
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 20 (2024), 091, 14 pages

Integrable Semi-Discretization for a Modified

Camassa–Holm Equation with Cubic Nonlinearity

Bao-Feng FENG a, Heng-Chun HU b, Han-Han SHENG cd, Wei YIN ae and Guo-Fu YU d

a) School of Mathematical and Statistical Sciences,
The University of Texas Rio Grande Valley, Edinburg, Texas 78541, USA

E-mail: baofeng.feng@utrgv.edu

b) College of Science, University of Shanghai for Science and Technology,
Shanghai 200093, P.R. China

E-mail: hhengchun@163.com

c) Department of Mathematics, City University of Hong Kong,
Tat Chee Avenue, Kowloon, Hong Kong, P.R. China

E-mail: tutu123@sjtu.edu.cn

d) School of Mathematical Sciences, CMA-Shanghai, Shanghai Jiao Tong University,
Shanghai 200240, P.R. China

E-mail: gfyu@sjtu.edu.cn

e) Department of Mathematics, South Texas College, McAllen, Texas 78501, USA

E-mail: wei.yin01@utrgv.edu

Received April 30, 2024, in final form October 07, 2024; Published online October 12, 2024

https://doi.org/10.3842/SIGMA.2024.091

Abstract. In the present paper, an integrable semi-discretization of the modified Camassa–
Holm (mCH) equation with cubic nonlinearity is presented. The key points of the con-
struction are based on the discrete Kadomtsev–Petviashvili (KP) equation and appropriate
definition of discrete reciprocal transformations. First, we demonstrate that these bilin-
ear equations and their determinant solutions can be derived from the discrete KP equation
through Miwa transformation and some reductions. Then, by scrutinizing the reduction pro-
cess, we obtain a set of semi-discrete bilinear equations and their general soliton solutions
in the Gram-type determinant form. Finally, we obtain an integrable semi-discrete analog
of the mCH equation by introducing dependent variables and discrete reciprocal transfor-
mation. It is also shown that the semi-discrete mCH equation converges to the continuous
one in the continuum limit.
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1 Introduction

In this paper, we are concerned with integrable discretization of the following modified Camassa–
Holm (mCH) equation with cubic nonlinearity

mt +
[
m
(
u2 − u2x

)]
x
= 0, m = u− uxx. (1.1)

Here u = u(x, t) is a real valued function of time t and a spatial variable x, and the subscripts x
and t appended to m and u denote partial differentiation. It was firstly proposed by Fuchssteiner
and Fokas in 1981 (see [18, equation (32)]) as a special case of a more general system. Then it
appeared in the papers of Fokas [14], Fuchssteiner [17], Olver and Rosenau [40], and later was
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rediscovered by Qiao [41, 42]. The mCH equation (1.1) has attracted considerable attention over
the past two decades due to its rich mathematical structure and solutions. It has been extensively
investigated in various areas, including well-posedness, regularization, the Cauchy problem, the
Riemann–Hilbert problem, long-time asymptotics, and the Liouville correspondence with the
modified Korteweg–de Vries (KdV) equation [2, 16, 20, 24, 28, 32, 43, 47, 51, 52]. Matsuno
presented a compact parametric representation of the smooth bright multisoliton solutions for
the mCH equation via the Hirota’s bilinear method [34], while Hu et al. derived its Gram-type
determinant solution from the extended Kadomtsev–Petviashvili (KP) hierarchy with negative
flow [27]. Several groups also constructed the smooth soliton solutions through Darboux trans-
formation/Bäcklund transformation method [26, 49, 50] and Lie algebraic approach [1]. In [22],
the wave-breaking problem and the existence of single and multi-peakon solutions to the mCH
equation have been discussed. Recently, Chang et al. have investigated the Lax integrability and
the conservative peakon solutions in a series of work [3, 4, 5]. Gao et al. studied the patched
peakon weak solution [21], and the conservative sticky peakons [19]. Other related problem such
as blow-up phenomena and the stability including the orbital stability have been studied by
several authors [7, 29, 30, 31].

Recently, research on discrete integrable systems has garnered significant attention due to
its connections to several other fields, including random matrices, quantum field theory, nu-
merical algorithms, orthogonal and biorthogonal polynomials, and random matrices [23]. There
are far fewer instances of discrete integrable systems and analytical tools available as com-
pared to continuous integrable systems. On the other hand, discrete integrable systems are
seen to be more basic and universal than continuous ones [15]. The authors have conducted
extensive research in finding integrable discretizations of soliton equations, including the short
pulse equation [10, 11], (2+1)-dimensional Zakharov equation [53], the Camassa–Holm (CH)
equation [9, 39], the Degasperis–Procesi (DP) equaiton [12], the generalized sine-Gordon equa-
tion [13, 44] and the mCH equation with cubic nonlinearity and linear dispersion term [45] via
Hirota’s bilinear method.

