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1 Introduction

Let X be a Fano manifold of dimension n. It is an open problem to classify the possible
deformation types of Fano manifolds, and as a first step, it is natural to consider degenerations
of X to a toric Fano variety. More precisely, following [1], we consider normal degenerations
of X to a toric Fano variety such that −K is relatively ample and Q-Cartier, usually called
Q-Gorenstein (qG) degenerations. In the moduli space of X, many of these toric degenerations
are connected by trees of rational curves: following Ilten [16], we consider pencils f : X → P1

with f∗(0) and f∗(∞) toric Fano varieties. In the context of toric degenerations, these pencils
arise naturally from a combinatorial operation on polytopes called mutation: let P be a lattice
polytope with the origin in its interior, and write XP for the toric Fano variety associated to the
fan over the faces of P .1 A mutation of P produces another lattice polytope Q with the property
that the toric varieties XP and XQ are related by a qG-pencil f : X → P1 with f∗(0) = XP

and f∗(∞) = XQ. This shows that, if X admits a qG-degeneration to XP , we obtain many
other qG-degenerations XQ of X which can be connected by trees of rational curves via these
special qG-pencils.

One might hope that all toric degenerations ofX are connected in this way. If true, this would
give a bijection between mutation equivalence classes of lattice polytopes and deformation types
of those Fano manifolds which admit a qG-degeneration to a toric Fano variety.

The evidence in dimension n = 2 is encouraging: lattice polygons that arise from qG-
degenerations of a smooth del Pezzo surface X are called T -polygons, and the bijection has
been verified by Kasprzyk–Nill–Prince [17]: the authors use a combinatorial argument to show
that there are precisely ten mutation-equivalence classes of T -polygons and these ten classes
biject with the ten deformation families of smooth del Pezzo surfaces. In particular, this implies
Conjecture A of [1] for smooth del Pezzo surfaces:

1The moment polytope of XP is the dual polytope of P .
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Theorem 1.1 (Kasprzyk–Nill–Prince). Let X be a smooth del Pezzo surface, and let XP and XQ

be two toric qG-degenerations of X. Then XP and XQ are connected by a chain of P1’s in the
moduli space of X. More precisely, there exist qG-families fi : X i → P1, 1 ≤ i ≤ n, such that
we have the following equalities of scheme-theoretic inverse images

f∗
1 (0) = XP , f∗

i (∞) = f∗
i+1(0), f∗

n(∞) = XQ.

In this paper, we give an entirely geometric, and more conceptual proof of the classification
of mutation-equivalence classes of T -polygons, and therefore also of Theorem 1.1.

As we explain below, the bijection between deformation families of smooth del Pezzo surfaces
and mutation-equivalence classes of T -polygons should be viewed as an instance of mirror sym-
metry. In view of the open problem of classifying those algebraic varieties which are mirror to
Fano varieties, our geometric proof has a significant advantage: while the classification of poly-
gons up to mutation becomes an intractible combinatorial problem in dimension greater than 2,
we expect many of the geometric methods employed in this article to generalize to higher di-
mension. In drawing inspiration from both Fano mirror symmetry [1] and Gross–Hacking–Keel
mirror symmetry [13] this paper also contributes to the ongoing effort of reconciling these two
flavors of mirror symmetry.

Our proof proceeds by taking a hint from mirror symmetry: recall that the mirror to an n-
dimensional Fano variety X with an anticanonical divisor E is expected to be a log Calabi–Yau
surface U , with a regular function W : U → C. The variety U is usually called a Landau–
Ginzburg model, and W is called the superpotential. U has many torus charts j : (C×)n ↪→ U ;
given such a torus chart we obtain a Laurent polynomial f by restricting the superpotential
to the image of j. The toric variety XP associated to the Newton polygon P of f as defined
above is expected to be a toric degeneration of X. Moreover, the assertion that any two toric
degenerationsXP andXQ ofX can be connected by a chain of rational curves is closely related to
the question whether the transition function φ : (C×)n 99K (C×)n between the two corresponding
torus charts admits a factorization into cluster mutations. We recall here that a cluster mutation
is a special kind of birational transformation of (C×)n which preserves the holomorphic volume
form

Ω =

(
1

2πi

)n dz1
z1

∧ · · · ∧ dzn
zn

.

With this in mind, we give a brief summary of our geometric proof. Given a T -polygon P ,
let
(
YP , D̄

)
be the toric surface associated to the normal fan of P , with D̄ its toric boundary,

note that YP \ D̄ = (C×)2. By blowing up YP in the base locus of a certain pencil, we construct
a log Calabi–Yau pair (Y,D) with an elliptic fibration f : Y → P1 such that D is a singular
fiber of type In. We note that the complement U = Y \D is a log Calabi–Yau variety, and the
restriction of f to U is a regular function. We then use results of Friedman [11] and the Torelli
theorem of Gross–Hacking–Keel [14] to show that the possible pairs (Y,D) arising from this
construction fall into 10 isomorphism types, which precisely mirrors the 10 deformation families
of smooth del Pezzo surfaces. If two T -polygons P and Q give rise to the same pair (Y,D) via
this construction, we show that the induced birational map φ

(Y,D)

(
YP , D̄

) (
YQ, D̄

)φ

admits a factorization into cluster mutations, using Hacking–Keating [15, Proposition 3.27].
From there, it is not hard to show that P is mutation-equivalent to Q.
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The existence of the factorization is related to the classical theorem of Max Noether that
a plane birational map admits a factorization into Cremona transformations and automorphisms,
with the important difference that we require the maps in the factorization to be volume pre-
serving, i.e., to preserve Ω.

Finally, it is worth noting that the bijection between deformation families of Fano varieties
and mutation-equivalence classes of polygons is expected to continue to hold if X is a Fano with
log terminal singularities. For del Pezzo surfaces X which are not smooth (and admit a qG-
degeneration to a toric del Pezzo surface), Corti [8] has recently proved that there is a bijection
between deformation families of X and mutation-equivalence classes of the corresponding lattice
polygons, thereby establishing Conjecture A of [1] for del Pezzo surfaces which are not smooth.

2 Mutations of polygons and Laurent polynomials

In this section, we give the necessary background on mutations and define maximally mutable
Laurent polynomials.

2.1 Mutations of polygons

Let M be a two-dimensional lattice with dual lattice N .

Definition 2.1. A Fano polygon is a full-dimensional lattice polygon P ⊂ MR such that 0 is in
the strict interior of P , and the vertices of P are primitive lattice points.

For any edge E of P , the number of lattice points on E minus one is called the lattice length ℓE
of E. Let uE ∈ N be the primitive inward normal vector corresponding to E ⊂ P , then the
positive integer −⟨uE , E⟩ is called the lattice height hE of E. P is reflexive if hE = 1 for all
edges E. Define mE , rE to be the unique positive integers such that

ℓE = mEhE + rE , 0 ≤ rE < hE .

We call rE the residual length of the edge E. Let σE be the cone over the edge E. If rE = 0,
then σE is called a T -cone. If rE = 0 and mE = 1 (or in other words ℓE = hE), σE is called
a primitive T -cone. If ℓE < hE , σE is called a R-cone. In general, we may (non-uniquely)
subdivide σE into mE primitive T -cones and zero or one R-cones, depending on whether rE is
zero or nonzero. Fixing such a subdivision, we say that a lattice point of P is residual if it is
either the origin or interior to an R-cone. The number of residual points of P is independent of
the subdivision.

