xi = F i
x(φ[0,R−1]), i = 1, . . . , n,

zl = F l
z(φ[0,R−1]), l = 1, . . . , |R| − n, (3.1)

5Note that (2.5) implies dim(v) = dim(u).
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which allows us to express the functions φ[0,R−1] as functions of x and z, and by setting v = φ[R],
all the functions φ[0,R] can be expressed as functions of x, z and v, i.e., there is a diffeomorphism
Ψ: R|R|+m → R|R|+m such that φ[0,R] = Ψ(x, z, v). The time derivatives żl = Lfu

(
F l
z(φ[0,R−1])

)
are obviously also functions of φ[0,R] = Ψ(x, z, v), i.e., with

gl(x, z, v) := Lfu

(
F l
z(φ[0,R−1])

)
◦Ψ(x, z, v), l = 1, . . . , |R| − n,

we have żl = gl(x, z, v). Now consider the dynamic feedback

ż = g(x, z, v), u = Fu ◦Ψ(x, z, v), (3.2)

constructed from the functions g, the flat parameterization Fu of the input and the map Ψ.
Applying this feedback to system (1.1) yields the closed-loop system

ẋ = f(x, Fu ◦Ψ(x, z, v)), ż = g(x, z, v) (3.3)

with the state (x, z) and the new input v. It can then be show that the transformation y[0,R] =
Ψ(x, z, v) puts the closed-loop system into the Brunovský normal form

ẏ[0,R−1] = y[1,R]. (3.4)

The top variables yj = Ψj(x, z, v), j = 1, . . . ,m of the integrator chains in (3.4) obviously
form a linearizing output of the closed-loop system. These top variables are in fact just
the components of the flat output φ(x, u, u[1], . . . ) of the original system expressed in terms
of the state (x, z) and the input v of the closed-loop system (3.3). The closed-loop system
thus has the linear input-output behavior y[R] = v between the new input v and the flat out-
put yj = φj(x, u, u[1], . . . ) = Ψj(x, z, v). In other words, feedback (3.2) introduces the highest
time derivatives φ[R] which are present in (2.3) as the new input v.

As already mentioned, for the design of a tracking control, it is desirable to choose the
orders aj of the time derivatives of the components of the flat output which are used as new
(closed-loop) input v as low as possible to obtain tracking error dynamics of minimal order. The
following theorem provides easily verifiable conditions which assure that a given selection of time
derivatives of a flat output can be introduced as new (closed-loop) input v. The multi-index R
in this theorem again refers to the minimal multi-index such that (2.3) in Definition 2.2 holds.

Theorem 3.1. Consider system (1.1) with flat output y = φ(x, u, u[1], . . . , u[q]). For any m-
tuple y[A] with A ≤ R, satisfying the property that the differentials dx,dφ[A],dφ[A+1], . . . ,dφ[R−1]

are linearly independent, there exists an endogenous feedback of the form

ż = g(x, z, v, v[1], . . . ), u = α(x, z, v, v[1], . . . ) (3.5)

with dim(z) = |A| − n, such that the closed-loop system has the input-output behavior y[A] = v.
In the case |A| = n, z is empty and the feedback (3.5) reduces to u = α(x, v, v[1], . . . ), i.e.,
a quasi-static feedback of the state x.

The proof of this theorem is done constructively and thereby provides a systematic method
for constructing a feedback which actually introduces the time derivatives φ[A] of a flat output
as new input. The condition on the linear independence of the differentials dx, dφ[A], dφ[A+1],
. . . ,dφ[R−1]

6 roughly speaking assures that trajectories of φ[A] (i.e., the derivatives of the flat
output intended as new inputs) are not restricted by the current state x of the system. This

6Note that due to the linear independence of the differentials of time derivatives of a flat output up to an
arbitrary order and dx ∈ span{dφ[0,R−1]}, the linear independence of dx,dφ[A],dφ[A+1], . . . , dφ[R−1] actually
implies linear independence of the differentials dx,dφ[A], dφ[A+1], . . . , dφ[β] up to an arbitrary order β.
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is analogous to the independence of the original control input u and the state x (the differen-
tials dx,du,du[1], . . . are obviously linearly independent). Note that the time derivatives φ[R]

introduced as new input by means of the endogenous dynamic feedback discussed above always
satisfy this independence condition. Furthermore, it can be shown that the condition can only
be satisfied for multi-indices A with |A| ≥ n. An obvious example which does not meet this
condition are the components of an x-flat output.

Proof of Theorem 3.1. The construction of the feedback is similar to the construction of
the classical endogenous dynamic feedback which introduces the time derivatives φ[R] of a flat
output as new input and which we recalled above. However, instead of extending the flat
parameterization x = Fx(φ[0,R−1]) of the state to a diffeomorphism with |R| − n arbitrary func-
tions zl=F l

z(φ[0,R−1]) (see (3.1)), here, a part of the functions used for extending x=Fx(φ[0,R−1])
to a diffeomorphism will be given by the consecutive time derivatives φ[A,R−1].

By assumption, the differentials dx, dφ[A,R−1] are linearly independent. Because of that
and x = Fx(φ[0,R−1]), it follows that the map φ[0,R−1] 7→ (Fx(φ[0,R−1]), φ[A,R−1]) is a submersion.
Therefore, we can chose |A| − n further functions zl = F l

z(φ[0,R−1]), l = 1, . . . , |A| − n such that
the map φ[0,R−1] 7→ (Fx(φ[0,R−1]), Fz(φ[0,R−1]), φ[A,R−1]) is a diffeomorphism. The map φ[0,R] 7→
(Fx(φ[0,R−1]), Fz(φ[0,R−1]), φ[A,R]) is then obviously also a diffeomorphism. Via the inverse of
this diffeomorphism, all the functions φ[0,R] can be expressed as functions of x, z = Fz(φ[0,R−1])
and v[0,R−A] := φ[A,R], i.e., there exists a diffeomorphism Ψ such that

φ[0,R] = Ψ(x, z, v[0,R−A]).

The time derivatives żl = Lfu

(
F l
z(φ[0,R−1])

)
are obviously also functions of φ[0,R] = Ψ(x, z,

v[0,R−A]), i.e., with gl(x, z, v[0,R−A]) := Lfu

(
F l
z(φ[0,R−1])

)
◦Ψ(x, z, v[0,R−A]), l = 1, . . . , |A| − n,

we have żl = gl(x, z, v[0,R−A]). Now consider the dynamic feedback

ż = g(x, z, v[0,R−A]), v̇[0,R−A−1] = v[1,R−A], u = Fu ◦Ψ(x, z, v[0,R−A]) (3.6)

constructed from the functions g, the flat parameterization Fu of the input and the map Ψ.
Applying this feedback to system (1.1) yields the closed-loop system

ẋ = f(x, Fu ◦Ψ(x, z, v[0,R−A])), ż = g(x, z, v[0,R−A]), v̇[0,R−A−1] = v[1,R−A] (3.7)

with the state (x, z, v[0,R−A−1]) and the new input v[R−A]. Recall that feedback (3.6) is just
a special case of the endogenous dynamic feedback (3.2) considered above, the difference being
that a part of the functions used for extending the map Fx to a diffeomorphism is given by
the consecutive time derivatives φ[A,R−1] instead of arbitrary functions. It is thus immediate
that the closed-loop system (3.7) again has a linear input-output behavior between the new
input v[R−A] and the flat output y.

Now consider the feedback

ż = g(x, z, v[0,R−A]), u = Fu ◦Ψ(x, z, v[0,R−A]),

obtained from (3.6) by omitting the integrator chains v̇[0,R−A−1] = v[1,R−A]. This feedback yields
the closed-loop system

ẋ = f(x, Fu ◦Ψ(x, z, v[0,R−A])), ż = g(x, z, v[0,R−A]) (3.8)

with the new input v (instead of v[R−A]). Computing the time derivative of a function along
trajectories of (3.8) or along trajectories of (3.7) yields exactly the same result. For the closed-
loop system (3.8), we thus have the linear input-output behavior y[A] = v. ■
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Remark 3.2. Theorem 3.1 analogously applies to multi-indices A which do not meet A ≤ R,
only minor modifications of the proof would be required in this case. However, since the
choice A = R is always possible, and in regard of a subsequently designed tracking control
a choice for A which is larger than necessary does not seem to be desirable, we for simplicity
assume A ≤ R.

