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Abstract. We show the polynomial property of F-polynomials for generalized quantum
cluster algebras and obtain the associated separation formulas under a mild condition. Along
the way, we obtain Gupta’s formulas of F-polynomials for generalized quantum cluster
algebras. These formulas specialize to Gupta’s formulas for quantum cluster algebras and
cluster algebras respectively. Finally, a generalization of Gupta’s formula has also been
discussed in the setting of generalized cluster algebras.

Key words: F-polynomial; separation formula; Fock—Goncharov decomposition; generalized
quantum cluster algebra; generalized cluster algebra

2020 Mathematics Subject Classification: 13F60; 16534; 05E16

1 Introduction

Cluster algebras were invented by Fomin and Zelevinsky in [7] with the aim to provide a com-
binatorial framework for the study of total positivity in algebraic groups and canonical bases
of quantum groups. Since then, cluster algebras have been found deep connections with many
other areas of mathematics and physics, such as discrete dynamical systems, non-commutative
algebraic geometry, string theory and quiver representation theory etc., cf. [13] and the refer-
ences therein. A cluster algebra is a commutative algebra endowed with a distinguished set
of generators called cluster variables. These generators are gathered into overlapping sets of
fixed finite cardinality, called clusters, which are defined recursively from an initial one via
an operation called mutation. The first fundamental result in cluster algebras is the Lau-
rent phenomenon [7], which states that every cluster variable can be expressed as a Laurent
polynomial in the initial ones. A basic problem in the structure theory of cluster algebras is
to find an explicit expression of the Laurent polynomial of a cluster variable. Based on the
Laurent phenomenon, Fomin and Zelevinsky [8] further introduced F-polynomials and estab-
lished the famous separation formulas, which give an expression of a cluster variable by its
g-vector and F-polynomial. We remark that these separation formulas have played key roles
not only in the structure theory of cluster algebras but also in the categorification of cluster
algebras.

Quantum cluster algebras were introduced by Berenstein and Zelevinsky [3], which are ¢-
deformations of cluster algebras of geometric type. It appears naturally in the study of al-
gebraic varieties arising from Lie theory. Quantum cluster algebras share almost the same
structure theory as the one of cluster algebras. Among others, Berenstein and Zelevinsky [3]
established the Laurent phenomenon for quantum cluster algebras. Tran [21] further proved
the existence of F-polynomials and established the separation formulas for quantum cluster
algebras.

In their study of Teichmiiller space of Riemann surface with orbifold points, Chekhov and
Shapiro [4] discovered a new class of commutative algebras and formulated the so-called gener-
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alized cluster algebras. By definition, the notion is a generalization of cluster algebras. Chekhov
and Shapiro [4] found that the Laurent phenomenon is still true for generalized cluster algebras.
Nakanishi [19] proved that a generalized cluster algebra has almost the same structure theory
of a cluster algebra. In particular, he introduced F-polynomials and established the separation
formulas for generalized cluster algebras. It is worth mentioning that the structure of general-
ized cluster algebras also appear in many other branch of math, such as representation theory of
quantum affine algebra [9], WKB analysis [12] and representation theory of finite-dimensional
algebras [15, 16].

Inspired by quantum cluster algebras, it is natural to pursue a quantization of a generalized
cluster algebra. However, it is not clear how to define a correct g-deformation of a generalized
cluster algebra at this moment. Nevertheless, Nakanishi [18] considered the quantization of
coefficients for generalized cluster algebras and discovered the quantum dilogarithms of higher
degrees. Bai-Chen—-Ding—Xu [1] introduced the notion of generalized quantum cluster algebra,
which is a generalization of quantum cluster algebras and also a g-deformation of a special class
of generalized cluster algebras. Recently, the Laurent phenomenon for generalized quantum
cluster algebras has been established in [2].

The aim of this paper is to extend certain structure results of (quantum) cluster algebras
to the setting of generalized (quantum) cluster algebras. Under a mild condition on the muta-
tion data h, we prove the polynomial property of F-polynomials and establish the separation
formulas for generalized quantum cluster algebras. The key ingredients of our approach are Fock—
Goncharov decomposition of mutations and Gupta type formulas. As a byproduct, we obtain
Gupta’s formulas of F-polynomials for generalized quantum cluster algebras. These formulas
degenerate to the Gupta’s formulas of cluster algebras, which was discovered by Gupta [11] and
recently reformulated and proved by Lin—-Musiker—Nakanishi [17]. Since generalized quantum
cluster algebras are not g-deformations of generalized cluster algebras with principal coefficients,
the F-polynomials of a generalized quantum cluster algebra do not degenerate to F-polynomials
of the associated generalized cluster algebra. Hence Gupta’s formulas for generalized quantum
cluster algebras do not degenerate to Gupta’s formulas of generalized cluster algebras. Never-
theless, we show the strategy of [17] can be extended to prove Gupta’s formulas for generalized
cluster algebras.

The paper is organized as follows. In Section 2, we recollect basic results in generalized
cluster algebras and generalized quantum cluster algebras. Section 3.1 is devoted to the study
of Fock—Goncharov decomposition of mutations for generalized quantum cluster algebras. In
Section 3.2, we show the polynomial property of F-polynomials for generalized quantum cluster
algebras and their associated Gupta’s formulas. In Section 4, Gupta’s formulas for generalized
cluster algebras are discussed.

2 Preliminaries

In this section, we recall definitions and basic results for generalized cluster algebras [4] and
generalized quantum cluster algebras [1].

Throughout this section, we fix a positive integer n. Denote by T,, the n-regular tree whose
edges are labeled by the numbers 1,...,n such that the n edges emanating from each vertex
carry different labels. We write ¢ ® _# to indicate that the vertices t, t' of T,, are linked by
an edge labeled by k. For an integer b, we use the notation [b]4 := max(b,0). We also denote
by [1,n] the set {1,...,n}. Denote by AT the transpose of a matrix A. A non-zero integer
vector a € Z" is sign-coherent if its entries are either all non-negative, or all non-positive. For
an integer vector a = (aq,...,a,)" € Z", we denote by [a], := ([a1]+,...,[a.]s)T. It is clear
that a = [a]4+ — [—a]+.




On F-Polynomials for Generalized Quantum Cluster Algebras and Gupta’s Formula 3

2.1 Generalized cluster algebra

We follow [19]. Let P be a semifield, whose addition is denoted by @. Denote by ZP the group
ring of the multiplicative group P over Z and QP its fraction field. Let F be the field of rational
function in n variables with coefficients in QP.

Definition 2.1. A labeled seed with coefficients in P is a triplet (x,y, B) such that

e B = (bij)} j—; is a skew-symmetrizable integer matrix;
e x = (x1,...,x,) is an n-tuple of algebraic independent elements of F over QP;
e y=1(y1,-.-,Yn) is an n-tuple of elements in P.

We say that x is a cluster and refer to x;, y; and B as the cluster variables, the coefficients and
the exchange matriz, respectively.

For a given labeled seed (x,y,B) and k € [1,n], we set g =y [[[, x?jk and denote
V= (§1,...,9n). For an integer vector a = (a1,...,a,)" € Z", we define
x2 ;:x?l...x%@, ya ::y?l...ygn, S/a ::g%l...ggn'

In order to introduce the mutation in generalized cluster algebra, we need the notion of
mutation data.

Definition 2.2. A mutation data is a pair (r,z), where

e r=(r1,...,r,) is an n-tuple of positive integers;

o z=(2¢)i=1,. ns=1,.r—1 15 a family of elements in P satisfying the reciprocity condition:
Zis = Zip—s for 1 <s <r;—1.

Throughout this subsection, we fix a mutation data (r,z) and set z;0 = 2;,, = 1. Now we
introduce the (r,z)-mutation in generalized cluster algebras.

