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Abstract. One of the subtleties that has made superstring perturbation theory intricate at
high string loop order is the fact that as shown by Donagi and Witten, supermoduli space is
not holomorphically projected, nor is it holomorphically split. In recent years, Sen (further
refined by Sen and Witten) has introduced the notion of vertical integration in moduli space.
This enables one to build BRST-invariant and well-defined amplitudes by adding certain
correction terms to the contributions associated to the traditional “delta function” gauge
fixing for the worldsheet gravitino on local patches. The Sen and Witten approach is made
possible due to there being no obstruction to a smooth splitting of supermoduli space, but it
may not necessarily be the most convenient or natural solution to the problem. In particular,
this approach does not determine what these corrections terms actually are from the outset.
Instead, it shows that such correction terms in principle exist, and when included make all
perturbative amplitudes well-defined. There may be situations however where one would
like to instead have a well-defined and fully determined path integral at arbitrary string
loop order from the outset. In this paper, I initiate an alternative (differential-geometric)
approach that implements the fact that a smooth gauge slice for supermoduli space always
exists. As a warmup, I focus specifically on super Riemann surfaces with the topology of
a sphere in heterotic string theory, incorporating the corresponding super curvature locally,
and introduce a new well-defined smooth gauge fixing that leads to a globally defined path
integral measure that translates arbitrary fixed (−1) picture NS vertex operators (or handle
operators) (that may or may not be offshell) to integrated (0) picture. I also provide some
comments on the extension to arbitrary super Riemann surfaces.

Key words: integrated NS vertex operators; picture changing; super curvature; curved su-
per Riemann surfaces; superconformal normal coordinates; deformations of supercomplex
structures; superstring perturbation theory; heterotic strings

2020 Mathematics Subject Classification: 32G05; 32G15; 51M15; 53Z05

1 Introduction

One of the most basic starting points for superstring perturbation theory is the notion of a vibrat-
ing loop of string, suitably formulated so as to naturally incorporate the elementary principles
of quantum mechanics and relativity. A loop of string, in turn, has left- and right-moving
degrees of freedom which turn out to be largely independent [46, 64]. Famously, in the het-
erotic string [32, 33] this distinction between chiral and anti-chiral halves is so stark that (in
one formulation) we can even regard the two halves as living in a different number of spacetime
dimensions [47, 64]. At tree level, this “chiral factorisation” leads to a whole host of interesting
developments, such as the celebrated Kawai–Lewellen–Tye (KLT) relations [34], which have in
turn led to a whole range of progress (see [10] and references therein), such as BCJ duality,
double copy constructions, colour-kinematics dualities, ambitwistor strings, and various other
recent incarnations; see also [39] and references therein. There is also recent work on a one-loop
version of the KLT relations [55] and corresponding double copy structure [56]. Although this
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has also led to vast simplifications, enabling, e.g., one to carry out computations at high loop
orders in the context of supergravity, the string theory understanding thereof at high loop order
is much less understood or developed.

In the full string theory context, at loop level, a chiral factorisation (at least at the level
of integrands) that is reminiscent of the KLT relations is also present under certain assump-
tions. This in turn led to the D’Hoker and Phong chiral splitting theorem [15] (elaborated on
in detail and for general constant backgrounds in bosonic string theory in [54]). This theorem
is used in a number of recent applications [13, 31], including the celebrated 2-loop calcula-
tions [16]. Briefly, this theorem states that (super)string integrands chirally factorise when we
hold the loop momenta (and Dirac zero modes when present) fixed. It however relies on the
Belavin–Knizhnik theorem [7] which is a statement about the chiral factorisation of the ghost
or superghost contributions to the superstring path integral measure when the total central
charge vanishes. And this in turn is based on the assumption that supermoduli space is holo-
morphically split, an assumption that has been suspected to be incorrect for decades [5, 41, 59],
and is now known to break down at sufficiently high genus as shown by Donagi and Witten
in [20].

So it turns out that superstring amplitudes, in particular, do not chirally factorise be-
yond a sufficiently high number of string loops. The associated global obstruction is due
to [20] supermoduli space not being holomorphically split or holomorphically projected (see
also [59] and especially [41] for some early work on this). To elaborate a little, in the RNS
approach [47, 58, 59, 62, 63, 64] to superstring perturbation theory one usually begins by con-
sidering embeddings of super Riemann surfaces of a fixed genus into spacetime (and/or a more
abstract target space associated to the superconformal field theory of interest). After integrat-
ing over all such embeddings, we are to integrate over the corresponding supermoduli space,
before finally summing over string loops [47, 64]. To every point in supermoduli space there is
a corresponding equivalence class of super Riemann surfaces (super Riemann surfaces related
by a superconformal transformation are deemed equivalent). Briefly, the problem is associated
to the non-vanishing of certain cohomology classes [41]. In practice, this manifests as follows.
Supermoduli space M in general requires several coordinate charts

(
Um, τ̃

ℓ̃
m; τ ℓm|χαm

)
(with a col-

lection of open sets {Um} covering M, and τ̃ ℓ̃m, τ ℓm corresponding to even moduli and χαm odd
local coordinates), and it is not possible in general to find holomorphic transition functions on
patch overlaps Um ∩ Un that preserve the Z grading [41] as in

τ̃ ℓ̃m = f̃ ℓ̃mn
(
τ̃1
n, τ̃

2
n, . . .

)
,

τ ℓm = f ℓmn
(
τ1
n, τ

2
n, . . .

)
, (holomorphic splitting)

χαm =
∑
β

χβnh
αβ
mn

(
τ1
n, τ

2
n, . . .

)
,

which would correspond to having found a holomorphic splitting, which in turn does not exist
in general. The Grassmann-even quantities f̃mn, fmn and hmn are transition functions defined
on patch overlaps Um∩Un depending on the even coordinates τ̃ ℓ̃n, τ ℓn of the

(
Un, τ̃

ℓ̃
n; τ ℓn|χαn

)
chart

as indicated. It is also not possible to find an atlas that preserves the Z grading of the even
coordinates only, as in

τ̃ ℓ̃m = f̃ ℓ̃mn
(
τ̃1
n, τ̃

2
n, . . .

)
,

τ ℓm = f ℓmn
(
τ1
n, τ

2
n, . . .

)
, (holomorphic projection)

χαm = gαmn
(
τ1
n, τ

2
n, . . . |χ1

n, χ
2
n, . . .

)
,

where the odd transition function gαmn only preserves the Z grading of the odd supermoduli χαm
mod 2. This corresponds to having found a holomorphic projection, which is also known to not
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exist in general [20]. What does exist instead is an atlas whose charts are glued together with
both even and odd transition functions that only preserve the Z grading mod 2

τ̃ ℓ̃m = f̃ ℓ̃mn
(
τ̃1
n, τ̃

2
n, . . . ; τ1

n, τ
2
n, . . . |χ1

n, χ
2
n, . . .

)
,

τ ℓm = f ℓmn
(
τ̃1
n, τ̃

2
n, . . . ; τ1

n, τ
2
n, . . . |χ1

n, χ
2
n, . . .

)
, (general)

χαm = gαmn
(
τ̃1
n, τ̃

2
n, . . . ; τ1

n, τ
2
n, . . . |χ1

n, χ
2
n, . . .

)
, (1.1)

so that f̃ ℓ̃mn, f ℓmn are even Grassmann parity smooth functions of their arguments, whereas gαmn
are odd parity smooth functions of their arguments. The range of the various indices ℓ̃=1, . . . , m̃,
ℓ = 1, . . . ,m and α = 1, . . . , ν, correspond to the relevant dimension, even|odd = m̃ + m|ν, of
supermoduli space, whereas m, n label the charts. (In all cases there are also the obvious com-
patibility requirements or cocycle relations associated to triple and higher patch overlaps.) In
other words, there is no obstruction2 to a smooth splitting of supermoduli space. In fact, all ob-
structions to a splitting vanish on a smooth supermanifold [41], in that we can always interpolate
between one sort of behaviour near the boundary of a patch and another on the interior [41].

There is some very important work that implements this observation, initiated by Sen [49]
and further refined by Sen and Witten [50] (see [50, Section 7.1]), see also Wang and Yin in [60].
There is also a related more algebraic approach carried out by Erler in [26]. These developments
are important because we did not have an explicit prescription in the RNS formalism to compute
higher loop superstring amplitudes prior to it. (Although one should be careful, because this
does not mean that vertical integration is necessarily the best way to proceed, nor that it is
particularly natural.3) The idea [49, 50] is to work in the picture-changing operator (PCO)
formalism, where one has picked a local (e.g., delta function) gauge slice for the worldsheet
gravitino that may or may not a priori be globally well-defined. The odd moduli are then
integrated out, leading to PCO insertions on an ordinary Riemann surface which is partitioned
into regions. The locations of PCOs are chosen such that spurious poles (associated to the
incorrect gauge fixing) in each region are avoided. After carrying out this procedure for every
region, if one tries to simply add the contributions from every region one finds that the resulting
quantity is not well-defined. This manifests in a number of ways, e.g., amplitudes are not
gauge invariant (BRST-exact vertex operators do not decouple) [49]. The prescription, dubbed
“vertical integration” [49, 50], is to nevertheless go ahead and add the contributions from each
region, and then to correct for the incorrect gauge fixing by including correction terms associated
to the interface between regions. This effectively connects the aforementioned locally-defined
sections along a fibre (corresponding to a coordinate choice) over a fixed point in moduli space.
In this manner gauge invariance is restored. Vertical integration, effectively, makes use of the
fact that a smooth splitting of supermoduli space always exists. But the situation is not entirely
satisfactory yet [9]. For example, the vertical integration procedure does not explicitly determine
what these correction terms actually are.

The question I would like to ask in this note therefore is how to construct a smooth gauge
slice for the integral over supermoduli in the context of heterotic string theory that is determined
and well-defined from the outset. In fact, I will consider the perhaps simplest example of such

2I thank Edward Witten for some correspondence on this.
3To clarify (jumping ahead slightly), I am using the word “natural” here to refer to the fact that (given the

above discussion associated to smooth and split transition functions), even and odd moduli naturally mix as we
transition from one patch to another, whereas in the PCO formalism one has implicitly integrated out the odd
moduli from the outset, making a geometric interpretation unclear. In the differential-geometric formalism of the
current document, one instead treats even and odd moduli on equal footing, so that one can transition from one
patch to a neighbouring one using smooth transition functions of the form (1.1). (We also treat even and odd
coordinates of the underlying super Riemann surface on equal footing, instead of reducing to an ordinary Riemann
surface from the outset as done in the PCO approach.) So one might consider this a more “natural” procedure, but
of course ultimately the PCO and differential-geometric approaches should lead to the same observable physics.
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a smooth gauge slice, namely I will derive how to translate a Neveu–Schwarz (NS) puncture
across a super Riemann surface with the topology of a 2-sphere, with special attention paid to
incorporating the underlying super curvature locally. The gauge slice will be defined by making
use of a super Riemann surface analogue of a metric, and I will choose a specific superconformal
frame that is globally well-defined. In other words, I will introduce a metric on [a subset of]
supermoduli space and (after a suitable gauge fixing) use it to induce a smooth dependence of
superconformal transition functions (defining the super Riemann surface) on the supermoduli
associated to the location of an NS puncture. The gauge fixing will be analogous to Polchinski’s
“as flat as possible” gauge slice in the bosonic string theory context [45] – reviewed in detail
in [53] – suitably generalised to heterotic super Riemann surfaces.

So in the current note I initiate a differential-geometric approach to supermoduli space, that
is well-defined from the outset, that does not rely on existence of a holomorphic splitting or
projection. A central role will be played by the local super curvature, which in a sense localises
the “Wu–Yang” type contributions from patch overlaps, so that total derivatives in supermoduli
space really do correspond to total derivatives in supermoduli space (as opposed to integrals
of total derivatives that receive contributions from fictitious boundaries associated to patch
overlaps [59]). (The mechanism is analogous to a baby version of the integral reviewed in [53,
Section 5.6] in the context of bosonic string theory.) Note that because we are allowing for
non-trivial super curvature, the point at infinity on the super plane is in a sense trivialised. So
that (in a practical calculation) we only really need one coordinate chart for the entire sphere.
This is to be contrasted with the approach of Nelson [40] and La and Nelson [35], and hence,
more generally, also (super)string field theory [12] which incorporates Nelson’s viewpoint; see
also Mark Doyle’s thesis4 [21] for a very nice overview of this approach. In this approach [40],
local super curvature is instead hidden in transition functions on patch overlaps. For example,
in the case of a super sphere it might be encoded on an equatorial band, making it essential to
consider more than a single chart.