For the design of a flatness-based tracking control, the special case |A| = n is particularly
interesting, since it ensures a tracking error dynamics of minimal order. Furthermore, it has
the advantage that according to Theorem 3.1 the required feedback is a quasi-static one and
no controller states need to be initialized. Even though it has been shown in [7] that every flat
system with a flat output of the general form (2.2) can be exactly linearized by a quasi-static
feedback of a generalized state, the question whether this is also always possible by a quasi-
static feedback of a classical state is still open. For the practically most relevant subclass
of (x, u)-flat systems with flat outputs of the form (1.8), however, the existence of a linearizing
quasi-static feedback of a classical state can be deduced by applying results derived in [4, 5] in
a differential-algebraic setting. In the following subsection, we provide a self-contained proof as
well as a systematic construction of such a quasi-static feedback in our geometric framework.

3.1 Exact feedback linearization of (x, u)-flat systems

In this section, it is shown in our finite-dimensional geometric framework that every system (1.1)
with an (x, u)-flat output

y = φ(x, u) (3.9)

can be exactly feedback linearized with respect to this output by a quasi-static feedback of
its original state x. Because of Theorem 3.1, we only have to show that there exists a multi-
index A ≤ R with |A| = n such that the differentials dx,dφ[A],dφ[A+1], . . . ,dφ[R−1] are linearly
independent. From now on it is referred to such a special multi-index by κ =

(
κ1, . . . , κm

)
in

order to distinguish it from the general case.
In the following, a procedure for systematically constructing such a multi-index is proposed.

In each step of the procedure, certain time derivatives of the flat output are introduced as
new coordinates on X × U[0,lu], such that finally the coordinates (x, u, u[1], . . . ) are replaced
by (x, v, v[1], . . . ) with v = y[κ]. The multi-index κ is of course not known a priori, it is constructed
successively and thus also the new coordinates v are introduced successively. Roughly speaking,
we differentiate each component of the flat output until it depends explicitly on the input u.
By means of a coordinate transformation, we then replace as many components of the input u
as possible by these derivatives. In the next step, each of the remaining components of the flat
output is further differentiated until again an explicit dependence on the remaining components
of the original input u occurs, and again as many of its components as possible are replaced
by these derivatives. This procedure is continued until all components of the original input u
have been replaced by time derivatives of the flat output. For the proposed procedure, it is
crucial that the ranks of the occurring Jacobian matrices are locally constant, which we assume
throughout.

Step 1. Define the multi-index K1 =
(
k11, . . . , k

m
1

)
such that

L
kj1−1
fu

φj = φj

[kj1−1]
(x), L

kj1
fu
φj = φj

[kj1]
(x, u),

i.e., kj1 denotes the relative degree of the component φj of the flat output. Note that for
an (x, u)-flat output where yj = φj(x, u) explicitly depends on u, we have kj1 = 0. Intro-
duce m1 = rank(∂uφ[K1]) of the m functions φ[K1] and their time derivatives as new coordinates.
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By reordering the components of the flat output we can always achieve that rank(∂uφ1,[κ1]) = m1,
where φ1 =

(
φ1, . . . , φm1

)
and κ1 =

(
k11, . . . , k

m1
1

)
consists of the firstm1 integers inK1, enabling

us to apply the coordinate transformation

v1 = φ1,[κ1](x, u), urest1 =
(
um1+1, . . . , um

)
,

v1,[1] = φ1,[κ1+1](x, u, u[1]), urest1,[1] =
(
um1+1
[1] , . . . , um[1]

)
,

v1,[2] = φ1,[κ1+2](x, u, u[1], u[2]), urest1,[2] =
(
um1+1
[2] , . . . , um[2]

)
,

...
... (3.10)

That is, we replace the inputs u1, . . . , um1 and their time derivatives by v1 and its time derivatives
(which may require a renumbering of the inputs).7 In these coordinates, we have

y1,[0,κ1−1] = φ1,[0,κ1−1](x), yrest1,[0,Krest1−1] = φrest1,[0,Krest1−1](x),

y1,[κ1] = v1, yrest1,[Krest1 ]
= φrest1,[Krest1 ]

(x, v1),

where

y1 =
(
y1, . . . , ym1

)
, yrest1 =

(
ym1+1, . . . , ym

)
, φrest1,[β] =

(
φm1+1
[β] , . . . , φm

[β]

)
◦ Φ̂

with the inverse Φ̂ of transformation (3.10), and Krest1=
(
km1+1
1 , . . . , km1

)
. Note that φrest1,[Krest1 ]

is independent of urest1 , since otherwise rank(∂uφ[K1]) would have been larger than m1.

Step 2. Define the multi-index K2 =
(
k12, . . . , k

m−m1
2

)
such that

L
kj2−1
fu

φj
rest1

= φj

rest1,[k
j
2−1]

(x, v1, v1,[1], . . . ),

L
kj2
fu
φj
rest1

= φj

rest1,[k
j
2]
(x, v1, v1,[1], . . . , urest1).

Similar as before, we introduce m2 = rank(∂urest1
φrest1,[K2]) of the m −m1 functions φrest1,[K2]

and their time derivatives as new coordinates. By reordering the components of the flat out-
put belonging to yrest1 , we can always achieve that rank(∂urest1

φ2,[κ2]) = m2, where φ2 =(
φ1
rest1 , . . . , φ

m2
rest1

)
and κ2 =

(
k12, . . . , k

m2
2

)
consists of the first m2 integers in K2, enabling

us to apply the coordinate transformation8

v2 = φ2,[κ2](x, v1, v1,[1], . . . , urest1),

urest2 =
(
um1+m2+1, . . . , um

)
,

v2,[1] = φ2,[κ2+1](x, v1, v1,[1], . . . , urest1 , urest1,[1]),

urest2,[1] =
(
um1+m2+1
[1] , . . . , um[1]

)
,

7Introducing not only v1 but also its time derivatives as new coordinates is crucial for preserving the simple
structure of the vector field (2.1). Concerning the regularity of transformation (3.10) it should be noted that
rank(∂uφ1,[κ1]) = m1 implies rank(∂u[α]

φ1,[κ1+α]) = m1 for α ≥ 1. In the new coordinates, the vector field (2.1)
has the form

fu = f i ◦ Φ̂∂xi +

lu−1∑
α=0

(
vj11,[α+1]∂v

j1
1,[α]

+ uj2
rest1,[α+1]∂u

j2
rest1,[α]

)
+ · · ·+ ∂v1,[lu]

with the inverse Φ̂ of the transformation (3.10). The in general non-zero components in the ∂v1,[lu]
-directions do

not bother us as long as lu is chosen large enough.
8The functions φ2,[κ2] depend on time derivatives of v1, which are only available up to the order lu. Thus, some

higher-order time derivatives of urest1 must be kept as coordinates on the finite-dimensional manifold X × U[0,lu]

and cannot be replaced by time derivatives of v2. However, this is no problem as long as lu is chosen large enough.
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v2,[2] = φ2,[κ2+2](x, v1, v1,[1], . . . , urest1 , urest1,[1], urest1,[2]),

urest2,[2] =
(
um1+m2+1
[2] , . . . , um[2]

)
,

... (3.11)

That is, we replace the inputs um1+1, . . . , um1+m2 and their time derivatives by v2 and its time
derivatives (which may again require a renumbering of the inputs belonging to urest1). In these
coordinates we have

y1,[0,κ1−1] = φ1,[0,κ1−1](x),

y1,[κ1] = v1,

y2,[0,κ2−1] = φ2,[0,κ2−1](x, v1, v1,[1], . . . ),

y2,[κ2] = v2,

yrest2,[0,Krest2−1] = φrest2,[0,Krest2−1](x, v1, v1,[1], . . . ),

yrest2,[Krest2 ]
= φrest2,[Krest2 ]

(x, v1, v1,[1], . . . , v2),

where

y2 =
(
ym1+1, . . . , ym1+m2

)
, yrest2 =

(
ym1+m2+1, . . . , ym

)
,

φ
rest2,[β]=

(
φ
m2+1

rest1,[β]
,...,φ

m−m1
rest1,[β]

) ◦ Φ̂
with the inverse Φ̂ of transformation (3.11) and Krest2 =

(
km2+1
2 , . . . , km−m1

2

)
.

