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1 Introduction

Let us fix an algebraically closed field k of characteristic zero. In the theory of fusion 1-categories
over k, one of the main tools for constructing new fusion 1-categories out of the ones that are
already known is the concept of a group graded extension as introduced in [16]. Fusion 2-ca-
tegories over k were introduced in [11], and categorify the notion of a fusion 1-category. It is
then only natural to investigate the notion of group graded extension for fusion 2-categories.
More specifically, setting up group graded extension theory for fusion 2-categories is motivated
by the problem of classifying fermionic strongly fusion 2-categories. In more detail, recall that
a bosonic (resp. fermionic) strongly fusion 2-category is a fusion 2-category whose braided fusion
1-category of endomorphisms of the monoidal unit is Vect (resp. SVect). It was proven in [7]
that every fusion 2-category over k is Morita equivalent to the 2-Deligne tensor product of
a strongly fusion 2-category and an invertible fusion 2-category, the latter corresponding to the
data of a non-degenerate braided fusion 1-category. This motivates the problem of classifying
strongly fusion 2-categories. Now, it was shown in [24] that every simple object of such a fusion
2-category is invertible. In particular, strongly fusion 2-categories are group graded extensions
of either 2Vect or 2SVect. On the one hand, the classification of bosonic strongly fusion 2-
categories is then routine: It consists of a finite group together with a 4-cocycle [11, Section 2.1].
On the other hand, the classification of fermionic strongly fusion 2-categories is more subtle, and
does require the full strength of extension theory for fusion 2-categories. We ought to mention
that, at a Physical level of rigor and in the context of the classification of topological orders
in (3 + 1) dimensions, related results were already discussed in [29] and [20].

1.1 Extension theory for fusion 1-categories

Let us fix a fusion 1-category C. We can then consider the associated space of invertible (fi-
nite semisimple) C-C-bimodule 1-categories, invertible bimodule functors, and bimodule natural
isomorphisms. We denote this space by BrPic(C), and refer to it as the Brauer–Picard space
of C. This space admits a canonical product structure given by the relative Deligne tensor
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product over C. In fact, extension theory was the original motivation for the introduction of
the relative Deligne tensor product of finite semisimple module 1-categories over a fusion 1-
category [16]. The relative Deligne tensor product endows the Brauer–Picard space with the
structure of a group-like topological monoid, so that we may consider its delooping BBrPic(C).
The main result of [16] is that, given any finite group G, faithfully G-graded extensions of C are
parameterised by homotopy classes of maps from BG to BBrPic(C).

1.2 Results

Over an algebraically closed field k of characteristic zero, the existence of the relative 2-Deligne
tensor product for finite semisimple module 2-categories over a fusion 2-category was established
in [9]. In particular, for any fusion 2-category C, one can consider the associated space BrPic(C)
of invertible C-C-bimodule 2-categories. We refer to this space as the Brauer–Picard space of C,
and note that, by construction, it can be delooped. We obtain a categorification of the main
theorem of [16] to fusion 2-categories, noting that a more general result was announced in [22].

Theorem (Theorem 3.11). For any finite group G, faithfully G-graded extensions of the fu-
sion 2-category C are classified by homotopy classes of maps from BG to BBrPic(C), the de-
looping of the Brauer–Picard space of C.

We wish to remark that Tambara–Yamagami fusion 2-categories, which are Z/2-graded fu-
sion 2-categories whose non-trivially graded piece is 2Vect, were studied in [10] via different
methods. In fact, unlike in the decategorified setting, it seems difficult to use extension theory to
classify Tambara–Yamagami fusion 2-categories, as the group H5(BZ/2;k×), in which a certain
obstruction lies, is non-zero.

Using results from [17] and [23], we perform a careful analysis of the structure of the Brauer–
Picard space associated to the fusion 2-category 2SVect. When combined with the above
theorem, it yields the following result.

Theorem (Theorem 4.5). Fermionic strongly fusion 2-categories equipped with a faithful grad-
ing are classified by a finite group G together with a class ϖ in H2(BG;Z/2) and a class π
in SH4+ϖ(BG).

In the physics literature, versions of this classification have already appeared in [29], and [20,
Section V.D]. In particular, the notation SH4+ϖ(BG) refers to ϖ-twisted supercohomology, the
twisted generalized cohomology theory associated to the space 2SVect× of invertible objects
and morphisms in 2SVect. This generalized cohomology theory is well known in the litera-
ture on symmetry protected topological phases [17, 26, 35], where it is referred to as extended
supercohomology.

It is instructive to briefly discuss how the above data can be recovered from a given fermionic
strongly fusion 2-category C. The corresponding group G is the group of connected components
of C. Further, the group of invertible objects of C is a central extension of G by Z/2. However,
it is not necessarily the extension corresponding to ϖ, rather it depends on the class π. We end
by examining many examples of the above classification. In particular, we find in Example 4.13
that there are exactly three fermionic strongly fusion 2-categories whose group of connected
components is Z/2n for any positive integer n. We also study the fermionic strongly fusion
2-categories whose group of connected components is Z/2⊕Z/2 in Example 4.14. Finally, it was
asked in [24] whether there exists a finite group G and a faithfully G-graded fermionic strongly
fusion 2-category with trivial twist ϖ whose group of invertible objects is a non-trivial central
extension of G. In Appendix A, joint with Theo Johnson-Freyd, we perform a computation in
supercohomology in order to show that this behaviour does occur when G = Z/4⊕ Z/4.
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2 Preliminaries

2.1 Fusion 2-categories

Over an algebraically closed field k of characteristic zero, the notions of finite semisimple 2-
category and fusion 2-category were introduced in [11]. We succinctly review these definitions
here, and refer the reader to the aforementioned reference and also [5] for details.

A (k-linear) 2-category C is locally finite semisimple if its Hom-1-categories are finite semisim-
ple. An object C of C is called simple if IdC is a simple object of the finite semisimple 1-
category EndC(C). Then, a finite semisimple 2-category is a locally finite semisimple 2-category
that is Cauchy complete in the sense of [18] (see also [4]), has right and left adjoints for 1-
morphisms, and has finitely many equivalence classes of simple objects. In a finite semisimple
2-category C, any two simple objects are called connected if there exists a non-zero 1-morphism
between them. This defines an equivalence relation, and we write π0(C) for the corresponding
set of equivalences classes; This is the set of connected components of C.

Now, the definition of a monoidal 2-category is well known. In particular, using the notations
of [34], a monoidal structure on the 2-category C involves a 2-functor 2 : C×C → C, the monoidal
product, and a distinguished object I, the monoidal unit, together with various other coherence
data. Given any object C of C, we can ask for the existence of its left dual ♯C and its right
dual C♯. These two notions were studied in [32]. Categorifying the concept of a fusion 1-category
is therefore straightforward, and we obtain the following definition.

Definition 2.1. A multifusion 2-category is a finite semisimple monoidal 2-category C such that
every object C admits a right dual C♯ and a left dual ♯C. A fusion 2-category is a multifusion
2-category whose monoidal unit I is a simple object.

To every fusion 2-category C, there is an associated braided fusion 1-category ΩC := EndC(I),
the 1-category of endomorphisms of the monoidal unit I of C. Conversely, given any braided
fusion 1-category B, we can consider the fusion 2-category Mod(B) of finite semisimple left B-
module 1-categories with monoidal structure given by ⊠B, the relative Deligne tensor product.
Below, we give another class of examples that will be relevant for our purposes. Many more
may be found in [11] and [10], and others will be discussed subsequently.

