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Abstract. In our preceding research, we introduced the Drinfeld presentation of the quan-
tum affine superalgebra associated to the orthosymplectic Lie superalgebra osp(2m + 1|2n)
for m > 0. We provided the isomorphism between its Drinfeld-Jimbo presentation and
Drinfeld presentation using braid group actions as a fundamental method. Based on this
work, our current study delves into its R-matrix presentation, wherein we establish a clear
isomorphism between the R-matrix presentation and the Drinfeld presentation. In particu-
lar, our contribution extends the investigations of Jing, Liu and Molev concerning quantum
affine algebra in type BCD to the realm of supersymmetry.
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1 Introduction

The quantum affine algebras U,(g) associated with affine Lie algebras g manifest at least three
distinct presentations. The original definition of quantum affine algebras was defined as q-
deformation of the universal enveloping algebras of affine Lie algebras, independently intro-
duced by Drinfeld [9] and Jimbo [17], collectively referred to as the Drinfeld-Jimbo presenta-
tion. Drinfeld’s pivotal contribution in 1987 [8] introduced a highly significant presentation of
quantum affine algebras, commonly termed the Drinfeld presentation. The Drinfeld presentation
has yielded a multitude of applications, including vertex representations and finite-dimensional
representations. Subsequently, the R-matrix presentation was proposed by Reshetikhin and
Semenov-Tian-Shansky [33], later refined by Frenkel and Reshetikhin [13]. The R-matrix pre-
sentation incorporates a matrix R(z) associated with the quantum affine algebra, which satisfies
the Yang—Baxter equation

ng(z)ng(zw)Rgg (w) = Rgg (w)R13 (Z'LU)RlQ(Z)

as documented in the work [33].

In the study of quantum affine algebras, significant advancements have been made in elucidat-
ing the isomorphism among their presentations. Initially, Beck [1] pioneered the establishment of
the isomorphism between the Drinfeld—Jimbo and Drinfeld presentations for untwisted algebras,
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while Jing—Zhang [22, 23], and [39] extended this for the twisted case. Different to Beck’s meth-
ods, Damiani [5, 6] also constructed the isomorphism between the Drinfeld—Jimbo and Drinfeld
presentations. Concurrently, Frenkel and Ding [7] established the isomorphism between the
Drinfeld and R-matrix presentations in type A. Building on Ding—Frenkel’s approach, Jing, Liu
and Molev [20, 21] extended the isomorphism to types B, C and D, and a similar result for Yan-
gians [19]. These developments have established the isomorphism among these presentations,
allowing for various approaches to studying the representation theory of quantum affine algebras.
This provides a rich framework for understanding and exploring these algebraic structures.

As a natural extension of quantum affine algebras, quantum affine superalgebras were in-
troduced to accommodate the Zo-grading through the incorporation of additional generators.
In [37], H. Yamane introduced the Drinfeld—Jimbo presentations of quantum affine superalge-
bras, by considering the classified type A-G affine Lie superalgebras [24, 34] as deformations of
the universal enveloping algebras of the corresponding affine Lie algebras. In particular, using
the method of Beck [1], Yamane also provided the Drinfeld presentation including the complete
Serre relations specifically for type A. Quantum affine superalgebras possess a richer structure
and representation theory due to their grading structure, with predominant focus on type A in
research endeavors. While detailed enumerations are beyond the scope of this discussion, it is
noteworthy that Cai, Wang, Wu and Zhao [4], Zhang [40], and Fan, Hou and Shi [10] constructed
the Drinfeld presentation of quantum affine superalgebras U, (g[(m\n)) using Frenkel-Ding’s iso-
morphism theorem. However, these constructions do not explicitly present the complete Serre
relations. Furthermore, Zhang [38] utilizes the R-matrix presentation of the quantum affine
superalgebra associated with the Lie superalgebra gl(m|n) to explore its finite-dimensional rep-
resentations and their tensor products. Employing the Gauss decomposition, Lu [30] established
a direct and explicit isomorphism between the twisted ¢-Yangians and affine ¢:quantum groups
associated with symmetric pair of type Al.

While progress has been made in understanding the relations among these presentations,
the specific relations for the quantum affine superalgebra are still an open question. Further
investigation and research are required to unveil the connections and establish the desired iso-
morphisms. Exploring the relations and structure of the quantum orthosymplectic affine super-
algebra through these presentations will undoubtedly provide valuable insights into its repre-
sentation theory and algebraic properties, such as some work in [36]. As for orthosymplectic
Yangians, Frassek and Tsymbaliuk [11] studied the R-matrix presentations of orthosymplectic
super Yangians and presented their Drinfeld presentations for any parity sequence, which gen-
eralizing the results of [32] of the standard parity sequence. Recently, we have developed an
efficient method for verifying the isomorphism between the Drinfeld—Jimbo and Drinfeld presen-
tations of the quantum affine superalgebra of orthosymplectic Lie superalgebra with a standard
parity sequence, please see [35]. At the same time, Bezerra, Futorny and Kashuba [2] also pro-
vided a Drinfeld presentation for the quantum affine superalgebra of type B with any parity
sequence. They constructed a surjective homomorphism from this Drinfeld presentation to the
Drinfeld—Jimbo presentation using a method as well as Beck’s. Consequently, this paper will
continue to focus on the R-matrix presentation of the quantum orthosymplectic affine super-
algebra for a standard parity sequence, aiming to broaden the results of the quantum affine
algebra to the super case. Specifically, we will establish an isomorphism between the Drinfeld
presentation and the R-matrix presentation of the quantum affine superalgebra associated with
the Lie superalgebra 0sps,, 1 12, (m > 0).

The paper is organized as follows. In Section 2, we introduce the necessary notations and
present the Drinfeld—Jimbo and Drinfeld formulations of the quantum orthosymplectic affine
superalgebra. Additionally, we review the isomorphism established between the Drinfeld—Jimbo
and Drinfeld formulations, as discussed in our previous works. In Section 3, we discuss some
results related to the universal R-matrix of Ug[osp(2m + 1\2n)(1)], which holds significant im-
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portance in the theory of quantum affine superalgebras. Section 4 begins with the construction
of a level-0 representation using Drinfeld generators. Consequently, we explicitly construct the
R-matrix R(z) and introduce a super version of the R-matrix algebras based on these explicit
R-matrices. Moving to Section 5, we establish the Drinfeld formulation within the R-matrix
algebras by employing the Gaussian generators. This presentation facilitates a comprehensive
exploration and analysis of the quantum affine superalgebra. In Section 6, our main focus is on
establishing the isomorphism between the Drinfeld and R-matrix presentations. Technically, we
extend the methods discussed in [20, 21] to the super case. Indeed, the original methods were
provided by Frenkel and Mukhin [12, Section 3.2] for the quantum affine algebra of type A.

2 Quantum affine superalgebra

2.1 Basic notations of Lie superalgebra

Unless stated otherwise, throughout this paper, we consistently set g = osp(2m + 1|2n) and
g = osp(2m+1]2n)V). First, we provide some notations on the set {1,...,n,n+1,...,n+2m+
1,...,2n 4 2m + 1}. Let the grading of a be represented by [a], such that

0, n+1<a<2Zm+n+1,
[a] = :
1, otherwise,

and the involution @ = 2n+2m+2—a. Let €1, ..., e, is an orthogonal basis of a vector space,
and then denote the invariant bilinear form on the set {g;, 1 <1i < 2n+ 2m + 1} as follows:

(Ei,fj):—éij, (Euagl/):(s,ulla 1§Za]§n> 7’L+1§,LL,V§TL+’I7’L

The remaining symbols are indicated by ; = —¢;. In particular, we set €, 1m4+1 = —€pgm1 = 0.
As is well known, a Lie superalgebra is a Za-graded algebra, denoted as g = gg® g7, where the el-
ements of gg are referred to as even, and those of g7 as odd. For homogeneous elements X, Y € g,
the graded commutator is defined as

(X, V]e = XY — (-1)PIVgy x,

where [X]| € Zg, ensuring that [X,Y]; = [X,Y]. The tensor product multiplication is given
by (X @Y)(ZoW) = (—DMIZ(XZ @ YW). As for our notations, we adopt the following
convention for the simple roots of g

O = € — Ei41, 1< <n+m, Optm = Endm-

The Cartan matrix A = (AZJ);’;J!} of g is defined by
(g, 05), i< m+n,
Aij = .
2(o, ), t=m+n.

Note that the half sum of positive roots can be written as

n m
p= % > (2n—2m+1—2p)e, + % Z(2m +1—2i)enti.
p=1 =1
Therefore, (p, a) = %(a,a) for all simple roots . Set ap = d — 6, where 0 = 2¢; is the highest
root of g. Then II = {ag, a1, ..., antm} is the affine root base of g. Hence,the Cartan matrix A
of g is derived by appending the Oth row and column, satisfying Agg = —2, A19 = 2491 = —2,
Ajoonj:0f0r1<j<n+m.
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2.2 Drinfeld-Jimbo presentation U,(§)
Let g be a formal parameter and « be a root of Uy,(g), set

[(or ) [(a,0)]

gG:=q 2 for (ai,0;) #0,  q:=q for (a;05)=0, ga:=¢q = ,
where ¢t =1,...,n+m, and for a € Z,

= S = ol = 1)l

We now recall the Drinfeld—Jimbo presentation of quantum affine superalgebra U,(g), initially
introduced by H. Yamane [37].

Definition 2.1. The quantum affine superalgebra U,(g) over (C(ql/ 2) is an associative superal-
gebra generated by Chevalley generators Xii = ng:w K; = K,, fort =0,1,...,m 4+ n with the
parity of [X@ﬂ = [oy] and [K;] = 0 and the following relations:

KFEF =1, KK =K,  KxiK ' =g X,
K, — Kt
[Xj)XJ_] = 5ijqz_7q:1, [X;t,X;t] =0 for Az‘j = 0,
3
X5 D]l =0 for i#nm+n,
X?E,[X?E,X?E_IHZ for 1<i<m+n, i#n,
[Xf,[xii,xf_l]]”:O for i=1 or m+n,
+

o3l E L] xdE] =00 for n>1,

[ xd ] od il il gl oxd] =0 for m=1, m>2,
eaniteranlterarall

= (1 -2l Das D Daaxa 1l d] - for (nom) = (1,1),

where the notation [Xa, Xg] = [Xa, X3, @p if KiXoK; " = ¢ X, K;XsK; " = ¢ X,
for homogeneous elements X, Xg € Uy(g) and i =1,...,n + m.

Let U, (resp. U, ) be the subalgebra of Uy(g) generated by X; (resp. x; ), and UY be the
subalgebra of U,(g) generated by K;. Then we have the following triangular decomposition
of Uy(8), Uy(8) = Uy @ U @ Uy

Quantum affine superalgebra U,(g) as a Hopf superalgebra equipped with the comultiplica-
tion A, counit €, and antipode S defined as follows:

AN =xfol+ K ox5, Alg)=x; 9K '+10x;, AK)=K oK,
e(x;) =0, (K =1 S()=KTx, S(;)=-xK
S(K;) =K "

2.3 The Drinfeld presentation U,(g)

We recall the Drinfeld presentation of the quantum affine superalgebra (see [2, 35, 37]), which
is expected to be isomorphic to the above Drinfeld-Jimbo presentation.