Although smoothly translating an NS puncture across a super sphere is perhaps the simplest
non-trivial example, this could nevertheless be expected to have wide-ranging implications. Be-
cause in addition to providing the relevant map from fixed picture −1 NS vertex operators to
integrated 0 picture, this also (partially) provides an explicit expression for the measure as-
sociated to translating heterotic string handle operators across a curved surface. Modulo the
inclusion of the Ramond sector (that I will not discuss here), the latter provides the basic build-
ing block of arbitrarily higher-genus superstring amplitudes, and (due to the underlying smooth
gauge slice [41]) there will be no obstruction at any string loop order. So that amplitudes at all
loop orders can be treated on equal footing. As I briefly speculate on next, it is not inconceivable
that this approach therefore also proves useful beyond perturbation theory.

With regard to this last point, one cannot dismiss from the outset the possibility that this
differential-geometric handle operator approach might even make aspects of non-perturbative
string theory accessible. It is of course very well-known that superstring perturbation theory is
an asymptotic series [52]. And although there is no proof, one expects that string perturbation
theory diverges for the same reason that almost any Feynman diagram expansion diverges, and
one simply does not expect there to be any surprises in the string case.5 That is, if one were
able to compute the genus-g contribution to the amplitude, for every g = 0, 1, 2, . . . , then the
resulting series should be asymptotic. The genus-g contribution to the amplitude with n vertex
operator insertions might in particular be expected to diverge as Ag,n ∼ (2g − 3 + n)!. The
underlying reasoning leading to this conclusion however does not apply in the handle operator
viewpoint, because in the handle operator viewpoint I would like to suggest that one instead
might like to sum over loops (handle operator insertions) before carrying out the path integral,

4I am grateful to Mark Doyle for sharing his Ph.D. Thesis with me.
5I am grateful to Edward Witten for a discussion about this over dinner at STRINGS 2014 in Princeton.
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i.e., at the level of the integrand. And there is no reason to believe that the procedure of summing
over string loops, and that of carrying out the path integral, commute. In further detail, by
adopting an appropriate unfolding6 of supermoduli space and rewriting it as an integral over
super Teichmüller space (so as to remove the correlations between the integration domains of the
various handle operator supermoduli integrals), one might try to first sum over handle operator
insertions before carrying out the string path integral. A simple toy model analogy, to get the
idea across, would be to consider the integral of a Gaussian with a x4 interaction term on the
right-hand side of the equality

∞∑
g=0

1
g!

∫ ∞

−∞
dx e−xGx(−λx4)g ̸=

∫ ∞

−∞
dx e−xGx

∞∑
g=0

1
g!
(
−λx4)g. (1.2)

Although the left-hand side of this expression is an asymptotic series, the sum over g on the
right-hand side is not: both the sum and corresponding integrals can be carried out without en-
countering a divergence associated to the presence of an asymptotic series; in fact, the right-hand
side can be written in terms of a modified Bessel function of the second kind, 1

2

√
G
λ e

G2
8λ K 1

4

(
G2

8λ
)
.

The handle operator approach enables one to explore the idea that a correct approach might
be to think of string theory as being defined by an expression analogous to the right-hand side
in (1.2), instead of the usual approach which corresponds to integrating the summand at fixed g

and then trying to sum the asymptotic series (as seen on the left-hand side). One might argue
that this idea was already hinted at by the Fischler–Susskind mechanism [27, 28, 45], which
highlights a subtle interplay between string loop corrections and string background shifts, and
a little-known paper by Tseytlin [57], but the details have not been fleshed out. Of course, there
are also IR divergences arising from the boundary of supermoduli space, where one understands
in principle how to proceed due to developments in string field theory, but it is not yet clear
how these divergences will be dealt with in the handle operator viewpoint. There is clearly a lot
of work to be done.

In Section 2, we begin by discussing a simple parametrisation of a 2-sphere using both a holo-
morphic and a smooth viewpoint. In Section 3, we define a new set of frame coordinates that we
call ‘superconformal normal coordinates’. These coordinates (by analogy to Riemann normal co-
ordinates in ordinary Riemannian geometry) will enable us to map (or pullback) our superframe
(on which we use standard superconformal field theory techniques to define local operators and
states) to an underlying curved super Riemann surface. In Section 4, we introduce the notion
of super curvature that we will adopt throughout the article. In Section 5, we will derive the
precise expression for the path integral measure that implements the aforementioned gauge slice.
In Section 6, we show that the path integral measure contributions associated to the gauge slice
of interest leads to the expected decoupling of BRST-exact insertions into the path integral. In
the Discussion (see Section 7), we provide some further context and generalisation to arbitrary
super Riemann surfaces with an arbitrary number of handles while also highlighting a puzzle
that seems to arise in this case. We also mention some future directions.

2 Super Riemann surfaces

Let us primarily construct a super Riemann surface, Σ, with the topology of a 2-sphere. We
can, for instance, glue two copies of the super plane (see also [63, Section 5.2.1]) that are in
turn parametrised by the superconformal charts (Uu, u|θu) and (Uw, w|ψ). We take these to be

6This would be analogous to the unfolding procedure carried out by Mirzhakani [37, 38], see also [18], in the
context of hyperbolic Riemann surfaces, and the related procedure explained in [43] and [3]; see also citations ‘to’
and references ‘within’ [3]. None of these procedures applies directly however, because the handle operator gauge
slice is formulated on (super) Riemann surfaces with the topology of a 2-sphere.
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centred at qu ∈ S2 and qw ∈ S2 respectively so that (u|θu)(qu) = 0 and (w|ψ)(qw) = 0. We
might think of these points as corresponding to north and south poles of the reduced 2-sphere.
We then glue on Uu ∩ Uw (which loosely speaking can be thought of as spanning an equatorial
band) with the superconformal transition function, uw = 1. Demanding consistency with the
superconformal condition Dψu = θuDψθu in turn determines the remaining transition function
θu(w|ψ) (up to an immaterial sign since both the superconformal condition and uw = 1 are
invariant under u|θu → u| − θu and w|ψ → w| − ψ). Proceeding in a similar manner for the
anti-chiral half, the full set of transition functions to cover the entire sphere is then [47, 62],

ũ(w̃) = 1
w̃
, u(w|ψ) = 1

w
and θu(w|ψ) = iψ

w
, (2.1)

where we arbitrarily picked one of the two signs (the alternative choice is effectively equivalent
to replacing the explicit factor, i → 1/i). In solving the superconformal condition one makes use
of the fact that it holds for all ψ.

To transition to a smooth description, it is convenient to use the above charts, (Uu, u|θu)
and (Uw, w|ψ), to construct a super Riemann surface version of a metric on the sphere. The super
analogue of a Riemannian metric has been provided in [62, Section 3.6.3], see also [6, 59] for some
early work along these lines. As discussed in [62] (and elaborated on very briefly in Section 4 here
where we also introduce a notion of super curvature), the appropriate structure, locally (where
we pick local coordinates z̃;z|θ) is the following. We can regard a metric as a nonzero section
Ẽ = eφ̃dz̃ of T ∗

LΣ (of rank 1|0), and a nonzero section E = eφϖ (with ϖ = dz − dθθ) of a rank 1|0
subbundle, D−2 ⊂ T ∗

RΣ (with T ∗
RΣ of rank 1|1). We can then introduce a connection ω on D−2,

and a corresponding gauge invariance E → euE, Ẽ → e−uẼ and ω → ω+ du. The combination
g(z) = Ẽ ⊗ E, in particular, is then gauge invariant and globally-defined. We will call the
quantity g(z) a metric, but we will not be using this quantity to define areas or distances,7 which
is what metrics are usually good for. Instead, what is important for our purposes is that g(z) is
globally defined, so that it can be used to specify a gauge slice to translate frames (and hence
also NS punctures) across super Riemann surfaces in a well-defined and smooth manner.

For concreteness, we can actually proceed by direct analogy to the conformally-flat expression
for the metric on an ordinary 2-sphere dw̃dw/(1 + w̃w)2 (where we chose the radius of the 2-
sphere, r = 1/2). Taking the aforementioned comments into account, consider the specific local
expression for the “metric”

g(w) = dw̃(dw − dψψ)
(1 + w̃w)2 with eφ̂(w̃;w|ψ) = 1

(1 + w̃w)2 . (2.2)

Note primarily that g(w) is not only gauge invariant (see Section 4 for some elaboration on this),
it is also globally-defined in the sense that it is invariant under the superconformal transfor-
mation (2.1), g(u) = g(w). One can check this by noting that under a general superconformal
transformation ũ;u|θu → w̃;w|ψ, we have dw̃ = dũ(∂ũw̃) and ϖw = ϖu(Dθuψ)2.

One may wonder to what extent such an expression for g(w) in (2.2) always exists on a super
Riemann surface with the topology of a 2-sphere. In fact, one can always arrive at this expression
starting from any globally-defined (but otherwise arbitrary) metric g(w′) of the correct topology,
which may in turn involve any combination of odd and even variables (subject to the fact
that eφ′(w̃′;w′|ψ′) is even) by a unique (up to a phase) superconformal transformation w̃′;w′|ψ′ →
w̃;w|ψ. A sketch of a proof that one can always map to a metric of the form (2.2) starting
from an arbitrary metric is as follows: one can show this explicitly by building a Taylor series
expansion for w̃(w̃′);w(w′|ψ′)|ψ(w′|ψ′) in terms of φ′(w̃′;w′|ψ′) and its derivatives (evaluated at

7Indeed, it is well-known (see, e.g., [42]) that using the notion of a metric to define “area” and “distance” on
a super Riemann surface is problematic. I am also grateful to Branislav Jurco for some correspondence on this.
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some base point of our choice). This Taylor series is guaranteed to be convergent since it is
superconformal. The coefficients of this series expansion will, of course, not be superconformal
in general (since they are constructed out of φ′ and its derivatives). (This calculation is similar
to that elaborated on below, see (3.3) and the associated discussion.)

Let us pause momentarily to make a brief remark on notation before we embark on the
construction of the smooth gauge slice of interest. We denote the coordinate w̃;w|ψ concisely by
the superscript (w). A superscript (z) will similarly refer to the superconformal coordinate z̃;z|θ
and we reserve this notation for a special frame called a “superconformal normal coordinate”
frame (that we will define momentarily). This will have the property that the origin z̃;z|θ = 0;0|0
is identified with a supermodulus ṽ;v|χ in the (w) coordinate system, which will in turn allow
us to insert NS punctures at z̃;z|θ = 0;0|0 and then translate them to integrated picture by
mapping to the (w) coordinate system. We can then move the NS puncture across the super
Riemann surface by allowing ṽ;v|χ to vary, or, more precisely, by associating this quantity to
a supermodulus. To simplify the notation, in the superconformal chart with coordinates z̃;z|θ
we will sometimes write φ(z) as φ, and in the superconformally-related chart w̃;w|ψ we will
occasionally write φ(w) as φ̂, as in (2.2). We also write ϖ̂ = dw − dψψ and ϖ = dz − dθθ, and
also Dθ = ∂θ + θ∂z.

3 Superconformal normal coordinates

We now want to insert a NS puncture at some point on the super Riemann surface that in the (w)

coordinate with metric defined in (2.2), will correspond to the coordinate w̃;w|ψ = ṽ;v|χ. So
the 2|1 parameters ṽ;v|χ will be identified with the even|odd moduli associated to this puncture.
For example, we might like to insert an NS vertex operator at this point. We would like to use
the standard operator/state correspondence of superconformal field theory on super Riemann
surfaces, in which case it is natural to initially take this vertex operator to be in the −1 pic-
ture [30, 62], and defined using radial quantisation on the flat super plane using a chart z̃;z|θ,
inserted at a point with coordinate value 0;0|0. So we start off with an NS vertex operator on
a flat superplane in the −1 picture inserted at a point z̃;z|θ = 0;0|0. To transition to a global
picture and associate this NS puncture location with a supermodulus we need to translate it to
integrated picture. But we wish do so in a globally well-defined manner, and such that local
super curvature is stored locally. So we are generalising Polchinski’s bosonic string construc-
tion [45] to the superstring.8 After translating this vertex operator to integrated picture, we can
then integrate over ṽ;v|χ in the corresponding path integral.

