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1 Introduction

1.1 Background and context

In [4], Banica and Speicher provided a way of constructing compact quantum groups (in the
sense of [41, 43, 44]) by solving infinite combinatorics puzzles: They introduced three operations
on the collection of all equivalence relations of disjoint unions of finite sets and showed that
each subset which is closed under these operations gives rise to a compact quantum group. An
uncountable number of such sets and of the resulting so-called “easy” quantum groups and, in
fact, all there can be, have since been found in [3, 4, 30, 31, 32, 39]. In [34], Tarrago and Weber
extended Banica and Speicher’s operations to the collection of all “two-colored” partitions,
thus providing even more quantum groups to find. The classification program they initiated to
determine all sets closed under the operations is still ongoing (see [15, 23, 25, 26, 27, 28, 29, 34]).
The construction has since been further extended to two-colored partitions with arbitrarily
many “colors” by Freslon in [13], to “three-dimensional” sets by Cébron and Weber in [8] and
to equivalence relations on graphs instead of sets by Mancinska and Roberson in [24].

An issue that all these constructions share is that it is difficult to tell which of the resulting
compact quantum groups are new and which are isomorphic to already known ones. In partic-
ular, each solution to the combinatorics puzzle does not only provide one quantum group but
an entire countably infinite series, one for each dimension of its fundamental representation.
And already Banica and Speicher themselves observed in [4, Proposition 2.4 (4)] that, at least in
some cases, the quantum groups of one solution are isomorphic to those of another, just shifted
by one dimension. That underlines the importance of studying quantum group invariants with
the potential of telling easy quantum groups apart. Of course, these are often very difficult to
compute like, e.g., the L?-cohomology of [21] of discrete quantum groups. But perhaps at least
the cohomology with trivial coefficients is a reasonable goal to strive for.

The present article computes the first order of the quantum group cohomology with trivial
coefficients of the discrete duals of all of Tarrago and Weber’s so-called unitary easy quantum
groups. That includes even the potential ones whose combinatorics puzzles have not been solved
yet. Said cohomology can be realized as the first Hochschild cohomology of the trivial bimodule
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of an augmented algebra presented in terms of generators and relations. As with any augmented
algebra the space of 1-coboundaries is then trivial and the task thus boils down to solving the
generally infinite system of linear equations in the finitely many generators determining the
1-cocycles.

The results of the present article might be useful for the computation of the second order
begun by Bichon, Das, Franz, Gerhold, Kula and Skalski in [7, 9] as well as Wendel in [40].
The former six investigated the cohomology of certain easy quantum groups out of a different
motivation. In particular, they were interested in the Calabi—Yau property of [14], a generaliza-
tion of Poincaré duality, and the classification of Schiirmann triples. Namely, a quantum group
whose second cohomology vanishes has the AC property, defined in [12], which is important
in the study of quantum Lévy processes because it guarantees the existence of an associated
Schiirmann triple.

In [7, 9], Bichon, Das, Franz, Gerhold, Kula and Skalski had already laid out a potential
strategy for computing the second cohomology of any easy quantum group (later refined in [10]
to address universal unitary quantum groups). This strategy is based on two key insights
and goes as follows. They interpreted quantum group cohomology as Hochschild cohomology
and chose the Hochschild complex as their resolution. Thus, they were faced with having to
compute the quotient of the 2-cocycles by the 2-coboundaries. By a very clever use of the
universal property of the quantum groups in question, they managed to solve the linear system
of equations determining the space of 2-coboundaries. This use of the universal property is the
first key tool (see [7, Lemma 5.4] and [9, Lemma 4.1]).

Understanding the 2-cocycles then allowed them to define a “defect map”, an injective linear
map from 2-cohomology to a certain finite-dimensional vector space of matrices. Thus, at this
point they only needed to determine the image of this defect map in order to compute the
second cohomology. This is where their second key insight comes into play. Namely, although
being interested only in the second-order cohomology, they incidentally also computed the first.
That is because they wanted to make use of the multiplicative structure of the cohomology ring.
They showed that, at least for the specific quantum groups they investigated, each 2-cocycle was
cohomologous to a linear combination of cup products of 1-cocycles. Thus, rather than having
to probe the potentially infinite-dimensional vector space of all 2-cocycles as the domain of the
defect map they could confine themselves to determining the image of the restriction to cup
products, a finite-dimensional space.

In short, when trying to compute the second cohomology of any easy quantum group it might
be helpful, perhaps even necessary, to know the first cohomology. Hence, the main result of the
present article might also constitute an intermediate step in computing the higher cohomologies
of all easy quantum groups.

1.2 Main result

Let M, (C) be the C-vector space of (n x n)-matrices with complex entries and I the identity
(n x n)-matrix. Moreover, call a matrix “small” if each of its rows and each of its columns sums
to 0.

Then, the below theorem extends the results of [7, 9] as well as [40].

Theorem. Let n € N, let G be any unitary easy compact (n X n)-matriz quantum group, let u
be its fundamental representation and let C be the category of two-colored partitions associated
with G. Say that C has property
(1) if and only if each block of each two-colored partition of C has at most two points,
(2) if and only if each block of each two-colored partition of C has at least two points,
(3) if and only if each block of each two-colored partition of C with at least two points contains
as many white lower and black upper points as it does black lower and white upper points,
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(4) if and only if each two-colored partition of C has as many white lower and black upper
points as it has black lower and white upper points.
An isomorphism of complex vector spaces from the first quantum group cohomology of G with
trivial coefficients to the subspace

{v € My(C) A A(C,v)} = CEHE)

of M(C) is defined by the rule which assigns to (the one-elemental cohomology class of) any
1-cocycle n the matriz (n(u; ;) i)eq1,...nyx2, where By (G) and for any v € M,(C) the predicate
A(C,v) are as follows:

IfCis..., then A(C,v) is “...” and B, (G) is ...
1AN2A3 T n?
IAN-2A3N4 dA € C: v — Al is small (n—1)2+1
1AN-2A3AN-4 | vissmall (n—1)2
IAN2A-3N4 JX € C: v — Al is skew-symmetric in(n—1)+1

1 AN2A-3A-4 | ois skew-symmetric sn(n—1)
1A-2A-3A4 | 3X\€C:v— Al is skew-symmetric and small | 2(n—1)(n—2)+1
1 A=2A-3A 4| visskew-symmetric and small %(n —1)(n—-2)
“1AN2A3N4 v is diagonal n

-1 A -3 A4 NeC:v-A[=0 1

-1 A-3AN 4 v=20 0

And these are all the cases that can occur.

1.3 Structure of the article

Excluding the introduction, the article is divided into five sections.

[] Section 2 recalls the definitions of compact quantum groups and the quantum group co-
homology with trivial coefficients of their discrete duals.

[0 Following that, Section 3 provides particular examples of compact quantum groups by
presenting the definitions of categories of two-colored partitions and unitary easy quantum
groups.

[0 For the convenience of the reader, the definition of the first Hochschild cohomology and
important results about it are recalled in Section 4.

[J Section 5 defines the vector spaces of matrices appearing in the main result and computes
their dimensions.

[0 The proof of the main theorem is contained in Section 6. Starting from a characterization
of the first cohomology of a universal algebra recalled in Section 4 the first quantum group
cohomology as defined in Section 2 is computed of the discrete duals of the quantum groups
defined in Section 3.

1.4 Notation

In the following, 0 ¢ N. Rather, Ny = N {0}. Let [k] := {i € N A i < k} for any k € Ny,
in particular, [0] = @. The symbol x will denote the Cartesian product of sets, with the
convention S*° := {@} for any set S. Throughout, all algebras are meant to be associative
and unital. The symbols > and < are used to denote the left respectively right actions of any
algebra on any bimodule. Moreover, given any vector spaces V and W over any field the symbol
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[V, W] will stand for the vector space of linear maps from V to W. Furthermore, for any vector
space X and any (possibly infinite) set E the notation X *¥ will be used for the E-fold direct
product vector space of X (not to be confused with the direct sum X®¥). For any field K and
any set F, the free K-algebra over E will be denoted by K(F). For any R C K(FE), we will write
K(E | R) for the universal K-algebra with generators E and relations R.

2 Quantum groups and their cohomology

The most general kind of “quantum group” in the sense considered here are the locally compact
quantum groups introduced by Kustermans and Vaes in [17, 18, 19, 20]. Two subcategories of
these are Woronowicz’s compact quantum groups defined in [41, 43, 44] and Van Daele’s discrete
quantum groups studied in [35, 36].

While of those two each is equivalent to the dual category of the other via Pontryagin duality,
it is customary to ascribe the cohomology discussed in the present article to the discrete quantum
group rather than its compact dual in order to preserve the analogy with the group case. At
the same time, the particular quantum groups treated in this article are usually considered to
be compact rather than discrete.

And it is in fact most convenient for the purpose of the present article to adopt the latter per-
spective and work with compact quantum groups. The fact that the quantum group cohomology
is actually that of discrete quantum groups will be glossed over by only giving the definition of
the composition of the cohomology functor with the Pontryagin transformation. However, the
custom will be respected when it comes to notation.

2.1 Compact quantum groups

Quantum groups can be defined both on an analytic, namely von-Neumann- or C*-algebraic
level, and on a purely algebraic level. For the purposes of discussing quantum group cohomology,
it fully suffices to consider the latter definition, given in [11]. In that sense, an (algebraic) compact
quantum group G is the formal dual of a Hopf *-algebra (C[@} which admits a faithful positive
integral. A big class of examples is provided in Section 3. For any G, in the present article
C [@] is generated as a *x-algebra by the matrix coefficients of a single finite-dimensional unitary
comodule M. The coefficient matrix u of a choice of such an M is often called a fundamental
representation. The axioms imply in particular that, if u® is the matrix of the conjugate comodule
of M and if u° := u, then (C[CAJ] is generated as an algebra (as opposed to a -algebra) by the
union of the entries of u® and u®. If A is the underlying algebra and € the counit of the Hopf
x-algebra (C[(A?], it is entirely sufficient to think of G as the augmented algebra (A, €) and keep
in mind that for the examples in this article a generating set of A can be given consisting of the
entries of two matrices u® and u® of the same size.

2.2 Quantum group cohomology

One of many equivalent ways of introducing quantum group cohomology is via Hochschild co-
homology. For any compact quantum group G and any p € Ny, if A is the underlying algebra
and e the counit of (C[@] and if .C. denotes the A-bimodule given by the C-vector space C
equipped with the left and right A-actions defined by a ® A — €(a)A respectively A ® a — Ae(a)
for any a € A and A € C, then the p-th quantum group cohomology with trivial coefficients of

the discrete dual G of G is defined as
HP(G) == Hbg(A, .C,),

the p-th Hochschild cohomology of A with coefficients in C..
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3 Categories of two-colored partitions
and unitary easy quantum groups

The quantum groups whose quantum group cohomology is investigated in the present article
are the discrete duals of so-called easy quantum groups. They can be defined via Tannaka—
Krein duality (see [42]) using the combinatorics of so-called two-colored partitions (which will
be explained in Definition 3.6). Throughout the article, it will be important to distinguish the
notions of a two-colored partition and a set-theoretical partition in the following sense.

Notation 3.1. Let X be any set.

(a) A set-theoretical partition of X is the quotient set of any equivalence relation on X or,
equivalently, any set of non-empty pairwise disjoint subsets of X whose union is X.

(b) Given any two set-theoretical partitions p and g of X, write p < ¢ if p is finer than g, i.e.,
if for any B € p there exists C € ¢ with B C C.

(¢) For any two set-theoretical partitions p and ¢ of X, let {(p,q) := 1 if p < ¢ and let
¢(p,q) := 0 otherwise.

(d) Furthermore, for any set-theoretical partitions p; and p2 of X the join of p; and py is
the unique set-theoretical partition s of X which satisfies p; < s and po < s and which is
minimal with that property with respect to the partial order <.

(e) For any mapping f: X — Y from X to any set Y and for any subset B C Y, let f<(B) :=
{z € X A f(z) € B} denote the pre-image of B under f. Moreover, let ran(f) := {f(z) |
x € X} and ker(f) :={f“({y}) | y € ran(f)} be the image and kernel of f, respectively.

(f) For any set-theoretical partition p of X, write m, for the associated projection, the mapping
X — p which maps any x € X to the unique B € p with x € B. And for any second set Y’
and any mapping f: X — Y with p < ker(f), let f/p denote the quotient mapping, the
unique mapping p — Y with (f/p) om, = f.

Example 3.2. If X = {1,2,3,4,5,6}, then p = {{1},{2,4},{3,5,6}} is a set-theoretical par-
tition of X and the projection m, is the mapping X — p, which sends 1 to {1}, sends both 2
and 4 to {2,4} and sends each of 3, 5 and 6 to {3,5,6}.

Moreover, if Y = {a,b,c,d} and |Y| = 4 and if f: X — Y maps each of 1, 2 and 4 to a
and each of 3, 5 and 6 to ¢, then the kernel of f is ker(f) = {{1,2,4},{3,5,6}}. Since then
p < ker(f) the quotient mapping f/p exists and maps both {1} and {2,4} to a and {3,5,6}
to c.

In contrast, if f(4) was not given by a but by b instead, then ker(f) would equal {{1, 2}, {4},
{3,5,6}}, in which case p would not be finer than ker(f) since there would be no C € ker(f)
with {2,4} C C. There would be no f/p with (f/p) om, = f.

3.1 Two-colored partitions and their categories

Two-colored partitions can be defined as follows. For further details see [34], where they were
first introduced, generalizing the (uncolored) “partitions” considered in [4].

Assumptions 3.3.
(a) Let *(-) and ,(-) be any two injections with common domain N and with disjoint ranges.
(b) Let o and e be arbitrary with o # e.

Definition 3.4.
(a) For any {k,¢} C Np, we call II§ := {"a, b | a € [k] A b € [€]} the set of k upper and ¢
lower points.
(b) Given any {k,¢} C Ny, any set X and any mappings g: [k] — X and j: [¢{] — X denote
by ¢g"j the mapping II¥ — X with "a — g(a) for any a € [k] and b +— j(b) for any
be [/].
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(c) o and e are called the two colors and are said to be dual to each other, in symbols, 5 := e
and ® := o. They moreover have the color values o(o) :=1 and o(e) := —1.

(d) For any {k,¢} C Ny, any c: [k] — {o,e} and any 0: [¢] — {o, e} the color sum of (c,0)
is the Z-valued measure ¢§ on II¥ with density —o(c,) on "a for any a € [k] and density
o(dp) on b for any b € [£]. Moreover, X5 := o§(I1}) is called the total color sum of (c,0).

(e) For brevity, let |¢| := k for any k € Ny and any c: [k] — {o, e}.

Example 3.5. Consider ¢: [3] — {o,e} and ?: [4] — {0, e} with ¢ = ¢3 = o and ¢; = @ and
01 =05 =04 =0 and 03 = e.

¢ C2 €3
-2,
® O 1O

1 -1 ;—1\

c \

(o8 ! W S
1 1 :_1 1\\
OO @O

|2
01 02 03 04

The color sum o§ has density 1 at each of "1, .1, ,2 and ,4 and density —1 at each of "2,
*3 and 3. Consequently, the subset S = {"3,.3, .4} of II3 has color sum o§(S) = o§({"3}) +
05({a3}) +05({a4}) = =1 — 141 = —1. The total color sum is X = 1.