Definition 2.3. For any seed (x,y,B) with coefficients in P and & € [1,n], the (r,z)-mutation
of (x,y, B) in direction k is a new seed ui(x,y, B) := (x',y’, B') with coefficients in P defined
by the following rule:

zi it ik,
Tk
/. — n Tk Z Zk,Sy]is 2 1
xT; x;l <H mg—abjk]—k) Sr:;fi ifi=k (2.1)
=1 @ Zk,sy]is
s=0
Ui if i =k,
‘= bl yre (T o 2.2
Yi yi (y][g bk2]+) k <@ Zk,s?]?) it ik, ( )
s=0
—byj ifi=~Fkorj=k,
%= s (2.3)
bij + r([—€bik]+-brj + bir[ebrj]1) else,

where ¢ € {£1}.
Remark 2.4.

(1) The mutation formulas (2.1), (2.2) and (2.3) are independent of the choice of £ and py, is
an involution.
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(2) If r =(1,...,1), then the mutation formulas (2.1), (2.2) and (2.3) reduce to the mutation
formulas of cluster algebras.

(3) The mutation of y is similar as (2.2) of y:

e if i =k,
,g/ _ Tk _bkl
T NN . e
Yi (y/[: i ]+)Tk (Z Zk,sy/is> if i # k.
s=0

By assigning the labeled seed (x,y,B) to a root vertex tg € T,, we obtain an (r,z)-seed
pattern t — 3, of (x,y,B) in the same way as cluster algebras. In particular, for each ver-
tex t € T,,, we have a labeled seed ¥; = (x¢,y, B) and if L , then Xy = pp(Xy). We

denote by Xt = (xl;h cee 7xn;t)7 Yt = (yl;t7 B yn;t) and Bt = (bj;t) = (bij;t)'

Definition 2.5. The generalized cluster algebra A := A(t — X;) associated to the (r,z)-seed
pattern t — ¥ of (x,y, B) is the ZP-subalgebra of F generated by X := [J,cr, X:-

The Laurent phenomenon still holds for generalized cluster algebras.

Proposition 2.6 ([4, Theorem 2.5]). Each cluster variable x; could be expressed as a Laurent
polynomial of x with coefficients in ZP.

2.2 Generalized cluster algebra with principal coefficients

From now on, let y = (y1,...,yn) and z = (2j 5)i=12,... n;s=1,2,....ri—1 With 2; ¢ = z; »,_s be formal
variables and P = Trop(y, z) the tropical semifield of y and z, which is the multiplicative abelian
group freely generated by y and z with tropical sum @ defined by

(Do Tt ) (LD T ) = (LT T ).
i i, i i

1,8 1,8

where a;,a;,b;,b; s € Z. Let (x,y,B) be a labeled seed with coefficients in P. Fix an (r,z)-
seed pattern t — 3 of (x,y, B) by assigning (x,y, B) to the vertex ty € T,. The associated
generalized cluster algebra is called a generalized cluster algebra with principal coefficients. In
this case, we denote it by A® to indicate the principal coefficients.

We assign two integer matrices Cy = (C1y,...,Cpit) = (cij;t);-szl and Gy = (81:4,---,8nit) =
(9ijit)i j—1 to each vertex ¢ € T, by the following recursion:

L4 Ct() = Gto = I’ru
o if t—" ¢ €T,, then

—Cjii if j =k,
{ Cijit HJ (2.4)

Cij:tr = .
Y Cijit + T (Cikit[Ebkjit)+ + [—ECint]+brzie) i J F# K,
it if 7 75 /{:,
= . . o (2.5)
Eist —8k;t T+ Tk (Z[—Ebjk;t]Jrgj;t - Z[—Ecjk;t]erj;to) if i =k.
j=1 J=1

We remark that the recurrence formulas (2.4) and (2.5) are independent of the choice of the
sign € € {£1}. We call t — C} and t — Gy the (r,z)-C-pattern and (r, z)-G-pattern of the (r,z)-
seed pattern of (x,y, B) respectively. The column vectors of C; and Gy are called c-vectors
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and g-vectors of the (r,z)-seed pattern of (x,y,B), respectively. We remark that ¢ — C
and ¢t — G} only depend on B,r and tg € T,,.

Denote by R = diag{r1,...,r,}. Note that both RB and BR are skew-symmetrizable. Hence
we may assign (x,y,RB) and (x,y, BR) to the vertex ty to obtain (ordinary) seed patterns
of (x,y,RB) and (x,y, BR) respectively. It was proved by [19, Proposition 3.9] that the C-
matrix Cy of the (r,z)-seed pattern of (x,y, B) coincide with the C-matrix of the seed pattern
of (x,y, RB) at vertex t. Alternatively, R~1C;R is the C-matrix of the ordinary seed pattern
of (x,y, BR) at vertex t. As a consequence, every c-vector of the (r, z)-seed pattern of (x,y, B)
is sign-coherent. In this case, we also say C} is column sign-coherent. On the other hand, the
g-vectors of the (r,z)-seed pattern of (x,y,B) at vertex t coincide with the g-vectors of the
ordinary seed pattern of (x,y, BR) at vertex t. Hence the G-matrix Gy is row sign-coherent,
i.e., each row vector of G is sign-coherent. By the sign coherence of c-vectors provided in [10,
Corollary 5.5], (2.5) can be rewritten as

8iit if § £ k,

= " - 26
it —8ky + m( > [_5k;tbjk;t]+gj;t) if i =k, 20
=1

where €., is the common sign of components of the c-vector cj.
Similar to the ordinary seed pattern, we have the following tropical duality between C-
matrices and G-matrices.

Proposition 2.7 ([19, Proposition 3.21]). Let Dy be a diagonal matriz with positive integer
diagonal entries such that DoRB is skew-symmetric. For each t € Ty, we have

Dy'R™YG)TDoRC, = I,. (2.7)

Let DoR = diag{dl_l, e dil}. We denote by (—, —)p,r: Q" x Q" — Q the inner product

» '
defined by (u,v)p,r = u' DgRv, where u,v € Q". With this notation, equation (2.7) is
equivalent to

(8¢, djCj:t) DorR = 0y Vi, j € [1,n]. (2.8)
Furthermore, by noticing that DoRB; is skew-symmetric, we have

(u, B+v)pyr = —(B:u, V) pyR, Yu,v € Q".
Proposition 2.8. The following equality for the (r,z)-seed pattern t — % holds:

GB; = By, Cy. (2.9)

Proof. Since R~'C;R is the C-matrix of the seed pattern of (x,y, BR) and G; is the G-matrix
of the seed pattern of (x,y, BR), we have G;B;R = BtOR(RflCtR) by [8, equation (6.14)]. W

For the generalized cluster algebra A® with principal coefficients, we have the strong Laurent
phenomenon.

Proposition 2.9 ([19, Proposition 3.3]). Each cluster variable z;; belongs to Z|x*,y,z].
Definition 2.10. The F-polynomial Fi,; := Fj4[y,z] of the cluster variable x;; is defined as
E;t[Y7 Z] = mi;t’;m:m::vn:l € Z[y7 Z]'

Proposition 2.11 ([19, Theorem 3.23]). For each t € Ty, and i € [1,n], the following formula
holds: x;y = x8it Fi4[y, z].
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Remark 2.12. Similar to ordinary cluster algebras, the following statements are equivalent for
generalized cluster algebras (cf. [19, Proposition 3.19)):

e every c-vectors c;; is sign-coherent;
e cvery F-polynomial Fi.[y,z] has a constant term 1;

e every F-polynomial F4[y,z] has a unique monomial of maximal degree as a polynomial
in y. Moreover its coefficients is 1 and it is divided by all the other occurring monomials
as a polynomial in y.

2.3 Generalized quantum cluster algebras

In this subsection, we introduce the definition and some properties of generalized quantum
cluster algebras. We follow [1].

Let ¢ be an indeterminate. Let m > n be two positive integers, fix the mutation data (R, h),
where R = diag{ry,...,r,} is a diagonal n X n matrix whose diagonal coefficients are positive
integers and h = (hy;...;hy,) is defined as follows. For k € [1,n],

hk = {hk,o (q%)vhk,l (q%)v IR hk,rk (q%) }7

where hy ; (q%) € Z[qi%] satisfying hy, ; (q%) = Mg pp—i (q%) and hy o (q%) = hpr, (q%) =1.