The claim I would like to put forward now is the following. There exists a superconformal
change of variables w̃;w|ψ → z̃;z|θ that preserves the metric up to a superconformal factor,

1
(1 + w̃w)2 dw̃(dw − dψψ) = eφ(z̃;z|θ)dz̃(dz − dθθ), (3.1)

such that at the location of the puncture, where z̃;z|θ = 0;0|0 (which maps to w̃;w|ψ = ṽ;v|χ),
the new g(z) “metric” is “as flat as possible”,

φ(0;0|0) = 0 and Dn
θφ(0;0|0) = ∂nz̃ φ(0;0|0) = 0, n ≥ 1. (3.2)

The presence of super curvature (which in the (z) frame reads Rz̃θ = −∂z̃Dθφ), see Section 4,
means that mixed derivatives cannot be set to zero by a superconformal transformation, but

8This is to be contrasted with the usual situation encountered in string field theory [12, 65] (originally pioneered
by Nelson [40]), where this information that the sphere is curved is instead stored in transition functions on patch
overlaps, see also [35].
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there is no obstruction to setting purely holomorphic or purely anti-holomorphic derivatives of φ
equal to zero at a point as done in (3.2).

I would like to suggest that (3.2) is the appropriate generalisation to the heterotic string of
the gauge slice constructed in the context of bosonic string theory by Polchinski in [45]. We will
next prove that this gauge slice (3.2) exists and in the process we will also derive the precise
superconformal transformation that implements it. It will turn out to be a specific OSp(2, 1)
transformation9 with parameters that depend smoothly on ṽ;v|χ.

We will build this superconformal transformation using a Taylor series expansion for z̃(w̃),
θ(w|ψ) and z(w|ψ). A Taylor series for θ(w|ψ) about w̃;w|ψ = ṽ;v|χ (taking into account that
θ(v|χ) = 0) takes the general form (see [29, Section 2.7])

θ(w|ψ) = ψ̂Dψθ(v|χ) +
∞∑
n=1

1
n! ŵ

n(∂nwθ(v|χ) + ψ̂∂nwDψθ(v|χ)
)
, (3.3)

with ψ̂ = ψ − χ and ŵ = w − v − ψχ. What distinguishes one superconformal transformation
from another are the coefficients ∂nwDψθ and ∂nwθ. In particular, we need to derive explicit
expressions for ∂nwDψθ and ∂nwθ for n = 0, 1, . . . subject to the gauge slice conditions (3.2).
Using the superconformal chain rule (according to which Dψ = (Dψθ)Dθ, etc.), it is immediate
to see that if (3.2) is satisfied at z̃;z|θ = 0;0|0 then so will Dn

ψφ = ∂nw̃φ = 0 be satisfied
at z̃;z|θ = 0;0|0, and vice versa. Since furthermore we require the “metric” to be globally-
defined, under superconformal transformations, we wish to set g(z) = g(w), as indicated in (3.1).
This implies the superconformal factor transforms as

φ(w) = φ(z) − ln(Dθψ)2 − ln ∂z̃w̃, (3.4)

with φ̂ ≡ φ(w) in the case of interest given by the sphere metric (2.2). We then hit (3.4) with an
appropriate number of derivatives, ∂w, Dψ, and evaluate the resulting relations at z̃;z|θ = 0;0|0
(equivalently, w̃;w|ψ = ṽ;v|χ). After some elementary manipulations, we find

∂nwθ = Dψ

(
Bn−1

(1
2∂

s
wφ̂
)
Dψθ

)
, n > 1, ∂wθ = 1

2Dψφ̂Dψθ,

∂nwDψθ = Bn
(1

2∂
s
wφ̂
)
Dψθ, n > 0, (3.5)

which are evaluated at the location of the puncture. The quantities Bn(as) ≡ Bn(a1, . . . , an) are
complete Bell polynomials. We will keep the argument as = 1

2∂
s
wφ̂(ṽ;v|χ) implicit for conciseness.

The relations (3.5) follow from (3.2), (3.4), and standard properties of complete Bell polynomials.
We then substitute the relations (3.5) back into the Taylor expansion formula (3.3) to arrive at

θ(w|ψ) = Dψθ(v|χ)
{
ψ̂ +

∞∑
n=1

1
n! ŵ

n
(
DψBn−1 + 1

2Dψφ̂Bn−1 + ψ̂Bn

)
(ṽ;v|χ)

}
. (3.6)

We next evaluate the various complete Bell polynomials making use of the sphere metric (2.2),

DψBn−1 = (n− 1)(n− 1)
( −ṽ

1 + ṽv

)n
χ,

1
2Dψφ̂Bn−1 = (n− 1)

( −ṽ
1 + ṽv

)n
χ,

ψ̂Bn = n

( −ṽ
1 + ṽv

)n
(ψ − χ),

and substitute these into (3.6). Carrying out the sum over n and rearranging, we arrive at

θ(w|ψ) = Dψθ(v|χ)(1 + ṽv)(ψ − χ) − ṽ(w − v)χ
ṽw + 1 . (3.7)

9The group OSp(2, 1) is referred to as SPL(2,C) in [11].
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We have not yet determined Dψθ(v|χ). Putting this aside momentarily, we next extract the
corresponding expression for z(w|ψ).

A simple way to construct a Taylor series for z(w|ψ) is to substitute (3.7) into the supercon-
formal condition Dψz = θDψθ and integrate it using the boundary condition z(v|χ) = 0 (which
is inherited from the fact that the puncture is inserted at z̃;z|θ = 0). This procedure leads to
the explicit expression

z(w|ψ) = [Dψθ(v|χ)]2 (1 + ṽv)(w − v − ψχ)
ṽw + 1 . (3.8)

Notice that despite the fact that the transition functions (3.7) and (3.8) are superconformal
in w|ψ, they are nevertheless only smooth in the supermoduli ṽ;v|χ.

Carrying out the same procedure for the anti-chiral half, the relation analogous to (3.5) is
(see [53, Section 2.4.2]) ∂nw̃z̃ = Bn−1

(
∂sw̃φ̂

)
, which is evaluated at ṽ;v|χ, and therefore the Taylor

series expansion for z̃(w̃) around w̃ = ṽ reads

z̃(w̃) = ∂w̃z̃(ṽ)
{ ∞∑
n=1

1
n! (w̃ − ṽ)nBn−1

(
∂sw̃φ̂

)}
. (3.9)

Evaluating the complete Bell polynomial taking into account (2.2) leads to

Bn−1
(
∂sw̃φ̂

)
= n!

( −v
1 + ṽv

)n−1
,

which in turn implies that (carrying out the sum over n) (3.9) reduces to

z̃(w̃) = ∂w̃z̃(ṽ)(1 + ṽv)(w̃ − ṽ)
vw̃ + 1 . (3.10)

Returning now to the quantity Dψθ(v|χ) in (3.7) or (3.8), and also now ∂w̃z̃(ṽ) in (3.10), these
are in fact not independently determined by the gauge slice. Instead, it is only the combination
∂w̃z̃(ṽ)(Dψθ(v|χ))2 = 1/(1 + ṽv)2 that is determined. As in the bosonic string [45], there is
an obstruction (the Euler number) to setting the phase of θ or z to zero globally, but this will
be sufficient. (For a detailed derivation of this point see [53, Section 2.5] and in particular the
discussion on [53, p. 46], and also Section 2.4.2 therein.) This is the topological or global origin
of the L0 − L̃0 = 0 constraint that must be satisfied by local vertex operators in superstring
perturbation theory [40, 45] or string fields in string field theory [12, 65]. Notice that the
superconformal condition implies (Dψθ)2 = ∂wz − ∂wθθ, and since θ(v|χ) = 0 the ambiguity is
identical to that in the bosonic string [45, 53], namely

∂w̃z̃(ṽ)∂wz(v|χ) = 1
(1 + ṽv)2 . (3.11)

This is as expected, because (apart from the notion of a spin structure) there is no new non-
trivial topological information on the worldsheet that arises due to the presence of odd variables
(see [63, Section 2.1.2]). From (3.11) we see that there can be no χ dependence in either ∂wz(v|χ)
or ∂w̃z̃(ṽ), because there is no other odd variable present in these transition functions. (There can
still be other odd moduli associated to other punctures or handle operators inserted elsewhere
on the super Riemann surface.) Requiring that these become complex conjugates when we set
odd variables to zero [63] then determines each of these up to a v,ṽ-dependent phase

∂w̃z̃(ṽ) = e−iα(ṽ,v)

1 + ṽv
, ∂wz(v|χ) = eiα(ṽ,v)

1 + ṽv
, and Dψθ(v|χ) = ±e

i
2α(ṽ,v)

√
1 + ṽv

.
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The phase α(ṽ, v) is real when we set ṽ = v∗ (where v∗ is the complex conjugate of v). The ‘±’
sign in Dψθ(v|χ), denoted by η in what follows, is meaningful and is associated to a choice of spin
structure. Although α does depend on ṽ, v, it must always cancel out of observable quantities. It
will therefore be convenient to absorb α into a redefinition z̃;z|θ → eiαz̃;e−iαz|e−iα/2θ and instead
check explicitly that the physically-meaningful quantities do not depend on such a phase.

Summarising, the superconformal transformation w̃;w|ψ → z̃;z|θ that maps the globally-
defined sphere coordinate w̃;w|ψ to the flat superplane10 coordinate, z̃;z|θ, that in turn translates
a NS puncture inserted at w̃;w|ψ = ṽ;v|χ to the point z̃;z|θ = 0;0|0 is given by

z̃(w̃) = w̃ − ṽ

vw̃ + 1 , z(w|ψ) = w − v − ψχ

ṽw + 1 , θ(w|ψ) = η

√
1 + ṽv

(ṽw + 1)ψ − η
χ√

1 + ṽv
, (3.12)

where η = ±1. We also need the inverses

w̃(z̃) = z̃ + ṽ

−vz̃ + 1 , w(z|θ) = z + v + ηθχ/
√

1 + ṽv

−ṽz + 1 − ηθχṽ/
√

1 + ṽv
,

ψ(z|θ) =
√

1 + ṽvηθ + χ

−ṽz + 1 , (3.13)

which follow from (3.12). By construction, notice that w̃ = w∗ when we set the odd variables
equal to zero, but we have not required any stronger version of complex conjugation.

The quantities (3.12) and (3.13) define the notion of a specific super frame E M
A and its

inverse E A
M , respectively, where A = z̃, z, θ denotes the frame indices and M = w̃, w, ψ could

be thought of as Einstein (or base coordinate) indices. At w̃;w|ψ = ṽ;v|χ (equivalently z̃;z|θ =
0;0|0), these read explicitly

E A
M =

E
z̃

w̃ E z
w̃ E θ

w̃

E z̃
w E z

w E θ
w

E z̃
ψ E z

ψ E θ
ψ

 =


1

1+ṽv 0 0
0 1

1+ṽv − ηχṽ
(1+ṽv)3/2

0 − χ
1+ṽv

η√
1+ṽv

 ,

E M
A =

E w̃
z̃ E w

z̃ E ψ
z̃

E w̃
z E w

z E ψ
z

E w̃
θ E w

θ E ψ
θ

 =

1 + ṽv 0 0
0 1 + ṽv χṽ
0 ηχ

√
1 + ṽv η

√
1 + ṽv

 .
The individual entries are defined as expected, e.g., E z

w = ∂z
∂w |w=v, E z

ψ = ∂z
∂ψ |w=v, etc., whereas

the corresponding Berezinian [63] for the change of coordinates (evaluated at the puncture) is
given by

D(z̃, z|θ) = D(ṽ, v|χ) BerE A
M with BerE A

M = η

(1 + ṽv)3/2 . (3.14)

4 Super curvature

It proves useful, especially in the case of more general super Riemann surfaces to introduce
the notion of super curvature. Rather than provide the details of this general discussion here
however, we will instead only present, very briefly, the ingredients we will be needing in the
current paper.

We can define super curvature of a heterotic super Riemann surface Σ as follows. Follow-
ing [62], we first decompose the contangent bundle T ∗Σ = T ∗

LΣ⊕T ∗
RΣ (where T ∗

LΣ is of rank 1|0
and T ∗

RΣ is of rank 1|1) by declaring that T ∗
LΣ is generated by a quantity Ẽ, whereas T ∗

RΣ is
10By “flat superplane coordinate” we mean the superconformal frame that is associated to the metric g(z) =

eφdz̃(dz − dθθ) which satisfies φ = 0 (and in particular (3.2)) at the puncture z̃;z|θ = 0;0|0.
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generated by E and F (see [62, Section 3.6 and in particular Section 3.6.3]). The quantity E
generates a subbundle D−2 ⊂ T ∗

RΣ. We then introduce a connection ω on the line bundle D−2

and postulate a gauge invariance,

Ẽ → e−uẼ, E → euE, F → eu/2F, ω → ω + du.