Definition 3.6.
(a) A two-colored partition is any triple (¢,d,p) for which there exist {k,¢} C Ny such that ¢
and 0 are mappings from [k] respectively [¢] to {o, e}, the upper and lower colorings, and
such that p, the collection of blocks, is a set-theoretical partition of the set Hé? of points.

blocks {"1,"3,"4, g3}
and {"2, g2} crossing

it = 4 upper points {
k upper point <---- upper colors ¢

p={{al}, {"2,a2}, G

block {®1,%3,%4, 23
{"1,73,4. 3}) { /

VI
) P . dmm e - o1 O ~Q
¢ = 3 lower points { lower colors 0

block {g1}

(b) Any set C of two-colored partitions meeting the following conditions is called a category of
two-colored partitions:
(i) C contains ¢, 3, &3, 1.7, £ and 1.

(ii) C is closed under forming adjoints, that is, horizontal reflection. More precisely,

(iii)

(0,¢,p*) € C for any (c,0,p) € C, where, if {k, ¢} C Ny are such that p is a set-theore-
tical partition of IT}, then p* := {{"b | b€ [¢] A b € B}U{.a|a € [k] A "a € B}}gep

is the adjoint of p.

C is closed under tensor products, i.e., horizontal concatenation. Formally, (¢; ® ¢o,
0] ®02,p1 ® p2) € C for any (¢1,01,p1) € C and (c2,09,p2) € C, where, if k; and ¢;
are such that p; is a set-theoretical partition of HZt for each t € [2], then ¢ ® ¢3 €
{o,o}x(k1+k2) is defined by a — c¢i(a) if a < k1 and a — ca(a — k1) if k1 < a and,
analogously, 0 ®0q € {o, 8} *(1+42) is defined by b+ 0y (b) if b < £1 and b+ 0 (b—£;)
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if £1 < b, and where p1 @ py :=p1U{{"(k1 +a) |a € [ka] A"a € B}U{ (1 +b)|be
[¢2] A ub € B}}eep, is the tensor product of (p1, p2).

AR R S V|

(iv) C is closed under composition, i.e., vertical concatenation in the following sense. If for
two set-theoretical partitions the lower coloring of the first agrees with the upper
coloring of the second, then the composition has the same upper coloring as the first
and the same lower coloring as the second. Any blocks of the first which only include
upper points are inherited by the composition, as are any blocks of the second which
only include lower points. The remaining blocks of the composition are formed by
the following procedure. The collection of all non-empty intersections of blocks of the
first two-colored partition with the set of lower points is a set-theoretical partition
of the latter. Likewise, a set-theoretical partition of the set of upper points of the
second two-colored partition is given by the collection of all non-empty intersections
of blocks of the second two-colored partition with it. If the lower points of the first
two-colored partition and the upper points of the second are identified according to
the numbering, the two set-theoretical partitions just described have a join. For
each element of the join, consider the union of the following two sets. The first is
the (possibly empty) set of upper points of the first two-colored partition which are
contained in a block of the first two-colored partition which intersects the element
of the join if the latter is interpreted as a set of lower points of the first two-colored
partition. Similarly, the second is the (possibly empty) set of lower points of the
second two-colored partition which are contained in a block of the second two-colored
partition which intersects the element of the join if the latter is interpreted as a set
of upper points of the second two-colored partition. Provided that the union of these
two sets is not empty, it constitutes a block of the composition of the two-colored
partitions. And all blocks of the composition arise in one of the three aforementioned
ways. In formulas: (c,¢,qp) € C for any (¢,0,p) € C and (0,¢,q) € C, where if
{k,¢,m} C Ny are such that p is a set-theoretical partition of II¥ and g one of I,
and if s is the join of the two set-theoretical partitions {{j € [¢] A .j € A}}ac,\{2}
and {{i € [{] A" € C}}ce,\{9} of [€], then gp:={Aep ANACII}U{CegACC
MIU{UHANTIE |AcepATFjeB: jeAtUlJ{CNIIY, |[CegATieB: "¢
C}}Bes\{@} is the composition of (q,p).

(¢) For any set G of two-colored partition, we write (G) for the intersection of all categories of

two-colored partitions containing G and we say that G generates (G).

Example 3.7.
(a) Of course, the set of all two-colored partitions forms the maximal category of two-colored
partitions. It follows from [34, Theorem 8.3] that it coincides with (¢, §88é, 58, 3).
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(b) Another category of two-colored partitions is given by (g¢), the category of two-colored
pair partitions with neutral blocks, i.e., all (¢,0,p) with |B| = 2 and ¢§(B) = 0 for any
B € p, (see [26, Proposition 5.3]).

(¢) By [34, Theorem 7.2|, the minimal category of two-colored partitions (&) is the subset of
all elements of (3¢) which are non-crossing. The precise definition of being non-crossing is
unimportant here; informally, it means that blocks can be “drawn without intersections”.

Not much familiarity with two-colored partitions and their categories is required in order
to prove the main result. In particular, the full classification of all categories of two-colored
partitions can remain open. However, we will need to divide the landscape of all possible
categories as follows.

Definition 3.8. We say that any category C of two-colored partitions is
(a) case O if $¢ ¢ C and §§kd ¢ C,
(b) case Bif §¢ € C and §§&d ¢ C,
(c) case H if §3 ¢ C and §3dé € C,
(d) case Sif §3 € C and §{&d € C,
(e) class NNSB if 0§5(B) = 0 for any (¢,d,p) € C and any B € p with 2 < |B|,
(f) class NP if X5 = 0 for any (c,0,p) € C.

—_— — T

The names NNSB and NP reflect the defining conditions of having only neutral non-singleton
blocks respectively only neutral two-colored partitions, where “neutral” means vanishing color
sum. For the motivation behind the names O, B, H and S see Remark 3.22 below.

Remark 3.9. For any of the known categories of two-colored partitions, it is easy to determine
whether it has a given property in Definition 3.8 or not. Any known category which is not case H
is covered by [28] (see Section 7 there for the correspondence to the results of [15, 26, 27, 34])
and any known case-H category by [15, 23, 34] or [25, Chapter 1].

Cases O, B, S. Any category Ry sk in the main theorem of [28] is case O if and only if
f =12}, case B if and only if f = {1,2} and case S if and only if f = N (and never case H). It
is class NNSB if and only if v = {0} or v = £{0, 1} and class NP if and only if s = {0}.

Case H. In [34], neither of the categories Hgion(k) of Theorem 7.1 and Hgyp giob (k) of The-
orem 8.3 is class NNSB. And, each is class NP if and only if & = 0. The category H’ioc
in Theorem 7.2 is both class NNSB and class NP. Each of Hjoc(k,d) from Theorem 7.2 and
Heorp loc(k, d) from Theorem 8.3 is class NNSB if and only if £ = d = 0 and is class NP if and
only if £ = 0.

The case-H categories in [15, Table 1] which are not already covered by [34] are Hpi giob (%, 0),
Hnigiob (K, 8), Hr(k, s), Hr(k, 00) and H 4 (k) (where the categories Hn giob (K, 0) and Hni giob (K, 5)
can each also be written as H4(k) for certain A). None one of these are class NNSB. And any
one is class NP if and only if £ = 0.

In [23], no group-theoretical category R of two-colored partitions in the sense of Defini-
tion 4.1.5 is class NNSB. And, any such category is class NP if and only if Fo(R) in the
sense of Definition 4.3.21 contains no word with different numbers of generators and inverses of
generators.

Lastly, the category Wrg in the sense of the main result of [25, Chapter 1] is both class NNSB
and class NP for any parameter R.

Beyond those case distinctions, we will also need to know the following elementary facts about
categories of two-colored partitions.

Definition 3.10. Dual two-colored partitions are obtained by simultaneous horizontal reflection,
vertical reflection and color inversion. More precisely, given any {k, ¢} C Ny, any ¢ € {o, e} *¥,
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any 0 € {o, }* and any set-theoretical partition p of Hf the dual of (¢,0,p) is the triple (9,¢, D),
where D € {o, e}* is defined by j 0r—j+1, where ¢ € {o,e}** is defined by i — tx_;11, and
where p:={{"(0{—j+1) |je] N JeBU{ (k—i+1)]|ie[k] A" €B}}gep is the dual

LT)-
L

Lemma 3.11. Let C be any category of two-colored partitions.
(a) (0,5,p) € C for any (¢,0,p) € C.

)

) 5684 € C if and only if there exist (¢,0,p) € C and B € p such that |B| > 2.
(d) If ¢ € C and 5384 € C, then §k$ € C.
(e)

Proof. Part (a) is implied by [34, Lemma 1.1 (a)]. Parts (b) and (c¢) are [34, Lemmas 1.3 (b)
and 2.1 (a)] and [34, Lemmas 1.3 (d) and 2.1 (b)], respectively. Part (d) follows immediately
from [34, Lemma 1.3 (b)].

In order to see part (e), use [34, Lemma 1.1 (a)] to first “rotate” any potential upper point
of (¢,0,p) down (in an arbitrary direction). “Disconnect” then each and every point from
its block with the help of [34, Lemma 1.3 (b)]. Following that, keep “erasing” neighboring
points of different colors, as [34, Lemma 1.1 (b)] permits, until no such points remain. None
of these transformations have affected the total color sum. The resulting two-colored partition
is either 3%1%5! or 3! Passing to the adjoint of the dual as allowed by (a) hence shows the
claim. |

Lemma 3.12.
(a) Any case-O or case-H category of two-colored partitions that is class NNSB is class NP.
(b) No case-S category of two-colored partitions is class NNSB.

Proof. (a) Let C be case-O or case-H and class NNSB. Then, for any (¢,0,p) € C and any
B € p on the one hand 2 < |B| by the first assumption and thus on the other hand o§(B) = 0 by
the second assumption. Since that demands X§ = ZBEp 05(B) = 0 the category C is necessarily
class NP.

(b) Since any case-S category contains both §3 and 5§l4, it must also contain JE36s by Lem-
ma 3.11 (d). The fact that { 1,3} € [+]+ and 0%,.,({,1,.3}) = 2 # 0 hence shows that such
a category is not class NNSB. |

3.2 Unitary easy quantum groups

“Easy” quantum groups are now defined by transforming the elements of a given category of
two-colored partitions into relations for the generators of a universal algebra that can be given
the structure of a compact quantum group. To be more precise, an entire series of compact
quantum groups indexed by N arises in this way.

o

Assumptions 3.13. In the following, fix any n € N and any 2n2-elemental set E = {um, ul itz

and define the two families u® := (u} ;) ji)e[npx2 and u® := (u5;) i) en)<2-

The transformation of two-colored partitions into relations is accomplished by the following
formula, where ¢ was defined in Notation 3.1 (¢).
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Notation 3.14. For any {k,¢} C Ny, any ¢ € {o,e}** and d € {o,e}**, any set-theoretical
partition p of IT§ and any g € [n]** and j € [n]*!, let in C(E)

N LN
r5(p)ig = Y. ((pker(g H b= > Cpker(h® i) [Juse .-

i€[n] >4 he[n]*k a=1

For example, the two-colored partitions £ and § induce the trivial relation 0. The relations
induced by 3, 17, §& and T2 will be of the utmost importance.

Lemma 3.15. For any g € [n]*? and j € [n]*2, the following hold:

0
32 = Zujlyz ]27 ‘717]217 r@ (U)@ gl gg E Uh gluh g2

oce
Zuh,l Ujpi — 0j1,j2 15 Iy (U)z 0g1,g01 E up, g1uh g2

Proof. Only the proof for 1%, (1) is given. With the names of Notation 3.14 then k& = 0 and
{=2and ¢ =@ and 0 = oe and p = {{_1,,2}} and g = &. On the one hand, for any i € [n]*?
the set-theoretical partition ker(g®,) can only take two values, namely {{,1,,2}} if i1 = io
and {{,1},{,2}} if i1 # i2. Whereas ker(g",7) even agrees with p in the former case, p is not
finer than ker(g",7) in the latter case. Hence, only if i1 = i does ((p, ker(g"s?)) evaluate to 1.
Consequently, the first of the two sums in the deﬁnition of 1§(p) ;4 effectively runs only over the
pairs (i,7) for i € [n]. That explains the term 7" | ug ;u$, ; in the claim. On the other hand,
k = 0 by convention implies [n]** = {@}. Thus, @ is the only h over which the second sum in
the definition of r§(p); 4 runs. Just like before, ker(h®, j) is then either {{,1,,2}} or {{,1}, {,2}},
depending on whether if j; = jp or not. In other words, ((p,ker(h"j)) = 05, j,- By k =0 the
set of indices a over which the product ﬁa 1uh runs is the empty set @ (whereas the set of
indices h before was not @ but {@}). By common convention, a product with empty index set
is 1. That is how the second term —d;, j,1 in the claim comes about. [

In general, the relations can become quite complicated.

Example 3.16. If k =4 and ¢/ = 5 and ¢ = ceeo and 0 = eceee and p = {{,1},{"2,,2}, {,4,.5},
{"1,"3,"4, 3} },

(c,0,p)

Lboadld

then for any g € [n]** and j € [n]*!,

n
- Sl Sl TR
13(P)jg = 0g1,93091,94 ( ujm) U5y g2 U501 ( U, i ]57> Ojags Wis.g1 Wi g0 55,95 Wiz ga-

i=1

The following definition of “easy” quantum groups is the algebraic version of [33, Defini-
tion 5.1]. Recall that n € N is fixed per Assumptions 3.13.

Notation 3.17. For any set P of two-colored partitions, let

= {15()jgl (c,0,p) €C A g€ ]I A j € [n]*Pl}

and let Jp be the two-sided ideal of C(E) generated by Rp.
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Definition 3.18. For any category C of two-colored partitions, the unitary easy compact quan-
tum group of (C,n) is given by (C(E | R¢),*,A), where *x and A are respectively the unique
anti-multiplicative anti-linear self-map of C(E | R¢) and the unique multiplicative linear map
from C(E | R¢) to the tensor product algebra of C(F | R¢) with itself which satisfy respectively

(WS, +Je) =uS; +Je  and  A(u§,+Jo) = (uf,+ Je) @ (u; + Je)
s=1

for any {i,j} C [n] and ¢ € {o, o}.

Remark 3.19. The definition of unitary easy quantum groups is usually given in terms of
universal x-algebras, not universal algebras, cf. [33, Definition 5.1]. The variant given above is
equivalent, as explained hereafter. For any m € Ny and any e € [n]*"™ let € € [n]*™ be defined
by i > em_ip1 for any i € [m]. Let {k,£} C No, let ¢ € {o,e}*¥ let 0 € {o,8}** let (c,0,p) € C,
let g € [n]** and let j € [n]**. Then, with respect to the *-map in Definition 3.18,

‘ k
— o
(5ig) = Y. (ker(g®iD ][ = D <o ker(h i) ] ] (use )"
i€[n]** b=1 he[n]** a=1
5 LA
= Z C((p)*, ker(g Hujbﬂb Z C((p)*, ker(h™. ) Huhag
i€[n]*t he[n]*k o

= 5((0)" )55

Since C also contains the two-colored partition (¢,9, (p)*) by Lemma 3.11 (a), the switch from
the universal x-algebra to the universal algebra makes no difference.

For the idea of the proof of the following, see [33, Remark 5.2].