A compatible pair (B , A) consists of an integer m X n-matrix B and a skew-symmetric inte-
ger m x m-matrix A such that BTA = [D 0], where D = diag{dl_l, ce dfll} is a diagonal n x n
matrix whose diagonal coefficients are positive integers. It is easy to see that the principal part B
(i.e., the submatrix formed by the first n rows) of B is skew-symmetrizable and D is a skew-
symmetrizer of B.

We define E,Jff as the m x m-matrix which differs from the identity matrix only in its k-th
column whose coefficients are given by

(EER) _ -1 if i =k,
€ Jik [—ebipri)y  if i # k.

Denote by F,ff the n x nm-matrix which differs from the identity matrix only in its k-th row
whose coefficients are given by
RB
(7 ke )kz - {

-1 ifi =k,
[e’fT'kbki]_;,_ if 4 7é k.

Let k € [1,n]. The mutation p in direction k transforms the compatible pair (B,A) into

pie (B, A) = (B’,A’), where

B' = EPRBEFP. N = (EPF)TAEPR.
It is straightforward to check that the first equality is equivalent to (2.3). Moreover, (B’ N ) is
a compatible pair and (B’)TA’ = [D 0].

Fix a skew-symmetric bilinear form A: Z™ xZ™ — Z. The quantum torus T associated with A
is the Z[qi%]—algebra generated by the distinguished Z[qi%]—basis {x(a0) | @« € Z"} with mul-
tiplication given by

x(a)x(8) = ¢2*@Px(a + B)

for any «, 8 € Z™. The quantum torus 7, is an Ore domain and we denote by F, := F) its
fraction skew field, which will be the ambient field to define the generalized quantum cluster
algebras.
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Definition 2.13. An (R, h)-quantum seed in F, is a triple ¥ = (X,B,A), where (B,A) is
a compatible pair and X = (X1,...,X,,) is an m-tuple of elements of F, such that

e X1,...,X,, generated F, over Q;
o X;X; = q"iX;X;, where A = (\;).

The (labeled) set X is called a quantum cluster, Xi,..., X, are quantum cluster variables
and X, 41,..., X, are coefficients.
We define

X(a) = q% Z¢<j aiaj)‘jiXi“ .. .Xgnm

for any o = (a1,...,a,)" € Z™. In particular, X; = X(e;), where e1,..., e, is the standard
Z-basis of Z™. It follows that

X(a)X(8) = ¢2* X (a + §)

for any «, 8 € Z™. The subalgebra of F, generated by X(a),a € Z™, is a free Z[qi%]—module
with basis {X(a) | @ € Z™}, and hence identifies with the quantum torus 7, associated with
the bilinear form A: Z™ x Z™ — 7Z, (a, B) — o AB, induced by A.

For any 3 € Z™, we also introduce the notation Y# := X(Bﬁ) It is straightforward to check
that

YOy P2 — 2B DBB2y Bi+ha

where (1, 82 € Z™.

Definition 2.14. Let X = (X,B,A) be an (R, h)-quantum seed in F,;. For any k € [1,7n], the
mutation /i in direction k transforms the seed ¥ into a new triple y(X) := (X', B/, A’), where

(1) (B, N) = (B, A);
(2) X' =(X1,...,X]) is given by

X (e;) iti #k,
XeZ XD = S b (08 Xslebily + (i — ) —ebyls — ) i =k,
s=0

where by, is the k-th column vector of B and ¢ € {+1}.

By [1, Propositions 3.6 and 3.7], the triple (X’, B, A’) is also an (R, h)-quantum seed in F
and py is an involution.

For a given (R, h)-quantum seed (X,B,A) in Fy, we assign each vertex ¢t € T,, an (R, h)-
quantum seed Y; in F; which can be obtained from (X, B, A) by iterated mutations such that if ¢
and ¢’ are linked by an edge labeled k, then Xy = pg(X:). We call such an assignment ¢ — 3
an (R, h)-quantum seed pattern. It is clear that an (R,h)-quantum seed pattern is uniquely
determined by the assignment of (X, B, A) to an arbitrary vertex tg € T,,. In this case, we refer
to to the root verter, ¥y, = (X, B, A) the initial (R, h)-quantum seed and X1, ..., X,, the initial
quantum cluster variables. In the following, when we fix an (R, h)-quantum seed pattern, we
always denote by ¥; = (Xt, By, At) and

Xt = (Xl;ta C) Xm;t)) Bt = (bz] t)a At - ()\ij;t)-

)
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For the initial quantum seed ¥;,, we denote
Xto I:X: (Xl,..‘,Xm), Bto IZB: (bij)v Ato ::A: ()\1])

For each vertex t, we refer to X; a quantum cluster, X;; (1 <i < n) quantum cluster variables
and Xp4ix (1 <4 <m—n) coefficients. It is clear that for every ¢t € T,,, we have X, = Xppi
forl1<i:<m—n.

Definition 2.15. Given an (R, h)-quantum seed pattern ¢ — Xllt, the (R,h)-quantum cluster
algebra A, (X;,) with initial seed 3;, = (X,B,A) is the Z[qii] [eril, . ,Xffll] subalgebra
of F, generated by all the quantum cluster variables

Xy ={X|1<i<nteT,}

Remark 2.16. The algebra A, (%) is also called the generalized quantum cluster algebra associ-
ated with the (R, h)-quantum seed (X, B, A). In particular, if R = diag{1,...,1}, then A, (%)
is a quantum cluster algebra in the sense of Berenstein and Zelevinsky [3]. On the other hand,
it can be viewed as a g-deformation for a special generalized cluster algebra in the sense of
Chekhov and Shapiro [4].

Fix an (R, h)-quantum seed pattern ¢ — ¥, with initial seed ¥;, = (X,B’,A). Denote
by r = (71,...,7ms). Recall that we have the (r, z)-C-pattern t — C; and (r, z)-G-pattern t — G,
associated with B, r and ¢ty € T,, as in Section 2.2.

We introduce the (R,h)-G-pattern t — G for the (R, h)-quantum seed pattern ¢ — X as

follows. For each vertex ¢t € T),, we assign an m x m-integer matrix Gy = (1., ..., &m;) to t by
the following recursion:
(1) éto = Iiy;
(2) if t—E— ¢ €T,, then
git if i £k,
m n
gy — - - o 2.10
S - <Z[_bjk:;t]+gj;t - Z[—Cjk;thbj;to) if i = k. 210
j=1 Jj=1

We call C?t the G-matriz of the (R, h)-quantum seed pattern t — 3, fiLnd the column vector g;.;
the g-vector of the quantum cluster variable X;;. Clearly, we have G; = Gj Imo,n}- It follows
that

cu[D 0lgj = (cin,gju)p = d; 0y (2.11)

for i,j € [1,n].
Similar to [8, equation (6.14)], we have the following.

Proposition 2.17. For each vertex t € Ty, the following equation holds:
GiB; = By, C}. (2.12)

Proof. We prove the equality by induction on the distance between tg and t. It is obvious
for t = ty. Let t k¢ bean edge in T,, and suppose that (2.12) holds for the vertex t. We
check it for . We first consider the k-th column,

m m n
> b Biw = > (—bint)Bit = — > _ bikuBit = — Y _ Ciktbiz,  (by induction)
=1 i1#£k =1 =1

n
= E Cikst' Disto-
i=1
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Now let j # k, we have

m
Z bij,vGistr = Z bij.or izt + Ok St

i=1 itk
= Z(bij;t + 7k (bikse [brjie) + + [—Dikst]+-Oryist) ) it
itk
m n
+ (—brjt) <_gk;t + 7k (Z[_blk;t]+gl;t - Z[_Clk;t]+bl;to>>
=1 =1
m m n
= biguBir + rrDrjiel e Y bikaBit + ki Y[~ Cikst)+ Dty
i=1 i=1 =1
n n n
= Z Cijitbisto + Tk [bkjit) + Z Cik;tDisto + Trbkjit Z[_Cik;t]+bi;to
i=1 i=1 i=1
n
= > (it + h(CinstPrji)+ + [—Cinst) +0hjit) it
i=1
n
= cijubity.
i=1
Thus (2.12) holds for the vertex ¢. This completes the proof. [

By (2.12), formula (2.10) is equivalent to the following:
8t if i # k,

_— m n (2.13)
Bist —8kit + Tk <Z[—Ebjk;t]+§j;t - Z[_Ecjk;t]erj;to) iti=Fk, '
=1 j=1

where ¢ € {£1}. By the sign-coherence of c-vectors, we have

A ~ mBiR
Gy = GtEk,ék;p (2.14)
where €., is common sign of components of the c-vector cj.;.

