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Abstract. In this paper, we investigate multidimensional first-order quasi-linear systems
and find necessary conditions for them to admit Hamiltonian formulation. The insufficiency
of the conditions is related to the Poisson cohomology of the admissible Hamiltonian op-
erators. We present in detail the examples of two-dimensional, two-components systems of
hydrodynamic type and of a real reduction of the 3-waves system.

Key words: Hamiltonian structures; quasilinear systems; non-homogeneous operators

2020 Mathematics Subject Classification: 37K10; 37K25

1 Introduction

Hamiltonian systems are mathematical models used to describe the dynamical behavior of phys-
ical systems. They are based on Hamiltonian principle and Hamiltonian equations, which utilize
generalized coordinates and generalized momenta to characterize the state of the system. Hamil-
tonian systems find wide-ranging applications in classical mechanics, quantum mechanics, and
other fields. An autonomous system of evolutionary PDEs

uit = F i
(
uj , ujx, . . . , u

j
kx

)
, i, j = 1, 2, . . . , n

in two dependent variables (x, t) is referred to as Hamiltonian, with a Hamiltonian structure P
and a Hamiltonian functional H, if it can be expressed as uit = P ij δH

δuj , where P
ij is a ske-

wadjoint (pseudo)-differential operator with vanishing Schouten torsion (see [23]), referred to as
a Hamiltonian structure, and H =

∫
h
(
uj , ujx, . . .

)
dx is a local functional.

To date, many researchers have applied advanced mathematical methods and techniques,
such as Lie algebra [23], Poisson geometry [28], symplectic geometry [19], etc., to investigate the
Hamiltonian structures of nonlinear evolutionary equations, including the KdV equation, the
KN equation [19], the sine-Gordon equation, the KP equation [8, 22], and so on.

In the paper by Vergallo [26], an investigation has been conducted on a class of evolutionary
systems known as first-order quasi-linear systems (it was firstly investigated in [25])

uit = V i
l (u)u

l
x +W i(u), i = 1, 2, . . . , n.

Through the application of cotangent covering theory [15, 27], the author conducted a study
on the compatibility conditions for (1+0)-order nonhomogeneous quasi-linear systems to be
Hamiltonian systems under the nonhomogeneous hydrodynamic operator.

A multidimensional Hamiltonian system is an evolutionary system

uit = F i
(
uj , ujα, u

j
αβ, . . .

)
, i, j = 1, 2, . . . , n,
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which can be written as uit = P ij δH
δuj , where P

ij is a Hamiltonian operator and H =
∫
h
(
uj , ujα,

ujαβ, . . .
)
dxD and α, β, . . . is a component of variable x inD-dimensional space. ujα is a shorthand

notation for ∂uj

∂xα , u
j
αβ for ∂2uj

∂xα∂xβ , etc.

Therefore, the idea of this paper is to extend the study of quasi-linear systems done by
Vergallo to include the D-dimensional case (D > 1), namely

uit = V iα
l (u)ulα +W i(u), i = 1, 2, . . . , n. (1.1)

The question is: which quasi-linear systems admit Hamiltonian formulations (namely the sys-
tems (1.1) can be expressed as uit = P ij δH

δuj ) in the multidimensional case? The main approach
involves the application of Poisson vertex algebra (PVA) theory to compute the compatibility
conditions of D-dimensional nonhomogeneous Hamiltonian operators, along with the applica-
tion of cotangent covering theory to find compatible quasi-linear systems under such operators.
Finally, the compatibility conditions for quasi-linear systems to be Hamiltonian are computed
in the D = N = 2 case, and we relate the compatibility conditions with the first Poisson
cohomology group of the Hamiltonian operator.

2 Nonhomogeneous multidimensional Hamiltonian structures

2.1 PVAs and Hamiltonian structures

Let us consider the space of mapsM from aD-dimensional manifoldX to aN -dimensional target
manifold U . Chosen the coordinate systems ui and xα , the quotient space of local functionals is
defined as F := A

∂1A+∂2A+···+∂DA [23], where A = A(U) is the space of differential polynomials.
Now, we endow the space F with a Lie bracket { , }, also known as the local Poisson bracket.
A Lie bracket on F can equivalently defined in terms of a local Poisson bivector, P ∈ Λ2, by

P (δF, δG) = {F,G} =

∫
δF

δui
P ij δG

δuj
, (2.1)

where P ij = P ij
S ∂

S , P ij
S ∈ A, is a skewadjoint differential operator such that [P, P ] = 0, referred

to as a Hamiltonian structure, here we denote

S = (s1, s2, . . . , sD), ∂S =

(
d

dx1

)s1 ( d

dx2

)s2

· · ·
(

d

dxD

)sD

,

δF

δui
=
∑
S

(−1)s1+s2+···+sD∂S

(
∂F

∂
(
∂Sui

)) .
The skewadjointness of P is equivalent to the skewsymmetry of the Poisson bracket and the
vanishing of the Schouten torsion [P, P ] [23] corresponds to the Jacobi identity.

Next, we will briefly demonstrate the application of Poisson vertex algebra (PVA) theory
to compute the conditions for an operator to be Hamiltonian. Detailed information about
PVA can be found in [2]. A multidimensional Poisson vertex algebra (mPVA) is a differential
algebra (V, ∂) endowed with a bilinear operation V×V → R[λ1, . . . , λD]⊗V called the λ-bracket
and denoted {fλg} = Cs1,s2,...,sD(f, g)λ

s1
1 λ

s2
2 · · ·λsDD = CS(f, g)λ

S . We take V to be the space A
of differential polynomials and ∂α = uiS+ξα

∂
∂ui

S
, where uiS is a shorthand notation for ∂Sui and

ξα = (0, . . . , 0, 1︸︷︷︸
α

, 0, . . .)

is the canonical basic vectors in ZD.
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We can explicitly compute a λ-bracket between to differential polynomials using the so-called
master formula for a multidimensional Poisson vertex algebra [6] as it follows

{fλg} =
∑

i,j=1,...,N

∑
S,M∈ZD

≥0

∂g

∂ujS
(λ+ ∂)S

{
uiλ+∂u

j
}
(−λ− ∂)M

∂f

∂uiM
. (2.2)

The following two theorems [6] are presented to illustrate the relationship between Poisson
vertex algebras and local Poisson brackets.

Theorem 2.1. Let us define a bilinear bracket on F

{F,G} :=

∫
{fλg}|λ=0,

where f, g ∈ A are the densities of F , G. If the λ-bracket satisfies the axioms of a PVA, then
the bracket we defined is a local Poisson bracket.

