| 
 SIGMA 20 (2024), 080, 26 pages       arXiv:2401.15601     
https://doi.org/10.3842/SIGMA.2024.080 
 
On $F$-Polynomials for Generalized Quantum Cluster Algebras and Gupta's Formula
Changjian Fu, Liangang Peng and Huihui Ye
 Department of Mathematics, Sichuan University, Chengdu 610064, P.R. China
 
 
Received March 12, 2024, in final form August 25, 2024; Published online September 03, 2024
 Abstract 
We show the polynomial property of $F$-polynomials for generalized quantum cluster algebras and obtain the associated separation formulas under a mild condition. Along the way, we obtain Gupta's formulas of $F$-polynomials for generalized quantum cluster algebras. These formulas specialize to Gupta's formulas for quantum cluster algebras and cluster algebras respectively. Finally, a generalization of Gupta's formula has also been discussed in the setting of generalized cluster algebras.
 Key words: $F$-polynomial; separation formula; Fock-Goncharov decomposition; generalized quantum cluster algebra; generalized cluster algebra. 
pdf (524 kb)  
tex (29 kb)  
 
 
References 
- Bai L., Chen X., Ding M., Xu F., A quantum analog of generalized cluster  algebras, Algebr. Represent. Theory 21 (2018), 1203-1217,  arXiv:1610.09803.
 
- Bai L., Chen X., Ding M., Xu F., Generalized quantum cluster algebras: the  Laurent phenomenon and upper bounds, J. Algebra 619  (2023), 298-322, arXiv:2203.06928.
 
- Berenstein A., Zelevinsky A., Quantum cluster algebras, Adv. Math.  195 (2005), 405-455, arXiv:math.QA/0404446.
 
- Chekhov L., Shapiro M., Teichmüller spaces of Riemann surfaces with  orbifold points of arbitrary order and cluster variables,  Int. Math.  Res. Not. 2014 (2014), 2746-2772, arXiv:1111.3963.
 
- Davison B., Positivity for quantum cluster algebras,  Ann. of Math.  187 (2018), 157-219, arXiv:1601.07918.
 
- Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm,   Ann. Sci. Éc. Norm. Supér. 42 (2009), 865-930,  arXiv:math.AG/0311245.
 
- Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer.  Math. Soc. 15 (2002), 497-529, arXiv:math.RT/0104151.
 
- Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients,  Compos. Math. 143 (2007), 112-164,  arXiv:math.RA/0602259.
 
- Gleitz A.-S., Generalised cluster algebras and $q$-characters at roots of  unity, in Proceedings of FPSAC 2015, Discrete Math. Theor. Comput. Sci. Proc., Discrete Mathematics & Theoretical Computer Science (DMTCS), Nancy,  2015, 357-368.
 
- Gross M., Hacking P., Keel S., Kontsevich M., Canonical bases for cluster  algebras,  J. Amer. Math. Soc. 31 (2018), 497-608,  arXiv:1411.1394.
 
- Gupta M., A formula for $F$-polynomials in terms of $c$-vectors and  stabilization of $F$-polynomials, arXiv:1812.01910.
 
- Iwaki K., Nakanishi T., Exact WKB analysis and cluster algebras II:  Simple poles, orbifold points, and generalized cluster algebras,  Int. Math. Res. Not. 2016 (2016), 4375-4417,  arXiv:1409.4641.
 
- Keller B., Cluster algebras and derived categories, in Derived Categories in  Algebraic Geometry, EMS Ser. Congr. Rep.,  European Mathematical Society (EMS), Zürich, 2013, 123-183, arXiv:1202.4161.
 
- Keller B., Demonet L., A survey on maximal green sequences, in Representation  Theory and Beyond, Contemp. Math., Vol. 758, American  Mathematical Society, Providence, RI, 2020, 267-286, arXiv:1904.09247.
 
- Labardini-Fragoso D., Mou L., Gentle algebras arising from surfaces with  orbifold points of order 3, Part I: scattering diagrams, Algebr.  Represent. Theory 27 (2024), 679-722, arXiv:2203.11563.
 
- Labardini-Fragoso D., Velasco D., On a family of Caldero-Chapoton algebras  that have the Laurent phenomenon, J. Algebra 520 (2019),  90-135, arXiv:1704.07921.
 
- Lin F., Musiker G., Nakanishi T., Two formulas for $F$-polynomials,   Int. Math. Res. Not. 2024 (2024), 613-634,  arXiv:2112.11839.
 
- Nakanishi T., Quantum generalized cluster algebras and quantum dilogarithms of  higher degrees, Theoret. and Math. Phys. 185 (2015),  1759-1768, arXiv:1410.0584.
 
- Nakanishi T., Structure of seeds in generalized cluster algebras,  Pacific J. Math. 277 (2015), 201-217, arXiv:1409.5967.
 
- Nakanishi T., Cluster algebras and scattering diagrams, MSJ Memoirs, Vol. 41, Mathematical Society of Japan, Tokyo, 2023, arXiv:2201.11371.
 
- Tran T., $F$-polynomials in quantum cluster algebras,  Algebr.  Represent. Theory 14 (2011), 1025-1061, arXiv:0904.3291.
 
 
 | 
 |