If m =2n and B = [ I]i ], then (R,h)-quantum cluster algebra A, is called a generalized
quantum cluster algebra with principal coefficients. In this case, the g-vector g;; is closely
related to the g-vector g;.;.

Lemma 2.18. Let m = 2n and B = [Ii] Then for each vertext € T,, and 1 < i < n, we

have g,y = [ggt].

Proof. Note that bji;t = ¢(j_p)r; Whenever n < j < 2n. By the sign-coherence of c-vectors, we
may choose a sign € such that [—EC(n,j)k;t]Jr = 0. Hence the recurrence formula (2.13) can be
rewritten as

it if i £k,

n
_gkz;t + 7k Z[—Ebjk;t]+gj;t ifi=k.
j=1

it =

Now the result can be deduced by induction on the distance between ¢ and tg. |
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3 F-polynomials for generalized quantum cluster algebras

Throughout this section, fix an (R, h)-quantum seed pattern ¢ — ¥, with initial seed ;, =
(X,B,A) and keep the notation in Section 2.3. Recall that ej,...,e, is the standard Z-
basis of Z™. We denote by f1,...,f, the standard Z-basis of Z™. For an integer vector
B=(b1,...,by)T € Z™, we denote by f = (by,...,b,)T € Z" the truncation of 3.

3.1 Fock—Goncharov decomposition

In this section, we introduce Fock—Goncharov decomposition of mutations for generalized quan-
tum cluster algebras, which generalizes the corresponding construction of quantum cluster alge-
bras in [6, 13].

For a,b € Z and k € [1,n], let

( a
<thsé Wz)s> if 0 > 0,

;=1 \s=0

) {a} i
(ths 2)(g22) ) =41 if a =0,
-1
(Z hk . % b<27,+1) Z)3> lf o < O

1=a

It is easy to verify that

Tk ) . {a+a’}
(Z his (42) (q22)3>

) {a} ) {a'}
(ths 5 q2~T ) (ths § q2z ) . (31>

Let 7T; be the quantum torus associated with Ay, i.e., the Z[ il] subalgebra of F, generated
by {Xi(a) | @« € Z™}. It is an Ore domain. Denote by Fi the fraction skew field of 7.
Let t —— ' be an edge in T,,. The mutation yu in direction k yields a unique Z[ } algebra
isomorphism puy.¢: Fr — Fy such that

X, (e;) if i # k,
st (X (€7)) = Z hi, S %)Xt( [ebi] + (rk — 8)[—ebple — ;) if i = k.
s=0

Recall that for a € Z™, we have Yto‘ = Xt(Bta). For k € [1,n], we also denote ?k;t = Y{’“

Lemma 3.1. For k € [1,n],t € T,, and o € Z", there is a unique Z[qi%]-algebm homomor-
phism )y (Yta) . Fi — F; such that

L\ laGan)
Vit (Y1) (Xe(8)) <ths 2) de?)s> ,  vpez™

Proof. It suffices to show that

Uit (X5) (X (B1) X4 (B2)) = ks (Y1) (X (81)) okt (Y1) (X (B2))
for 51,82 € Z™. We have

Ve (Y5) (Xe(B1) X4 (B2)) = v (¥5) (0271052 X, (81 + )
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1

—QQﬁlAtﬁQXt (B1+ B2) <ths % T"‘Y?)S

) —{dp (B1,0)+dy(B2,0)p}

) —{dx(B1+B2,0)p}

L S S
X (B1)X(B2) (ths (42) (¢** ¥
X, (81)X4(B2) (Z hks 24k+(ﬂ2,a)DY?)s>
) —{di.(B2,0)p}

(z ) 57

- 1 L —{dr(B1,0)p}

= X¢(61) (Z his(q?) (QM’CY?)S>
5=0

- ) L —{d(B2,0)p}
X Xt(ﬁg) (Z hk,s (qz)(qukY?)s)
s=0

= Pk (Y7) (X (81)) et (V) (X (B2)),
where the fourth equality follows from equation (3.1). |

—{dx(B1,0)p}

l\)\»—l

Lemma 3.2. For o € Z", vy (Yl?‘) is an isomorphism. Moreover, its inverse is given by
) ) {dk(B,0)p}
b (X0) ™ B By Xu(B) - Xu(B (Z hi.s(q?) dkyg)s> :

Proof. It is straightforward to show that there is a unique Z[qi%]—algebra homomorphism
®: Fy — F; which maps X;(3) to

) {d(B,2)p}
<Z hks % dk??)s>

for any 8 € Z™ by (3.1). Furthermore, one can show that

0 i (Y7) (Xt (B)) = Xa(B) = i (Y7) 0 2(Xu(8))
by noticing that (B, «)p = 0, which implies the result. |
Proposition 3.3. For an edge t kv in T, and e € {+1}, we have

it = wk;t (?Z;t)e © ¢k;t;57 (3'2)

where ¢p.i.c is the unique Z [qi%] -algebra isomorphism from Fy to F; taking Xy () to Xy (Ef;Ra)
for any o € 7M.

Proof. By definition, we have

1
Xtr ek ths 5)Xt( [€bk t]+ + (Tk — 8)[ eby. t]+ — ek)
s=0

- ths % Xy(sebryt + ri[—ebigl4 — k)
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72;”” (q2)Xe (sebpy + EP ey
Tk >

= S e X, (B )
s=0

_ths (q2) a8 X, (ELFe,) Xo(sebyy)

1

= X, (El e th +(q2) g% Xy(sebyy)
N —e{—¢}
X (B (Z hiss (a2) (7% Xt(€bk;t))s>
o —e{—e}
= X, (EP:Tey (Z his (q2) %Yi;tf) :

Since (dksfk,Engei)D = —&d;k, we have

Xy (o) = (Vi) (Xe(EP Rer)).

For j # k, we have

Xy(ej) = Xelej) = (EBtR ) wm(th) ( (EI?QR J)) u

Remark 3.4. When R = I,,, equation (3.2) specializes to the Fock—Goncharov decomposition
for quantum cluster algebras, where ¢4 and ¢k;t;T are called the tropical parts of py, (cf.
[6, Section 3.3] and [13, Section 6.3]). By setting ¢z = 1, it further degenerate to the Fock—

Goncharov decomposition for cluster algebras, see [17, Section 2.3].
Fix a path tg t1 2 to B ty in T, and denote it by i. Let ¢; be the
common sign of components of ¢;;;¢;_, and cj =¢gjc;,_, for j € [1,k].

i1

Remark 3.5. The definition of ¢; is opposite to the one in [17], where they define €; to be
the common sign of components of ¢;;;;; Our convention of €; is the same as the one in [13],
which is more convenient to study maximal green sequences and green-to-red sequences in cluster
algebras [14].

Now define
'uiz Y= vt © Mgty © Pty © St = Fio
cy .ot
) =i (Ytol )" wl?vto( % ) oot (Yz(t:ok ) Fip = Fry-

For each j € [1,k], we also set

to . 4. ) . :
Pr; = Pivstozer © Pinstrzen © 77 © Pijity_vie;t Ft; = Fro

It is straightforward to check that gbi‘; takes Xy, (o) to Xy, (tha) by (2.14), where a € Z'™.