Theorem 2.2. Given a Hamiltonian structure P = P ij
S ∂

S on A, the λ-bracket defined on
generators as{

uiλu
j
}
:=
∑

P ji
S λ

S

and extended to the full algebra using the master formula satisfies the axioms of the mPVA.

These two theorems demonstrate the equivalence between mPVAs and multidimensional
Hamiltonian structures. In particular, the Jacobi identity is equivalent to the so-called PVA-
Jacobi identity. Thus, we can obtain a Hamiltonian structure by computing the Jacobi identity
of the D-dimensional λ-bracket, among the generators (it is equivalent to the Jacobi identity of
the generic densities), namely{

uiλ
{
ujµu

k
}}

−
{
ujµ
{
uiλu

k
}}

=
{{
uiλu

j
}
µ+λ

uk
}
. (2.3)

2.2 The homogeneous case

Let us consider homogeneous differential operators of order m with the following form:

P ij = gijS1
(u)∂S1 + bijαkS2

(u)ukα∂
S2 + cijαβkS3

(u)ukαβ∂
S3 + cijαβklS3

(u)ukαu
l
β∂

S3 + · · · ,

where

Sn = (s1, s2, . . . , sD), n = 1, 2, . . . ,

∂Sn =

(
d

dx1

)s1 ( d

dx2

)s2

· · ·
(

d

dxD

)sD

, s1 + s2 + · · ·+ sD = m− n+ 1.

One important class of Poisson brackets is the Poisson bracket for which a first-order homoge-
neous differential operator

P ij = gijα(u)∂α + bijαk (u)ukα (2.4)

satisfies P ∗ = −P and [P, P ] = 0. Such brackets, defined by Dubrovin and Novikov [9], are
called Poisson brackets of hydrodynamic type or DN brackets.

We recall the conditions satisfied by the coefficients
(
gijα, bijαk

)
in the multidimensional DN

brackets, provided by Mokhov [18].
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Theorem 2.3. The operator (2.4) is Hamiltonian if and only if

gijα = gjiα,
∂gijα

∂uk
= bijαk + bjiαk ,

∑
(α,β)

(
gliαbjkβl − gljβbikαl

)
= 0,

∑
(i,j,k)

(
gliαbjkβl − gljβbikαl

)
= 0,

∑
(α,β)

[
gliα

(
∂bjkβl

∂ur
− ∂bjkβr

∂ul

)
+ bijαl blkβr − bikαl bljβr

]
= 0,

gliβ
∂bjkαr

∂ul
− bijβl blkαr − bikβl bjlαr = gljα

∂bikβr

∂ul
− bjiαl blkβr − bjkαl bilβr ,

∂

∂us

[
gliα

(
∂bjkβl

∂ur
− ∂bjkβr

∂ul

)
+ bijαl blkβr − bikαl bljβr

]

+
∂

∂ur

[
gliβ

(
∂bjkαl

∂us
− ∂bjkαs

∂ul

)
+ bijβl blkαs − bikβl bljαs

]

+
∑
(i,j,k)

[
bliβr

(
∂bjkαs

∂ul
−
∂bjkαl

∂us

)]
+
∑
(i,j,k)

[
bliαs

(
∂bjkβr

∂ul
−
∂bjkβl

∂ur

)]
= 0, (2.5)

where
∑

represents the cyclic summation over indices.

In analogy to the D = 1 case, the coefficients gijα are components of a symmetric (2,0)-
tensor. Assuming that gα is non-degenerate and defining bijαk = −gilαΓjα

lk , we observe that Γα

are Christoffels symbols of the Levi-Civita connection of gα.

2.3 The nonhomogeneous case

Following the content of the previous section, we extend the first-order homogeneous Hamiltonian
operator (2.4) to the nonhomogeneous operator of type 1+0

P ij = gijα(u)∂α + bijαk (u)ukα + ωij(u). (2.6)

We need to find the conditions for which the operator (2.6) is Hamiltonian, namely the brack-
et {F,G} =

∫
δF
δuiP

ij δG
δuj satisfies the property of skewsymmetry and Jacobi identity.

Firstly, let us recall the condition for the 0-order ultralocal operator ωij(u) to be Hamiltonian.

Theorem 2.4. The operator ωij(u) is Hamiltonian if and only if

ωij = −ωji, ωilωjk
,l + ωjlωki

,l + ωklωij
,l = 0, (2.7)

where ωij
,l is a shorthand notation for ∂ωij

∂ul .

Remark 2.5. The condition is the same as for a Poisson bivector on a finite-dimensional mani-
fold.

In the previous section, we have already stated the Hamiltonian condition for a first-order
homogeneous operator. For the nonhomogeneous operator (2.6), the Hamiltonian condition is
the following:

Theorem 2.6 ([19]). The operator (2.6) is Hamiltonian if and only if the operator gijα∂α +
bijαk ukα satisfies the conditions (2.5), ωij satisfies the conditions (2.7), and the following addi-
tional conditions hold true:

T ikjα = T kjiα, (2.8a)

T kjiα
,s =

∑
(i,j,k)

bliαs ωkj
,l +

(
bikαs,l − bikαl,s

)
ωlj , (2.8b)

where T ikjα = gilαωkj
,l − bikαl ωlj − bijαl ωkl.
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Proof. Our proof is a direct computation. The λ-bracket corresponding to P is
{
uiλu

j
}

=
P ji(λ) = gjiαλα + bjiαk ukα + ωji by applying the theory of mPVA. We compute the PVA-Jacobi
identity of the generators:

{
uiλ
{
ujµu

k
}}

=
∑ ∂

(
gkjαµα + bkjαh uhα + ωkj

)
∂ul(M)

(λ+ ∂)M
(
gliβλβ + bliβs usβ + ωli

)
, (2.9a)

{
ujµ
{
uiλu

k
}}

=
∑ ∂

(
gkiαλα + bkiαh uhα + ωki

)
∂ul(M)

(µ+ ∂)M
(
gljβµβ + bljβs usβ + ωlj

)
, (2.9b)

{{
uiλu

j
}
µ+λ

uk
}
=
∑[

gklβ
(
λβ + µβ + ∂β

)
+ bklβh uhβ + ωkl

]
× (−λ− µ− ∂)M

∂
(
gjiαλα + bjiαs usα + ωji

)
∂ul(M)

, (2.9c)

where the summation range is 1 ≤ h, s, l ≤ N , 1 ≤ α, β ≤ D, and M ∈ ZD
≥0. The equation

(2.9a) − (2.9b) = (2.9c) is PVA-Jacobi (2.3), extracting the term λα leads to (2.8a), and ex-
tracting the term usα leads to (2.8b). The remaining terms satisfy the Jacobi identity for the
first-order homogeneous operator and the 0-order operator. ■

Remark 2.7. The conditions (2.8a) and (2.8b) are independent sets of equations for each spatial
direction and are immediately generalized for any D > 0; in particular, in the one-dimensional
case and for nondegenerate g they are equivalent to the local case of Ferapontov and Mokhov’s
results [21]; the local, multidimensional case was first investigated by Mokhov [19].