The corresponding gauge-covariant exterior derivatives of Ẽ, E and F are then

DẼ = (d + ω)Ẽ, DE = (d − ω)E, DF =
(

d − 1
2ω
)
F,

where d = dz̃∂z̃ +ϖ∂z + dθDθ is the ordinary exterior derivative, and a convenient component
expansion for ω in the chart (Uz, z̃;z|θ) is then ω = dz̃ωz̃ + ϖωz + dθωθ. The super analogues
of metric compatibility and vanishing torsion are encoded in DẼ = 0, DE + F ∧ F = 0. In
practice, it is convenient to fix the above gauge invariance. Omitting details, in a local chart (z)

this analysis leads to the following explicit expressions:

Ẽ(z) = eφdz̃, E(z) = ϖ, F (z) = dθ +ϖ
1
2Dθφ,

where φ(z̃;z|θ) is a smooth function of the arguments (but may implicitly also depend smoothly
on supermoduli). Notice that the “metric” we defined in Section 3 (and as very briefly mentioned
in Section 2), namely g(z) = eφdz̃⊗ϖ, is none other than the gauge-invariant combination Ẽ⊗E
after gauge fixing.11 The gauge-fixed expression for the connection, ω, in turn reads

ω = dz̃ωz̃ +ϖωz + dθωθ with ωz̃ = 0, ωz = −∂zφ, ωθ = −Dθφ.

We can use these quantities to arrive at a useful notion of super curvature, R, defined by

D2 = nR with R = ϖdz̃Rzz̃ + dz̃dθRz̃θ,

and n is the U(1) weight of the superconformal tensor on which the operator D2 acts. We have
taken into account that D preserves U(1) weight, and have defined the quantities Rzz̃ ≡ −DθRz̃θ
and Rz̃θ ≡ −∂z̃Dθφ. We will usually refer to the component Rz̃θ (out of which the entire ex-
pression for R can be reconstructed) as the super curvature. Under superconformal changes of
coordinates (i.e., analytic maps z̃;z|θ → w̃(z̃);w(z|θ)|ψ(z|θ) subject to Dθw = ψDθψ) it trans-
forms as a section of (T ∗

LΣ)⊗D−1, in particular, Rz̃θ = Rw̃ψ(∂z̃w̃)(Dθψ), the corresponding U(1)
weight being therefore n = −1

2 . Super curvature thus transforms as an odd smooth section of
the Berezinian. The quantity R is globally-defined, in the sense that under superconformal
transformations it transforms as R(z) = R(w). We will often find it convenient to work in terms
of the super curvature, Rz̃θ, and its derivatives, since it is these quantities that appear in the
path integral measure and vertex operators in heterotic string theory.

If we now focus on the specific super Riemann surface of interest, namely that with the
topology of a 2-sphere, in the (w) superconformal frame (defined in Section 2) the super curvature
is given by the local expression Rw̃ψ = −∂w̃Dψφ̂, so that according to (2.2)

Rw̃ψ = 2ψ
(1 + w̃w)2 . (4.1)

Since super curvature is an odd smooth section of the Berezinian12 Rw̃ψ = (∂z̃w̃Dθψ)−1Rz̃θ
(the integration measure D(w̃;w|ψ) = D(z̃;z|θ)∂z̃w̃Dθψ transforms in the opposite manner), the

11We could have included a term λẼ ⊗ F 2 in g(z) with λ an odd smooth function of z̃;z|θ; this would also
be gauge-invariant, but it does not seem necessary since our expression for g(z) is already globally-defined and
gauge-invariant.

12We are being somewhat heuristic here, a more general discussion will be presented elsewhere.
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integral χ = 1
2π
∫

D(w̃;w|ψ)Rw̃ψ is well-defined and in fact equals the Euler characteristic of
the super Riemann surface. We leave it as an exercise for the reader to check that the Euler
characteristic is given by its classical value χ = 2 as expected [62]. An important point is that
(on the super sphere) we only need a single coordinate chart to compute this quantity, because
we incorporate super curvature locally and furthermore it dies off sufficiently rapidly at infinity.

The super curvature Rw̃ψ given in (4.1) is in the (w) frame. We will also need the corresponding
expression in the (z) frame. Since the two frames are related by Rz̃θ = ∂z̃w̃DθψRw̃ψ, according
to (3.13) and (4.1),

Rz̃θ(z;z|θ) = 2θ
(1 + z̃z)2 + 2ηχ√

1 + ṽv(1 + z̃z)2 ,

and therefore at z̃;z|θ = 0;0|0 (equivalently w̃;w|ψ = ṽ;v|χ)

Rz̃θ = 2ηχ√
1 + ṽv

and 1
2DθRz̃θ = 1, (4.2)

with the following (purely chiral or purely anti-chiral) higher derivatives vanishing: ∂nzDθRz̃θ =
∂nzRz̃θ = ∂nz̃Rz̃θ = 0 for all n = 1, 2, . . . . Incidentally, there is also a notion of ‘torsion’ on super
Riemann surfaces [14]. Since we will not be making explicit use of this below, for completeness
we simply mention that the torsion constraints are automatically satisfied in the gauge slice of
interest, and in particular we find T z

θθ = 2 and T θ
zz̃ = −1

2Rz̃θ with all remaining components
equal to zero.

5 Path integral measure

To implement the gauge slice developed in Section 3 into the corresponding path integral, we
need to determine the path integral measure. For this, we will need to know the change in z̃(w̃),
z(w|ψ), θ(w|ψ) with respect to small variations in the supermoduli ṽ;v|χ keeping the coordinate
w̃;w|ψ fixed. In fact, by keeping w̃;w|ψ fixed we are also keeping the underlying metric fixed.13

This is because (as seen in (2.2)) in the (w) coordinate system the metric depends solely on the
coordinates w̃;w|ψ. (This is to be contrasted with φ(z) which will also depend on supermoduli.)
The explicit expression for the path integral insertion that will implement our gauge slice is∫

D(ṽ,v|χ)δ
(
B̂ṽ
)
δ
(
B̂v
)
δ
(
B̂χ
)
, (5.1)

where we adopt the shorthand D(ṽ,v|χ) = −i[dṽ,dv|dχ]. (Note that the action also depends
on supermoduli, and so this must be included when we actually integrate over them.) This
quantity (5.1) acts on a single fixed-picture NS vertex operator in the −1 picture (that may
or may not be offshell) defined in the (z) frame and inserted at z̃;z|θ = 0;0|0. Let t stand for
any of the quantities ṽ, v or χ. Since there is only a single patch overlap Uz ∩ Uw (which in
turn corresponds to an annulus or a punctured disc with the origin z̃;z|θ = 0;0|0 absent), the
superghost insertions appearing in (5.1) are then determined from

B̂t = 1
2πi

∫
Czw

(
−[dz|dθ]

[
∂z

∂t
− ∂θ

∂t
θ

]
w|ψ

Bzθ + (−)|t|dz̃
[
∂z̃

∂t

]
w̃
b̃z̃z̃

)
, (5.2)

which can be derived from the expression for the measure given by Witten in [64] by a procedure
precisely analogous to that in the bosonic string as derived in [46, Section 9] or in [53, Section 3].

13This hint provides the starting point towards understanding how to carry out the corresponding computation
for arbitrary super Riemann surfaces with arbitrary super curvature (subject to the Euler number constraint). It
will be discussed elsewhere.
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The derivation linking the two viewpoints is in particular precisely analogous to the derivation
linking the first and second equalities in [53, equation (3.245)], but we will omit the details. See
also [60] for some further context and a more complete discussion.

The contour Czw in (5.2) traverses the annular overlap Uz ∩ Uw enclosing the origin z̃;z|θ =
0;0|0 in a counterclockwise sense from the viewpoint of Uz, so that∫

Czw

[dz|dθ]θ/z = −
∫
Czw

dz̃/z̃ = 2πi.

We define |t| to be 0 or 1 for t Grassmann-even or odd parity, respectively.14

The notation for the derivatives appearing in (5.2) indicates that we differentiate the frame
coordinates z̃, z, θ in (3.12) with respect to the supermoduli t = ṽ, v or χ keeping w̃;w|ψ fixed.
After taking these derivatives, we will make use of the inverse expressions given in (3.13) to elimi-
nate the w̃;w|ψ dependence in favour of z̃, z, θ (since the contour integrals in (5.2) are over z̃, z, θ,
and furthermore the superghosts are also defined using the (z) frame). Another technical detail
is that there is some information about the phase of z + δz(z|θ) with δz(z|θ) generated by the
aforementioned supermoduli variations. This ṽ,v-dependent phase e2i Im ṽδv

1+ṽv is not physically
meaningful, so we can set it to zero provided we can show that physical observables do not de-
pend on it, and there is a similar remark for the phase ei Im ṽδv

1+ṽv of θ+ δθ(z|θ) (see Appendix A).
A short computation (see Appendix A) implementing the above procedure then leads to the

following results for the derivatives appearing in (5.2). In terms of the quantities

Vt(z|θ) ≡
[
∂z

∂t
− ∂θ

∂t
θ

]
w|ψ

and Ṽt(z̃) ≡
[
∂z̃

∂t

]
w̃
,

one finds (for t = ṽ, v or χ) in particular

Vṽ(z|θ) = − 1
1 + ṽv

(
z2 − 2ηχ√

1 + ṽv
zθ

)
, Ṽṽ(z̃) = − 1

1 + ṽv
,

Vv(z|θ) = − 1
1 + ṽv

(
1 + 2ηχ√

1 + ṽv
ṽθ

)
, Ṽv(z̃) = − z̃2

1 + ṽv
,

Vχ(z|θ) = η√
1 + ṽv

(
2θ + ηχ√

1 + ṽv

)
, Ṽχ(z̃) = 0. (5.3)

Notice that the dependence of these quantities on z|θ and z̃ is, respectively, superconformal, but
the dependence on the supermoduli ṽ;v|χ is instead only smooth. Substituting these expres-
sions (5.3) into (5.2) while taking into account the contour integral representations for the (z)

frame superghost modes

b̃(z)
n = − 1

2πi

∮
[dz̃]z̃n+1b̃z̃z̃(z̃), b(z)

n = 1
2πi

∮
[dz|dθ]zn+1Bzθ(z|θ),

β
(z)
n+1/2 = 1

2πi

∮
[dz|dθ]θzn+1Bzθ(z|θ)

leads to the following explicit expressions for the measure

B̂ṽ = 1
1 + ṽv

(
b̃

(z)
−1 + b

(z)
1 + 2ηχ√

1 + ṽv
β

(z)
1/2

)
,

B̂v = 1
1 + ṽv

(
b

(z)
−1 + b̃

(z)
1 − 2ηχṽ√

1 + ṽv
β

(z)
−1/2

)
,

14It might be useful to display the even and odd Grassmann parity quantities
∣∣ṽ∣∣ = |v| =

∣∣B̂χ

∣∣ = 0 and
|χ| =

∣∣B̂ṽ

∣∣ =
∣∣B̂v

∣∣ = 1, respectively.
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B̂χ = η√
1 + ṽv

(
−2β(z)

−1/2 + ηχ√
1 + ṽv

b
(z)
−1

)
, (5.4)

and in particular the full insertion (5.1) takes the form∫
D(ṽ,v|χ)e−Iṽvχδ

(
B̂ṽ
)
δ
(
B̂v
)
δ
(
B̂χ
)

= η

∫
D(ṽ,v|χ)(1 + ṽv)−3/2e−Iṽvχ

(
b̃

(z)
−1 + b

(z)
1 + 2ηχ√

1 + ṽv
β

(z)
1/2

)
×
(
b

(z)
−1 + b̃

(z)
1 − 2ηχṽ√

1 + ṽv
β

(z)
−1/2

)
δ

(
−2β(z)

−1/2 + ηχ√
1 + ṽv

b
(z)
−1

)
, (5.5)

where e−Iṽvχ encodes the entire dependence of the action on the supermoduli ṽ;v|χ. We can
determine this by Taylor series expansion in ṽ;v|χ around 0;0|0 and taking into account that
under a generic change in supercomplex structure the action changes by an amount δI as dis-
played in (6.15). The derivative of the action with respect to a supermodulus t is in turn given
by (6.16), and so we can completely reconstruct the quantity e−Iṽvχ using this information.