Lemma 3.6. For each j € [1,k — 1], we have

+
to ) 7€+ \Ei+l G\ €+l to
P, © Vijiait; (Yille) = Vipitg (Y )7 0 0.

ij+13t; J
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Proof. It is equivalent to show

t >, .
?Cﬂl to ¢t? © ¢i1+1%ta‘ (Yij+1§tj) if gj41 = +1,
17[}7;j+1§t0( to ) o t; T to . Y—l if & _ 1
t; © w2j+1§t]‘( ij+1;tj) Wejpr = —4
For any o = (v, ..., )" € Z™,
E i+1
Jo wz]-%lvtj 23]-0-1, )
1 _{dij+1 (&7€j+1fij+1)D}
1 i+1 S
= ¢ Xt] lJ+1, 2) (q EAR Y13]+1,t )
) —{di;,, (@ejp1fi; )p}
1 2d; . =B s
= Xy (th a) Z 41,8 2 I Xy (5J'+1th By, fij+1))
=0
T ) —{di;, (@gjr1fi;)D}
~ 1 2d; st s
= X4 (th a) hij s (g2 ) (a1 Xy (€541 Bro Ct; fij )
s=0
Tij-l»l 1 7{dij+1 (d7€j+1fij+1)D}
= 1 2d; D+ s
= Xto (th Oé) hij+1,s (q2 ) (q EA Xto (Btocj—i-l))
s=0
Tiji 1 n 7{aij+1€j+1}
~ 1 2d;. o ~XrCi+1)\S
= Xy, (G, @) higers(a2) (@ Y )
s=0

where the third equality follows from (2.12). On the other hand,

~ct
wiﬁruto (Y:;H) © ig (th (Oé))
~ct ~
= wi]url;to (th(fﬂ) (Xto (th Oé))
- A 1
= Xy (tha) Z th+1, ¢?)
- A 1
= Xy (tha) Z th+1, ¢2)

This completes the proof.

Proposition 3.7. Keep the notation as above, we have ,uto =)o

—{dij; (é’tj 0‘7Cj++1)D}

57— ~ct
EEOTRR varint
! Yto )

7{aij+151+1}

; ot
i Y (by (2.11)).

to

i - ]:tk — ]:t()'

Proof. By using Proposition 3.3 and Lemma 3.6, we have

to _ . . .
Hyp, = Higsto © Higsty © °° © Higity_y

1 < €2
- 7!)11,750( i1; to) © ¢i1;t0;€1 © ¢i2;t1 (Y;:;;tl) 0 ¢i2;t1;62

e €k
o oy (Yi:'tk—l)
= wuﬂfO(
(3
0---0 zpik;tk_l(Yi:;tkfl

o ¢ik;tk71;€k

cf +
€1 rC2 \ €2
) 0 Yigity (Yto ) O Piystoier © Pisitizes

)Ek o ¢ik§tk—1§5k
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= ﬂhl,to( ) o ¢12,t1( +)52 0---0 @bik;to (?foﬁ)ek o ¢§2
:7/)( )o¢tk- -

3.2 F-polynomials

In this section, we define F-polynomials for the generalized quantum cluster algebra A, (Xy,)
and prove their polynomial property under a mild condition. Recall that for i,j € [1,n], we
have

~ N —lb ~

Yt Yt = q ¢ 7, toYi,tO' (3.3)

The quasi-commutative relations (3.3) depend only on the entries of D and the principal part B
of Bto Let Tpp be the quantum torus associated to DB whose underlying space is the free Z [q2]
module with basis {Z(«)|a € Z™}, and its multiplication is given by

Z()Z(B) = q2°" PP Z(a + B).

Denote by Fpp the fraction skew ﬁeld of Tp B and Z; = Z(f;).
Recall that g n t1 2 to Sk ty is a path in T,, and ¢; is the common sign

of components of ¢;;+;_,. For simplicity of notation, we also denote by

N = (- N — . . + _ - A, A+ _ +
dijy =di;, TGy =Ty, € =Ciyu,, € =g¢, & = Bcj,
g = gij;tja g = 8;-

We first define a set of elements {L;; | i,j € [1,k]} of F4 by the initial condition

. . —e1{(d@)yc7 & )p}
Li; =Yy (Zhns 7)( onl)s> for i € [1,k]

with recurrence relations

T(j+1) —gj+1{(d11ciy1.€7 ) D}
l .
Lji1,=1Lj; < Z hz]+1, 2 2d<]+1> L; ]+1) ) for j € [1,k —1].

Then set

(1) 1

Z hiys(q

7"<l+1>

1
Liji = Zh”% q2) (q> 0 Lyggq)®, lelk—1].

M\»—‘

Y )

-

Lemma 3.8. Keep the notation as above. We have

- —e;{d¢;)(cl gx)p }
Xty (— )L (Xipite) H Lot e (3.4)
JE[L,k]
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12 13 j

Proof. Let i; be the sub-sequence % 1 t1 to

sition 3.7,

t; for j € [1,k]. By Propo-
Xio (&)1 (Kigsty) = Xio (—8r)0(1) © 62 (Xiyit,.)

(Xto(8r))

~ T
We first claim that L;; = Q/J(ij)(Yf(f ) for 7,5 € [1,k]. We prove it by induction on j. For j =1,
we have

Ty —e1{(&} dayel)p}
ot cof e ooty oot [ 1y moctys
Y (Yo ) =Y (Vo0 )7 (Vi ) = Y | D hins(a2) (670 YY)
s=0

~cF
Suppose that Lj;; = ¢(i;) (Y, ) for any i € [1, k], then

~ct

~ch nei roet
w(im)(Yfg’ ) = ¢(ij)(1/’ij+1;to (Ytoﬁl) a (Yt(; ))
T(+1)

~ ot ;A +
= 1/J(ij) (Y:O’ ) < Z hiHl,s(q%)(qu(i“) onyﬂ)s
s=0

) —ej+1{(& dnefi1)n}

~ct
= (i) (Y )
X Tg:l)h» ( 3 2“l('1+1> ) (Y)Y
154+1,S q )(q J w(lj)(Yt() ))
s=0

) —g+1{(@ dnyefi)p}

T(G+1) 1 _5j+1{(éi+7d(j+1)cj++1)p}
1 CErr s
= Lj; (Z Biyens (a2) (€70 L) )
s=0

=Ljy1,.

This completes the proof of the claim. A direct computation shows that

X (—8)0(0) (Xt (Br)) = Xio (&) it (V)™ (Ko (B1))

L 1 le ~ciys
= | 2 hins(a?) (@@ Y
s=0

_ LIEI{(gkyd(l)cT)D}‘

)ﬂ{(gk’d(l)c-l‘—)D}

For j € [1,k — 1], we have

(i) (Ko (=8r)) P (15:41) (Xto (8r))

. 3 T )
= (ij) (Xto (—8k)Wij it (Ytgﬂ )EJ+1 (X4 (gk)))
) _aj+1{(gk’d(1+1)cj+1)D}

T(G+1) | 1 ot
= (i) ( Z hijir,s(a2) (60 Yto]Jrl)S
s=0
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T(i+1) ) ) N —ejr1{(egrdi+nefi )}
_ H 2d-7 . FCi1\ )\ S
= Z hl]+17 2 (J+1)1/)(1j)(Ytg ))

s=0

T(j+1) *5j+1{(gk»d<j+1)cj++1)p}
- ( Z h11+1, q2 (J+1) L, J+1) )

7 E]+1{(gk,d(J+1 ]+1)D}
j+1

It follows that

Xio (—8k) 1> (Kt ) = Ko (—8r)10 (1) (X (&)1 (11) (Ko (—8k)) 2 (i2) (Xt (Er))
- h(ip—1) (Ko (—81))V () (X, (8))

_ L1—51{(gk,d(1>01+)D}L2—62{(gk7d(2)C§)D} o le&k{(gk,d(k)Cﬁ)D}. n
Definition 3.9. There is a unique element Fj, ., = Fj, +,[Z1,...,Zy] in the skew field Fpp
of Tpp such that

N
—ei{d; c'.*', »

H L eildg) (e gr)p} _ Fia, [Y1 tor s Yt - (3.5)
JE[L,K]

The element Fj, ;, is called the F-polynomial of Xy, (e;,) whenever F; is a polynomial in

Z1,...,Z,. With the help of F; we can rewrite (3.4) as

kitk

kitko

Xik§tk = Xto (gk)Fithk [Yhtov <o 7Yn;t0] .

Remark 3.10. Recall that the (r,z)-C-pattern and (r,z)-G-pattern are uniquely determined
by B, R and tg € T,. It follows that the element Fj, .;, only depends on B, R, D and ty.

The following is the main result of this section.
Theorem 3.11.