Example 2.2. Given G a finite group, and π a 4-cocycle for G with coefficients in k×, we
can then consider the fusion 2-category 2Vectπ(G) of G-graded finite semisimple 1-categories,
also known as 2-vector spaces, with pentagonator twisted by π. Such fusion 2-category were
completely characterized in [24] as those fusion 2-categories C for which ΩC ≃ Vect. We call
these bosonic strongly fusion 2-categories.

2.2 Module 2-categories and the relative 2-Deligne tensor product

Let C be a monoidal 2-category with monoidal product 2, and monoidal unit I. A right C-
module 2-category is a 2-category M equipped with an action 2-functor 2 : M × C → M, and
coherence data satisfying various axioms. Likewise, there is a notion of left C-module 2-category.
Additionally, there are notions of C-module 2-functors, C-module 2-natural transformations,
and C-module modifications. There are also notions of bimodule 2-categories, and maps between
them. We refer the reader to [8, Section 2] for the precise definitions.

Let us now assume that C is a fusion 2-category. If M is a left C-module 2-category, then
we can consider EndC(M), the monoidal 2-category of left C-module 2-endofunctors on M. The
next result combines [6, Theorem 5.3.2] with [7, Corollary 5.1.3].

Theorem 2.3. The monoidal 2-category EndC(M) is a multifusion 2-category.
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Moreover, the multifusion 2-category EndC(M) is fusion if and only if M is indecomposable
as a finite semisimple left C-module 2-category.

For our purposes, we need to consider another operation on finite semisimple module 2-
categories. Let M be a finite semisimple right C-module 2-category and N be a finite semisimple
left C-module 2-category. There are notions of C-balanced 2-functors, C-balanced 2-natural
transformations, and C-balanced modifications out of M × N. We refer the reader to [9, Sec-
tion 2.2] for the details. The next result is a combination of [9, Theorem 2.2.4] with [7, Corol-
lary 5.1.3].

Theorem 2.4. There is a 3-universal C-balanced 2-functor ⊠C : M ×N → M ⊠C N to a finite
semisimple 2-category.

In fact, the proof of [9, Theorem 2.2.4] gives an explicit description of M ⊠C N. More
precisely, if A is a (necessarily separable) algebra in C such that M is equivalent to LModC(A),
the right C-module 2-category of left A-modules in C, and B is a (necessarily separable) algebra
in C such that N is equivalent to ModC(B), the left C-module 2-category of right B-modules
in C, then M⊠C N ≃ BimodC(A,B), the finite semisimple 2-category of A-B-bimodules in C.

Finally, let us recall that, as was explained in [9, Section 3.2], the existence of the relative
2-Deligne tensor product allows us to consider the symmetric monoidal Morita 4-category F2C
of (multi)fusion 2-categories, finite semisimple bimodule 2-categories, and bimodule morphisms.

3 Extension theory

For fusion 1-categories over an algebraically closed field of characteristic zero, extension theory
was developed in [16]. The key concept is that of an invertible bimodule 1-category, or, more
precisely, the space formed by such objects together with their invertible morphisms. Proceeding
in a similar fashion, we will discuss extension theory for fusion 2-categories, i.e., we will study
group graded fusion 2-categories in the sense of the definition below.

Definition 3.1. Let C be a fusion 2-category and G a finite group. A G-grading on C is
a decomposition ⊞g∈GCg of C into a direct sum of finite semisimple 2-categories such that for
every C in Cg and D in Ch, C2D lies Cgh. A G-grading on C is faithful if Cg is non-zero for
every g in G.

3.1 Invertible bimodule 2-categories

Let k be an algebraically closed field of characteristic zero. We begin by recalling a definition
from [10]. Let C and D be two fusion 2-categories. We write Dmop for the fusion 2-category
obtained by endowing the finite semisimple 2-category D with the opposite of the monoidal
product of D.

Definition 3.2. A finite semisimple C-D-bimodule 2-category M is invertible if the canonical
monoidal 2-functor Dmop → EndC(M) is an equivalence.

At the decategorified level, i.e., for fusion 1-categories, invertibility of a finite semisimple
bimodule 1-category admits various equivalent characterizations as is explained in [16, Proposi-
tion 4.2]. A categorified version of this result was given in [9], which we partially recall below.

Proposition 3.3. Let M be a finite semisimple C-D-bimodule 2-category. The following are
equivalent:

(1) The C-D-bimodule 2-category M is invertible.

(2) The C-D-bimodule 2-category M defines an invertible 1-morphism from C to D in F2C.
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The next proposition gives preliminary insight into the relation between group graded fusion
2-categories and invertible bimodule 2-categories. We note that the first part of the result below
has already appeared as [10, Proposition 3.1.7]. We also refer the reader to [16, Theorem 6.1]
for the decategorified version of this proposition.

Proposition 3.4. Let C be a faithfully G-graded fusion 2-category C. For any g ∈ G, the
finite semisimple Ce-Ce-bimodule 2-category Cg is invertible. Furthermore, for any g, h ∈ G, the
2-functor 2 : C×C → C induces an equivalence Cg ⊠Ce Ch

≃−→ Cgh of Ce-Ce-bimodule 2-categories.

Proof. The first part follows from the second, so we only prove the latter. For the second part,
note that it is enough to show that the canonical 2-functor is an equivalence. To this end, pick
any non-zero objects X in Cg−1 , and Y in Ch. It follows from the proof of [6, Theorem 5.4.3]
that Y2♯Y is a separable algebra in C, and that the left C-module 2-functor C → ModC

(
Y2♯Y

)
given by C 7→ C2♯Y is an equivalence. Likewise, X2♯X is a separable algebra in C, and
the right C-module 2-functor C → LModC

(
X2♯X

)
given by C 7→ X2C is an equivalence. In

particular, we also find that the 2-functor C → BimodC

(
X2♯X,Y2♯Y

)
given by C 7→ X2C2♯Y

is an equivalence. Under these identifications, as was recalled above, it follows from the proof
of [9, Theorem 2.2.4] that the canonical 2-functor C×C → C⊠CC is identified with 2 : C×C → C,
which is given by

LModC

(
X2♯X

)
×ModC

(
Y2♯Y

)
→ BimodC

(
X2♯X,Y2♯Y

)
, (M,N) 7→ M2N.

But, by considering the restriction Ce ↪→ C, the above equivalences restrict to equivalences
Ch → ModCe

(
Y2♯Y

)
, Cg → LModCe

(
X2♯X

)
, and Cgh → BimodCe

(
X2♯X,Y2♯Y

)
. In

particular, the canonical 2-functor Cg × Ch → Cg ⊠Ce Ch is identified with 2 : Cg × Ch → Cgh as
claimed. ■

A similar argument as the one used in the proof of the above proposition yields the following
result.

Corollary 3.5. The canonical Ce-Ce-bimodule 2-functor Cg−1 → FunCe(Cg,Ce) given by D 7→
{C 7→ D2C} is an equivalence.

3.2 Brauer–Picard spaces and extensions

Group-graded extensions of fusion 1-categories are parameterised by maps into the space of
invertible bimodule 1-categories and their (invertible) higher morphisms [16]. Thanks to the
existence of the 4-category F2C obtained in [9], the corresponding spaces for our 2-categorical
purposes are easy to define.

Definition 3.6. Let C be a fusion 2-category. The Brauer–Picard space of C consists of the
invertible objects and the invertible morphisms in the monoidal 3-category of finite semisimple
C-C-bimodule 2-categories, that is,

BrPic(C) :=
(
EndF2C(C)

)×
.