Equation (5.5) is the main result of the current note, but to show that it leads to a sensible
path integral it is necessary to also show that BRST-exact states decouple – we discuss this
next.

6 Gauge invariance

One of the most important consistency checks of (5.5) is to show that when we insert a BRST-
exact vertex operator into the path integral the latter should vanish, at least up to a total
derivative in supermoduli space. The relevant point here is therefore that the insertion (5.5), in
particular, (anti-)commutes with the BRST charge up to a total derivative.

We will find it convenient in this section to work in terms of a different set of supermoduli
that we will label by z̃;z|θ. In fact, we will only define these implicitly, via their variations,
but this will be all we need for the purposes of this section. Let us primarily consider the
superconformal vector fields (5.3), in particular

δṼ(z̃) = δṽṼṽ(z̃) + δvṼv(z̃) + δχṼχ(z̃),
δV(z|θ) = δṽVṽ(z|θ) + δvVv(z|θ) + δχVχ(z|θ), (6.1)

which according to (5.3) take the explicit form

δṼ = − δṽ

1 + ṽv
− δv

1 + ṽv
z̃2,

δV = − δṽ

1 + ṽv

(
z2 − 2ηχ√

1 + ṽv
zθ

)
− δv

1 + ṽv

(
1 + 2ηχṽ√

1 + ṽv
θ

)
+ ηδχ√

1 + ṽv

(
2θ + ηχ√

1 + ṽv

)
. (6.2)

We can then extract the variations δz(z|θ) and δθ(z|θ) from δV(z|θ) using the identity

δz = δV − 1
2θDθδV, δθ = 1

2DθδV,

which in turn follow from the linearised superconformal condition Dθδz = θDθδθ+ δθ. In terms
of these, we then have

δz̃(z̃) = − δṽ

1 + ṽv
− δv

1 + ṽv
z̃2,



Moving NS Punctures on Super Spheres 15

δz(z|θ) = − δṽ

1 + ṽv

(
z2 − ηχ√

1 + ṽv
zθ

)
− δv

1 + ṽv

(
1 + ηχṽ√

1 + ṽv
θ

)
+ ηδχ√

1 + ṽv

(
θ + ηχ√

1 + ṽv

)
,

δθ(z|θ) = − δṽ

1 + ṽv

(
zθ + ηχ√

1 + ṽv
z

)
+ δv

1 + ṽv

ηχṽ√
1 + ṽv

− ηδχ√
1 + ṽv

, (6.3)

and we define the supermoduli variations δz̃;δz|δθ in terms of these as the change in frame at
the location of the puncture

δz̃ := −δz̃(0), δz := −δz(0|0), δθ := −δθ(0|0). (6.4)

From (6.3) and (6.4), it is seen that

δz̃ = δṽ

1 + ṽv
, δz = δv

1 + ṽv
− δχχ

1 + ṽv
, δθ = − δvηχṽ

(1 + ṽv)3/2 + δχη√
1 + ṽv

. (6.5)

We then rearrange the latter two relations and substitute the resulting set into (6.2) to extract
expressions for δṼ and δV in terms of the variations, δz̃;δz|δθ. By analogy to (6.1), we can
write

δṼ(z̃) = δz̃Ṽz̃(z̃) + δzṼz(z̃) + δθṼθ(z̃),
δV(z|θ) = δz̃Vz̃(z|θ) + δzVz(z|θ) + δθVθ(z|θ),

and, in particular, this procedure leads to

δṼ = δz̃(−1) + δz

(
−1

2DθRz̃θz̃
2
)

+ δθ

(
−1

2Rz̃θz̃
2
)
,

δV = δz̃

(
−1

2DθRz̃θz
2 + Rz̃θzθ

)
+ δz(−1) + δθ(2θ), (6.6)

where we also took into account the super curvature expressions (4.2), namely

Rz̃θ = 2ηχ√
1 + ṽv

and 1
2DθRz̃θ = 1. (6.7)

Of course, in the terms involving the combination 1
2DθRz̃θ we can trivially replace this15 combi-

nation with 1, but we restored this explicitly to emphasise that the terms it appears multiplied
by would have been absent in flat superspace (where instead DθRz̃θ would equal zero). In par-
ticular, in conjunction with the first relation in (6.7), it allows us to differentiate between terms
that appear due to super curvature of the super Riemann surface and terms that would have
been present also in the absence of super curvature.

To emphasise this point, according to the second relation in (6.7), it would be clearly in-
consistent to naively project onto flat superspace by setting Rz̃θ = DθRz̃θ = 0, which is what
we would have arrived at had we assumed a holomorphic splitting for supermoduli space. The
presence of super curvature is mixing chiral and anti-chiral contributions in (6.6) in a manner
that cannot be removed by a change of coordinates. Indeed, there is a topological obstruction to
a “good” holomorphic splitting [41] on a super Riemann surface with the topology of a 2-sphere.

15In fact, displaying the quantity 1
2 DθRz̃θ explicitly, as we have done in (6.6), requires that one carries out the

computation with general super curvature before specifying that the underlying super Riemann surface is a super
sphere, but (in order to keep the paper to a manageable size) I will not present the general super Riemann surface
discussion here.
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Given the superconformal vector fields (6.6), the corresponding superghost contributions to
the measure analogous to (5.1) in terms of z̃;z|θ take the form∫

D(z̃,z|θ)e−Iz̃zθδ
(
B̂z̃
)
δ
(
B̂z
)
δ
(
B̂θ

)
, (6.8)

where, as always, we adopt the shorthand D(z̃,z|θ) = −i[dz̃,dz|dθ] and the quantity Iz̃zθ
encodes the entire supermoduli dependence of the full worldsheet superconformal field theory
action. We can actually think of this as the full (matter plus ghosts) heterotic string theory ac-
tion (6.13), discussed in further detail below. We will write Iz̃zθ = Iz̃z0 +θ∂θIz̃z0 = Iz̃z0 −θ∂̂θ,
to denote the corresponding Taylor series expansion in θ. We have taken into account the re-
lation (6.16), see also (6.12). Mapping [dz̃,dz|dθ] to the integral form dz̃dzδ(dθ) (where each
of the terms dz̃, dz and δ(dθ) have Grassmann-odd parity), making use of (6.5) and expand-
ing the delta function, it easily follows that the supermoduli measures are related as follows
dz̃dzδ(dθ) = dṽdvδ(dχ)η(1 + ṽv)−3/2. (This is of course the same as the conclusion reached
in (3.14), but we included this alternative derivation for variety.) So the overall factors outside
the parentheses in the superghost expressions (5.4) are absorbed into the measure D(z̃,z|θ) in
the parametrisation in (6.8) that is determined by the superconformal vector fields (6.6). The
derivation of (5.4) from (5.2) is in turn precisely analogous to the corresponding derivation
leading to the following superghost contributions to the measure:

B̂z̃ = b̃−1 + 1
2DθRz̃θb1 + Rz̃θβ1/2, B̂z = b−1 + 1

2DθRz̃θ b̃1,

B̂θ = −2β−1/2 − 1
2Rz̃θ b̃1, B̂θ + θB̂z ≡ −2β−1/2 + θb−1 − Kb̃1, (6.9)

where instead of (5.3) that led to (5.4) in the previous derivation we now made use of (6.6) to
arrive at (6.9). We have also defined the parity-odd quantity

K := 1
2
(
Rz̃θ − θDθRz̃θ

)
. (6.10)

It will turn out that gauge invariance requires K = 0, but we want to remain agnostic about the
precise coefficient of proportionality relating Rz̃θ to θ at this point. It is useful to adopt specific
notation for the corresponding BRST (anti-)commutators

∂̂z̃ =
{
QB, B̂z̃

}
, ∂̂z =

{
QB, B̂z

}
, D̂θ =

[
QB, B̂θ

]
,

∂̂θ =
[
QB, B̂θ + θB̂z

]
, (6.11)

where, in particular,

∂̂z̃ = L̃−1 + 1
2DθRz̃θL1 + 1

2Rz̃θG1/2, ∂̂z = L−1 + 1
2DθRz̃θL̃1,

D̂θ = G−1/2 + 1
2Rz̃θL̃1, ∂̂θ = G−1/2 − θL−1 + KL̃1, (6.12)

which follow from the defining relation (6.11) and explicit evaluation of the various (anti-)com-
mutators.

The operators in (6.12) are very much like derivative operators, but the objects they act on
must not be annihilated by the various super Virasoro generators appearing in (6.12) in order
to give a non-vanishing answer. So these operators do not quite replace the ordinary notion of
a derivative. Clearly, there will also be local functions or superconformal tensors (such as Rz̃θ)
that have non-trivial supermoduli dependence while nevertheless being annihilated by ∂̂t. So
to complete the story we need to add ordinary supermoduli derivatives to the right-hand sides
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in (6.12) in order to be able to properly identify them with derivative operators that can act on
both operators and ordinary superconformal tensors or functions (that do not necessarily have
any operator dependence). Therefore, the total derivatives arising from the BRST (anti-)commu-
tators that we expect to find should be of the form ∂t+ ∂̂t. (We will see in (6.19) and (6.20) that
this is the combination that arises naturally.) However, as we briefly summarise momentarily,
the ∂̂t contributions can be replaced by ordinary ∂t derivatives of the worldsheet action (the
precise relation being ∂te−I = e−I ∂̂t, where I is the full worldsheet action of interest, namely
that of the heterotic string plus superghosts

I = 1
2π

∫
D(z̃,z|θ)

( 1
α′∂z̃XDθX + ΛDθΛ +Bzθ∂z̃C

z − B̃z̃z̃DθC̃
z̃
)
, (6.13)

where we will set α′ = 2 and (apart from the minus sign in the last term in (6.13) which turns out
to be important, e.g., in the derivation of (6.15)) we have adopted the notation in [62]. Briefly,
writing I = Imatter + Ighosts, the matter sector Imatter receives contributions from the scalar su-
perfields Xµ(z̃;z|θ), µ = 0, . . . , 9, that map the string worldsheet Σ into flat Euclidean spacetime
R10, and the current algebra fermions Λa(z̃) with a = 1, . . . , 32. The latter correspond to spinor
superfields taking values in ΠL, i.e., they are fermionic fields taking values in a square root L

of the line bundle Ber(ΣL). The argument of Λa(z̃) is meant to indicate that the line bundle L

is anti-holomorphic, so that it can be constructed using anti-holomorphic transition functions
(that in the indicated chart are functions of z̃ only) and so commute with Dθ. Accordingly,
the Λ-matter sector in (6.13) is a section of L2 ⊗ D−1 ∼= Ber(ΣL × ΣR) and can therefore be
integrated. See [62, Sections 3.1–3.3] for further detail. Sums over µ and a are implicit in (6.13).
The superghost sector Ighosts of the action receives contributions from the superghosts B(z|θ)
and C(z|θ), which are sections of D−3 and ΠD2, respectively, and the anti-chiral superghosts
B̃(z̃) and C̃(z̃), which are sections of ΠBer(ΣL)2 and ΠBer(ΣL)−1, respectively.

The conclusion that ∂te−I = e−I ∂̂t is then derived as follows. We parametrise a small change
in superconformal structure as a change in superfields, X,Λ, B, . . . , generated by locally-defined
quasi-superconformal vector superfields δṼ z̃, δVz keeping the worldsheet superconformal frame
fixed,

δX = −δṼ z̃∂z̃X − δVz∂zX − 1
2DθδVzDθX, δΛ = −δṼ z̃∂z̃Λ − 1

2∂z̃δṼ
z̃Λ,

δBzθ = −δVz∂zBzθ − 1
2DθδVzDθBzθ − 3

2∂zδV
zBzθ,

δCz = −δVz∂zCz − 1
2DθδVzDθC

z + ∂zδVzCz,
δB̃z̃z̃ = −δṼ z̃∂z̃B̃z̃z̃ − 2∂z̃δṼ z̃B̃z̃z̃, δC̃ z̃ = −δṼ z̃∂z̃C̃ z̃ + ∂z̃δṼ z̃C̃ z̃. (6.14)

These variations are essentially super Lie derivatives [59], the precise expressions follow from
knowledge of the spaces in which these superfields take their values [62]. The corresponding
change in the action induced by (6.14) is given by

δI = 1
2π

∫
D(z̃, z|θ)

[
(∂z̃δVz)Szθ +

(
DθδṼ z̃

)
T̃z̃z̃
]
. (6.15)

The chiral and anti-chiral halves of the total energy-momentum tensors are defined by Szθ =
SX + SBC and T̃z̃z̃ = T̃X + T̃Λ + T̃B̃C̃ , respectively, where the various contributions are, in turn,
found to take the standard form

SX = − 1
α′DθXD

2
θX, SBC = 1

2DθBzθDθC
z − 3

2D
2
θC

zBzθ − CzD2
θBzθ

T̃X = − 1
α′∂z̃X∂z̃X, T̃Λ = −∂z̃ΛΛ, T̃B̃C̃ = 2∂z̃C̃ z̃B̃z̃z̃ + C̃ z̃∂z̃B̃z̃z̃.

