| 
 SIGMA 20 (2024), 089, 6 pages       arXiv:2102.02360     
https://doi.org/10.3842/SIGMA.2024.089 
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne 
Proof of Two Multivariate $q$-Binomial Sums Arising in Gromov-Witten Theory
Christian Krattenthaler
 Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
 
 
Received February 03, 2024, in final form October 07, 2024; Published online October 10, 2024
 Abstract 
We prove two multivariate $q$-binomial identities conjectured by Bousseau, Brini and van Garrel [Geom. Topol. 28 (2024), 393-496, arXiv:2011.08830] which give generating series for Gromov-Witten invariants of two specific log Calabi-Yau surfaces. The key identity in all the proofs is Jackson's $q$-analogue of the Pfaff-Saalschütz summation formula from the theory of basic hypergeometric series.
 Key words: Looijenga pairs; log Calabi-Yau surfaces; Gromov-Witten invariants; $q$-binomial coefficients; basic hypergeometric series; Pfaff-Saalschütz summation formula. 
pdf (317 kb)  
tex (9 kb)  
 
 
References 
- Bousseau P., Brini A., van Garrel M., Stable maps to Looijenga pairs,  Geom. Topol. 28 (2024), 393-496, arXiv:2011.08830.
 
- Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math.  Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
 
 
 | 
 |