Definition 2.2. A T -polygon is a Fano polygon such that every edge E of P satisfies rE = 0.
Equivalently, the lattice length ℓE is divisible by the lattice height hE .

As mentioned in the introduction, the classification of orbifold del Pezzo surfaces admitting
a toric degeneration is conjecturally mirror to the classification of Fano polygons up to an
appropriate equivalence relation. This equivalence relation is called mutation: while it is a bit
technical to define, the idea behind it is rather simple, see Figure 1.

Definition 2.3. Let P ⊂ M be a Fano polygon and let v ∈ N be a primitive vector. Choose
a line segment F ⊂ v⊥ ⊂ M and write Pd for the slice of P at height d with respect to v.
Suppose that for all d < 0 we can decompose Pd = Rd + (−d)F as a Minkowski sum for some
line segment Rd (where we allow Rd = ∅). Then we say that P is mutable with respect to (v, F ),
and define the mutation of P with respect to (v, F ) to be

Q = conv

(⋃
d<0

Rd ∪
⋃
d≥0

(Pd + dF )

)
.
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Figure 1. Mutation of the polygon P with respect to mutation data v = (0, 1), F = Newt (1 + x). The

mutation contracts a grey T -cone on the left and adds a grey T -cone on the right. Residual lattice points

in bold.

We call F the factor of the mutation, and we say that two polygons P , Q are mutation equivalent
if there is a sequence of mutations of polygons starting with P and ending with Q.

Keeping the notation of Definition 2.3, suppose F = kF ′ for some primitive line segment F ′

and positive integer k and suppose that P is mutable with respect to (v, F ). Informally, Q is
obtained from P by contracting k primitive T -cones on one edge of P and adding k primitive
T -cones on the opposite edge of P . In particular, the condition for P to be mutable with respect
to (v, F ) means that there is an edge of P perpendicular to v long enough to allow for the
contracting of d copies of F , where d is the height of d with respect to v (see Figure 1 for
an example with k = 1 and d = 3) By [2, Proposition 3.6], any mutation of a T -polygon again
produces a T -polygon, so that mutation defines an equivalence relation on the set of T -polygons.

2.2 Mutations of Laurent polynomials

Let now v ∈ N and f ∈ C[v⊥] ⊂ C[M ]. Following [12] and [1], we define the automor-
phism xm 7→ xmf ⟨m,v⟩ of the function field C(M). This induces a birational map φv,f : TN 99K TN

which we call an algebraic mutation. We call f the factor of the mutation. We will often sup-
press v and f from notation.

Definition 2.4. Given a Laurent polynomial g ∈ C[M ], we say that g is mutable with respect
to an algebraic mutation φ if φ∗(g) ∈ C[M ], i.e., φ∗(g) is again a Laurent polynomial, and
call φ∗(g) a mutation of g.

Given g, g′ ∈ C[M ], we say that g and g′ are mutation equivalent if there exist algebraic
mutations φi for 1 ≤ i ≤ n and Laurent polynomials gi ∈ C[M ] for 0 ≤ i ≤ n such that g0 = g,
gn = g′ and φ∗

i gi−1 = gi for all i.

Let us interpret mutability more concretely. Fix mutation data v and f as before. Taking
the inner product with v gives a Z-grading of M by height, so we may write g =

∑m
d=−h gd

where gd is the sum of the monomials of g at height d. Extend v to a basis e1 = v, e2 for N and
set x = xe

∗
2 and y = xe

∗
1 . The factor f is then a Laurent polynomial in x, and φ∗

f (gd) = gdf
d. It

follows that g ∈ C[M ] is mutable with respect to φf if and only if g−d is divisible by fd for d > 0.
If f is a monomial, then every Laurent polynomial is mutable with respect to φf , and we call
such mutations trivial. If a factor is of the form (λ+xu) for some λ ∈ C× and primitive u ∈ M ,
we call the mutation standard. It is clear that any factor is a product of standard and trivial
factors. It follows easily from the definitions that a mutation of Laurent polynomials induces
a mutation of their Newton polygons. However, the converse is false, it is not true that every
mutation of Newt (g) is induced by a mutation of g as the following example shows:
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Example 2.5. Consider the Fano polygon P in Figure 2. P is mutable with respect to v = (0, 1)
and F = Newt (1 + x). We have that g−2 = y−2

(
a + bx + cx2

)
x−1 for some constants a, b, c.

In order for the mutation mutF,v to be induced by an algebraic mutation of g, the Laurent
polynomial g would have to be mutable with respect to a standard factor f = λ + x. This is
only possible if f2 divides g−2 which happens if and only if b2 = 4ac.

We say that a Laurent polynomial g is supported on P if Newt (g) ⊂ P . It is natural to make
the following definition.

Definition 2.6. Let P be a Fano polygon. A Laurent polynomial g supported on P is of Tveiten
class if every mutation of P is induced by an algebraic mutation φ of g.

We remark that the notion of maximally mutable Laurent polynomials is now usually reserved
for a more restricted class of polynomials (see below), so we opted to name the polynomials in
Definition 2.6 in view of their detailed study in Tveiten’s [19] work on period integrals.

Let us investigate the consequences of this definition, keeping the same notation as before.
Fix an edge E of P with inner normal v and write ℓE = mh + r as before. P is mutable
with respect to (v, kF ) for all 1 ≤ k ≤ m, where F ⊂ v⊥ be a primitive line segment. These
mutations can only be induced by an algebraic mutation of g if there exists a polynomial f ∈ C[x]
with Newt (f) = mF such that for all 0 ≤ d ≤ h, g−d is divisible by fd in C[M ]. This is quite
restrictive: up to a unit in C[M ] we may write f =

∏m
i=1(λi + x) with λi ̸= 0, so that we have

(again up to a unit)

g−d =
m∏
i=1

(λi + x)d · r−d,

where r−d ∈ C[x].
We see from this that a Laurent polynomial g of Tveiten class is mutable with respect to m

(not necessarily distinct) standard factors (λi + x) along the edge E, one for each primitive
T -cone on E. Since deg(r−h) = r < h, it follows that any Laurent polynomial g can be mutable
with respect to a maximum of m standard factors along E, this motivates the term maximally
mutable used for Laurent polynomials of Tveiten class in [19]. However, following the now
standard terminology, we reserve this notion for those Laurent polynomials where all of the
factors have λi ≡ 1.

Definition 2.7. Let P be a Fano polygon. A Laurent polynomial g supported on P is maximally
mutable if every mutation of P is induced by an algebraic mutation φ of g and, moreover, the
factor f of φ can always be taken to be f = (1 + xu)k for a primitive generator u ∈ C[v⊥] and
some k ∈ Z>0.
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If g is maximally mutable, we see that for 0 ≤ d ≤ h, we must have up to a unit that

g−d =

m∏
i=1

(1 + x)d · r−d = (1 + x)dm · r−d,

where r−d ∈ C[x]. In particular, if P is a T -polygon, then g−h = c(1 + x)mh for some c ∈ C.