It is instructive to compare this to the component formulation given in [17]. Integrating by
parts in (6.15) actually produces a boundary term. Cancelling this by an appropriate addition
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to the action, and using the ordinary chain rule to map the total change δV, δṼ (which are
smooth in z̃;z|θ) to a change in δV, δṼ keeping coordinates w̃;w|ψ fixed (which as we have
shown is superconformal in z|θ and z̃ respectively and given for our current purposes by (6.6)),
one arrives at the following result for the derivative of the action with respect to a change in
a supermodulus t,

∂I

∂t
= −∂̂t (6.16)

with ∂̂t as given (in the case of interest) in (6.12). We have assumed that the only chart
overlap here is Uw ∩ Uz, which is the case of interest when moving NS punctures across the
super Riemann surface. (We are again omitting details here.) So we conclude that indeed
∂te−I = e−I ∂̂t as advertised above. Ultimately therefore, the total derivatives associated to
the decoupling of BRST-exact vertex operators will be entirely constructed out of ordinary ∂t
derivatives.

We are now well-equipped to consider the BRST (anti-)commutator associated to the de-
coupling of a BRST-exact vertex operator insertion in the presence of an NS puncture, whose
location on the underlying super Riemann surface is associated to a supermodulus of even|odd di-
mension 2|1. When we insert a BRST-exact vertex operator into the path integral we expect this
to decouple. This is in turn required to preserve gauge invariance. In demonstrating this decou-
pling one encounters a number of (anti-)commutators as one unwraps the BRST charge contour
off the said BRST-exact vertex operator. In the absence of other vertex operator insertions or
supermoduli contributions to the measure this is trivially zero, because there is no obstruction
to unwrapping the contour to a point, whereby it can be seen to vanish since the OSp(2, 1)
vacuum (represented by the unit operator insertion) is annihilated by the BRST charge (the
BRST current has non-singular OPE with the unit operator and can hence be Taylor expanded
around z|θ = 0|0). If however there are supermoduli present (which might be associated to han-
dle supermoduli or other external vertex operators) then the BRST charge contour encounters
superghost contributions associated to the gauge slice of our choice. The latter is determined
by how we parametrise the integral over supermoduli. The terms of interest are the superghost
contributions associated to translating a NS puncture across the super Riemann surface. If the
underlying super Riemann surface has the topology of a 2-sphere, the said measure contribu-
tions are given by (6.8), where in particular these take the form displayed in (6.9). On a more
general super Riemann surface the insertions are similar but in general contain additional terms
associated to higher derivatives of super curvature. So the (anti-)commutator that we encounter
as we try to unwrap the BRST charge off the surface is the following

{
QB, B̂z̃B̂zδ

(
B̂θ + θB̂z

)]
.

We have inserted an additional factor of θB̂z in the argument of the delta function. It will turn
out to be convenient to do so, but the point to notice is that it is equivalent to the original
insertion since B̂z is Grassmann-odd. Denoting the Grassmann parity of δ

(
B̂θ + θB̂z

)
by |δ|,

and taking into account that the Grassmann parities of the BRST charge QB and that of the
insertions B̂z̃ and B̂z are odd, and that the parity of B̂θ is even, it immediately follows that{

QB, B̂z̃B̂zδ
(
B̂θ + θB̂z

)]
=
{
QB, B̂z̃

}
B̂zδ

(
B̂θ + θB̂z

)
−
{
QB, B̂z

}
B̂z̃δ

(
B̂θ + θB̂z

)
+
{
QB, δ

(
B̂θ + θB̂z

)]
B̂z̃B̂z

−
[
B̂z̃,

{
QB, B̂z

}]
δ
(
B̂θ + θB̂z

)
− (−)|δ|{B̂z̃,

{
QB, δ

(
B̂θ + θB̂z

)]]
B̂z

+ (−)|δ|{B̂z,
{
QB, δ

(
B̂θ + θB̂z

)]]
B̂z̃ +

{
B̂z̃,

{
B̂z,

{
QB, δ

(
B̂θ + θB̂z

)]]]
. (6.17)

The last term vanishes, ultimately, due to the fact that the
{
B̂s, B̂t

]
= 0. Let us rewrite (6.17)

in terms of the derivative operators defined in (6.11),{
QB, B̂z̃B̂zδ

(
B̂θ + θB̂z

)]
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= ∂̂z̃B̂zδ
(
B̂θ + θB̂z

)
− ∂̂zB̂z̃δ

(
B̂θ + θB̂z

)
+
{
QB, δ

(
B̂θ + θB̂z

)]
B̂z̃B̂z

−
[
B̂z̃,

{
QB, B̂z

}]
δ
(
B̂θ + θB̂z

)
− (−)|δ|{B̂z̃,

{
QB, δ

(
B̂θ + θB̂z

)]]
B̂z

+ (−)|δ|{B̂z,
{
QB, δ

(
B̂θ + θB̂z

)]]
B̂z̃. (6.18)

For the commutators involving δ
(
B̂θ+θB̂z

)
, we also need the following identity. Since

[
B̂t1 ,

[
B̂t2 ,[

QB, B̂t3

]]]
= 0, for any set of supermoduli tj it is not too hard to show that{

QB, δ
(
B̂θ + θB̂z

)]
=
[
QB, B̂θ + θB̂z

]
δ′(B̂θ + θB̂z

)
+ 1

2
[
B̂θ + θB̂z,

[
QB, B̂θ + θB̂z

]]
δ′′(B̂θ + θB̂z

)
.

This follows from pure combinatorics (rather than any detailed properties of these operators).
From (6.11) and also

1
2
[
B̂θ + θB̂z,

[
QB, B̂θ + θB̂z

]]
= b−1 = ∂θ

(
B̂θ + θB̂z

)
+ (∂θK)b̃1,

where we took into account the explicit expression for B̂θ in (6.9), we learn that{
QB, δ

(
B̂θ + θB̂z

)]
= ∂̂θδ

′(B̂θ + θB̂z
)

+
(
∂θδ

′(B̂θ + θB̂z
))

+ (∂θK)b̃1δ
′′(B̂θ + θB̂z

)
= ∂̂θδ

′(B̂θ + θB̂z
)

+ b−1δ
′′(B̂θ + θB̂z

)
.

Computing the remaining (anti-)commutators, we find

−
[
B̂z̃,

{
QB, B̂z

}]
δ
(
B̂θ + θB̂z

)
= −

(
DθRz̃θ

(
b0 − b̃0

)
+ Rz̃θβ−1/2

)
δ
(
B̂θ + θB̂z

)
,

−(−)|δ|{B̂z̃,
{
QB, δ

(
B̂θ + θB̂z

)]]
B̂z

= DθRz̃θβ1/2B̂zδ
′(B̂θ + θB̂z

)
+ 2K

(
b0 − b̃0 + θβ−1/2

)
B̂zδ

′(B̂θ + θB̂z
)

and +(−)|δ|{B̂z,
{
QB, δ

(
B̂θ +θB̂z

)]]
B̂z̃ = 0. Collecting these results and substituting them into

(6.18) implies that{
QB, B̂z̃B̂zδ

(
B̂θ + θB̂z

)]
= ∂̂total

z̃

(
B̂zδ

(
B̂θ + θB̂z

))
− ∂̂total

z

(
B̂z̃δ

(
B̂θ + θB̂z

))
+ ∂̂total

θ

(
B̂z̃B̂zδ

′(B̂θ + θB̂z
))

−DθRz̃θ
(
b0 − b̃0

)
δ
(
B̂θ + θB̂z

)
− KθB̂zδ

(
B̂θ + θB̂z

)
+
(
∂z̃Kb̃1

)
B̂zδ

′(B̂θ + θB̂z
)

−
(
∂zKb̃1

)
B̂z̃δ

′(B̂θ + θB̂z
)

+ (∂θK)b̃1B̂z̃B̂zδ
′′(B̂θ + θB̂z

)
+ 2K

(
b0 − b̃0 + θβ−1/2

)
B̂zδ

′(B̂θ + θB̂z
)

+ (−2∂θKβ1/2)B̂zδ
′(B̂θ + θB̂z

)
+
(
2∂zKβ1/2

)
δ
(
B̂θ + θB̂z

)
. (6.19)

We have written

∂̂total
t = ∂̂t + ∂t (6.20)

and have made use of a number of relations in arriving at this result, all of which have been
determined from the explicit representations given in (6.9) and the definition of K in (6.10)

∂z̃B̂z = 0, ∂z
(
B̂θ + θB̂z

)
= −∂zKb̃1, ∂zB̂z̃ = ∂zRz̃θβ1/2, ∂θB̂z̃ = ∂θRz̃θβ1/2,

∂θB̂z = 0, ∂z̃
(
B̂θ + θB̂z

)
= −∂z̃Kb̃1, Rz̃θ(−2β−1/2) = Rz̃θ

(
B̂θ + θB̂z

)
− 2KθB̂z.

Gauge invariance requires that only the total derivative terms in (6.19) should be present. In par-
ticular, we learn that K = 0 and b0−b̃0 should annihilate onshell or offshell vertex operators Âa on



20 D.P. Skliros

which this measure contribution acts, namely Rz̃θ = θDθRz̃θ and
(
b0 − b̃0

)
Âa = 0. The fact that(

b0 − b̃0
)

appears with coefficient DθRz̃θ in (6.19) indicates that the requirement
(
b0 − b̃0

)
Âa = 0

has global origins, whereas the former, since DθRz̃θ = 2, provides the precise relation between
super curvature, Rz̃θ, and the odd modulus, θ. Notice also that DθRz̃θ = DθRz̃θ. (The anal-
ogous expression in terms of the ṽ;v|χ supermodulus was given in (6.7).) All in all, the final
result for the BRST commutator associated to the measure contribution that generates smooth
translations of NS punctures across the super Riemann surface is{

QB, B̂z̃B̂zδ
(
B̂θ + θB̂z

)]
= −DθRz̃θ

(
b0 − b̃0

)
δ
(
B̂θ + θB̂z

)
+ ∂̂total

z̃

(
B̂zδ

(
B̂θ + θB̂z

))
− ∂̂total

z

(
B̂z̃δ

(
B̂θ + θB̂z

))
+ ∂̂total

θ

(
B̂z̃B̂zδ

′(B̂θ + θB̂z
))
.

In fact, taking into account the relations (6.16) and (6.20), we arrive at the following result if we
also wish to explicitly include the contribution of the worldsheet action I in the path integral

e−I{QB, B̂z̃B̂zδ
(
B̂θ + θB̂z

)]
= −e−IDθRz̃θ

(
b0 − b̃0

)
δ
(
B̂θ + θB̂z

)
+ ∂z̃

(
e−IB̂zδ

(
B̂θ + θB̂z

))
− ∂z

(
e−IB̂z̃δ

(
B̂θ + θB̂z

))
+ ∂θ

(
e−IB̂z̃B̂zδ

′(B̂θ + θB̂z
))
, (6.21)

so that the derivatives appearing now are just ordinary derivatives, making it entirely manifest
that the corresponding contribution to the path integral associated to the insertion of the contri-
bution B̂z̃B̂zδ

(
B̂θ + θB̂z

)
to the measure (as we try to unwrap a BRST contour off the surface

to establish the decoupling of BRST-exact states) is a total derivative in supermoduli space.
(Incidentally, the insertion B̂z̃B̂zδ

(
B̂θ + θB̂z

)
does not depend on the remaining supermoduli.)