3 Quasi-linear systems and compatibility
in the multidimensional case

3.1 Quasi-linear systems

In this section, we focus on (D + 1)-dimensional first-order quasilinear systems (D > 1)

uit = V iα
l (u)ulα +W i(u), i = 1, 2, . . . , n. (3.1)

The systems (3.1) (also referred to as the type 1+0) are the sum of 1-order homogeneous systems
and 0-order systems. As an example, consider the N -waves system [1] in two dimensions:

uij,t = αijuij,x + βijuij,y +
∑
k ̸=i,j

(αik − αkj)uikukj , for i ̸= j and uii = 0,

i, j = 1, . . . , N, (3.2)

where αij = αji ∈ R, βij = βji ∈ R.
More in general, nonhomogeneous quasilinear systems can arise from scalar equations of

arbitrary order. For example, consider the (2+1)-dimensional heat equation ut = uxx+uyy. By
performing coordinate transformations u1 = u, u2 = u1x, u

3 = u1y and interchanging variables x
with t (or y with t) [24], we obtain the following system:

u1t = u2, u2t = −u1x + u3y, u3t = u2y.

3.2 The cotangent covering

The core content of this paper is to investigate the necessary conditions for the multidimen-
sional quasilinear system (3.1) to be the Hamiltonian system. Similarly to [26], we define these
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conditions as compatibility conditions and apply the theory of differential coverings [15] for
computation. Since in [27] the authors have already presented the procedure, we will provide
a brief overview of the theoretical framework in the multidimensional case.

Let us consider a multidimensional first-order quasilinear system

F i = uit − V iα
l ulα −W i = 0. (3.3)

The vector function φ = φi is said to be a symmetry of the system (3.1) if it satisfies the
condition lF (φ) = 0, where lF is the Frechet derivative, expressed as

(lF )
i
j = δijDt −

(
V iα
l,j u

l
α +W i

,j

)
− V iα

j Dα.

Moreover, the adjoint of lF denotes

(l∗F )
i
j =

(
(lF )

j
i

)∗
= −δjiDt +

(
V jα
i,l u

l
α − V jα

l,i u
l
α −W j

,i

)
+ V jα

i Dα.

The corresponding vector function ψ = ψi =
δb
δui such that l∗F (ψ) = 0 is called a cosymmetry of

the system (3.1).
We then introduce the so-called cotangent covering T ∗ for the system (3.3), which is the

system F = 0 and l∗F (p) = 0 where p is an auxiliary odd dependent variable corresponding to
a cosymmetry. Explicitly, this is

uit = V iα
l ulα +W i, pi,t =

(
V jα
i,l u

l
α − V jα

l,i u
l
α −W j

,i

)
pj + V jα

i pj,α, (3.4)

where pi,α = Dαψi and so on.
In [14], the following theorem is presented.

Theorem 3.1. If the system (3.1) admits the Hamiltonian formulation, then

lF ◦ P = P ∗ ◦ l∗F , (3.5)

where the operator P is a Hamiltonian structure for F = 0.

Remark 3.2. (3.5) is necessary but not sufficient for (3.1) to admit a Hamiltonian formulation.

The proof in [14] is independent from the dimension of X, namely on the number of spatial
variables, so it is not only true for one-dimensional systems but also in our case. Therefore, the
following result immediately follows.

Proposition 3.3. If (3.1) is a Hamiltonian system with Hamiltonian structure P ij = P ij
S ∂

S,
then

(lF )
i
jP

jl(pl) = 0 (3.6)

for (u, p) the cotangent covering of F .

Proof. If we apply the identity (3.5) to p, then the right-hand side vanishes and the left-hand
side is (3.6). ■

We call (3.6) the compatibility condition. It serves as a necessary condition (but not sufficient)
for the multidimensional quasilinear system (3.1) to be Hamiltonian. The condition (3.6) cannot
guarantee that the operator P is Hamiltonian nor it does ensure that, even in the case when P
is a Hamiltonian operator, the system F is Hamiltonian.

However, by computing the condition (3.6), we can exclude certain operators. In other
words, for a given quasilinear system, when searching for possible Hamiltonian structures, all
the operators (Hamiltonian or not) that do not satisfy (3.6) should be discharged. Moreover, for
a given operator satisfying the Hamiltonian conditions, it is also possible to search for compatible
systems by computing condition (3.6).
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3.3 Compatibility in the multidimensional case

The next step is to compute the compatibility conditions. We assume that the operator P is
Hamiltonian and consider the Hamiltonian formulation of the first-order quasilinear system

uit = V iα
l ulα +W i = P ij δH

δuj
.

Since we consider quasi-linear systems, we assume that P is at most of differential order 1,
and consequently assume that H depends only on the variables u (and not on higher-order jet
variables). For a multidimensional nonhomogeneous quasilinear system of type 1+0, the corre-
sponding Hamiltonian structure must be the form of P = A+ω, where deg(A) = 1 and deg(ω)=0.
Similarly, the 1-order homogeneous quasilinear system corresponds to the homogeneous oper-
ator P such that deg(P )= 1, and the 0-order quasilinear system corresponds to the 0-degree
operator.

We directly consider the compatibility conditions of (1+0)-order nonhomogeneous systems

uit = V iα
l ulα +W i, i = 1, 2, . . . , n, (3.7)

which admit nonhomogeneous operators (satisfying the conditions (2.5), (2.7) and (2.8))

P ij = gijα∂α + bijαk ukα + ωij (3.8)

as their Hamiltonian structures.