Definition 2.8. A maximally mutable Laurent polynomial is normalized if the coefficient of g
at each vertex of Newt (g) is 1, and the constant term of g is 0.

We will need the following result, which is very similar to [7, Proposition 3.7], except that
we are also interested in non-normalized Laurent polynomials.

Theorem 2.9. Let P be a T -polygon. There is a unique normalized maximally mutable Laurent
polynomial gP supported on P . Moreover, the set of maximally mutable Laurent polynomial sup-
ported on P is the two parameter family generated by gP and the constant Laurent polynomial 1.

Proof. [7, Proposition 3.7] shows that P supports a unique normalized maximally mutable
Laurent polynomial gP .

Suppose now that g is any maximally mutable Laurent polynomial supported on P . If the
coefficient of g at any vertex is nonzero, we may scale g by a scalar λ to make this coefficient 1.
The mutability condition then implies that 1

λg has binomial edge coefficients, and [7, Proposi-
tion 3.7] applies to show that g = λgP +µ for some scalar µ. If the coefficient of g at a vertex is
zero, then the mutability condition implies that the coefficient of g along any boundary lattice
point of P is zero as well. The same argument as in [7, Proposition 3.7] then shows that P
can only have a nonzero coefficient at the origin, showing that g = µ for some scalar µ. This
completes the proof. ■

3 The geometry of maximally mutable Laurent polynomials

In this section, we show that Laurent polynomials of Tveiten class and maximally mutable
Laurent polynomials can naturally be identified with the global sections of a certain line bundle.
While well known to experts, this does not seem to be in the literature. We then construct the
log Calabi–Yau pair (Y,D) associated to a T -polygon P , and show that Y has the structure of
a rational elliptic surface with D a fiber of type In. We have chosen to state some of our results
in more generality than necessary, in the hope that this will clarify the geometric viewpoint on
maximally mutable Laurent polynomials. We assume the reader is familiar with the basics of
toric geometry.

Throughout, let (YP , DP ) be the polarized toric surface associated to the normal fan ΣP

of P . The edges E of P correspond to the rays of ΣP , which in turn correspond to the toric
divisors DE of YP . The distinguished ample divisor on YP is defined as DP =

∑
E⊂P hEDE .

We may resolve the singularities of YP to obtain a smooth toric surface ȲP , and we denote its
toric boundary D̄. There is a well-known isomorphism

Γ(YP ,O(DP )) ∼=
⊕

m∈P∩M
Cxm. (3.1)

Any Laurent polynomial g supported on P defines a section of O(DP ). Its vanishing locus C is
a compactification of the affine curve g = 0 in the dense torus (C×)2 ⊂ YP . If Newt (g) = P ,
the curve C does not contain any of the toric divisors and does not pass through any torus fixed
point. In particular, it avoids all singular points of YP . It follows that the strict transform of C
on ȲP is isomorphic to C. To analyze the geometry, we work locally: given an edge E of P with
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inner normal v, let e1 = v, e2 be a basis for one of the two smooth cones σ in the fan of ȲP
containing R≥0v and let x = xe

∗
2 , y = xe

∗
1 be the corresponding basis of characters. Then DE

has an open subset U with coordinates x, y in which DE has local equation y = 0, and x is
a local coordinate on DE around the torus fixed point corresponding to the cone σ, giving an
identification Dint

E
∼= C×. Any mutation factor f ∈ C[v⊥] can then be identified with a Laurent

polynomial f(x). In particular, a standard mutation factor is of the form f(x) = λ+ x.

Definition 3.1. Suppose that g is a Laurent polynomial supported on P which is mutable
with factor (λ + x), and let A be the point on DE where λ + x = 0, i.e., the point with local
coordinates (−λ, 0). Then we say that g is mutable with respect to A.

Similarly, if g is mutable with factor (λ + x)m for some positive integer m, we say that g is
mutable with respect to mA. The set of all points with respect to which g is mutable defines
a zero cycle Z supported on the interior of the toric boundary of YP , called the mutable cycle
of g.

We see that a Laurent polynomial g with Newt (g) = P is of Tveiten class if and only if the
mutable cycle has exact degree mE along the edge E, the maximal possible. The polynomial g
is maximally mutable if and only if in addition the mutable cycle Z is supported on the points
−1 ∈ Dint

E
∼= C× for E ⊂ P . We now introduce the language of Looijenga pairs, which will

simplify our discussion. Following [11, 14], a Looijenga pair is a smooth projective surface Y
together with a singular anticanonical divisor D with at worst nodal singularities. The divisor D
is either a nodal curve, or a cycle of n rational curves. Y is necessarily rational, so we have an
isomorphism Pic(Y ) ∼= H2(Y,Z). If Y is a toric surface with D = Y \ (C×)2 its toric boundary,
then (Y,D) is called a toric pair. Given a Looijenga pair (Y,D), there are two elementary
operations to produce another Looijenga pair:

� Let p : Y ′ → Y be the blowup of Y at a smooth point of D. Denoting by D′ the strict
transform of D, the pair

(
Y ′, D′) is again a Looijenga pair. The map p is called an interior

blowup.

� Let p : Y ′ → Y the blowup of a node of D. Denoting by D′ the reduced inverse image
of D, the pair

(
Y ′, D′) is again a Looijenga pair. The map p is called a corner blowup.

In the literature, corner blowups are often called toric blowups. To avoid confusion, we reserve
this term for the blowup of a toric surface along a torus fixed point (which is a special case of
a corner blowup). We say that (Y,D) is positive definite (negative definite, semi-definite, . . . )
if the intersection matrix of the components of D is positive definite (negative definite, semi-
definite, . . . ). A matrix is strictly negative semi-definite if it is negative semi-definite but not
negative definite. We will often identify a point A ∈ Dint with the corresponding point E∩D̃ on
the strict transform D̃ (where E is the exceptional divisor of an interior blowup). In particular,
the blowup of mA is understood as m iterated blowups at A. We now aim to give a geometric
interpretation of maximal mutability.

Let P be a Fano polygon, and let C be the vanishing locus of a section ofO(DP ) on the smooth
toric surface

(
ȲP , D̄

)
, and let A be a point in the intersection D̄int∩C. Let p : (Y,D) →

(
ȲP , D̄

)
be the blow up kA, and denote the exceptional classes Ei, for 1 ≤ i ≤ k.