Definition 2.2. The Drinfeld presentation of quantum affine superalgebra denoted as U,(g)
over (C(ql/ 2) is an associative superalgebra generated by current generators xfck, Qi s k:z?tl, 1=
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1,...,n 4+ m and the central element q e , with the following defining relations. The parity of
[,

generators xik is denoted by [ ] while all other generators have parity 0,
°qF = BEEF = 1 kg = kke, kg, = ajoks, kit ki =g et
q q ) iNj = RjRi, iGjr = Qjrki, i, = 4 L ke
[rAi)i ¢"¢—q7"° + [rAili £l 4
iy, Qjs| = Op . aip, ot | = £ 00l F e, ,
[ 1,7 ]78] r,—=S$ r q] _q]—l ’ [ 1,7 ],k:| r q ]T+k2
k=lo o4 =k, _
+ 1=, Pk — 42 “Piky
[%ka%,l] = 0ij ) ;
4; — g;

[xfk“’xﬂil} A + (- [37 T k) oM T 0 if A #0,
[zikv ]l]_o if A;; =0,

Symy, i, [2 fkl, |[»’Ufk27ﬂfirsvlﬂ =0 for i#n,m+n, s==£I1,
SYMU, oy ks [T [Ty (ks> Trmtn—100 1] = 0;

Symy, g, [[[on 10 2n L w2y, =0 for n>1,

where CID;-:E ,.(r > 0) is given by the formal power series

D O s T =k exp (i (6 —a7") ) ai,ﬂzﬂ> .

r=0 r>0

In our previous works (refer to [35]), we introduce the affine root vectors denoted as &, s,
Sa+rs, €.50) and §,56) of quantum superalgebra using braid group actions. Here a runs over
the positive roots A+ For our purpose, we review the isomorphism between Drinfeld presenta-
tion U, (g) and Drinfeld-Jimbo presentation U,(g) as follows.

Theorem 2.3 ([35, Theorem 3.6]). There exists an isomorphism between the Drinfeld presenta-
tion Uq(g) and the Drinfeld-Jimbo presentation Uy(g). The isomorphism is expressed in terms
of root vectors as

1 +3 )
qi2cl—>K62, k;HHKiil for i=1,....m+n,
-1
xz':y* = @7'54»012'7 IBZ—,T. — (_di)rdi-f—lgT(sfaiKgKi ) r 2 O?
mz_ﬂ« — Kg_TKigréfa“ Ty . (_di)rdi+1$r6+aiy r >0,

1,—T

air — Kg 2 € 50), i = (—di) " KZ 3§, 50, r >0,

where d; = (gi,€;). Or in terms of the Drinfeld—Jimbo and Drinfeld generators

Wk, i=loomin K e (@RE KT K e gt
Xo — v ( KTk - kszrn) RN ESRTESY') IRRRRE Y P ST FRRRRE W B
Xo & Yo |[ [xf—lv@to]‘v'“vm;rwn,o]]?x;m,o]] EES| 0]]( kiks - k72n+n)717

where v = —([2n) 7", vy = (=1)*I([2]) gm0z,

3 The universal R-matrix

Consider the extended algebra ﬁq(A) of U, (A), which is obtained by adjoining an additional
element d with the relations [d, X;t] = +8;0X7, [d, k] = 0. The algebra U,(g) is also a Hopf
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superalgebra, possessing the same comultiplication A, counit € and antipode S as those of U,(g),
and

Ald)=d®1+1®d, e(d) =1, S(d) =d .

By Drinfeld double construction, the universal R-matrix R of ﬁq(@) is a solution of the Yang—
Baxter equation PR129R13R23 = MRozR13R12, and satisfies the coproduct properties

(A ®1)R = Ri3N03, (1® A)R = RizNR1o, RA(X) = AT(X)R, X € Uy(),

where AT =TA and T(X @ V) = (-1)XIVy @ X. B
Consider a formal variable z and define an automorphism D of Uy () ® C[z, 27| as follows:

Dz(Xz‘i) = Ziéi’OX;ta Dz(kz) = ki, DZ(d) =d. (3-1>

We define a universal R-matrix 2(z) that depends on the spectral parameter z using the for-
mula R(z) = (D, ® 1)Rq*®4T99¢. Tt then satisfies the following Yang-Baxter equation

9{12(2)%13(211)(]702)9{23(10) = %gg(w)%lg(zwq”)iﬁlg(z), (32)
where ¢ = 1®c®1. Furthermore, the universal R-matrix 9(z) satisfies the following properties:
(S@1)(R(2) =Rz~ 7, (105 HR(2) = R(¢") .

Let 7 denote a representation of (7(1(@), for any two finite-dimensional modules V' and W,
we define an operator as follows RVW (2) = (7y ® 7w )(R(z)). Since for any finite-dimensional
representation, 7y (c) = my () = 0, it follows from (3.2) that RV"W (z) satisfies the Yang-Baxter
equation. We define right dual module V* and left dual module *V as follows:

mve(a) = 1 (S(a)™,  my(a) =m (S (a)",
where st denotes the super-transposition operation on the module V' such that
(B3 = (—1)lalal+D b,

here E; € End V is the elementary matrix with 1 in the (4, j) position and zeros elsewhere.
Let my denote a finite-dimensional representation of U,(g), and let D, be the automorphism
defined in equation (3.1) of Uy(g) ® C[z,27!|. Then we can define a representation

Tv(z): Ug(§) = End(V) @ C|z, zfl}
by setting ﬂv(z)(a) =my(D;(a)),a € Uy(g).
Let h; denote the unique element of the Cartan subalgebra of § satisfying hj(e;) = (i, o).

We define h, as h, = h; — gd, where g = 1(6,60+2p). For the representation V**(z) and **V(z),
the square of the antipode is given by

§%(a) = q " Dy-2(a)g™,  57(a) = ¢ Dpa(a)g™*,  a € Uy(d). (3.3)
Proposition 3.1. With the notations established above, we obtain
V()" =2V (zq™9), W (2)SW(2¢9), v = ¢, w— g e,

Proof. It is straightforward to check the action on generators by the antipodes (3.3). |
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Proposﬂzlon 3.2 ([16, equatlons (2.30) and (2.32)]). The following equations hold that
(1) BYW(2) = (RYW () )™, RV () = (R () )™,
B (R0 9 (ol ) ) (Y o) v 01,
() ((RYW (7)) 7)™ = (1 @ i (6e)) (VY (20))™2)% (1y © mp (a=21)).

Theorem 3.3. Let V and W be two finite-dimensional irreducible Ugy(g)-module. Then the
operator RVW (2) is given by the formula
RYW(2) = fuw(2)Q"" (2), (3.4)
where QYW (2) is a matriz polynomial over z without common zeros. The function fyw(z) is
a meromorphic function on C such that fyw(0) = 1 and fyw(0) ~ z7PVW) where p(V, W) is
the degree of the polynomial QVW (2). Moreover,
p(V,W) (Z a;. ,—2g9
q";q~%)
fvw () = T (3.5)
E (2q%;4729)
which are unique over C[[z]] ® C[[q"/?]], where

p(V,W)
(ZS Q)oo = H(l - an)v Z (ai - b’L) = 29p(V7 W): g, b; € C.
n>0 i=1

Proof. Let us introduce the permutation operator PV" on the tensor product module V @ W:

PYW(va@up) = (1)l (v, @), ¥V vq € V, v, € W. Consider the irreducible modules V' (z) @ W
and W ®V (z), where z is a formal variable. Note that PY"W RYW (2) is an intertwining operator:
V(z)@W — W®V(z), and it is unique up to scalar factor. Hence, the following equality holds:

RYY (2)(my @ mw)(D: © 1)(A(a)) = (7v @ 7w )(D> @ 1) (AT (a)) R (2)

for a = Xz?t, K;,i=0,...,n+m. This equation, linear over z, z~!, dictates that the factorized
representation (3.4) and Q"W (z) are uniquely determined up to a constant. We determine this
constant by imposing the condition fyy (0) = 1.

Let us consider intertwiners V**(2)@W — W®V**(z), where each such intertwining operator
varies by a scalar multiplier determined by the irreducible modules V' (z)** @ W and W @ V**(z)
From the definition of V**, we derive the intertwining operator PV W (((Q""W (2)~ )Stl) 1)St1.
Conversely, the isomorphism V' (z)** = V(zq_29) yields another intertwining operator given by
PV W (ry (¢ 2) @1 )((QVW(z))Stl)Stl (v (¢*" ® 1w)). Thus, there exist rational func-
tions ryw(z) such that

(@ (=™)™) l)s“

= rvw(2) (v (a7*") © 1w) (@YY (24729))™)™ (wv (¢* @ 1w)).- (3.6)
Let p(V, W) denote the degree of the polynomial Q"W (2), then
row(0) =1,  ryw(z) =@M 2 oo,
By Proposition 3.2 (2) and (3.6), we derive
fow (247%) = rvw (2) fuw (2), (3.7)
with fyw(0) = 1. Let
(2) = L e
Tvwi \?) = i 1— qui 9

through a straightforward computation, equation (3.7) admits a unique solution over C[[z]] ®
C[[ql/ﬂ ], in the form provided by equation (3.5). |
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4 R-matrix algebras

Utilizing the Drinfeld generators, we will formulate a level-O0 representation of the quantum
affine superalgebra dependent on the spectral parameter z. This representation encompasses
a vector representation when z is regarded as a spectral constant. Consequently, by this vector
representation, we can explicitly derive an R-matrix denoted as R(z), satisfying the Yang—
Baxter equation Ri2(z)Ri3(zw)Ras3(w) = Rag(w)Ri3(zw)R12(z). The explicit expression of the
R-matrix R(z) enables us to investigate and analyze the quantum affine superalgebra, facilitating
the construction of a super version of the R-matrix algebras. This super version corresponds to
the non-super case of the R-matrix algebra of quantum affine algebra introduced by Reshetikhin—
Semenov-Tian-Shansky (see [33]).

4.1 The explicit R-matrix of R(z)

For the sake of convenience, we adopt the following notation v; = Z§:1 dj, d;i = (g4, ).

Proposition 4.1 (level-0 representation). Consider the graded vector space V. = C2m+12n,
The following map gives a representation V. of the quantum affine superalgebra Uy(g) on
End(V) ® C[z,271]:

¢ =1, ae (5q7) B = (2P ) B

ko
wi e (207) By — (2q
ki g (B 4 BED) 4 a0 (B - ) ¢ Y o
s#i,0,i+1,i4+1

—9m—1—1I\NK 3
2m—2n—v; 1) E;H_l’

e B (o) (0B BB 4 (s
> (dqu—diﬂkEﬁ:i _ diqdikE%T))
for1<i<m+n-—1, and

l,;er’k s [2]1/2 ((zqm—n)kEn+m+1 - (zqm—n—l)k’Ener )7

dm+n n+m m
+ 1/2 m—n\k pn+m m—n—1\kK pm+m+1
e = A (GO BT (g BT,
n—+m —1 rn+m s
Fengm = qEpim + ¢ ELET 4 > dEs,
s#En+mn+m

2k
Antm,k = HZ;”’”(— (zqunfl)kEgiﬂ + ((zqun)]c — (zqunfl)k)Eﬁigﬂ)

+ (qufn)kEn—i-m) )

n+m

Proof. It is straightforward to check the action on the generators. |

Notice that we have the equivalence V(1) = V by setting z = 1. Therefore, it gives rise to
a vector representation my : U,(g) — End(V) from the above proposition. Let R(z) = RVV (2) =
(my @my )R (2), where PR(z) is the universal R-matrix of U,(g) via the isomorphism Theorem 2.3.

