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Abstract. Given a tuple of holomorphic differentials on a Riemann surface, one can define
a Higgs bundle in the Hitchin section and a natural symmetric pairing of the Higgs bundle.
We study whether a Higgs bundle of rank 3 in the Hitchin section has a compatible harmonic
metric when the spectral curve is a 2-sheeted branched covering of the Riemann surface.
In particular, we give a condition for Higgs bundles in the Hitchin section on C or C∗ to
have compatible harmonic metrics.
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1 Introduction

1.1 Harmonic bundles

Suppose that X is a Riemann surface. Let E be a holomorphic vector bundle on X and
θ ∈ H0(X,EndE ⊗KX), where KX is the canonical line bundle of X. The pair (E, θ) is called
a Higgs bundle and θ is called a Higgs field.

Definition 1.1. Let (E, θ) be a Higgs bundle over X. A Hermitian metric h of (E, θ) is called
harmonic if

F∇h
+
[
θ, θ∗h

]
= 0, (1.1)

where ∇h is the Chern connection of (E, h), F∇h
is the curvature of ∇h and θ∗h is the adjoint

of θ with respect to h. Such a tuple (E, θ, h) is called a harmonic bundle.

Remark 1.2. When X is compact, for a C-vector bundle E on X, the degree degE is defined
by

∫
X c1(E). The equation (1.1) means that the connection ∇h + θ + θ∗h is flat. Therefore, we

implicitly focus on holomorphic bundles of degree 0.

The trivial bundle OX = X×C has the trivial Hermitian metric hX defined by hX(a, b) = ab̄.
If a harmonic bundle (E, θ, h) of rank r on X satisfies det(E) = OX , Tr θ = 0 and det(h) = hX ,
(E, θ, h) is called an SL(r,C)-harmonic bundle.

The equation (1.1) was introduced by Hitchin in [2] as the dimensional reduction of the self-
duality equations. It is an important question whether a harmonic metric exists for a given
Higgs bundle. Because (1.1) is a nonlinear partial differential equation, it is difficult to solve
it for general Higgs bundles. For Higgs bundles on compact Riemann surfaces, the following
theorem, due to Hitchin and Simpson, establishes the existence and the uniqueness of harmonic
metrics, and it is the most fundamental theorem about harmonic bundles.
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Theorem 1.3 (Hitchin [2] and Simpson [8]). Suppose that X is compact. A Higgs bundle (E, θ)
on X has a harmonic metric if and only if (E, θ) is polystable and degE = 0. Moreover, if h1
and h2 are harmonic metrics of (E, θ), then there exists a decomposition

(E, θ) =
n⊕

i=1

(Ei, θ|Ei),

such that cih1|Ei = h2|Ei for positive constants c1, c2, . . . , cn and this decomposition is orthogonal
with respect to h1 and h2.

For general Higgs bundles on noncompact Riemann surfaces, it is unknown when a harmonic
metric exists. Suppose thatX is the complement of a finite subset in a compact Riemann surface.
In [8], Simpson gave a sufficient condition for the existence of a harmonic metric of a Higgs bundle
(E, θ) on X. Let gX be a Kähler metric satisfying the condition in [8, Proposition 2.4]. Let h0 be
a Hermitian metric of E such that F∇h

+
[
θ, θ∗h

]
is bounded with respect to h0 and gX . We can

define the stability condition for (E, θ, h0) as explained in [8, Section 3]. Suppose det(h0) is flat
for simplicity. If (E, θ, h0) is stable, then there exists a harmonic metric h of (E, θ) with h0
and h is mutually bounded [8, Theorem 1]. In addition, Theorem 1.3 is generalized also for
filtered Higgs bundles. It was proved by Simpson [9] in the tame case and by Biquard–Boalch
[1] and Mochizuki [7] in the wild case (see Section 2 for details).

1.2 Higgs bundles in the Hitchin section

1.2.1 Non-degenerate symmetric pairings

For a Higgs bundle (E, θ), a holomorphic symmetric pairing C of E is called a symmetric pairing
of (E, θ) if C(id⊗ θ) = C(θ ⊗ id). A harmonic metric h of (E, θ) is said to be compatible with
a non-degenerate symmetric pairing C of (E, θ) if the isomorphism E → E∗, v 7→ (w 7→ C(w, v))
is an isometry with respect to h and h∗, where h∗ is the Hermitian metric on E∗ induced by h.

1.2.2 Higgs bundles in the Hitchin section

Let qj be a holomorphic j-differential on X for j = 2, . . . , r. The tuple (q2, . . . , qr) is denoted
by q. We fix a line bundle K

1/2
X . The holomorphic differential qj induces the morphisms

K
(r−2i+1)/2
X −→ K

(r−2i+2j−1)/2
X ⊗KX

for i = j, . . . , r. Then we can construct a Higgs bundle (KX,r, θ(q)) of rank r as follows:

KX,r =

r⊕
i=1

K
(r−2i+1)/2
X , θ(q) =


0 q2 q3 · · · qr
1 0 q2 · · · qr−1

0 1
. . .