Lemma 3.2. The curve C is the vanishing locus of a section of the line bundle p∗O(DP ) −∑k
i=1 hEi on Y if and only if in local coordinates x, y centered at A, the curve C has an equation

of the form

h∑
i=1

ciy
ixk(h−i) + (terms of degree > kh) = 0 (3.2)

for some constants ci and where deg(x) = 1, deg(y) = k.
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Proof. We may write the defining equation of C as
∑

i,j≥0 ai,jx
iyj = 0. C extends to a section

of p∗DP − hEi if and only if A is a point of multiplicity at least h, i.e., ai,j = 0 for i + j < h.
Locally, the blowup of A is given by the map π1 : (u, v) 7→ (u, uv), and the corresponding
section C1 of p∗DP − hEi has equation

∑
i,j≥0 ai,ju

i+j−hvj = 0 in these coordinates. The
point lying over A has coordinates (u, v) = (0, 0), so we see that C1 extends to a section
of p∗DP − hE1 − hE2 if and only if C1 has a point of multiplicity at least h at (0, 0), i.e.,
ai,j = 0 for i + 2j < 2h. Continuing in a similar fashion, we see that C extends to a section
of p∗DP −

∑k
i=1 hEi if and only if ai,j = 0 for i+ kj < kh. This happens if and only if C is of

the form (3.2). ■

Let now Z be a zero cycle, supported on D̄int, and let kE be the degree of Z along the
edge D̄E . Define π : ỸZ → ȲP to be the blowup of Z. The exceptional locus is a disjoint union
of chains of P1s. Each such chain is of the form C1 + · · · + Cr, where C2

1 = −1, C2
i = −2 for

i > 1, and r is the multiplicity of the corresponding point in Z. For 1 ≤ i ≤ r, we define
Ei = C1 + · · · + Ci, and call the Ei the exceptional classes of the blowup. Note that E2

i = −1
for all i. Define the line bundle

L = π∗DP −
∑
E⊂P

kE∑
i=1

hEEi.

Theorem 3.3. There is a one-to-one correspondence between Laurent polynomials g supported
on P whose mutable cycle contains Z, and global sections of L.

Proof. Let A ∈ Supp(Z)∩DE . Recall that we may choose a local coordinate chart U centered
around a torus fixed point on DE such that DE has equation y = 0 and A = (−λ, 0) for some
constant λ. By definition, the mutable cycle of g contains kP if and only if we can write

g =
0∑

i=−hE

ciy
i(λ+ x)−kiri(x) +

m∑
i=1

yi+hEri(x)

for some constants ci, and Laurent polynomials ri(x). Multiplying through by a monomial, we
see that g is mutable at kA if and only if the corresponding section C of O(DP ) (under the
isomorphism (3.1)) is locally defined by an equation of the form

hE∑
i=0

ciy
i(λ+ x)k(hE−i)ri(x) +

m∑
i=1

yi+hEri(x) = 0

for some constants ci and polynomials ri(x). Applying the coordinate change x 7→ x−λ, we see
that C is mutable at kA if and only if it has a local equation of the form

hE∑
i=0

ciy
ixk(hE−i) + (terms of degree > khE) = 0.

By Lemma 3.2, this happens if and only if g extends to a section of π∗DP−
∑k

i=1 hEEi. Repeating
the argument for all A ∈ Supp(Z) shows that g extends to a section of L if and only if the mutable
cycle of g contains Z. ■

In particular, by taking Z to be maximal – in the sense that Z has degree mE along DE –
we can view Laurent polynomials of Tveiten class with mutable cycle Z as the space of global
sections of a certain line bundle. The most important case for us if Z is supported on the
points [1 : −1] ∈ DE , which corresponds to the maximally mutable Laurent polynomials.
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Corollary 3.4. Let P be a Fano polygon. Let
(
ȲP , D̄

)
be the associated smooth toric sur-

face. Let p :
(
ỸZ , D

)
→
(
ȲP , D̄) be the Looijenga pair obtained by mE blowups at the point

[−1 : 1] ∈ DE, for every edge E ⊂ P . Let Ei denote the exceptional classes of the blowups.
There is a 1-1 correspondence between maximally mutable Laurent polynomials g supported on P
and global sections of p∗DP −

∑
E⊂P

∑mE
i=1 hEEi, where E ⊂ P ranges over all edges of P .

Proof. Immediate from Theorem 3.3. ■

We now study the pencil of sections Γg ⊂ |DP | generated by g and the constant Laurent
polynomial 1. Note that the vanishing locus of the section corresponding to 1 is precisely DP .

Lemma 3.5. Let P be a T -polygon, and g with Newt (g) = P a Laurent polynomial of Tveiten
class. Then the base scheme of the pencil Γg and the mutable cycle of g are supported on the
same points.

Proof. Let D be the toric boundary of the singular toric surface YP . The zero scheme of
1 ∈ O(DP ) is the divisorDP , hence the base scheme of Γg is supported on the pointsD∩{g = 0}.
As before, for a fixed edge E of P , we have local coordinates x, y in which DE has equation y = 0
and

g =
m∏
i=1

(λi + x)h · r(x) + (monomials involving y)

for some polynomial r(x), and since P is a T -polygon, r(x) ≡ 1. It follows that the intersec-
tion DE ∩ {g = 0} consists of the points (x, y) = (−λi, 0), which coincides with the support of
the mutable cycle of g on DE . ■

We note however that the mutable cycle does not coincide with the base scheme of Γg as
soon as P has an edge at height greater than one.

Lemma 3.6. Suppose that P is a T -polygon, and that g is a Laurent polynomial of Tveiten class
with Newt (g) = P . Suppose that a point A appears in the mutable cycle of g with multiplicity k.
Then

(1) the basepoint A of Γg can be resolved by a composition p :
(
Ỹ , D̃

)
→
(
ȲP , D̄

)
of k interior

blowups at A (see Figure 3).

(2) The strict transform D̃P is a member of p−1
∗ Γg and

p−1
∗ Γg ⊂

∣∣∣∣∣p∗O(DP )−
k∑

i=1

hEEi

∣∣∣∣∣ .
Proof. A lies in the interior of a toric divisor DE corresponding to an edge E, let h = hE .
As before, we may choose local coordinates x, y such that DE has equation y = 0. Suppose A
corresponds to λ ∈ C× ∼= DE . By assumption, g locally has an equation of the form

h∑
i=0

yi(x− λ)k(h−i)ri(x) +O
(
yh+1

)
= 0.

It follows that Γg has a local equation

s

(
h∑

i=0

yi(x− λ)k(h−i)ri(x) +O
(
yh+1

))
+ tyh = 0
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Figure 3. A triple point with two-fold tangency (along the blue divisor) and its resolution, exceptional

divisors in green.

for [s : t] ∈ P1. Locally, the blowup of A is given by the map p1 : (u, v) 7→ (u, v(u − λ)).
Therefore, the strict transform of the pencil is given by

s

(
h∑

i=0

vi(u− λ)(k−1)(h−i)ri(u) +O
(
vh+1

))
+ tvh = 0.

We note that the only basepoint of p−1
1∗ Γg on the exceptional divisor u = λ is the point

(u, v) = (λ, 0), the intersection of the exceptional divisor with the strict transform ofDE . After k
blowups at (λ, 0), the strict transform p−1

∗ Γg is given by

s

(
h∑

i=0

viri(u) +O
(
vh+1

))
+ tvh = 0.

P is a T -polygon and g is of Tveiten class, therefore r0(u) is a product of factors of the
form (u− λi)

h, with λi ̸= λ. It follows that r0(λ) ̸= 0, and so p−1
∗ Γg has no basepoint on

the exceptional divisor u = λ, which proves the first claim. The strict transform of DP under p
has equation vh = 0, which is the member of p−1

∗ Γg corresponding to [s : t] = [0 : 1]. Finally,
the proof shows that each blowup removes a basepoint of multiplicity h = hE from Γg, so that

p−1
∗ Γg ⊂

∣∣∣∣∣p∗DP −
k∑

i=1

hEEi

∣∣∣∣∣ . ■

We deduce the following theorem.