Theorem 3.4. If a nonhomogeneous quasilinear system (3.7) admits a Hamiltonian formulation
with a Hamiltonian structure (3.8), the following conditions need to be satisfied:

ωij
,sW

s − ωsjW i
,s − ωisW j

,s = 0, (3.9a)∑
(α,β)

(
V jα
s gisβ − V iα

s gsjβ
)
= 0, (3.9b)

gijβ,s V sα
l + gisβ

(
V jα
s,l − V jα

l,s

)
+ gisαV jβ

s,l + bisαl V jβ
s − gsjβV iα

l,s − gsjβ,l V iα
s − bsjαl V iβ

s = 0,(3.9c)∑
(α,β)

[
gisβ

(
V jα
s,l − V jα

l,s

)
+ bijβs V sα

l − V iα
s bsjβl

]
= 0, (3.9d)

gisβ
(
V jα
s,lk − V jα

l,sk

)
+ gisα

(
V jβ
s,kl − V jβ

k,sl

)
+ bijβk,hV

hα
l + bijαl,h V

hβ
k + bijβh V hα

l,k

+ bijαh V hβ
k,l + bisβk

(
V jα
s,l − V jα

l,s

)
+ bisαl

(
V jβ
s,k − V jβ

k,s

)
− bhjβk V iα

l,h

− bhjαl V iβ
k,h − bhjβk,l V

iα
h − bhjαl,k V

iβ
h = 0, (3.9e)

gijα,s W s − gisαW j
,s −W i

,sg
sjα + ωisV jα

s − V iα
s ωsj = 0, (3.9f)

−gisαW j
,sl + bijαl,s W

s + bijαs W s
,l − bisαl W j

,s −W i
,sb

sjα
l

+ ωij
,sV

sα
l + ωis

(
V jα
s,l − V jα

l,s

)
− V iα

l,s ω
sj − V iα

s ωsj
,l = 0, (3.9g)

where
∑

represents the cyclic summation over indices.

Proof. We note that the cotangent covering of the system (3.7) is (3.4). In order to obtain the
necessary conditions, it is required to compute lF (P (p)) = 0,

lF (P (p)) =
(
δijDt − V iα

l,j −W i
,j − V iα

j Dα

)(
gjsβps,β + bjsβk ukβps + ωjsps

)
.

By setting the degree of pi to 0 and extracting the terms of degree 0, namely the term pj , we can
obtain (3.9a). Indeed, this is also the compatibility condition of the 0-order system uit =W i(u)
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with respect to the 0-order ultralocal Hamiltonian operator. Continuing with the extraction
of terms of degree 2, the terms pj,αβ, u

l
αpj,β, u

l
αβpj , and ulαu

k
βpj correspond to (3.9b)–(3.9d),

and (3.9e), respectively. Similarly, these conditions are the compatibility conditions for first-
order homogeneous systems admitting hydrodynamic-type operators as their Hamiltonian struc-
tures. Finally, extracting the remaining terms pj,α, u

l
αpj , we can obtain (3.9f)–(3.9g). ■

Remark 3.5. Assuming that ω is non-degenerate, then (3.9a) is equivalent to ∇̃iW j = ∇̃jW i

(this is both the notation and the result of [26]). (3.9d) contains three sets of conditions (one
for α = β = x, one for α = β = y, and one for α = x, β = y). From this observation, we can
reformulate (3.9d) as three “one-dimensional” conditions

gis(κ)
(
V

j(κ)
s,l − V

j(κ)
l,s

)
+ bij(κ)s V

s(κ)
l − V i(κ)

s b
sj(κ)
l = 0, (κ) = 1, 2, 3,

for
(
g(1) = gx, b(1) = bx, V (1) = V x

)
,
(
g(2) = gy, b(2) = by, V (2) = V y

)
and

(
g(3) = gx + gy,

b(3) = bx + by, V (3) = V x + V y
)
. Therefore, if gx, gy and gx + gy are all non-degenerate, (3.9d)

can be written as ∇(κ)
i V

j(κ)
k = ∇(κ)

k V
j(κ)
i .

3.4 Compatibility and Poisson cohomology

It is possible to offer a different interpretation of the property (3.5), which clearly highlights
the relation between sufficiency and necessity of the compatibility condition (3.6). Note that in
this paragraph we denote both the Poisson bivector and the Hamiltonian operator defining it
with the same letter P , to keep a consistent notation with the previous formulae. The notion of
Poisson cohomology was first introduced by Lichnerowicz [16] in the finite-dimensional setting; it
has become a fundamental tool in the study of infinite-dimensional Hamiltonian systems, where
the Poisson bivector and the Hamiltonian operator can be identified (see, for instance, [10, 12]).
Let us briefly recall the notion of Poisson cohomology for a Hamiltonian operator.

Given a Poisson bivector P ∈ Λ2, the condition [P, P ] = 0 guarantees, by the properties of the
Schouten bracket, that its adjoint action on poly-vector fields dP = [P, ·] : Λk → Λk+1 squares
to 0, turning the space of poly-vector fields into a cochain complex known as the Poisson–
Lichnerowicz complex. The linear operator dP is therefore called the Poisson differential,

0 → Λ0 dP−−→ Λ1 dP−−→ Λ2 dP−−→ · · · dP−−→ Λp dP−−→ · · · .

Note that, in the infinite-dimensional case, the Poisson–Lichnerowicz complex does not termi-
nate, while 0-vector fields are identified with local functionals. The cohomology of such complex
is referred to as the Poisson cohomology :

H(P ) =
⊕
p≥0

Hp(P ) =
⊕
p≥0

Ker dP : Λp → Λp+1

ImdP : Λp−1 → Λp
=
⊕
p≥0

Zp

Bp
.

As in any cochain complex, the elements of Zp are called cocycles, while the elements of Bp are
called coboundaries. We also introduce a second grading onHp (resp. Zp, Bp, Λp), corresponding
to the differential order of the elements, by the rule deg u = 0, degDα = 1, deg uiQ = q1+· · ·+qD.
The corresponding homogeneous components of Hp (resp. for Z,B, . . .) are denoted by Hp

d ,(
Zp
d , . . .

)
, d ≥ 0.

A vector field that preserves the Hamiltonian structure (in the sense {X(F ), G}+{F,X(G)} =
X({F,G}), where {·, ·} is the Poisson bracket defined in (2.1)) is called a symmetry of the struc-
ture and it is a 1-cocycle. Indeed, the condition can equivalently be written as LX(P ) = 0 and the
Lie derivative of P along the vector field X is, by the definition of Schouten bracket, −dPX. On
the other hand, a Hamiltonian vector field is obtained by the adjoint action of P on a local func-
tional (the Hamiltonian functional), XH = P (δH) = −[P,H], and it is therefore a 1-coboundary.
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The elements of the first cohomology group H1(P ) are the so-called non-Hamiltonian symme-
tries. They are vector fields that preserve the Hamiltonian structure without being Hamiltonian.