It should be commented that there exists a mCH equation with cubic nonlinearity and linear
dispersion term

mt +
[
m
(
u2 − u2x

)]
x
+ 2κ2ux = 0, m = u− uxx, (1.2)

whose bilinear equations are totally different from those of equation (1.1). The mCH equation
with linear dispersion term were derived in [35] and also in [45] as the reduction of the negative
flow of the deformed KdV hierarchy. Although in [45] we have proposed an integrable semi-
discretization of the mCH equation with linear dispersion term, i.e., equation (1.2), to the best
of our knowledge, integrable discrete analogues of equation (1.1) (the mCH equation without
linear dispersion term) have not been reported yet. There are mainly two challenging points
in the construction. Firstly, bilinear equations of the mCH equation (1.1) are reduced from
the extended KP hierarchy with negative flow. The non-original location of one of the poles
presents a challenge in constructing its discrete analogue. Secondly, as shown in Section 3, we
have to define a second discrete counterpart for the same continuous variable in order to obtain
an explicit form of the semi-discrete mCH equation. Hence, it is a natural but definitely not
a trivial problem to generate a semi-discrete version for the mCH equation (1.1).

In this paper, upon introducing appropriate Miwa transformation, we derive successfully
the two sets bilinear mCH equation from the discrete KP equation. As a byproduct, integrable
semi-discrete bilinear mCH equation and the corresponding Gram-type determinant solutions are
obtained. Under the discrete reciprocal transformation and dependent variable transformation,
an integrable semi-discrete analog of the mCH equation is given.

The outline of the paper is as follows. In Section 2, we review the bilinear forms and determi-
nant solutions of the mCH equation, which can be reduced from the discrete KP equation and its
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τ -function through a series of transformations including Miwa transformation. In Section 3, by
scrutinizing the process in deriving the bilinear mCH equation from the discrete KP equation,
we propose semi-discrete analogues of bilinear mCH equations. Based on these discrete bilinear
equations, we construct an integrable semi-discrete mCH equation and present its N -soliton
solutions. Section 4 is devoted to a brief summary and discussion.

2 From the discrete KP equation
to the modified Camassa–Holm equation

In this section, we first review the results in [27] about the bilinear form of the mCH equation.
The mCH equation (1.1) can be transformed into the following bilinear equations(

2DsD
2
y + 2DsDy − 4Dy

)
g · f = 0, (2.1)(

D2
y +Dy

)
g · f = 0, (2.2)

through the reciprocal transformation x = y + s + 2 ln g
f , t = s, and the dependent variable

transformation u = 1− (ln fg)ys, where Dx is the Hirota D-operator defined by

Dn
xf · g =

(
∂

∂x
− ∂

∂y

)n

f(x)g(y)|y=x.

Next, we give a lemma regarding bilinear equations of the mCH equation (1.1) and show the
correspongding reductions.

Lemma 2.1. The following bilinear equations(
D2

x1
−Dx2 + 2cDx1

)
τn · τn+1 = 0, (2.3)(

Dx−1

(
D2

x1
−Dx2 + 2cDx1

)
− 4Dx1

)
τn · τn+1 = 0, (2.4)

admit the Gram-type determinant solutions τn = det
1⩽i,j⩽N

(
m

(n)
ij

)
, where the matrix elements are

defined as

m
(n)
ij = cij +

1

pi + qj

(
−pi − c

qj + c

)−n

eξi+ηj , ξi = pix1 + p2ix2 +
1

pi − c
x−1 + ξi0,

ηj = qjx1 − q2jx2 +
1

qj + c
x−1 + ηj0,

and cij, pi, qj, ξi0, ηj0, c are constants.

Proof. The discrete Kadomtsev–Petviashvili (dKP) equation, or the Hirota–Miwa (HM) equa-
tion,

a1(a2 − a3)τ(k1 + 1, k2, k3)τ(k1, k2 + 1, k3 + 1)

+ a2(a3 − a1)τ(k1, k2 + 1, k3)τ(k1 + 1, k2, k3 + 1)

+ a3(a1 − a2)τ(k1, k2, k3 + 1)τ(k1 + 1, k2 + 1, k3) = 0, (2.5)

was proposed independently by Hirota [25] and Miwa [37] in early 1980s. It is known that the
discrete KP equation admits a general solution in terms of the following Gram-type determi-
nant [38]