For the formal variable z, denote z4+ = z¢™%/2, and introduce the L-operators in Uy(g) by the
formulas
£z = 1em)R(z), £7(z)=(1om)Ru(2") (4.1)

Therefore, the Yang—Baxter equation implies the following proposition.
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Proposition 4.2. In U,(§) ® End V®?, we have
R(z/w) L1 ()5 (w) = L5 ()£ (2) R(z/w),
Rzt w0 )8 (2)€5 (1) = £ ()& (2)R(=_ w,).

Next, we aim to provide an explicit R-matrix R(z) in the form of a matrix polynomial.
To achieve this, we begin by considering the polynomials @YV in Theorem 3.3 for V = W =
C2mH12n a9 follows: for ¢ = g2 201

QW () =((1-*)(z-0zP+ (*-1)(z=1)(z—=)Q+a(z —1)(z = )
x {I (2~ )Y DB 06l + (- ¢ )Y (-D)VE &3}).

aFa a>b

The graded operators of above are given as follows:

P= Z WEreE, Q= Z 1) ollblg, 4020 £ & B9,

and 60 = B¢ — (—1)lalla+ g, e B 50 = ¢1/2(caca) o _ =1/2case) O where

1, [a] =0,
§a =4 (1) I<a<n,
—(-1)*, m<a<l.

Remark 4.3. Let Q(z) = PQVV(z). According to [14], Q(z) satisfies the inversion relation
QR =(-0k-) (= =" —¢) x I

Let t represent the matrix involution super-transposition defined by (EZ) (— 1)[i] UHU]&&;
X E] and define the diagonal matrix

1 n n+m — a’ﬁ a T mn 1
D:dlag[qala"'vqanaqa+1a"'7qa+ +1_q<+ +1)7"'7q +17qaa"'7qa1]a
where
Uimat) — Gntmt1 =0, ai=—a; iFn+m+l, (p,&i —&5) = a; — aj.

Denote ts as the transposition with the s-th tensor space. Consequently, we can demonstrate
that

Q=D;'P"D,, P'D,=PiD;',  DyP" =D;lpPh. (4.2)
Furthermore, in accordance with the reference [31], we introduce a new R-matrix as follows:

fi(z) = (q—qh)zP B (a—qHz(z-1)Q (-1
(@—a'2)  (¢a-a'2)(z=0) (¢—-a7'2)

x {H(q%—q%)Z( R N 1)2(—1)[51195;@&3}. (4.3)

aFa a>b

Consider the function g(z) = f(2)(z — ¢*)(z — ¢). Consequently, we obtain the expression

R(z) = f(2)Q"" (2) = g(2)R(2). (4.4)
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It is worth noting that we can compute

(z—a?) (¢ - 1)
(1—2)(1—q2%¢z)
By performing similar calculations on Q¥ (z) and combining with equation (4.4), we derive

R(z)D1R(2¢)" D" = ¢*¢?, (4.6)

R(2)D1R(2¢)" Dyt = y(2) =

(4.5)

and
1

(1-2¢%)(1—2¢72) (1 —2¢"1)(1—2¢)
Moreover, based on Theorem 3.3, the meromorphic function f(z) takes the form
) 0 (1 _ ZCQi) (1 _ Zq72<-2i+l) (1 _ zq2c2i+1) (1 _ Zc2i+2)
fz) = H 2i—1 2i+1 2,2i 2,21\
pain (1—zC )(1—z§+)(1—zqg)(1—zq C)
Hence, the explicit form of the R-matrix R(z) is as follows:

R(z) = f(2)((1 = ¢*)(z = Q=P + (¢° = 1)2(z = 1)Q + q(z — 1) (2 = ¢)
AT @ - h DB 00t + (-0 ) T -1VE @t} ).

a#a a>b

f(2)f(z¢) =

4.2 The superalgebras U(R) and U(ﬁ)
Definition 4.4.

(1) The associative superalgebra U(R) over (C(ql/ %) is generated by an invertible central ele-
ment ¢“/2 and elements l;'; [Fp], where the indices satisfy 1 <1i,7 < 2n+2m+1andp € Z,
subject to the following relations:

[0 0] = I [0]7£ 0] = 1, 1510] = I5;[0] = 0, for i > j,
R(z/w)Li (2) Ly (w) = Ly (w) Ly (2) R(z/w),
R(zy fw-)L{ (2)Ly (w) = Ly (w) LY (2)R(2- Jwy). (4.7)

(2) The associative superalgebra U (}NE) over C(ql/ 2) is generated by an invertible central
element ¢/2 and elements l;? [Fp], where the indices satisfy 1 < 4,7 < 2n+ 2m + 1 and
p € Z, following the same relations as (4.7), and

R(z/w) L (2)L5 (w) = L3 (w) LY (2)B(=/w), (4.8)
R(zy [w-)L{ (2) L5 (w) = Ly ()L (2)R(z— /), (4.9)

here LE(z) € End C*"*+112" @ End C*"+'?" @ U(R) (resp. LE(z) € EndC¥ 12 g
End C2mH1i2n g U(E)), i = 1,2, written by

=) Ej@1elj(z) <resp Li(z) =) Eiolali( )>

i,j=1 3,j=1
=) 1@ E lj(2), (resp L3(z)= > 10 E 0I5 )>
i,7=1 3,j=1

with

Z I5[Fp)2
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Note that E(z) possesses two properties:
(1) PiaRia(2)Pia = Roi(2),
) Far (3) % Far (2) = 1.

Based on the aforementioned properties of E(z), we obtain

R(e Jws) L5 (2)L5 (w) = £F (w)L5 (2)R(z fw_).
Remark 4.5.

(1) When n = 0, we consider the R-matrix algebra associated with the quantum affine algebra
UQ(W). In this case, the R-matrix R,-1(z) (q — qil) coincides with the R-matrix
defined in reference [18].

(2) The defining relations satisfied by the series liij(z), 1 <4,j < m+mn coincide with those for
the quantum affine superalgebra U, (gl(n|m)) in [10] and also in [40].

Let U* (ﬁ) be the subalgebras of U (ﬁ) generated by the coefficients of all the series l;';(z)

Proposition 4.6. In superalgebras U(R) and U* (E), there exist elements ¢*(z) € U(R) and
ct(z) e U* (é) such as

I
Q

DLE(20)'D'L*(2) = L*(2)DL*(2¢)! D™}
DL (20D LF(2) = LF(2)DLE(2¢)' D!

(2),

& (2), (4.10)

and all coefficients of the series ¢*(z) and ¢ (z) belong to the center in U(R) and U™ (ﬁ),
respectively.

Proof. Considering the R-matrix R(z) in (4.3), multiplying both sides of the defining rela-
tion (4.8) by z/w — ¢ and setting z/w = (, we obtain

QLT (20)L5 (2) = L5 (2) L7 (20)Q-
It is noteworthy that P11 LE(2¢) = P LY (2¢)! and L3 (2¢)P! = LF(2¢)!P". Thus, it follows
from (4.2)

Dy PR Dy LE(20)£E (2) = £5(2) L5 () D7 PV Dy,

Dy PR LE(20) Dy L (2) = LE(2) Dot (20 PV Dy,

Dy PR LE(20)1D5 5 () = £E (=) Do () P Dy,

P Ly (2()' Dy ' Ly (2) D1t = D1L5 (2) DaLy (2¢) P",

PUDULE(:0) Dy LE(2) = £E(2) DaLE(:0)' Dy PP

P Dy £E () D5 LE(2) = £2(2) DaLE (=) D5 P,

Given that the image of the operator P! in End ((CQ’"HD”)®2 is one-dimensional, we have
P DoL5(20)' Dy L5 (2) = L5 (2)DoL5 (2¢)' Dy P! = &5 (2) P,

where we take the trace of the first copy of End C2" 1127 yielding equations (4.10).

To demonstrate that ¢*(z) is central, we only need to verify the case of ¢t (z) and £ (w), as
the other cases follow similarly. It is worth noting that by applying the partial transposition to
both sides of (4.9), we have

LT (20) R(24C/w_)" L3 (w) = L3 (w)R(2-¢/wy )" LT (2C)".
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Thus

& (2)Ly (w) = DiL (20)' Dy L1 (2)L5 (w)

— DyLF (=)' Dy Rz fw_) ™ Ly (w) £ ()R- fwy )

= DL () R(z4¢w_)" L5 (w) Dy £F (2) Rz fw) - <1>
= D1y (w)R(z—Cfw) L7 (20) Dy £ () R(a— fws) - y<1>

— L5 ()D1R(>—¢/wy)" Dy Rz fws) @C*(z) = Ly ()t (2),

where we have used (4.5). The proof for c¢*(z) follows a similar pattern as that for ¢*(z).
It is important to note that relation (4.6) ensures that c¢*(z) are central within the entire
superalgebra U(R). [ |

<

Introduce a Heisenberg algebra H,(m+n) related to the superalgebras U(R) and U (E) The
Heisenberg algebra H,(m + n) is generated by the elements 3, (p € Z\ {0}) and the central
element ¢, which satisfy the following relation [3,, 55] = 6, —s¥p, p > 1, where the elements 1,
are defined by the expansion

exp <g ﬁpzp> _ g(zq*(»‘)j

9(2q°)

and

9(2¢°/w) exp <; ﬁpzp> - exp <; ﬁsw_5>
— g(eq~/w) exp (z 19_st> exp (Z:Z 19>

s=1
Therefore, we immediately have the following proposition.

Proposition 4.7. There exists a homomorphism U(E) = Ho(m+n) @cpge,q— U(R) defined by

L1 (2) — exp (Z ﬁ_pzp> LY (2),  L7(2)—exp <Z 19,,ZP> L7 (2).

p=1 p=1

4.3 Quasideterminants and Gauss decomposition

Let A = [a;;] be an N x N matrix, where N = 2m + 2n + 1. Denote AY as the matrix
obtained from A by deleting the i-th row and j-th column. Suppose A% is invertible. The 4j-th
quasideterminant of A is defined as follows:

|Ali; = aij — ] (AY) el

where rg is the row matrix obtained from the i-th row of A by deleting a;;, and cz- is the column
matrix obtained from the j-th column of A by deleting a;; (please refer to [15, 27]). For example,
the quasideterminants of A = [a;;]ax2 are

|Al11 = an — aaag tasy, |Al12 = a12 — arag tasg,

|Ala1 = a2 — agsain taiy, |Alag = aga — ag1ay; ‘agz.
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Furthermore, we denote the quasideterminant |A|;; that boxes the entry a;; as

(1/11 ... al] o oe e alN
|Alij = @1 - |ai| - N
aNl e a’NJ e (I/NN

Now, we introduce the Gaussian generators in the super R-matrix algebras. In U (E), set the
universal quasideterminant formulas as below

() ... 1( ) 1(2)
hi(2) = = () n lfh.l(Z) ()|
E(z) ..o (2 |IE(2)

1=1,....n,....,n+2m+1,...,2m+ 2n + 1,

where
) o i) h5)
N4 1 : ’ : :
“ij(2) = b (2) () o () 1 ()]
) B |I5e)
) o i) G(e)
i\ : : : Lo
fji( 2) = lz:t nz) . lzi 1i-1(2) liu(z) bz
L) o i) |5()
Denote the matrices as follows:
:I:l 0 - 0 1 oeh(z) - eiN(z)
ﬁi(z) _ f21;(2) 1 0 7 Ei(z) _ O 1 e21\7:(2) 7
fﬁ1(z) f]j\[rz(z) e 1 0 0 1

and Hi(z) = dlag(f)1 (2)5+ s f)ﬁ(zl) Then £¥(z) has unique Gauss decomposition LE(z) =
F*(2)H*(2)E*(z). Since H*(2), F*(z) and E*(z) are invertible, we can write the inversions
of L*(z) as follows:

1 —2.:15(2) * hil:(z)fl 0
ey =
’ eNfl,N(Z) 0 hi (Z)_l
0 1 N
1 0
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In U(R), we denote the entries hi(z), e;tj(z), fj?:f(z) to express the respective triangular matrices
F*(z), E*(z), and the diagonal matrices H*(z), which are used in the same terms as the formal

series l;';(z) Thus, we have L*(z) = F*(2)H*(2)E*(2).