Proposition 3.6. Let X be the evolutionary vector field corresponding to the system F i =
uit − Xi = 0, where {Xi} is the characteristics of X, and P the Poisson bivector defined by
a local Hamiltonian operator. Then condition (3.5) is equivalent to X being a 1-cocycle in the
Poisson–Lichnerowicz complex of P (namely, X is a symmetry of P ).

Proof. This observation is essentially computational. First, let us explicitly write condi-
tion (3.5) in terms of F i = uit −Xi and P = P ij

S ∂
S . For any covector ψ = {ψi}, we have

(lF (Pψ))
j = Dt

(
P ji
S D

Sψi

)
− ∂Xj

∂umQ
DQ
(
Pmi
S DSψi

)
=
∂P ji

S

∂umQ

(
DQXm

)
DSψi + P ji

S DtD
Sψi −

∂Xj

∂umQ
DQ
(
Pmi
S DSψi

)
, (3.10)

where we use the multi-index notation DS to denote Ds1
1 D

s2
2 · · ·DsD

D . Similarly,

(P ∗(l∗Fψ))
j = (−D)S

(
P ij
S

(
−Dtψi − (−D)Q

∂Xm

∂uiQ
ψm

))

= −
[
(−D)SP ijDtψi

]
− (−D)S

[
Pmj
S (−D)Q

(
∂Xi

∂umQ
ψi

)]
. (3.11)

Now we subtract (3.10) from (3.11), utilize the commutativity between spatial and time deriva-
tives [Dα, Dt] = 0 and the skewsymmetry property for P , namely P ji

S D
S = −

(
−DS

)
P ij
S , to

obtain that condition (3.5) is, explicitly,[
P jm
S DS(−D)Q

∂Xi

∂umQ
+
∂Xj

∂umQ
DQPmi

S DS −
(
DQXm

)∂P ji
S

∂umQ
DS

]
ψi = 0 (3.12)

for any ψ = {ψi}.
On the other hand, the cocycle condition dPX = 0 can be expressed using the formalism of

PVAs [6] as{
X(ui)λu

j
}
−
{
uiλX(uj)

}
−X

({
uiλu

j
})

= 0

for all the pairs (i, j) and a λ bracket {uiλuj} = P ji
S λ

S . This can be explicitly computed with
the master formula (2.2), obtaining

P jm
S (λ+ ∂)S(−λ− ∂)Q

∂Xi

∂umQ
+
∂Xj

∂umQ
(λ+ ∂)QPmi

S λS −
(
DQXm

)∂P ji
S

∂umQ
λS = 0. (3.13)

Now it is enough to observe that the total derivatives D in (3.12) may act on both ψi and
differential expressions with u variables. Denoting a total derivative DS acting on ψi by λ

S and
a total derivative acting on a differential expression of the u variables by ∂S (this second case,
indeed, coincides with the definition of ∂ we used in presenting multidimensional PVAs), by the
Leibniz rule we have DS = (∂ + λ)S . This replacement gives exactly (3.13). ■

It is now clear that the sufficiency of condition (3.5) (and of its equivalent form (3.6)) is
closely related to the triviality of H1(P ). Indeed, the existence of any nontrivial cohomology
class denotes the existence of compatible evolutionary systems without Hamiltonian formulation.
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The study of the Poisson cohomology for multidimensional Hamiltonian operators has shown
that, in general, such an object is highly non-trivial [3, 4, 6]; we can therefore expect that we
will need to discard some solutions of system (3.6) to identify bona fide Hamiltonian systems.
An independent knowledge of the Poisson cohomology of the operator can help us in this task.
Conversely, finding the solutions of (3.6) that fail to be Hamiltonian provides an explicit method
to compute the (first) Poisson cohomology of P .

While the Poisson cohomology for homogeneous operators, and in particular for structures of
hydrodynamic type, has been previously studied in the aforementioned references, the one for
nonhomogeneous ones has not been computed yet, at best of our knowledge. We will hereinafter
demonstrate how H1 for a nonhomogeneous operator of order 1+0 is closely related to the bi-
Hamiltonian cohomology of the two homogeneous components BH(P0, P1) [17]. Finally, in the
following section we will show that in the N = D = 2 case (extensively discussed in [6]) it is
isomorphic to the cohomology of the leading order operator.

Proposition 3.7. Let us consider a 1+0-order Poisson bivector P = P1 +P0 with nondegener-
ate P0 (the underscripts, here and in the following, denote the differential degree of the objects).
Then H1

≤1(P ) = BH1
1(P1, P0).

Proof. Let dP (resp. d0 and d1) the Poisson differentials associated to the bivectors P , P0

and P1, and note that degP0 = 0, degP1 = 1. The first observation is that d0 and d1 form
a differential bi-complex, namely d20 = 0, d21 = 0, d0d1 = −d1d0. The first two identities
are obvious because P0 and P1 are Poisson bivectors, while the third one corresponds to their
compatibility in the bi-Hamiltonian sense. All the three identities can be obtained by considering
the homogeneous parts of d2P = (d0 + d1)

2 = 0. Now let us consider elements of Z1
≤1(P ). They

must be vector fields X = X0 +X1 such that dPX = 0; expanding the condition by differential
degree, we have

d0X0 = 0, d0X1 + d1X0 = 0, d1X1 = 0. (3.14)

In particular, then, X0 ∈ Z1
0 (P0) and X1 ∈ Z1

1 (P1). It has been known for long time [12] that,
for invertible bivectors P0 (and trivial de Rham cohomology of the target space M , which we
always assume is a ball) H1(P0) = 0, so there exists a local functional h0 such that X0 = d0h0;
on the other hand, H1

1 (P1) is in general non trivial: therefore, X1 = d1k0+ξ1, where k0 is a local
functional (that, for homogeneity reasons, must be of differential order 0) and ξ1 ∈ H1

1 (P1). We
can now replace the expressions for X0 and X1 in the second equation of (3.14). This gives us
the identity

d0d1k0 + d0ξ1 + d1d0h0 = d0 = (d1(k0 − h0) + ξ1) = 0,

which, thanks to the triviality of H1(P0), is

d1(k0 − h0) + ξ1 = d0h1. (3.15)

This means that, for X = X0 +X1, we can write

X = (d0 + d1)h0 + d1(k0 − h0) + ξ1 = dPh0 + d0h1.