τ(k1, k2, k3, k4) = |mij | =

∣∣∣∣∣cij + 1

pi + qj

(
−pi
qj

)−k4 3∏
l=1

(
1− alpi
1 + alqj

)−kl
∣∣∣∣∣
1⩽i,j⩽N

. (2.6)
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Here k4 remains unchanged in each of the tau-function so it is hidden in (2.5). Notice that the
element in Gram-type solution (2.6) of the discrete KP equation (2.5) can be rewritten as

mij = cij +
1

pi + qj

(
−pi
qj

)−k4 (1− a1pi
1 + a1qj

)−k1 (1− a2pi
1 + a2qj

)−k2 (1− a3pi
1 + a3qj

)−k3

= cij +
1

pi + qj

(
−pi
qj

)−(k3+k4)(1− a1pi
1 + a1qj

)−k1 (1− a2pi
1 + a2qj

)−k2
(
1− a−1

3 p−1
i

1 + a−1
3 q−1

j

)−k3

= cij +
1

p̃i + q̃j

(
− p̃i − c

q̃j + c

)−(k3+k4)(1− b1p̃i
1 + b1q̃j

)−k1 (1− b2p̃i
1 + b2q̃j

)−k2
(
1− dp−1

i

1 + dq−1
j

)−k3

,

where p̃i = pi + c, q̃i = qi − c, b−1
1 = a−1

1 + c, b−1
2 = a−1

2 + c, d = a−1
3 . Redefine n = k3 + k4,

we arrive at a 4 dimension equation. In solution, we let p̃i → pi, q̃j → qj . Thus, the dKP
equation (2.5) becomes the discrete deformed modified KP equation(

d− b−1
2 + c

)
τn(k1 + 1, k2, k3)τn+1(k1, k2 + 1, k3 + 1)

+
(
b−1
1 − c− d

)
τn(k1, k2 + 1, k3)τn+1(k1 + 1, k2, k3 + 1)

+
(
b−1
2 − b−1

1

)
τn+1(k1, k2, k3 + 1)τn(k1 + 1, k2 + 1, k3) = 0, (2.7)

which admits the Gram-type determinant solutions τn(k1, k2, k3) = |mij |1⩽i,j⩽N , where

mij = cij +
1

pi + qj

(
−pi − c

qj + c

)−n(1− b1pi
1 + b1qj

)−k1 (1− b2pi
1 + b2qj

)−k2 (1− d(pi − c)−1

1 + d(qj + c)−1

)−k3

.

Applying Miwa transformation

x1 =
2∑

j=1

kjbj , x2 =
1

2

2∑
j=1

kjb
2
j , . . . , xk =

1

k

2∑
j=1

kjb
k
j ,

x−1 = k3d, x−2 =
1

2
k3d

2, . . . , x−k =
1

k
k3d

k, k = 1, 2, . . . ,

we obtain an infinite number of bilinear equations

∞∑
K,L,M=0

(
d− b−1

2 + c
)
bK1 bL2 d

MSK

(
1

2
D̃+

)
SL

(
−1

2
D̃+

)
SM

(
−1

2
D̃−

)
τn · τn+1

+
∞∑

K,L,M=0

(
b−1
1 − c− d

)
bK1 bL2 d

MSK

(
−1

2
D̃+

)
SL

(
1

2
D̃+

)
SM

(
−1

2
D̃−

)
τn · τn+1

+
∞∑

K,L,M=0

(
b−1
2 − b−1

1

)
bK1 bL2 d

MSK

(
1

2
D̃+

)
SL

(
1

2
D̃+

)
SM

(
−1

2
D̃−

)
τn · τn+1 = 0,

where

D̃+ =

(
Dx1 ,

1

2
Dx2 , . . . ,

1

n
Dxn , . . .

)
, D̃− =

(
Dx−1 ,

1

2
Dx−2 , . . . ,

1

n
Dx−n , . . .

)
.

Here Sn(x) are the elementary Schur polynomials which are defined via the generating function,

∞∑
n=0

Sn(x)λ
n = exp

( ∞∑
k=1

xkλ
k

)
, x = (x1, x2, . . . ).

For example, we have S0(x) = 1, S1(x) = x1, S2(x) =
1
2x

2
1 + x2, . . . .
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At the order of b11b
0
2d

0, we have(
−S1

(
1

2
D̃+

)
S1

(
−1

2
D̃+

)
+ cS1

(
1

2
D̃+

)
+ S2

(
−1

2
D̃+

)
− cS1

(
−1

2
D̃+

)
+ S2

1

(
1

2
D̃+

)
− S2

(
1

2
D̃+

))
τn · τn+1 = 0,

which gives equation (2.3).