Theorem 3.7. Let P be a T -polygon, and let g a maximally mutable Laurent polynomial
with Newt (g) = P . Let p : ỸZ → ȲP be the blowup of the mutable cycle Z of g.

(a) p is a composition of interior blowups, and in particular
(
ỸZ , D̃

)
is a Looijenga pair.

(b) The linear system p−1
∗ Γg defines a morphism π : ỸZ → P1 which is an elliptic fibration

with connected fibers, and π∗(∞) = D̃P .

Proof. (a) is clear from the definition of ỸZ .
For (b), applying Lemma 3.6 repeatedly shows that

p−1
∗ Γg ⊂

∣∣∣∣∣p∗DP −
∑
E⊂P

mE∑
i=1

hEEi

∣∣∣∣∣ . (3.3)

Lemma 3.5 shows that the only basepoints of Γg occur at the support of the mutable cycle, and
Lemma 3.6 shows that blowing up the mutable cycle removes these basepoints, so that p−1

∗ Γg is
base-point-free, and defines a morphism π : ỸZ → P1. By Bertini’s theorem, the general member
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of p−1
∗ Γg is smooth, so the general fiber of π is smooth. By Theorem 3.3, sections of L correspond

to maximally mutable Laurent polynomials supported on P , and by Theorem 2.9, the space of
maximally mutable Laurent polynomials is two-dimensional. It follows that the inclusion (3.3)
is an equality, and p−1

∗ Γg is a complete linear system. Therefore, the morphism π is equal
to its Stein factorization, so that π has connected fibers. The fact that the general fiber has
genus 1 follows from Riemann–Roch, see [19, Theorem 3.5]. Finally, Lemma 3.6 shows that D̃P

is a member of p−1
∗ Γg, so that π∗(∞) = D̃P after choosing suitable coordinates on P1. ■

In what follows, we will often denote the surface ỸZ just constructed by Ỹg to emphasize
the dependence of the morphism Ỹg → P1 on the particular Laurent polynomial g. Ỹg fits in
a diagram

(C×)2 Ỹg

C P1

g π

such that the fibre of π over [s : t] ∈ P1 is a compactification of the curve g = s
t . This fibration

might not be relatively minimal, but we can contract all (−1)-curves contained in fibres to obtain
a relatively minimal fibration Yg → P1. We have the following.

Lemma 3.8. Any (−1)-curve contained in a fibre of Ỹg is a component of π∗(∞).

Proof. Let D̃ ∈ |−KỸg
| denote the strict transform of the toric boundary D̄ under Ỹg → ȲP .

If C were a (−1)-curve contained in a fibre different from π∗(∞), we would have D̃ · C = 0,
since D̃ is the underlying reduced curve of π∗(∞). However, adjunction gives D̃ · C = 1,
a contradiction. ■

It follows that passing from Ỹg to Yg amounts to a sequence of corner blowdowns
(
Ỹg, D̃

)
→

(Yg, D).

Using Kodaira’s classification of singular fibres of genus 1 fibrations with connected fibers,
(see, for example, [4, Section V.7]), we see that D = mD′ where D′ is either an irreducible nodal
rational curve or a cycle of n reduced rational (−2)-curves. Put differently, the intersection
matrix of D′ must be strictly negative semi-definite. In fact, we will show in Corollary 4.7
that 1 ≤ n ≤ 9 and that D cannot be a multiple fiber (i.e., m = 1) if g is maximally mutable.
We can thus summarize our findings as follows:

Definition 3.9. Let g be a Laurent polynomial of Tveiten class with P = Newt (g) a T -polygon,
let YP be the toric variety defined by P , and let ȲP be the toric minimal resolution. Then the
associated strictly negative semi-definite Looijenga pair (Yg, D) is constructed by

� Blowing up the mutable cycle on ȲP , yielding a toric model
(
Ỹg, D̃

)
→
(
ȲP , D̄

)
, with

a genus 1 fibration π : Ỹg → P1.

� Blowing down (−1)-curves contained in fibres of π, yielding a corner blowdown
(
Ỹg, D̃

)
→

(Yg, D) with a relatively minimal genus 1 fibration π : Yg → P1, such that D = π∗(∞).

Example 3.10. Consider the T -polygon P shown in the left of Figure 4. The unique normal-
ized maximally mutable Laurent polynomial with Newton polygon P is g = y + 1

xy + 2
y2

+ x
y3
.

The fan of the minimal resolution ȲP of the toric variety YP is shown on the right of Figure 4.
The generic member of the pencil Γg has one basepoint of multiplicity two along the edge of P
of length two, and one basepoint of multiplicity one along the two other edges. Blowing up these
three basepoints, we arrive at the toric surface Ỹg, as shown in Figure 5 (adapted from [10]).
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· · ·
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· · ·
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· · · · · · ·
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Figure 4. On the left a T -polygon P , divided into primitive T -cones. On the right the fan of the

minimal resolution ȲP , with the rays of the fan of YP in red.

×
−1

3

×
−1

3ω

×
0

×
−1

3ω
2

−2
−2 −2

−2−2

−2 −2

−3−3
−1

Figure 5. The singular fibres of Ỹf → P1.

The strict transform of the toric boundary D̄ has ten components, whose self-intersection num-
bers are shown in Figure 5. Note that the component of self-intersection (−1) appears with
multiplicity 2 in π∗(∞). To obtain Yg, we contract the (−1) curve in π∗(∞). The fibre over ∞
is now a cycle of nine (−2)-curves. The elliptic surface Yg → P1 is well known as the modular
elliptic surface associated to the congruence subgroup Γ1(3).

4 The classification of T -polygons

4.1 Torelli for Looijenga pairs

In this subsection, we use results of [11] and [14] to show that the pairs (Yg, D) constructed from
a maximally mutable Laurent polynomials g with Newt (g) a T -polygon fall into 10 isomorphism
types.

Definition 4.1. Let (Y,D) be a Looijenga pair. Define the lattice

Λ = {L ∈ Pic(Y ) | L ·Di = 0 for all i}.

A cyclic ordering of the components of D induces a canonical identification Pic0(D) ∼= C×

(see [14, Lemma 2.1]). The map

ϕY : Λ → Pic0(D) ∼= C×, L 7→ L|D

is called the period point ϕY ∈ Hom(Λ,C×) of (Y,D).

Let π : Y → S be a flat morphism, from a smooth threefold Y to a smooth curve S. Suppose
that D is a relative anticanonical divisor with normal crossings on Y (i.e., D restricts to a nodal
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anticanonical divisor on each fibre of π). We say that (Y,D) is a family of Looijenga pairs if the
family π| D is locally trivial on S. In particular, this implies that each anticanonical divisor Ds

has the same number of components. The inclusion Ys ⊂ Y of a fiber is a homotopy equivalence,
so given a path between two points s, t in S, we obtain an isometry

Pic(Ys) ∼= H2(Ys) ∼= H2(Y) ∼= H2(Yt) ∼= Pic(Yt),

which we will refer to as parallel transport. The main result of [14] is that the period point
determines a Looijenga pair in a deformation family up to isomorphism.