However, this expression shows that the elements of H1
≤1(P ) are of the form d0h1 = d1g0 + ξ1,

where we simply denote k0 − h0 = g0. In particular, we have d20h1 = 0 and, thanks to (3.15),
d1d0h1 = 0, so H1

≤1(P ) = (Ker d0 ∩Ker d1)
1
1. This is exactly the definition of BH1

1(P0, P1), see,
for instance, [10, 17]. ■
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4 Examples

4.1 N = D = 2 systems

4.1.1 The nonhomogeneous Hamiltonian structures

In this section, we focus on the study of the Poisson brackets of 1+0 hydrodynamic type in
the case D = N = 2, along with their compatible systems. In this case we consider the three
possible normal forms for the Hamiltonian structures of hydrodynamic type [11, 20]

P1 =

(
1 0
0 0

)
d

dx
+

(
0 0
0 1

)
d

dy
, P2 =

(
0 1
1 0

)
d

dx
+

(
0 0
0 1

)
d

dy
,

P3 =

(
2u v
v 0

)
d

dx
+

(
0 u
u 2v

)
d

dy
+

(
ux uy
vx vy

)
and the ultralocal structure ω =

( 0 f(u,v)
−f(u,v) 0

)
, which is Hamiltonian for any choice of f .

Now one should investigate which kind of nonhomogeneous structures are allowed starting
with these pairs of Hamiltonian structures (Pi, ω). The research method involves applying
Theorem 2.6 to obtain compatibility conditions, leading to the following results.

Proposition 4.1. The operators P = P1 + ω and P2 + ω are Hamiltonian if and only if f = η
(η is a constant). The operator P3 + ω is Hamiltonian if and only if f = 0.

4.1.2 Compatibility conditions and Hamiltonian equations

We can build upon the results from the previous subsection and search for compatible quasilinear
systems uit = V iα

l ulα +W i. The corresponding method involves computing the seven conditions
outlined in Theorem 3.4.

Proposition 4.2. The solutions of the compatibility system corresponding to the Hamiltonian
operator

P1 + ω =

(
1 0
0 0

)
d

dx
+

(
0 0
0 1

)
d

dy
+

(
0 η
−η 0

)
are as follows:

V 2x
1 = V 1y

2 = 0, V 2x
2 = α, V 1y

1 = β, V 1x
2 = V 2y

1 =
∂2M

∂u∂v
,

V 1x
1 =

∂2M

∂u2
+ α, V 2y

2 =
∂2M

∂v2
+ β, W 1 = η

∂M

∂v
, W 2 = −η∂M

∂u
,

where M is an arbitrary function of u and v, and α, β are arbitrary constants. Therefore, any
candidate Hamiltonian system with Hamiltonian P1 + ω must be of the form

ut =

(
∂2M

∂u2
+ α

)
ux + βuy +

∂2M

∂u∂v
vx + η

∂M

∂v
,

vt =
∂2M

∂u∂v
uy + αvx +

(
∂2M

∂v2
+ β

)
vy − η

∂M

∂u
. (4.1)

Proposition 4.3. The solutions of the compatibility system corresponding to the Hamiltonian
operator

P2 + ω =

(
0 1
1 0

)
d

dx
+

(
0 0
0 1

)
d

dy
+

(
0 η
−η 0

)
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are as follows:

V 1y
2 = 0, V 1y

1 = α, V 2x
1 =

∂2M

∂u2
, V 2y

2 =
∂2M

∂v2
+ α, V 2x

2 =
∂2M

∂u∂v
+ β,

V 1x
1 =

∂2M

∂u∂v
+ β, V 2y

1 =
∂2M

∂u∂v
, V 1x

2 =
∂2M

∂v2
, W 1 = η

∂M

∂v
,

W 2 = −η∂M
∂u

,

where M is an arbitrary function of u and v, and α, β are arbitrary constants. Therefore, any
candidate Hamiltonian system with Hamiltonian P2 + ω must be of the form

ut =

(
∂2M

∂u∂v
+ β

)
ux + αuy +

∂2M

∂v2
vx + η

∂M

∂v
,

vt =
∂2M

∂u2
ux +

∂2M

∂u∂v
uy +

(
∂2M

∂u∂v
+ β

)
vx +

(
∂2M

∂v2
+ α

)
vy − η

∂M

∂u
. (4.2)

Proposition 4.4. The solutions of the compatibility system corresponding to the Hamiltonian
operator

P3 =

(
2u v
v 0

)
d

dx
+

(
0 u
u 2v

)
d

dy
+

(
ux uy
vx vy

)
are as follows:

V 1x
1 = 2u

∂2M

∂u2
+
∂M

∂u
+ v

∂2M

∂u∂v
, V 1x

2 = 2u
∂2M

∂u∂v
+ v

∂2M

∂u∂v
, V 2x

1 = v
∂2M

∂u2
,

V 2x
2 =

∂M

∂u
+ v

∂2M

∂u∂v
, V 1y

1 =
∂M

∂v
+ u

∂2M

∂u∂v
, V 1y

2 = u
∂2M

∂v2
,

V 2y
1 = u

∂2M

∂u2
+ 2v

∂2M

∂u∂v
, V 2y

2 =
∂M

∂v
+ u

∂2M

∂u∂v
+ 2v

∂2M

∂v2
,

where M is an arbitrary function of u and v. Any system compatible with P3 +ω is therefore of
the form

ut =

(
2u
∂2M

∂u2
+ v

∂2M

∂u∂v
+
∂M

∂u

)
ux +

(
u
∂2M

∂u∂v
+
∂M

∂v

)
uy +

(
2u
∂2M

∂u∂v
+ v

∂2M

∂u∂v

)
vx

+ u
∂2M

∂v2
vy,

vt = v
∂2M

∂u2
ux +

(
u
∂2M

∂u2
+ 2v

∂2M

∂u∂v

)
uy +

(
v
∂2M

∂u∂v
+
∂M

∂u

)
vx

+

(
u
∂2M

∂u∂v
+ 2v

∂2M

∂v2
+
∂M

∂v

)
vy.

To demonstrate our results, let us briefly present as an example the proof of Proposition 4.2.