At the order of b11b
0
2d

1, we have(
S1

(
1

2
D̃+

)
− S1

(
1

2
D̃+

)
S1

(
−1

2
D̃+

)
S1

(
−1

2
D̃−

)
+ cS1

(
1

2
D̃+

)
S1

(
−1

2
D̃−

)
+ S2

(
−1

2
D̃+

)
S1

(
−1

2
D̃−

)
− cS1

(
−1

2
D̃+

)
S1

(
−1

2
D̃−

)
− S1

(
−1

2
D̃+

)
+ S2

1

(
1

2
D̃+

)
S1

(
−1

2
D̃−

)
− S2

(
1

2
D̃+

)
S1

(
−1

2
D̃−

))
τn · τn+1 = 0,

which leads to equation (2.4). The proof is complete. ■

If we impose the constraints pi = qi, cij = δij , one can verify that ∂x2τn = 0. Setting τ1 = g,
τ0 = f , we obtain from (2.3)–(2.4) the following bilinear equations

(
D2

x1
+ 2cDx1

)
f · g = 0,(

Dx−1

(
D2

x1
+ 2cDx1

)
− 4Dx1

)
f · g = 0. Furthermore, by setting x1 = y, x−1 = s

2 and c = −1
2 ,

we arrive at the bilinear equations of the mCH equation (2.1)–(2.2). Thus τ -functions f and g
admit the following Gram-type determinant form:

τn =

∣∣∣∣∣δij + 1

pi + pj

(
− 2pi + 1

2pj − 1

)−n

eξi+ηj

∣∣∣∣∣ , ξi = piy +
1

2pi + 1
s+ ξi0,

ηj = pjy +
1

2pj − 1
s+ ηj0,

with g = τ1, f = τ0.

3 Integrable semi-discretization
of the modified Camassa–Holm equation

In this section, we aim to construct the integrable spatial discretization of the mCH equation.
To this end, we shall first derive semi-discrete analogs of the bilinear equations (2.1)–(2.2).
Subsequently, in Section 3.2, we construct an integrable semi-discrete mCH equation.

3.1 From discrete KP equation to the semi-discrete analog of (2.3) and (2.4)

Lemma 3.1. The discrete KP equation (2.5) generates the following bilinear equations:(
−b−1

2 + c
)
τn(k + 1, l)τn+1(k, l + 1) +

(
b−1
1 − c

)
τn(k, l + 1)τn+1(k + 1, l)

+
(
b−1
2 − b−1

1

)
τn(k + 1, l + 1)τn+1(k, l) = 0, (3.1)(

−b−1
2 + c

)
Dx−1τn(k + 1, l) · τn+1(k, l + 1) +

(
b−1
1 − c

)
Dx−1τn(k, l + 1) · τn+1(k + 1, l)

+
(
b−1
2 − b−1

1

)
Dx−1τn(k + 1, l + 1) · τn+1(k, l) + 2(τn(k, l + 1)τn+1(k + 1, l)

− τn(k + 1, l)τn+1(k, l + 1)) = 0, (3.2)
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which admit the determinant solution of Gram-type

τn(k, l) =
∣∣mn,k,l

ij

∣∣
=

∣∣∣∣∣cij + 1

pi + qj

(
−pi − c

qj + c

)−n(1− b1pi
1 + b1qj

)−k (1− b2pi
1 + b2qj

)−l

eξi+ηj

∣∣∣∣∣ , (3.3)

where ξi =
1

pi−cx−1 + ξi0, ηj =
1

qj+cx−1 + ηj0.

Proof. We apply the Miwa transformation to equation (2.7),

x−1 = k3d, x−2 =
1

2
k3d

2, . . . , x−k =
1

k
k3d

k, k = 1, 2, . . . ,

then we have
∞∑

M=0

(
d− b−1

2 + c
)
dMSM

(
−1

2
D̃−

)
τn(k1 + 1, k2) · τn+1(k1, k2 + 1)

+

∞∑
M=0

(
b−1
1 − c− d

)
dMSM

(
−1

2
D̃−

)
τn(k1, k2 + 1) · τn+1(k1 + 1, k2)

+
∞∑

M=0

(
b−1
2 − b−1

1

)
dMSM

(
−1

2
D̃−

)
τn(k1 + 1, k2 + 1) · τn+1(k1, k2) = 0.