Step i. In the i-th step, we are concerned with the dependence of the time derivatives of the
functions φresti−1 =

(
φ
mi−1+1
resti−2

, . . . , φ
m−m1−···−mi−2

resti−2

)
on the inputs uresti−1 =

(
um1+···+mi−1+1, . . . ,

um
)
. Define the multi-index Ki =

(
k1i , . . . , k

m−m1−···−mi−1

i

)
such that

L
kji−1
fu

φj
resti−1

= φj

resti−1,[k
j
i−1]

(x, v1, v1,[1], . . . , vi−1, vi−1,[1], . . . ),

L
kji
fu
φj
resti−1

= φj

resti−1,[k
j
i ]
(x, v1, v1,[1], . . . , vi−1, vi−1,[1], . . . , uresti−1).

Introduce mi = rank(∂uresti−1
φresti−1,[Ki]) of the m−m1 − · · · −mi−1 functions φresti−1,[Ki] and

their time derivatives as new coordinates. By reordering the components of the flat output be-
longing to φresti−1 , we can always achieve that rank(∂uresti−1

φi,[κi])=mi, where φi=
(
φ1
resti−1

, . . . ,
φmi
resti−1

)
and κi =

(
k1i , . . . , k

mi
i

)
consists of the first mi integers in Ki, enabling us to apply the

coordinate transformation

vi = φi,[κi](x, v1, v1,[1], . . . , vi−1, vi−1,[1], . . . , uresti−1),

uresti =
(
um1+···+mi+1, . . . , um

)
,

vi,[1] = φi,[κi+1](x, v1, v1,[1], . . . , vi−1, vi−1,[1], . . . , uresti−1 , uresti−1,[1]),

uresti,[1] =
(
um1+···+mi+1
[1] , . . . , um[1]

)
,

vi,[2] = φi,[κi+2](x, v1, v1,[1], . . . , vi−1, vi−1,[1], . . . , uresti−1 , uresti−1,[1], uresti−1,[2]),

uresti,[2] =
(
um1+···+mi+1
[2] , . . . , um[2]

)
,

... (3.12)

That is, we replace the inputs um1+···+mi−1+1, . . . , um1+···+mi and their time derivatives by vi
and its time derivatives (which may require a renumbering of the inputs belonging to uresti−1).
In these coordinates, we have

y1,[0,κ1−1] = φ1,[0,κ1−1](x),
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y1,[κ1] = v1,

y2,[0,κ2−1] = φ1,[0,κ2−1](x, v1, v1,[1], . . . ),

y2,[κ2] = v2,

...

yi,[0,κi−1] = φi,[0,κi−1](x, v1, v1,[1], . . . , vi−1, vi−1,[1], . . . ),

yi,[κi] = vi,

yresti,[0,Kresti−1] = φresti,[0,Kresti−1](x, v1, v1,[1], . . . , vi−1, vi−1,[1], . . . ),

yresti,[Kresti ]
= φresti,[Kresti ]

(x, v1, v1,[1], . . . , vi−1, vi−1,[1], . . . , vi),

where

yi =
(
ym1+···+mi−1+1, . . . , ym1+···+mi

)
, yresti =

(
ym1+···+mi+1, . . . , ym

)
,

φresti,[β] =
(
φmi+1
resti−1,[β]

, . . . , φ
m−m1−···−mi−1

resti−1,[β]

)
◦ Φ̂

with the inverse Φ̂ of transformation (3.12) and Kresti =
(
kmi+1
i , . . . , k

m−m1−···−mi−1

i

)
.

Last step. The procedure terminates when in some step, let us call it the s-th step, the
Jacobian matrix ∂urests−1

φrests−1,[Ks] has full rank and thus no components yrests remain. At this
point, i.e., after the (s− 1)-th step, we already have

y1,[0,κ1−1] = φ1,[0,κ1−1](x),

y1,[κ1] = v1,

y2,[0,κ2−1] = φ2,[0,κ2−1](x, v1, v1,[1], . . . ),

y2,[κ2] = v2,

...

ys−1,[0,κs−1−1] = φs−1,[0,κs−1−1](x, v1, v1,[1], . . . , vs−2, vs−2,[1], . . . ),

ys−1,[κs−1] = vs−1,

yrests−1,[0,Krests−1−1] = φrests−1,[0,Krests−1−1](x, v1, v1,[1], . . . , vs−2, vs−2,[1], . . . ),

yrests−1,[Krests−1 ]
= φrests−1,[Krests−1 ]

(x, v1, v1,[1], . . . , vs−2, vs−2,[1], . . . , vs−1).

The multi-index Ks =
(
k1s , . . . , k

m−m1−···−ms−1
s

)
is again defined such that

Lkjs−1
fu

φj
rests−1

= φj

rests−1,[k
j
s−1]

(x, v1, v1,[1], . . . , vs−1, vs−1,[1], . . . ),

Lkjs
fu
φj
rests−1

= φj

rests−1,[k
j
s]
(x, v1, v1,[1], . . . , vs−1, vs−1,[1], . . . , urests−1),

where by assumption we now have a regular Jacobian matrix ∂urests−1
φrests−1,[Ks] (and thus

φs = φrests−1 and κs = Ks). In conclusion, in the new coordinates successively constructed by
this procedure, the flat output and its time derivatives up to the orders κi are given by

y1,[0,κ1−1] = φ1,[0,κ1−1](x),

y1,[κ1] = v1,

y2,[0,κ2−1] = φ2,[0,κ2−1](x, v1, v1,[1], . . . ),

y2,[κ2] = v2,

...
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ys−1,[0,κs−1−1] = φs−1,[0,κs−1−1](x, v1, v1,[1], . . . , vs−2, vs−2,[1], . . . ),

ys−1,[κs−1] = vs−1,

ys,[0,κs−1] = φs,[0,κs−1](x, v1, v1,[1], . . . , vs−1, vs−1,[1], . . . ),

ys,[κs] = φs,[κs](x, v1, v1,[1], . . . , vs−1, vs−1,[1], . . . , urests−1) (= vs). (3.13)

Remark 3.3. If the procedure is applied to a flat output which is also a linearizing output in
the sense of static feedback linearization, i.e., an output with a vector relative degree of n, see,
e.g., [20], then due to the regularity of ∂uφ[R](x, u) the first step is already the last step and we
have κ1 = K1 = R.

Remark 3.4. In principle, the above proposed procedure is similar to an application of the
dynamic extension algorithm, which was introduced for affine-input systems in [32] and is used
for solving the dynamic input-output decoupling problem. A version of this algorithm for the
general nonlinear case can be found in [34]. As the extension algorithm, also our procedure
essentially consists of successively replacing components of the input by certain derivatives of
the components of the output. However, there are some important differences: The dynamic
extension algorithm may be applied to any system with output. The outcome of the extension
algorithm is then the number of decouplable input-output channels and a dynamic feedback
which achieves the decoupling. In our procedure, we restrict to flat systems with an (x, u)-
flat output. For any (x, u)-flat output, the outcome of our procedure are adapted coordinates
for X × U[0,lu] such that a feasible multi-index κ can be read off. Additionally, the procedure
reveals that the time derivatives of the flat output up to the orders κ− 1 depend on the state x
as well as higher-order time derivatives in a special triangular way. The latter will be crucial for
the tracking control design in Section 5.

Remark 3.5. It can be shown that one possible choice for a multi-index A ≤ R with |A| = n
such that the differentials dx,dφ[A],dφ[A+1], . . . ,dφ[R−1] are linearly independent (i.e., a multi-
index κ in the above introduced notation) is given by the so-called structure at infinity of
this (x, u)-flat output (after eventually permuting the components of the flat output), see, e.g.,
[8, 13, 26, 28, 31, 33, 34] for a definition of the structure at infinity, methods for computing
it, and its applications in problems like system inversion and the dynamic decoupling problem.
In particular in [26], an intrinsic approach to the dynamic input-output decoupling problem
utilizing the structure at infinity is presented, which is applicable even to systems for which the
extension algorithm does not succeed. Below, we show that our procedure applied to an (x, u)-
flat output always yields a multi-index κ with the desired properties. Nevertheless, the fact
that the structure at infinity represents such a multi-index κ already implies, in combination
with Theorem 3.1, that (x, u)-flat systems can in principle be exactly feedback linearized by
a quasi-static feedback of the form (1.6). However, the structure at infinity is only one possible
choice to meet the conditions of Theorem 3.1. Due to its degrees of freedom, the above proposed
procedure allows to find not only the structure at infinity but also other suitable minimal multi-
indices κ. This is particularly important for two reasons: First, different choices for κ may lead
to linearizing feedbacks with differently located singularities, which can be crucial in practical
applications. Second, the multi-index κ determines the orders of the individual tracking error
systems of a subsequently designed tracking control (see Section 5).