Remark 3.7. We will write BrPic(C) := π0(BrPic(C)), the Brauer–Picard group of C. It
follows from [7, Lemma 2.2.1] that ΩEndF2C(C) ≃ Z (C), the Drinfeld center of C, as defined
in [1]. Thus, the homotopy groups of the space BrPic(C) are given as follows:

π0 π1 π2 π3

BrPic(C) Inv(Z (C)) Inv(ΩZ (C)) k×
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Example 3.8. Taking C = 2Vect, we have that BrPic(C) is the core of the symmetric
monoidal 3-category of multifusion 1-categories and the homotopy groups of this core are well
known

π0 π1 π2 π3

1 0 0 k×

Example 3.9. More generally, we may also take C = 2VectπG, in which case we have

π0 π1 π2 π3

H3(G;k×)⋊Out(G) Z(G)⊕H2(G;k×) Ĝ k×

We have used Ĝ to denote the group of multiplicative characters of G, [10, Proposition 2.4.1]
for the description of π0, and the main theorem of [27] for π1 and π2 together with the identifi-
cation Pic(Rep(G)) ∼= H2(G;k×), which is given, for instance, in [3, Proposition 6.1].

The following example will be relevant in the next section.

Example 3.10. Let E be a symmetric fusion 1-category, and take C = Mod(E). In this case
we have

π0 π1 π2 π3

M̃ext(E)⋊Autbr(E) Z(Spec(E))⊕ Pic(E) Inv(E) k×

We have used M̃ext(E) to denote the group of Witt-trivial minimal non-degenerate extensions
of E : The description of π0 then follows from [7, Corollary 3.1.7]. The statement for π2 follows
from of [23, Lemma 2.16]. Finally, the description of π1 follows from [3, Corollary 6.11]. Let us
also point out that the group Pic(E) with E super-Tannakian was computed in [3, Theorem 6.5].

A more general version of the next result has been announced [22]. We are very grateful to
them for outlining their proof to us, which has inspired the argument that we give below.

Theorem 3.11. Let G be a finite group, and C be a fusion 2-category. Then, faithfully G-graded
extensions of C are classified by homotopy classes of maps BG → BBrPic(C).

Proof. For the purpose of this proof, it will be convenient to think of maps of spaces BG →
BBrPic(C) as monoidal maps G → BrPic(C) of (∞, 1)-categories. We will also consider the
(∞, 1)-category C obtained from EndF2C(C) by only considering the invertible n-morphisms
when n ≥ 2. Then, by definition we have BrPic(C) = C× as monoidal (∞, 1)-categories.

We begin the proof by some general nonsense. Recall that algebras in the monoidal (∞, 1)-
category C correspond precisely to lax monoidal functors ∗ → C (see [30, Example 2.2.6.10]).
We want a similar description for the notion of a (faithfully) G-graded algebra. In order to do
so, consider the monoidal 1-category G⊔, which is the coproduct completion of G. Now, there
is a canonical algebra A[G] in G⊔ given by

A[G] :=
∐
g∈G

g,

or equivalently a lax monoidal functor ∗ → G⊔. Then, giving a G-grading on an algebra A in C
is equivalent to providing a factorization of lax monoidal functors

∗ C

G⊔.

A

A[G]
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But, given that C has direct sums, lax monoidal functors G⊔ → C correspond exactly to lax
monoidal functors G → C .

Now, given a map of spaces BG → BBrPic(C), or equivalently a strongly monoidal functor
F : G → C , we obtain a G-graded algebra D := F (A[G]) in C. We also write

D = ⊞g∈GDg = ⊞g∈GF (g).

In fact, as F (e) = C by definition, the monoidal 2-category D is a faithfully G-graded extension
of C. It is therefore enough to prove that D is a fusion 2-category. The only property that is
not obvious is rigidity. We have that EndC(D) is a fusion 2-category thanks to Theorem 2.3
above. Let us fix g ∈ G. For any simple object X in Dg, we can consider the left C-module
2-functor RX : D → D given by D 7→ D2X on De ≃ C, and zero on Dh for any e ̸= h ∈ G.
As the objects of the monoidal 2-category EndC(D) have duals, we can consider the right
adjoint R∗

X of RX . But, we have that Dg−1 → FunDe(Dg,De) is an equivalence of De-De-
bimodule 2-categories as F is strongly monoidal, and therefore preserves duals. Thus, we find
that R∗

X ≃ Y2(−) : Dg → De = C for some Y in Dg−1 . This proves that X has a left dual Y
in D. One shows analogously that X has a right dual.

Conversely, given D = ⊞g∈GDg a G-graded extension of C = De, we can consider the cor-
responding lax monoidal functor F : G → C . More precisely, we set F (g) = Dg with lax
monoidal structure given by the monoidal structure of D. We want to show that F is strongly
monoidal and factors through BrPic(C) ⊂ C . It follows from the definition of an extension
that F is strongly unital. Proposition 3.4 above establishes that F has the remaining desired
properties. ■

Remark 3.12. The classification of Tambara–Yamagami 1-categories may be recovered from
extension theory for fusion 1-categories as explained in [16, Section 9.2]. It would similarly be
interesting to understand the classification of Tambara–Yamagami 2-categories obtained in [10,
Proposition 5.2.3] in terms of the extension theory of fusion 2-categories. Namely, Tambara–
Yamagami 2-categories are by definition Z/2-graded extensions of 2Vect(A[1]×A[0]) by 2Vect
for some finite abelian group A. However, there is a complication that arises with the case of
Tambara–Yamagami 2-categories: The group H5(BZ/2;k×) ∼= Z/2 is non-zero. But, in order
to construct a map of spaces BZ/2 → BBrPic(2Vect(A[1] × A[0])) one has to check that a
certain obstruction class living in H5(BZ/2;k×) vanishes. We do not know how to do this
directly. In fact, the vanishing of such obstructions is a well-known difficulty in the exten-
sion theory of fusion 1-categories. However, for Tamabra–Yamagami 1-categories the relevant
group H4(BZ/2;k×) = 0 is trivial. Relatedly, general results guaranteeing the vanishing of this
obstruction for fusion 1-categories are known such as [16, Theorem 8.16]. We wonder whether
such a criterion may be established for extensions of higher fusion categories.

Remark 3.13. Over an arbitrary field, some results on extension theory for finite semisimple
tensor 1-categories were obtained in [33]. Going up one categorical level, one can setup ex-
tension theory for locally separable compact semisimple tensor 2-categories over an arbitrary
field. Namely, the reference [9] does work at this level of generality, and the proofs of both
Proposition 3.4 and Theorem 3.11 continue to hold up to the obvious modifications.

3.3 Extensions from crossed braided fusion 1-categories

We now review [11, Construction 2.1.23], which will later allow us to give very concrete models
for some fermionic strongly fusion 2-categories. A related construction appeared in [2, Section 6].
In a slightly different direction, we also refer the reader to [25] for a detailed discussion of the
relation between G-crossed braided 1-categories and higher categories.
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Construction 3.14. Fix G a finite group, and let C be a (not necessarily faithfully graded)
G-crossed braided fusion 1-category. Following the notations of [15, Section 8.24], C is a (not
necessarily faithfully) G-graded fusion 1-category C = ⊞g∈GCg equipped with a G-action g 7→ Tg

such that Tg(Ch) ⊆ Cghg−1 together with suitably coherent natural isomorphisms cW,X : W⊗X ∼=
Tg(X)⊗W whenever W is in Cg. For simplicity, and without loss of generality, we will assume
that the underlying monoidal 1-category of C is strict.

We can then consider the monoidal 2-category D̂ whose set of objects is the finite group G,
and with Hom-1-categories given by Hom

D̂
(g, h) := Chg−1 . Composition of 1-morphisms is given

by the tensor product ⊗ of C. Then, the monoidal 2-functor 2 is defined by

2 : Hom
D̂
(g1, h1)×Hom

D̂
(g2, h2) → Hom

D̂
(g1g2, h1h2), (W,X) 7→ W ⊗ Tg1(X)

and its naturality constraints are given by the G-crossed braided structure of C. More precisely,
for any 1-morphisms W : g1 → h1, X : g2 → h2, Y : h1 → f1, Z : h2 → f2, the interchanger ϕ2 is
given by

ϕ2
(W,X),(Y,Z) : (Y Th1(Z))(WTg1(X))

c−1
W,Z−−−→ YWTg1(Z)Tg1(X)

(µg1 )Z,X−−−−−→ (YW )Tg1(ZX).