Proof of Proposition 4.2. By computing the conditions in Theorem 3.4, we can obtain the
following results:

W 1
,1 +W 2

,2 = 0, (4.3a)

V 2x
1 = V 1y

2 = 0, (4.3b)

V 2x
2,1 = V 2x

2,2 = V 1y
1,1 = V 1y

1,2 = 0, (4.3c)
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V 1x
2 = V 2y

1 , (4.3d)

V 1x
1,2 = V 1x

2,1 , (4.3e)

V 2y
1,2 = V 2y

2,1, (4.3f)

W 1
,1 = ηV 1x

2 , (4.3g)

W 2
,2 + ηV 2y

1 = 0, (4.3h)

W 1
,2 + ηV 1y

1 = ηV 2y
2 , (4.3i)

W 2
,1 + ηV 1x

1 = ηV 2x
2 . (4.3j)

From (4.3a), it can be deduced that W 1 = ∂P
∂v , W

2 = −∂P
∂u , where P = P (u, v) is an arbitrary

function. Upon observing (4.3c), we deduce that V 2x
2 = α, V 1y

1 = β, where α and β are

arbitrary constants. Continuing with (4.3d)–(4.3f), we can obtain V 1x
1 = ∂2R

∂u2 , V
2y
2 = ∂2R

∂v2
,

V 1x
2 = V 2y

1 = ∂2R
∂u∂v , where R = R(u, v) is an arbitrary function.

Subsequently, substituting these obtained results into the remaining equations (4.3g)–(4.3j),
we can establish the following relationships:

∂2R

∂u∂v
=

1

η

∂2P

∂u∂v
,

∂2R

∂u2
=

1

η

∂2P

∂u2
+ α,

∂2R

∂v2
=

1

η

∂2P

∂v2
+ β.

Finally, by rescaling P to write M = 1
ηP , we obtain (4.1). ■

In Propositions 4.2–4.4, we have obtained the candidate Hamiltonian equations with Hamil-
tonian structure respectively P1 + ω, P2 + ω, and P3 + ω. However, we know that in principle
not all the solutions we found are bona fide Hamiltonian equations. Indeed, we can directly
compare (4.1) with the corresponding Hamiltonian equation for a Hamiltonian h(u, v), which is
of the form

ut =
∂2h

∂u2
ux +

∂2h

∂u∂v
vx + η

∂h

∂v
, vt =

∂2h

∂u∂v
uy +

∂2h

∂v2
vy − η

∂h

∂u

and find that the terms containing the two constant α and β cannot be obtained as Hamiltonian
equations.

Similarly, upon examining the remaining two operators, it can be observed that for both P1+ω
and P2+ω exist non-Hamiltonian solutions, while all the solutions of the compatibility condition
for P3 are Hamiltonian.

4.1.3 Agreement with the Poisson cohomology

Let us recall from Section 3.4 that the non-Hamiltonian systems selected by the compatibility
conditions are in one-to-one correspondence to elements of BH1

1(Pi+ω), and such elements are of
the form dig0+ξ1 (di := dPi), with ξ1 ∈ H1

1 (Pi). The relevant results about the first cohomology
group for the Poisson bracket defined by P1, P2, P3 have been presented in [6]. We have

H1
0 (P1) ∼= R2, H1

0 (P2) ∼= R2, H1
0 (P3) ∼= 0,

H1
1 (P1) ∼= R2, H1

1 (P2) ∼= R2, H1
1 (P3) ∼= 0.

For both P1 and P2, we have that a compatible (but not Hamiltonian) vector field must be
of the form X = d1g0 + ξ1 for ξ1 ∈ H1

1 and a function g0 = g0(u, v), subject to the condi-
tion d0

(
d1g0 + ξ1

)
= 0. The explicit form for a representative in the cohomology classes H1

1 (P1)
and H1

1 (P2) are, respectively,

ξ
(1)
1 =

(
βuy
αvx

)
, ξ

(2)
1 =

(
α(uy − vx)

−βuy

)
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for (α, β) ∈ R2. This choice of names for the constants matches the results of Section 4.1.2.
Explicitly solving d0

(
d1g

(i)
0 + ξ

(i)
1

)
= 0, we find g0 and

X(1) =

(
αux + βuy
αvx + βvy

)
, X(2) =

(
αuy + βux
αvy + βvx

)
,

a 2-dimensional space of solutions exactly corresponding to the non-Hamiltonian solutions
in (4.1) and (4.2).

It should be noticed that the non-Hamiltonian systems uit = X(1)i, corresponding to nonzero α
and β constants in (4.1) and (4.2), can be made trivial by a linear change of the independent
variables (x, y, t), respectively (t 7→ t, x 7→ x+αt, y 7→ y+βt) and (t 7→ t, x 7→ x+βt, y 7→ y+αt).
However, this change of coordinates involves also the time variable, so it is outside the scope
of geometric description captured by the theory of Poisson cohomology, describing evolutionary
systems as time evolution of functions on a manifold and hence involving only spatial variables
and dependent variables (see, for example, [3]).

On the other hand, H1
1 (P3) is trivial, so the only possible non-Hamiltonian vector field must

be of the form X = d1g0 and such that d0d1g0 = 0. This also means that d0g0 ∈ H1
0 (P3),

which is trivial too, implying d0g0 ∈ B1
0(P1). However, d1 is an operator of differential order 1,

therefore B1
0(P1) = 0 and g0 ∈ ker d0, i.e., g0 = const. Finally, constants are in the kernel of d1,

too, which means that non-Hamiltonian solutions of the compatibility equation do not exist.

4.2 3-waves system

Let us consider a real reduction of the 3-waves system (N = 3 in (3.2)), i.e., u12 = −u21 = u3,
etc., as follows

u1t = au1x + du1y + (b− c)u2u3,

u2t = bu2x + eu2y + (c− a)u3u1,

u3t = cu3x + fu3y + (a− b)u1u2, (4.4)

where a, b, c, d, e, f are parameters and distinct from each other.
We need to search for the Hamiltonian structure and the Hamiltonian function of the sys-

tem (4.4). According to the conditions in Theorem 3.4, the compatibility solutions of the
Hamiltonian operator (3.8) can be deduced.

Proposition 4.5. The system (4.4) is compatible with a Hamiltonian operator P if and only if

d = ap+ q, e = bp+ q, f = cp+ q (4.5)

for arbitrary p, q ∈ R and

P =

S 0 0
0 S 0
0 0 S

 ∂x +

pS 0 0
0 pS 0
0 0 pS

 ∂y +

 0 Su3 −Su2
−Su3 0 Su1

Su2 −Su1 0

 , (4.6)

where S is another arbitrary constant.