Lemma 3.6. For every (x, u)-flat output y = φ(x, u) of the system (1.1), the stated procedure
terminates after at most m steps.

Proof. The existence of a multi-index Ki =
(
k1i , . . . , k

m−m1−···−mi−1

i

)
such that L

kji
fu
φj
resti−1

explicitly depends on at least one of the inputs belonging to uresti−1 in each step (set φrest0 = φ
and urest0 = u) is a direct consequence of the linear independence of the differentials dφ,dLfuφ,
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. . . ,dLβ
fu
φ of time derivatives of a flat output for arbitrary β. Indeed, assume that Ll

fu
φj
resti−1

for arbitrarily large l only depends on x and v1, v1,[1], . . . , vi−1, vi−1,[1], . . . but not on uresti−1 .
Then because of

dLl
fuφ

j
resti−1

∈ span{dx, dv1, dv1,[1], . . . ,dvi−1,dvi−1,[1], . . . }
⊂ span{dφ[0,R−1], dφ1,dφ1,[1], . . . ,dφi−1,dφi−1,[1], . . . },

the differentials dLl
fu
φj
resti−1

could be expressed as a linear combination of the differentials
dφ[0,R−1],dφ1, dφ1,[1], . . . ,dφi−1, dφi−1,[1], . . . . However, for l ≥ r, with r being the order of the
highest time derivative of yjresti−1

needed in the flat parameterization (2.3), this would be a con-
tradiction to the linear independence of the differentials dφ,dLfuφ, . . . ,dL

β
fu
φ for arbitrary β.

Consequently we have mi = rank(∂uresti−1
φresti−1,[Ki]) ≥ 1 in every step, and since there are

only m inputs the procedure terminates after at most m steps. ■

Theorem 3.7. For every (x, u)-flat output y = φ(x, u) of system (1.1), the multi-index κ =
(κ1, . . . , κs) formed by the multi-indices κi constructed in the above procedure satisfies |κ| = n
and κ ≤ R. Furthermore, the differentials dx,dφ[κ],dφ[κ+1], . . . ,dφ[R−1] are linearly indepen-
dent.

Proof. The existence of the flat parameterization x = Fx(φ[0,R−1]) implies

span{dx} ⊂ span{dφ[0,R−1]}.

In other words, there exist exactly n independent linear combinations of the differentials of
the flat output and its time derivatives which are contained in span{dx}. Now consider the
expressions for the flat output and its time derivatives (3.13) in the coordinates successively
constructed during the procedure. Because of the independence of the time derivatives of a flat
output, it is possible to construct exactly |κ| independent linear combinations of the differentials
of the functions φ[0,κ−1] in (3.13) and the differentials

dv1, dv1,[1], dv1,[2], . . . , dv2, dv2,[1], dv2,[2], . . . , dvs−1, dvs−1,[1], dvs−1,[2], . . . ,

which are contained in span{dx} (|κ| < n would contradict with y being a flat output, |κ| > n
would contradict with the linear independence of the differentials of components of time deriva-
tives of a flat output up to arbitrary orders). Consequently, |κ| = n follows.

With |κ| = n, the property κ ≤ R can be shown by contradiction as follows. Assume
that κj > rj for some j ∈ {1, . . . ,m}. Then, at least one of the functions φ[0,κ−1] in (3.13) does
not belong to φ[0,R−1], and consequently span{dx} ⊂ span{dφ[0,R−1]} could not hold.

The linear independence of the differentials dx,dφ[κ],dφ[κ+1], . . . ,dφ[R−1] can easily be veri-
fied in the constructed coordinates, where they are given by dx,dv,dv[1], . . . ,dv[R−κ−1]. ■

Corollary 3.8. The time derivatives of v which explicitly occur in the functions φi,[0,κi−1],
i = 1, . . . , s in (3.13) belong to the time derivatives of the (x, u)-flat output y = φ(x, u) up to
the orders (R− 1).

Proof. Assume for contradiction that there is some function among φi,[0,κi−1], i = 1, . . . , s
of (3.13) which explicitly depends on a time derivative of v (recall that v are just certain
time derivatives of the (x, u)-flat output φ) that does not belong to φ[0,R−1]. Then, because
of |κ| = dim(x) = n, span{dx} ⊂ span{dφ[0,R−1]} could not hold. ■

According to Theorem 3.7, for every (x, u)-flat output of system (1.1), there exists a multi-
index κ ≤ R with |κ| = n such that the differentials dx,dφ[κ], dφ[κ+1], . . . ,dφ[R−1] are linearly
independent. Therefore, the conditions of Theorem 3.1 are met with A = κ, and consequently
the time derivatives y[κ] = φ[κ](x, u, u[1], . . . ) can be introduced as a new input by means of
a quasi-static feedback of the state x. We thus have the following corollary.
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Corollary 3.9. Every (x, u)-flat system (1.1) can be exactly feedback linearized with respect to
every (x, u)-flat output y = φ(x, u) by a quasi-static feedback of the form

u = Fu ◦Ψ(x, v[0,R−κ]). (3.14)

The input-output behavior of the closed-loop system is given by y[κ] = v.

Remark 3.10. Note that the linearizing feedback (3.14) follows directly from the procedure
for constructing the multi-index κ described in this subsection. Indeed, in the coordinates
successively introduced during the procedure, the flat output and its derivatives read as (3.13).
Feedback (3.14) is thus simply obtained by substituting the expressions for y[0,κ−1] from (3.13)
and y[κ,R] = v[0,R−κ] into the flat parameterization Fu of the control input.

Remark 3.11. The main statement of Corollary 3.9 can also be derived by showing that ev-
ery (x, u)-flat output y = φ(x, u) meets the condition of [5, Theorem 2.2.2]. The motivation
for providing an alternative derivation of this result within our geometric framework is that,
as a byproduct, we obtain coordinates which reveal the triangular structure (3.13). The con-
struction of these coordinates is crucial for the design of tracking control laws of the desired
form u = α

(
x, yd[0,R]

)
, which only depend on the systems’ original state x as well as the reference

trajectory yd(t) and its derivatives.

4 Examples

In this section, we demonstrate the procedure of Section 3.1 for the construction of linearizing
quasi-static feedbacks of classical states by two (x, u)-flat examples. The first one is an academic
example whereas the second one is a practical example. Expressions involved in the practical
example are rather extensive and cannot be given in much detail. For this reason, the procedure
is also illustrated by means of the simpler academic example. Furthermore, for the practical
example, the proposed procedure terminates in two steps, whereas three steps are needed for
the academic example.

4.1 Academic example

Consider the four-input system9

ẋ1 = u1, ẋ6 = x7
(
u1u3 − u2 − 1

)
+ u1x4

(
u1 + x4

)
− x8u1,

ẋ2 = x9, ẋ7 = x4 + u1,

ẋ3 = u2 − u1u3, ẋ8 = x4x7u1 − x6,

ẋ4 = u3, ẋ9 = x10 + u2 + u3,

ẋ5 = x3 + x4u1, ẋ10 = u4 (4.1)

with the x-flat output y =
(
x1, x2, x5, x8

)
. Since x-flat outputs are contained in the broader class

of (x, u)-flat outputs, the results of Section 3.1 can of course be applied to this x-flat output, but
for demonstration purposes, let us use the (x, u)-flat output y =

(
x1, x2, x5, x8 + u1

)
instead.

The multi-index R containing the highest orders of the derivatives of the components of the
flat output in (2.3) is given by R = (6, 3, 5, 5). The vector field (2.1) for this system reads

fu = u1∂x1 + x9∂x2 +
(
u2 − u1u3

)
∂x3 + u3∂x4 +

(
x3 + x4u1

)
∂x5

9This system has been constructed on basis of a three-input system which is considered in [21] and originates
from Philippe Martin.
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+
(
x7

(
u1u3 − u2 − 1

)
+ u1x4

(
u1 + x4

)
− x8u1

)
∂x6

+
(
x4 + u1

)
∂x7 +

(
x4x7u1 − x6

)
∂x8 +

(
x10 + u2 + u3

)
∂x9

+ u4∂x10 +

lu−1∑
α=0

(
u1[α+1]∂u1

[α]
+ u2[α+1]∂u2

[α]
+ u3[α+1]∂u3

[α]
+ u4[α+1]∂u4

[α]

)
. (4.2)

In the following, we apply the procedure stated in Section 3.1 to obtain a multi-index κ with
the properties stated in Theorem 3.7. Subsequently, we derive a quasi-static feedback (3.14)
which introduces the corresponding derivatives v = y[κ] of the flat output as new inputs, and
thus exactly feedback linearizes the system.