. . .
...

...
. . .

. . .
. . . q2

0 · · · 0 1 0

 .

These Higgs bundles (KX,r, θ(q)) were introduced by Hitchin in [3] and are called Higgs bundles
in the Hitchin section. If X is compact, then a mapping, which is called the Hitchin fibration,
from the moduli space M of polystable SL(r,C)-Higgs bundles on X to

⊕r
i=2H

0
(
X,K⊗i

X

)
is

constructed by assigning to [(E, θ)] ∈ M the coefficients of the characteristic polynomial of θ,
and these Higgs bundles (KX,r, θ(q)) form a right-inverse of the Hitchin fibration.
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1.2.3 Symmetric pairings of Higgs bundles in the Hitchin section

A Higgs bundle (KX,r, θ(q)) in the Hitchin section has a natural symmetric pairing CX,r defined
by the morphism

K
(r−2i+1)/2
X ⊗K

−(r−2i+1)/2
X → OX .

Suppose that z is a local holomorphic coordinate and (dz)1/2 is a local frame of K
1/2
X , the pairing

CX,2 on K
1/2
X ⊕K

−1/2
X is given by(

0 1
1 0

)
with respect to the frame

(
(dz)1/2, (dz)−1/2

)
. The pairing CX,3 on KX ⊕OX ⊕K−1

X is given by0 0 1
0 1 0
1 0 0


with respect to the frame

(
dz, 1, (dz)−1

)
.

1.3 Main results

We will consider the following question.

Question 1.4. Suppose that X is a noncompact parabolic Riemann surface, i.e., X = C or C∗.
Given a tuple of holomorphic polynomial differentials q = (q2, . . . , qr) on X, i.e., meromor-
phic differentials on P1 which have a possible pole at ∞, does there exist a harmonic metric
of (KX,r, θ(q)) compatible with CX,r?

Remark 1.5. In [5], Li and Mochizuki proved that if X is hyperbolic, then there exists a har-
monic metric of (KX,r, θ(q)) compatible with CX,r.

In general, for a Higgs bundle (E, θ) on X, the spectral curve ΣE,θ of (E, θ) is a curve defined
by {t ∈ KX | det(t idE − θ) = 0}. We can define the natural projection from ΣE,θ to X by
restricting KX → X to ΣE,θ. The spectral curve of (KX,r, θ(q)) is denoted by ΣX,q. We call the
natural projection π : ΣX,q → X an n-sheeted branched covering if the fiber of π : ΣX,q → X
with the largest cardinality consists of n elements. Let z be the holomorphic coordinate of C.
The following theorems are our main results, giving a partial answer to Question 1.4.

Theorem 1.6. If the natural projection π : ΣC,q → C is a one- or two-sheeted branched covering,
then there exists a polynomial f ∈ C[z] such that

q2 = 3 · 2−5/3f2(dz)2, q3 = f3(dz)3.

If deg f ≥ 2, then there exists a harmonic metric of (KC,3, θ(q)) compatible with CC,3. Otherwise,
there does not exist any harmonic metric compatible with CC,3.

Theorem 1.7. If the natural projection π : ΣC∗,q → C∗ is a one- or two-sheeted branched cov-
ering, then there exists f ∈ C

[
z, z−1

]
such that

q2 = 3 · 2−5/3f2(dz/z)2, q3 = f3(dz/z)3.

If f is not constant, then there exists a harmonic metric of (KC∗,3, θ(q)) compatible with CC∗,3.
If f is constant, then there does not exist any harmonic metric compatible with CC∗,3.
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Remark 1.8.

� In [6], Li and Mochizuki proved that a Higgs bundle (E, θ) with a symmetric pairing
admits a compatible harmonic metric if (E, θ) is generically regular semisimple using an
analytical approach. In particular, if π is a 3-sheeted branched covering, then (KX,3, θ(q))
has a harmonic metric compatible with CX,3. Therefore, we obtain the complete answer
to the r = 3 case of Question 1.4.

� In the r = 2 case, (KX,2, θ(q)) admits a compatible harmonic metric if π is a two-sheeted
branched covering by Li–Mochizuki [6]. Otherwise, it has no such metric by [4, Proposi-
tions 3.41 and 3.42].

� As we will see in Remark 3.31, compatible harmonic metrics of (KC,3, θ(q)) correspond to
filtered Higgs bundles satisfying some condition, which is parameterized by a real number
in (2, (deg f+3)/2]. Therefore, the uniqueness of compatible harmonic metrics is not true.

� We need compatibility to prove the non-existence of harmonic metrics in Theorems 1.6
and 1.7. The author does not know whether there exists a harmonic metric if (KX,3, θ(q))
admits no compatible harmonic metric.

To prove Theorem 1.6, we use the following theorem proved by Li and Mochizuki. See
Section 2 for detailed definitions.

Theorem 1.9 ([6]). Suppose that X is compact. The following two objects are equivalent:

� Wild harmonic bundles on (X,D) compatible with a non-degenerate symmetric pairing.