(1) The element F;

(2) Suppose that h; s(1) > 0 for each i € [1,n] and s € [1,7; — 1], then F;, 4, is a polynomial
m Zl,...,Zn.

wite 18 @ Laurent polynomial in Zn, ..., 2Zy,.

Proof. Since Fj, ., only depends on B, D and R, but not on coefficients, it suffices to prove the
statement for a particular choice of coefficients. Let B® = [ ] be the 2n x n matrix, where I,
is the identity matrix. There is a (2n x 2n)-skew symmetrlc matrix A® such that (B’ A’)
a compatible pair with (B') A*=[D 0] (cf. [3, Example 0.5]). It is clear that the Z[q* ]
algebra generated by {Yo‘ = Xy, (B a) | a € Z"} is isomorphic to Tpp.

According to Lemma 3 8, there are two polynomials A(Zy,...,2Zy,),P(Z1,...,Zy,) € Tpp
with coeflicients in N[ ] for h; 5(q2) and Zq,...,7Z, such that

Ek;tk (Yl;toy cee 7Y7‘L;t0) - A(Yl;tov cee 7YAvn;t0)P(YAvl;t07 cee 7YAv’n;t0)71

(3.6)

By [2, Theorem 3.1], F;, 4, (Y1 P ' o) is also a Laurent polynomial in X, . . ., Xon,-
Hence all of Fj, ., (YMO,... Yn to) A(Y1 Aoy Yn to) and P(Y1 oy s Yo to) are Laurent
polynomials in Xi.,,...,Xony,. Taking the Newton polytopes of both sides of (3.6) as the
Laurent polynomials in Xy.4,, ..., X, we obtain New(Fj, .1, ) + New(P) = New(A), where the

'Here we temporary regard h; (q%) as a variable.
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sum is the Minkowski sum. By the definition of Minkowski sum, we conclude that every exponent
vector of Fj, ., is a Q-linear combination of exponents vectors of A and P. In particular, the
exponent vectors of Fj, .;, (Yl;to, ... ,Yn;jo) as a Liiurent polynomial in Xy,4,,..., Xapn, can be
expressed as QQ-linear combinations of B®f1,..., B®f,. However, the last n coordinates of the
vectors B®f; is given by the standard basis f1,..., fn € Z", so each exponent vector must be
a Z-linear combination of B'fl, ... ,B'fn. This prove that Fj, .4, (Yl;tm ... ,?n;to) is a Laurent
polynomial in Yl;tm ... ,Yn;to. Hence, Fj,.1,[Z1,...,Z,)] is a Laurent polynomial in Z1,...,Z,.

Since A(Z1,...,Z,),P(Z,...,Zy,) have coefficients in N[qi%] for hi,sl(q%) and Zq,...,Z,.
By the assumption h; s(1) > 0 for i € [1,n] and s € [1,r; — 1], by setting ¢2 = 1 does not shrink

)
~

New (Fiyt, (Yistgs - - - Ysto) ). That is

NeW(F:ik;tk (Yl;toa cee 7Yn;to)) = NeW(Ek;tk (Yl;toy s 7Yn;to) ‘q%zl) .

By Proposition 2.11 and Lemma 2.18, we conclude that

Ek§tk (Yl;tm s 7Yn;to) ’q%:1 = Fik;tk (S’a Z)|zi’s:hi7s(1)71‘6[1,71],56[1,7"1-—1]a

where Fj, 4, (y,2z) is the F-polynomial of the cluster variable x;, .4, of the corresponding general-
ized cluster algebra A® with principal coefficients. Thus New (Fik;tk (Yl;to, ... ,Yn;to)) does not
contain any points with negative coordinates. It follows that Fj, ., (Yl;to, - ,Yn;to) is a poly-

nomial in Yy, ..., Ynu,. Hence, Fj, 4, [Z1,...,2Zy] is a polynomial in Z1, ..., Z,. |
As direct consequences of Theorem 3.11 and Lemma 3.8, we have the following.

Corollary 3.12 (separation formula). Suppose that h;s(1) > 0 for each j € [1,n] and s €
[1,r; —1]. For each i € [1,n] and t € Ty, let Fiy[Z1,...,Zy,] be the associated F-polynomial
of Xt and g;4 the g-vector of X;t. We have

Xi;t = Xto (gi;t)Fi;t (?l;toa HE 7Yn;to)'

Corollary 3.13. Suppose that hj (1) > 0 for each j € [1,n] and s € [1,r;—1]. For eachi € [1,n]
and t € Ty, let Fiy[Z, ..., Zy] be the associated F-polynomial of X;... We have

(1) There is a unique monomial q%“Z(f), a €7, in Fiy[Zy,...,Zy) such that it is divisible by
all the other monomials in Fi4[Z1, ..., Zy);

(2) FytlZy,...,Zy) has constant term 1.

Remark 3.14. If R = I, the assumption in Theorem 3.11 is automatically satisfied. Therefore,
Theorem 3.11, Corollaries 3.12 and 3.13 reduce to the corresponding results for quantum cluster
algebras.

Remark 3.15. In the setting of cluster algebras and quantum cluster algebras of skew-symmet-
ric type, F-polynomials have the positivity property, i.e., each F-polynomial has non-negative
coefficients (cf. [5, 10]). Thus if one expects that F-polynomials for generalized quantum cluster
algebras still have the positivity property, then we have to assume that h; (q%) has non-negative
coefficients for each i and s, which will imply that h; 4(1) > 0.

Remark 3.16. We call the equation (3.5) Gupta’s formula for F-polynomials of generalized
quantum cluster algebras. When R = I,,, it specializes to Gupta’s formula for quantum cluster
algebras. It further specializes to G‘Rupta’s formula [11, 17] for cluster algebras by setting q% =1.
In particular, let R = I,, and set g2 = 1, we have

_ ot
Ly =% (14 3e0) oo or e 1) 4],
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Ljs1i=Ljg(1+ Ljjp0) " Qomneri€Oo for je [1,k—1),
Li=143%%, Lyi=1+Lyy forlellk—1].

By direct computation,

Ll+1 =14+ Llfl,lJrl(l + Ll*l,l>_(d(l)CZ’éL1)D
=1+ Lisgpa1 (14 Limgg) "0 (1 4 1,y ) ~(oerei)n

l
=1+ Ll,l+1 H(l + Lp_l’p)_(d(p)cp’é;;l)D
p=2

1
=1+ }AIC?:H (1 + ycf)f(d(l)clvélfrl)D H(l + L, p)_(d(p)cp’él-tkl)D
p=2
l
=1+ H(Lp)_(d“’)"p’éﬁl)'ﬂ.
p=1

—(d/Cs
Hence we obtain Gupta’s formula for cluster algebras (cf. [17]): Ey, = Hé‘?:l Lj( (])C]’gk)D,
where Fj, ., is the ip-th F-polynomial at vertex t;. We remark the above formula is slightly

different from the one in [17] due to the convention on ¢;.

The following example suggests that Theorem 3.11(2) may hold without the assumption
that h; 4(1) > 0.

Example 3.17 (type G2). Let A(3,1) be the generalized quantum cluster algebras associated
to the initial (Ri h)-qué%ntum seed (X,lB,A) where B = [ V8] and A=[_94], R =diag{3,1}
and h = (1 h(qi) h(qﬁ), 1;1, 1) h( ’) € Z[ ] By assigning (X, B, A) to the vertex tg € To,
we obtain an (R, h)-quantum seed pattern t — 2.