Proposition 3.20. For any category C of two-colored partitions, the unitary easy compact quan-
tum group of (C,n) is a compact quantum group whose co-unit is given by the unique multiplica-
tive linear functional € with

6(’11,;'72- + Jc) = (5]'71'

for any {i,j} C [n] and ¢ € {o,e}. It can be seen as a compact (n X n)-matriz quantum group
with fundamental representation induced by u°.

Example 3.21. Let C be a category of two-colored partitions and let G be the unitary quantum
group of (C,n).

(a) If C is the minimal category (@), then G is the free unitary quantum group U, introduced
by Wang in [38]. Its algebra can be presented as the universal algebra generated by F
(fixed in Assumptions 3.13) subject to only the relations of Lemma 3.15.

(b) For C = (3¢), we recover the classical unitary group U,, the universal commutative(!)
algebra subject to the relations of Lemma 3.15.

(¢) Should C be the maximal category (3, 5484, 8, 3) of all two-colored partitions, then G is
the symmetric group S,,.

Currently, there is no complete list of all unitary easy quantum groups because the classifi-
cation of all categories of two-colored partitions is not yet finished.
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Remark 3.22. The names O, B, H and S of the four cases from Definition 3.8 were introduced
by Tarrago and Weber in [34, Definition 2.2] and refer respectively to the orthogonal group O,,
bistochastic group B,,, hyperoctahedral group H, and symmetric group S,. (A “bistochastic”
matrix is understood to be an orthogonal matrix each of whose rows and columns sums to 1.)
Tarrago and Weber showed that for each X € {O, B, H, S} there exists a category of two-colored
partitions which is case X and maximally so. And, in the sense of Definition 3.18, the maximal
case-O category is the one associated with O, the maximal case-B category the one associated
with B,, the maximal case-H category the one associated with H,, and the maximal case-S
category the one associated with S,.

4 First Hochschild cohomology of universal algebras

For the convenience of the reader, Section 4 recalls the definition of and some elementary results
about the first Hochschild cohomology. Throughout, let K be any field.

4.1 First Hochschild cohomology

In Section 4.1, our algebra shall remain abstract. Section 4.2 will then recall which conclusions
can be drawn if a presentation of the algebra in terms of generators and relations is given.

Assumptions 4.1. Let A be any K-algebra and X any A-bimodule.

That means in particular that X is a K-vector space implicitly equipped with K-linear maps
>: A®X — X and <: X®A — X, the left and right actions of A, such that a1>(ag>z) = (a1a2)bx
and (z<ag)<a; = x<(aza1) and (a1 >x) <ag = a1 > (x <ag) for any x € X and {aj,as} C A.

Example 4.2. For any augmentation € of A, i.e., any K-algebra morphism from A to K, the K-
vector space K becomes an A-bimodule X if equipped with the actions defined by a> X\ = €(a)A
respectively A <a = Xe(a) for any A € K and a € A. It is often called the trivial bimodule
of (A,e).

4.1.1 The fundamental definitions

The following definitions were first given by Hochschild in [16].

Definition 4.3.
(a) The X -valued Hochschild 1-cocycles of A are the K-vector subspace Zjg(A, X) of [A, X]
formed by all elements 1 such that for any {a;,as2} C A,
(8177) (a1 ® az) := a1 >n(az) —n(araz) +n(ay) <az = 0.
(b) The X-valued Hochschild 1-coboundaries of A are the K-vector subspace Bjig(A,X) of
[A, X] formed by all elements 1 such that there exists z € X with for any a € A,
n(a) = (0°)(a) == avz —z<a.
It can be seen that n(1) = 0 for any n € Z}q(A, X) and that Bjjg(4, X) is a K-vector
subspace of Zji(4, X).

Definition 4.4. We call the quotient K-vector space Hjiq(A, X) of Z}g(A, X) with respect
to Big(A, X) the first Hochschild cohomology of A with X -coefficients.

Example 4.5. In the case of Example 4.2, i.e., for trivial coefficients, the only 1-coboundary
of A is the zero map because (9°)\)(a) = e(a)\ — Ae(a) = 0 for any XA € K and a € A. Hence,
Zhs(A, X) = Hlg(A, X) in that instance.
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4.1.2 Algebra hom characterization of 1-coycles

1-cocycles can be characterized as certain algebra homomorphisms by means of a folk theorem
recorded as [22, Lemma 1.9]. The latter uses the following construction.

Definition 4.6. Let A 4} X denote the K-vector space A ® X equipped with the K-linear map
K — A® X with 1 — (1,0) and the K-linear map (4 @ X)®? — A ® X defined by for any
{a1,a2} € A and {z1,22} C X,

(a1,21) ® (ag, x2) — (araz, a1 > 9 + 21 <az).
Lemma 4.7. A&} X is a K-algebra.
Proof. (1,0) is a unit because for any a € A and any = € X,

(a,x)-(1,0) = (al,a>0+x<l) = (a,z) = (la,1>x+0<a) = (1,0) - (a,x).
Moreover, for any {aj,as,a3} € A and any {z1,z2, 23} C X,

((a1,21) - (az,x2)) - (a3, z3) = (a1a2,a1 > x2 + 1 <ag) - (a3, x3)

ajazas, (ara2) >3 + (a1 >x2 + 21 <ag) <as)

a1a2a3,a102 >3 + a1 >ro<dasg+ xrp < agag)

(
= (
= (
= (ayazas, a1 > (ag > w3 + 9 <ag) + x1 < (azas))
= (a1,x1) - (agas,azs > x3 + x2 < ag)

= (a1, 21) - ((az, z2) - (a3, ¥3)),

which shows that the multiplication is associative. |

The following is then the folk theorem mentioned in [22, Lemma 1.9].

Lemma 4.8. For any ¢ € [A, X], the map A — A® X with a — (a,v(a)) for any a € A defines
a K-algebra homomorphism A — A &} X if and only if ¢ € Z}is(A, X).

Proof. Ifthe map in the claim is denoted by fy, then f,,(1) = (1,(1)) and for any {a1, a2} C A,
obviously, fy(aia2) = (araz,v(araz)) and

fy(ar) - fy(az) = (a1,(a1)) - (az,¥(a2)) = (a1az, a1 > Y (az) +P(a1) <az).

The two values coincide if and only if ¥(aja2) = a1 > (az) + ¥ (a1) < az, which is to say if and
only if ¢ € Z}4g(A4, X). As then (1) = 0 the claim is true. |

The next result will be required later in the proof of, ultimately, Proposition 4.19.
Lemma 4.9. For any m € N, any {a;}7; C A and any {z;}1", C X, in A&} X,
— — mo— o
Hgl(aivl'i) = Hglaiaz ( p > >T; 4 <H] H-laJ)
i=1

Proof. The cases m € {1,2,3} are, respectively, trivial, the definition of the multiplication of
A @é X and an intermediate result in the proof of Lemma 4.7. Generally,

— m—1 ,
m—1 i1
=1 i E , ( j:laj> B i < (H] H»laJ) (@m, Tm)

=1

— — —
= < mllaz)am,< lal>l>xm+z< ‘>l>xi<1< T;ilaj><am.

Hence, the claim is true. |
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4.2 Conclusions for universal algebras

Using Lemma 4.8, it is possible to give a canonical equational characterization of the 1-cocycles
if a presentation of the algebra in terms of generators and relations is given.

Assumptions 4.10. Let E be any set, R C K(E) arbitrary, J the two-sided ideal of K(FE)
generated by R, and X any K(E | R)-bimodule.

Definition 4.11. Let

F]_}?,R,X: K(E) — [XXE,X] D FERX

be the unique K-linear map with for any m € N and any {e;}!"; C E, if p = ﬁg’;lei, then for
any © € X*F,

_>
ERX Z( 6J+J>[>$ei<]<H§n—i+lej+J>’
=1
. 1,1
and with Fp 5 = 0.

Example 4.12. For any augmentation € of A = K(E | R), if X is the trivial bimodule of (A, ¢)
in the sense of Example 4.2, then for any m € N and any {e;}]"; C E, if p = e;--- ey, then
F é’% « is a linear map which assigns to any family = (z¢)ecp of elements of K the number

Fgﬁq,x@):z( T e(eju))xei.
=1

jelmI\{i}

Definition 4.13.
(a) Let Z}E’RX denote the K-vector subspace of X *¥ of all elements 2 with FE rx(z)=0for
any r € R.
(b) Write B}E, r.x for the K-vector subspace of X *E formed by all elements x for which there
exists z € X with z = (e+ J)>pz—2z<(e+ J) for any e € E.

Lemma 4.14. For any p € K(E) and any z € X, if v € X*F is such that v = (e + J) >z —
z<(e+J) for any e € E, then

17
FE,IJ){,X(IL‘) =p+J)pz—za(p+J).
In particular, B}E,RX is a K-vector subspace of Z%,RX'

Proof. The claimed identity is clear if p = 1. If there are m € N and {e;}}";, € E with
D =e1---em, then by definition,

, mo= —
Fly x (@) =) ( j=16i + J) > Ze, < (H;‘n:i—i-lej + J)

i=1

— —

( 1163+J> ((ei+J)>z—z<1(ei+J))<1(H;”:iﬂej—FJ)
=1

+1 = —
< ;-;llej+J)l>Z<l<H;ni€j+J>
=2

1=

moo—s —
- Z( };llej+J>>z<1(H;?;iej+J)>

=

3
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— —
= <H?ﬁlei+J> >z — 2z (H'Z’-’ilei—i—J) .

Thus, the identity holds for arbitrary p € K(E) by K-linearity. It follows in particular that, if
p € R, then Fé’%X(x) = 0 since p + J is the zero vector of K(E | R) in this case. That proves
the claim about B}E, RX- |

In particular, the preceding lemma enables us to consider the following space.
Definition 4.15. Let H}E,R,X be the K-vector quotient space of ZJIE,R,X with respect to B};’R’X.

The following notation allows referencing easily a multitude of algebra morphisms whose
existence is implied by the universal property of K(FE).

Notation 4.16. Let B be any K-algebra and let (b.)cep € BXF be arbitrary. The evaluation
of p at (be)ecr in B is given by p((be)ecr) := g(p), where g is the unique K-algebra morphism
K(FE) — B with e — b, for any e € E.

Lemma 4.17. For any p € K(E) and any x € X*¥ evaluating p at (e+J, . )eck in the algebra
K(E | R) &} X yields

plle+J.xe)eer) = (p+ J, gl < (@)).

Proof. Because F}E%X(x) = 0 by definition, the claim is true if p = 1. If there exist m € N
and {e;}/",; C E with p = e; - - ey, then the claim follows immediately from Lemma 4.9 and
Definition 4.11. For arbitrary p, the assertion therefore holds by K-linearity. |

Remark 4.18. Given any K-algebra B, any K-algebra morphism f: K(E | R) — B and any
p € K(E),

flp+J)=p((fle+J))eeE),

where the right-hand side is an evaluation of p in B.

Indeed, if g is the unique K-algebra morphism K(E) — B with e — b, := f(e + J) for any
e € E, then f(p+J) = g(p) = p((be)ecr) = p((f(e + J))eck), where the first identity holds by
the uniqueness of g and where the second is nothing but an application of Notation 4.16.

Now we can give a useful characterization of the spaces of 1-cocycles of universal alge-
bras.

Proposition 4.19.
(a) A commutative diagram of K-linear maps is given by

leis(K<E | R), X) — Z}E,R,X

g] IQ

Bjis(K(E | R), X) — BJIE,R,X’

where the horizontal arrows both assign to any element 1 of their respective domains the
tuple

(ne +J))eek-

Moreover, the horizontal arrows are both K-linear isomorphisms. Their respective inverses
both assign to any element x of their respective domains the mapping K(E | R) — X with

p+J— FE’S%,X(QU)

for any p € K(E).
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(b) There exists an isomorphism of K-vector spaces
His(K(E | R), X) —» H}E,R,X

such that the class of any n € Z{s(K(E | R), X) is sent to the class of the x € Z}LR’X with
xe =n(e+ J) for any e € E. The inverse isomorphism sends the class of any x € Z},;,R,X

to the class of the n € Z}(K(E | R), X) with n(p+ J) = Fé”%ﬁx(:c) for any p € K(E).

Proof. (a) Abbreviate A :=K(E | R) and B := A &} X.

Step 1. Upper horizontal arrow is well defined. (And a bit more.) First, we prove that for any
n € Zhg(A, X), if xe :=n(e + J) for any e € E, then n(p + J) = FE’S%’X(JU) for any p € K(E).
That then in particular shows that F é% x(x) =0 for any r € R.

By n € Zig(A, X), according to Lemma 4.8, the rule that a — (a,n(a)) for any a € A
defines a K-algebra homomorphism f: A — B. Hence, for any p € K(FE) it must hold that

P+ Jnlp+J)) = flo+J) =p((fle+ ))eer) = p((e + Jin(e+ J))eer) = p((e + J, 2e)ecr) =
p+ JF é”%’ ¢ (x)) in B, where the second and last identities are implied by Remark 4.18 and

Lemma 4.17, respectively. Hence, Fé’7%7X(x) =n(p+ J) for any p € K(E), as claimed.

Step 2. Alleged inverse upper horizontal arrow well defined. Next, we show that for any
r € X*F with F;}%X(x) = 0 for any r € R there exists n € Zg(A4, X) with n(p+J) = Fé’ﬁiX(x)
for any p € K(E). One consequence of this is then that the alleged inverse upper horizontal
arrow is well defined.

For any r € R because F}%%X(x) = 0 and r € J we can infer by Lemma 4.17 that r((e +
J,Te)ecr) = (J,0) in B. The universal property of A therefore guarantees the existence of
a unique K-algebra homomorphism f: A — B with f(e 4+ J) = (e + J, z¢) for any e € E. More
generally, for any p € K(E) it must hold that f(p+J) =p((f(e+J))ecr) = (p+ J, FE’%’X(x)),
where the two identities are again due to Remark 4.18 and Lemma 4.17. In other words, if
np+J) = Fé’g%,x(@ for any p € K(E), then the rule that a — (a,n(a)) for any a € A
defines a K-algebra homomorphism A — B, namely f. According to Lemma 4.8, that demands
n € Z}(A, X). Hence, the initial claim is true.

Step 3. Upper horizontal arrow has alleged inverse. 1t suffices to prove that for any n €
Zhs(A, X) and any z € X*F with FE’S{X (z) = 0 for any r € R the statements that . = n(e+.J)

for any e € E and that n(p + J) = Fé’%x(x) for any p € K(E) are equivalent. Clearly, the

second implies the first by the fact that F' i‘“’,%, (x) =z, for any e € E by definition. And that
the other implication holds was shown in Step 1.

Step 4. Vertical arrows well defined. That the left vertical arrow is well defined is clear. That
the same is true for the right vertical arrow was shown in Lemma 4.14.

Step 5. Lower horizontal arrow and its inverse. From the definition of the lower horizontal
arrow and that of B}E R x» it is clear that the lower horizontal arrow is well defined. Conversely,
the inverse of the upf)ef horizontal arrow restricts to the inverse of the lower horizontal arrow.
That is because for any x € X *¥ with F}E’}% +(x) = 0forany r € R, for the unique n € Zj4(A, X)
with n(p+ J) = Fé’%x(x) for any p € K(E) and for any z € X, if z. = (e+J)>z—z<(e+J) for
any e € E, then n(p+ J) = Fé”%X(:C) =(p+J)pz—za(p+J) = (3°)(p+J) by Lemma 4.14.

Step 6. Commutativity of the diagram. Because the two horizontal arrows are defined by the
same rule and since the vertical arrows are set inclusions the diagram commutes.

