| 
 SIGMA 20 (2024), 082, 40 pages       arXiv:2305.12494     
https://doi.org/10.3842/SIGMA.2024.082 
 
First Cohomology with Trivial Coefficients of All Unitary Easy Quantum Group Duals
Alexander Mang
 Hamburg University, Bundesstraße 55, 20146 Hamburg, Germany
 
 
Received September 24, 2023, in final form August 22, 2024; Published online September 12, 2024
 Abstract 
The first quantum group cohomology with trivial coefficients of the discrete dual of any unitary easy quantum group is computed. That includes those potential quantum groups whose associated categories of two-colored partitions have not yet been found.
 Key words: discrete quantum group; quantum group cohomology; trivial coefficients; easy quantum group; category of partitions. 
pdf (739 kb)  
tex (67 kb)  
 
 
References 
- Banica T., Bichon J., Complex analogues of the half-classical geometry,  Münster J. Math. 10 (2017), 457-483,  arXiv:1703.03970.
 
- Banica T., Bichon J., Matrix models for noncommutative algebraic manifolds,  J. Lond. Math. Soc. 95 (2017), 519-540,  arXiv:1606.01115.
 
- Banica T., Curran S., Speicher R., Classification results for easy quantum  groups, Pacific J. Math. 247 (2010), 1-26,  arXiv:0906.3890.
 
- Banica T., Speicher R., Liberation of orthogonal Lie groups, Adv.  Math. 222 (2009), 1461-1501, arXiv:0808.2628.
 
- Bhowmick J., D'Andrea F., Das B., Dąbrowski L., Quantum gauge symmetries in  noncommutative geometry, J. Noncommut. Geom. 8 (2014),  433-471, arXiv:1112.3622.
 
- Bhowmick J., D'Andrea F., Dąbrowski L., Quantum isometries of the finite  noncommutative geometry of the standard model, Comm. Math. Phys.  307 (2011), 101-131, arXiv:1009.2850.
 
- Bichon J., Franz U., Gerhold M., Homological properties of quantum permutation  algebras, New York J. Math. 23 (2017), 1671-1695,  arXiv:1704.00589.
 
- Cébron G., Weber M., Quantum groups based on spatial partitions, Ann.  Fac. Sci. Toulouse Math. 32 (2023), 727-768, arXiv:1609.02321.
 
- Das B., Franz U., Kula A., Skalski A., Lévy-Khintchine decompositions for  generating functionals on algebras associated to universal compact quantum  groups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 21  (2018), 1850017, 36 pages, arXiv:1711.02755.
 
- Das B., Franz U., Kula A., Skalski A., Second cohomology groups of the  Hopf*-algebras associated to universal unitary quantum groups,  Ann. Inst. Fourier (Grenoble) 73 (2023), 479-509,  arXiv:2104.07933.
 
- Dijkhuizen M.S., Koornwinder T.H., CQG algebras: a direct algebraic approach  to compact quantum groups, Lett. Math. Phys. 32 (1994),  315-330, arXiv:hep-th/9406042.
 
- Franz U., Gerhold M., Thom A., On the Lévy-Khinchin decomposition of  generating functionals, Commun. Stoch. Anal. 9 (2015),  529-544, arXiv:1510.03292.
 
- Freslon A., On the partition approach to Schur-Weyl duality and free  quantum groups, Transform. Groups 22 (2017), 707-751,  arXiv:1409.1346.
 
- Ginzburg V., Calabi-Yau algebras, arXiv:math.AG/0612139.
 
- Gromada D., Classification of globally colorized categories of partitions,  Infin. Dimens. Anal. Quantum Probab. Relat. Top. 21 (2018),  1850029, 25 pages, arXiv:1805.10800.
 
- Hochschild G., Relative homological algebra, Trans. Amer. Math. Soc.  82 (1956), 246-269.
 
- Kustermans J., Locally compact quantum groups in the universal setting,  Internat. J. Math. 12 (2001), 289-338,  arXiv:math.OA/9902015.
 
- Kustermans J., Locally compact quantum groups, in Quantum Independent Increment  Processes. I, Lecture Notes in Math., Vol. 1865, Springer, Berlin,  2005, 99-180.
 
- Kustermans J., Vaes S., Locally compact quantum groups, Ann. Sci.  École Norm. Sup. 33 (2000), 837-934.
 