� Good polystable filtered Higgs bundles on (X,D) of degree 0 with a perfect symmetric
pairing.

By Theorem 1.9, it suffices to study when there exists a stable good filtered extension of
(KX,3, θ(q)) such that CX,3 extends to a perfect pairing. The proof of Theorem 1.6 is outlined
as follows.

Step 1 We calculate the eigenvalues of the Higgs filed θ(q), and take sections s1, s2 and s3
of KC,3, which form a frame around ∞ such that the representation of θ(q) is a Jordan
canonical form with respect to (s1, s2, s3).

Step 2 Using (s1, s2, s3), we construct a meromorphic extension of KC,3 and a filtered bun-
dle Pd

∗KC,3 over KC,3 depending d = (d1, d2, d3) ∈ R3 such that

Pd
c (KC,3)∞ =

3⊕
i=1

OP1,∞([c− di]∞) · si,

where for c ∈ R, [c] is an integer satisfying c− 1 < [c] ≤ c.

Step 3 We find the condition for d that
(
Pd
∗KC,3, θ(q)

)
is good and stable, and that the pair-

ing CC,3 extends to a perfect pairing. We can prove that if deg f ≥ 2, then there
exists d ∈ R3 satisfying the condition.

Step 4 We prove that if a filtered Higgs bundle is a good filtered extension of (KC,3, θ(q)) and
the pairing induced by CC,3 is perfect, then there exists d ∈ R3 such that the filtered
bundle is Pd

∗ (KC,3). We can prove that if deg f ≤ 1, then there is no harmonic metric
of (KC,3, θ(q)) compatible with C from this.

In addition to Theorem 1.6, we obtain the classification of filtered Higgs bundles corresponding
to compatible harmonic metrics of (KC,3, θ(q)) in the case when π : ΣC,q → C is a two-sheeted
branched covering. Moreover, the proof of Theorem 1.6 can be partially generalized to the



Harmonic Metrics for Higgs Bundles of Rank 3 in the Hitchin Section 5

case of the Higgs bundle (KX,3, θ(q)) whose Higgs filed is meromorphic, where X is any other
quasi-projective curve.

The proof of Theorem 1.7 is outlined as follows.

Step 1′ We see that there exists a harmonic metric compatible with CC∗,3 unless f(z) = azb,
a ∈ C∗, |b| ≥ 3, in the same way as Step 1, Step 2 and Step 3 in the outline of the
proof of Theorem 1.6.

Step 2′ We see that there does not exist any harmonic metric compatible with CC∗,3 if f is
constant in a manner analogous to Step 4 in the outline of the proof of Theorem 1.6.

Step 3′ In the case of f(z) = azb, a ∈ C∗, |b| ≥ 3, we explicitly construct a stable good filtered
extension of (KX,3, θ(q)) such that the pairing induced by CC∗,3 become perfect.

In the general rank case, there are many cases about the multiplicities of the eigenvalues of
the Higgs field. For example, the r = 4 case is divided into the case when the two eigenvalues
with the multiplicity 2 appear, the case when the one eigenvalue with the multiplicity 1 appears
and the ones of the others are 1, etc. Because of this difficulty, the author has not yet obtained
similar results for the general rank.

2 Preliminaries

2.1 Filtered Higgs bundles

2.1.1 Filtered bundles

We will review the notion of filtered bundles, following [7, 8, 9]. In this paper, the notations
are based on [6]. Let X be a Riemann surface, and let D be a discrete subset of X. We write
OX(∗D) for the sheaf of meromorphic functions on X whose poles are contained in D. For any
sheaf F , we write Fp for the stalk of F at p ∈ X.

Definition 2.1. A filtered bundle P∗E on (X,D) is a locally free OX(∗D)-module E with
a tuple of filtrations {PcEp}c∈R of free OX,p-submodules of Ep for p ∈ D such that for c, c1
and c2 ∈ R,

1) (PcEp)(∗p) = Ep,

2) Pc1Ep ⊂ Pc2Ep if c1 ≤ c2,

3) PcEp =
⋂

a>c(PaEp),

4) Pc+1Ep = PcEp ⊗OX,p
OX,p(p).

The rank of P∗E is defined to be the rank of E. We also say that P∗E is a filtered bundle
over E. We define P<cEp to be

⋃
a<c(PaEp) and GrPc (Ep) to be PcEp/P<cEp. Let Par(P∗Ep)

denote
{
c ∈ R | GrPc (Ep) ̸= 0

}
.

For c =
(
c(p)

)
p∈D ∈ RD, let PcE denote the locally free OX -submodule of E such that if

p ∈ D, (PcE)p = Pc(p)Ep, otherwise (PcE)p = Ep.

Definition 2.2. Let P∗E1 and P∗E2 be filtered bundles on (X,D). A morphism φ from P∗E1

to P∗E2 is a morphism of sheaves of OX(∗D)-modules φ : E1 → E2 such that φ(PcE1) ⊂ PcE2

for any c ∈ RD.