(b) Follows directly from (a) and is only stated for emphasis. [

Example 4.20. Let X be the trivial bimodule with respect to an augmentation ¢ of K(E | R) as
in Example 4.2. Because then Bjjq(K(E | R), X) = {0} by Example 4.5 what Proposition 4.19
implies is that also BJIE,R,X = {0} and that therefore H\i(K(E | R), X) = Z}E’R’X.
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Remark 4.21. If V is the K-vector space underlying the K(E | R)-bimodule X, then the rules
ppuv:=(p+J)>vand v «p:=v<d(p+J) for any p € K(E) and v € V define left respectively
right K(E)-actions » and <« on V' which turn it into a K(E)-bimodule Y, the restriction of
scalars of X along the canonical projection K(E) — K(E | R). With this definition there is no
difference between the linear maps F}% R.X and Féyg?y. (But, of course, there is in general still
a difference between Z% v = V*F and ZL 5 = {x € V*F A Vr e R: Fy' ,(z) =0} and
likewise between BJ, v ‘and B p x-) The aa\;antage of the notation F}, 5 X is that one can
work immediately with the given bimodule X and does not have to introduce Y first. Then again,
talking about ¥ é 2.y can be advantageous too, e.g., in the instance of considering simultaneously
multiple different R and thus multiple different X for which though the restrictions of scalars Y
all happen to be the same.

5 Certain spaces of scalar matrices and their dimensions

The vector spaces of matrices appearing in the main result are characterized and their dimensions
t

are computed. Recall that for any n € N any v € M, (C) is called skew-symmetric if v = —v*.
Definition 5.1. We call any v € M,,(C) small if > i, v;; = 0 for any j € [n] and 3°7_; vj; = 0
for any i € [n], i.e., if each row and each column sums to zero.

Lemma 5.2. For any n € N and v € M, (C) the following equivalences hold.

(a) There is X € C such that v — Al is small if and only if >0 vjs — Y o i Vs = 0 for any
{i,7} C [n]. Moreover, then X =3 o jvjs =y o4 Vs; for any {i,5} C [n].

(b) There is A € C such that v — A is skew-symmetric if and only if for any {i,j} C [n] with
i # j both vj; +v;; =0 and v;; — v;; = 0. Moreover, then A = v;; for any i € [n].

(¢) There are {\1, 2} € C such that v — M1 is skew-symmetric and v — XoI small if and
only if there is A € C such that v — Al is both skew-symmetric and small. Moreover, then
A= A1 = Ao

Proof. For n =1, all claims hold trivially. Hence, suppose 2 < n in the following.

(a) If A € C is such that w := v — AI is small, then for any {i,j} C [n] it follows 0 =
Dot Wis = g1 (Vjs — Adjs) = 3o vjs — Aand 0 = 310 weq = YO0 (vsi — AMsi) =
> Vi — A, whi(}Lh pl?;ove?[ %Z:l Vjs =A= o Vsi. Of course, then Y 0 v — > 0 | vsi =
A=A =0 for any {i,5} C [n].

Conversely, if Y0 vjs — >0 jvs; = 0 for any {7,7} C [n] and if we let X := Y"1, v1
and w := v — A, then for any {i,j} C [n], first, A = >0 vjs = > o, vs; and thus, second,
AOsi) = > o1 Vsi — A= 0. Hence, w is small then.

(b) If for A € C the matrix w := v — A is skew-symmetric, then 0 = w;; + w;j; = (vj; —
A0jq) + (vij — A0i ;) = vj; +vij — 2AJ;,; for any {i,j} C [n]. Consequently, if ¢ # j, this means
0 =wvj; +v;; and, if i = j, we find 0 = 2v;; — 2A, i.e.,, A = v;;. And that implies in particular
vjj —vi; = A—X=0 for any {i,j} C [n].

If, conversely, vj; + v;; = 0 and vj; — v;; = 0 for any {i,j} C [n] with i # j and if we let
A =1 and w := v — AI, then, on the one hand, A = v;; for any ¢ € [n] and, on the other
hand, for any {i,j} C [n], generally, wj; +w;j = (vj; — A0j;) + (vij — A j) = vji +vij — 2N,
which in case ¢ # j simply means w;; + w;; = vj; +v;; = 0 and which for ¢ = j amounts to
wj; +w;; = 2v;; — 2X = 2\ — 2A = 0. In conclusion, w is skew-symmetric then.

(c) One implication is clear. If, conversely, {A1, A2} C C are such that v — A\ I is skew-
symmetric and v — Aol is small, then A\; = vy by (b) and Ay = Z}l:l vj1 = Y.y v1; by (a).
Subtracting the two identities E?:l V1= A1+ 2?22 vj1and > v = AL+ > 51, from
each other therefore yields 0 = 3% ,vj1 — > i, v Since also v;1 = —vy; for each i € [n]
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with 1 < i by (b), that is the same as saying 0 = 237 ,v;1. And >7%_,vj1 = 0 then implies
Ao = A\ + 2?22 v;1 = A1, which is all we needed to see. [ |

Lemma 5.3. For any n € N and each statement A below, the set {v € M,(C) A A(v)} is
a complex vector subspace of M, (C) and has the listed dimension.

A(v) dimc{v € M,(C) A A(v)}
(a) T n?
(b) INeC:v— Al is small (n—1)%+
(¢) wissmall (n—1)2
(d) 3Ix e C:v— A\ is skew-symmetric sn(n—1)+1
(e) v is skew-symmetric sn(n—1)
(f) IAeC:v— A\ is skew-symmetric and small %(n —H(n—-2)+1
(g) v is skew-symmetric and small (n—1)(n—2)
(h) v is diagonal n
(1) INeC:v—-A[=0 1
(7)) v=0 0

Proof. (a) It is well known that, if for any {k,¢} C [n] the matrix E}', € M,(C) has dy ;0.
as its (j,7)-entry for any {i,j} C [n], then the family (Ezk)(&k)eﬂnIIX; is a C-linear basis of
{veM,(C) N A(v)} = M,(C).

(b) Since A can be expressed by a homogenous system of linear equations by Lemma 5.2 (a)

the set {v € M,,(C) A A(v)} is indeed a vector space. Hence, it suffices to show that the mapping
on: Myp—1(C)®C — {v e M,(C) A A(v)} defined by the rule that (u,\) — v, where for any

{i,5} € [n],

wj; + Adji, j<nAi<n,

_Zu“’ j=nANi<n,
Vji = . .

—Zujk, I<nANi=n,

n—1

Zug,k+/\, J=nAi=n,

\ k,0=1

for any v € M,—1(C) and A € C, is a C-linear isomorphism. We begin by proving that ¢,, is
well defined. For any u € M,,_;(C) and A € C, if ¢, (u,\) = v and if w = v — A, then, on the
one hand, for any ¢ € [n] with i < n, by definition,

n—1 n—1 o
Zw] i= Z U],i - /\(Sjﬂ‘) + Ui = ZUM 4 (_ Zu“) -0
= J=1 =1

and also,

n—1 n—1
Zw] n = Z Vjn — )\6]',71) Unn - <_

j=1 i=1

3

-1 n—1
u]‘7k> + Z ugp = 0.

k=1 ke f=1

<
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On the other hand, for any j € [n] with j < n,

n—1 n—1 n—1
S I E S
i=1 i=1 k=1
and also,
n—1 n—1
Zwm = Z (Vni — Ani) + (Unp — < Zum> + Z ug = 0.
=1 i=1 k=1

Together these four conclusions prove that w is small, i.e., that A(v) holds.

Conversely, by Lemma 5.2 (a) a well-defined C-linear map ,: {v € M,(C) A A(v)} —
M,,—1(C) @ C is obtained as follows: For any v € M, (C) with A(v), if A € C is such that v — AT
is small, then v — (u, \), where for any {k,¢} C [n — 1],

Up k= Vg — A0 k-

It remains to show v, o ¢, = id and ¢,, 0 ¥, = id. And, indeed, for any v € M,_1(C) and
A€ C,if v = pp(u, ), then we have already seen that w = v— AI is small. For any {k, ¢} C [n],
by definition, wy, = ver — ANk = (g + Aop k) — Mgk, = ugf, which proves ¢, (v) = (u, A) and
thus ¥, o p, = id.

Conversely, for any v € M, (C) such that A(v) is satisfied, if (u, A) = 9, (v), then we already
know A =Y, v = Y p_y vj for any {k, ¢} C [n] by Lemma 5.2 (a). If v/ = ¢, (u, ), then
for any {4,j} C [n] with i < n and j < n it hence follows by definition v}, = u;; + A;; =
(v — A0ji) + Adj; = v;; as well as by A =>") | vg;,

n—1 n—1 n—1
/
Vpi = — E Up; = — E (vei — Abpi) = A — Zve,i = Up
/=1 /=1 /=1
n
and by A=), v,
n—1 n—1 n—1
/I
?}]m,—_Zuj,k—_Z('Uj,k_)\djk) =A- § :Ujk Ujn
k=1 k=1 k=1

and, lastly,

Zuék“’_/\_Z(Wk_)\de —‘r/\ Z(Zwk— )
k,l /=1 \k=1

k=1

n—1

= (_U&n) + A= Un,n,
1

~
Il

where we have used A = Y_}'_; vy for any £ € [n] in the next-to-last step and A = > ), v, in
the last. Thus, we have shown v' = v and thus ¢, o 1), = id, which concludes the proof in this
case.

(c) By Lemma 5.2 (a), the space {v € M, (C) A A(v)} is exactly the image of M,,_1(C) @ {0}
under @,.

(d) Lemma 5.2 (b) showed that A can be equivalently expressed as a system of homogenous
linear equations, thus proving {v € M,(C) A A(v)} to be a vector space. Let I';, = {(j,1) |
{i,7} C [n] N j <i}U{o} as well as B =Ty = Ej; — Ej; for any {i,7} C [n] with j <
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and Bj = I. Then, the claim will be verified once we show that (BY),er, is a C-linear basis of
{ve M,(C) N A(v)}.

The family (BY)yer, is C-linearly independent. Indeed, if (ay)yer, € C®I' is such that
> er, @y BY =0, then by I =371, EJ,

n g, J <1t
0= Y aGy(El—EY) +asy Eli= > —agg), <Jj o Ej
=1

s X2 v X2 . .
(j,zz\ej[[g]zl (4:)€n] ag, 7] =1
which demands (ay)er,, = 0 since (E};) @ x)e[n)=2 18 C-linearly independent.
It remains to prove that {B} | v € T',} spans {v € M,(C) A A(v)}. If v € M,(C) and
A € C are such that w = v — Al is skew-symmetric, then v;; = —v; j and A = v; ; = v;; for any
{i,j} € [n] with j # i by Lemma 5.2 (b). Hence, if we let ag = A and a(;;) = wj; = vj; for any
{i,7} C [n] with j < 4, then

J:)

agay, J<t Vjg, J <t
Som- Y A i<iyBi= Y -n i<ibmioe
v€Ln GDEMP? | qg, j=i @DEl]*® | A, j=1i

Thus, (BY)+er, is a C-linear basis.

(e) The proof of the previous claim shows that any v € M,(C) is skew-symmetric if and
only if it is in the span of {B7 | v € 'y} and has coefficient 0 with respect to Bj. Hence,
{775 1 {i,5} C [n] A j < i} is a C-linear basis of {v € M, (C) A A(v)}.

(f) All three parts (a)—(c) of Lemma 5.2 combined imply that {v € M, (C) A A(v)} is the
solution set to a homogenous system of linear equations and thus a vector space. Hence, it suffices
to prove that ¢, restricts to a mapping {u € M, _1(C) A u = —u'} — {v € M,(C) A A(v)} and
¥y, to one in the reverse direction.

For any skew-symmetric v € M,_1(C) and any A\ € C, if v = p,(u,\) and w = v — A,
then for any {i,j} C [n] with i < n and j < n we have already seen that w;; = w;;, implying
wj; +w;i; =uj; +u;j =0byu= —u®. Moreover, for the same reason,

Wpj + Wipn = (Un,i - Aén,z) + ('Ui,n — A; n) = Ung t+ Vin

)

n—1 n—1 n—1
_ (— z) . (— z) =S s ) =0
/=1 k=1

(=1
and
Wjn + Wn,j = (Vjin = Ajn) + (Unj = Adn,j) = Vjin + Un;
n—1 n—1 n—1
= <— > “j,k> + (- > U&j) == (ujp+ug;) =0
k=1 /=1 k=1
as well as
n—1 n—1
Wnp + Wnp = 2(Un,n - /\) =2 Z Ugk = Z (uﬂ,k + uk,é) =0,
k=1 El=1

which completes the proof that ¢, restricts to a map into {v € M, (C) A A(v)}.
Conversely, if v € M,,(C) and A € C are such that w = v — AI is skew-symmetric and small,
then A = v;; for any ¢ € [n] by Lemma 5.2 (b). For (u,\) = ¢, (v) and any {k,¢} C [n —1],
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by definition, us; = we i and thus wep +upr = wep + wie = 0 by w = —w'. Hence, 1, maps
{v e M,(C) A A(v)} into {u € M,_1(C) A u=—u'} & C.

(g) As we have just shown, any v € Mc(n) is skew-symmetric and small if and only if it lies
in the image of {u € M, _1(C) A u= —u'} ® {0} under ¢,. And ¢, is a C-linear isomorphism
from this space to {v € M,(C) A A(v)}.

(h) It is well known that (E};)ic[,) is a C-linear basis of {v € M, (C) A A(v)}.

(i) In this case, {v € M,,(C) A A(v)} is the C-linear span of I in M, (C).

(j) Here, {v e M,(C) A A(v)} is the zero C-linear space. [ |

6 First cohomology of unitary easy quantum group duals

This section computes the first quantum group cohomology with trivial coefficients (see Sec-
tion 2) of the discrete dual of any unitary easy compact quantum group (see Section 3). That is
achieved by applying the characterization of the first Hochschild cohomology recalled in Section 4
while using the results of Section 5 as auxiliaries.

6.1 Equations derived from the presentation

Resume the Assumptions 3.13 and the abbreviations from Notations 3.14 and 3.17. In particu-
lar, n and E are then defined. Remark 4.21 motivates moreover the following shorthand.

Notation 6.1.
(a) Let Y be the C(E)-bimodule C with left and right actions given by u, >z = d;
respectively z <uf; = §;,x for any {i,j} C [n], any ¢ € {o,e} and any z € C.
(b) Let F), := Fé’fay for any p € C(E).

e

)

Then, by Section 4 for any category C of two-colored partitions the first cohomology with
trivial coefficients of the discrete dual of any easy quantum group associated with (C,n) can be
realized as a solution space to a system of linear equations involving maps of the form F; for
certain r € C(E) induced by C and n.

Proposition 6.2. For any category C of two-colored partitions, if G is the unitary easy compact
quantum group of (C,n), then there exists an isomorphism of C-vector spaces

Hl(@) s {x € C*¥ AVre Re: Fr(z) =0},

which maps (the one-elemental cohomology class of) any 1-cycle n to the tuple x with x. =
n(e+ Je) for any e € E.