At the order of d0 and d1, we obtain equation (3.1) and (3.2) with k1 = k, k2 = l, respectively. ■

Theorem 3.2. Bilinear equations

1

b
(fk+1gk−1 − 2fkgk + fk−1gk+1)−

1

2
(fk+1gk−1 − fk−1gk+1) = 0, (3.4)

2

b
Ds (fk+1 · gk−1 − 2fk · gk + fk−1 · gk+1)

−Ds (fk+1 · gk−1 − fk−1 · gk+1)− 2 (fk+1gk−1 − fk−1gk+1) = 0. (3.5)

admit the Gram-type determinant solution

fk = τ0(k), gk = τ1(k),

τn(k) =
∣∣mn,k

ij

∣∣ = ∣∣∣∣∣δij + 1

pi + pj

(
− 2pi + 1

2pj − 1

)−n( 1− bpi
1 + bpj

)−k

eξi+ηj

∣∣∣∣∣ , (3.6)

where

ξi =
1

2pi + 1
s+ ξi0, ηj =

1

2pj − 1
s+ ηj0. (3.7)

Proof. To realize the 2-reduction in the discrete case, we set b1 = −b2 = b, pi = qi, cij = δij ,
in (3.3). Under these constraints, we have the reduction relation τn(k+1, l+1) = τn(k, l). From
the reduction, we drop the index l and define fk = τ0(k), gk = τ1(k). Then from (3.1)–(3.2), we
have

1

b
(fk+1gk−1 − 2fkgk + fk−1gk+1) + c(fk+1gk−1 − fk−1gk+1) = 0, (3.8)

1

b
Dx−1(fk+1 · gk−1 − 2fk · gk + fk−1 · gk+1)

+ cDx−1(fk+1 · gk−1 − fk−1 · gk+1)− 2(fk+1gk−1 − fk−1gk+1) = 0. (3.9)

By setting x−1 = s
2 and c = −1

2 , equations (3.8)–(3.9) are transformed into (3.4)–(3.5). Gram
determinant solution (3.6) can be obtained directly by using the reduction from (3.3). ■
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3.2 Integrable semi-discretization of the mCH equation

Based on the semi-discrete bilinear equations in Theorem 3.2, we propose an integrable semi-
discrete mCH equation.

Theorem 3.3. An integrable semi-discrete analogue of the mCH equation (1.1) is derived as

dm−1
k

dt
= 2mkΓk

(
uk+1 − uk

b

)
, (3.10)

mk =
uk+1 + uk

2
− 1

2
mk

(
1 +

b2

4

(
m−1

k − 1
)) d

dt

(
m̃−1

k − m̃−1
k−1

b

)
, (3.11)

from equations (3.4)–(3.5) through a dependent variable transformation uk = 1− 1
b

(
ln gkfk

gk−1fk−1

)
s
,

and a discrete reciprocal transformation

δxk =
xk+1 − xk

b
= 1 +

2

b

fk−1gk+1 − fk+1gk−1

fk−1gk+1 + fk+1gk−1
, xk = x0 + b

k−1∑
l=0

δxl, t = s.

Other variables are defined by

x̃k = kb+ s+ 2 ln
gk
fk

, m−1
k = δxk = 1 +

2

b

fk−1gk+1 − fk+1gk−1

fk−1gk+1 + fk+1gk−1
,

δuk =
uk+1 − uk

b
= − 1

b2

(
ln

fk+1gk−1fk−1gk+1

f2
kg

2
k

)
s

,

m̃−1
k = δx̃k =

x̃k+1 − x̃k
b

= 1 +
2

b
ln

gk+1fk
gkfk+1

,

Γk = 1 +
m−1

k − 1

4
b−

(
m−1

k − 1
)2

4
b2 −

(
m−1

k − 1
)3

16
b3,

δ
(
m̃−1

k

)
=

m̃−1
k − m̃−1

k−1

b
= − 2

b2
ln

fk+1fk−1g
2
k

gk+1gk−1f
2
k

.

Prior to the proof of the theorem, we show that the semi-discrete mCH equations (3.10)–(3.11)
converge to the mCH equation (1.1) in the continuous limit b → 0.

Recall that u = 1− (ln fg)ys, x = y + s+ 2 ln g
f . It is obvious that when b → 0 we have

uk → u, x̃k → x, δuk → uy, m̃−1
k → ∂x

∂y
=

1

m
, δ

(
m̃−1

k

)
→
(

1

m

)
y

,

and furthermore, Γk → 1, fk+1 → fk + bfk,y, gk+1 → gk + bgk,y, which leads to

2

b

fk−1gk+1 − fk+1gk−1

fk−1gk+1 + fk+1gk−1
→ 2

b

fk−1(gk−1 + 2bgk,y)− gk−1(fk−1 + 2bfk,y)

fk−1(gk−1 + 2bgk,y) + gk−1(fk−1 + 2bfk,y)
→ 2

(
ln

g

f

)
y

.

Therefore, we have

δxk = m−1
k → 1 + 2

(
ln

g

f

)
y

=
∂x

∂y
=

1

m
.