Let P(0)
∗ (OX(∗D)) denote OX(∗D) with filtrations defined by

P(0)
c (OX(∗D)) = OX

(∑
p∈D

[
c(p)

]
p

)
.
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Let P∗E1 and P∗E2 be filtered bundles. We can define some filtered bundles induced by P∗E1

and P∗E2.

� Direct sum Pc(E1 ⊕ E2)p = PcE1,p ⊕ PcE2,p.

� Tensor product Pc(E1 ⊗ E2)p =
∑

a+b≤c(PaE1,p ⊗ PbE2,p).

� Hom Pc(Hom(E1, E2))p = {f ∈ HomOX,p
(E1,p, E2,p) | f(PaE1) ⊂ Pa+cE2}.

We write P∗E1⊕P∗E2, P∗E1⊗P∗E2 and Hom(P∗E1,P∗E2) for P∗(E1⊕E2), P∗(E1⊗E2), and

P∗(Hom(E1, E2)). We define the dual bundle of P∗E1 as Hom
(
P∗E1,P(0)

∗ (OX(∗D))
)
.

2.1.2 Filtered Higgs bundles

Definition 2.3. Suppose that X is compact. The degree degP∗E of a filtered bundle P∗E
on (X,D) is

degP∗E = degPcE −
∑
p∈D

∑
c(p)−1<a≤c(p)

a dimGrPa (Ep)

for c ∈ RD. We write µ(P∗E) for degP∗E/ rankE, which is called the slope of P∗E.

Let P∗E be a filtered bundle on (X,D). Let E′ be a locally free OX(∗D)-submodule of E
such that E/E′ is also locally free. Then the filtered bundles P∗E

′ and P∗(E/E
′) are induced

as follows: for c ∈ RD,

PcE
′ = (PcE) ∩ E′, Pc(E/E

′) = Im
(
PcE → E/E′).

Lemma 2.4. Suppose that X is compact. Then the following holds:

degP∗E = degP∗E
′ + degP∗

(
E/E′).

Proof. Though this lemma is well known, we provide proof for the convenience of the reader.
By the short exact sequence 0 −→ PcE

′ −→ PcE −→ Pc

(
E/E′) −→ 0, we obtain

degPcE = degPcE
′ + degPc

(
E/E′).

In addition, for a ∈ R, we obtain the following commutative diagram:

0 0 0y y y
0 −−−−→ P<aE

′
p −−−−→ P<aEp −−−−→ P<a(E/E

′)p −−−−→ 0y y y
0 −−−−→ PaE

′
p −−−−→ PaEp −−−−→ Pa(E/E

′)p −−−−→ 0y y y
0 −−−−→ GrPa

(
E′

p

)
−−−−→ GrPa (Ep) −−−−→ GrPa (E/E

′)p −−−−→ 0.y y y
0 0 0

Since all columns and the top two rows are exact, the bottom row is exact. Therefore, we
obtain dimGrPa (Ep) = dimGrPa

(
E′

p

)
+ dimGrPa (E/E

′)p. As a result, we obtain degP∗E =
degP∗E

′ + degP∗(E/E
′). ■
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We review the notion of filtered Higgs bundles and define the notion of stability of filtered
Higgs bundles.

Definition 2.5. A filtered Higgs bundle on (X,D) is a pair of a filtered bundle P∗E on (X,D)
and a morphism θ : E → E ⊗OX

KX . The morphism θ is called a Higgs field.

Definition 2.6. Suppose that X is compact. A filtered Higgs bundle (P∗E, θ) on (X,D) is
stable (resp. semistable) if for any proper filtered Higgs subbundles (P∗E

′, θ′) of positive rank
of (P∗E, θ),

µ(E) > µ
(
E′) (

resp. µ(E) ≥ µ
(
E′)).

A filtered Higgs bundle (P∗E, θ) is polystable if (P∗E, θ) is a direct sum of stable filtered Higgs
bundles with the same slopes.

Definition 2.7. A filtered Higgs bundle (P∗E, θ) on (X,D) is called regular if θ is logarithmic
with respect to the filtrations, that is, θ(PcEp) ⊂ Pc+1Ep ⊗KX,p for any p ∈ D and any c ∈ R.

Let φm(w) = wm be a ramified covering. We define a filtration of φ∗
mEp to be

Pc

(
φ∗
mEp

)
=

∑
ma+n≤c

φ∗
m

(
PaEp

)
⊗OX,p(np)

for c ∈ R.

Definition 2.8. A filtered Higgs bundle (P∗E, θ) on (X,D) is called good if for any p ∈ D there
exists a ramified covering φp,m(zp,m) = zmp,m such that

(
P∗

(
φ∗
p,mEp

)
, φ∗

p,mθ
)
has a decomposition(

P∗
(
φ∗
p,mEp

)
, φ∗

p,mθ
)
=

⊕
a∈z−1

p,mC[z−1
p,m]

(P∗Ea,p, θa),

which satisfies that θa − da id is logarithmic at p with respect to the lattices PbEa,p.

2.2 Non-degenerate symmetric pairings

We introduce the notion of symmetric pairings of Higgs bundles in this section by following [6]
and theorems used in a later section.