Proposition 4.8. From Proposition 4.7, we can express the homomorphism U(E) — Hq(m +
n) @clge,q—<] U(R) as follows:

ei(2) = es(2),  f2) e £i(2),  bF(2) > exp (Z ﬁﬂ,ﬁp) - hE(2).

p=1

Proof. It follows from the formulas of Gaussian generators. |

4.4 The homomorphism theorem

Consider the superalgebra U(fi(mm*l))Nfor [ <n (resp. U(E(m“"‘*”o)) for [ > n) corresponding
to the R-matrices R0 (2) (resp. R(™"=U0)(2)), which possess generators l;; [Fp] for | <
i,j <landp=0,1,2,.... It is worth noting that when [ = 0, R(ml”)(z) = R(2). In this section,
we will describe the connection of the superalgebras between U (R) and U(R(m|”_l)) for Il <n

(vesp. U (RM+n=10) for | > n).

Theorem 4.9. The mapping

i(z)  G5(2)

i(2) |15(2)

I5(2) = . AL,

defines a homomorphism U(ﬁ(mm_l)) — U(E(mm)).
To proving Theorem 4.9, we first establish some preliminary results. For v € End ((C2m+1|2”) ot
and fixed a;,b; € Zy,i=1,...,t, define the operators on (C2m+1|2”)®t as follows:

|b177bt>U:ZEzllg®®E£ivv <a17,,.,at‘-viZU'E:11®"'®E§f,

T Ty

where z; € Z are indeterminate. So that EJ! ® - @ Ebt = |by,...,b){ay, ..., a.

Now, we treat elements of the tensor product algebra End £C2m+1‘2”)®t QU (R) [[z, z_l]] as
operators on the space (C2m+1|2")®t, with coefficients in U (R(m‘”)). Therefore, for an element
of the form

X = Z El‘)lll R ® Egtt ® Xll)lll.'."'bciz7
ai,b;
we adopt the following standard notation Xgll,'.','b‘it = {(a1,...,a¢|X|b1,...,b;). The operators

(a1,...,a¢X and Ylby, ..., b;) are defined in the usual manner. In fact, for fixed by,...,b; € Zy
and X € End(CQmH'z”)@t ® U(R) [[z, zfl]], we have

X[by, .. b)) =D ER @ @EN @ Xpohfay, @),

T

where x; € 7Z are indeterminate.
Introduce the quasideterminant

= (2) li-(z)
si(z) = z%l(z) z};(z) ‘ = I5(2) — I () (2) 1 (=),
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and let the quantum minors series lbil‘;);az (z) with coefficients in U (E(mln)) as
linis™ (2) = (a1, 02| R(q7%) LT (2) L5 (24°) b, b2)
where a;,b; € {1,...,2m + 2n+ 1}, and set R(z) = 7q;(1__llzﬁ(z).

Lemma 4.10. For any 1 <1i,j < 1, we have

s5(2) = i (207) T (0 72). (4.11)
Moreover,

[151(2), 55(2)] =0, (4.12)

ﬁlﬁ(z)ﬁ(w) _ ﬁ;wiﬁ(w)lﬁ(z). (4.13)

g lze — qux Y gtz —quy ¥

Proof. By the definition of quantum minors, we have
lliju(z) = <1,i|§(q_2)£{t(2)ﬁ2i (zq2)|1,j> = —lﬁ(z)l% (zq2) — (—1)[i]q_llii1(z)l1ij (qu).
Then from relation (4.8), we find that
(1,i|R(z/w)LE (2) LE (w)[1,1) = (1,4|LF (w)LE (2) R(2/w)|1, 1),
a direct calculation gives
—(z/w = DI () (w) + (¢ — a1 z/wl (2) 15 (w) = = (gz/w — ¢~ ) (W)l (2).
Let z/w = ¢~ 2, we have
1 (2a7) i (2) = (=D 105 (2072 (2),
and hence
05 (2072) = =0 (207%)155(2) = (=)0 (2072) 15(2)
_ il — — -1
= —1i1 (207 15(2) = (=Mg 0 (20 72) i () (B3 (2)) 15 (2)
_ _ -1 _
= 151 (za ?)I5(2) + 15 (20 ) (2) (11(2)) 7155 () = 13 (27%) s55(2),
that is, sf;(z) = —lﬁ (zq_z)_llili(zq_Q), which implies (4.11).

For the remaining two equations, we only verify (4.13) since (4.12) is similar. First, we have
the following equation:

(1,1,4|Ro1 (24 /ws) Roa (20472 Jws) LE (2) Ri2 (q72) LF (w) LT (wg?)|1, 1, )
= (1,1, i\filg (q72)£ic(w)C;F (wq2)£§(z)§02 (z;qd/wi)ém(zi/w:ﬂﬂ, 1,5),
which is derived by the Yang—Baxter equation and relation (4.8). After a easy calculation, we
get
-2

-2
q "R+ — Wx 4 1 q "ZF — Wt +
= T IE()IF N (w) = ————=IF"(w)lF (2).
q_3zi — qu= 11( ) 1j ( ) q_gz¥ — quy 1j ( ) 11( )

Therefore,
O = 0O e (20T () = TG ) F (e ()
q_3zi _ q_l,w:': 11 11 i q_gz:': o q_lwi 11 ij 11 :

This implies the equation (4.13). [
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Consider the tensor product algebra End ((C2m+1|2”)®4 ® U(E(mln)) for 1 < 4,57 < 1. The
following lemma can be derived through direct calculation, similar to [20, equations (3.25)-
(3.31)].

Lemma 4.11. For 1 <i,j < 1, we have
RE™ () R (¢ RY™ (2q72) RS (2) RG™ (2) RS ™ (w)1,, 1, 5)
= C(2)REG™ (¢ 2)RYF™ (¢ 2) RSy D (2)]1,4, 1, ),

and
(1,4, 1, | RS (w) R (2) RSF™ (2) RT™ (2q72) RO (q2) RS (072)
= C(2)(1,i,1, 5By D () RG™ () R (¢72),
where
_ 2y o —1\2
C(Zw):(w Di-—¢)—(g—q )z

(wg=2 = 1)(z — ¢*)

Remark 4.12. Note that, the R-matrix R(z) has a singularity at z = ¢?. However, in

Lemma 4.11 and the proof of Lemma 4.10, we have not considered the singularity of the R-
matrix. Indeed, If we take into account the singularity of the R-matrix, similar to the non-super
case discussed in [20] and [21], as well as in the context of super orthosymplectic Yangians [32],
we have to redefine the following relation li‘g;‘” (2) = (a1, a2| L5 (zq~ )Ei( )R ( )\bl, ba), where
a;,b; € {1,...,2m+2n+1}. A similar calculation leads to the result sf]:( ) = li]h’( )ljE (2q )_1,
and the relations of (4.12)—(4.13). Moreover, in Lemma 4.11, we find that

(wg—q ")(zq—q7")
(w=1)(z—1)

2

C(z,w) =

when we replace ¢~2 with ¢2.

This means that, whether it is ]?i(qZ) or ﬁ(q”), both can be regarded as a constant coef-
ficient of End ((sz+1|2n) QU (R(’”'”) ) that satisfies the Yang—Baxter equation and the defining
relation (4.8) over C(g'/2).

Under the aforementioned constructions, we now proceed to prove Theorem 4.9.

Proof of Theorem 4.9. By utilizing the Yang-Baxter equation and the defining relations
in U (R), we derive the following equality:

2
=(mln) [ 24 S(mln) (% m|n m|n z S(min) /1 —
Rg3><w>R§3|>(w)Ré4|>( )R<|>< >R§2|>(q2)

wg?
X LE(2)LE (2q )R(’"'”( %) L5 (w) Ly (we?)
= R (a7) £ () (wa?) B (07?)

2
+ i (m|” mln) p(mln) (2N 5(mln) [ 24”
x LE(2)LE (2¢?) RS < ) (5) B () 7 <w>
Assuming that 1 <4, j,k,l <1, by Lemma 4.11, we obtain
m|n— Z\ B(mln) , — S(m|n) /1 — . .
(ks LURS™ Y (2) B (a72) L5 ()25 (202 R (472) £ (w) £ (wg?) [1,,1, )

<1 k,l,l|Rm|n ( —2)[’:|:( )£4 (wq )R(m‘ )(q72)
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x LE(2)LE (2¢?) R 1)( )u i1, 5). (4.14)
Set

Z EIZ l:l:lz E End (C2m+1\2n ® U(R)
4,j7#1,1

then (4.14) is equivalent to
S(m|n—1) [ Z ~(mln—1) [ %
B (D) g oot () = sfw)gs (R (2). (4.15)

Let S*(z) = Do 11 E; ® szij(z) By Lemma 4.10, S*(z) = —I5 (,27(1_2)_1£jE (2¢7%). Hence,
(4.15) implies that

R(min=1) (g) SE(2)SE (w) = S (w)SE(z) Rmin=1) (g) . (4.16)

Similarly, we also have

flmin=) (ZZU ) SEI8T(w) = ST ()t R (222 (4.17)

w
Now, (4.16) and (4.17) provide the proof of Theorem 4.9. [ |

We highlight certain consequences of Theorem 4.9, which can be verified using similar meth-
ods as in the non-super case (see [20, Theorem 3.9], and [21, Theorem 3.7]). Similar results also
apply to Yangians under the orthosymplectic superalgebras (see [32, Corollary 3.2]). Moreover,
these consequences follow from the Sylvester theorem for quasideterminants (see [15, 27]).

Theorem 4.13. The mapping

b @ e i) L ) )| (4.18)
Li(z) .. L(2) |I5(2)

defines a homomorphism
U(é(mm_l)) — U(ﬁ(mln)) for 1 <n,
and another homomorphism
U(E(er”_”O)) — U(ﬁ(mln)) for 1>n,
where the generators liij(z) of the superalgebras U(E(m‘"_l)) or U(E(m+”_l|0)) are indexed by
I+1<d,5<(1+1).

Remark 4.14. In the case of n = 0, there exists a homomorphism theorem related to the
non-super R-matrix algebra for type B, as documented in [21, Theorem 3.7]. Hence, our result

is encompassed therein.
The mapping (4.18) possesses the following consistency property, see [3]. Denote 1/1l2m+2"+1

as the map v; in Theorem 4.13, where we establish the equality

2m-+2n+1 2m+2n+1—-2k _ ;2m+2n+1
Ve oY = Vit .
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Corollary 4.15. Under the assumptions of Theorem 4.13, the following relations hold:

(2 ([ w)] =0, 2 E (I (w) =

¢ lzy —quy g lzr —quy

W+

(1 (w))I5,(2)

for1<a,b<l,andl+1<i,7<(l+1).
Proof. The proof is exactly as [20, Corollary 3.10] or [21, Corollary 3.8]. |

Assuming | < m + n, let FEO(2), EXD(2), and H¥D(2) be defined as follows:

T e
e ®) T, am @)
1 eljil,l+2(z) e elﬁl’(m)(z)
By = |0 1 . ,
- 7.0 ?)
0 0 1

and ﬁi(l)(z) = diag(hﬁl(z), cee hiﬂ)/(z)). Define the product of these matrices as
£E0(2) = FEO ) HEO () B0 (2).