Thus, we conclude that equations (3.10)–(3.11) converge to

∂2x

∂y∂s
=

(
1

m

)
s

= 2muy, m = u− 1

2
m

(
1

m

)
ys

= u−m(muy)y = u− uxx, (3.12)
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respectively. On the other hand, equation (3.12) is equivalent to

∂2x

∂y∂s
= 2muy = 2(u−m(muy)y)uy =

(
u2 −m2u2y

)
y
=
(
u2 − u2x

)
y
,

or ∂x
∂s = u2 − u2x, which implies ∂s = ∂t +

(
u2 − u2x

)
∂x. As a result, equation (3.12) leads to

ms + 2m3uy =mt +
(
u2 − u2x

)
mx + 2m2ux = mt +

[
m
(
u2 − u2x

)]
x
= 0,

which is actually the mCH equation (1.1).
In the following, we present the detailed proof of the theorem.

Proof. We rewrite equation (3.4) as

1

b

(
fk+1gk−1

fkgk
− 2 +

fk−1gk+1

fkgk

)
− 1

2

(
fk+1gk−1

fkgk
+

fk−1gk+1

fkgk

)
fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1
= 0,

or equivalently

−2

b
+

fk+1gk−1 + fk−1gk+1

fkgk

(
1

b
− 1

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)
= 0. (3.13)

By using the identity ρs = ρ (ln ρ)s, we have(
fk+1gk−1 + fk−1gk+1

fkgk

)
s

=
fk+1gk−1

fkgk

(
ln

fk+1gk−1

fkgk

)
s

+
fk−1gk+1

fkgk

(
ln

fk−1gk+1

fkgk

)
s

=
fk+1gk−1 + fk−1gk+1

2fkgk

(
ln

fk+1gk−1fk−1gk+1

f2
kg

2
k

)
s

+
fk−1gk+1 − fk+1gk−1

2fkgk

(
ln

fk−1gk+1

fk+1gk−1

)
s

,

and (
fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)
s

= − 2fk+1gk−1fk−1gk+1

(fk+1gk−1 + fk−1gk+1)
2

(
ln

fk−1gk+1

fk+1gk−1

)
s

.

Therefore, differentiating equation (3.13) with respect to s leads to[
fk+1gk−1 + fk−1gk+1

2fkgk

(
ln

fk+1gk−1fk−1gk+1

f2
kg

2
k

)
s

+
fk−1gk+1 − fk+1gk−1

2fkgk

(
ln

fk−1gk+1

fk+1gk−1

)
s

]
·
(
1

b
− 1

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)
+

fk+1gk−1 + fk−1gk+1

fkgk

fk+1gk−1fk−1gk+1

(fk+1gk−1 + fk−1gk+1)
2

(
ln

fk−1gk+1

fk+1gk−1

)
s

= 0.

Dividing both sides by
fk+1gk−1+fk−1gk+1

2fkgk
, we have(

1

b
− 1

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)(
ln

fk+1gk−1fk−1gk+1

f2
kg

2
k

)
s

+
1

b

fk−1gk+1 − fk+1gk−1

fk−1gk+1 + fk+1gk−1

(
ln

fk−1gk+1

fk+1gk−1

)
s

+
1

2

(
ln

fk−1gk+1

fk+1gk−1

)
s

= 0. (3.14)
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As b → 0, equation (3.14) converges to

(ln fg)yys + 2

(
ln

g

f

)
y

(
ln

g

f

)
ys

+

(
ln

g

f

)
ys

= 0.

From the definition of Γk, uk, δuk, and m−1
k , we have

Γk = 1 +
m−1

k − 1

4
b−

(
m−1

k − 1
)2

4
b2 −

(
m−1

k − 1
)3

16
b3

=

(
1− b

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)(
1−

(
fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)2
)

=

(
1− b

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

)
4fk+1gk−1fk−1gk+1

(fk+1gk−1 + fk−1gk+1)
2 .

Then equation (3.14) leads to(
m−1

k

)
s
= 2mkΓkδuk. (3.15)

Since δxk = m−1
k , one can rewrite equation (3.15) as dδxk

dt = 2mkΓk(δuk), which constitutes
the first equation of the semi-discrete mCH equation. Now we are ready to deduce the second
equation of the semi-discrete mCH equation. We rewrite equation (3.5) into

1

b

(
fk+1gk−1

(
ln

fk+1

gk−1

)
s

− 2fkgk

(
ln

fk
gk

)
s

+ fk−1gk+1

(
ln

fk−1

gk+1

)
s

)
− 1

2

(
fk+1gk−1

(
ln

fk+1

gk−1

)
s

− fk−1gk+1

(
ln

fk−1

gk+1

)
s

)
− (fk+1gk−1 − fk−1gk+1) = 0.