7 Discussion

The path integral expression for the measure arrived at in (5.5) or (6.9), and the corresponding
result for the BRST (anti-)commutator (6.21) are the main results of the present paper. The rela-
tion (5.5) provides the explicit expression for the path integral measure in heterotic string theory
that translates fixed picture NS vertex operators (in the natural −1 picture) on a super sphere
to integrated picture (corresponding to 0 picture). A crucial property is that the dependence
on ṽ;v|χ is smooth, with super curvature encoded locally (as opposed to in transition functions
on patch overlaps [40]). The BRST anti-commutator (6.21) demonstrates that BRST-exact ver-
tex operators decouple from amplitudes up to boundary terms (that come from the “physical”
boundary of supermoduli space as opposed to fictitious boundaries associated to patch overlaps).

If there is a second NS vertex operator then we can use the same underlying chart with
coordinate w̃;w|ψ and simply place the first and second vertex operator at, say, w̃;w|ψ = ṽ1;v1|χ1

and w̃;w|ψ = ṽ2;v2|χ2, respectively, the measure contribution being a product of terms as in (5.5)
with the obvious replacements. The generalisation to any number of insertions is, similarly,
immediate.

It is worth noting that (for the super sphere) only a single coordinate chart w̃;w|ψ is really
needed in this viewpoint in a practical computation. Since super curvature is localised in the
bulk of the super sphere, the point at “infinity” is “trivialised” (it does not contribute, e.g., to
the Euler characteristic). (One can of course simply map to the u-chart using (2.1) to include the
missing point at infinity when desirable.) So one may ask to what extent this really addresses
the main issue associated to a smooth splitting, since we have not needed multiple coordinate
patches to cover the supermoduli space associated to a puncture insertion on the super sphere.
The main point is that we have used the invariance under superconformal transformations to pick
a specific globally-defined gauge slice in the integral over supermoduli. We have treated even and
odd moduli on equal footing. The dependence of the resulting measure on these supermoduli is
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smooth, so that one can use smooth transition functions to transition to a different patch. The
only remaining symmetry is a SU(1) residual symmetry, corresponding to a phase that cannot
be fixed globally due to the non-vanishing Euler number of a super sphere. (It is necessary to
check that amplitudes do not depend on this phase.)

We have also demonstrated (in an explicit example but the prescription is generally applica-
ble) how it is possible to have a smooth dependence of the superconformal transition functions
(defining a super Riemann surface) on supermoduli, while retaining our standard superconfor-
mal field theory techniques that have a well-defined notion of chiral and anti-chiral halves. (As
we briefly skimmed through in the introduction, in the standard descriptions it is vital that we
are still able to distinguish left- from right-moving degrees of freedom in order to even define
the theory, and this is all perfectly consistent with the smooth gauge slice we have constructed.)

In particular, we are still defining a super Riemann surface at fixed complex structure using
superconformal transition functions, out of which corresponding superconformal frames can be
constructed. And these, in turn, can be adopted to construct mode expansions, states, and local
NS vertex operators, etc., just as one is used to doing in a corresponding radial quantisation.
For this reason, it is also clear how to sum over spin structures for left- and right-moving modes
independently. The measure contributions that we have derived here, in a sense, translate
all of that to “integrated picture”, incorporating local super curvature as necessary. What is
happening, essentially, is that there is a well-defined notion of a chiral or anti-chiral half in the
fixed (or −1) picture vertex operators, whereas when we go to integrated (or 0) picture this
distinction becomes somewhat obscured due to the presence of super curvature. (Incidentally,
since it only involves superghost contributions, the worldsheet path integral measure we have
derived is also independent of the string background.)

Elaborating a little, fixed-picture vertex operators Â
(z)
a , where a labels the state, on which

the operator B̂ṽB̂vδ
(
B̂χ
)

acts can be constructed using any one of the familiar techniques, such
as radial quantisation. (The frame label (z) can be identified with the ‘superconformal normal
coordinates’ that we have constructed.) So, in particular, a fixed-picture vertex operator will
have a well-defined notion of a chiral or anti-chiral half. It has not been at all obvious in the past
that this is possible, that it is possible to have a clear distinction between chiral and anti-chiral
halves while still having implemented a smooth gauge slice in the integral over supermoduli.
Pursuing this further, it is perhaps useful to note that the full set of offshell fixed (or −1)
picture vertex operators can be derived by cutting open the path integral across, say, an AI -
cycle. For the states in the NS sector, this is effectively implemented by inserting into the path
integral a resolution of unity [35]

∑∫
a

Â(z1)
a |0⟩1 ⊗ Âa

(z2/q)|0⟩2 = α′g2
D

8πi

∫ dDk
(2π)D eik·(x(z1)

0 −x(z2)
0 )q̄

α′
4 k

2−1q
α′
4 k

2−1/2

× exp
[ ∞∑
n=1

q̄n
(

− 1
n
α̃

(z1)
−n · α̃(z2)

−n + c̃
(z1)
−n b̃

(z2)
−n − b̃

(z1)
−n c̃

(z2)
−n

)]

× exp
[ ∞∑
n=1

iηq̄n−1/2(λ(z1)
−n+1/2 · λ(z2)

−n+1/2
)]

× exp
[ ∞∑
n=1

qn
(

− 1
n
α

(z1)
−n · α(z2)

−n + c
(z1)
−n b

(z2)
−n − b

(z1)
−n c

(z2)
−n

)]

× exp
[ ∞∑
n=1

iηqn−1/2(β(z1)
−n+1/2γ

(z2)
−n+1/2 − γ

(z1)
−n+1/2β

(z2)
−n+1/2 + ψ

(z1)
−n+1/2 · ψ(z2)

−n+1/2
)]

× η
[
1 +

(
c̃

(z1)
0 + c̃

(z2)
0
)(
c

(z1)
0 + c

(z2)
0
)]

× c̃
(z1)
1 c

(z1)
1 c̃

(z2)
1 c

(z2)
1 δ

(
γ

(z1)
1/2

)
δ
(
γ

(z2)
1/2

)
|0⟩1 ⊗ |0⟩2, (7.1)
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where the various modes have been defined in Appendix B, whereasD denotes the number of non-
compact spacetime dimensions D = 10. (For D < 10 one needs to include some additional states
in the resolution of unity depending on the compactification manifold, including a discrete sum
over any corresponding momentum and winding modes if the compactification allows for these,
etc.) The frames z1|θ1 and z2|θ2 are glued on an annular patch overlap U1 ∩U2 with the resulting
transition functions z1z2 = −ε2 subject to Dθ2z1 = θ1Dθ2θ1, with q = −ε2, or, more explicitly,

z1(z2|θ2) = −ε2

z2
, θ1(z2|θ2) = ηε

θ2
z2

with η = ±1,

with a similar relation for the anti-chiral half, z̃1z̃2 = q̃. It is important to realise that we do
not need to glue with a more general transition function, such as (z1 − θ1ϑ1)(z2 − θ2ϑ2) = −ε2,
because the map to integrated picture already incorporates the effect of the odd moduli (anal-
ogous to ϑ1, ϑ2). (The map to integrated picture also captures the effects of super curvature,
which become important when the handle moves across the underlying curved surface.) The
sign, η, (unlike for the sphere) here plays an important role: the two values define the two NS
spin structures: summing over it in the path integral gives the GSO projection in the NS sector
(see [62, Section 6.2.3]). We also took into account that

δ
(
γ

(z2/q)
1/2

)
= q1/2δ

(
γ

(z2)
1/2

)
.

Any one particular fixed picture (or −1 picture) offshell vertex operator Â
(z)
a can be derived

from this expression (7.1) by expanding it in powers of the pinch parameters q = −ε2, q̄, and then
identifying the corresponding momentum integrand with the tensor product of the corresponding
vertex operator, Â(z1)

a Âa
(z2/q) as indicated on the left-hand side in (7.1). The “integrated picture”

(or 0-picture) vertex operators are then given by

A(z)
a =

∫
D(ṽ,v|χ)e−IṽvχB̂ṽB̂vδ

(
B̂χ
)
Â(z)
a

=
∫

D(z̃,z|θ)e−Iz̃zθB̂z̃B̂zδ
(
B̂θ + θB̂z

)
Â(z)
a , (7.2)

with the measure given in (5.5) or (6.9). (To actually carry out this integral it is useful to rewrite
the vertex operator integrands in (7.2) in terms of the (w) frame coordinates, because this will
expose any remaining implicit ṽ,v|χ dependence while placing all vertex operators in the same
frame. Ultimately, in order to perform the relevant Wick contractions when we evaluate the path
integral, it should be easiest if the composite operators whose contractions we are computing
are defined in the same frame, the natural choice being the (w) frame (despite the fact that they
will usually be inserted at different coordinate values). That is, after extracting the integrated
(0 picture) vertex operators of interest, it may be desirable to map the supermoduli integrands
back to the (w) chart coordinates.

Actually, this cutting open of the path integral is appropriate when we treat all AI -cycle
loops on equal footing (i.e., we need to cut open all loops and insert a resolution of unity in each
one), because it is only in this case that a super Riemann surface with an arbitrary number of
loops can be mapped to a super Riemann surface with the topology of a 2-sphere, although this
can be relaxed depending on the objective.

Notice that, as we have already mentioned, there is a clear distinction between chiral and
anti-chiral halves in Â

(z)
a , and that it is the map of non-primary vertex operators to integrated

picture A
(z)
a that obscures the distinction between chiral and anti-chiral halves. This observation

is important, because it resolves the question of how to sum over spin structures in the presence
of a smooth gauge slice. Actually, the resolution is reminiscent of the D’Hoker and Phong
resolution [15], which showed that at fixed internal loop momenta there is a useful notion
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of chiral splitting, which in turn made it clear how to sum over spin structures and hence
incorporate the GSO projection [48]. Although the original proof of chiral splitting does not
hold at arbitrarily high genus due to the Donagi–Witten obstruction [20], the approach that we
are presenting here does (modulo Ramond sector contributions that have not yet been worked
out). The correspondence with the D’Hoker and Phong procedure [15] becomes apparent when
one takes into account that the present approach fixes not only the internal loop momenta, but
instead fixes all quantum numbers that characterise the offshell state of a string propagating
through an internal loop (including the loop momenta). The resolution of unity (7.1) makes this
fully explicit. This is quite natural, in that if the formalism simplifies when we fix the internal
loop momenta [15], it might be sensible to try to also fix the remaining quantum numbers of
these internal string states. This turns out to be a good idea, because it generalises immediately
to an arbitrary number of string loops while circumventing the obstructions [20] that appeared
in the original formalism [15]. There is some related discussion in the context of bosonic string
theory in [53].

Let us also elaborate on the situation when the underlying super Riemann surface has ar-
bitrary local super curvature. One of the key ingredients in constructing the smooth gauge
slice that associates a supermodulus of dimension 2|1 to a NS puncture are the superconformal
vector fields given in (6.6) that are associated to an underlying super Riemann surface with the
topology of a 2-sphere and with super curvature, loosely speaking, evenly distributed through-
out the surface. A natural question is to understand how these superconformal vector fields
would change if we instead considered arbitrary local super curvature (which might correspond
to a super Riemann surface with any number of handles, rather than a super Riemann surface
whose reduced space is a 2-sphere with constant curvature). This will be discussed elsewhere,
but I wish to remark that this situation is more subtle and not entirely clear. With regards to
gauge invariance, on a general super Riemann surface with an arbitrary number of handles and
arbitrary local super curvature, there is a result similar to (6.21), but it is not too hard to show
that there also appear certain additive terms on the right-hand side that depend on bilinear
products of z̃, z derivatives of the super curvature evaluated at the puncture. So if the super
curvature Rz̃θ is proportional to the odd modulus θ of the NS puncture when evaluated at the
NS puncture in question, z̃;z|θ = 0;0|0, these additional squared super curvature terms vanish
and gauge invariance is restored. However, it is not obvious if a more general dependence of the
super curvature on the odd modulus is allowed. In general, we also expect the BRST charge to
receive corrections at higher genus. The case of arbitrary super curvature and arbitrary-genus
super Riemann surfaces certainly deserves further study. But it should be kept in mind that in
the handle operator viewpoint [53], where all genus amplitudes are constructed on the 2-sphere
with additional handle operator insertions (by an appropriate cutting and gluing procedure),
the case of the super sphere discussed in this article should actually suffice.