Proof. By performing calculations (3.9b)–(3.9e), we can deduce that gijα = 0 (i ̸= j), and giiα

depends only on ui. Additionally, we obtain bijαl = 0 (i ̸= j or i ̸= l), and biiαi depends only
on ui. Continuing with the calculation (3.9f), we can further deduce that

giix = Ci, giiy = Di, ω12 =
C1(c− a) + C2(b− c)

b− a
u3,

ω13 =
C1(a− b) + C3(b− c)

c− a
u2, ω23 =

C2(a− b) + C3(c− a)

c− b
u1,
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where Ci and Di are arbitrary constants. Finally, utilizing equations (3.9a) and (3.9g), it can
be deduced that

biiαi = 0, C1 = C2 = C3 = S, D1 = D2 = D3 = S
f − e

c− b
= S

f − d

c− a
= S

d− e

a− b
,

where S is an arbitrary constant.
Therefore, a constraint must be imposed, namely f−e

c−b = f−d
c−a = p. Solutions of this constraint

depend on an additional arbitrary parameter q as in (4.5). By synthesizing the aforementioned
results, we obtain the operator (4.6), which satisfies the Hamiltonian conditions. ■

According to Proposition 4.5, the compatible two-dimensional 3-waves system has the form

u1t = au1x + (pa+ q)u1y + (b− c)u2u3,

u2t = bu2x + (pb+ q)u2y + (c− a)u3u1,

u3t = cu3x + (pc+ q)u3y + (a− b)u1u2. (4.7)

As prescribed by the general theory, the compatibility of the system (4.4) with the Hamiltonian
structure (4.6) is only a necessary condition for (4.4) to be a Hamiltonian system. In fact, (4.4)
is Hamiltonian with a (1+0)-order operator if and only if q = 0 and P as in (4.6), with the
corresponding Hamiltonian functional

H =

∫
a

2S

(
u1
)2

+
b

2S

(
u2
)2

+
c

2S

(
u3
)2
,

where S is an arbitrary constant. Note that the Hamiltonian case is essentially one-dimensional,
as it can be seen by the change of spatial variables x̃ = x, ỹ = px−y from which ∂x+p∂y 7→ ∂x̃.

4.2.1 Relation with the Poisson cohomology

Note that in this example the results of Proposition 3.7 cannot be applied, and we cannot
directly relate the Poisson cohomology of P with the bi-Hamiltonian cohomology of the two
homogeneous Poisson structures. Indeed, for N = 3 we cannot rely either on the isomorphism
between H(P ) and HdR(M) established by Lichnerowicz [16], because P0 is not invertible, or
on the triviality result for the first and second smooth Poisson cohomology group of so∗(3)
proved by Conn [7] and Ginzburg–Weinstein [13], because we consider a broader class of vector
fields: indeed, we can explicitly obtain non-Hamiltonian symmetries of P0, invalidating the
assumption X0 = d0h0. Moreover, a linear change of independent variables as the one discussed
in [3] simplifies the computations for the first-order operator and quickly leads to H1

1 (P1) ∼= R6.
However, the results of the previous paragraph show that there only exist a one-real parameter

family of real 3-waves systems compatible with a Hamiltonian operators but not Hamiltonian –
indeed, we can rewrite (4.7) asu

1
t

u2t

u3t

 =

a
(
u1x + pu1y

)
+ (b− c)u2u3

b
(
u2x + pu2y

)
+ (c− a)u3u2

c
(
u3x + pu3y

)
+ (a− b)u1u2

+ q

u
1
y

u2y

u3y


and the system is not Hamiltonian for q ̸= 0. It can be observed that the parameter q can
be set to 0 by a time-dependent change of independent variables, x̃ = x, ỹ = −y − qt, t̃ = t,
giving ∂t − q∂y 7→ ∂t̃.

The transformation between non-Hamiltonian (q ̸= 0) and Hamiltonian (q = 0) two-dimen-
sional 3-waves equation is not in the class of natural transformations of evolutionary systems, as
we already discussed in the previous example. However, Hamiltonian two-dimensional 3-waves
equations are essentially monodimensional, as explained in the previous paragraph.
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5 Conclusion

In this paper, the necessary conditions for a multidimensional first-order quasilinear system to
admit a Hamiltonian structure are discussed. Firstly, we computed the conditions under which
the (1+0)-order nonhomogeneous hydrodynamic operator satisfies the property of skewadjoint-
ness and [P, P ] = 0 using the PVA theory. Next, leveraging the theory of differential coverings,
we have computed the compatibility conditions of multidimensional first-order quasilinear sys-
tems which admit (1+0)-order operators as their Hamiltonian structures. Finally, two examples
for the N = D = 2 system and a real reduction of the 3-waves system are presented. For the first
case, we consider three Hamiltonian structures of hydrodynamic type along with the ultralocal
structure. Based on the previous conclusions, we investigate which pairs of Hamiltonian struc-
tures possess Hamiltonian properties and search for compatible systems with such structures.
The appearance of certain arbitrary constants in the compatible quasilinear systems indicates
the existence of non-Hamiltonian systems. This consistency aligns with the results of the first
Poisson cohomology group and highlights the essentially cohomological nature of the compati-
bility conditions. For the second case, we have obtained the Hamiltonian operator compatible
with the 3-waves system and the constraints on the parameters in the system by computing
compatibility conditions. Under specific conditions, we have derived the Hamiltonian structure
and Hamiltonian functional of the 3-waves system.

There are natural extensions of this research. On the one hand, multi-dimensional nonlo-
cal Hamiltonian structures and equations, and their corresponding cohomological aspects, have
not been deeply investigated yet – works like Ferapontov and Mokhov’s [21] deal with nonho-
mogeneous nonlocal structures but in one spatial dimension only. A future research direction
is extending our study to equations admitting (weakly) multidimensional non-local structures.
On the other hand, we showed how the Poisson cohomology of the nonhomogeneous Hamil-
tonian structures can be related to the bi-Hamiltonian cohomology of the homogeneous com-
ponents, but in practice we performed explicit computations to obtain our result; computing
bi-Hamiltonian cohomologies in general is very complicated, and until today it has been done
only for homogeneous, first-order structures [5, 17]. Another future research direction is the
study of bi-Hamiltonian cohomology in the nonhomogeneous case.
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