Then, the associator 2-natural equivalence α is given on objects by αg1,g2,g2 = Idg1g2g3 , and on
1-morphisms W : g1 → h1, X : g2 → h2, Y : g3 → h3 by

αW,X,Y : WTg1(X)Tg1g2(Y )
(γ−1

g1,g2
)Y−−−−−−→ WTg1(X)Tg1(Tg2(Y ))

(µg1 )X,Y−−−−−−→ WTg1(XTg2(Y )).

Likewise, the 2-natural equivalences witnessing unitality are the obvious ones. The pentagonator
as well as the other invertible modifications that have to be specified are all taken to be the
identity ones. That these assignments yield a monoidal 2-category follow at once from the
axioms of a G-crossed braided 1-category. Finally, we obtain a fusion 2-category D by taking
the Cauchy completion of D̂ in the sense of [18] (see also [4, 11]).

Remark 3.15. Let us write suppG(C) for the support of C in G, that is the subset of ele-
ments g ∈ G such that Cg is non-zero. As C is G-crossed braided, suppG(C) is a normal subgroup
of G. It follows from the above construction that π0(D) = G/suppG(C) as finite groups, and
that D is faithfully G/suppG(C)-graded.

4 Fermionic strongly fusion 2-categories

Recall that k is an algebraically closed field of characteristic zero. It is well known that bosonic
strongly fusion 2-categories are classified by a finite group G and a 4-cocycle for G with coef-
ficients in k×. In fact, once we know that every simple object of such a fusion 2-category is
invertible, as follows from [24, Theorem A], the problem becomes a straightforward application
of Theorem 3.11 with Example 3.8. At a Physical level of rigor, this was already observed in [28].

Below, we will establish a similar classification of fermionic strongly fusion 2-categories. Recall
that a fermionic strongly fusion 2-category is a fusion 2-category C such that ΩC = SVect.
Then, it follows from [24, Theorem B] that every simple object of C is invertible. This was first
observed in the physics literature [29]. As a consequence of this last fact, we find that π0(C) is
a finite group, and there is a central extension of finite groups

0 → Z/2 → Inv(C) → π0(C) → 1.

Namely, we have Inv(2SVect) ∼= Z/2. Examples are known for which the associated short exact
sequence is not split (see [11, Example 2.1.27] or Figure 1 below).
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4.1 The Brauer–Picard space of 2SVect

It follows from Example 3.10 above that the homotopy groups of the space BrPic(2SVect) are
as follows

π0 π1 π2 π3

1 Z/2⊕ Z/2 Z/2 k×

In order to completely characterize the space BBrPic(2SVect), we have to understand its Post-
nikov k-invariants. They are precisely those of the braided monoidal 2-category Z (2SVect)×,
that is of the space B2Z (2SVect)×, and these k-invariants can be determined using [17, 21].
In particular, this space has non-zero homotopy groups exactly in degrees 2, 3, and 4. So as to
do this, we review some notation; For the most part we follow those used in [23, Section 3.1].

� Given an abelian group A and a non-negative integer n, we use A[n] to denote the n-th
Eilenberg–MacLane space associated to A.

� The cohomology ring H•(Z/2[n];Z/2) is generated by an element in degree n under cup
products and the action of the Steenrod operations Sqi.

� We will also consider the cohomology groups H•(Z/2[n];k×). Via the map t 7→ (−1)t

induced by the inclusion Z/2 ↪→ k×, we can give names to all of the cohomology classes
that we will consider in these groups.

Lemma 4.1. Let us write c2 for the generator of H2((Z/2⊕0)[2];Z/2) and m2 for the generator
of H2((0 ⊕ Z/2)[2];Z/2). The first k-invariant of B2Z (2SVect)× is c22 + c2m2 in the group
H4((Z/2⊕ Z/2)[2];Z/2). Let us write

Y := Fib
(
(Z/2⊕ Z/2)[2]

c22+c2m2−−−−−→ Z/2[4]
)
,

for the (homotopy) fiber, and t3 for the generator of H3(Z/2[3];Z/2), the second k-invariant
of B2Z (2SVect)×, which lives in H5(Y ;k×), is σ := (−1)Sq

2t3+t3m2.

Proof. The underlying 2-category of Z (2SVect) is depicted below (see, for instance, [23]).

I M

C C2M

Vect

SVect

Vect

VectZ/2

Vect

VectZ/2

Vect

VectZ/2

We want to describe the space B2Z (2SVect)×. We begin by determining its first k-invariant.
We have Z (2SVect)0 ≃ 2SVect as symmetric fusion 2-categories, so the restriction of the
first k-invariant to the braided monoidal sub-2-category spanned by C has to be c22 by [17].
Furthermore, its restriction to both M and C2M has to be trivial by [23, Theorem 3.2] and its
proof. This uniquely determines the first k-invariant as c22 + c2m2 in H4((Z/2⊕ Z/2)[2];Z/2).

Now, let Y be the space in the statement of the lemma. We want to determine the group
H5(Y ;k×) and its generators. In order to do so, we use the Serre spectral sequence for Y

Ei,j
2 = H i((Z/2⊕ Z/2)[2], Hj(Z/2[3];k×)) ⇒ H i+j(Y ;k×).
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The first entries of the E2 page for this spectral sequence are given by

j

5 Z/2 0

4 0 0 0

3 Z/2 0 Z/2⊕2 Z/2⊕2

2 0 0 0 0 0

1 0 0 0 0 0 0

0 k× 0 Z/2⊕2 0 Z/2⊕2 ⊕ Z/4 Z/2⊕3 Z/2⊕4

0 1 2 3 4 5 6 i.

(4.1)

We will abstain from giving generators for all the non-zero entries. Let us nonetheless point
out that the (6, 0) entry is generated by

(−1)c
3
2 , (−1)c

2
2m2 = (−1)c2m

2
2 , (−1)m

3
2 , (−1)Sq

1c2Sq
1m2 .

The equality follows from the fact that (−1)Sq
1
is the trivial map. Now, the (5, 0) entry automat-

ically survives to E∞ as no differential can hit it. Then, the d2 differential is trivial, and the d3
differential is given by d3

(
(−1)t3

)
= (−1)c

2
2+c2m2 due to the k-invariant of Y . In particular, we

find that

d3
(
(−1)t3c2

)
= (−1)c

3
2+c22m2 , d3

(
(−1)t3m2

)
= (−1)c

2
2m2+c2m2

2 = 0,

so that the Z/2 summand of the (2, 3) entry that is generated by (−1)t3m2 does survive to the E∞
page. It remains to understand what happens to the entry in degree (0, 5). We will argue that
this entry survives. Namely, we have that the space Y is a truncation of B2Z (2SVect)×.
But, we know that ΩZ (2SVect)× = SVect×, and it is well known that the k-invariant
of the space B3SVect× is the non-trivial class (−1)Sq

2t3 in H5(Z/2[3];k×). Thus, the edge
map H5(Y ;k×) → H5(Z/2[3];k×) induced by the inclusion Z/2[3] ↪→ Y is non-zero, and
the claim follows. Therefore, we find that H5(Y ;k×) is generated by (−1)Sq

2t3 , (−1)t3m2 ,
(−1)Sq

2Sq1c2 , (−1)c2Sq
1m2 = (−1)m2Sq

1c2 , and (−1)Sq
2Sq1m2 = (−1)m2Sq

1m2 .
We now turn our attention towards describing the second k-invariant σ of B2Z (2SVect)×.