Note that £F©)(2) = £L*(2).
The following properties observed in [20, Proposition 4.2] extend to the super case in a similar
manner.

Proposition 4.16. The series [; ()( ) coincides with the image (fthe generator series li( )
of U( ml”)) forl+1<i,j5<(l+1) under the homomorphism 1;; l =y li( ))

Therefore, we immediately derive the following corollary from Proposition 4.16.

Corollary 4.17. In U(é(m‘"))} we have
R(mln—1) (z/w)L] +( )( )ﬁ%t(l) (w) = ﬁ;t(l) (w)ﬁit(l) (z)fi(mln’l) (z/w),
é(m\n—l (Z+/’u),)£§l) (Z)E;(l) (w) — EQ_(l) (w)ﬁgl) (Z)E(mln—l) (Z,/”ULF)
forl <n, and
R (m+n—1]0) ( /w) ( )EZi(l)(w) — )CQi(l)(w)[,li(l)(z)é(ernfl\O)(z/w),
R(?TH-TL—”O (Z+/’UJ7)£§Z (2)£2—(l) (’UJ) — £2—(l) (’UJ),C&Z) (Z)E(TI’H-TL—”O) (Zi/er)

forl >n.

5 Drinfeld presentations in U(R) and U (ﬁ)

Based on the definition of Gaussian generators from Section 4.3, we first investigate the rela-
tions among these generators by applying the Gauss decomposition in the superalgebras U(R)
and U (ﬁ) Furthermore, the central elements mentioned in Proposition 4.6 are explicitly ex-
pressed in terms of forms of Gaussian generators. Finally, utilizing these established relations,
it is found that in super R-matrix algebras U(R) and U (E), their Drinfeld presentation arises.
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5.1 Relations of Gaussian generators

Proposition 5.1. Suppose thatl+ 1< j,k,s < (I+1) and j #3. Then in U(ﬁ(mln)); we have
the following relations. If s > j,

[e5(2), i (w)] = (—1)UH {(q‘ql)wiﬁ(” (w)ej;(2) — mﬁ( (w >ei<w>} :

[elj; (2), l:s(l) (w)] =(-1) FIERY

% {(q_q_l)lia)(w)elﬂ;(z) _ (q_q_l)zlkj(l)(w)els(w)} . (5.1)

zZ—Ww zZ— W

If s < 7,

[e(2), 17 (w)] = (~1)l Hw{ﬁ D(w)et(z) — 1F0 (w)ef (w)},

2F

120 w)] = -yl ) ) {0 ) ()~ P e )}
If s=7 and [j] =0,

O ) = T2 Dm0 ek ) - L V220 ),

P— e —ws

i ()l (w) = ‘-’_f_‘f”z;t;” (w)ej; (=) W@”’(w)ei(w). (5.2)
Ifs=j and[j] = 1,

i () (w) = (qz;q_%{z (w)efs (=) = 17" (w)ef (w)},

() (1) = (q—q 1) (FO @)eE(2) - EO(w)et (w)).

Proof. For convenience, we denote C* (El ® Ek) and C'~ (Ez ®EF ) associated with the param-
eter z4 /w_ and z_ /w, respectively, to be the coefficients of the position E’ ® E¥ in R( ).
Let [ =1, if j # s, then by the defining relations, we have

CH (B} © BR) 5 ()l (w) + CF (B © BY) b (2)IF, (w)
= IF,(w)I§(2)C7 (B! ® ES) + I, (w)lf,(2)C7 (B ® EJ). (5.3)
Since [, (w) = l,js(l)(w) + 1 (w)bhT (w)ef, (w), the left-hand side of (5.3) can be written as
C*(B] @ Bf)i; ()15, (w) + O* (B] @ Ef)1;(2)fF, (w)bf (w)ef, (w)
+ CF (B @ BY) g ()l (w).
On the other hand,
CF(B) © B)1i;(2)l (w) + CF (B © Byl ()1 (w)
= [ ()15 (:)C7 (B] © BY) + 1 (w)li; (2)C7 (Ej © B).
Thus, the left-hand side of (5.3) is equal to

CE (BT @ BRI (Y (w) + CE(B] @ B 7 (w)if (w)IE (2)ef, (w)
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+ CT (B} ® B)) I (w)li (2)e] (w).
Note that
CE (B} ® B (2)If, (w) = I (w)lf;(2)0F (B! @ B}) + 1T, (w)lf () CF (B} ® EY),
it can transform the left-hand side of (5.3) as

CF (B} @ BRI (Y (w) + CF (Bl @ BY) £ (w)IE (2)ef, (w)

S

+CF (B @ B]) i (w)if (2)ef, (w).

Furthermore, we find that
CE(EL @ B} (2)If, (w) = I, (w)If(2)CT (B! @ E3) + 1T (w)l5;(2) O (B @ EJ).
Bring it to the left-hand side of (5.3) and rearranging this equation, we obtain
1 j s\ F(1
CF (B} @ BRI () (w) — CF(B] @ B3 (w)ig (2)

S S

= CF (B @ B ()i (2)e5(2) - CF (B @ B)IFY ()i (2)ef, (w). (5.4)
Similarly,
CH (B @ BRI () (w) — CF(B] @ B3 (w)ig(2)
i\ 7t e
= OF (B} @ BN IEY ()l (2)e (2) — OF (B} @ B[ (w)if (2)ef, (w).

If j = s, the same argument gives that
C* (B @ BY)I ()1 (w)
= OF (B! @ B ()i (2)ef (2) — CF (B B (w)i ()] (w),
C* (B} ® BY)I5 ()l (w)
= CF(B] @ B (W)t (2)e; (2) - OF (B © B[ (w)If; ()¢ (w).
Moreover, Corollary 4.15 implies that

24 — W + F(1) Zx — W4+ F(1) 4
¢z — quz 11(2) kj (w) P p—— (w)l35(2),
W 1 Zg — Wi 1
mlﬁ(z)@( (w) = m@( (W)l (2). (5.5)

From the R-matrix ]5;(2), we list the coeflicients as below

-1

Z+ — W j a4 —q)z+
c (Ell ® E’]:) - q_lzz: — quwi’ o (Ejl ® E{) N (_1)[]] q(_IZ:I: - ;w$’
-1

e —aws
CE(E: @ El) = ¢l = quy
J s) = -1
(ol =0
:F
24+ — W .
— T j#s,
' g tzr —quw
CHE @ E) =<1, 1 j=s and [j] =0,
qz+ —q "W
. 1zi—qw¥ =s and [j]=1
:F

Therefore, after checking the coefficients of (5.4)—(5.5), we can derive all the relations for the
case [ = 1. The general case immediately follows from Proposition 4.16. |
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As a consequence, we have the following result.

Proposition 5.2. Suppose thatl+1 < j k,s < (I+1) and j # k. Then in U(E(m‘”)), we have
the following relations. If k > j,

—_ o Nuw _ 1),
[75:(2), 1" (w)] = (~1)irl {(qszq_w)ijEfE(w)l;‘;(” (w) — (qthfl(z)lﬁ(l)(w)} ,

z

o YHuw |
(), e ()] = (1)U {(ngw)fﬁ(w)lﬁ(” (w) - (q_qw)m ) <w>} .
Ifk<3j,
[f;%(ZHZ(”(w)}=(—1)“]+[”(qz¢ ”{fk, )5 (w) = F(2) 5 )},

[Fi(2): 1 (w)] = <—1>M(q‘_w){f$<w>zﬁ< (w) — fia(2)5." (w)}.

z

(¢ q_l)w$
g lzy —qug

FEE (w) = 2= F T O w)ih(2) + P w)HY (w),

g 2y —qus ’

1
+ +(1) _ R W o) + (q_q )w + +(1)
R w) = =G @) + LT w).

Ifk=j and [j] =1,

_ 1 w
PO () = S TDUE (70 o) 4 )70 )

¢ lze —qug V8

()0 w) = LW 0y ) ) 2O )}

Jl ¢ lz—qu LI gt
In the following, we consistently define

+ -+ + -

¢; (2) = ei,i-‘rl(z)’ fi (z) = fi-i—l,i(z)'

Let ct(min=0)(z) gresp. Ei(m+”_l|0)(z)) denote the central elements in U™ (E(mm_l)) ifl <n
(resp. U (R(er” 1o ) if L > n). Note that ¢£(z) = ¢ +(mln) (2). By Proposition 4.6, we find that

DLE(2O)D ™! = £E(2) eI (),

Taking the (2m + 2n + 1,2m + 2n + 1)-entry on both sides of the above equation and using the
Gauss decomposition, we obtain

b (20) = bE(2) "' EE(2). (5.6)

Lemma 5.3. In U(é(mw), the following equations hold:

b (2)ef(2) = ¢ e (2)bF(2), 1<i<n, (5.7)
()b (2) = ab; (2)ff (%),  1<i<nm,

b (2)ef (2) = ae (a7 22)b,0(2),  n+l<j<m+n, (5.8)
FF05 () =a "0 (2)ff (¢7%2), n+l<j<m+n
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Proof. By Theorem 4.13 and Proposition 4.16, we consider the R-matrices R(mIn=i+1) with
1 <4< nand Rm+n—=i+110) wwith n + 1 < 5 < m + n, corresponding to the superalgebras
U(RU™n=HD) (for 1 < i < n) and U (R0 (for n + 1 < j < m + n), respectively. Let
s =1 or j, then s+ 1 # 3. Applying the Gauss decomposition and defining relation (4.8), we
have

C(E; @ )by (2)by (w)eg (w)
_ nE + s+1 + + + s s+1
- bs (w)hs (2)6 ( )C(E ® Es+1) + bs (w)es (w)bs (Z)C(Es ® Es+1)'
By the super case of [4, relations (33)—(34)], [10, Definition 2] for type A, and the non-super case
for type B [21, Theorem 4.29], we have the commutation relations between h¥(z) and bhF(w)
(also see Section 5.2). Therefore, let w = g%z for s = i or w = ¢~ 2z for s = j. By examining the

coefficients of the above equation, we can obtain the relations involving the generators h¥(z2)
and ¢ (2), and the others are similar. [

Lemma 5.4. In U(E(mln))} we have

+ A2 ,

ere) = 6 (¢2¢), 1<i<n, (5.9)

+ _ +( 2m+2n—2j—1 .

em(z)——ej (g 1712), n+l1<j<m+n-—1, (5.10)
and

+ k(2 ,

fm(z) = fl (q Z<)7 1<i<n, (511)

+ _ _ ¢ ( 2m+2n—-2j-1 . _

f(j+1)(z) =i (g z), n+1<j<m+n-1 (5.12)

Proof. By Propositions 4.6 and 4.16, forany 1 <i<mnandn+1<j<m+n—1, we have
-1

(2) ~lot(mn— 1) (z) = plmin=i+1) ££() (¢* ZC) (D m|"—"+1)) , (5.13)
D, )_IA:I:(ern JH0) ()
— DUmnH10) (1) (2042 et an 1y plmn—j+110)) T (5.14)
where
pmin—it+1) _ diag[q™, . .., ¢, pm+n—j+10) _ diag[q®, . .. ’qaﬂ‘

Let s = i or j and consider the (5,35) and (s + 1,3)-entries on both sides of (5.13) and (5.1),
respectively, we find that

hi( 2i—2Z<) _ h;:(z)_lei(MM—i-&-l)(z),

_ez—Tl( )hi( )—1E:t(m|n—i+l)(z) _ th(qu_QZC)egt(qu_zzC),

and

9

+ m~+-2n—24 + —1t (madn—j
h]’ ( q2 +2 2]—1—1) _ hj ( ) ¢ (m-+n ]—l—l\())( )
e;l: 1(2’)[);‘:(2)_ Ei(ern J+1\0)(Z) 1h;t (Zq2m+2n 2]+1)e;t (Zq2m+2n 2j+1)'

As a consequence, we obtain

—eX ()b (6% 2¢) = ab; (" 220 e (6% 220),
and

e;:?( )b (2g?" A TH) = q_lf)ii(zqm“”_%“)e]i (zg2m2n=2+1y

Now (5.7) and (5.8) imply our claims of (5.9) and (5.10), while (5.11) and (5.12) are similar. W
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Proposition 5.5. In the superalgebra U(R(m‘”)) and U(ﬁ(m‘”)), we have

n hi(ch2i72) m hi ( 2m—2i+1

Ei ) = [ = o) H "H( 23 1;
)+

ha, )h$+n+1(q_12)’

+n+1
i=1 n-H

2m—2i+1

. mohE (0¥ t (2q _
= :1_11 hi(zéq%)) thn;éqzm 2i— l)hm+n+1( Winnia (0712).