Proof. By Definition 3.18, the algebra underlying the Hopf x-algebra C[G] is the universal

o~

algebra C(E | R¢). According to Section 2.2, the vector space H'(G) is defined as Hjjq(C(E |

~

Rec), X) where X = (C, is trivial bimodule of C(E | R¢) with respect to the counit € of C[G].
By Proposition 3.20, this counit is such that its restriction of scalars along the canonical pro-
jection C(E) — C(E | Rc) is precisely Y. Hence, the claim follows by Example 4.20 and
Remark 4.21. |

The task laid out by Proposition 6.2 is clear. We need to solve the set of linear equations
in C*¥ on the right-hand side of the isomorphism there — for each category of two-colored par-
titions. Eventually, in Section 6.6 namely, solving these equations will require case distinctions
for different kinds of categories of two-colored partitions. However, there are a great number of
simplifications we can make to the equation system before it needs to come to that. Moreover,
this reduces the number of cases we eventually have to consider immensely.
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6.2 Simplifying each individual equation

As a first step towards solving the equations of Proposition 6.2 we consider each equation in
isolation and simplify its definition. In other words, we seek a better formula for the values of the
functional F}. for r of the form 1§(p); , for arbitrary two-colored partitions (c,,p) and g € [n]*!
and j € [n]*Pl.

It will be convenient to have a shorthand for mappings constructed by prescribing a specified
value to a specified point and otherwise inheriting the graph of a given mapping with the same
domain.

Notation 6.3. For any {k,¢} C Ny, any mapping f: Héf — [n], any z € Hf and any s € [n]
write f |, s for the mapping II§ — [n] with z — s and with y — f(y) for any y € IIf\{z}.

Then, combining Notation 3.14 and Definition 4.11 yields the following description of the
functionals we are investigating.

Lemma 6.4. For any {k,{} C Ng, any ¢ € {o,e}*¥ any o € {o,e}*¢, any set-theoretical
partition p of ng’, any g € [n]**, any j € [n]** and any x € C*F, if r = 15(p)jg and f =g
and v = c¢", 0, then

—Z w(z) ifz € ng

_ = Us,f(z)
=) Cpker(f 1z 9)) -

— T (z)
ZEH? s=1 £(2),s

Proof. For any z € C*¥ by Example 4.12,

Sl ker(g" i) fj( 11 6%,%) 7,00

Jb ip

i€[[n]*¢ b=1 “qe[f]
A q#b
k
Z C(p, ker(h'_j))Z( H 5ha,ga> Tyga
he[n]** a=1 “qe[k]
A q#a

After commuting the sums and evaluating the sums over i respectively h (as far as possible),
this is identical to

chpaker ]17'-'ajb—laibajb-i—la"'ajf))) T2
b=1ip=1 ot

n

k
Z Z p,ker (gla"'aga 1ahaaga+1a~-->g/€) l]))x ‘a

Up
ta 9a
a=1 hg=1

That agrees with the right-hand side of the claimed identity. |

While Lemma 6.4 has given a more concise form to the equations under investigation, it can
be improved upon significantly. Firstly, one can give a simpler criterion for when in the sum on
the right-hand side of the identity in Lemma 6.4 a factor {(p,ker(f |, s)) is non-zero.

Lemma 6.5. For any {k,{} CNy, any set-theoretical partition p ofﬂlg, any mapping f: 11§ — [n],
any z € 11§ and any s € [n], the statements p < ker(f |, s) and

P\mp(2)} U {mp(2)\{z}, {z})\{@} <ker(f) A mp(2)\{z} € fT({s})

are equivalent.
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Proof. We show each implication separately. Below, we will use many times the fact that for
any t € [n],

(flzs)"({tH\{z} ={a € llf A (flzs)(a) =t A a#z}
:{aeﬂf A f(a)=t N a#z}
= T {tH\{=}

Step 1. First, suppose p < ker(f |, s). Then, there exists ¢ € ran(f |, s) such that
m(z) C (f Iz )T ({t}). Because z € m,(z) this requires z € (f |, s)"({t}) and thus t = s
by (f 1z s)(z) = s. It follows m,(z) C (f |, s)* ({s}) and thus in particular m,(z)\{z} C (f |,
$){sH\{z} = fC{s}H)\{z} C f<({s}), which is one half of what we had to show.

It is trivially true that {z} C f<({f(z)}) € ker(f). We have already seen that m,(z)\{z} C
< ({s}) € ker(f). For any B € p with B # m,(z), i.e.,, z ¢ B, there exists by assumption
t' € ran(f |, s) with B C (f |, ) ({t'}). We conclude B = B\{z} C (f |, s)" ({t'})\{z} =
FEH{EH\{z} € fFE({t'}) € ker(f). Thus, the other half of the claim, p\{my(z)} U {m,(z)\{z},
{z}}\{@} < ker(f), holds as well. That proves one implication.

Step 2. In order to show the converse implication we assume that both p\{m,(z) }u{m,(z)\{z},
{z}}I\{@} < ker(f) and mp(z)\{z} C f<({s}) and then we distinguish two cases.

Case 2.1. If {z} € p and thus m,(z) = {z} and m,(z)\{z} = @, then the assumption is
simply equivalent to the statement p < ker(f). Naturally, {z} C (f |, s)*({s}) € ker(f) by
(f 1z s)(z) = s. For any B € p with B # {z} there exists by our premise a value ¢ € ran(f) with
B C f({1}). Thus, also B = B\{z} C /= ({th\{z} = (/ 1= )" ({t)\{z} € ker(f 1» 5). In
conclusion, p < ker(f . s).

Case 2.2. In the instance that {z} ¢ p the initial assumption simplifies to the statement
pP\{mp(z)} U{mp(2)\{z}, {z}} < ker(f) and m,(z)\{z} C fT({s}). The latter condition implies
(@ z} © £ ((sH\z} = (f Lo )" ([sD\ ]2} € (f ba 5 ({s}) and thus by (£ L )(z) = s
also mp(z) = mp(2)\ {2} U {2} C (f Lo )~ ({sD) U {2} € (f Lo ) ({s}) € ker(f 1z 5). On the
other hand, for any B € p with B # m,(z), which is to say z ¢ B, there exists by assumption
t € ran(f) with B C f({t}). It follows B = B\{z} € f~({t\z} = (f bz )" ({t})\{z} C
(fdzs)T({t}) € ker(f |- s). Hence, altogether, p < ker(f |, s), which concludes the proof. W

Lemma 6.5 can now be used to give a necessary criterion for the right-hand side of the identity
in Lemma 6.4 to be non-zero as a whole. Namely, p and f must meet one of three conditions:
(i) The labeling f maps any points belonging to the same element of p to the same value.
(ii) There is an element of size two of p whose elements f maps to different values. Besides
that f is as in (i).
(iii) There is an element of p of size three or larger, all but one of whose elements are assigned
the same value by f and whose remaining element f sends to a different value. Apart from
that, f is as in (i).

Definition 6.6. Let {k, ¢} C Ny, let p be any set-theoretical partition of IT} and let f: IIf — [n].
Then, we say that (p, f) is

(a) case R1 if p # @& and p < ker(f),

(b) case R2 if there exists {z1,2z2} € p such that f(z1) # f(z2) and such that for any A € p
with A # {z1,2z2} there is B € ker(f) with A C B, in which case the set {z1,z2} is called
critical data of (p, f),

(c) case R3 if there exist Z € p and z € Z and s € [n] such that 3 < |Z|, such that f(z) # s,
such that f(y) = s for any y € Z with y # z and such that for any A € p with A # Z there
is B € ker(f) with A C B, in which case (Z, z, s) are called critical data of (p, f),

(d) case R4 otherwise.
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Example 6.7. For 3 < n, consider k := 4 and ¢ := 5, the set-theoretical partition p := {{,1,"1},
"2}, {.2,.3,"3}, {"4}, {.4, .5} } of I} and various different mappings f: II¥ — [n] which all have
in common that each of ;2, .4 and "3 is mapped to 1, that each of 1, "1 and "2 is mapped to 2
and that "4 is mapped to 3. Thus, at most the values of 3 and 5 differ between different f:

fo2 o2 1 3
Hl

m
fo2 1 1

(a) If f(;3) = f(;5) =1, then (p, f) is case R1.

(b) If f(;3) =1 and f(,5) = 2, if z; := 4 and z := /5, then (p, f) is case R2 with critical
data {21722} = {.4,.5}.

(c) If f((3) =2 and f(,5) =1,if Z:={,2,.3,"3}, if z:= 3 and s := 2, then (p, f) is case R3
with critical data (Z,z,s) = ({,2,.3,"3}, {3}, 2).

(d) If f(;3) = f(;5) =2, then (p, f) is case R4.

Lemma 6.8.
(a) In each of the cases R2 and R3 critical data are unique.
(b) The cases R1-R4 are mutually exclusive and exhaustive.

Proof. Let {k,} C Ny, let p be any set-theoretical partition of IT§ and let f: I} — [n] be
arbitrary.

(a) Case R2. Suppose that (p, f) is case R2 and that both {z1,z2} and {z},z,} are critical
data of (p, f). If {z1,z2} # {2], 2} were true, then by the assumption on {z1,z2} there would
exist B € ker(f) with {2}, 25} C B, meaning f(z}) = f(z}), contrarily to our assumption. Hence,
{z1,2z2} = {2, 25} must be true instead.

Case R3. Now, let (p, f) be case R3 and let both (Z,z,s) and (Z',2',s") be critical data
of (p,f). If Z # Z' held, the assumption on Z would imply the existence of B € ker(f) with
Z' C B. In particular, it would follow f(y') = f(2') for any y' € Z’ with y’ # 2/, of which there
exists at least one by 3 < |Z'|. Because that would contradict the assumption, we must have
Z = 7' instead.

Furthermore, supposing z # z’ demands of any y € Z\{z,z'} both f(y) = s by the assumption
on z and s and f(y) = ¢’ by the one on z’ and s'. Hence, as Z\{z,z'} # @ by 3 < |Z/|, if 2’ # z,
then s = s’. That would be a contradiction because the property of z’ also requires s # f(z) = s
in that case. Hence, only z = z’ can be true.

Lastly, because the assumptions on s and s’ imply f(y) = s respectively f(y) = s’ for any
y € Z with y # z = 2z’ and because Z\{z} # &, we must have s = s" as well.

(b) It is enough to prove that cases R1-R3 are mutually exclusive. If (p, f) is case R2, then it
cannot be case R1 because f(z1) # f(z2) excludes the existence of B € ker(f) with {z1,z2} C B,
which would be necessary for p < ker(f) to hold. Similarly, (p, f) being case R3 forbids it being
case R1 as well because the existence of y € Z\{z} # @ with f(z) # s = f(y) does not
allow any B € ker(f) with Z C B to exist, which p < ker(f) would require. Lastly, if (p, f)
were simultaneously case R2 and case R3, then {z;,z2} # Z would follow from 3 < |Z|, thus
demanding by the property of Z the existence of B € ker(f) with {z1,z2} C B, in contradiction

to f(z1) # f(z2)- |

Lemma 6.9. For any {k,{} C Ny, any set-theoretical partition p of Hf and any mapping
f: ¥ — [n] there exist z € 1I¥ and s € [n] such that p < ker(f l. s) if and only if (p, f)
18 not case R4.



First Cohomology with Trivial Coefficients of All Unitary Easy Quantum Group Duals 25

Proof. Each implication is shown individually.

Step 1. First, we suppose that (p, f) is not case R4 and deduce the existence of z € H? and
s € [n] with p < ker(f |, s). By Lemma 6.5, that is the same as finding z € II§ and s € [n] such
that p\{mp(2)} U {mp(2)\ {2}, {z}}\{&} < ker(f) and mp(2)\{z} C /= ({s}). By Lomma 6.8 (b)
the pair (p, f) is case R1, case R2 or case R3. These three cases are treated individually.

Case 1.1. If (p, f) is case R1, then by p # & we can find and fix some z € ng and put s := f(z).
From p < ker(f), it then follows mp(z) C f“ ({s}) and thus in particular m,(z)\{z} C f({s}),
which is one part of what we have to show. The other part, p\{m,(z)} U{mp(z)\{z}, {z}}\{2} <
ker(f) is a consequence of the fact p\{m,(z)} U {m,(2z)\{z}, {z}}\{@} < p and the assumption
p < ker(f).

Case 1.2. Next, let (p, f) be case R2 and let {z;,z2} be its critical data. If we define z := z;
and s := f(z2), then m,(z) = {z1,22} and thus 7y(z)\{z} = {22} € fT({s}). On the other
hand, p\{m,(2)} U {my(2)\{z}, {z}}\{9} = p\{{z1,22}} U {{z1}, {z2}} < ker(f) because, by
assumption, for each A € p\{{z1,2z2}} there exists B € ker(f) with A C B € ker(f) and, of
course, {z1} C [ ({f(z1)}) € ker(f) and {zo} C [ ({s}).

Case 1.5. Finally, let (p, f) be case R3 and let (Z,z, s) be its critical data. Then, obviously,
m(z)\{z} = Z\{z} C f“({s}) by assumption. And, p\{my(z)} U {my(2)\{z}, {z}}\{@} =
p\{Z}J{Z\{z},{z}} < ker(f) because, by assumption, for any A € p\{Z} there exists B € ker(f)
with A C B and because Z\{z} C f“({s}) € ker(f) and {z} C f<({f(z)}) € ker(f). That
proves one implication.

Step 2. In order to show the converse implication, we assume that there exist z € H}? and
s € [n] such that p\{m,(z)} U {mp(2)\{z}, {z}}\{@} < ker(f) and m,(z)\{z} C f<({s}) (which
we can by Lemma 6.5) and derive that (p, f) is case R1, case R2 or case R3, thus proving that
(p, f) is not case R4 by Lemma 6.8 (b). Note that the existence of z requires p # @. Again,
a case distinction is in order.

Case 2.1. First, let f(z) = s. Then m,(z) = mp(z)\{z} U {z} C f({s}) € ker(f) by
mp(@\z} C Fo({s}). Thus, p < ker(f) by p\{mp(=)} U {my(@)\ (2}, {2\ {2} < ker(f). Tn
other words, we have shown (p, f) to be case R1.

Case 2.2. Similarly, if m,(z) = {z}, then p = p\{my(2)} U {mp(2)\{z}, {z}}\{@} < ker(f).
Thus, (p, f) is case R1.

Case 2.3. If f(z) # s and |mp(z)] = 2, then we put z; := z and we let zp be the
unique element of m,(z)\{z}. It follows {z2} = m,(z)\{z} C fT({s}) and thus f(z2) =
s # f(z) = f(z1) by our assumptions. And, the premise p\{{zi,z2}} U {{z1},{z2}} =
pP\{mp(z)} U {mp(2)\{z}, {z}}\{@} < ker(f) means that for any A € p with A # {z;,22} there
exists B € ker(f) with A C B. Hence, (p, f) is case R2 with critical data {z1,z2}.

Case 2.4. The last remaining possibility is that f(z) # s and 3 < |my(z)|. Putting Z
mp(z) implies Z\{z} = m,(z)\{z} C f<({s}) by assumption, which is to say f(y) = s # f(z)
for any y € Z with y # z. On the other hand, since p\{Z} U {Z\{z}, {z}} = p\{mp(2)} U
{mp(z)\{z}, {z}}\{@} < ker(f), for any A € p with A 5 Z there exists B € ker(f) with A C B.
In other words, (p, f) is case R3 with critical data (Z, z, s). Thus, both implications are true. W

Example 6.10. For each of the first three f of Example 6.7 (but not the fourth) one can
give at least one (z,s) € II¥ x [n] such that p < ker(f J. s) (and, in fact, ker(f |, s) =

{{"1,%2,.1}, {"3,42,.3,44, .5}, {"4}})-

2 2 1
(p, f) = TJ
2 1 g

)

(fJ/z 3) =

3
|
ker
m
) 1 f(a5)
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(a) If f(;3) = f(;5) =1, then let z := 3 and s := 1.
(b) If £(,3) =1 and f(;5) =2, then let z:= 5 and s := 1.
(¢) If f(,3) =2 and f(,5) =1, then let z:= 3 and s := 1.