To this end, let us write

X := Fib
(
Z/2[2] 0−→ Z/2[4]

)
.

Then, there is an inclusion f : X ↪→ Y induced by the inclusion of the second summand Z/2[2] ↪→
(Z/2 ⊕ Z/2)[2]. (This corresponds to picking out the object M of Z (2SVect)×.) Let us note
that this map is compatible with the spectral sequence (4.1) above. It was computed in [23,
Theorem 3.2] that the pullback f∗(σ) = (−1)Sq

2t3+t3m2 , so that σ must contain at least the
factors (−1)Sq

2t3 and (−1)t3m2 , and cannot contain (−1)Sq
2Sq1m2 . In addition, there is another

map g : X ↪→ Y induced by the diagonal inclusion Z/2[2] ↪→ (Z/2⊕Z/2)[2]. (This corresponds to
picking out the object C2M of Z (2SVect)×.) Again, it follows from [23, Theorem 3.2] that the
pullback g∗(σ) = (−1)Sq

2t3+t3m2 . But, by naturality of the Serre spectral sequence, we find that
g∗
(
(−1)Sq

2Sq1c2
)
= (−1)Sq

2Sq1t2 = g∗
(
(−1)c2Sq

1m2
)
with t2 the generator of H2(Z/2[2];Z/2), so

that

σ = (−1)Sq
2t3+t3m2 or σ = (−1)Sq

2t3+t3m2+Sq2Sq1c2+c2Sq
1m2 .

It turns out that these two possibilities are equivalent. More precisely, consider the homotopy
autoequivalence ϕ : Y ≃ Y with ϕ∗(t3) = t3 + Sq1c2. Then, we have

ϕ∗((−1)Sq
2t3+t3m2

)
= (−1)Sq

2t3+t3m2+Sq2Sq1c2+c2Sq
1m2 ,

which concludes the proof. ■



Extension Theory and Fermionic Strongly Fusion 2-Categories 11

4.2 Twisted supercohomology

In order to be able to carry out computations, as well as to make contact with the existing
literature, it is useful to unpack the data of the space BrPic(2SVect) in a different way and
express the classification of fermionic strongly fusion 2-categories using supercohomology.

Definition 4.2. Supercohomology is the generalized cohomology theory associated to the dou-
ble loop space of the spectrum associated to 2SVect×. For any space X and integer n, we
write SHn(X) for the group of homotopy classes of maps of spaces from X to Bn−22SVect×.

This generalized cohomology theory first appeared in the literature on symmetry protected
topological phases [17, 26, 35], where it is also referred to as extended supercohomology.1 More
precisely, as we have already recalled in the proof of Lemma 4.1 above, the homotopy groups
of 2SVect× are given by Z/2, Z/2, k×, and supercohomology is shifted so that SH0(pt) = k×.
In particular, for any space X and integer n, it follows from the Atiyah–Hirzebruch spectral
sequence

Ei,j
2 = H i

(
X;SHj(pt)

)
⇒ SH i+j(BG)

that the group SHn(X) has a filtration with successive subquotients En,0
∞ , En−1,1

∞ , and En−2,2
∞ .

But, En−2,2
∞ is a subgroup of En−2,2

2 = Hn−2(X;Z/2), En−1,1
∞ is a subquotient of En−1,1

2 =
Hn−1(X;Z/2), and En,0

∞ is a quotient of En,0
2 = Hn(X;k×), so that a class π in SHn(X) may,

by abusing notations, be written as a triple (α, β, γ) with α ∈ Hn−2(X;Z/2), β ∈ Hn−1(X;Z/2),
and γ ∈ Hn(X;k×).

Now, for the purposes of classifying fermionic strongly fusion 2-categories, we will also need
to consider twisted supercohomology. More precisely, the spectrum 2SVect× has a non-trivial
space of automorphisms. We will only be interested in the subspace given by

A uttens(2SVect) ≃ A utbr(SVect) ≃ Z/2[1].

Concretely, this corresponds to the symmetric monoidal natural autoequivalence φ of the identity
functor on SVect which takes the value −1 on purely odd vector spaces. Then, as is explained
in [31, Section 4.1], the action of the higher group Z/2[1] on the spectrum 2SVect× is encoded
by the fiber sequence of spaces

Bn−22SVect× Bn−22SVect×//(Z/2[1])

BZ/2[1] = Z/2[2]
(4.2)

for large enough n.

Definition 4.3. Let X be a space equipped with an action ϖ : X → Z/2[2], and write P → X
for the bundle with fiber Bn−22SVect× obtained by pulling back (4.2) along ϖ. The ϖ-twisted
n-th supercohomology of X is the group SHn+ϖ(X) := ΓX(P ) of homotopy classes of sections
of the bundle P → X.

Just as we have explained above in the untwisted case, by abusing notations, we will also
write classes in twisted supercohomology groups as triples. We now identify the total space
B22SVect×//(Z/2[1]).

1An earlier but distinct notion of supercohomology appeared in [19]. In our notations, what they are considering
is the generalized cohomology theory associated to (the loop space of) the spectrum SVect×, whose homotopy
groups are Z/2 and k×. This generalized cohomology theory is sometimes called restricted supercohomology. We
will make no use of this notion.
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Lemma 4.4. The canonical fibration B22SVect×//(Z/2[1]) → Z/2[2] is isomorphic to the
map B2Z (2SVect)×→Z/2[2] collapsing the connected component of the identity of Z (2SVect).

Proof. As above, let M denote an invertible object of Z (2SVect) that is not in the con-
nected component of the identity. In order to identify the spaces B22SVect×//(Z/2[1]) and
B2Z (2SVect)×, it is enough to show that the induced action of the invertible object M
in Z (2SVect) on Z (2SVect)0 ≃ 2SVect is the canonical one.

The invertible object M induces a braided monoidal 2-natural equivalence of 2SVect. More
precisely, let us use b to denote the braiding of Z (2SVect), which is an adjoint 2-natural
equivalence equipped with a pseudo-inverse b•. Let us also write u : I ≃ M2M for an adjoint
equivalence witnessing thatM is invertible. Then, the 2-natural autoequivalence t of the identity
2-functor on Z (2SVect) that is given on an object X in Z (2SVect) by

tX : X
X2u−−−→ X2M2M

bX,M2M
−−−−−−→ M2X2M

M2b•X,M−−−−−−→ M2M2X
u•2X−−−−→ X,

can be canonically upgraded to a braided monoidal 2-natural equivalence. In particular, we can
restrict t to a braided monoidal 2-natural equivalence of the identity 2-functor on 2SVect.

Now, as A utbr(2SVect) ≃ A uttens(2SVect) ≃ Z/2[1], it is enough to check that this
action is non-trivial. In order to see this, let e denote the non-identity invertible 1-morphism
in Ω2SVect = SVect. Then, it was explained in [23, Section 3.1] that the double braiding of the
object M and the 1-morphism e is given by bM,e · be,M = (−1) IdM2e. This shows that Ωt is the
non-trivial braided monoidal autoequivalence of SVect, and therefore concludes the proof. ■

Combining the last lemma together with Theorem 3.11 yields the following result. We wish to
point out that, relying on the as-of-yet incomplete theory of higher condensations [18], a version
of the classification of fermionic strongly fusion 2-categories has already been given in [20,
Section V.D]. In the physics literature, an even earlier, albeit slightly incorrect, version appeared
in [29].