2.2.1 Symmetric pairings on Higgs bundles

Definition 2.9. Let (E, θ) be a Higgs bundle. A holomorphic symmetric pairing C of E is called
a symmetric pairing of (E, θ) if C satisfies C(θ⊗ id) = C(id⊗ θ). If the symmetric pairing C is
non-degenerate on any fibers, then C is called non-degenerate.

Let us recall the notion of compatibility of a non-degenerate symmetric pairing and a Hermi-
tian metric of a C-vector space of finite dimension. Let V be a C-vector space of finite dimension.
A non-degenerate symmetric pairing C and a Hermitian metric h of V induce the isomorphism
ΦC : V → V ∗, v 7→ (w 7→ C(w, v)) and the antilinear map Φh : V → V ∗, v 7→ (w 7→ h(w, v)), re-
spectively. For any non-degenerate symmetric pairing V , we write C∗ for the symmetric pairing
of V ∗ induced by C. For any Hermitian metric h of V , we write h∗ for the Hermitian metric
of V ∗ induced by h.

Definition 2.10. Let C and h be a non-degenerate symmetric pairing and a Hermitian metric
of V , respectively. The Hermitian metric h is said to be compatible with C if the isomorphism
ΦC : V → V ∗ is an isometry with respect to h and h∗.
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Suppose that a Hermitian metric h is compatible with a non-degenerate symmetric pairing C,
a real structure on V , that is, an antilinear involution V → V is induced as follows: h∗ induces
the antilinear map Φh∗ : V ∗ → V ∗∗ = V . Then κ := Φh∗ ◦ΦC : V → V is an antilinear map. By
the compatibility, we obtain ΦC∗ ◦Φh = Φh∗ ◦ΦC . Thus, κ

−1 = ΦC∗ ◦Φh = κ holds, and κ gives
a real structure on V .

Definition 2.11. Let (E, θ, h) be a harmonic bundle on X. A non-degenerate symmetric
pairing C of (E, θ) is called a real structure if h|p is compatible with C|p for any p ∈ X,
where h|p and C|p denote the Hermitian metric and the symmetric pairing of the fiber E|p
induced by h and C, respectively. In this case, h is said to be compatible with C.

2.2.2 Symmetric pairings on filtered bundles

Definition 2.12. Let P∗E be a filtered bundle on (X,D). A symmetric pairing C of P∗E is

a morphism C : P∗E ⊗ P∗E → P∗
(
O(0)

X (∗D)
)
which is symmetric.

A symmetric pairing C on P∗E induces a morphism ΦC : P∗E → P∗E
∗.

Definition 2.13. A symmetric pairing C of a filtered bundle P∗E is called perfect if the mor-
phism ΦC : P∗E → P∗E

∗ is isomorphism.

We define the notion of symmetric pairing of a filtered Higgs bundle.

Definition 2.14. Let (P∗E, θ) be a good filtered Higgs bundle. A symmetric pairing C
of (P∗E, θ) is a symmetric pairing of P∗E such that C(θ ⊗ id) = C(id⊗ θ).

We review the notion of wildness of harmonic bundles by following [7].

Definition 2.15. Let (E, θ, h) be a harmonic bundle on X \ D. For p ∈ D, the morphism
fp : E|Up\{p} → E|Up\{p} is defined by θ = fpdzp/zp, where (Up, zp) is a complex chart cen-
tered at p. The harmonic bundle (E, θ, h) is called wild on (X,D) if all the coefficients of the
characteristic polynomial det(t id− fp) are meromorphic on Up for any p ∈ D.

Let (E, θ, h) be a wild harmonic bundle on (X,D). Then a filtered Higgs bundle
(
Ph
∗E, θ

)
is

induced by (E, θ, h) as follows: for a ∈ R and p ∈ D,

Ph
aEp = {s ∈ ι∗(E)p | |s|h = O(|zp|−a−ε) for any ε > 0}, (2.1)

where ι : X \D → X is the inclusion and zp is a holomorphic coordinate centered at p. In fact,(
Ph
∗E, θ

)
is a good filtered Higgs bundle [7]. The following theorem is a generalization of

Theorem 1.3 to the case of wild harmonic bundles.

Theorem 2.16 (Simpson [9], Biquard–Boalch [1] and Mochizuki [7]). Suppose that X is com-
pact. For a wild harmonic bundle (E, θ, h) on (X,D), the induced filtered Higgs bundle

(
Ph
∗E, θ

)
is polystable and of degree 0. Conversely, if a good filtered Higgs bundle (P∗E, θ) on (X,D) is
polystable and degP∗E = 0, then the Higgs bundle

(
E|X\D, θ

)
on X \D has a harmonic metric

such that Ph
∗
(
E|X\D

)
= P∗E. Moreover, if h1 and h2 are harmonic metrics of (E, θ) which

satisfy Ph1
∗ E = Ph2

∗ E, then there is a decomposition as in Theorem 1.3.