Incidentally, for the reader that is wondering whether handle operator insertions on a 2-
sphere can really capture the full supermoduli space of super Riemann surfaces, one can outline
a procedure to demonstrate this explicitly (by cutting and gluing the path integral across differ-
ent cycles, and then changing variables in the integral over supermoduli). An illustrative case
is to start from g handle operators on the 2-sphere, consider any two such handle operators,
and then cut open the path integral across a closed curve on the 2-sphere that contains one of
the two handle operators entirely, and also contains one of the two local insertions associated
to the second handle operator. Insert a complete set of states on the corresponding cut, and
then change variables in the integral over supermoduli so as to expose the modulus that gives
rise to the propagator in the cut cycle. The resulting configuration is that of a double handle
(one handle inserted on another handle). This illustrates the point (albeit with an example)
that there are regions in supermoduli space that are already included in the original (g handle
operators on a 2-sphere) setup that one might have naively thought were not included. More
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generally, we already know that this must have been the case due to [46, 47] OPE associativity,
modular invariance, and invariance of the path integral measure under super reparametrisations
in supermoduli space. (One can try to prove that the resulting amplitudes are modular invari-
ant, since this has not been shown in full generality. Some initial discussion along these lines
at one loop and for the bosonic string can be found in [53], and although I do not expect any
surprises at higher loop orders, it would be satisfying to see modular invariance demonstrated
more explicitly in the handle operator viewpoint at arbitrary loop order.)

There is clearly a lot a work that remains to be done. It would also be interesting, as
a warmup, to calculate the dilaton one-point amplitude (or to derive the dilaton theorem)
[8, 19, 25, 35, 44, 45] in this formalism. The reason being that the dilaton is not a primary
operator, so that the additional terms derived above that appear due to super curvature are
expected to contribute non-trivially. Some recent discussion of the dilaton theorem that makes
use of Polchinski’s original bosonic string gauge slice [45] (the heterotic string generalisation of
which was developed in the present document) can be found in [51] (which among other things
summarises [8]). There is some related work in the appendix of [44] where the same effect arises
by storing local curvature in the transitions functions instead. One might envision an analogous
heterotic string theory computation making use of the gauge slice developed in the current
document. A more ambitious direction is to construct the full handle operators associated to
this gauge slice. One reason being that inspired by an idea in [57] (which inspired the detailed
study in [53]), one can then ask under what conditions we might be able to sum over handle
operators (which corresponds to summing over string loops at the level of the integrand). Since
all loop orders are treated on equal footing, i.e., one handle operator insertion for every string
loop inserted on a super sphere, it is tempting to speculate whether one might even be able to go
beyond perturbation theory in this manner (see also the related discussion in the introduction);
and if so, under what assumptions.

The first step however is presumably to unravel how to implement this smooth gauge slice
in the Ramond sector, because, needless to say, it is clearly necessary [48] to include both NS
and R sectors in any handle operator that is meant to exactly incorporate the full implications
of a string loop insertion on a super sphere.

It is worth emphasising that despite efforts in [53] and in the current document, the differen-
tial-geometric (or handle operator) approach to the worldsheet approach to (super)string theory
is of course much less developed than the corresponding (super)string field theory approach.
It is well known that in a generic amplitude there are infrared divergences [61] that require
some kind of analytic continuation (when the internal momenta are sufficiently generic), and
sometimes such analytic continuation is not even possible, in which case it has been shown that
one can resolve any difficulties encountered by appealing to (super)string field theory, see [51]
for a recent discussion and references therein. More generally, there are perturbative states that
require mass and wavefunction renormalisation, and there are also tadpole divergences that one
needs to understand how to cancel. One expects that if the handle operator approach can also
resolve these difficulties, they will presumably be resolved in a way that is fundamentally distinct
from the corresponding (super)string field theory resolutions (because the supermoduli space
parametrisation is fundamentally different), but it is still too early to elaborate on these issues.

A related future direction is to understand how to gauge fix the invariance under OSp(2, 1)
in a manner that does not depend on the number of vertex operator insertions. Once we have
reduced a general genus-g amplitude to a sphere with handle operator insertions, we also recover
the underlying symmetries of the super sphere, which in turn need to be fixed (see [1, 4, 22,
23, 24, 25, 36]). Furthermore, if would be interesting to understand how modular invariance is
restored when we try to sum over string loops. What role might the background symmetries
play in this story? At a more basic level, the formalism presented here immediately applies to
offshell string theory in the BRST formalism (because we have constructed a globally-defined
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gauge slice), so one can use it to ask various questions where going offshell is important, see
e.g., [1, 2, 49], and in particular when non-primary vertex operators contribute (which is why
we mentioned the dilaton theorem above).

A Derivation

In this appendix, we will compute the derivatives appearing in (5.3). Taking into account (3.12),
and in particular z(w|ψ) = w−v−ψχ

ṽw+1 , it follows that the variation δz is given by

δz =
[
δṽ
∂z

∂ṽ
+ δv

∂z

∂v
+ δχ

∂z

∂χ

]
w|ψ

= δṽ

((w − v − ψχ)w
−(ṽw + 1)2

)
+ δv

( −1
ṽw + 1

)
+ δχ

(
ψ

ṽw + 1

)
, (A.1)

where the derivatives with respect to the supermoduli, ṽ;v|χ, are evaluated at fixed w̃;w|ψ. As
seen in (5.2), for the path integral measure we actually need these variations in terms of z̃;z|θ
rather than w̃;w|ψ. We eliminate the dependence on the latter in favour of the former by making
use of the inverse relations (3.13),

w(z|θ) = z + v + ηθχ/
√

1 + ṽv

−ṽz + 1 − ηθχṽ/
√

1 + ṽv
, ψ(z|θ) =

√
1 + ṽvηθ + χ

−ṽz + 1 .

Before explicitly displaying the resulting expression for δz however, we recall that there is also
some information about the phase of z + δz(z|θ) in (A.1), which as we have discussed does not
have physical significance. So we would like to extract this, not because it is necessary, but
because it is simplest to set it equal to any convenient value, and then check that quantities of
physical interest do not depend on that choice. Adding z to both sides of (A.1) and taking the
preceding comments into account, to leading order in the variation, we see that

z + δz(z|θ) = e2i Im ṽδv
1+ṽv

{
z − δṽ

1 + ṽv

(
z2 − 2ηχ√

1 + ṽv

1
2zθ

)
− δv

1 + ṽv

(
1 + 2ηχ√

1 + ṽv

1
2θṽ

)
+ ηδχ√

1 + ṽv

(
θ + ηχ√

1 + ṽv

)}
,

so that we can now easily identify the overall phase. Dropping this, we learn that the variation
takes the form

δz(z|θ) = − δṽ

1 + ṽv

(
z2 − 2ηχ√

1 + ṽv

1
2zθ

)
− δv

1 + ṽv

(
1 + 2ηχ√

1 + ṽv

1
2 ṽθ

)
+ ηδχ√

1 + ṽv

(
ηχ√

1 + ṽv
+ θ

)
.

The corresponding variation δθ at generic z|θ is similarly determined from (3.12), namely

θ(w|ψ) = η

√
1 + ṽv

(ṽw + 1)ψ − η
χ√

1 + ṽv
, η = ±1,

and found to be given by

δθ(z|θ) =
[
δṽ
∂θ

∂ṽ
θ + δv

∂θ

∂v
θ + δχ

∂θ

∂χ
θ

]
w|ψ

= − δṽ

1 + vṽ

(
zθ + 1

2vθ + zηχ√
1 + vṽ

)
+ δv

1 + vṽ

(1
2 ṽθ + ṽηχ√

1 + vṽ

)
− ηδχ√

1 + vṽ
.
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Extracting the overall phase as above, and adding this variation to θ, we find that to leading
order in the variations

θ + δθ(z|θ) = ei Im ṽδv
1+vṽ

{
θ − δṽ

1 + vṽ

(
zθ + zηχ√

1 + vṽ

)
+ δv

1 + vṽ

(
ṽηχ√
1 + vṽ

)
− ηδχ√

1 + vṽ

}
.

Dropping the overall phase (which is half that found in δz as required by the superconformal
condition), we learn that

δθ(z|θ) = − δṽ

1 + vṽ

(
zθ + ηχ√

1 + vṽ
z

)
+ δv

1 + vṽ

(
ηχ√

1 + vṽ
ṽ

)
− ηδχ√

1 + vṽ
.

The quantity that appears in the path integral measure are actually components of the superfield
δV ≡ δz − δθθ corresponding globally to a section of TΣ/D ∼= D2

δV(z) = − δṽ

1 + ṽv

(
z2 − 2ηχ√

1 + ṽv
zθ

)
− δv

1 + ṽv

(
1 + 2ηχ√

1 + ṽv
ṽθ

)
+ ηδχ√

1 + ṽv

(
2θ + ηχ√

1 + ṽv

)
. (A.2)

An analogous computation for the anti-chiral half δz̃(w̃)|w̃fixed = δṽ∂ṽ z̃(w̃) + δv∂v z̃(w̃) +
δχ∂χz̃(w̃) according to (3.12) and (3.13) and by a slight abuse of notation denoting this again
by δz̃(z̃) yields

δz̃(z̃) = − δṽ

1 + ṽv

(
1 − vz̃

)
− δv

1 + ṽv

(
z̃2 + ṽz̃

)
,

so that writing δṼ(z)(z̃) = δz̃(z̃) and extracting out the phase again and dropping it, we arrive at

δṼ(z)(z̃) = − δṽ

1 + ṽv
− δv

1 + ṽv
z̃2. (A.3)

It will prove efficient to introduce notation for the variations with respect to specific moduli
in (A.3) and (A.2). Define

δṼ(z)(z̃) = δṽṼṽ(z̃) + δvṼv(z̃) + δχṼχ(z̃),
δV(z)(z|θ) = δṽVṽ(z|θ) + δvVv(z|θ) + δχVχ(z|θ),

so that according to (A.3) and (A.2)

Ṽṽ(z̃) = − 1
1 + ṽv

, Vṽ(z|θ) = − 1
1 + ṽv

(
z2 − 2ηχ√

1 + ṽv
zθ

)
,

Ṽv(z̃) = − z̃2

1 + ṽv
, Vv(z|θ) = − 1

1 + ṽv

(
1 + 2ηχṽ√

1 + ṽv
θ

)
,

Ṽχ(z̃) = 0, Vχ(z|θ) = η√
1 + ṽv

(
2θ + ηχ√

1 + ṽv

)
.

B Mode expansions

Let us consider a local frame, (U, z̃;z|θ), and mode expand the various matter and ghost super-
fields around z̃;z|θ = 0;0|0. We will restrict attention to the NS sector. Neglecting auxiliary
fields, for the chiral half of the superghosts, in particular, we write

Bzθ = β(z) + θb(z) =
∑
n∈Z

βn+1/2 + θbn

zn+2 , Cz = c(z) + θγ(z) =
∑
n∈Z

cn + θγn−1/2
zn−1 ,
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whereas for the anti-chiral halves

B̃z̃z̃ = b̃(z̃) =
∑
n∈Z

b̃n
z̃n+2 and C̃ z̃ = c̃(z̃) =

∑
n∈Z

c̃n
z̃n−1 .

Similarly, for the chiral half of the matter fields the mode expansions are

DθX
µ(z|θ) = ψµ(z) + θ∂zx

µ(z) =
∑
n∈Z

ψµn+1/2 − iθαµn
zn+1 ,

whereas for the anti-chiral half of the matter fields

∂z̃X
µ(z̃) = ∂z̃x

µ(z̃) = −i
∑
n∈Z

α̃µn
zn+1 and Λa(z̃) = λa(z̃) =

∑
n∈Z

λ̃an+1/2
z̃n+1 .

We can now define the OSp(2, 1) vacuum denoted by |0⟩, which is analogous to the SL(2,C)
vacuum for ordinary Riemann surfaces. This is simply the state corresponding to the unit
operator, so is defined in the NS sector by

βn+1/2|0⟩ = 0, n ≥ −1, γn−1/2|0⟩ = 0, n ≥ 2,
b̃n|1⟩ = bn|0⟩ = 0, n ≥ −1, c̃n|1⟩ = cn|0⟩ = 0, n ≥ 2,
α̃n|0⟩ = αn|0⟩ = 0, n ≥ 0, ψn+1/2|0⟩ = 0, n ≥ 0,
λn+1/2|0⟩ = 0, n ≥ 0,
L̃n|0⟩ = Ln|0⟩ = Gn+1/2|0⟩ = 0, n ≥ −1,

where it is to be understood that the indices are shifted as necessary such that n ∈ Z. These
are derived by re-expressing the above mode expansions as contour integrals and using that the
OPE with the unit operator is non-singular.

The total ghost charge is defined such that c̃, c, γ, δ(β) have ghost charge 1, whereas b̃, b, β,
δ(γ) have ghost charge −1.
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