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Abstract. We prove two multivariate q-binomial identities conjectured by Bousseau, Brini
and van Garrel [Geom. Topol. 28 (2024), 393–496, arXiv:2011.08830] which give generat-
ing series for Gromov–Witten invariants of two specific log Calabi–Yau surfaces. The key
identity in all the proofs is Jackson’s q-analogue of the Pfaff–Saalschütz summation formula
from the theory of basic hypergeometric series.
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Dedicated to Stephen Milne,
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basic hypergeometric series

The purpose of this note is to prove two conjectured multivariate q-binomial summation
identities from [1]. There, Bousseau, Brini and van Garrel deal with the computation of Gromov–
Witten invariants of log Calabi–Yau surfaces (Looijenga pairs). For the two non-tame (but
quasi-tame) surfaces dP1(0, 4) and F0(0, 4), conjectured closed-form expressions are given in [1]
for the corresponding generating series (I refer to [1] for background and notation), namely
(cf. [1, Conjecture B.3, equation (B-2)])

N
log
(d0,d1)

(dP1(0, 4))(ℏ) =
[2d0]q
[d0]q

[
d0
d1

]
q

[
d0 + d1 − 1

d1 − 1

]
q

(1)

and (cf. [1, Conjecture B.3, equation (B-3)])

N
log
(d1,d2)

(F0(0, 4))(ℏ) =
[2d1 + d2]q

[d2]q

[
d1 + d2 − 1

d2 − 1

]2
q

, (2)

where q = eiℏ. Here, the q-integers [α]q are defined symmetrically according to physics conven-
tion, [α]q := qα/2 − q−α/2, and the (corresponding) q-binomial coefficients

[
n
k

]
q
are defined by1

[
n
k

]
q

:=


[n]q[n− 1]q · · · [n− k + 1]q

[k]q[k − 1]q · · · [1]q
if 0 ≤ k ≤ n,

0 otherwise.

This paper is a contribution to the Special Issue on Basic Hypergeometric Series Associated with Root
Systems and Applications in honor of Stephen C. Milne’s 75th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Milne.html

1Since this definition is based on the q-integers according to physics convention, these “physics q-binomial
coefficients” differ from the “combinatorics q-binomial coefficients” (cf. [2, Exercise 1.2]) by a multiplicative
factor of q−k(n−k)/2.
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In relation to the above two conjectures, we prove the following two multivariate summation
identities.

Theorem 1. For integers d0 and d1 with d0 > d1 ≥ 1, we have∑
m≥1

∑
k1+···+km=d1−k0,

n1k1+···+nmkm=d0−d1,

k1,...,km>0, k0≥0,
n1>···>nm>0

[
2d0
k1

]
q

[
2d0 − 2(n1 − n2)k1

k2

]
q

· · ·

×
[
2d0 − 2

∑m−1
j=1 (nj − nm)kj
km

]
q

[
2d1
k0

]
q

=
[2d0]q
[d0]q

[
d0
d1

]
q

[
d0 + d1 − 1

d0

]
q

. (3)

Theorem 2. For positive integers d1 and arbitrary d2, we have∑
m≥1

∑
n1k1+···+nmkm=d1,

k1,...,km>0,
n1>···>nm>0

[
d2 + 2d1

k1

]
q

· · ·
[
d2 + 2d1 + 2

∑i
j=1(ni − nj)kj

ki

]
q

· · ·

×
[
d2 + 2d1 + 2

∑m
j=1(nm − nj)kj

km

]
q

[
d2∑m
j=1 kj

]
q

=
[2d1 + d2]q

[d2]q

[
d1 + d2 − 1

d1

]2
q

. (4)

Remarks.

(1) Both identities actually hold when q is considered as a formal variable. Furthermore,
in the statement of Theorem 2, the phrase “arbitrary d2” means that the identity holds
when d2 is considered as a formal variable.

(2) For any fixed d0 and d1, the sums over m in (3) and (4) are finite sums since all of the ki’s
and the ni’s are at least 1, which implies an obvious bound on m.