Theorem 4.2. Let (Y,D) and
(
Y ′, D′) be deformation-equivalent Looijenga pairs and suppose

that ϕY ′ ◦ µ = ϕY under an isometry µ : Pic(Y ) → Pic(Y ′) induced by parallel transport. Then
there exists an isomorphism of pairs f : (Y,D) →

(
Y ′, D′).

Remark 4.3. In order to conclude µ = f∗ in the statement above, one needs to add addi-
tional hypotheses, see [14, Theorem 1.8] for details. For our purposes, the weaker conclusion of
Theorem 4.2 will be sufficient.

We now prove the main result of this section: if f is maximally mutable, then the period
point ϕYf

of the surface (Yf , D) is equal to 1. This follows easily from the results of [14], but we
first need a further definition.

Definition 4.4. Given a Looijenga pair (Y,D), a marking of D is a choice of point pi ∈ Dint
i

for all i. Given a marking of D, we define ϕ ∈ Hom
(
Pic(Y ),Pic0(D)

)
by

ϕ(L) = (L|D)⊗
n⊗

i=1

OD(−(L ·Di)pi).

This is called the marked period point of (Y,D, pi). Note that ϕ|Λ = ϕY restricts to the period
point of Y as defined before.

Proposition 4.5. Let P be a lattice polygon and g be a maximally mutable Laurent polynomial
with Newt P = g. Then the Looijenga pair (Yg, D) associated to g has period point ϕYg = 1,
i.e., ϕYg : Λ → C× is the constant function 1.

Proof. Recall the diagram in Proposition 3.9 summarising the construction of (Yg, D). We
start with the toric pair

(
ȲP , D̄

)
and then blow up the mutable cycle of g to obtain a Looi-

jenga pair
(
Ỹg, D̃

)
. As before, a choice of orientation of D̄ gives rise to a canonical identifica-

tion Dint
i

∼= C×. Let mi correspond to (−1) under this identification. Let ϕ̃ ∈ Hom
(
Ỹg,C×) be

the marked period point of
(
Ỹg, D̃,mi

)
(where we identifymi with the corresponding point on the

strict transform D̃ of D). [14, Lemma 2.8] shows that the marked period point of
(
ȲP , D̄,mi

)
is 1, so ϕ̃|ȲP

= 1. g is maximally mutable, so the mutable cycle of g is supported on the
points mi. It follows that in the construction of

(
Ỹg, D̃

)
we only blow up the points mi or points

on a strict transform of D lying over mi, so for any exceptional curve E meeting Di we have
that ϕ̃(E) = OD̃(mi) ⊗ OD̃(−mi) = OD̃. Since the exceptional curves together with Pic

(
ȲP
)

generate Pic
(
Ỹg
)
we conclude that ϕ̃ = 1 and hence also that ϕỸg

= ϕ̃|Λ = 1. Finally, recall that
in order to pass to (Yg, D), we perform a composition of toric blowdowns π :

(
Ỹg, D̃

)
→ (Yg, D).

This gives a canonical identification between the lattices ΛỸg
and ΛYg via π∗ and an iso-

morphism π∗ : Pic0(D) → Pic0
(
D̃
)
. The period points are then the same in the sense that

π∗ ◦ ϕYg = ϕỸg
◦ π∗, so we have that ϕYg = 1 as well. ■

Remark 4.6. The statement that the period point of (Yg, D) is 1 is equivalent to the statement
that the mixed Hodge structure on H2(Yg \D) is of Hodge–Tate type, see [11, Proposition 3.12].
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Recall from Definition 3.9 that Yg admits a relatively minimal genus 1 fibration π : Yg → P1.

Corollary 4.7. Suppose that g is maximally mutable and let π : Yg → P1 be the associated
genus 1 fibration. Then the fibre π∗(∞) is of Kodaira type In for 1 ≤ n ≤ 9. In particular,
π∗(∞) = D, and π admits a section.

Proof. Suppose first that g is maximally mutable. From the discussion after Lemma 3.8, we
have that π∗(∞) = mD for some m > 0, and therefore D2 = 0 and [D] ∈ Λ. Applying
the period point, we obtain ϕYg([D]) = O(D)|D. Since g is maximally mutable, ϕYg ≡ 1,
so in particular O(D)|D is trivial. However, [4, III, Lemma 8.3] shows that if π−1(∞) = mD
then O(D)|D is torsion of exact order m. We conclude that m = 1. Equivalently, all components
of π∗(∞) must have multiplicity 1, so π∗(∞) is of Kodaira type In. In particular, −KYg is the
class of a fibre [F ] and therefore any irreducible (−1)-curve E (for example, the exceptional
divisor of the last blowup) on Yg satisfies E · F = 1 by adjunction and so E is a section of Yg.
Finally, since the Picard rank of Yg is 10, we see that n ≤ 9. ■

We end this section with Friedman’s classification of Looijenga pairs with negative semi-
definite D. A sketch proof can be found in [11, Theorems 9.15 and 9.16], and is worked out in
great detail in [18].

Theorem 4.8 ([11]). There exist 10 deformation families of strictly negative semi-definite Looi-
jenga pairs (Y,D).

It is easy to write down representatives for each of the ten families, for example one can take
the Looijenga pairs (Ygr , Dgr) associated to the unique normalized maximally mutable Laurent
polynomial gr with Newt (gr) = Pr, 1 ≤ n ≤ 10 in Figure 6.

Given any T -polygon P , we have constructed a strictly negative semi-definite Looijenga
pair (Yg, D). By Theorem 4.8, this Looijenga pair is deformation equivalent to one of the 10
reference pairs (Ygn , D), and since both pairs have period point 1, we actually have an isomor-
phism (Yg, D) ∼= (Ygn , D). This gives rise to a diagram

(Yg, D) ∼= (Ygn , D)

(
ȲP , D

) (
ȲPn , D

)
,

pq

φ

where φ = p ◦ q−1. In order to complete the classification of T -polygons, it remains to show
that P is mutation-equivalent to Pn, which is the aim of the next subsection.

4.2 Volume-preserving birational maps

In this subsection, we use the Sarkisov algorithm for volume-preserving maps [15, Proposi-
tion 3.27] to complete our proof of the classification of T -polygons. We start with a few prelim-
inary results on volume-preserving birational maps.

Let (Y,D) be a Looijenga pair. Since KY +D ∼ 0, there exists a nowhere vanishing volume
form Ω on Y \D with simple poles along D, necessarily unique up to scaling.

Definition 4.9. Let (Y,D) and
(
Y ′, D′) be Looijenga pairs, and let φ : Y 99K Y ′ be a birational

map. We say that φ is volume-preserving if there exists a resolution

Z

Y Y ′

p p′

φ
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Figure 6. Representatives for the ten mutation equivalence classes of T -polygons with their associated

unique normalized maximally mutable Laurent polynomials, which are obtained by assigning binomial

coefficients to lattice points on the edges of the polygon, 0 to the origin, and the coefficients specified in

the figure to the remaining lattice points. Picture taken from [1], with a small correction in the coefficients

of polygon 2 (the labeled coefficients should both be 8 instead of 4).

such that p∗Ω = λp′∗Ω′ for some λ ∈ C× where Ω is a holomorphic volume form on Y \D with
simple poles along D, and similarly for Ω′.