Proof. Considering the matrix £+ (2) = £*(z) and taking the (2,2)-entry of (5.13), by the
Gauss decomposition we find that

03 (20) + I (2ObF (20ef (20) = {05(2) " + (7 () ()} (),
Proposition 4.6 and Lemma 5.3 together with (5.6) imply

h3(2)” E I (2) = B3 (20) + (O (206 (20) = ¢ (20T (2O (20).
As the proof of [10] (also see [4] or [40]), we have

(¢—q7")z
zZ— W

(e (2), f (w)] = (b3 (w)hE(w) ™" — bE ()b (2) 7)),
together with (5.7), we deduce that

bE(2) " M (2) = b (¢20) b (6%20) " bE(20)-
On one hand, ("= (z) = h=(2)b5 (¢%2¢), so that

I (2) = b (22¢) b (20 (2),

Repeat this process for ¢~ (%) and when | > n, relations (5.8) are used. Thus we only
need to know the formulas for (1% (2). Considering the superalgebra U(E(HO)) (it should be
noted that the required relations can be obtained in [21] based on Remark 4.5 (1)), then the
same argument allows us to conclude that

-1

hernJrl( ) Ett(l‘o)(z) = hi+n+1( )bm+n( ) hm+n(qz)
which implies that the formula &(™")(2) holds. The formula ¢=(™™)(z) follows from Proposi-
tion 4.8. m
5.2 Relations of Drinfeld generators
Now we illustrate the Drinfeld generators and relations in U (E) and U(R) by setting

X () =ef(z) = (=), X(2) =7 (o) =i (=),

Xi(2)=ef(z) —e; (32),  X[(2) = f;7(z-) = f; (24),
and the d-function 6(2) = > 7 2P. Note that the R-matrix of U, (g[(/n]Tn)) is

_ n—+m
R(Z) — _IZ ZE(I ® Ea + Z Ea ® Ea _12 Z(_l)[a][b]Eg X Ell))
a—q et e
q— q_l ] b, (a— q_l)z ] b
+ﬁ2(—1) Eg@Ea—i_ﬁZ(_l) Eg@Ea
=49 °z a>b =9 = a<b

Compare to the R-matrix f%(z) and by Remark 4.5 along with the quasideterminant formulas,
in the same way as presented in [4, 10] and [40] (where the original method was provided by [7]
for the non-super case), we can arrive at the following proposition.
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Proposition 5.6. In the superalgebra U(E(m‘”)), we have

b, (2)b5 (w) = h (w)h (), n+l1<i<n+m,
b ()b (w) = bF(w)h¥(z), 1<j<n,
g7+ —q tw_ gz —q tw .
q_Jer—_whjt(Z)b;F(w) = mbf(w)bf(z), 1<j<mn,
z w Zr — W . .

(rlzt—_;uhi< )b (w) = (fle—_qlbf(w)h?(Z% 1<i<j<m+n,

71 _ .
b () X (w)hE(x) = X (), ntl<i<n+m-l,

Zg— W

—1
b5, (2) X (b, () = L L UK (w), ntl1<i<nt+m-—1,
Z; —Ww
-1 — ~

0 ()X (w)hEe) = LR ), nt1i<ntmot,

h?jrl( ) ( )hz+1( )_1 - wf"‘(w)’ n+1 S 1 S n—+m— 17

Zy — W
= qzs —q 'w -

b7 () X ) = =X ), 1<i<n

—1 ~
() X () = ST R, 1<,

g lwg

0y ()X (Wb () = =X w), 1<) <n,

71 -
b%, 1 ()X (w)h JH() q%*_wqwxﬂ ), 1<j<n,
(¢7 Ly — gt w)X )—(qj[lz—q:Flw)XfE(w)XzjE (2), n+1<i<n+m-—1,
(F z—q w)Xi EFw) = (z —w)XF)XE (2), n+l<i<ntm-—1,
(02 = ¢T'w) X5 ()X (w) = (¢F'2 — ¢ w) X (w)Xf(2),  1<j<n-—1,
(¢ q“w)Xj w)z(z—w)Xf( )XEi(z), 1<j<n,

Xf(Z)Xf(w) = —Xf(w)XiE(Z),
together with

[)Afj(z),)?;(w)] =(q—q7 ")

< (5 (L5 st o) =6 () b e )

for 1 <i<m+4n—1. The commutation relations for e = £ are as follows:

XF ()X (w) = XF(w)XE,  1<ij<m+n-1, |i—j|>1,
hf(z))?;(w):f(/;(w)hf(z), 1<i<m+n, 1<j<m-+n-—1, li — 4] > 1.

Let m = 1,n = 0, then there is an R-matrix R (z) associated with the Lie superalge-
bra 0spz, (= 03). By Remark 4.5 (1), considering the decomposition of the Gaussian genera-
tors hf(z), e (2), fj[(w) in terms of the series liij (z), we can perform the same calculations as
in the non-super case of type B (cf. [21, Lemmas 4.8-4.11]). This yields the following relations

directly.
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Proposition 5.7. In the superalgebra U(E(1|O)), it holds that

b ()b (w) = bE()hE (), B ()T (w) = b (w)bi (=),

OE (I () = 0 (), BTN () = T b ()b (),
by (2)b3 (w) = by (w)b (2),

(g4 — g 'wg) (¢ 724 — g

2
(¢ 24 — qus) (q225 — ¢ 2wy
-1
—1 _ zZ w ~_
bi(z) X (w)hi(z) = TR (w),
Z:F—U)
1
1 z w
)X ()bt (z) = T R (),
Z+ —w

WX ) =

(7' — ¢ w) Xi (2) X{ (w) = (6712 — ¢Fw) Xi (w) X7 (2),
(X (2), X (w)] = (@72 — ¢~ V2)

< (5 (B2 ) it wn) ™ =5 (20) g i o))

Moreover, by Corollary 4.15, we have the following Propositions immediately.

Proposition 5.8. In the algebra U(E(mm)), it holds that

hi( )bm—i—n—i—l(w) = hi-&—n—&—l(w)h;’t(z)a Z S m + 7’L,
qu—_w;whz (2 )hernJrl( w) = ﬁbiﬁnﬂ(w)bf@), t<m+n.

Proposition 5.9. In the superalgebra U(R (mn) ), we have the commutation relations as follows:

e;t(z)hvi-s-n-s-l(w) = b;ﬁ+n+1(w)e;t(z),

& ()1 (W) = b (e (2), i <m+m,

ii(z)bjrwrnJrl(w) = b;i+n+1(w)fzi(z)a

ii(z)hrinJrnJrl(w) = hrinJrn+ (w)fzi(z), 1< m+n,

& () hn (W) = Fhin (@) (2), & (2)fippn(w) = fm—}—n(w)e (2), i<m+n-1,
emn (DT (0) = FF (w)eg . (2), e$+n(2)fi( ) = f(W)emyn(2),  i<m+n—1,
Can (2] (W) = ¢f (W)en i (2), Eppn(2)ef (w) = ei( Jemen(2),  i<m+4n-—
() = (@)iF (), @) = @) (),  i<m+n-

Proposition 5.10. In the superalgebra U(E(m‘”)), we have the non-commutation relations as

follows:

_ +
(a7 27 — qui) ey (2)€h 4 (0)
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= (23 — wi)€i+n(w)€i+n 1(2) + (qil - Q)wiei+n—1,m+n+1(z)
- (q_l —q)zzef g (w)eh,(w) — (¢~ —Q)Z$e7$n+nfl,m+n+1(w)7
(q_lz — qw) ei—l—n—l(’z)erﬂr:wrn(w)
=(z— w)eim(w)eimfl(z) + (q_l - Q)wei+n71,m+n+1(z)
- (q_l — Q)29$+n_1(w)ei+n(w) - (q_l - q)ze;lr:z—i-n—l,m—i-n—i-l(w)?
(22 = W) Tt ()i (0)
= (qflzi - qw:p)fhn(w)fi%_l(z) + (q
— (07" = QwgFi g (W) 1 (0) = (g
(2= 0) frmin1 (D)fsn(w)
= (q_lz - qw)fiwz(w) $+n 1( z) + (q_l - Q)wfrin—l—n—l,m—l-n—l—l(w)
- (q_l - Q)wquurn(w) m+n_1(w) - (q_l - Q)2f$+n—1,m+n+1(z)-
Proof. Indeed, by (5.1) and (5.2) we have

-1 +
- q) w:!:fm+n+1,m+n— 1 ('U})

—1 +
- C]) Zifm+n71,m+n+1 (Z)v

m+n 1( )bern( )ern( ) bern( )m+n(w)e7:|r:z+n 1( )

q " —q)wt qg  —q)z
= %hnﬂrn( ) rirL+n—1,m+n+1(z) - (_7):Fhm+n( ) m+n 1m+n+1( )
p2e 2
and
q "2y —qu4 +
m4n 1( )hern(w) = Z; —wy hrﬁ«#n(w)em—l-n—l(z)
-1
(a—a7 )2
e —wy bqu+n(w)ej7:z+n—1(w)'

Hence, those two equations give the claims of relations ¢ ine1(2)ef 4, (w), and the others are
similar. |

Now, from the above results and applying Theorem 4.13 and Proposition 4.16, we conclude
the following theorem.