By [1, Theorem B.1], Theorem 1 implies (1). Similarly, by [1, Theorem B.2], Theorem 2
implies (2).2

The identities (1) and (2) are actually special cases of a more general conjecture, namely

[1, Conjecture 4.7], which predicts a closed-form formula for Nlog
(d0,d1,d2,d3)

(dP3(0, 2))(ℏ). It is con-
ceivable that the ideas of this note, or similar ones, may lead to a proof of this more gen-
eral conjecture. However, as is explained in [1, Section 4.2], in order to obtain an expression

for N
log
(d0,d1,d2,d3)

(dP3(0, 2))(ℏ) to start with, one would have to perform certain scattering dia-

gram calculations. This is deemed “daunting” by the authors of [1] (see the paragraph below
Conjecture 4.7), and they do not carry out these calculations.

As is the case frequently, the identities in Theorems 1 and 2 are difficult (impossible?) to
prove directly since the parameters in these identities do not allow for enough flexibility, in
particular if one has an inductive approach in mind (which we do). The key in proving (3)
and (4) is to generalise, or, in this case, to refine. By experimenting with the sums in (3)
and (4), I noticed that one can still get closed forms if we fix the sum of the ki’s, i = 1, 2, . . . ,m.
This leads us to the following key result.

Proposition 3. Let k0 and d1 be integers with 1 ≤ k0 ≤ d1. Furthermore, for arbitrary d0 set

f(d0, d1, k0) =
∑
m≥1

∑
k1+···+km=k0,

n1k1+···+nmkm=d1,

k1,...,km>0,
n1>···>nm>0

m∏
i=1

[
2d0 − 2

∑i−1
j=1(nj − ni)kj
ki

]
q

. (5)

2For the sake of consistency, in comparison to Theorem B.2 in [1], here we have reversed the indexing of the ki’s
and the ni’s, that is, we have replaced ki by km−i+1 and ni by nm−i+1, i = 1, 2, . . . ,m.
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Then

f(d0, d1, k0) =
[2d0]q
[k0]q

[
2d0 − d1 + k0 − 1

k0 − 1

]
q

[
d1 − 1
k0 − 1

]
q

.

Remarks.

(1) Again, the identity actually holds when q is considered as a formal variable.

(2) For the meaning of “arbitrary d0”, see Remarks (1) below Theorem 2.

Before we can embark on the proof of the proposition, we need to introduce the standard
notation for basic hypergeometric series,

r+1ϕr

[
a1, . . . , ar+1

b1, . . . , br
; q, z

]
=

∞∑
ℓ=0

(a1; q)ℓ · · · (ar+1; q)ℓ
(q; q)ℓ(b1; q)ℓ · · · (br; q)ℓ

zℓ, (6)

where (a; q)0 = 1 and (a; q)m =
∏m−1

k=0

(
1 − aqk

)
. The “bible” [2] of the theory of basic hy-

pergeometric series contains many summation and transformation formulae for such series.
The formula that we need here is Jackson’s q-analogue of the Pfaff–Saalschütz summation
(see [2, equation (1.7.2); Appendix II.12])

3ϕ2

[
a, b, q−N

c, abq1−N/c
; q, q

]
=

(c/a; q)N (c/b; q)N
(c; q)N (c/ab; q)N

, (7)

where N is a nonnegative integer.

Proof of Proposition 3. We prove the claim by induction on k0.
First we consider the start of the induction, k0 = 1. In this case, the summation on the

right-hand side of (5) reduces to m = 1, k1 = 1, n1 = d1, and hence

f(d0, d1, 1) =

[
2d0
1

]
q

,

in agreement with our assertion.
For the induction step, we rewrite the definition of f(d0, d1, k0) in (5) in the form

f(d0, d1, k0) = χ(k0 | d1)
[
2d0
k0

]
q

+
∑
m≥2

k0−1∑
km=1

⌊(d1−k0+km)/k0⌋∑
nm=1

∑
k1+···+km−1=k0−km,

n̄1k1+···+n̄m−1km−1=d1−nmk0,

k1,...,km−1>0,

n̄1>···>n̄m−1>0

[
2d0
k1

]
q

[
2d0 − 2(n̄1 − n̄2)k1

k2

]
q

· · ·

×
[
2d0 − 2

∑m−2
j=1 (n̄j − n̄m−1)kj
km−1

]
q

[
2d0 − 2d1 + 2nmk0

km

]
q

, (8)