Theorem 4.5. Fermionic strongly fusion 2-categories equipped with a faithful grading are clas-
sified by a finite group G together with a class ϖ in H2(BG;Z/2) and a class π in SH4+ϖ(BG).

Proof. It follows from Theorem 3.11 that (faithfully) G-graded extensions of 2SVect are clas-
sified by homotopy classes of maps

BG → BBrPic(2SVect) ≃ B2Z (2SVect)×.

The result then follows from the last lemma above. Namely, the class ϖ is given by the compos-
ite BG → B2Z (2SVect)× → BZ/2[1], and endows BG with an action by Z/2[1]. In addition,
the data of a map BG → B2Z (2SVect)× liftingϖ is precisely that of a class in SH4+ϖ(BG). ■

Remark 4.6. Without taking into account the faithful grading, fermionic strongly fusion 2-
categories are classified by a finite group G together with a class in H2(BG;Z/2)/Out(G) and
a class in SH4+ϖ(BG)/Out(G).

Remark 4.7. As is clear from the proof, the finite group G corresponds to the group of con-
nected components of the fermionic strongly fusion 2-category C. We emphasize that the class ϖ
in H2(BG;Z/2) is not the extension class determining the group of invertible objects Inv(C) as
a Z/2 extension of G! This was first observed in the physics literature [29] and then given
a more mathematical treatment in [21], and transpires from Example 4.13 below, but also from
the result of Appendix A. Rather, the extension class is given by the bottom layer α of the
class π = (α, β, γ) in SH4+ϖ(BG). The class β supplies the 1-morphisms witnessing associativ-
ity, and the class γ gives the pentagonator. As for the class ϖ, it follows from the proof of Theo-
rem 4.5 that it corresponds to the action of G on C0 = 2SVect by conjugation. Said differently,
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ϖ encodes the data of the interchanger, or, equivalently, the 2-naturality of the associator. That
these two pieces of coherence data are intimately related can be seen from [12, Proposition 4.2,
equation (Aâ2)]. We expect that the action of G on 2SVect can be detected at the level of the
Drinfeld center Z (C) of C. More precisely, let us write

(
G̃, z

)
for the central extension of G

by Z/2 parameterised by ϖ, then let Rep
(
G̃, z

)
be the subcategory of super-representations

of G̃ on which z acts as the parity automorphism. We expect that ΩZ (C) ≃ Rep
(
G̃, z

)
as

symmetric fusion 1-categories. We have checked this property for the fermionic strongly fusion
2-categories of Examples 4.10, 4.11 and 4.12 below.

Remark 4.8. Let us momentarily work over the field of real numbers R. It is interesting
to ask whether the classification of strongly fusion 2-categories remains valid at this level of
generality. This turns out to be wrong, even in the bosonic case: The most general version
of [24, Theorem A] does not hold over fields that are not algebraically closed. More precisely, it
is not true that every fusion 2-category C over R with ΩC = VectR is a group graded extension
of 2VectR. The following counterexample was pointed out to us by Theo Johnson-Freyd. Let
us consider the fusion 2-category 2RepR(Z/3[2]) of real 2-representations of the 2-group Z/3[2],
that is, finite semisimple R-linear 1-categories equipped with an action of Z/3[1]. Over the
complex numbers C, the notion of a 2-representation was first considered in [13, Section 6] (see
also [11, Section 1.4.5] for a recent account). The underlying 2-category and fusion rules of the
fusion 2-category 2RepR(Z/3[2]) are as depicted below.

C X

I H

VectσC(Z/2) VectC

VectR VectH

2 I H C X

I I H C X
H H I C X
C C C 2C 2X
X X X 2X 2C ⊞X

In particular, this shows that, unlike in the case of algebraically closed fields [11, Example 1.4.22],
the fusion 2-categories 2RepR(Z/3[2]) and 2VectR(Z/3) are not monoidally equivalent. Never-
theless, they become equivalent upon base extension to C. This suggests that it is possible to
classify real strongly fusion 2-categories by combining the known classification of strongly fusion
2-categories over an algebraically closed field of characteristic zero together with a 2-categorical
version of the descent techniques of [14].

4.3 Examples

We examine various special cases of the classification of fermionic strongly fusion 2-categories
obtained above.

Example 4.9. Let us take G a finite group. Then, for any 4-cocycle γ for G with coefficients
in k×, we can consider the fermionic strongly fusion 2-category 2SVect ⊠ 2Vectγ(G). Their
Drinfeld centers are completely understood thanks to [27] and [21], as taking Drinfeld centers
commutes with 2-Deligne tensor products by [7]. Further, in the classification of Theorem 4.5
the corresponding data is ϖ = triv, and the class π in SH4(BG) is given by (triv, triv, γ).
However, for a general group G, different 4-cocycles γ may yield equivalent fusion 2-categories
(see Example 4.14 below). Finally, let us note that, when G has odd order, these are all of
the fermionic strongly fusion 2-categories. Namely, in this case, we have H2(BG;Z/2) ∼= 0
and SH4(BG) ∼= H4(BG;k×).

Example 4.10. Let
(
G̃, z

)
be a finite super-group, that is a finite group G̃ equipped with

a central element z of order exactly 2. Let us write B for (any of) the braided Ising 1-categories.
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Such a braided fusion 1-category has a canonical Z/2-grading B = B0 ⊞ B1 with B0 = SVect
and B1 = Vect. This allows us to consider B as a non-faithfully G̃-crossed braided 1-category
by setting Be = B0, Bz = B1, Bg = 0 for any other g ∈ G̃, and taking the trivial G̃-action.
Then, we can use [11, Construction 2.1.23], recalled above in Construction 3.14, so as to ob-
tain a monoidal 2-category D̂ whose group of objects is G̃, and with Hom-1-categories given
by Hom

D̂
(g, h) := Bhg−1 . We then get a fusion 2-category D by taking the additive completion

of D̂. (In the specific case under consideration, the additive completion is the Cauchy comple-
tion.) Further, it is clear that Inv(C) ∼= G̃ and π0(C) = G̃/z. The fermionic strongly fusion
2-category corresponding to G̃ = Z/4 is depicted below in Figure 1.

It is informative to understand how the fermionic strongly fusion 2-category D constructed
above fits into the classification of Theorem 4.5. As was already pointed out, the correspond-
ing group is G := G̃/z. Further, it follows from the construction of D that the class ϖ
in H2(BG;Z/2) is the class corresponding to the central extension G̃ of G. More precisely,
one computes that ΩZ (D) ≃ Rep

(
G̃, z

)
. Finally, the class π in SH4+ϖ(BG) is given by

(ϖ, triv, triv). In particular, the construction above does not depend on the choice of braided
Ising 1-category B.

X2

X3 Vect X

I

VectZ/2

VectZ/2
VectZ/2

sVect

Figure 1. An exotic fermionic strongly fusion 2-category.

Example 4.11. Again, let us fix
(
G̃, z

)
a finite super-group. Then, we may consider the sym-

metric fusion 1-category Rep
(
G̃, z

)
of finite dimensional super-representations of G on which z

acts by the parity automorphism. We write 2Rep
(
G̃, z

)
:= Mod

(
Rep

(
G̃, z

))
for the corre-

sponding (symmetric) fusion 2-category. Then, given that there is an essentially unique fiber
functor Rep

(
G̃, z

)
→ SVect, we can view 2SVect as a finite semisimple module 2-category

for 2Rep
(
G̃, z

)
. We write C := End

2Rep(G̃,z)
(2SVect) for its Morita dual fusion 2-category.