Thus, we have

1

b

(
ln

fk+1fk−1

gk+1gk−1

)
s

− 4

b

fkgk
fk+1gk−1 + fk−1gk+1

(
ln

fk
gk

)
s

+
1

b

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

(
ln

fk+1gk+1

fk−1gk−1

)
s

− 1

2

(
ln

fk+1gk+1

fk−1gk−1

)
s

− 1

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

(
ln

fk+1fk−1

gk+1gk−1

)
s

− 2
fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1
= 0. (3.16)

By rewriting equation (3.4) as

1

b

2fkgk
fk+1gk−1 + fk−1gk+1

=
1

b
− 1

2

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1
,

and substituting it into equation (3.16), one obtains

1

b

2fkgk
fk+1gk−1 + fk−1gk+1

(
ln

fk+1fk−1g
2
k

gk+1gk−1f
2
k

)
s

+
1

b

fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1

(
ln

fk+1gk+1

fk−1gk−1

)
s

− 1

2

(
ln

fk+1gk+1

fk−1gk−1

)
s

− 2
fk+1gk−1 − fk−1gk+1

fk+1gk−1 + fk−1gk+1
= 0. (3.17)

From the definition of uk and δ
(
m̃−1

k

)
, one can obtain uk+1 + uk = 2− 1

b

(
ln

gk+1fk+1

gk−1fk−1

)
s
equa-

tion (3.17) can be rewritten as

− b

2

(
1 +

b2

4

(
m−1

k − 1
)) (

δ
(
m̃−1

k

))
s
− bm−1

k

(
1− uk + uk+1

2

)
+ b
(
m−1

k − 1
)
= 0,

which can be shown equivalent to equation (3.11). The proof is completed. ■
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(a) Smooth soliton solutions (b) Symmetric singular soli-
ton solutions

Figure 1. Two different kinds of solutions for the semi-discrete mCH equation at t = 0. (a) Smooth

soliton solutions, (b) Symmetric singular soliton solutions.

From Theorems 3.2 and 3.3, we find that the semi-discrete mCH equation (3.10)–(3.11)
admits N -soliton solution in the determinant form

uk = 1− 1

b

(
ln

gkfk
gk−1fk−1

)
s

, δxk ≡ xk+1 − xk
b

= 1 +
2

b

fk−1gk+1 − fk+1gk−1

fk−1gk+1 + fk+1gk−1
,

mk = (δxk)
−1,

where fk, gk are given by the determinant (3.6).

3.3 One- and two-soliton solutions

3.3.1 One-soliton solutions

The τ -functions for the one-soliton solution of the semi-discrete mCH equation in Theorem 3.3
are

fk ∝ 1 +

(
1− bp

1 + bp

)−k

eζ , gk ∝ 1 +

(
−2p+ 1

2p− 1

)−1(1− bp

1 + bp

)−k

eζ ,

with ζ = − 4p
1−4p2

s + ζ0. Here we set p = p1 for simplicity. Thus, we can obtain the one-soliton
solution in a parametric form

uk = 1− 1

b

(
ln

gkfk
gk−1fk−1

)
s

= 1− 1

b

4p

1− 4p2

(
1

fk
+

1

gk
− 1

fk−1
− 1

gk−1

)
,

xk = x0 + b
k−1∑
i=0

δxi = x0 + (k − 1)b+ 2
k−1∑
i=0

fi−1gi+1 − fi+1gi−1

fi−1gi+1 + fi+1gi−1
.

When we take b = 0.1, ζ0 = 0, and choose appropriate x0 such that the solution uk is symmet-
ric with respect to xk, Figure 1 displays two different kinds of solutions for the semi-discrete
mCH equation under different p values. Figure 2 depicts a one-soliton solution to the semi-
discrete mCH equation while comparing with the one-soliton solution to the mCH equation.
When 0 < |p| <

√
3
4 , the solution uk is single-valued with one peak since δk > 0 (see Figure 1(a)).

Figure 1(b) illustrates the symmetric singular soliton solutions that are three-valued with two
spikes for

√
3
4 < |p| < 1

2 . Figure 2 shows the comparison among the one-soliton solutions for the
mCH equation in [27, 34] and the semi-discrete mCH equation at t = 0. It should be pointed out
that the semi-discrete analogue of the mCH equation with linear dispersion term admits anti-
symmetric singular soliton solutions (see [45, Figures 1C and 2C]), while the semi-discrete mCH
equation without linear dispersion term we proposed here does not admit such singular solution.
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(a) Smooth soliton solutions (b) Symmetric singular soli-
ton solutions

Figure 2. Comparison between the one-soliton solution for the mCH equation and the semi-discrete

mCH equation at t = 0; solid line: mCH equation, dot: semi-discrete mCH equation. (a) p = 0.35,

(b) p = 0.485.