Step 1. Differentiating the components of the flat output along the vector field (4.2), we find
that K1 = (1, 2, 1, 0). The corresponding kj1-th derivatives of the components of the flat output
are given by

φ[K1] =


φ1
[1]

φ2
[2]

φ3
[1]

φ4

 =


u1

x10 + u2 + u3

x3 + x4u1

x8 + u1

 ,
and we havem1= rank(∂uφ[K1])= 2. We obviously have rank(∂uφ1,[κ1])= m1 with φ1=

(
φ1, φ2

)
,

κ1 =
(
k11, k

2
1

)
= (1, 2), and accordingly φrest1 =

(
φ3, φ4

)
, Krest1 =

(
k31, k

4
1

)
= (1, 0). Applying

the change of coordinates

v1 = φ1,[κ1] =

[
φ1
[1]

φ2
[2]

]
=

[
u1

x10 + u2 + u3

]
,

v1,[1] = φ1,[κ1+1] =

[
φ1
[2]

φ2
[3]

]
=

[
u1[1]

u4 + u2[1] + u3[1]

]
,

...

by which we replace u1 and u2 and their derivatives by v1 and its derivatives and keep urest1 =(
u3, u4

)
and its derivatives as coordinates, yields

φ1,[κ1] = v1 =

[
v11
v21

]
, φrest1,[Krest1 ]

=

[
φ3
[1]

φ4

]
=

[
x3 + x4v11
x8 + v11

]
.

Step 2. We proceed by differentiating φrest1 =
(
φ3, φ4

)
until an explicit dependence on

urest1 =
(
u3, u4

)
occurs. We have

L2
fuφ

3 = v21 − x10 − u3 + x4v11,[1],

Lfuφ
4 = x4x7v11 − x6 + v11,[1],

L2
fuφ

4 = x7
(
v21 − x10 − u3 + x4v11,[1] + 1

)
+ x8v11 + v11,[2],

and thus K2 = (2, 2). Since only u3 occurs explicitly, we have m2 = rank(∂urest1
φrest1,[K2]) = 1.

We obviously have rank(∂urest1
φ2,[κ2]) = m2 with φ2 = φ3, κ2 = k12 = 2, and accordingly

φrest2 = φ4, Krest2 = k22 = 2. Applying the change of coordinates

v12 = φ2,[κ2] = φ3
[2] = v21 − x10 − u3 + x4v11,[1],

v12,[1] = φ2,[κ2+1] = φ3
[3] = v21,[1] − u4 − u3[1] + u3v11,[1] + x4v11,[2],

...
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by which we replace u3 and its derivatives by v2 and its derivatives and keep urest2 = u4 and its
derivatives as coordinates, yields

φ2,[κ2] = v12, φrest2,[Krest2 ]
= φ4

[2] = x8v11 + x7
(
v12 + 1

)
+ v11,[2].

Step 3. We proceed by differentiating φrest2 = φ4 until an explicit dependence on urest2 = u4

occurs. Because of

L3
fuφ

4 = x4x7
(
v11
)2

+ v11
(
v12 − x6 + 1

)
+ x4

(
v12 + 1

)
+ x8v11,[1] + x7v12,[1] + v11,[3],

L4
fuφ

4 = φ4
[4]

(
x4, x6, x7, x8, x10, v11, v

1
1,[1], v

1
1,[2], v

1
1,[4], v

2
1, v

1
2, v

1
2,[1], v

1
2,[2]

)
,

L5
fuφ

4 = φ4
[5]

(
x4, x6, x7, x8, x10, v11, v

1
1,[1], v

1
1,[2], v

1
1,[3], v

1
1,[5], v

2
1, v

2
1,[1], v

1
2, v

1
2,[1], v

1
2,[2], v

1
2,[3], u

4
)
,

this is the case for its 5-th derivative, and thus κ3 = 5.
In conclusion, in the constructed coordinates the time derivatives of the flat output up to the

orders κ = (κ1, κ2, κ3) with κ1 = (1, 2), κ2 = 2, κ3 = 5 are given by

y1,[0,κ1−1] =

 φ1

φ2

φ2
[1]

 =

x1x2
x9

 , y1,[κ1] =

[
φ1
[1]

φ2
[2]

]
=

[
v11
v21

]
,

y2,[0,κ2−1] =

[
φ3

φ3
[1]

]
=

[
x5

x3 + x4v11

]
, y2,[κ2] = φ3

[2] = v12,

y3,[κ3−1] =


φ4

φ4
[1]

φ4
[2]

φ4
[3]

φ4
[4]

 =


x8 + v11

x4x7v11 − x6 + v11,[1]
x8v11 + x7

(
v12 + 1

)
+ v11,[2]

x4x7
(
v11
)2
+ v11

(
v12− x6+ 1

)
+ x4

(
v12+ 1

)
+ x8v11,[1]+ x7v12,[1]+ v11,[3]

φ4
[4]

(
x4, x6, x7, x8, x10, v11, v

1
1,[1], v

1
1,[2], v

1
1,[4], v

2
1, v

1
2, v

1
2,[1], v

1
2,[2]

)

 ,
y3,κ3 = φ4

[5]

(
x4, x6, x7, x8, x10, v11, v

1
1,[1], v

1
1,[2], v

1
1,[3], v

1
1,[5], v

2
1, v

2
1,[1], v

1
2, v

1
2,[1], v

1
2,[2], v

1
2,[3], u

4
)

= v13. (4.3)

The linearizing quasi-static feedback (3.14) which introduces the derivatives v = y[κ] as inputs
is obtained by substituting the above expressions (4.3) for y[0,κ−1] and y[κ,R] = v[0,R−κ] into the
flat parameterization Fu of the control input (not stated here explicitly), which yields

u1 = v11, u2 = v12 − x4v11,[1], u3 = v21 − x10 − v12 + x4v11,[1],

u4 = F̄ 4
u

(
x4, x6, x7, x8, x10, v11, v

1
1,[1], v

1
1,[2], v

1
1,[3], v

1
1,[5], v

2
1, v

2
1,[1], v

1
2, v

1
2,[1], v

1
2,[2], v

1
2,[3], v

1
3

)
. (4.4)

The linearizing feedback (4.4) is of the desired form (1.6), i.e., it is a quasi-static feedback of
the state x of the system.

4.2 3D gantry crane

Consider a gantry crane as in Figure 1. The trolley position is denoted by xT and yT . The
length of the rope is given by l = rϕ, where r is the radius of the rope drum and ϕ its rotation
angle. The swing angle of the rope projected onto the yz-plane is denoted by α, and β is the
angle between the rope and its image under the projection onto the yz-plane. The load position
thus follows as xL = xT + rϕ sin(β), yL = yT + rϕ sin(α) cos(β), zL = rϕ cos(α) cos(β). The
masses of the load, the trolley and the bridge are denoted by mL, mT and mB, respectively.
The moment of inertia of the rope drum is denoted by J , and g is the gravitational acceleration.
The control inputs are the forces fx = u1 and fy = u2 and the torque u3 acting on the rope
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Figure 1. Schematic diagram of a 3D gantry crane.

drum. Under the assumption that the rope is always under tension, the crane can be considered
as a rigid multi-body system. Its equations of motion can be derived by means of the Lagrange
formalism, see, e.g., [38], and follow as

(mL +mT )ẍT +mLr
(
sin(β)ϕ̈+ ϕ cos(β)β̈

)
+mLrβ̇

(
2 cos(β)ϕ̇− ϕ sin(β)β̇

)
= u1,

(mL +mT +mB)ÿT +mLr sin(α) cos(β)ϕ̈+mLrϕ
(
cos(α) cos(β)α̈− sin(α) sin(β)β̈

)
−mLr

(
sin(α)

(
ϕ cos(β)

(
α̇2 + β̇2

)
+ 2 sin(β)β̇ϕ̇

)
+ 2 cos(α)α̇

(
ϕ sin(β)β̇ − cos(β)ϕ̇

))
= u2,

mLr sin(β)ẍT +mLr sin(α) cos(β)ÿT +
(
J +mLr

2
)
ϕ̈

−mLr
(
rϕ

(
β̇2 +

(
cos(β)α̇

)2)
+ g cos(α) cos(β)

)
= u3,

rϕ cos(α) cos(β)ÿT +
(
rϕ cos(β)

)2
α̈+ rϕ cos(β)

(
2rα̇

(
cos(β)ϕ̇− ϕ sin(β)β̇

)
+ g sin(α)

)
= 0,

rϕ cos(β)ẍT − rϕ sin(α) sin(β)ÿT + (rϕ)2β̈

+ rϕ
(
2rβ̇ϕ̇+ rϕ sin(β) cos(β)α̇2 + cos(α) sin(β)g

)
= 0.