By [7, Lemma 3.2.1], C is a fermionic strongly fusion 2-category.
We claim that, in the formulation of Theorem 4.5 the data corresponding to the fusion 2-

category C is the finite group G := G̃/z, the class ϖ in H2(BG;Z/2) is the class classifying
the central extension G̃ of G, and the class π in SH4+ϖ(BG) is the trivial one. In partic-
ular, we have Inv(C) ∼= G⊕ Z/2, so that C is distinct from the fermionic strongly fusion 2-
category D constructed in the previous example. In order to see this, observe that there is
a monoidal 2-functor C → 2SVect. Namely, by construction, C acts on the finite semisimple 2-
category 2SVect, i.e., there is a monoidal 2-functor F : C → End(2SVect) ≃ Mod(Z(SVect)).
But, this action commutes with the action of 2Rep

(
G̃, z

)
, so that the image of Fmust land in the

monoidal sub-2-category 2SVect of Mod(Z(SVect)) as desired. This implies that the class π
is trivial. On the other hand, it follows from [7, Theorem 2.3.2] that ΩZ (C) ≃ Rep

(
G̃, z

)
, so

that the class ϖ is as claimed above.

Example 4.12. Let G be a finite group, ϖ a 2-cocycle for G with coefficients in Z/2, and
π = (α, β, γ) a class in SH4+ϖ(BG). Provided that α = triv, then the corresponding fermionic
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strongly fusion 2-category is a fusion 2-category of twisted 2-group graded 2-vector spaces. More
precisely, we can think of the 3-cocycle β for G with coefficients in Z/2 as the Postnikov class
of a finite 2-group G = Z/2[1] · G[0]. Given a 4-cocycle ω in H4(BG,k×), we can consider
the fusion 2-category 2Vectω(G) of ω-twisted G-graded 2-vector spaces. This is explained in
detail in [11, Construction 2.1.16]. This is a fermionic strongly fusion 2-category exactly if the
image of ω under the canonical map H4(BG,k×) → H4(B2Z/2,k×) is (−1)Sq

2
. Namely, in this

case, we have Ω2Vectω(G) ≃ SVect. Furthermore, every fermionic strongly fusion 2-category
with α = triv can be obtained via this construction. In particular, this includes all the fermionic
strongly fusion 2-categories of Example 4.9.

We now turn our attention to fermionic strongly fusion 2-categories whose group of connected
components is a fixed 2-torsion group.

Example 4.13. Let us examine the case G = Z/2n with n ≥ 1. Then, we have H2(BZ/2n;Z/2)
∼= Z/2. On one hand, we have SH4(BZ/2n) = 0 corresponding to the fermionic strongly fusion
2-category 2SVect(Z/2n). Namely, we can consider the Atiyah–Hirzebruch spectral sequence

Ei,j
2 = H i

(
BZ/2n;SHj(pt)

)
⇒ SH i+j(BZ/2n)

with corresponding E2 page given by

j

2 Z/2 Z/2 Z/2 Z/2
1 Z/2 Z/2 Z/2 Z/2 Z/2
0 k× Z/2n 0 Z/2n 0 Z/2n

0 1 2 3 4 5 i.

The d2 differentials for this spectral sequence, for any finite group G and with ϖ = triv, are
given by the k-invariants of 2SVect×, so that we have

d2 = Sq2 : Ei,2
2 → Ei+2,1

2 and d2 = (−1)Sq
2

: Ei,1
2 → Ei+2,0

2 , (4.3)

provided that i ≥ 1, and where, as above, t 7→ (−1)t is the homomorphism induced by Z/2 ↪→ k×.
In particular, the terms in degrees (2, 2) and (3, 1) are both killed so that SH4(BZ/2n) = 0 as
claimed.

On the other hand, using ϖ to denote the non-trivial class in H2(BZ/2n,Z/2), we claim
that SH4+ϖ(BZ/2n) = Z/2. Namely, in that case, the E2 page of the corresponding Atiyah–
Hirzebruch spectral sequence is the same as above. However, the differentials d2 : E

i,j
2 → Ei−1,j+2

2

may be different. We do not know how to describe these differentials, and will therefore use
other techniques in order to compute this group. We have to understand whether or not the
groups in degrees (2, 2) and (3, 1) survive to the E∞ page. We assert that the group in de-
gree (2, 2) does. Namely, this follows from the fact that we have exhibited two non-equivalent
fermionic strongly fusion 2-categories C as in Example 4.11 andD as in Example 4.10 with super-
group

(
Z/2(n+1), z

)
classified by ϖ together with the classes (triv, triv, triv) and (ϖ, triv, triv).

Now, let us assume that the group in degree (3, 1) survives. This would imply that there ex-
ists a class in SH4+ϖ(BZ/2n) of the form (triv, β, triv) with non-trivial β. The corresponding
fermionic strongly fusion 2-category then ought to be obtained via the construction of Exam-
ple 4.12. However, it follows by inspection that there are exactly two fermionic strongly fusion
2-category that can be obtained that way, which must then be 2SVect(Z/2n) and C. We there-
fore find that the group in degree (3, 1) must be killed by the d2 differential, thereby showing
that SH4+ϖ(BZ/2n) = Z/2 as desired. We also wish to point out that it is expected that
the two fusion 2-categories C and D have the same Drinfeld center. More specifically, if B is
a braided Ising fusion 1-category, then it is predicted that D ⊠ Mod(B) is Morita equivalent
to C.
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Example 4.14. We now take G = Z/2⊕ Z/2 with basis a = (1, 0) and b = (0, 1). In this case,
we have

H2(BG;Z/2) ∼= Z/2⊕ Z/2⊕ Z/2.

More precisely, if c1, resp. d1, denotes the elements of H1(BG;Z/2) that restricts non-trivially
to ⟨a⟩, resp. ⟨b⟩, then H2(BG;Z/2) has a basis given by c21, d

2
1, and c1d1. Let us consider the

Atiyah–Hirzebruch spectral sequence

Ei,j
2 = H i(BG;SHj(pt)) ⇒ SH i+j(BG)

corresponding to the trivial class triv in H2(BG;Z/2). Its E2 page is given by

j

2 Z/2 Z/2⊕2 Z/2⊕3 Z/2⊕4

1 Z/2 Z/2⊕2 Z/2⊕3 Z/2⊕4 Z/2⊕5

0 k× Z/2⊕2 Z/2 Z/2⊕3 Z/2⊕2 Z/2⊕4

0 1 2 3 4 5 i.

The d2 differentials are as described in the formulas in equation (4.3). Beyond the potential
differential d3, the other main difficulty lies in describing the differential d2 = (−1)Sq

2
, and,

more precisely, the image of t 7→ (−1)t.
In order to do so, consider the map of short exact sequences

0 Z/2 Z/4 Z/2 0

0 Z/2 k× k× 0.

For i ≥ 2, this induces a commutative square

H i−1(BG;Z/2) H i(BG;Z/2)

H i−1(BG;k×) H i(BG;Z/2).

Sq1

∂

But, the bottom horizontal map is injective in the case G = Z/2 ⊕ Z/2 as every class in
H i(BG;k×) is annihilated by the map on cohomology groups induced by x 7→ x2 on k×. This
shows that the kernel of t 7→ (−1)t consists exactly of those classes that are in the image of the
Bockstein homomorphism Sq1.

In particular, we find that the group SH4(BG) has order 16. Namely, the d3 differentials
on the entries (1, 2) and (2, 2) vanish. For the latter, this is immediate because the entry in
degree (2, 2) is completely killed by d2. As for the former, this can be seen using the natu-
rality of the Atiyah–Hirzebruch spectral sequence with respect to the various group homomor-
phisms Z/2 ↪→ Z/2⊕ Z/2. A set of representatives for the classes in SH4(BG) is therefore given
by (triv, β, γ) with γ in H4(BG;k×) ∼= Z/2 ⊕ Z/2 arbitrary, and β in the span of c21d1, c1d

2
1

in H3(BG;Z/2). The four fermionic strongly fusion 2-categories corresponding to (triv, triv, γ)
are the ones of Example 4.9. The others are different, but all arise via the construction discussed
in Example 4.12.