Lemma 2.17 ([6, Lemma 3.16]). Let (E, θ, h) be a wild harmonic bundle. If (E, θ, h) has a real
structure C, then C induces a perfect symmetric pairing of the filtered Higgs bundle

(
Ph
∗E, θ

)
.

Suppose thatX is compact. By Lemma 2.17 and Theorem 2.16, we see that if a wild harmonic
bundle (E, θ, h) on (X,D) has a real structure C, (E, θ, h) induces the good polystable filtered
Higgs bundle

(
Ph
∗E, θ

)
of degree 0 and

(
Ph
∗E, θ

)
has the induced perfect symmetric pairing.

In fact, the converse is true, that is, the following holds.



Harmonic Metrics for Higgs Bundles of Rank 3 in the Hitchin Section 9

Theorem 2.18 ([6, Theorem 3.28]). The following two objects are equivalent:

� Wild harmonic bundles on (X,D) with a real structure.

� Good polystable filtered Higgs bundles on (X,D) of degree 0 with a perfect symmetric
pairing.

3 Main results

We study harmonic metrics for (KC,3, θ(q)) and (KC∗,3, θ(q)) which are not generically regular
semisimple. We will prove the followings in this section.

Theorem 3.1. Let ΣC,q denote the spectral curve of (KC,3, θ(q)). If the natural projection
π : ΣC,q → C is a one- or two-sheeted branched covering, then there exists a polynomial f ∈ C[z]
such that

q2 = 3 · 2−5/3f2(dz)2, q3 = f3(dz)3.

If deg f ≥ 2, then there exists a harmonic metric of (KC,3, θ(q)) compatible with CC,3. Otherwise,
there does not exist any harmonic metric compatible with CC,3.

Theorem 3.2. Let ΣC∗,q denote the spectral curve of (KC∗,3, θ(q)). If the natural projection
π : ΣC∗,q → C∗ is a one- or two-sheeted branched covering, then there exists f ∈ C

[
z, z−1

]
such

that

q2 = 3 · 2−5/3f2(dz/z)2, q3 = f3(dz/z)3.

Unless f is constant, there exists a harmonic metric of (KC∗,3, θ(q)) compatible with CC∗,3.

3.1 Existence of harmonic bundles

We consider (KX,3, θ(q)) for a generalization to other Riemann surfaces. Let X be a com-
pact Riemann surface and D be a finite subset of X. Let X = X \ D. We hereafter write
(E, θ) = (KX,3, θ(q)) and C = CX,3.

Let ΣE,θ be the spectral curve of (E, θ). Suppose that the natural projection ΣE,θ → X is
a one- or two-sheeted branched covering. For p ∈ X, let

(
Up, zp

)
be a complex chart centered

at p. In terms of local frame (dzp, 1, (dzp)
−1), we can write

θ
(
dzp, 1,

(
dzp

)−1)
=

(
dzp, 1,

(
dzp

)−1)0 q2,p q3,p
1 0 q2,p
0 1 0

dzp, (3.1)

where q2,p and q3,p are meromorphic functions on Up which possibly have poles at p.

Lemma 3.3. There exists a meromorphic 1-form ω on X such that

q2 = 3 · 2−5/3ω2, q3 = ω3.

Moreover, the spectral curve ΣE,θ ⊂ KX is defined as the image of the sections

λ1 := 22/3ω, λ2 := −2−1/3ω.

In particular, the projection ΣE,θ → X is a one-sheeted branched covering if and only if ω ≡ 0.
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Proof. Since the characteristic polynomial of the matrix (3.1) has a multiple root, we obtain
−4(−2q2,p)

3 − 27(q3,p)
2 = 0 by considering the discriminant. Thus, there exists a meromorphic

function fp on Up such that

q2,p = 3 · 2−5/3f2p , q3,p = f3p .

Moreover, there is a meromorphic 1-form ω on X such that ω = fpdzp for all p ∈ X. Then
q2 = 3 · 2−5/3ω2 and q3 = ω3. The spectral curve ΣE,θ is given by calculation of the eigenval-
ues of (3.1). ■

We assume ω ̸≡ 0. For p ∈ X, we define

ordp(ω) =


0 if fp is holomorphic on Up and fp(p) ̸= 0,

k if fp has a zero of order k at p,

−k if fp has a pole of order k at p.

Let s
(p)
1 , s

(p)
2 and s

(p)
3 be local sections on Up defined as follows: with respect to the frame(

dzp, 1,
(
dzp

)−1)
,

s
(p)
1 =

5 · 2−5/3f2p
22/3fp

1

 , s
(p)
2 =

−2−5/3f2p
−2−1/3fp

1

 , s
(p)
3 =

−22/3fp
1
0

 . (3.2)

Then we obtain

θ
(
s
(p)
1 , s

(p)
2 , s

(p)
3

)
=

(
s
(p)
1 , s

(p)
2 , s

(p)
3

)λ1 0 0
0 λ2 dzp
0 0 λ2

 .