We refer the reader to [9, Remark 1.7] for equivalent characterizations of this notion. Volume-
preserving morphisms have the following easy description:

Lemma 4.10. Let (Y,D) and
(
Y ′, D′) be Looijenga pairs. A birational morphism p : Y → Y ′

is volume preserving if and only if it is a composition of corner blowups, interior blowups, and
volume-preserving isomorphisms.

Proof. If p is an interior or corner blowup, then one computes that p∗
(
KY ′ +D′) = KY +D,

showing that p is volume-preserving. For the converse, we can use [3, Theorem 1.3.5] to factor p
as p = pn ◦ · · · ◦ p1 ◦ u, where the pi are point blowups and u is an isomorphism. We calculate
that

p∗
(
KY ′ +D′) = KY + u∗D̃ −

k∑
i=1

u∗Ei,

where the sum is over all exceptional divisors arising from blowups of points that are not on D
(or a strict transform of D), and Ei is the pullback of the class of the corresponding exceptional
divisor to Y . Since p is volume preserving, we must have u∗D̃ = D and k = 0, showing that u
is volume preserving, and that the pi are interior or corner blowups. ■
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Proposition 4.11. Let (Y,D) and
(
Y ′, D′) be Looijenga pairs, and φ : Y 99K Y ′ be a birational

map. The following are equivalent

(1) φ is volume-preserving.

(2) There exists a resolution

Z

Y Y ′,

p p′

φ

where p and p′ are volume-preserving birational morphisms

Proof. (2) =⇒ (1): By Lemma 4.10, p and p′ are compositions of interior blowups, corner
blowups and volume-preserving isomorphisms, so we have p∗(KY + D) = KZ + D̃. It follows
that p∗(Ω) is a nowhere vanishing holomorphic form on Z \ D̃ with simple poles along D̃. The
same holds true for p′∗Ω, so that p′∗Ω = λp∗Ω for some λ ∈ C×, i.e., φ is volume-preserving.

(1) =⇒ (2): We have that p∗(KY + D) = KZ + D̃ −
∑

iEi, where the sum is over all
exceptional divisors arising from blowups of points that are not on D (or a strict transform
of D), and Ei is the pullback of the class of the corresponding exceptional divisor to Z. This
means that there exists a holomorphic form on Z \ D̃ with simples poles along D̃ and simple
zeros along the Ei. Similarly, we have p′∗(KY ′ + D) = KZ + D̃′ −

∑
i Fi. Since φ is volume

preserving, we must have D̃ = D̃′ and Ei = Fi up to reordering.

It follows that we may successively contract (−1)-curves on Z to obtain a factorization

Z

Z ′

Y Y ′,

p p′

q q′

φ

where q∗(KY +D) = KZ′ + D̃ and similarly for q′, meaning that q and q′ are compositions of
interior and corner blowups and hence volume-preserving. ■

Recall that if S → C be a P1-bundle over a curve and p ∈ S a point, then the elementary
transformation at p is the birational map αp : S 99K S′ over C given by blowing up p and
contracting the strict transform of the fiber through p.

Example 4.12. If S = Fk is a Hirzebruch surface and k > 0, then S′ = Fk+1 if p lies on the
negative section of Fk, and S′ = Fk−1 otherwise. If S = F0, then S′ = F1.

Considering Fk as a Looijenga pair (Fk, ∂Fk) (where ∂Fk denotes its toric boundary), we
see that the strict transform of ∂Fk under an elementary transformation αp : Fk 99K Fk±1 is an
anticanonical divisor if and only if p lies on one of the torus-invariant sections of Fk → P1. In
particular, the birational map αp : (Fk, ∂Fk) 99K (Fk±1, ∂Fk±1) is volume-preserving if and only
if p lies on one of the torus-invariant sections of Fk → P1, in which case we call αp a mutation.
It is shown in [12, Lemma 3.2] that the restriction of the mutation αp to the dense tori gives
a map (C×)2 99K (C×)2 which is a mutation in the sense of Definition 2.4. We will use the
following theorem, which has appeared in [15, Proposition 3.27]. A closely related version of
this result was proved by [5].
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Theorem 4.13. Let (Y,D) be a Looijenga pair with two toric models

(Y,D)

(
Ȳ , D̄

) (
Ȳ ′, D̄′).

p p′

φ

Then φ has a factorization(
Ȳ , D̄

)
=
(
Ȳ0, D̄0

) φ1→
(
Ȳ1, D̄1

) φ2→ · · · φn→
(
Ȳn, D̄n

)
=
(
Ȳ ′, D̄′),

where each of the maps φk is a toric blowup, toric blowdown, or a mutation.
Moreover, let pk = φk ◦ · · · ◦ φ1 ◦ p. Then pk : (Y,D) 99K

(
Ȳk, D̄k

)
extends to a regular

map p̃k :
(
Ỹ , D̃

)
→
(
Ȳk, D̄k

)
on some corner blowup

(
Ỹ , D̃

)
of (Y,D).

If
(
Ȳ , D̄

)
is a toric Looijenga pair and p : (Y,D) →

(
Ȳ , D̄

)
is a composition of toric blowdowns

and nontoric blowdowns then p−1
(
(C×)2

)
is a well-defined torus chart on U = Y \D. Conversely,

any torus chart arises in this way from a toric model. We conclude:

Corollary 4.14. Any two torus charts j, j′ : (C×)2 ↪→ U on a Looijenga pair (Y,D) with
U = Y \D are related by a composition of algebraic mutations between torus charts on U .

Proof. The two torus charts give rise to two toric models of a Looijenga pair (Y,D) with
U = Y \D. Let φ be the induced birational map between the two toric models. The first part of
Theorem 4.13 gives a factorization φ = φn ◦ · · · ◦φ1. Restricting to the dense tori of the various
toric models gives a commutative diagram

U

(C×)2 · · · (C×)2,

j

φn φ1

j′

where each φi is now either an algebraic mutation (if the corresponding φi :
(
Ȳi−1, D̄i−1

) φi→(
Ȳi, D̄i

)
was a mutation), or the identity (if the corresponding φi was a toric blowup or toric

blowdown). The second part of Theorem 4.13 implies that the birational map

φk ◦ · · · ◦ φ1 ◦ j′ : (C×)2 ↪→ U

is a torus chart on U for all k. It follows that the two torus charts j and j′ are connected by
a composition of mutations between torus charts, as required. ■

Proposition 4.15. Let P and Q be T -polygons, and let φ :
(
ȲP , D̄

)
99K

(
ȲQ, D̄

)
be volume-

preserving. Let f and g be Laurent polynomials of Tveiten class with P = Newt (f) and
Q = Newt (g), and suppose that φ∗f = g. Then f and g are mutation-equivalent.

Proof. By Proposition 4.11, there exists a Looijenga pair (Y,D) and a minimal resolution

(Y,D)

(
ȲP , D̄

) (
ȲQ, D̄

′),
qp

φ

where p and q are volume-preserving morphisms. In particular, this means that p only blows
up points on D̄ (or a strict transform thereof) and similarly for q. f and g define rational
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maps ϕf : ȲQ 99K P1 and ϕg : ȲP 99K P1. We will first show that p and q only blow up basepoints
of ϕf and ϕg. Indeed, g takes the value ∞ on D̄, so that if p blows up a point which isn’t
a basepoint of ϕg, then ϕg would take the value ∞ on the corresponding exceptional divisor. In
particular, there would exist a (−1)-curve C on Y with g equal to ∞ along C.