Fix a path tg———t] ——ty —— t3 ty——t5 —2—tg——t; —=—t5 . By calcula-
tions, we have

—1 -1 —2 —1
g1t = 3l 82:ty = 91 8t = 3l g2ty = 10’

-1 0 1 0
81ts = ol 82:tg = 10> g1ty = ol 82:ts = 1|

Moreover,

, q‘ﬁ?ffl - h(q%)(q_%1 + q_g)Yt5§1 + [p(a2) (™ +a7)
h(a2) g Y+ a2 F e b h(e) (0 )Y
(a8 (0 +a7) + (e b (7 F 40 )V
TS s q‘%)?661+62 +h(g2)(q7% +207 2 +q72) Yyt
+h q%) AXE : Al : +h(q2) 73)?481%2
n
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F(a g )Y h(g2) (a7F ) Y
—|—h(q%) —1Y4el+2e2 +q—%Yf:1+3eg —i—l),
Xy, (e2) = Xy (g202) (02X +h(q?)a V2 + h(q2)q 2 Y
+ (q—g Tq §)Y§>0€1+62 + h(q%)q_%Yzeﬁeg _i_q—%Y?)elJrQeg i 1),
Xy (e1) = Xy (&1,) (47250 + h(q?2) g~ Y2 +h(q2)q A
(@3 a4 g ) () (77 +q 2) YR 4 h(g2) g Yt
+ (g8 g2 )Y p(qr) g e 4 g yatie ),
Xiglea) = Xep(820) (1 2 V52 +1),  Xiler) = Xy (81:2) = Xy (e1),
Xis(e2) = Xy (82:5) = Xy (€2),
where e, es is the standard Z-basis of Z?. In particular, each Fi;t; is a polynomial in Yl Yg

for any choice of h(q2). Moreover, it has non-negative coeﬂiments when regarding h( %) as
a variable. This phenomenon will be studied in a forthcoming paper.

4 Gupta’s formula for generalized cluster algebras

As we have seen in the proof of Theorem 3.11 that F-polynomials of a generalized quantum
cluster algebra do not specialize to F-polynomials of a generalized cluster algebra with principal
coefficients, hence Gupta’s formula (3.5) does not reduce to a formula of F-polynomials for
a generalized cluster algebra. However, we can prove the Gupta’s formula for F-polynomials of
generalized cluster algebras following Sections 4.2 and 4.3 (cf. [17]).

Keep notation as in Section 2.2. Recall that (x,y, B) is a labeled seed in F with coefficients
in P = Trop(y,z). By assigning (x,y,B) to the vertex tg € T,, we obtain an (r,z)-seed
pattern t — 3.

4.1 Fock—Goncharov decomposition

In this section, we establish Fock—Goncharov decomposition for generalized cluster algebras
with principal coefficients, which generalizes the corresponding construction for cluster alge-
bras [6, 20].

Let t—"—# in T, and k € [1,n], denote by &,; the common sign of components of the
c-vector c.;. As before, we also set czt = €Cry and &,y = Bcy,y. By the sign-coherence
of ¢, the exchange formula (2.1) at x4, can be simplified as

n [ } Tk 7

-1 —€k;tbjkit]+ ~Ef;t S

Lhit! = Lpoy | | Tigp E :Zk sUpyt -
s=0

Jj=1

Let QP(x;) be the field of rational functions in x; with coefficients in QP. The mutation p.
yields an isomorphism fi. : QP(xy) — QP(x;) which maps x;. to ; for i # k and maps . to

n [ ] Tk Tk
-1 —Ek;tbjnst]+ AE;t S
Lt H Ljt Z kY |-

j=1 s=0

We introduce two homomorphisms of fields as follows:

Zis if i # k,
. / vy - — i
Thst QP(Xt) — QP(Xt)a Tt = l’];% (H xg;tfk;tb]k;trkﬂ) if i = k,

J=1



20 C. Fu, L. Peng and H. Ye

and

Tk _5i,k
it QP(x¢) — QP(xy), Tist > Tt (Z st.@liktts> )
s=0

It is clear that pg.; = pg;t © Thye and g o g,y = 1. Moreover, we have the following by direct
computation.

Lemma 4.1. The following relation holds: Ty, o Ty = 1.

We further introduce an automorphism g, of QP(x) as follows

T . —(m,dier;) Dy R
ake: QP(x) — QP(x), x™M — x™ (Z Zh.s (yck;t)s> , Vm € Z".
s=0

By computation, we have

Tk " (nadkék;t)DOR
Qe (Y7) = y" (Z Zhe,s (f’ck?t)s) : VneZ" (4.1)
s=0

Lemma 4.2. The following formulas hold:

Th N =64k
T —— (Z zk,s(y%ff) , (12)

s=0
qi;t’ © Gkt = 1. (43)

Proof. Formula (4.2) is a direct consequence of (2.8).
For any m € Z",

) —(m,dkcr;t) Dy R
+
~AC;. S
Qhst! © Qest (X)) = Qo | X < § 21, (Y5t >
s=0

- —(m,dkcy.41) Do R
N ;
_ .m A
=X Yz ()

s=0
s 7(mzdkck;t)D0R

) (cf. @k ) Do R

Tk N Tk N
~c; AC \S
X E Zks | Y st E Zk,s (y k’tl)
s=0 s=0

Note that DoRB is skew-symmetric, (th,dkék;t/)DoR = —dksk;t(ck;t)TDoRBck;t =0. On the
other hand, ¢,y = —c;. Putting all of these together, we obtain that gy o g (xm) = x™.
This completes the proof of (4.3). [

2 ta B t in T,,. We define

From now on, we fix a path g R,
Miz = Migste © Mgty © 00 © Migsty_y - QP(th) - Q]P)(Xto)7
Ttt: = Tigstg O Tigsty © 000 © Tty - QP(th) - Q]P)(Xto)v
quzg = iysto © Gigity © 777 O Qigsty_y - QP(Xto) - @]P)(Xto)'
Lemma 4.3. For any i € [1,n], the following formulas hold:
/‘Liz (xi;tk) = xBitk E;tk (y7 Z)a
Tfs (xi?tk> = Xgi;tk?

Ttt: (?)i;tk) = yCi;tk .
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Proof. Formula (4.4) is equivalent to the separation formula of generalized cluster algebras [19].
Formula (4.5) follows form (2.6) by induction on k, and (4.6) follows from (4.5) and (2.9). W

Lemma 4.4. For any j € [1,k] and | € [1,n], we have

t t
Tt(-) © pl;tj = QZ;tj o Tt](-)' (47)

J

Proof. For any i € [1,n],

- —0i1 r =01
to . _ ~to . A _ Bt SELE Clit: | S
Tt; © Pty ("'U'L;tj) = Te; | Tisty E Zl,s (yl;t]- ) =X Zl,s (y 7 ])

s=0

T C+ 751',1

— it &l s _ to )

= x> E Zl,s (y ]) = Qu;t; O Ty (5Uz;tj)7
s=0

where the last equality follows from (4.2) and (4.5). [

By applying (4.7), we have
Proposition 4.5. The following decomposition holds: ,utk = qtk o Ttk 0 QP(x¢,) — QP(xy,).
The following is a direct consequence of Proposition 4.5 and Lemma 4.3.

Proposition 4.6. For any i € [1,n], the following formula holds: qu (xBite ) = xBitk By, (¥,2).

4.2 Gupta’s formula

i1 iz i3 i

Throughout this section, we fix a path ¢ t1 to t in T,. For the
simplicity of notation, for any j € [L,k], we denote by d(;) :=di;, 7(j) :=7i;, €j = Cijut;_;,
c;r:: Eijit;_1Cjs é;r ::Bcj, 8= 8ijit; where Eijit;_y 18 the common sign of components of Cijitj ;-

We also introduce certain elements L1, ..., Li of F along the path, where
(1) 40 J *
+
D= w0 h= 3 |8 HL Chdominn ) g i<k
1

The following is the Gupta’s formula of F-polynomials for generalized cluster algebras.

Theorem 4.7. The following formula holds:

gk,d c;)p R
Fiu (3 (4)€3) Dy (4.8)

||:jw

Before giving the proof of Theorem 4.7, we prepare the following lemma.

Lemma 4.8. For 1 <i<m <k, the following formula holds:

et die
G0 (3en) =y (H L, ‘“’”’d‘”"”D“R> - (49)

Jj=1
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Proof. We prove this formula by induction on i. For ¢ = 1, by (4.1), we get

(1) (C'r_‘;ud(l)éil;to)DoR
~ctys
<Z 2irs (37) )

s=0

3+

ch

qi? (yc;;) =y° y (Ll)_(é%d(l)cl)DoR.