where n̄i = ni − nm, i = 1, 2, . . . ,m − 1, and where χ(·) denotes the usual truth function, that
is, χ(A) = 1 if A is true and χ(A) = 0 otherwise. There are two details in this expression
which require further explanation. First of all, the first term on the right-hand side of (8) gives
the contribution of the sum in (5) for m = 1. Indeed, for m = 1 the summation conditions
in (5) require k1 = k0 and n1k1 = d1. Consequently, a corresponding summand occurs only
if k0 = k1 | d1; if this divisibility condition is satisfied, the summand equals

[
2d0
k0

]
q
. Second,
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by the conditions imposed on k1, . . . , km−1 and n̄1, . . . , n̄m−1, the sum n̄1k1 + · · · + n̄m−1km−1

must be at least as large as the sum k1 + · · ·+ km−1. This explains the upper bound on nm in
the inner sum.

Now, again with (5) in mind, the equation (8) may be written as

f(d0, d1, k0) = χ(k0 | d1)
[
2d0
k0

]
q

+

k0−1∑
k=1

⌊(d1−k0+k)/k0⌋∑
n=1

f(d0, d1 − nk0, k0 − k)

[
2d0 − 2d1 + 2nk0

k

]
q

.

We may now use the induction hypothesis, and obtain

f(d0, d1, k0) = χ(k0 | d1)
[
2d0
k0

]
q

+

k0−1∑
k=1

⌊(d1−k0+k)/k0⌋∑
n=1

[2d0]q
[k0 − k]q

×
[
2d0 − d1 + nk0 + k0 − k − 1

k0 − k − 1

]
q

[
d1 − nk0 − 1
k0 − k − 1

]
q

[
2d0 − 2d1 + 2nk0

k

]
q

= χ(k0 | d1)
[
2d0
k0

]
q

+

⌊(d1−1)/k0⌋∑
n=1

k0−1∑
k=0

[2d0]q
[k0 − k]q

×
[
2d0 − d1 + nk0 + k0 − k − 1

k0 − k − 1

]
q

[
d1 − nk0 − 1
k0 − k − 1

]
q

[
2d0 − 2d1 + 2nk0

k

]
q

−
⌊(d1−1)/k0⌋∑

n=1

[2d0]q
[k0]q

[
2d0 − d1 + nk0 + k0 − 1

k0 − 1

]
q

[
d1 − nk0 − 1

k0 − 1

]
q

. (9)

Now we write the sum over k in terms of the standard basic hypergeometric notation (6). Thus,
this sum over k becomes

[2d0]q
[k0]q

[
2d0 − d1 + nk0 + k0 − 1

k0 − 1

]
q

[
d1 − nk0 − 1

k0 − 1

]
q

× 3ϕ2

[
q−2d0+2d1−2k0n, q−k0 , q1−k0

q1+d1−k0−k0n, q1−2d0+d1−k0−k0n; q, q

]
.

The 3ϕ2-series can be evaluated by means of the q-Pfaff–Saalschütz summation (7). After simpli-
fication, we arrive at the expression

[2d0]q
[k0]q

[
2d0 − d1 + k0n− 1

k0 − 1

]
q

[
d1 − k0n+ k0 − 1

k0 − 1

]
q

.