C cannot be q-exceptional: otherwise, we can factor q = q1 ◦ · · · ◦ qn as a composition of
contractions of (−1)-curves En, . . . , E1 with C = Ei for some 1 ≤ i ≤ n. Since C is a (−1)-
curve, any Ej meeting C must have j < i. It follows that the union of En, . . . , Ei+1 is disjoint
from C, and therefore q factors through the contraction of C. However, this contradicts the
minimality of the resolution (Y,D).

Since C is not q-exceptional, the intersection q(Cn)∩ (C×)2 is nonempty, and since f ◦φ = g,
we see that f ◦ q = g ◦ p and therefore f(q(Cn)) = ∞, a contradiction, since f is a Laurent
polynomial. We conclude that p only blows up basepoints of ϕg and similarly q only blows up
basepoints of ϕf .

It follows that ϕf and ϕg extend to morphisms ϕf and ϕg : Y \Z → P1 (where Z is the union
of the remaining basepoints of the pencils defined by f and g) which agree on a dense open
subset (since f ◦ φ = g) and are therefore equal. This implies that the remaining basepoints
of ϕf , ϕg are the same, and therefore after blowing them up, we have an isomorphism of elliptic
surfaces Ỹf ∼= Ỹg.

By Corollary 4.14, we obtain a factorization φ = φn ◦ · · · ◦ φ1, which fits in a diagram

U C

(C×)2 · · · (C×)2,

W

j

φn φ1

j′

where U = Ỹf \D = Ỹg \D, and W is the restriction of the elliptic fibration ϕf = ϕg to U . Note
that Corollary 4.14 shows that each jk = φk◦· · ·◦φ1◦j′ is a torus charts on U . By construction, we
have g = j∗W and f = j′∗W , and the pullback fk := (φ1◦· · ·◦φk)

∗f is similarly given by restrict-
ing W via the torus chart jk = φk ◦ · · · ◦φ1 ◦ j′. In particular, fk is a regular function on (C×)2,
so it is a Laurent polynomial, for all k, so by definition, each fk is mutable with respect to φk+1.
It follows that there is a sequence of algebraic mutations mapping g = f0 7→ f1 7→ · · · 7→ fn = g,
which induces a sequence of mutations Q = Newt (g) → · · · → Newt (f) = P . This proves that P
is mutation-equivalent to Q, as required. ■

We can now complete the classification of T -polygons

Theorem 4.16. There are ten mutation equivalence classes of T -polygons.

Proof. Let P be any T -polygon, and let g be a maximally mutable Laurent polynomial with
Newt (g) = P . The pair (Yg, D) is strictly negative semi-definite by Definition 3.9, so by Theo-
rem 4.8, the Looijenga pair (Yg, D) must be deformation equivalent to one of the pairs (Ygn , Dgn),
where gn are as in Figure 6. Since both pairs have period point 1, the pairs must be isomorphic
by the Torelli Theorem 4.2, so we have a diagram

Yg = Ygn

(C×)2 ⊂ ȲP ȲPn ⊃ (C×)2,
φ

where the vertical maps are toric models, and φ is volume-preserving. It follows that the induced
birational map φ : (C×)2 99K (C×)2 satisfies φ∗Ω = λΩ for some λ ∈ C×, where Ω =

(
1
2πi

)2 dx∧dy
xy .

By pairing Ω with the integral generator {|x| = 1, |y| = 1} ∈ H2

(
(C×)2,Z

)
and using the change
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of variable formula, we see that λ = ±1. Composing with the automorphism of (C×)2 given
by (x, y) 7→

(
x, 1y

)
, we may assume that λ = 1.

Let p and q be the elliptic fibrations on Yg = Ygn induced by g and gn, note that by Proposi-
tion 4.7, the elliptic surface Yg has a section s. The isomorphism (Yg, D) ∼= (Ygn , D) of Looijenga
pairs maps the fibre p−1(∞) to q−1(∞). It follows from [6, Lemma 1.5] that the isomorphism
maps every fibre of p to a fibre of q and therefore α = q ◦ s is an automorphism of P1 making
the diagram

P1

Y

P1

p

q

α

commute. Since α fixes ∞, α must be of the form z 7→ az + b for a, b ∈ C and a ̸= 0. It
follows that φ∗gn = ag + b. Set g′ := ag + b, then the Laurent polynomials gn and g′ satisfy
the assumptions of Proposition 4.15 and we conclude that gn and g′ are mutation equivalent.
Therefore, P = Newt (g′) is mutation-equivalent to Pn = Newt (gn). It follows that any T -
polygon P is mutation-equivalent to one of the ten T -polygons in Figure 6, which completes the
proof. ■
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[3] Alberich-Carramiñana M., Geometry of the plane Cremona maps, Lecture Notes in Math., Vol. 1769,
Springer, Berlin, 2002.

[4] Barth W., Peters C., Van de Ven A., Compact complex surfaces, Ergeb. Math. Grenzgeb., Vol. 4, Springer,
Berlin, 1984.

[5] Blanc J., Symplectic birational transformations of the plane, Osaka J. Math. 50 (2013), 573–590,
arXiv:1012.0706.

[6] Clemens H., Kollár J., Mori S., Higher-dimensional complex geometry, Astérisque 166 (1988), 1–144.

[7] Coates T., Kasprzyk A.M., Pitton G., Tveiten K., Maximally mutable Laurent polynomials, Proc. A. 477
(2021), 20210584, 21 pages, arXiv:2107.14253.

[8] Corti A., Cluster varieties and toric specializations of Fano varieties, arXiv:2304.04141.

[9] Corti A., Kaloghiros A.-S., The Sarkisov program for Mori fibred Calabi–Yau pairs, Algebr. Geom. 3 (2016),
370–384, arXiv:1504.00557.

[10] Ducat T., The 3-dimensional Lyness map and a self-mirror log Calabi–Yau 3-fold, Manuscripta Math. 174
(2024), 87–140, arXiv:2105.07843.

[11] Friedman R., On the geometry of anticanonical pairs, arXiv:1502.02560.

https://doi.org/10.1090/proc/12876
https://arxiv.org/abs/1501.05334
https://arxiv.org/abs/1401.5458
https://doi.org/10.1007/b82933
https://doi.org/10.1007/978-3-642-96754-2
https://arxiv.org/abs/1012.0706
https://doi.org/10.1098/rspa.2021.0584
https://arxiv.org/abs/2107.14253
https://arxiv.org/abs/2304.04141
https://doi.org/10.14231/AG-2016-016
https://arxiv.org/abs/1504.00557
https://doi.org/10.1007/s00229-023-01497-0
https://arxiv.org/abs/2105.07843
https://arxiv.org/abs/1502.02560


20 W. Lutz

[12] Gross M., Hacking P., Keel S., Birational geometry of cluster algebras, Algebr. Geom. 2 (2015), 137–175,
arXiv:1309.2573.

[13] Gross M., Hacking P., Keel S., Mirror symmetry for log Calabi–Yau surfaces I, Publ. Math. Inst. Hautes
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