- Kustermans J., Vaes S., Locally compact quantum groups in the von Neumann  algebraic setting, Math. Scand. 92 (2003), 68-92,  arXiv:math.OA/0005219.
 
- Kyed D., L2-invariants for quantum groups, Ph.D. Thesis, University of  Copenhagen, 2008, available at  https://www.imada.sdu.dk/u/dkyed/PhD-thesis-final-hyperref.pdf.
 
- Kyed D., Raum S., On the $\ell^2$-Betti numbers of universal quantum  groups, Math. Ann. 369 (2017), 957-975,  arXiv:1610.05474.
 
- Maaßen L., Representation categories of compact matrix quantum groups,  Ph.D. Thesis, RWTH Aachen University, 2021, available at  https://doi.org/10.18154/RWTH-2021-06610.
 
- Mančinska L., Roberson D.E., Quantum isomorphism is equivalent to  equality of homomorphism counts from planar graphs, in 2020 IEEE 61st  Annual Symposium on Foundations of Computer Science, IEEE Computer  Soc., Los Alamitos, CA, 2020, 661-672, arXiv:1910.06958.
 
- Mang A., Classification and homological invariants of compact quantum groups of  combinatorial type, Ph.D. Thesis, Universität des Saarlandes, 2022,  available at https://doi.org/10.22028/D291-39286.
 
- Mang A., Weber M., Categories of two-colored pair partitions part I:  categories indexed by cyclic groups, Ramanujan J. 53  (2020), 181-208, arXiv:1809.06948.
 
- Mang A., Weber M., Categories of two-colored pair partitions Part II:  Categories indexed by semigroups, J. Combin. Theory Ser. A  180 (2021), 105409, 43 pages, arXiv:1901.03266.
 
- Mang A., Weber M., Non-hyperoctahedral categories of two-colored partitions  part I: new categories, J. Algebraic Combin. 54 (2021),  475-513, arXiv:1907.11417.
 
- Mang A., Weber M., Non-hyperoctahedral categories of two-colored partitions  Part II: All possible parameter values, Appl. Categ.  Structures 29 (2021), 951-982, arXiv:2003.00569.
 
- Raum S., Weber M., The combinatorics of an algebraic class of easy quantum  groups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17  (2014), 1450016, 17 pages, arXiv:1312.1497.
 
- Raum S., Weber M., Easy quantum groups and quantum subgroups of a semi-direct  product quantum group, J. Noncommut. Geom. 9 (2015),  1261-1293, arXiv:1311.7630.
 
- Raum S., Weber M., The full classification of orthogonal easy quantum groups,  Comm. Math. Phys. 341 (2016), 751-779, arXiv:1312.3857.
 
- Tarrago P., Weber M., Unitary easy quantum groups: the free case and the group  case, Int. Math. Res. Not. 2017 (2017), 5710-5750,  arXiv:1512.00195.
 
- Tarrago P., Weber M., The classification of tensor categories of two-colored  noncrossing partitions, J. Combin. Theory Ser. A 154  (2018), 464-506.
 
- Van Daele A., Discrete quantum groups, J. Algebra 180 (1996),  431-444.
 
- Van Daele A., An algebraic framework for group duality, Adv. Math.  140 (1998), 323-366.
 
- Van Daele A., Wang S., Universal quantum groups, Internat. J. Math.  7 (1996), 255-263.
 
- Wang S., Free products of compact quantum groups, Comm. Math. Phys.  167 (1995), 671-692.
 
- Weber M., On the classification of easy quantum groups, Adv. Math.  245 (2013), 500-533, arXiv:1201.4723.
 
- Wendel A., Hochschild cohomology of free easy quantum groups, Bachelor's  Thesis, Saarland University, 2020.
 
- Woronowicz S.L., Compact matrix pseudogroups, Comm. Math. Phys.  111 (1987), 613-665.
 
- Woronowicz S.L., Tannaka-Krein duality for compact matrix pseudogroups.  Twisted ${\rm SU}(N)$ groups, Invent. Math. 93 (1988),  35-76.
 
- Woronowicz S.L., A remark on compact matrix quantum groups, Lett. Math.  Phys. 21 (1991), 35-39.
 
- Woronowicz S.L., Compact quantum groups, in Symétries Quantiques (Les  Houches, 1995), North-Holland, Amsterdam, 1998, 845-884.
 
 
 | 
 |