We define a locally free OX(∗D)-module Ẽ such that Ẽ|Up = OUp(∗p)s
(p)
1 + OUp(∗p)s

(p)
2 +

OUp(∗p)s
(p)
3 for p ∈ D. Then the Higgs field θ and the pairing C extend to the morphism

θ̃ : Ẽ → Ẽ ⊗ KX and the pairing C̃ : Ẽ ⊗ Ẽ → OX(∗D), respectively. Let E1, E2 and E3

be subbundles of Ẽ defined as follows:

E1 = Ker
(
θ̃ − λ1idẼ

)
, E2 = Ker

(
θ̃ − λ2idẼ

)
, E3 = Ker

(
θ̃ − λ2idẼ

)2
.

Moreover, let E4 be the smallest subbundle of Ẽ such that E1 ⊂ E4 and E2 ⊂ E4.

Lemma 3.4. All nontrivial Higgs subbundles of the meromorphic Higgs bundle
(
Ẽ, θ̃

)
are only

E1, E2, E3 and E4.

Proof. Let U = X \ {p ∈ X | ωp = 0}. There exists a decomposition(
Ẽ, θ̃

)∣∣
U
= (E1, θ1)|U ⊕ (E3, θ3)|U .

If E′ is a nontrivial Higgs subbundle of
(
Ẽ, θ̃

)
, then

(
E′ ∩ E1

)
|U is a subbundle of E1|U and(

E′ ∩ E3

)
|U is a subbundle of E3|U . The ranks of

(
E′ ∩ E1

)
|U and

(
E′ ∩ E3

)
|U completely

determine E′, and E′ is one of E1, E2, E3 or E4. ■

Suppose that P∗Ẽ is a filtered bundle over Ẽ and C̃ is a perfect symmetric pairing of(
P∗Ẽ, θ̃

)
. The filtered bundle P∗Ei over Ei is induced by P∗Ei = P∗Ẽ ∩ Ei. We assume the

following.
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Assumption 3.5. For any p ∈ D, there exists a decomposition

P∗
(
Ẽp

)
= P∗

(
E1,p

)
⊕ P∗

(
E3,p

)
.

Lemma 3.6. Suppose that ω has a pole at p ∈ D. If the filtered Higgs bundle
(
P∗Ẽ, θ̃

)
|Up is

good, then there exists a decomposition

P∗
(
Ẽp

)
= P∗

(
E1,p

)
⊕ P∗

(
E3,p

)
.

In particular, if any point of D is a pole of ω and
(
P∗Ẽ, θ̃

)
is good, then the filtered bundle P∗Ẽ

satisfies Assumption 3.5.

Proof. If ordp(ω) ≥ 2, then we obtain the decomposition by definition of good filtered Higgs
bundle. Suppose that ordp(ω) = 1. We consider the vector space P0

(
Ẽ
)∣∣

p
denoted by V . We

have the filtration F∗V on V defined by FaV = Im
(
Pa

(
Ẽp

)
→ V

)
for a ∈ [−1, 0]. Let ψ be the

morphism such that θ = ψdw/w and Res(ψ) : V → V be the linear map induced by ψ. We
see that Res(ψ)(FaV ) ⊂ FaV for any a ∈ [−1, 0]. Thus, we have the generalized eigenspace
decomposition of Res(ψ) compatible with the filtration F∗V . It implies the decomposition that
we want to prove. ■

Lemma 3.7. Under Assumption 3.5, the following holds. For p ∈ D and c =
(
c(p)

)
p∈D ∈ RD,

PcE1|Up = OUp

([
c(p) + ordp(ω)

]
∞
)
s
(p)
1 ,

where for a ∈ R we write [a] for the integer satisfying a− 1 < [a] ≤ a.

Proof. Since the local section s
(p)
1 is a frame of E1 on Up, then there exists d(p) ∈ R such

that PcE1|Up = OUp

([
c(p) − d(p)

]
∞
)
s
(p)
1 . The decomposition in Assumption 3.5 is orthogonal

with respect to C̃ and the induced pairing C̃|Up : P∗E1|Up ⊗ P∗E1|Up → P(0)
∗

(
OX(∗D)

)
|Up is

perfect. Therefore, we obtain

2d(p) = − ordpC
(
s
(p)
1 , s

(p)
1

)
= −2 ordp(ω). ■

Lemma 3.8. Under Assumption 3.5, the following holds:

degP∗(E1) = degP∗(E3) = −
∑
p∈X

ordp(ω).

Proof. The induced pairing

C̃|Up : P∗E1|Up ⊗ P∗E1|Up → P(0)
∗

(
OX(∗D)

)∣∣
Up

is perfect. Since ordp
(
C
(
s
(p)
1 , s

(p)
1

))
= 2ordp(ω) holds for p ∈ X, we obtain

P∗E1 ⊗ P∗E1
∼= P(0)

∗
(
OX(∗D)

)
⊗OX

(∑
p∈X

−2 ordp(ω)p

)
.