Finally, in each of the three cases R1-R3 the next lemma explains for which (z, s) the corre-
sponding summand on the right-hand side of the identity in Lemma 6.4 has a non-zero factor

C(p, ker(f 1z s)).

Lemma 6.11. Let {k,¢} C Ny, let p be any set-theoretical partition of Hf, let f: Hf — [n] be
any mapping and let z' € 1§ and s' € [n] be arbitrary.
(a) If (p, f) is case RI1, then p < ker(f ly ') if and only if either |mp(2')] = 1 or both
2 < |mp(2)| and &' = £(2).
(b) If (p, f) is case R2 with critical data {z1,z2}, then p < ker(f | &) if and only if either
both z' = z1 and s’ = f(z2) or both 2’ =z and s’ = f(z1).
(¢) If (p, f) is case R3 with critical data (Z,z,s), then p < ker(f |, ') if and only if 2/ = z
and s’ = s.

Proof. By Lemma 6.5, the statement p < ker(f |, s') is equivalent to the conjunction of
P\{mp(2)} U {mp(2)\{2'}, {2/} \{ @} < ker(f) and mp(2')\{2"} € 7 ({s'}).

(a) Because p\{my(2")} U {mp(2)\{2'}, {2’} }\{@} < p, in the situation of (a), where p <
ker(f), we only need to determine when m,(2')\{z'} C f<({s'}). If |my(2')] = 1, that is,
mp(2)\{z'} = @, this condition is trivially satisfied. And if 2 < |m,(2')|, then my(2")\{z'} C
F<({s'}) holds if and only if s" = f(2) because m,(2")\{z'} C m,(2") C f<({f(2')}) by assump-
tion. That proves (a).

(b) In case (b), if 2’ ¢ {z1, 22}, then {z1,22} € p\{my(2) }U{mp(2")\{2'}, {2’} }\{@}. However,
because f(z1) # f(z2) there cannot exist any B € ker(f) with {z1,z2} C B. Hence, z’ ¢ {z1,22}
excludes p\{mp(2')} U {m,(2")\{2z'}, {Z'}}\{@} < ker(f) and thus p < ker(f | &').

Hence, p < ker(f |, s") requires the existence of ¢ € [2] with 2z’ = z;. If so, then p\{m,(z")} U
{mp(Z)\{2'}, {2’} }\{@} = p\{{z1,22}} U {{z1},{z2}} < ker(f) since by assumption for any
A € p with A ¢ {z1,z2} there exists B € ker(f) with A C B. Thus, in this case, p < ker(f J,/ )
is equivalent to {z3_;} = {z1,z2}\{zi} = m(2")\{2'} C fC({s'}), i.e, to f(z3_;) = &, just
as (b) claimed.

(c) Finally, under the assumptions of (¢), whenever 2’ ¢ Z, then Z € p\{m,(2’) }U{m,(2")\{2'},
{Z}}\{@} £ ker(f) by the existence of y € Z\{z} # @ with f(z) # s = f(y). Consequently,
pLker(fly )itz ¢ Z.

For z' € Z, because by assumption there is for any A € p with A # Z = m,(2') a B €
ker(f) with A C B the condition p\{m,(z’)} U {m,(2")\{2'}, {2’} }\{@} < ker(f) simplifies to the
existence of B € ker(f) with m,(2")\{z'} C B, which is subsumed by the second condition. In
other words, if z’ € Z, then p < ker(f |, &) if and only if m,(2")\{z'} C f<({s'}).

If 2/ # z, then m,(2")\{2'} € [ ({s'}) because, by 3 < |Z|, there exist y € Z\{z,2'} with
f(y) = s # f(z) by assumption. Hence, p < ker(f |,/ §') requires z’ = z. And in that case it
is equivalent to Z\{z} = m,(2")\{z'} C f< ({s'}), which is satisfied if and only if s’ = s because
f(y) = s for any y € Z\{z} # @. Thus, the assertion of (c) is true as well and, thus, so is the
claim overall. |

In regard of Lemmas 6.9 and 6.11, we can now improve upon Lemma 6.4 as follows.

Lemma 6.12. Let {k,¢} C Ny, let ¢ € {o,8}*F let d € {o,e}** let p be any set-theoretical
partition of T1¥, let g € [n]*¥, let j € [n]*¢, let r = 15(p)jg, let f = g% J, let o := "0, and
let x € C*F,
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(2) If (p, f) is case R1, then

T w@  ifz€f

n
us,z
B2 2,0 e

T w(z)

zEHf s=1 Us(2),s
Almp(z)|=1
—1 ifzellk
+ Z 1 : Y L mez) ’
sttt if z € 11, F(@).f(2)
A2<|mp(2)]

(13) If (p, f) is case R2 with critical data {z1,z2}, then

—T w(z) ifz1 € H’S —T w(zy) if z9 € ng
. f(z2),f(z1) f(z1),f(z2)
F.(z) = . 0 + , 10
T () if z1 € 11 T wes) if z9 € 11
f(z1),f(z2) f(z2),£(z1)

(z3t) If (p, f) is case R3 with critical data (Z,z,s), then

: k
—xu:,;z()z) if z € Il
Fr(x) = 7 . 0
T w(z) if z € Il
Ui ().
(w) If (p, f) is case R4, then F.(z) = 0.

Proof. By Lemma 6.4,

n —.’Eum(zl) if Z, (S ng

s’ f(2
Fr(@)= Y > Cp.ker(f Jur 8)) o
z’Elec s'=1 xut;((z//)) ’ ifz'e HE

From this identity, we see immediately that F,.(z) # 0 requires the existence of z € Hi? and
s € [n] with p < ker(f |, s). Thus, Lemma 6.9 verifies (iv). It remains to treat the cases
(i)—(ii).

(i) In the situation of (i), for any z’ € II§ and s’ € [n] we know from Lemma 6.11 (a) that
p < ker(f |, ¢') if and only if either |m,(z')| = 1 or both 2 < |m,(2')| and s = f(z’). Thus, the
above formula for F,.(z) simplifies to the one in (7).

(ii) Under the assumptions of (ii), Lemma 6.11 (b) tells us for any z’ € II§ and s’ € [n] that
p < ker(f |, &) if and only if either both z’ = z; and s’ = f(z2) or both 2’ = z3 and s’ = f(z1).
That proves the formula for F.(z) in (i7).

(iii) Finally, if the premises of (i) are satisfied, then for any z’ € II§ and s’ € [n] Lem-
ma 6.11 (¢) lets us infer that p < ker(f J,s ¢') if and only if 2’ = z and ' = s. In particular, at
most one summand is non-zero. It follows that F,(x) is given by the expression in (ii7). [

6.3 Halving the number of variables

Until now we have only considered each equation in the systems from Proposition 6.2 in isolation.
The next simplification will take into account that the two-colored partitions £3, 17, §& and 7.2
are present in any category of two-colored partitions. That fact can be used to eliminate half
the variables (as, e.g., in [22, Lemma 1.7]). This is the only explicit elimination of variables that
will be made in the entire proof of the main theorem.
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Lemma 6.13. For any g € [n]*? cmdj € [n]*? and any x € C*F if r is given by
(a) r j.o, then F.(z

_"L‘u :,Uc

(0) ro@ogmij @, then F; (mi = asuh ” + 1z, - ]1,
71572 12 J1

(c) % (UJ)g,g, then Fp.(x) = —$u92 b~ Tug

(d) 18 (U)g,g, then Fp.(x) = WSy 0~ Tus

Proof. Only the proof of (a) is given. The others are similar. Using Definition 4.11, the result
of Lemma 3.15 that r = 1%, (M) ;5 = Yy ul ,ul ; — d;, j,1 implies

=1 "j1,0 " J2,i

n n
FT(I') = 2 :($“;1 J2 i + u]h x%z) - Z(éj%i x“%l + 5j1’i xu;zl) - :L‘u]l 2J2 + l’u;%h
i=1 i=1
because F} = 0. [ |

Notation 6.14. Let v € M, (C) be arbitrary.
(a) Let 2V € C*F be such that for any {i,j} C [n],

v

Ly

v

=V and Tye = —Uj ;.

o .
Jt 3t

(b) For any set P of two-colored partitions let A(P,v) denote the statement that F,.(z") =0
for any r € Rp.

Ultimately, it will be shown that in the case of categories of two-colored partitions the pred-
icates A defined in Notation 6.14 are equivalent to those used in the formulation of the main
theorem.

Proposition 6.15. For any category C of two-colored partitions, if G is the unitary easy compact
quantum group of (C,n), then there exists an isomorphism of C-vector spaces

HY(G) «— {v e M,(C) A A(C,v)},

which maps (the one-elemental cohomology class of) any 1-cocycle n to the matriz v with v;; =
n(us,; + Je) for any {i,j} C [n].

Proof. By Proposition 6.2, it suffices to show that the rule z (l‘u;?i)(jﬂ;)e[[n]]xQ gives a C-linear
isomorphism 7

{z € C*¥ AVreRe: Fr(x) =0} — {ve M,(C) AVr € Re: Fp(z¥) =0}.

The claimed isomorphism is well defined: Let x € C*¥ be such that F,(x) = 0 for any r € Re.
Then, for any j € [n]*? because r%,(7);» € R in particular

Tug o + Tus o = 0
by Lemma 6.13, i.e., zys =~ = —y Hence, if we let v := (xu )G.)eln]*2s then for any

.7
{i,j} C [n] by definition not only «TZ = vj;i = Tyg, but also

v

L]
Yji

Y = Vi = =Tyl = Ty ,

©,J Jrt

which is to say ¥ = x. Thus, per assumption, in particular F,.(zV) = F,(x) = 0 for any r € Re.
That proves that the map is well defined.
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It is clear that the mapping is C-linear. Moreover, it is injective because, if again € C*¥
is such that F,.(z) = 0 for any r € R¢ and if again v := ($U§7i)(j,i)€ﬂnﬂxzv then v = 0 necessitates
z¥ = 0 by definition of ¥ and thus x = 0 by the identity ¥ = x established in the preceding
paragraph.

To show surjectivity, we let v € M, (C) be arbitrary with F,.(z”) = 0 for any » € R and abbre-
viate x := z¥. Then, of course, F,(x) = 0 for any r € R¢. Because moreover Tug, = Too = Vj;
for any {i,j} C [n] the tuple = is a preimage of v. Thus, the claim is true. 7 “ |

The next lemma correspondingly eliminates the variables (.Tu;’i)(j7i)e[[n]]><2 from the formula
obtained in Lemma 6.12 for the individual equations in the systems from Proposition 6.2. Recall
from Notation 3.1 that f/p denotes the quotient mapping of any mapping f with respect to any
set-theoretical partition p of its domain and recall the definition of the color sum o§ of two color
tuples ¢ and 0 from Definition 3.4.

Lemma 6.16. Let (¢,0,p) be any two-colored partition, let g € [n]*I<, let j € [n]*P!, let
r:=15(p)jg, let f:=g"j, and let v € M,(C).
(2) If (p, f) is case R1, then

vy _ A U i oy(A) =1
E(a)= ), aa<A>§j{ z’fag(A):_1}

Aep s—1 Us,(f/p)(A)
AAI=1
+ Y T A A )A):
Aep
A2<A]

(13) If (p, f) is case R2 with critical data {z1,z2}, then

b1
Fr(2") = 503({z1,22))(Vs(21) fla2) F Vp(za) fan))-

(#i1) If (p, f) is case R3 with critical data (Z,z,s), then

V) =t ({z Uf(2),s if oy({z}) =1
B (") = af((2)) {U&ﬂz} ifas({z}):_l}.

() If (p, f) is case R4, then F.(z") = 0.
Proof. We only have to show that in each of the first three cases the right-hand sides of the
identities for F,.(zV) in the claim agree with the corresponding ones of Lemma 6.12. For the

purposes of this proof, let vP() := vy and vP(-1) := vt and recall o(o) =1 and o(e) = —1. Then,
for any ¢ € {o,e} and {7, j} C [n] the definitions imply

2 = {vj,i ife= o} _ U(Q)(Ub(o(e)))j,i‘

—Uij ife=eo
If k== |c| and ¢ := [d] and w := ¢",0, then it follows for any z € II§ and any s € [n] that

—a® if z € II§

w(z)

ur (m(z))(vb(a(m@)))s,ﬂz) if z € II%
¥ if z € IIY a(ro(z))(WPEEN) o o ifz e 1)

|
Q

Uf(a),s

vb(g(m(z))))f(z),s if z € TIE
vb("(m(z))))f(z),s if z € 19



30 A. Mang

by the definition of the color sum and, analogously,

: k
m<z) if z € 11§

rGe)s b(o%({z}))
TV ) if z € I1Y 7 ({zh)( Jos@):

Ys,f(2)

We now distinguish the three relevant cases.
(i) In the situation of (i), by Lemma 6.12 the number F,.(z") is given by

xvm(z) ifze HS _«Tvm(z) ifze Hg
sf z f z),f(z
O o JUCR S S Sl SR,
zelly o= “m((zzf Lo =€l ?((zz>)f<z> nEs
/\|7rp(z)| 1 ' A 2<|mp(2)]

By what was shown initially, this can be rewritten identically as

Yo D as{zHPtE )+ Y a5 ({2 P ) ).

zellf =1 zell}
Aoz =1 A 2<|mp(2)]
And that is exactly what was claimed because ker(f) < p and ), 0§({z}) = o§(A) for
any A € p.
(ii) Under the assumptions of (ii), Lemma 6.12 tells us that F,.(zV) can be computed as
7Y if k 7Y : k
- m(zl) 1z € HO - m<22> if Z9 € HO
Y (z2),£(21) Uf(21),f(z2)
v : 0 + v : 0(°
T w(e1) it z; € I T w(en) it zg € 11
Yf(21),/(22) “f(22),f(21)

which, by our initial observations, is identical to
o3 ({z D" ED) ) pay + a5 ({22 ED) i i),
Since o§({z;}) € {—1,1} for each i € [2], either o§({z1}) = 0§({z2}), in which case we infer

Fr(2¥) = of({zi (PO E@IY 1 vy + @PEERDy ),

1
= 505({21’ZQ})(“f(Z1),f(Z2) + Uf(22)7f(21))’
or o5({z1}) = —03({z2}), implying

Fr(2¥) = o5 ({z (P71 rin) — 05({za P E=ID) o) pny =0.

And that is precisely what we needed to show in this case.
(iii) Finally, if the premises of (iii) are satisfied, according to Lemma 6.12 and by our initial
findings,

—a'y  ifz €115,
F l’v = S J (@) = 0 Z Ua {Z})) 2 .
r(zY) x”;,(@; if 2 € 110 s{zhH” )f(2).s

Since this is just what we claimed, that concludes the proof. |
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6.4 All equations of any single two-colored partition

As an intermediate step to solving the systems of linear equations of Proposition 6.15, we now
study the system of equations induced not by an entire category of two-colored partitions but
only any single two-colored partition.