Theorem 5.11. (1) In the super R-matrix algebra Q(E(m|")), it satisfies the following relations
with the series h;(z) fori=1,...,m+n+1, and X;E(z) forj=1,...,m+n:

b (2)b; (w) = b (w)b; (=),

Ve Skl U g ws e |
mh (F (w) = S D) for i<n,
bE(2)hF () = hF (w)hE(2)  for n+1<i<n+m,
B __AF Wt + o
7o — qijh (2)bF (w) = P B——— hf(w)hi(z)  for i<y,

(qzi —q 1w¢)(zi —qug) o
(7 t2+ — quz)(qze — we)

_ 1 —
T e W)

hm+n+1 ( )brfz—i—n—i—l (w)

The relations involving b (z) and )?Ji(w) are

Zr — W

b (2) X (w) =

- N ’
peCTy g q(5i704j)jo (w)bh; (2) for i#Fm+n+1,
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qf(ei»aj)z:t — q(‘fi,aj)w ~

b (2) X (w) = o w Xf(whf(z)  for iFmtn+tl,
~ L —w)(ze —w ~
D1 (2) Xy (w) = (ziq_ qiw) (3E11:$ _ q)w) X (W) 411 (2),

ze — ¢ tw) (¢ e — qu) <
: = _)Lq) = S RN E)

f)i+n+1(2))~(;2+n(w) =
and

h$+n+1(z))?f(w) = )Z'f(w)hi_mﬂ(z) for 1<i<m+n-—1 e=+=+.
The relations involving )?j[(z) are

(2 = wg ) X5 (24') X (wg’) = (2000 —w) X5 (we’) X7 (20')
for1 <i,5 <m-+n and (i,5) # (n,n), together with

X ()X, (w) = =X (w) X7 (2),

and

—C

_ 2q
=0 (0 —a; ") <5< "

w

_ 2q°\ _ _
) b (wbf(wp)™ =4 (q) D1 (z4)b; (24) 1)
for 1 <i,5 <m+n. The Serre relations are for e = +,
21,22 |[)~(ii(21>’ [Xf(ZZ)va(w)H =0 if 1#mn,m+n,

Symzl,zmzs [XT:ELJrn(zl)? |[)?7:5+n(z2)7 |[)?n:5+n(z3)a )?7:754_”_1(11))]]”] = 0,
X (), X ()], Xy (22)] X (wa)] =0 if n> 1

Sym

Sym

21,22

(2) In the super R-matriz algebra U(R(m|")), it satisfies the following relations with the
series hi(z) fori=1,...,m+n+1, andXJi(z) forj=1,....m+n:

hE(2)hT (w) = h¥ (w)hi(2),

cp kT = a T WE Gz g 0
9((2¢°/w) )q_1th S hi (2)hf (w) = g((2q™¢/w) )q—lzqc m—— (w)hi (2)
for i <mn,
9((2q°/w) =) b (2)hF (w) = g((zq~¢/w)™")hF (w)hi(z),  for n+1<i<n+m,
9((ea /o)) S EBEERT () = g((a" ) ) T T ki (@)
for i<y,

9((2¢°/w)*)

(g2+ — ¢ twg) (a7 %2 — ¢VPws)

L
(q_lzi - qw:F)(ql/QZ:t — ¢ 1 2wg) metnt1 (2 (W)

(g2 — ¢ tws) (%25 — ¢Pwy) o (w)ht

z )
(7 2s — qua) (g 22 — g~ H2wy) M mtnt1(2)

= g((zq~¢/w)*")

and the remaining relations as same as U(ﬁ(m‘")) by replacing the generators b;(z), )~(Ji(z)
as hi(z), X]i(z).
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Proof. Here, we only need to prove the Serre relations. Since the Serre relations in both
U (R(m‘”)) and U (R(m‘”)) have the same forms, we will focus only on the relations for the
superalgebra U (R(m‘”)). Set

X (zq™) = (a— ¢ ")iF(2) = (6 — g, ) Y 7,27,
PEZ
b (za )b (2q ) T = @ (2) = K exp(ai — g ') Y dieez™
>1

Therefore, the Serre relations take the forms

SymTl,Tz [[x"ze‘,m? [[1.'577“2,1‘;:‘:175]]]] =0 if 4 7é n,m+n,
Symrl,rz,r3 [[‘,Ein-‘rn r1o [[‘,Ein—i-n ro) [[‘,Efn—‘rn r3) :kfn—i—n 1,51]]]]]] = 07
Symsl,SQ[Mxn 1,y J"n sl]]v n+1 rz]]7 xn 32] =0 if n > 17

where r; and s; are arbitrary integers. Furthermore, by the defining relations, we can derive
that

. 1 [SA’LJ]’L 2 :i:
[ai,i&xj,k] =+— S :F| o/ jerk

Now, as the original methods of [28], the Serre relations can be proved by an induction on the
integers 7; and s;, and more details please see [35, Section 5.1] and [29, Section 4]. [

6 Isomorphism theorem

In this section, the superalgebra A, is defined using the Drinfeld generators obtained from U(R).
The statement suggests the existence of a homomorphism, denoted as AR, from A, to U(R).
Additionally, the quantum affine superalgebra U, (g) can be viewed as a quotient algebra of A,.
This implies that U,;(g) can be embedded into A,. By leveraging the L-operators of U,(g) and
the vector representation from Section 4.1, an inverse map of the given homomorphism AR can
be established. This suggests that A, is actually isomorphic to U(R).

6.1 The superalgebra A,

Definition 6.1. Let A, be the superalgebra generated by the generators h;(z) (i = 1,...,
m +n+ 1), and Xi(z) (7 =1,...,m+n) with the same relations in U(R(m|")).

Combining the generators :B » iU, ;(9) with the formal power series
= Z xfpz”,

PEL
and defining

Z <I>Z L2 KjEl exp( Zal ﬂzﬂ> (6.1)

>1
Proposition 6.2. The coefficients of ¢*(z) as the form in Proposition 5.5 are central elements
of algebra A,. Moreover, the map such that
q“? = ¢°/?, (—1)[0‘1'}37;#(2) = (g — qi_l)lef(zq*”i), 1<i<m+n,

O (2) = Wiy (za 7 )hF(z¢™) 7, 1<i<m+tn,
define an embedding T: Uy(§) — Ag.
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Proof. The central elements and the homomorphism are obvious. To show the injectivity, we
will construct a homomorphism p: A, — Uy(g) such that p o 7 is the identity homomorphism
on Uy(g).

We first construct a map p;: Ag — Uy(g) such that

XE() = (D) (g =g o (0), 1<i<man, ) S TEG).
To explain the element I';"(2), there exist power series x*(2) with coeficients in the center of A,
such that k¥ (2)k*(2¢) = ¢*(2), where
—op_o\—1
H (2 e (27 (6.2)
Then we have the endomorphism ps: A, + A, such that X3 (2) = X5 (2), hf(2) > & (2)hF(2).
So that b (2)k™(2)hE (20)kT(2¢) = b (2)hE(2¢)c*(2). Hence, denote that

n+m n-+m

I‘i Fi (2¢) = H@i (2Cq™" 11_1(13jE 2¢q") H@i (2¢"*) 71, i=1,....,m+n,

and
n+m n+m
Frin+n+1( )Fm—l-n—l-l 2() = H q)i (2¢g™*) 7" x H ‘I)lf(chyk)-
k=1
x4+ _ L. F&E
Set @°(2) =k ®;(2), then
[e¢) n+m~ 1~ _ I~
= H H (I)f(chm?qfwc)_ (I)l:cl:(ZCfQPfquVk)@kﬂ:(ZCprflquk)— (I)k:t(zngprqyk)
p=0 k=1
i—1 _ n
< I @5 (zq) [ %
k=1 k=i
fori=1,...,m+n, and
oo n+m . )
+ i — =+ _9m—1 — =4 T, _
Fm+n+1 H H <I> ZC 2p l/k) (I)k (ZC 2p lq Vk)q)k (ZC 2p 1q1’k)
p=0 k=1
X @% (ZC_QP_Qq”’“) H q)f(zq”’“).
k=1

Under the constructions above, it is straightforward to show that p; is a homomorphism. In
fact, we demonstrate that the relations between the generators hli(z) and Xl-i(w) are preserved
under the map pq, as the remaining relations among all the generators can be verified in a similar
manner. In algebra U, (§), we have

24 — wq(azvaj)

. T1
wiq(a“%)—z) o

+1
(ag,0) _
Z+q w
& (2)7] (w) = (i> 3 (w)®] (2),

W4 — zq(aivaj)

@ (2)af (w) = (
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A direct calculation gives that

Ziq*(Ei:a]’) — wq(g’iro‘j)

TF(e)af w) (T () = . )
I (2)a7 (w)(TF (2)) ' = z;q_(siz)_— - Ty

fori#n+m+1, and

24 — 7111) 712 —quw
T2 (D 0) (T (9) ' = 4 = _)S = Lt (),

_ _ o —w)(zx —w)  _
F7:’|r:z+n+1(z)$m+n(w) (F7T'L+n+1(z)) ! = (Z:'Eq qiw) (311::': . qw) mern(w)

This implies that

pr(hF ()X (w) () ) = pr(RF(2)) - u(Xf(w) - pr (B (2)) ),

where € = +1.
Set p = p1 o pa, it is easy to see that the map p o 7 is the identity map on U,(g) by the
formulas ¢*(z) in Proposition 5.5. [

Proposition 6.3. Between the algebras Uy(g) and Ay, we have the tensor product decomposition
Uy(8) Bc(qrrz) € = Ay,
where € is the subalgebra of A, generated by the coefficients of the series c*(2).
Proof. In the proof of Proposition 6.2, we can define a surjective homomorphism p: A, —
Uy(g) ®C(q1/2) ¢ such that
XE() = p(XE(2) @1, 1<i<m+n,
hi(z) = p(hif(2)) @ wE(2), 1<i<m+n.
On the other hand, there is a map from U, (g) R (q1/2) € tO A, by
a® 1 7(a), a € Uy(g), 1@ kE(2) = kT (2).

It is easy to see that the above map is a inverse homomorphism of p. |

6.2 Decomposition of universal R-matrix and inverse map

First, we recalled some properties of the universal R-matrix. Using the same notations of [26],
we set

2 n n a
. x x x gt —1
exp,(z) =1+z+ . + (4! + nE>O ()l (a)g 1

Consider the h-adic settings and let ¢ = exp(h) € C[[A]]. Introduce elements hy,...,~pim
by defining K; = exp(hh;). Let A, KJF and @ be the affine root system, affine positive root
system and affine root lattice of §, respectively. There exists a bilinear map Q x Z — @ such
that (o;,0) — a; fori =1,...,m+n and (—0,1) — ag. Let A, denote the reduced root system
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obtained from the positive root system A, of g by excluding roots o such that «/2 are odd
roots. Then the reduced positive root system with multiplicity of g, denoted by A, is given by

A, =ATUA™UAT,
where AL = {(a,k) [ @€ A,k >0}, A™ = {(0,k) |k >0} x I, A% ={(~a,k) | a € A,
k > 1}. Establish a fixed ordering on A, (see [25, Section 3] and [35]), and for any a € A, set
(o = (—1)lelgl@a),

Proposition 6.4 ([25, Theorem 4.1]). The universal R-matriz R (up to a multiplicative con-
stant) of Uy(g) has a unique solution, and takes the form

-
R= ][] Ra K=RIR"R. K,

a€;+
where
9{>0 — H expd;1 ((_1)[0] (q _ q_l)c(a)_leia ®3a)’
aeéJr\ﬁim
SR<0 — H equ;1 ((_1)[@] ((] _ q_l)C(Oé)_lef,a ® gia%
ach \Am
m—+n
= exp <Z Z [M 1)Cij(k)€k;6(i) X Sk(s(j))y
k>01,9=1

where IC = Tq~¢®d-d%e T = exp(hA%’mflhi ® h;) fori,je{l,...,n+m}, and (Asym)?;rn; =
AY™ = CA is the symmetric Cartan matriz and C' = diag(1,1,...,1/2). c(a) be the coefficients

determined by [€q, o] = c(a)K§ —Rs | where (cij(k)) is an inverse to the matriz (¢;j(k)) with

the elements determined by o
KF— K5*
Cposti)s Srstn] = Cij (k) —2——0—.
[ k6(®) ké(J)] ]( ) q—q-1
From Section 3, we have R(2) = R0 (2)RY(2)R<0(2), where
w0 = ] J]exps( 1) (g0 — g3 ")z (o + k6) ™ Eains @ Fartks),
a€A, k>0

RO(2) =71 H H exp, —1 D (gy — gz 2P e(—a+ k)T _pqrs ® Fatks)T,

acA, k>0

n+m -1
ql_qz ((] —(]-) k sym -1 c —kc
- (Z > S AT () T P @ g /2) "
k>01,7=1 q

Here ASY™ (qk) = (Aj;’m (¢" ))Z";r:n; = ([Af;’m] o )?;rm be the g-deformed matrix of the symmetric
Cartan matrix.
Furthermore, the inverses of A%™ and A%™(q) for g are (i > j)

wmy-1_ | —J  1<j<n, N s /10,
(457 = {j —2n, n<j<m+n. (Aij (@) = det(A%™(q))’

where

det (A% (q)) = (=1)"([m — n]g — [m —n — 1],),
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and
(( 1)n+1[] 1<j<n, i=m+n,
(=D)"[j — 2n]q, n<j<m-+n, i=m-+n,
Af(@) = ()" lg(Im —n+ilg—[m—n+i—-1],), 1<j<i<n,
(=D = 2nlg([m +n—ilg —[m+n—i-1]y), n<j<i<m+n,
()™ (It n—ilg— m+n—i—1]), 1<j<n<i<m+n

For the L-operators £%(z) as defined in equation (4.1), let us establish the following notations:
Lt (2) = Y (2)st(2), L7 (2) = £ (2)k ().