A state representation of these equations of motion reads as

ẋT = vxT , v̇xT = fvxT
(
ϕ, α, β, ωα, ωβ, u

1, u2, u3
)
,

ẏT = vyT , v̇yT = fvyT
(
ϕ, α, β, ωα, ωβ, u

1, u2, u3
)
,

ϕ̇ = ωϕ, ω̇ϕ = fωϕ

(
ϕ, α, β, ωα, ωβ, u

1, u2, u3
)
,

α̇ = ωα, ω̇α = fωα

(
ϕ, α, β, ωϕ, ωα, ωβ, u

1, u2, u3
)
,

β̇ = ωβ, ω̇β = fωβ

(
ϕ, α, β, ωϕ, ωα, ωβ, u

1, u2, u3
)
. (4.5)

The load position given by

y = (xT + rϕ sin(β), yT + rϕ sin(α) cos(β), rϕ cos(α) cos(β))

forms an (x, u)-flat (actually x-flat) output of the system. The multi-index R containing the
highest orders of the derivatives of the components of the flat output in (2.3) is given by R =
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(4, 4, 4, 4). In the following, we again apply the procedure described in Section 3.1 to obtain
a multi-index κ with the properties stated in Theorem 3.7. Subsequently, we again derive
a quasi-static feedback (1.6) which introduces the corresponding derivatives v = yκ of the flat
output as new inputs.

Step 1. Differentiating the components of the flat output along the corresponding vector
field (2.1), we find that K1 = (2, 2, 2) with the corresponding time derivatives

φ[K1] =

φ
1
[2]

(
ϕ, α, β, ωα, ωβ, u

1, u2, u3
)

φ2
[2]

(
ϕ, α, β, ωα, ωβ, u

1, u2, u3
)

φ3
[2]

(
ϕ, α, β, ωα, ωβ, u

1, u2, u3
)


and rank(∂uφ[K1])= 1. We can choose, e.g., φ1= φ3 with κ1= k31= 2 and thus φrest1 =
(
φ1, φ2

)
,

and apply the change of coordinates

v11 = φ1,[κ1] = φ3
[2]

(
ϕ, α, β, ωα, ωβ, u

1, u2, u3
)
,

v11,[1] = φ1,[κ1+1] = φ3
[3]

(
ϕ, α, β, ωα, ωβ, ωϕ, u

1, u2, u3, u1[1], u
2
[1], u

3
[1]

)
,

...

by which we replace the input u3 and its derivatives by v1 and its derivatives, and keep
urest1 =

(
u1, u2

)
and its derivatives as coordinates. This results in

φ1,[κ1] = v11, φrest1,[Krest1 ]
=

[
φ1
[2]

(
α, β, v11

)
φ2
[2]

(
α, v11

) ]
.

Note that the choice φ1 = φ3 is not unique but the most practical one, since the other two
possible choices φ1 = φ1 and φ1 = φ2, would lead to feedback laws with singularities for α = 0
or β = 0.

Step 2. We proceed by differentiating φrest1 =
(
φ1, φ2

)
until an explicit dependence on

urest1 =
(
u1, u2

)
occurs. This is the case for the 4-th derivatives

L4
fuφ

1 = φ1
[4]

(
ϕ, α, β, ωϕ, ωα, ωβ, v

1
1, v

1
1,[1], v

1
1,[2], u

1
)
,

L4
fuφ

2 = φ2
[4]

(
ϕ, α, β, ωϕ, ωα, ωβ, v

1
1, v

1
1,[1], v

1
1,[2], u

2
)
,

i.e., K2 = (4, 4). Because of m2 = rank(∂urest1
φrest1,[K2]) = 2, the procedure terminates at this

point and we have κ2 = K2.

In conclusion, in the constructed coordinates the time derivatives of the flat output up to the
orders κ = (κ1, κ2) with κ1 = 2, κ2 = (4, 4) are of the form

y1,[0,κ1−1] =

[
φ3(ϕ, α, β)

φ3
[1](ϕ, α, β, ωϕ, ωα, ωβ)

]
, y1,[κ1] = φ3

[2] = v11,

y2,[0,κ2−1] =



φ1(xT , ϕ, β)
φ1
[1](vxT , ϕ, β, ωϕ, ωβ)

φ1
[2]

(
α, β, v11

)
φ1
[3]

(
α, β, ωα, ωβ, v

1
1, v

1
1,[1]

)
φ2(yT , ϕ, α, β)

φ2
[1](ϕ, α, β, vyT , ωϕ, ωα, ωβ)

φ2
[2]

(
α, v11

)
φ2
[3]

(
α, ωα, v

1
1, v

1
1,[1]

)


,
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y2,κ2 =

[
φ1
[4]

(
ϕ, α, β, ωϕ, ωα, ωβ, v

1
1, v

1
1,[1], v

1
1,[2], u

1
)

φ2
[4]

(
ϕ, α, β, ωϕ, ωα, ωβ, v

1
1, v

1
1,[1], v

1
1,[2], u

2
)] =

[
v12
v22

]
. (4.6)

The quasi-static feedback (3.14) which introduces the derivatives v = y[κ] as inputs is obtained
by substituting the above expressions (4.6) for y[0,κ−1] and y[κ,R] = v[0,R−κ] into the flat parame-
terization Fu of the control input (not stated here explicitly), which yields a linearizing feedback
of the form

u1 = F̄ 1
u

(
ϕ, α, β, ωϕ, ωα, ωβ, v

1
1, v

1
1,[1], v

1
1,[2], v

1
2

)
,

u2 = F̄ 2
u

(
ϕ, α, β, ωϕ, ωα, ωβ, v

1
1, v

1
1,[1], v

1
1,[2], v

2
2

)
,

u3 = F̄ 3
u

(
ϕ, α, β, ωϕ, ωα, ωβ, v

1
1, v

1
1,[1], v

1
1,[2], v

1
2, v

2
2

)
. (4.7)

This feedback is again of the desired form (1.6).

5 Tracking control design for (x, u)-flat systems

Trajectory tracking is a fundamental control engineering problem. Given a reference trajec-
tory yd(t) for the flat output y, the goal is to design a feedback control law which assures that
the tracking error e = y − yd asymptotically decays to zero. The exact feedback linearization
of a flat system, which we have discussed in Section 3, is only the first step in the design of
a flatness-based tracking control. The input-output behavior of the exactly feedback linearized
system is given by m integrator chains, and hence the second step consists in the construction of
an additional feedback such that the tracking error with respect to a reference trajectory yd(t)
is stabilized asymptotically. If the time derivatives of the flat output which form these inte-
grator chains are available from measurements or estimates, then designing such a stabilizing
feedback is of course a straightforward task. Furthermore, if the exact feedback linearization has
been performed by a quasi-static feedback (1.5) of a generalized Brunovský state, then the time
derivatives of the flat output which are needed for a stabilizing feedback are obviously given
by the same generalized Brunovský state. This standard approach is discussed in detail, e.g.,
in [7]. However, since the time derivatives of a flat output which form a generalized Brunovský
state are often much harder to measure than the components of a classical state, the aim of the
present paper is to provide a complete solution for the tracking control problem which requires
only measurements of the latter. In the following, we show that for (x, u)-flat outputs (3.9) it
is indeed always possible to achieve a linear, decoupled and asymptotically stable tracking error
dynamics with arbitrary eigenvalues by a control law of the form u = α

(
x, yd[0,R](t)

)
, which only

depends on the classical state x and the reference trajectory yd(t). As a basis for the track-
ing control design we use the exact feedback linearization according to Corollary 3.9, which is
achieved by a quasi-static feedback

u = Fu ◦Ψ(x, v[0,R−κ]) = F̄u(x, v[0,R−κ]) (5.1)

of x. Recall that the multi-index κ is obtained by applying the procedure stated in Section 3.1,
and that the linearizing feedback (5.1) then follows directly by substituting the expressions
for y[0,κ−1] from (3.13) and y[κ,R] = v[0,R−κ] into the flat parameterization Fu of the input
(see also Corollary 3.9 and Remark 3.10). In the following, the special structure (3.13) of the
derivatives of the flat output in the coordinates successively introduced during the procedure
will be crucial for the tracking control design.