Definition 6.17. With respect to any two-colored partition (¢, 0, p) we say that any v € M,,(C)
meets
(a) condition P1 if for any h: p — [n],

"~ [ona)s i op(A) =1
> oA { £ DC(A) — + Y oS (A) vaayna) =0.
Acp s=1 Us,h(A) 1 UD( ) =-1 Aep
AJAI=1 A2<|A|
(b) condition P2 if there is no Y € p with |Y| = 2 and o§(Y) # 0 or if v;; + v; ; = 0 for any
{i,5} € [n] with i 7 j.
(¢) condition P3 if there is no Z € p with 3 <|Z] or if v;; = 0 for any {4, j} C [n] with i # j.

Lemma 6.18. For any two-colored partition (¢,0,p) and any v € M,(C), the statement
A({(c,0,p)},v) is equivalent to v meeting simultaneously all the three conditions P1-P8 with
respect to (¢,0,p).

Proof. Both implications are proved separately.

Step 1. First implication. First, suppose that conditions P1-P3 are satisfied, let g € [[n]]XM
and j € [n]*Pl be arbitrary and let r := 15(p)jg- We show that F.(z¥) = 0. If f := ¢g".7,
then (p, f) falls into one of the four cases R1-R4 by Lemma 6.8 (b).

Case 1.1. If (p, f) is case R1, then we can define h := f/p. And, then by case (i) of
Lemma 6.16 condition P1 says precisely that F.(z") = 0.

Case 1.2. Next, suppose that (p, f) is case R2 with critical data {z1,z2}. Then F,.(z") =
%05({21»22})(Uf(z1),f(zz) + Vf(z),f(z1)) Dy case (ii) of Lemma 6.16. Hence, if o5({z1,22}) = 0
we have nothing to prove. Otherwise, condition P2 guarantees that vy + vep = 0 for any
{a,b} C [n], thus showing F,(z") = 0 since f(z2) # f(z1).

Case 1.3. Now, let (p, f) be case R3 with critical data (Z,z,s). Then condition P3 implies
that v is diagonal. Since by case (7ii) of Lemma 6.16 the number F,.(z") is given by o§({z}) v¢(z) s
or o§({z}) vs, ¢(z) that proves F.(z") = 0 in this case because f(z) # s.

Case 1.4. Lastly, if (p, f) is case R4, then F,(z”) = 0 by case (iv) of Lemma 6.16. Hence,
there is nothing to show.

Step 2. Second implication. To show the converse we assume F.(z%) = 0 for any r € Ry )}
and prove that then conditions P1-P3 are met. Let k := |¢| and ¢ := [9|.

Step 2.1. If p = @, condition P1 is trivially satisfied. Otherwise, for any h: p — [n] let
fi=hom, let g € [n]** and j € [n]** be such that g% j := f and let r := r5(p)j,4. Then
(p, f) is case R1. Moreover, F,.(z") is exactly the left-hand side of the equation in condition P1
by Lemma 6.16 (¢). This proves condition P1 to be satisfied because F,.(z") = 0 by assump-
tion.

Step 2.2. Now, let Y € p be such that |Y| = 2 and o§(Y) # 0 and let {a,b} C [n] be
arbitrary with a # b. We find z; € H? and zy € H’Z such that z; # z9 and {z1,z2} = VY. If
we let f: II§f — [n] be such that z; — a and y = b for any y € II¥\{z1}, then f(z1) # f(z2)
by a # b and for any A € p with A # {z1,z2} there is B € ker(f) with A C B, namely
B = IIj\{z1}. In other words, (p, f) is case R2. Hence, F,(z") = 305({z1,22})(0p0 + vap) by
Lemma 6.16 (7). Since F,(z") = 0 and o§({z1,22}) # 0 by assumption, condition P2 is thus
met as well.

Step 2.3. Lastly, suppose Z € p and 3 < |Z| and let {a,b} C [n] be arbitrary with a # b.
Fix any z € Z, let s := b and define f: I} — [n] by demanding z + a and y ~ b for any
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y € Hé?\{z}. Then, f(z) # s by a # b and f(y) = s for any y € Z with y # z. Moreover, for
any A € p with p # Z there exists in the shape of II¥\{z} some B € ker(f) with A C B. This
means that (p, f) is case R3. Therefore, F;.(z") is given by o§({z}) vap or o§({z}) vp 4 according
to Lemma 6.16 (4i7). Thus, by F,.(z") = 0 and o§({z}) # 0 also condition P3 is satisfied and the
proof is complete. |

6.5 All equations of certain special two-colored partitions

In the upcoming case distinctions, it will be useful to already understand the conditions imposed
by a small number of one- or two-elemental sets of special two-colored partitions.

Lemma 6.19. Let v € M,(C) be arbitrary.
(a) A({58Ld},v) is equivalent to v being diagonal.
(b) A({83¢},v) is equivalent to there existing A € C such that v — A is small.
(c) A({3%",3%"},v) is equivalent to v being small for any t € N.

Proof. (a) Because |A| # 1 and ¢5,,,(A) = 0 for the only A € rTT1 condition P1 with respect
to §éds is satisfied regardless of whether v is diagonal or not. Similarly, since there isno Y € 111
with |Y| = 2 the same is true about condition P2. It is condition P3 alone which is relevant.
Namely, since there is Z € rTT1with 3 < |Z| it is equivalent to v being diagonal. Hence, (a) follows
by Lemma 6.18.

(b) Because |A] = 1 for any A € + and because ¢5,({,1}) = 1 and ¢5({.2}) = —1,
what condition P1 with respect to $3 demands of v is that for any h: M — [n] the num-
ber >0, Vh({g1})s — > Us.n({42)) Pe zero. In other words, condition P1 is equivalent to
> Vs =2 o Vs holding for any {i,j} C [n], i.e., by Lemma 5.2 (a) to there being A € C
such that v — Al is small. At the same time, conditions P2 and P3 are always trivially satisfied
since there are no Y €  with |Y| = 2, let alone Z € ++ with 3 < |Z|. Thus, Lemma 6.18
proves (b).

(c) Since |A| =1 and ¢, (A) = o(e) for any A € T® and any ¢ € {o, e} condition P1 with
respect to §¥° and {®! is satisfied by v if and only if 23:1 Yoy Un({yd}),s = O respectively
D S Vs p({qay) = 0 for any h: 1% — [n]. Moreover, conditions P2 and P3 are vacuous
by the absence of any Y € t®! with |Y| = 2 and any Z € 1®! with 3 < |Z|.

Consequently, if v is small and thus Y vp(f,d}),s = Doee1 Vsh({gdy) = 0 for any d € [t] all
three conditions P1-P3 are met for both $®' and {®*. Hence, A({g(g’t,ﬁ@t},v) is true in that
case by Lemma 6.18.

If, conversely, A({3%*,$%'},v) is true, Lemma 6.18 implies that v in particular meets condi-
tion P1 with respect to 3% and $®*. Thus, for any i € [n], if h: t®' — [n] is constant with
value 4, then 0 = ¢ > | v; s respectively 0 =¢ > ", vs; by what was said initially. By 0 < ¢,
that proves v to be small. |

6.6 Case distinctions

The final step to proving the main theorem is upon us. According to Proposition 6.15, it is
enough to show that predicates A of Notation 6.14 and those of the main theorem are equiva-
lent.

The strategy for that is the same in every case: For the category C of two-colored partitions
in question and any v € M,(C), the statement A(C,v) is equivalent to A({(¢,?,p)},v) being
true for any (¢,9,p) € C. By Lemma 6.18, that is equivalent to the three conditions P1-P3 being
met with respect to any (¢,0,p) € C. Thus, we only need to show that the latter is equivalent
to the statement A(C,v) in the main theorem.
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Proposition 6.20. Let C be any category of two-colored partitions and v € My, (C). If C is
case O and
(1) class NNSB, then A(C,v) is equivalent to the absolutely true statement.
(i7) not class NNSB but class NP, then A(C,v) is equivalent to there existing A\ € C such that
v — M is skew-symmetric.
(731) not class NP, then A(C,v) is equivalent to v being skew-symmetric.

Proof. By Lemma 3.11 (b) and (c), the assumption that C be case O means |B| = 2 for any
B € p and any (¢,0,p) € C. Consequently, when checking conditions P1-P3 with respect to any
given (¢, 0, p) there are simplifications.

O Condition P1 is met if and only if for any h: p — [n],

Z o3 (A)vp(a),na) = 0.

Acp

O Condition P2 simplifies to the demand that v;; + v; ; = 0 for any {i,j} C [n] with ¢ # j
as soon as there is any Y € p with o§(Y) # 0.
O Condition P3 is trivially satisfied and can thus be ignored entirely.
The three cases are treated individually.

(i) If C is class NNSB, then all we have to show is that with respect to any (¢,0,p) € C
conditions P1 and P2 are automatically satisfied. And indeed, by the initial simplification
condition P1 of Lemma 6.18 is satisfied for any (¢,0,p) € C and any h: p — [n] since already
05(A) = 0 for any A € p by C being class NNSB. Likewise, by C being NNSB there are no Y € p
with §(Y) # 0, meaning condition P2 is trivially satisfied.

(ii) The next case is that C is not class NNSB but still class NP. Here, we do have to show
two implications. And, we treat them separately.

Suppose that there exists A € C such that v — Al is skew-symmetric and let (¢,9,p) € C and
h: p — [n] be arbitrary. Since v— I is skew-symmetric v ; = v;; for any {3, j} C [n] with j # ¢
by Lemma 5.2 (b). Thus, what condition P1 with respect to (¢,9,p) actually demands is that
the term » ac, 05(A)vi,1 = X5 01,1 be zero, which it is since C being class NP ensures 3§ = 0.
Lemma 5.2 (b) furthermore guarantees that v;; +v;; = 0 for any {7, j} C [n] with j # ¢, which
is why condition P2 is met, regardless of whether there is Y € p with o§(Y) # 0 or not.

Conversely, let now A(C,v) hold. By assumption, we find (¢,0,p) € C and Y € p with
o5(Y) # 0 but still ¥§ = 0 and, of course, with |Y| = 2 since C is case O. Hence, v;; +v;j =0
for any {¢,7} C [n] with i # j by condition P2 with respect to (¢,?,p). But also, given any
{i,7} C [n] with i # j, if h: p — [n] is such that Y +— j and A — i for any A € p\{Y},
then condition P1 implies o5(Y) vjj + > acpaazy 05(A) vii = 0. Since 0 = X5 =3 5, 03(A) =
o3(Y) + 2acprazy 0a(A); 1y 3 oac, aazy 03(A) = —o3(Y), this means o3(Y)(vj; — vii) = 0,
which implies v;; — v;; = 0 by o§(Y) # 0. Hence, there exists A € C such that v — Al is
skew-symmetric by Lemma 5.2 (b).

(iii) Finally, suppose that C is not even class NP.

Assume that v is skew-symmetric and let (¢,9,p) € C and h: p — [n] be arbitrary. Since v
being skew-symmetric implies vy a)na) = 0 for any A € p condition P1 is met with respect to
(¢,9,p). But v being skew-symmetric also implies v;; + v; j = 0 for any {4, j} C [n] with j # 1,
which is why condition P2 is satisfied no matter whether there is Y € p with o§(Y) # 0 or not.

To see the converse, we assume A(C,v). Because C is not class NP there exists (¢,0,p) € C
with X§ # 0. For any i € [n], if h: p — [n] is constant with value ¢, then condition P1 with
respect to (¢, 0, p) implies 0 = 3 5., 03(A) v;; = X3 v;; and thus v;; = 0 by 3§ # 0. Furthermore,
since X§ = ) Acp o5(A) the assumption X§ # 0 also requires the existence of at least one Y € p
with o§(Y) # 0. Hence, by the initial simplification condition P2 yields v;; + v; ; = 0 for any
{i,7} C [n] with j # 4. In other words, v is skew-symmetric. |
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Proposition 6.21. Let C be any category of two-colored partitions and v € My, (C). If C is
case B and
(7) both class NNSB and class NP, then A(C,v) is equivalent to there existing A € C such that
v — Al is small.
(i7) class NNSB but not class NP, then A(C,v) is equivalent to v being small.
(791) not class NNSB but class NP, then A(C,v) is equivalent to there existing A € C such that
v — M is skew-symmetric and small.
(1v) neither class NNSB nor class NP, then A(C,v) is equivalent to v being skew-symmetric
and small.

Proof. That C is case B requires |B| < 2 for any B € p and any (¢,9,p) € C by Lemma 3.11 (c)
and, of course, $3 € C by definition. Thus, once more there are simplifications.

O Condition P3 is trivially satisfied with respect to any (¢,,p) € C and will thus be ignored.

O We already know from Lemma 6.19 (b) that A(C,v) implies the existence of A € C such

that v — A is small.

(i) As the first case, let C be both class NNSB and class NP. Since A(C,v) is already known
to require the existence of A € C such that v — Al is small, only the converse implication needs
proving.

Suppose that A € C is such that v — AI is small and let (¢,0,p) € C and h: p — [n] be
arbitrary. By Lemma 5.2 (a), then X = Y77 vpa)s = Dos—; Usp(a) for any A € p. Hence,
and because o§(A) = 0 for any A € p with 2 < |A| by C being class NNSB, in order to satisfy
condition P1 with respect to (¢, , p) the term ZAGp/\ IA=1 05(A) X has to vanish. And, of course,
it does vanish since C being class NP ensures 0 = X5 = > ac ) 1 jaj=1 95 (A) +2acp n2<ja) 0o (A) =
D Aepn A|=1 o§(A), where the last step is due to C being class NNSB. That C is class NNSB also
prohibits the existence of Y € p with o§(Y) # 0 for any (¢,9,p) € C, rendering condition P2
vacuous. Hence, A(C,v) holds.

(ii) Next, suppose that C is class NNSB but not class NP. Here, both implications need to be
shown and are addressed individually.

Let v be small and let (¢,0,p) € C and h: p — [n] be arbitrary. Then, > 0 | vpa)s =
Sy Vsna) = 0 for any A € p. For that reason, the first sum on the left-hand side of the
equation in condition P1 with respect to (¢, 0, p) vanishes. And since C being class NNSB means
05(A) = 0 for any A € p with 2 < |A| the second term does as well. Hence, condition P1 is
satisfied. The assumption that C is class NNSB and thus o§(Y) = 0 for any Y € p with |Y| =2
also implies that condition P2 is trivially fulfilled. Hence, A(C,v) is true.

Conversely, because C is not class NP we find some (¢,0,p) € C with ¢ := |£§| # 0. By
Lemma 3.11 () that necessitates {$%%,$®*} € C. Hence, A(C,v) requires v to be small by
Lemma 6.19 (¢).

(iii) Now, let C not be class NNSB but class NP.

If A € C is such that v — AT is both skew-symmetric and small, then given any (¢,?,p) € C and
h:p — [n], we infer for any A € p, first, A = 371 vp(a),s = D4y Vsn(a) by Lemma 5.2 (a) and,
second, A = vpa) n(a) by Lemma 5.2 (b). Consequently, condition P1 is satisfied with respect to
(c,9,p) if and only if the term Y ac ), 1 |aj=1 T3 (A) A+ acp n2<ia] To(A) A = D oac, 03 (A) A =3 A
is zero, which, of course, it is since C being class NP guarantees ¥§ = 0. Because Lemma 5.2 (b)
also tells us that v;; + v; j = 0 for any {4, j} C [n] with ¢ # j, condition P2 is met, irrespective
of whether there actually is some B € p with |B| = 2 and o¢§(B) # 0. Thus, A(C,v).