Now suppose that
~ct ~ct _(é;"—nzd 'C')
quo_l (ycm) _ ycm H Lj (7)€i)DoR

Then,

(1) —(@&h.dayc)pyr
SChh ~cif et ot
aiy (") = aiy, (@i (7)) = aiy, (ycm (Z i (V7 )S> )
s=0

-1

_ach H —(@&h.d()¢) Dy R
Jj=1
at
(1) 1—1 ( N J ) _(C'rmd(l)cl)DoR
s s —s(&"d(j)¢j) Do r
<\ 2 zsy e | TTE
s=0 j=1
-1
= ycﬁm HL;(CM7d<j)°j)DoR (Ll)*(érfL,d(z)Cl)DoR
Jj=1
s 17 - @hdorer)
_ ook —(&m.d(;)€5) Do R
=y H L; . |
Jj=1

Proof of Theorem 4.7. For 2 <[ < k, we have

Qflo (x8*) 4 <qiz;tz—1 (ng) >

i, by o T

() —(gr,d@yc) Dy R
ot
e ( (Z i (§° )S> >
s=0
(1) —(gr.d@yct) DR
ot
- (Z zins (arf_, (9 ))S>

s=0
) s\ —(8k.dwyct)pyr

-1

(&t d e

A DIETI Eal | E7A (by (4.9))
s=0 j=1

— (Ll)*(gmd(z)cl)DOR'

On the other hand,

i (56) (1) N —(8k»d(1)€1) Dy R o :
11; A S —\8k>2(1)C1)DgR

X8k
s=0
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According to Proposition 4.6, we have

t
o aR(xB) q(xE) gy (xB) gl (x#+)
F‘ ( ) = - o 0O++-0 —2~ 7
it \Ys2) = =4 i
X8k qtkfl (ng) qtk72 (ng) x8k

_ (Lk)*(gk,d(k)ck)DoR(Lk_l)*(gmd(k_nckq)DoR .. (Ll)*(gk,du)Cl)DOR

gkvd(J)C])DoR

sz

This completes the proof. |

Example 4.9. Let us explain Theorem 4.7 by the following simplest non-trivial example.
Let r = (2, 1) z = (1,2,1;1,1) and B = [7(1)(1)}. We consider the following path in Ta:
to——t tg— g —2 4. By assigning the labeled seed ¥ = (x,y, B) to the vertex ty,
we obtain an (r,z)-seed pattern ¢ — X;. By definition, g; = ylmgl, U2 = Y21, RBy, = [_(1) 3],

diy =d) =d@z) =dy) = %, and the ¢-,¢- and g-vectors involved are as following;:

(1 2 (1 [0
0120, 0221, 0321, 0421,

. _ |0 . [ . [ .

-1 -1 -1 ~[o
gl_ 2 bl g2_ I 1 ) g3_ O bl g4_ __1 .

(é;,d(l)cl) =1, (é;,d(l)cl) =1, ( i}f d(Q)CQ) 1,
@l duyer) =1, (& dpe2) =2, (&].d@es) =1,
(g2,dnyc1) = —1, (g3, dmecr) = -1, (g3, dp)c2) = —2,
(84,d(1yc1) =0, (84,dz)c2) = =1, (g4, dzyc3) = —1.

Therefore,

Li=1+zjn+9},  Lo=1+gpL",

O L 1p-1)\2 R R S

Ly =1+ z(t192Ly'Ly") + (192L7 ' Ly")",  La=1+4g2L7 " 'Ly°Ly
Applying Theorem 4.7, we get

Py, = L1 =1+ 291 + 93, Foyy = L1Lo = 1+ 291 + 91 + 970,

Fiyy = LiL3Ly = L+ 201 + 47 + 2i1d2 + 20792 + 9193,

Foyy = LolsLy =1+ 9.
4.3 Expansion of Gupta’s formula

Following [17], we expand Gupta’s formula (4.8) into sum in this section. Let h € Z and
no,--.,n; € N, we denote

h ([ h ng
no,Ni,...,Ny T o NnNyy...,MY ’

2Here we omit the subscript DoR.
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where ( 1o nz) is the multinomial coefficient. In particular, if ng # ny + --- + ny, then
no’nﬁ_n?nl } = 0. It easy to see that if h > 0, then

h - h
no,n1, .-, \h—mng,ni,...,n)"

Lemma 4.10. Let 1 + Zézl a;2" be a polynomial in z with coefficients in a field F and h € Z,
we have the following expansion formula:

l h
) h Zlm
1 E i :E : ny =
( +. 1%2) {no,nb---,nz}al 'z ’
1=

where the sum takes over ng,...,nm,m >0 and ng =n1 + -+ -+ ny.

Proof. Denote by w the polynomial Zizl a;z'. For any integer h, we have

Atuw)=3 <h>w”°.

n
ng>0 0

Then replacing w with Zi:l a;z', we obtain

h
N ) (P o\ om > in -
+;aiz —Z o e ay - al Lzi=

Lemma 4.11. Given integers hi,...,h; and the same setup as Theorem 4.7,

k T'(k) s
i . i hj + ( snl, C ) 7.0 i(gsni)ﬁ
IR o) 1 RO A | T P
j=1 j=1

j s=1
no,nl, cey Mgy

where the sum takes over all non-negative integers n(l], n%, ... ,n,ln(l), . ,n'o“, n’f, ...,nk e L>g.

Proof. We prove the following claim by induction: for all 1 < p < k,

E ")
p—1 Z >° sl (&, —d(j)¢;) por)

k

127 = > [~
J

Jj=p nlg, k EZZO‘] 1

p P P
U RUSRIRS ny,.. 7T(k:)

n’r(p) ERRRE

151\ . (4.10)

T o
kTG

k ) +
h + Cl, d(j)cj)DoR () n AZ( lsng)cj

<11 > (T =7 |57

- . . . S=

J=p J J
Ny WY s - - o3 Mgy

For any integer h and 1 <[ < k, by Lemma 4.10, we have

ra) \"

-1
ot & —d e,
e D3E M L | 2

s=0 j=1

Ns
_ h T S(CZ —d(jye3)pyR ;
! Z <{n0’n1’ e ’nTm}sll (Zzl,sy H L

0,11 55T ) €220
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T

. (
213 sns(&—dgjy¢5)por h O > snsc;
= E | | L;.Zl | | Z"inss S]s:I .
nO,”la"'?”T(l> b

no,nl,...,n,«(l)ezzo 7j=1 s=1

By taking [ = k and h = hy, this prove (4.10) for p = k.
Now suppose that (4.10) is true for p + 1 , then multiply both sides by LZ”, we get

k k

hj _ thp h;
[127 =1 1] L
Jj=p Jj=p+1

kT
p=1 (23 snk(@h—dgei)er)

l=p+1s=1
= > 1z

p+1, p+1 p+1 k ok =1
ng Ny - 7n'r( +1)7 U RS ar(k)EZZOJ

k
hp+( Z Z Snl (C(l)’_d(P)cp)DDR)

1= s=1
X Lp p+1
r
k - - CNVC NN
hit Z Zs (1)) DoR ie nl Aj:zpjﬂ(s;fns)cj
X H l=j+1 ]:[1,2%,7S y
Jj=p+1 j j s=
no,nl,...,nr(j)
_1 Z Zl sng(cl ’7d(j)C])DOR)
= > H
np,ni,.. ,nr( )i nEnk.on T( >€Z>O]
T .
kG
k . . T . 7)ot
<11 hj + Z (Z d(J)CJ)D0R> 1(—’[) nl AEP(S:lS”S)CJ m
l=j+1 \s=1 lzih y .
; . . . sS=
J=p j j g
Ny, M5 - M

By applying Lemma 4.11 and Theorem 4.7, we have the alternative sum version of Gupta’s
formula (4.8).

Theorem 4.12. Under the assumption of Theorem 4.7, we have

k ()
Fi,(¥,2) = Z H ( j H ) 1325 (Jl snd)ef S, (4.11)

(névn%7 ) 7‘(1)7 7n(l§7n]1€7 ) 'r(k))EZZO ]:1
where
k (1)
Liat
A —(8k diic)por+ Y, | D snk(€], —d¢ci)por

J l=j+1 \s=1

J o J J

no,nl,. . .,nrj

Remark 4.13. If r = (1,...,1), then formulas (4.8) and (4.11) specialize to [17, Theorems 3.1
and 6.2].
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