The feedback-modified system obtained by applying feedback (5.1) has a linear input-output
behavior y[κ] = v between the new input v and the flat output y. Given a sufficiently often
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differentiable reference trajectory yd(t), the control law

vjii = yji,d
i,[κ

ji
i ]

−
κ
ji
i −1∑
β=0

aji,βi

(
yjii,[β] − yji,di,[β]

)
, i = 1, . . . , s, ji = 1, . . . ,mi, (5.2)

for the new input v results in the linear tracking error dynamics

eji
i,[κ

ji
i ]

+

κ
ji
i −1∑
β=0

aji,βi ejii,[β] = 0,

where ejii = yjii −yji,di . The roots of the characteristic polynomials of the tracking error dynamics
can be adjusted by the coefficients aji,βi ∈ R. The time derivatives y[0,κ−1] occurring in (5.2) can
be expressed in terms of x and v[0,R−κ−1], see (3.13) and Corollary 3.8. In (5.1), not only v, but
also its time derivatives v[1,R−κ] occur. Differentiating (5.2) with respect to time yields

vjii,[λ] = yji,d
i,[κ

ji
i +λ]

−
κ
ji
i −1∑
β=0

aji,βi

(
yjii,[β+λ] − yji,di,[β+λ]

)
, λ = 1, . . . , rjii − κjii .

Replacing the time derivatives y[0,κ−1] by the corresponding expressions of x and v[0,R−κ−1]

from (3.13), and replacing y[κ,R−1] by v[0,R−κ−1] results in the system of equations

vj11 = yj1,d
1,[κ

j1
1 ]

−
κ
j1
1 −1∑
β=0

aj1,β1

(
φj1
1,[β](x)− yj1,d1,[β]

)
, j1 = 1, . . . ,m1,

vj11,[1] = yj1,d
1,[κ

j1
1 +1]

− a
j1,κ

j1
1 −1

1

(
vj11 − yj1,d

1,[κ
j1
1 ]

)
−

κ
j1
1 −2∑
β=0

aj1,β1

(
φj1
1,[β+1](x)− yj1,d1,[β+1]

)
,

...

vj22 = yj2,d
2,[κ

j2
2 ]

−
κ
j2
2 −1∑
β=0

aj2,β2

(
φj2
2,[β](x, v1, v1,[1], . . . )− yj2,d2,[β]

)
, j2 = 1, . . . ,m2,

vj22,[1] = yj2,d
2,[κ

j2
2 +1]

− a
j2,κ

j2
2 −1

2

(
vj22 − yj2,d

2,[κ
j2
2 ]

)
−

κ
j2
2 −2∑
β=0

aj2,β2

(
φj2
2,[β+1](x, v1, v1,[1], . . . )− yj2,d2,[β+1]

)
,

...

vj33 = yj3,d
3,[κ

j3
3 ]

−
κ
j3
3 −1∑
β=0

aj3,β3

(
φj3
3,[β](x, v1, v1,[1], . . . , v2, v2,[1], . . . )− yj3,d3,[β]

)
, j3 = 1, . . . ,m3,

vj33,[1] = · · · ,
...

vjss = yjs,d
s,[κjs

s ]
−

κjs
s −1∑
β=0

ajs,βs

(
φjs
s,[β](x, v1, v1,[1], . . . , vs−1, vs−1,[1], . . . )− yjs,ds,[β]

)
,

js = 1, . . . ,ms. (5.3)
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Due to the special structure of the time derivatives y[0,κ−1] of the flat output in (3.13), the time
derivatives v[0,R−κ] occur in equations (5.3) in a triangular manner. The right-hand sides of
the equations for v1 do not depend on v at all, the right-hand sides of the equations for v1,[λ]
only depend on v1,[λ−1]. The right-hand sides of the equations for v2 only depend on v1 and its
time derivatives, and so on. The complete set of time derivatives v[0,R−κ], which is needed for
practically realizing the control law (5.2) for the input v via the actual control input u, i.e., via
feedback (5.1), can thus be determined systematically by solving (5.3) from top to bottom for
the time derivatives vjii,[λ] as functions of x and yd[0,R], i.e., v[0,R−κ] = ϕ

(
x, yd[0,R]

)
. Substituting

this solution into feedback (5.1) yields a tracking control law of the desired form

u = α
(
x, yd[0,R]

)
, (5.4)

which only depends on the state x and the reference trajectory.

Remark 5.1. A tracking control law of the form (5.4) has already been derived in [27] for
a particular flat system, namely the well-known PVTOL aircraft. Another derivation of such
a control law, also for the PVTOL, can be found in [36]. However, these derivations do not follow
a systematic approach which can easily be transferred to other systems, whereas the approach
presented in this paper can easily be applied to any (x, u)-flat system.

6 Examples continued

In this section, we derive tracking control laws for the two systems that were already exactly
feedback linearized in Section 4.

6.1 Academic example

Consider again system (4.1) with the flat output y = (y1, y2, y3) where y1 =
(
y1, y2

)
=

(
x1, x2

)
,

y2 = y3 = x5, y3 = y4 = x8 + u1. In Section 4.1, we have derived the linearizing feedback (4.4),
which introduces v = y[κ] with κ = (κ1, κ2, κ3) and κ1 = (1, 2), κ2 = 2, κ3 = 5 as new input.
The control law (5.2) for v = (v1, v2, v3) with v1 =

(
v11, v

2
1

)
, v2 = v12 and v3 = v13 is thus given by

v11 = y1,d1,[1] − a1,01

(
y11 − y1,d1

)
,

v21 = y2,d1,[2] − a2,01

(
y21 − y2,d1

)
− a2,11

(
y21,[1] − y2,d1,[1]

)
,

v12 = y1,d2,[2] − a1,02

(
y12 − y1,d2

)
− a1,12

(
y12,[1] − y1,d2,[1]

)
,

v13 = y1,d3,[5] − a1,03

(
y13 − y1,d3

)
− a1,13

(
y13,[1] − y1,d3,[1]

)
− a1,23

(
y13,[2] − y1,d3,[2]

)
− a1,33

(
y13,[3] − y1,d3,[3]

)
− a1,43

(
y13,[4] − y1,d3,[4]

)
.

Substituting the corresponding expressions (4.3) for y[0,κ−1] into this control law yields

v11 = y1,d[1] − a1,01

(
x1 − y1,d

)
,

v21 = y2,d[2] − a2,01

(
x2 − y2,d

)
− a2,11

(
x9 − y2,d[1]

)
,

v12 = y3,d[2] − a1,02

(
x5 − y3,d

)
− a1,12

(
x3 + x4v11 − y3,d[1]

)
,

v13 = y4,d[5] − a1,03

(
x8 + v11 − y4,d

)
− a1,13

(
x4x7v11 − x6 + v11,[1] − y4,d[1]

)
− a1,23

(
x8v11 + x7

(
v12 + 1

)
+ v11,[2] − y4,d[2]

)
− a1,33

(
φ4
[3]

(
x4, x6, x7, x8, v11, v

1
1,[1], v

1
1,[3], v

1
2, v

1
2,[1]

)
− y4,d[3]

)
− a1,43

(
φ4
[4]

(
x4, x6, x7, x8, x10, v11, v

1
1,[1], v

1
1,[2], v

1
1,[4], v

2
1, v

1
2, v

1
2,[1], v

1
2,[2]

)
− y4,d[4]

)
.
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In order to express the required time derivatives v[0,R−κ] in terms of x and yd[0,R], we differentiate
the equations for v up to the orders R− κ, which yields

v11 = y1,d[1] − a1,01

(
x1 − y1,d

)
,

v11,[1] = y1,d[2] − a1,01

(
v11 − y1,d[1]