Conversely, if A(C,v), then by the initial remark there exists A\; € C such that v—A;7 is small.
Additionally, since C is case B and not class NNSB we find some (¢,9,p) € C with the property
that there is Y € p with |Y| =2 and o§(Y) # 0, which means v;; + v; ; = 0 for any {i,j} C [n]
with i # j by condition P2 for (¢,9,p). Moreover, given any {i,j} C [n] withi # j,if h: p — [n]
is such that Y — j and A — i for any A € p\{Y} and if ': p — [n] is constant with value i,
then, considering that A\; = >, vis = » o 4 Us; by Lemma 5.2 (a), condition P1 with respect
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to (c,0,p) yields the identities Y Sac, 1 1aj=1 05 (A) At +05(Y) V)5 + 2 acp n2<ia| n Azy T3 (A) Vi = 0
for h and Y- ac, njaj=1 5 (A) M+ D acpna<ia) 05 (A) vi = 0 for h'. Subtracting the second from
the first produces the identity o§(Y)(v;; — vsi) = 0. Since o§(Y) # 0 we can infer v;; = v;; for
any {i,j} C [n] with ¢ # j. By Lemma 5.2 (b), we have thus shown that there exists Ay € C
such that v — Aa/ is skew-symmetric. According to Lemma 5.2 (¢), that is all we needed to see.

(iv) As the final case let C be neither class NNSB nor class NP.

If v is skew-symmetric and small and if (¢,0,p) € C and h: p — [n] are arbitrary, then by
definition, Y 1 vpa)s = Ds—1 Usp(a) = 0 and vp(ay pa) = 0 for any A € p. For that reason,
condition P1 is trivially satisfied with respect to (¢,0,p). Because also v;; + v;; = 0 for any
{i,j} C [n] with ¢ # j condition P2 is met as well, no matter whether there exists Y € p with
Y| =2 and o§(Y) # 0. Hence, A(C,v) has been proved.

In order to prove the converse, let A(C,v) hold. Since C is not class NP we find a (¢,0,p) € C
with ¢ := |5§| # 0. As §3 € C we conclude {$%,$®'} C C by Lemma 3.11(e). It follows
that v is small by Lemma 6.19 (¢). Furthermore, the assumption of C not being class NNSB
implies the existence of (a,b,q) € C and Y € ¢ with 2 < |Y| and of(Y) # 0. If now for
any {i,7} C [n] with ¢ # j the mapping h: ¢ — [n] is such that Y — j and A — i for
any A € ¢\{Y} and if h': ¢ — [n] is constant with value ¢, then condition P1 for (a,b,q)
implies the identities og(Y) vj; + > acqn2<iajnazy 5 (A) vii =0 and 3 oacqpo<ia) 05 (B) vii =0
because Y o vy = Yoy Us; = 0 by v being small. Subtracting the second from the first
yields op(Y)(vj; — vi;) = 0 and thus v;; = v;; by of(Y) # 0. Because the presence of Y in ¢
also ensures v;; + v; ; = 0 for any {7, j} C [n] with ¢ # j by condition P2 for (a, b, ¢) we have
thus shown that there exists Ao € C such that v — A2 is skew-symmetric by Lemma 5.2 (b).
Because v is also small, applying Lemma 5.2 (¢) (with A\; = 0) we see that A2 = 0, i.e., that v is
skew-symmetric and small. |

Proposition 6.22. Let C be any category of two-colored partitions and v € My,(C). If C is
case H and
(i) class NNSB, then A(C,v) is equivalent to v being diagonal.
(13) not class NNSB but class NP, then A(C,v) is equivalent to there existing A € C such that
v=AIl.
(7i7) not class NP, then A(C,v) is equivalent to v = 0.

Proof. As C is case H, both §§f} € C and 2 < |B| for any B € p and any (c,09,p) € C by
Lemma 3.11 (b) and §§ ¢ C. Certain simplifications result.
O Condition P1 with respect to any (¢,9,p) € C amounts to the demand that for any
h:p— [n],

D o5 (A) vpay ) = 0.
Aep

O We already know by Lemma 6.19 (a) that A(C,v) implies that v is diagonal.

(i) Suppose first that C is class NNSB. Since it is already clear that A(C,v) requires v to be
diagonal, only one implication needs proving.

If v is diagonal, if (¢,0,p) € C and if h: p — [n], then because o§(A) = 0 for any A € p
by C being class NNSB the simplified condition P1 of (¢, 0, p) is satisfied trivially. For the same
reason, condition P2 is vacuous. And condition P3 is met as well, regardless of whether there
is Z € p with 3 < |Z|, because v is diagonal per assumption. Hence, v being diagonal implies
A(C,v).

(ii) Next, suppose that C is not class NNSB but is class NP. Now, both implications must be
proved.

First, let A € C be such that v = Al and let (¢,0,p) € C and h: p — [n] be arbitrary.
By the initial remark condition P1 with respect to (¢,9,p) demands precisely that the term
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> Acp 03(A) A = X5 A vanish, which, of course, it does because X5 = 0 by C being class NP.
Moreover, since v;; = 0 for any {i,j} C [n] with i # j condition P2 is certainly satisfied, even
if there is B € p with |B| = 2 and 0§(B) # 0. The assumption that v is diagonal also ensures
that condition P3 is met, irrespective of whether there exists Z € p with 3 < |Z| or not. Thus,
A(C,v).

Conversely, if A(C,v), then C being not class NNSB lets us find some (¢,0,p) € C and Y € p
with 2 < |Y| and o§(Y) # 0. If, given any {i,j} C [n] with ¢ # j we let h: p — [n] be such
that Y — j and A — ¢ for any A € p\{Y}, then condition P1 lets us know that o§(Y)wv;; +
> Aepaazy O3(A)vig = 0. Since C being class NP implies 0 = 3§ = 03(Y) + > ac,nazy 05(A)
that is the same as saying o§(Y)(v;; — v;;) = 0, which means v;; = v;; by o§(Y) # 0. Hence, if
A =11, then v = AI as claimed because v is diagonal by the initial remark.

(iii) Lastly, assume C is not class NP. Because for v = 0 conditions P1-P3 are trivially
satisfied, we only need to prove the converse.

If A(C,v), then by C not being class NP there exists (¢,0,p) € C with X§ # 0. Hence, for
any ¢ € [n], if h: p — [n] is constant with value i, then by what was said at the beginning
condition P1 with respect to (¢, 0, p) shows that 0 = Z/—\Ep o§(A) v = X v; 4, 1.e., that v;; = 0.
As v is diagonal by the same initial remarks, that means v = 0, as asserted. |

Proposition 6.23. Let C be any category of two-colored partitions and v € My,(C). If C is
case S and

(7) class NP, then A(C,v) is equivalent to there existing A € C such that v = AI.

(13) not class NP, then A(C,v) is equivalent to v = 0.

Proof. In contrast to the situation in the cases O, B and H, there are no general simplifications
of the conditions P1-P3 of Lemma 6.18 implied by the assumption that C is case S. However,
as in case H, since {§be € C it is already clear by Lemma 6.19 (a) that A(C,v) holding implies
that v is diagonal.

(i) First, let C be class NP. If there is A € C such that v = Al and if (¢,0,p) € C and
h: p — [n] are arbitrary, then what condition P1 with respect to (¢,9,p) demands is that the
Sum Y acpaj=1 O (A) A+ Xacpracia) Ta(A) A = D ac, 03(A) A = X5 A vanish. And because C
being class NP implies ¥§ = 0 this is indeed the case. Moreover, v being diagonal of course
guarantees that conditions P2 and P3 are satisfied, no matter what the blocks of (¢,0,p) are.
That proves A(C,v).

If, conversely, A(C,v) is assumed to hold, then by Lemma 6.19 (b) there exists A € C such
that v — AI is small since §3 € C. For any ¢ € [n] the definition of smallness implies 0 =
Z?:l(vj,i — AJji) = v;; — A Hence, v = A, as claimed.

(ii) The alternative is that C is not class NP. Of course, if v = 0, then conditions P1-P3 are
trivially satisfied with respect to any (¢,0,p) € C.

Conversely, if A(C,v), then by C not being NP there exists (¢,9,p) € C such that 3§ # 0.
For any ¢ € [n] then, if h: p — [n] is constant with value 4, then condition P1 for (c,d,p)
lets us know that 0 =3 . x jaj=1 95 (A) Vii + 2 oacp n2<ia To(A) Vii = D oacy 0(A) vii = 53 vis.
Because X§ # 0 that requires v; ; = 0 and thus v = 0, which concludes the proof. |

6.7 Synthesis

Now, we have all the ingredients required to prove the main theorem.

Proof of the main result. The claims are the combined result of Propositions 6.15, 6.20-6.23
and Lemma 5.3. More precisely, Lemma 3.11 (b) and (c¢) show that C is case O if and only if C
is 1 A 2, case B if and only if 1 A =2, case H if and only if =1 A 2 and case § if and only if
=1 A =2. Moreover, by definition, C is class NNSB if and only if C is 3 and C is class NP if it
is 4.
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The case 2 A 3 A —4 cannot occur by Lemma 3.12 (a). And Lemma 3.12 (b) prohibits the
case =1 A =2 A 3. Hence, the below table covers all possibilities.

Case Proof

1AN2A3 Propositions 6.15 and 6.20 (¢
1AN-2AN3N4 Propositions 6.15 and 6.21 (7
1AN-"2A3N—4 Propositions 6.15 and 6.21 (4

)
)
i
1AN2A-3AN4 Propositions 6.15 and 6.20 (47
1IAN2A-3AN4 Propositions 6.15 and 6.20

(

(

(47)

(47)

(
1A-2A-3A4 Propositions 6.15 and 6.21 (i)

(

(

(

(

i)

1 A =2 A =3 A —4 | Propositions 6.15 and 6.21 (iv)
“1AN2A3N4 Propositions 6.15 and 6.22 (i)

-1AN-3AN4 Propositions 6.15 and 6.22 (i7) and 6.23 (7)
-1 N3N 4 Propositions 6.15 and 6.22 (7i7) and 6.23 (i)

The claims that the sets of matrices are vector spaces of the given dimensions (1 (@) were
shown in Lemma 5.3. [ ]

Remark 6.24. By [34, Proposition 1.4], categories of (uncolored) partitions in the sense of
[4, Definition 2.2] can be identified with categories C of two-colored partitions including &
Obviously, such C are never class NP and never class NNSB. The unitary easy quantum groups
of (C,n) for such C are in particular (orthogonal) easy quantum groups in the sense of [4].
In combination, [3, 4, 30, 31, 32, 39] provide a full classification of all categories of uncolored
partitions, i.e., all orthogonal easy quantum groups:

(a)

(b)

(©)

There are exactly three case-O categories, giving rise to the orthogonal group O,, the
half-liberated orthogonal quantum group OF and the free orthogonal quantum group O;.
For any of these three the first cohomology with trivial coefficients of the discrete dual is
given by all skew-symmetric matrices and has dimension %n(n —1).

There are precisely six case-B categories, inducing the bistochastic group By, the mod-
ified bistochastic group B, the half-liberated bistochastic quantum group B# *. the free
bistochastic quantum group B;F, the modified free bistochastic quantum group BJ" and the
freely modified bistochastic quantum group BfT. For any one of these the first cohomology
of the dual is given by all small skew-symmetric matrices and has dimension (n—1)(n—2).
Exactly four categories are case S, yielding the symmetric group S,, the modified sym-
metric group S!,, the free symmetric quantum group S,;” and the modified free symmetric
quantum group Sit. The discrete dual of any of these has vanishing first cohomology with
trivial coefficients.

There are an uncountable number of case-H categories. Among them are categories in-
ducing the hyperoctahedral group Hy, the half-liberated hyperoctahedral quantum group H
and the free hyperoctahedral quantum group H, . Any other case-H category gives rise
to either a group-theoretical hyperoctahedral quantum group H,§A> (see [30, 31]) for some
sSeo-invariant normal subgroup A of Z3* (such that A is neither generated by a single

word of length 1 nor a single word of length 2) or a member H#} of an unnamed family of
non-group-theoretical hyperoctahedral quantum groups (see [32]) for some ¢ € N U {o0}.
This includes the quantum groups HTSS) of the hyperoctahedral series and the quantum

groups H,[Ls} of the higher hyperoctahedral series, where s € NU {oc} in both cases. Again,
the first cohomology with trivial coefficients of the discrete dual of any of these quantum
groups vanishes.
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Remark 6.25. In contrast, the classification of all categories of two-colored partitions and
unitary easy quantum groups is still incomplete. Moreover, only a handful of known unitary
easy quantum groups have been given proper names. Thus, in most cases, they can only be
referenced by their associated categories of two-colored partitions. As explained in Remark 3.9,
it is easy to determine to which of the four cases O, B, H and S a known category of two-colored
partitions belongs and whether it is of class NNSB or of class NP.
(a) Any known category which is not case H is of the form Ry, sk, in the sense of the
main theorem of [28]. For the unitary easy quantum group G of (Ry . sk, 1), the first
cohomology with trivial coefficients of the discrete dual has dimension

O n?if (f,0) = ({2},{0}),

O (n—1)2 +1if (f,v) = ({1,2},£{0,1}) and s = {0},

O (n—1)2if (f,v) = ({1,2},4{0,1}) and s # {0},

O in(n— 1)+ 1if (f,v) = ({2}, £{0,2}) and s = {0},

O in(n—1)if (f,v) = ({2}, £{0,2}) and s # {0},

O i(n—1)(n—2)+1if (f,v) = ({1,2},£{0,1,2}) and s = {0},
O L(n—1)(n—2) if (f,v) = ({1,2},+£{0,1,2}) and s # {0},

O 1if (f,v) = (N,Z) and s = {0} and

O 0if (f,v) =(N,Z) and s # {0}.

Among these are in particular the categories giving rise to the wunitary group U,, the
free unitary quantum group U," (see [37, 38]) and the three kinds of half-liberated unitary
quantum groups Uy, (see [1, 2, 26] and [25, Chapter 3]) and U}, and UJT (see [27]
and [25, Chapter 3] and for certain special cases [1, 5, 6]). For any of these, the first
cohomology with trivial coefficients of the discrete dual has dimension n?.

(b) Any known category which is case H lies within the scope of [15, 23, 34] or [25, Chapter 1].
In detail, one obtains for

O Hgiob (k) of Theorem 7.1 and Hgrp glob (k) of Theorem 8.3 of [34] dimension 1 if k =0
and dimension 0 otherwise,

O H'joe of [34, Theorem 7.2] dimension n,

O Hioe(k,d) of Theorem 7.2 and Hgrp1oc(k,d) of Theorem 8.3 in [34] dimension n if
k =d =0, dimension 1 if £ =0 and d # 0 and dimension 0 otherwise,

O Huiglob(k,0), Huiglob(k, 5), Hr(k,s), Hx(k,o0) and H a(k) of [15, Table 1] dimension 1
if K = 0 and dimension 0 otherwise,

O any group-theoretical category C in the sense of Definition 4.1.5 of [23] dimension 1
if and only if F.o(C) as explained in Definition 4.3.21 there contains no word with
different numbers of generators and inverses of generators and dimension 0 otherwise,

O Wr of [25, Chapter 1] dimension n.
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