By the defining relation of x¥(z) (see (6.2)), the coefficients of the series in 2*! belong to A,.
Therefore, by Proposition 4.2, we have

R(z/w)Li (2)Ly (w) = Ly (w) LT (2) R(z/w),
R(z4/w-) LY (2) Ly (w) = Ly (w) LT (2) R(2—/wy).

Proposition 6.5. The map defined by RA: L*(z) — L*(2) establishes a homomorphism from
the superalgebra U(R) to A,.

Proof. This is straightforward. |

Denote the matrices

Fr(z) = (1omR(¢""?),  E'(z) = (1@mR(zq?),
F(z)=(1enR((2¢*) ), E(2)=(1onRs((2¢*) )7,
HY(z) = Qom0 ()t (2),  H (2) = 1om)Rg (2,3 ) v ()L

For the Drinfeld generators xlik of Uy(g), let

_ - _k — <0 _ — —k
=Y andt, @0 =Y ah ()=

k>0 k>0 k>0

_ + —k
= Z Li—k*

k>0
Then set for 1 <i<m+n —1,

(=D g =g )af (-7 e () = (D) (gi — g7 )7 (214"
7 () = (DD (g7 = a)af ()=, e (2) = (D (g - i)y ()

>
+

R
Il

and

22 ot

f'r—z:-m(z) = (_1)[an+m] (Qn—i-m qn+m dn+m n+m Z— q

)[2] )
fr7+m(z) = (71)[an+m] (qr:—il-m Qner) 2 ééim 7Jlr+m Z+q )SO
e:Jrj(z) = (_1)[an+m} (qn+m qn—l-m) [Q]qm—m T_H—m(z'i'q )207

erim(z) = (D)) (gl — i) (2162 2 (gm0,
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Proposition 6.6. Under the above construction, we have the following decomposition:

1
fifz) 1
i#(2) = () B (2) B (2) = Cfha()
_frjzt+m—1<2‘1) 1
—ff(?<q2) 1
1 ef(2)
. 1 eq:i:er(z)

x H*(2) x 1 = p(20) ,

1 e%(quQ)

where

HE) = () o () (1, o)
C:I:(m—l)hiH (Zqu 1) 7C:|:(m)h7:il: (qum—S) o ,Ci(n+m)(z)h:1t(ZC)_1).

Proof. We only consider the decomposition of L (z) since L~ (z) is similar. By the isomorphism
relations in Theorem 2.3, for simple roots a; with i = 1,...,m + n, we can write the product

[ exp_pyeag (D (@ - g7t (207%) €y 16 © Bar o)
k>0

as

11 EXP(_yfelg? (=1 (g; — g1 (quc/2)kx;rk ®T;_p)-
k>0

Suppose that i < n, then by the representation 7y presented in Proposition 4.1 for V(1) =V,
we get

(1®7y) H eXp(—l)[D‘i]qi_l ((*1)[%] (q —q; )( 6/2) xz’,k ® x;—k)
k>0
= [T exppyong (D (g = a7 ") (z-0) "afy @ B = (1)) (g - q;7")
k>0

2n—2m— H—l)k + ®Ez

X (Z q 1+1)

Expanding the g-exponent and using the definition of f;"(2) and z; (2)>°, we deduce that
1+ f+( ) ® E’Jrl fJr (z{qm) ® E’ ; for ¢ < n as required. A smular calculation shows that
this holds for n < ¢, thereby glvmg us the expression of F't(z). For E*t(z), first from the
definition elements of k;— K; = exp(hh;), we have

n+mn+m

(1@ m)(Tra) = exp(hz S () himw)

=1 j=1
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n—+m 1
- exp{h > (Z (Am™)” "hi @ (Ejﬁ - Eﬂ Ejﬁ + Eﬂ)
i=1 \j=1

+ (AN hi @ (~Eyi + By + B - By)

m+n—1

sym 1 i+1 1
+ > (AT hi® (B - BN - EJ +EZ)
Jj=n+1
+ (A7) hee (Bt - o)) )
n+m n
= exp{ﬁz (Z Aszml)il — (Af;,m) )h ®( E])
i=1 \j=2

_ m—+n
+ (AR e (Bf - D+ Y0 (A7) - (A7) Nk
j=n+1

® (B - ) }.

By the formulas of (A?;-’m)_l, it is evident that the image (1 ® my)7T forms a diagonal matrix
given by

n+m n+m n+m
diag<H kiy. .. H Kjs oo kmans Lk T w) (6.3)
=1 j =1

Followmg the same calculation procedure as for F+(z), and utilizing the relations k;z T Tk Wk 1=

q; £Ai xjck, we derive the expression for E+( ) in the decomposition. For H *(2), actually, using

the vector representation 7y, we obtain HT(z) with the form

n+m _ -1
— exp(ZZ " ( =) 5 )[,S(](Aigym(qk))lzkaz’,k@w(%,k))

k>01,7=1

X (1 ® Wv)TK (Z),

and it is a diagonal matrix due to the action of the generators. For the exponent in this
expression, consider the (i,7)-entry, we have

n+m
eXp{Z > (@ —a) A" (g )_1zkaz’,k} ® B, (6.4)

k>0 i=1

and

n n+m
eXP{Z(Z(% — g7 (@A ()T = A )T+ Y (-
=1

k>0 i=n-+1

(P AT (") = AR () 7)) i} © B (6.5)

for j=2,...,n+m,
As the coefficient of E in (6.4),

exp{z Mzm a) A (g )1zkai,k}

k>0 =1
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n 4 [m—n+j]qk—[m—n+j—1}qk
(Z(q ) [m —n]p —[m—n—1]4

—j]qk—[m+n—j—1]qk

fs

k>0

m+4n—1
m—l—n
* Z -7 [m—mnlx —[m—n—1]
j=n+1 q q
1
_ g1 k.
i (Qm+n qm+n) [m — n]qk —[m—n-— l]q’“>z al,k}.

By a directly calculation,

n+m
oof S St 7))
q(2nfj)k _ q(f2n+j)k<-fk

k>0 =1
n ) qik —q m+n—1
:exp{Z(Z(q—q_)Xl+<_k + Y (¢—q e
j=n+1

k>0 \i=1
n—m)k __ q(m—n+1)k)> . }
25k (-

fikcfk

(Qm+n - q;ﬁs—n) (q(

- L+ ¢k
Using the Taylor formula, we expand the fractions into power series as
m+n—1 oo
eXp{Z Z Z q—q 1 (C pk _V1k1+c (p+1)k ”k)zkazk}
E>0 i=1 p=0
(gl )6y b }

x exp{Z > (@min = Guhn) (1P (PR TR 4 ¢ A DRGmmnt DRy K

k>0 p=0
Set ®F(2) = k'@ (2), where ® () is the definition (6.1). Then the above expression take the

form

[e%¢) n-l—m~ I~ B
IT IT @3 (¢ ) 0 (22 g7 ) & (2671 ) @y (22 %¢™).

p=0 k=1
Therefore, applying Propositions 5.5 and 6.2, we deduce that
n+m )
oo S 0 )i o mmeeta <
k>0 =1

for &J;r( )=k, 1h;§_1( g ")hi (2¢7¥)~! and the formulas of diagonal matrix (6.3).
Moreover, by the similar arguments and the formulas of A;}'m (q ), the expression in the

position Eg, j=2,...,m+n,of (6.5) can be determined as

oo j—1
TTTT @0 (¢ ) 70 (262 q ) @ (26 1g ) & (¢ ) ™
p=0k=1
oo n+m " _ N
% H H CI);: (Z<72pq71/k)—1(1)2_ (ZCprflquk)—l(I)z- (ZC—Qp—lq—uk)(p;: (ZC 2p 2qz/k)7

p=0 k=j

and hence T;(1® 7rv)7'/£+( ) = h+( ) via Propositions 5.5 and 6.2. The remaining expression
,m + n, are similar. So, we have the diagonal matrix H*(z). ®

in the position E i=1,..
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Remark 6.7. The submatrix decomposition in this proposition for the indexes n +1 < 7 <
2m + n + 1 have the similar result in [21] via Remark 4.5 (1).

Now, the main result in this section, we claim the following.
Theorem 6.8. The superalgebra U(R) is isomorphic to A,.

Proof. It is straightforward to observe that the map AR: A; — U(R), defined as follows:

X (2) = X () = fiT (=) = f7 (20),  1<i<m+n,
X7 (2) = X; () =€f (1) —e; (=),  1<i<m+n,
hi(w) = hi(w), 1<j<m+n+l,

defines a homomorphism. On the other hand, Propositions 6.3 and 6.6 collectively imply that
the homomorphism RA serves as the inverse map of AR, thereby completing the proof. |

Definition 6.9. The R-matrix presentation of quantum affine superalgebra UR( ) is an as-
sociative superalgebra over (C( 1/ 2) generated by an invertible central element ¢“/? and ele-
ments l [$p] where the indices satisfy 1 < 4,5 < 2n+2m+ 1, subject to the following relations:

10)5 0] = L0 [0] = 1, Blo] =15[0] =0  for >,
(Z/w)Li() > (w) = Ly (w)L¥ (2) R(z/w),

) =
R(zy /w_)L{ (2)L; (w) = Ly (w )L+( JR(2— /wy),
DL*(20)'D™'L*(2) = L*(2)DL*(2¢)'D~ ! = 1.

Here z4 = 2¢*%/2, and Lfc(z) € EndCY @ EndCY @ U(R), i = 1,2, written by
=) Eielelj(), =) 19Ee5(2)
a] 1 ,_] 1

with
leg )2

Using the same notation of the R-matrix superalgebra U(R), we have the following result
immediately.

Corollary 6.10. The mapping

¢* gtz - (DO (g - g T XE(g™),  1<i<m4n-1,
AUm+n - -1 — n—m

mi+n(z) = (_1)[ + }(Qm—‘rn - qm}‘rn) [2}q7,1L_/~_iX7:rtz+n(2q )7

OF(2) = B (2 ) hE(2¢7) ™, 1<i<m+n,

define an isomorphism Uq(g) — L{f(@).
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