)
,

v11,[2] = y1,d[3] − a1,01

(
v11,[1] − y1,d[2]

)
,

v11,[3] = y1,d[4] − a1,01

(
v11,[2] − y1,d[3]

)
,

v11,[4] = y1,d[5] − a1,01

(
v11,[3] − y1,d[4]

)
,

v11,[5] = y1,d[6] − a1,01

(
v11,[4] − y1,d[5]

)
,

v21 = y2,d[2] − a2,01

(
x2 − y2,d

)
− a2,11

(
x9 − y2,d[1]

)
,

v21,[1] = y2,d[3] − a2,01

(
x9 − y2,d[1]

)
− a2,11

(
v21 − y2,d[2]

)
,

v12 = y3,d[2] − a1,02

(
x5 − y3,d

)
− a1,12

(
x3 + x4v11 − y3,d[1]

)
,

v12,[1] = y3,d[3] − a1,02

(
x3 + x4v11 − y3,d[1]

)
− a1,12

(
v12 − y3,d[2]

)
,

v12,[2] = y3,d[4] − a1,02

(
v12 − y3,d[2]

)
− a1,12

(
v12,[1] − y3,d[3]

)
,

v12,[3] = y3,d[5] − a1,02

(
v12,[1] − y3,d[3]

)
− a1,12

(
v12,[2] − y3,d[4]

)
,

v13 = y4,d[5] − a1,03

(
x8 + v11 − y4,d

)
− a1,13

(
x4x7v11 − x6 + v11,[1] − y4,d[1]

)
− a1,23

(
x8v11 + x7(v12 + 1) + v11,[2] − y4,d[2]

)
− a1,33

(
φ4
[3]

(
x4, x6, x7, x8, v11, v

1
1,[1], v

1
1,[3], v

1
2, v

1
2,[1]

)
− y4,d[3]

)
− a1,43

(
φ4
[4]

(
x4, x6, x7, x8, x10, v11, v

1
1,[1], v

1
1,[2], v

1
1,[4], v

2
1, v

1
2, v

1
2,[1], v

1
2,[2]

)
− y4,d[4]

)
.

This system of equations can easily be solved from top to bottom in order to obtain v[0,R−κ] in
terms of x and yd[0,R]. Inserting the solution into the linearizing feedback (4.4) yields a tracking
control law of the form

u1 = y1,d[1] − a1,01

(
x1 − y1,d

)
,

u2 = y3,d[2] − a1,02

(
x5 − y3,d

)
− a1,12

(
x3 + x4

(
y1,d[1] − a1,01

(
x1 − y1,d

))
− y3,d[1]

)
− x4

(
y1,d[2] − a1,01

(
y1,d[1] − a1,01

(
x1 − y1,d

)
− y1,d[1]

))
,

u3 = y2,d[2] − a2,01

(
x2 − y2,d

)
− a2,11

(
x9 − y2,d[1]

)
− x10 − y3,d[2] + a1,02

(
x5 − y3,d

)
+ a1,12

(
x3 + x4

(
y1,d[1] − a1,01

(
x1 − y1,d

))
− y3,d[1]

)
+ x4

(
y1,d[2] − a1,01

(
y1,d[1] − a1,01

(
x1 − y1,d

)
− y1,d[1]

))
,

u4 = α4
(
x1, . . . , x10, y1,d[0,6], y

2,d
[0,3], y

3,d
[0,5], y

4,d
[0,5]

)
.

6.2 3D gantry crane

Consider again system (4.5) with the flat output y = (y1, y2) where y1 = y3 = rϕ cos(α) cos(β),
y2 =

(
y1, y2

)
= (xT + rϕ sin(β), yT + rϕ sin(α) cos(β)). In Section 4.2, we have derived the

linearizing feedback (4.7), which introduces v = y[κ] with κ = (κ1, κ2) and κ1 = 2, κ2 = (4, 4) as
new input. The control law (5.2) for v with v1 = v11, v2 =

(
v12, v

2
2

)
is thus given by

v11 = y1,d1,[2] − a1,01

(
y11 − y1,d1

)
− a1,11

(
y11,[1] − y1,d1,[1]

)
,
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v12 = y1,d2,[4] − a1,02

(
y12 − y1,d2

)
− a1,12

(
y12,[1] − y1,d2,[1]

)
− a1,22

(
y12,[2] − y1,d2,[2]

)
− a1,32

(
y12,[3] − y1,d2,[3]

)
,

v22 = y2,d2,[4] − a2,02

(
y22 − y2,d2

)
− a2,12

(
y22,[1] − y2,d2,[1]

)
− a2,22

(
y22,[2] − y2,d2,[2]

)
− a2,32

(
y22,[3] − y2,d2,[3]

)
.

Substituting the corresponding expressions (4.6) for y[0,κ−1] into this control law and differenti-
ating the equations for v up to the corresponding orders R− κ yields

v11 = y3,d[2] − a1,01

(
φ3(ϕ, α, β)− y3,d

)
− a1,11

(
φ3
[1](ϕ, α, β, ωϕ, ωα, ωβ)− y3,d[1]

)
,

v11,[1] = y3,d[3] − a1,01

(
φ3
[1](ϕ, α, β, ωϕ, ωα, ωβ)− y3,d[1]

)
− a1,11

(
v11 − y3,d[2]

)
,

v11,[2] = y3,d[4] − a1,01

(
v11 − y3,d[2]

)
− a1,11

(
v11,[1] − y3,d[3]

)
,

v12 = y1,d[4] − a1,02

(
φ1(xT , ϕ, β)− y1,d

)
− a1,12

(
φ1
[1](vxT , ϕ, β, ωϕ, ωβ)− y1,d[1]

)
− a1,22

(
φ1
[2]

(
α, β, v11

)
− y1,d[2]

)
− a1,32

(
φ1
[3]

(
α, β, ωα, ωβ, v

1
1, v

1
1,[1]

)
− y1,d[3]

)
,

v22 = y2,d[4] − a2,02

(
φ2(yT , ϕ, α, β)− y2,d

)
− a2,12

(
φ2
[1](ϕ, α, β, vyT , ωϕ, ωα, ωβ)− y2,d[1]

)
− a2,22

(
φ2
[2]

(
α, v11

)
− y2,d[2]

)
− a2,32

(
φ2
[3]

(
α, ωα, v

1
1, v

1
1,[1]

)
− y2,d[3]

)
.

This system of equations can again easily be solved from top to bottom in order to obtain v[0,R−κ]

in terms of x and yd[0,R]. Inserting the solution into the linearizing feedback (4.7) yields a tracking
control law of the form

u1 = α1
(
xT , ϕ, α, β, vxT , ωϕ, ωα, ωβ, y

1,d
[0,4], y

3,d
[0,4]

)
,

u2 = α2
(
yT , ϕ, α, β, vyT , ωϕ, ωα, ωβ, y

2,d
[0,4], y

3,d
[0,4]

)
,

u3 = α3
(
xT , yT , ϕ, α, β, vxT , vyT , ωϕ, ωα, ωβ, y

1,d
[0,4], y

2,d
[0,4], y

3,d
[0,4]

)
.

7 Conclusions

We have given easily verifiable geometric conditions which assure that a selection of time deriva-
tives of a flat output can be introduced as new (closed-loop) input, and have shown how to
systematically construct the feedback required for actually introducing these derivatives as
new input. Subsequently, we have proven in a finite-dimensional geometric framework that
for every (x, u)-flat output (3.9) of a system (1.1) there exists an m-tuple κ with |κ| = n such
that v = y[κ] is a feasible input, and that such an input can be introduced by a quasi-static
feedback of the state x. Compared to the well-known exact linearization by a quasi-static feed-
back of a generalized Brunovský state, this approach has the advantage that it requires only
knowledge of the state x and not of time derivatives of the flat output up to a certain order.
Furthermore, we have shown that on the basis of such an exact feedback linearization it is
possible to systematically design a tracking control which only depends on the state x and the
reference trajectory, i.e., again without using a generalized Brunovský state. Future research
will address the exact feedback linearization with respect to general flat outputs (2.2), which
may also depend on time derivatives of the input u. The main challenge in generalizing the
proposed results to flat outputs (2.2) consist in finding a generalization or an alternative to the
algorithm proposed in Section 3.1 for finding an m-tuple κ with |κ| = n such that v = y[κ] is
a feasible input. A system which is indeed flat but not (x, u)-flat can be found in [16].
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