(a) t = −15 (b) t = 0 (c) t = 15

Figure 3. Comparison between the two-soliton solution of the mCH and the semi-discrete mCH equation

with p1 = 0.25, p2 = 0.35; solid line: mCH equation; dot: semi-discrete mCH equation. (a) t = −15,

(b) t = 0, (c) t = 15.

3.3.2 Two-soliton solutions

The τ -functions for the two-soliton solution of the semi-discrete mCH equation in Theorem 3.3
are

fk ∝1 + z−k
1 eζ1 + z−k

2 eζ2 +

(
p1 − p2
p1 + p2

)2

(z1z2)
−keζ1+ζ2 ,

gk ∝1 +
1− 2p1
1 + 2p1

z−k
1 eζ1 +

1− 2p2
1 + 2p2

z−k
2 eζ2 +

1− 2p1
1 + 2p1

1− 2p2
1 + 2p2

(
p1 − p2
p1 + p2

)2

(z1z2)
−keζ1+ζ2 ,

with zi =
1−bpi
1+bpi

and ζi = − 4pi
1−4p2i

s+ ζi0. We take b = 0.1 and ζi0 = 0. Figure 3 displays the
collision between two smooth solitons. One can see that the soliton with a higher peak moves
faster than the lower one. It can be found that there is a strong agreement between the two-
soliton solution of the semi-discrete mCH equation and the mCH equation.

It is shown that the proposed semi-discrete mCH equation, and one and two-soliton solution
converge to ones of the original mCH equation in the continuum limit. This is the reason
that there is no substantial difference between soliton solutions of the mCH equation and its
semi-discrete version. The situation also holds for the semi-discrete integrable DP equation,
generalized sine-Gordon equation and short pulse equation.

4 Conclusion and discussion

In this paper, starting from the discrete KP equation, we have constructed an integrable semi-
discrete analog of the mCH equation with cubic nonlinearity through Miwa transformation and
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a series of reductions. Gram-type determinant solutions for the semi-discrete mCH equation
has been derived. Smooth soliton solutions and symmetric singular soliton solutions are gener-
ated from the determinant formulas. The discrete KP equation is once again shown to be the
fundamental equation for integrable systems, in line with the findings by Hirota, Ohta, Tsu-
jimoto, Nimmo, and so on. Furthermore, there are a few aspects that deserve further study.
Firstly, the Lax pair associated with the semi-discrete mCH equation is still unknown. How
to generate the Lax pair for the derived discrete integrable systems based on the Lax pair of
discrete KP equation is left to be investigated. Secondly, here we only find semi-discrete ver-
sion of the mCH equation and the full-discrete analogue of the mCH is left to be considered.
Thirdly, connections between the discrete KP equation and the two-component CH equation [6],
the two-component mCH equation [46], the complex short pulse equation [8] and the massive
Thirring model equation [36, 48] are worth investigating.

DP equation and Novikov equation are peakon-type integrable nonlinear partial differential
equations with higher-order nonlinearity. An integrable semi-discrete DP equation has been con-
structed from a pseudo 3-reduction of the CKP hierarchy [12]. Integrable semi-discretizations
for the short wave limit of the Novikov equation was presented in [33]. To the best of our knowl-
edge, integrable discrete analogues of the Novikov equation based on the methodology here have
not been reported. Furthermore, how to apply the proposed integrable semi-discrete mCH equa-
tion as a self-adaptive moving mesh scheme for the numerical simulation of the mCH equation
deserves further exploration. These intriguing topics will be addressed in our future study.

An infinite number of conservation laws of the mCH equation was found in [34] based on the
Bäcklund transformation, which read as

I2n+1 =
n+1∑
m=0

νnmĨm.

Here νnm are constants depending on the constant background u0, and the first three of Ĩm are
expressed as

Ĩ0 =

∫ ∞

−∞
(m− u0) dx, Ĩ1 =

∫ ∞

−∞

(
1

m
− 1

u0

)
dx,

Ĩ2 =

∫ ∞

−∞

[
1

m3
− 1

u30
+ 4

m2
x

m5

]
dx.

However, it is much more difficult to construct conservation laws for the derived integrable
discrete analogues. As far as we know, conservation laws for the integrable semi-discrete CH
equation [39] and semi-discrete DP equation [12] have not been obtained. The reason may lie in
the fact that the form of the semi-discrete equations are more complex than the continuous ones.
As shown in Theorem 3.3, we have to introduce two discrete analogues mk, m̃k corresponding
to m. Though we express the semi-discrete analogue in an explicit form, and equation (3.10) is
nearly the form of conservation law, we fail to generate the conserved quantities for the semi-
discrete mCH equation. How to construct the conserved quantities of the semi-discrete equations
deserves further consideration.
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