If we substitute this in (9), then we get

f(d0, d1, k0) = χ(k0 | d1)
[
2d0
k0

]
q

+

⌊(d1−1)/k0⌋∑
n=1

[2d0]q
[k0]q

[
2d0 − d1 + k0n− 1

k0 − 1

]
q

[
d1 − k0n+ k0 − 1

k0 − 1

]
q

−
⌊(d1−1)/k0⌋∑

n=1

[2d0]q
[k0]q

[
2d0 − d1 + nk0 + k0 − 1

k0 − 1

]
q

[
d1 − nk0 − 1

k0 − 1

]
q

.
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As is straightforward to verify, the first term in this expression can be integrated into the first
sum, so that we obtain

f(d0, d1, k0) =

⌊d1/k0⌋∑
n=1

[2d0]q
[k0]q

[
2d0 − d1 + k0n− 1

k0 − 1

]
q

[
d1 − k0n+ k0 − 1

k0 − 1

]
q

−
⌊(d1−1)/k0⌋∑

n=1

[2d0]q
[k0]q

[
2d0 − d1 + nk0 + k0 − 1

k0 − 1

]
q

[
d1 − nk0 − 1

k0 − 1

]
q

. (10)

On the right-hand side, these are, up to a shift of the index n and the slightly deviating lower
and upper bounds on the summation index, essentially the same sums. After cancellation, only
the term corresponding to n = 1 of the first sum and the term corresponding to n = ⌊(d1−1)/k0⌋
of the second sum survives, however the latter only if k0 ∤ d1. (If k0 | d1, then no term of the
second sum survives the cancellation.) Since, for n = ⌊(d1 − 1)/k0⌋, we have

0 ≤ d1 − nk0 − 1 = d1 −
⌊
d1 − 1

k0

⌋
k0 − 1 < d1 −

(
d1
k0

− 1

)
k0 − 1 = k0 − 1,

the q-binomial coefficient
[
d1−nk0−1

k0−1

]
q
vanishes for this choice of parameters. In other words,

after cancellation of terms in (10), only the term corresponding to n = 1 of the first sum survives
and gives a non-zero contribution. These arguments yield

f(d0, d1, k0) =
[2d0]q
[k0]q

[
2d0 − d1 + k0 − 1

k0 − 1

]
q

[
d1 − 1
k0 − 1

]
q

.

This completes the induction step and the proof of the proposition. ■

Now we are in the position to prove Theorems 1 and 2.

Proof of Theorem 1. The left-hand side of (3) can be rewritten as

d1∑
k0=0

f(d0, d0 − d1, d1 − k0)

[
2d1
k0

]
q

.

If we now use Proposition 3 for the evaluation of f(d0, d0 − d1, d1 − k0) and write the result in
basic hypergeometric notation (6), the above sum becomes

[2d0]q
[d1]q

[
d0 + 2d1 − 1

d1 − 1

]
q

[
d0 − d1 − 1

d1 − 1

]
q
3ϕ2

[
q−2d1 , q−d1 , q1−d1

q1+d0−2d1 , q1−d0−2d1 ; q, q

]
.

Also this 3ϕ2-series can be evaluated by means of the q-Pfaff–Saalschütz summation (7). After
simplification, one obtains

[2d0]q
[d0]q

[
d0
d1

]
q

[
d0 + d1 − 1

d0

]
q

,

as desired. ■

Proof of Theorem 2. With k0 =
∑m

j=1 kj , the sum on the left-hand side of (4) can be rewrit-
ten as∑

k0≥1

f

(
d1 +

d2
2
, d1, k0

)[
d2
k0

]
q

.
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If we now use Proposition 3 for the evaluation of f(d1 +
d2
2 , d1, k0) and write the result in basic

hypergeometric notation (6), the above sum becomes

[2d1 + d2]q [d2]q
[1]2q

3ϕ2

[
q1+d1+d2 , q1−d2 , q1−d1

q2, q2
; q, q

]
.

Again, the 3ϕ2-series can be evaluated by means of the q-Pfaff–Saalschütz summation (7).
As a result, we obtain

[2d1 + d2]q
[d2]q

[
d1 + d2 − 1

d1

]2
q

,

as desired. ■

We close with the remark that it is highly surprising that in all three proofs the identity
from the theory of basic hypergeometric series that is required is the q-Pfaff–Saalschütz summa-
tion (7). Usually, one needs the q-Chu–Vandermonde summation here, a transformation formula
there, and maybe the q-Pfaff–Saalschütz summation somewhere. However, remarkably, here it
is exclusively the q-Pfaff–Saalschütz summation.
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