It would be interesting to compute the twisted supercohomology groups SH4+ϖ(BG). Just
as we have already seen in the preceding example, the main difficulty resides in describing the d2
differentials in the Atiyah–Hirzebruch spectral sequence in supercohomology.
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A A computation in supercohomology. Appendix by
Thibault Didier Décoppet and Theo Johnson-Freyd∗

Let G = Z/4 ⊕ Z/4. We claim that the canonical map SH4(BG) → H2(BG;Z/2) is non-zero.
Said differently, there exists a class (α, β, γ) in SH4(BG) with α ̸= triv. This proves that there
exists a fermionic strongly fusion 2-category with trivial twistϖ whose group of invertible objects
is a non-trivial central extension of the group of connected components, thereby answering
a question of [24].

In order to prove the above claim, we will consider the Atiyah–Hirzebruch spectral sequence

Ei,j
2 = H i(B(Z/4⊕ Z/4);SHj(pt)) ⇒ SH i+j(B(Z/4⊕ Z/4)),

whose E2 page is depicted below

j

2 Z/2 Z/2⊕2 Z/2⊕3 Z/2⊕4

1 Z/2 Z/2⊕2 Z/2⊕3 Z/2⊕4 Z/2⊕5

0 k× Z/4⊕2 Z/4 Z/4⊕3 Z/4⊕2 Z/4⊕4

0 1 2 3 4 5 i.

The d2 differentials are given by (4.3). It will be necessary to give names to various of
the classes in the groups above. To this end, recall that there is an isomorphism of graded
rings H•(BZ/4;Z/2) ∼= Z/2[x1, x2]/x21, where x1 has degree 1 and x2 has degree 2. It then
follows from the Künneth formula that

H•(B(Z/4⊕ Z/4);Z/2) ∼= Z/2[x1, y1, x2, y2]/
(
x21, y

2
1

)
,

where x1, y1 have degree 1, x2, y2 have degree 2, the classes x1, x2 are pulled back from Z/4⊕0,
and the classes y1, y2 are pulled back from 0⊕Z/4. In particular, it follows that E2,2

3 , the kernel
of the d2 differential

d2 = Sq2 : E2,2
2 = H2(B(Z/4⊕ Z/4);Z/2) → E4,1

2 = H4(B(Z/4⊕ Z/4);Z/2),

is spanned by the class x1y1. We also have to analyze E5,0
3 , the cokernel of the d2 differential

d2 = (−1)Sq
2

: E3,1
2 = H3(B(Z/4⊕ Z/4);Z/2) → E5,0

2 = H5(B(Z/4⊕ Z/4);k×).

We assert that the classes

(−1)x1x2
2 , (−1)y1x

2
2 , (−1)x1y22 , (−1)y1y

2
2 (A.1)

are linearly independent in H5(B(Z/4 ⊕ Z/4);k×) and span the image of d2. Namely, it fol-
lows from the short exact sequence of coefficients 0 → Z/2 → k× → k× → 0, that the
image of the map H5(B(Z/4 ⊕ Z/4);Z/2) → H5(B(Z/4 ⊕ Z/4);k×) is precisely the sub-
group Z/2⊕4 ⊆ Z/4⊕4, so that E5,0

3
∼= Z/2⊕4. Moreover, as (−1)Sq

1
is the trivial map, this

image is indeed generated by the classes in (A.1): We can use this to give names to gener-
ators of the group H5(B(Z/4⊕ Z/4);k×). We use

√
x with x one of the classes in (A.1) to

denote a class in H5(B(Z/4 ⊕ Z/4);k×) such that
√
x ·

√
x = x. By definition, the classes

√
x

∗Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada
E-mail: theojf@pitp.ca
Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada
E-mail: theojf@dal.ca
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for x in (A.1) generate H5(B(Z/4 ⊕ Z/4);k×). Moreover, their images under the quotient
map H5(B(Z/4⊕ Z/4);k×) ↠ E5,0

3
∼= Z/2⊕2 are independent of any choices and generate the

target. This means that the image of the class x1y1 under the d3 differential d3 : E
2,2
3 → E5,0

3

can be expressed as a linear combination of the classes
√
x with x as in (A.1).

It remains to argue that the class x1y1 in E2,2
3 ⊆ H2(B(Z/4⊕Z/4);Z/2) survives the d3 dif-

ferential d3 : E
2,2
3 → E5,0

3 . In order to do so, we will use the naturality of the Atiyah–Hirzebruch
spectral sequence. More precisely, we consider the epimorphism f : Z/4⊕Z/4 ↠ Z/4⊕Z/2, the
Atiyah–Hirzebruch spectral sequence

Ẽi,j
2 = H i(B(Z/4⊕ Z/2);SHj(pt)) ⇒ SH i+j(B(Z/4⊕ Z/2)),

together with the induced map of spectral sequences f∗ : Ẽi,j
2 → Ei,j

2 . It follows from the
Künneth formula that

H•(B(Z/4⊕ Z/2);Z/2) ∼= Z/2[x1, z1, x2]/x21,

where x1, z1 have degree 1, x2 has degree 2, the classes x1, x2 are pulled back from Z/4⊕0, and
the class z1 is pulled back from 0⊕Z/2. Under the pullback map f∗, we have x1 7→ x1, x2 7→ x2,
and z1 7→ y1. In particular, observe that the class x1y1 is in the image of the pullback f∗. Further,
we have that Ẽ2,2

3 , the kernel of d2 = Sq2 : H2(B(Z/4 ⊕ Z/2);Z/2) → H4(B(Z/4 ⊕ Z/2);Z/2),
is spanned by the class x1y1. Moreover, using an argument similar to the one given above,
we find that the image of d2 = (−1)Sq

2
: H3(B(Z/4 ⊕ Z/2);Z/2) → H5(B(Z/4 ⊕ Z/2);k×)

is Z/2⊕4 ⊆ Z/4⊕ Z/2⊕3 ∼= H5(B(Z/4⊕ Z/2);k×) and is generated by the classes

(−1)x1x2
2 , (−1)z1x

2
2 , (−1)z

3
1x2 , (−1)z

5
1 .

It follows from the naturality of the Künneth formula that there exists a class

√
(−1)x1x2

2 in
H5(B(Z/4⊕ Z/2);k×) such that√

(−1)x1x2
2 ·

√
(−1)x1x2

2 = (−1)x1x2
2 .

In particular, the image of

√
(−1)x1x2

2 under the quotient map H5(B(Z/4⊕Z/2);k×) ↠ Ẽ5,0
3

∼=
Z/2 is a generator. Moreover, as f∗((−1)x1x2

2
)
= (−1)x1x2

2 by naturality of t 7→ (−1)t, we must
have

f∗(

√
(−1)x1x2

2) =

√
(−1)x1x2

2

in E5,0
3 . But, if the d3 differential d3 : Ẽ

2,2
3 → Ẽ5,0

3 were non-zero, we would have

d3(x1z1) =

√
(−1)x1x2

2 ,

and, by naturality of the Atiyah–Hirzebruch spectral sequence, we would therefore have that

d3(x1y1) =

√
(−1)x1x2

2

in E5,0
3 . On the other hand, we can also consider the epimorphism g : Z/4⊕ Z/4 ↠ Z/2⊕ Z/4,

and, by an analogous argument, conclude that, provided that d3(x1y1) is non-zero, we would
have

d3(x1y1) =

√
(−1)y1y

2
2 .

This shows that we must have d3(x1y1) = 0, which concludes the proof of the claim.
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