Thus, we see that deg(P∗(E1)) = −
∑

p∈X ordp(ω).
The induced pairing

C̃|Up : P∗E3|Up ⊗ P∗E3|Up → P(0)
∗

(
OX(∗D)

)∣∣
Up

is perfect. Since ordp
(
C
(
s
(p)
2 , s

(p)
3

))
= ordp(ω) and C

(
s
(p)
2 , s

(p)
2

)
= 0 hold for p ∈ X, we obtain

det(P∗E3)⊗ det(P∗E3) ∼= P(0)
∗

(
OX(∗D)

)
⊗OX

(∑
p∈X

−2 ordp(ω)p

)
.

Thus, we see that deg(P∗(E3)) = deg(det(P∗(E3))) = −
∑

p∈X ordp(ω). ■
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The holomorphic differential q2 has a zero at p ∈ X if and only if ω has a zero at p ∈ X.
Thus, if q2 has a zero in X, then degP∗(E1) and degP∗(E3) are negative.

Lemma 3.9. Suppose that q2 has some zeros and Assumption 3.5 holds. The following are
equivalent:

�

(
P∗

(
Ẽ
)
, θ̃
)
is polystable,

�

(
P∗

(
Ẽ
)
, θ̃
)
is stable,

� degP∗E2 and degP∗E4 are negative.

Proof. By Lemma 3.8,
(
P∗

(
Ẽ
)
, θ̃
)
is stable if and only if degP∗E2 and degP∗E4 are negative.

Short exact sequences

0 −→ E2 −→ Ẽ −→ Ẽ/E2 −→ 0, 0 −→ E4 −→ Ẽ −→ Ẽ/E4 −→ 0

do not split as Higgs bundles. Thus,
(
P∗

(
Ẽ
)
, θ̃
)
is polystable if and only if it is stable. ■

Let us construct a filtered bundle over Ẽ. If a filtered bundle P∗Ẽ over Ẽ satisfies Assump-
tion 3.5 and C̃ is a perfect pairing of P∗Ẽ, then the induced filtration P∗(E1) is uniquely deter-
mined by Lemma 3.7. Thus, it suffices to consider the filtration P∗(E3). Let φ = θ̃|E3 − λ2idE3 .
φ : E3 → E3⊗KX satisfies φp ̸= 0 for p ∈ X and φ2 = 0. Therefore, φ induces the isomorphism

E3/Kerφ −→ Kerφ⊗KX . (3.3)

For p ∈ D, the local section s
(p)
2 is a frame of E2 = Kerφ on Up and s

(p)
3 satisfies φ

(
s
(p)
3

)
= s

(p)
2 dzp.

Lemma 3.10. For p ∈ D and the local sections s
(p)
2 and s

(p)
3 , the following holds:

C
(
s
(p)
2 , s

(p)
2

)
= 0, C

(
s
(p)
2 , s

(p)
3

)
̸= 0.

Proof. By (3.2), we can calculate C
(
s
(p)
2 , s

(p)
2

)
and C

(
s
(p)
2 , s

(p)
3

)
. ■

Let v
(p)
2 = s

(p)
2 and

v
(p)
3 = s

(p)
3 −

2C
(
s
(p)
3 , s

(p)
3

)
C
(
s
(p)
2 , s

(p)
3

) s(p)2 .

Then v
(p)
2 , v

(p)
3 are a frame of E3 on Up. Moreover, by Lemma 3.10, we obtain φ

(
v
(p)
3

)
= v

(p)
2 dzp

and C
(
v
(p)
i , v

(p)
i

)
= 0 for i = 2, 3. For d = (d2, d3) ∈ RD ×RD, we define a filtered bundle Pd

∗E3

over E3 as follows:

Pd
cE3|Up = OUp

([
c(p) − d

(p)
2

]
∞

)
v
(p)
2 ⊕OUp

([
c(p) − d

(p)
3

]
∞
)
v
(p)
3 ,

where c = (c(p))p∈D is contained in RD, and for a ∈ R, [a] is the integer satisfying a−1 < [a] ≤ a.
Then by Pd

∗E3 and P∗E1 in Lemma 3.7, we obtain the filtered bundle Pd
∗ Ẽ which satisfies

Assumption 3.5. The filtered bundles over E2 and E3/E2 then are induced by

Pd
∗E2 =

(
Pd
∗E3

)
∩ E2, Pd

∗ (E3/E2) = Im
(
Pd
∗E3 → E3/E2

)
,

and degPd
∗E3 = degPd

∗E2 + degPd
∗ (E3/E2) holds by Lemma 2.4.

Lemma 3.11. The filtered Higgs bundle
(
Pd
∗E3, θ̃|E3

)
is good if and only if d

(p)
2 − 1 ≤ d

(p)
3 for

all p ∈ D.
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Proof. Suppose that
(
Pd
∗E3, θ̃|E3

)
is good. Then φ = θ̃|E3 −λ2idE3 is logarithmic with respect

to the filtrations. For p ∈ D, we obtain d
(p)
2 − 1 ≤ d

(p)
3 because φ

(
v
(p)
3

)
= v

(p)
2 dzp. Conversely,

if d
(p)
2 − 1 ≤ d

(p)
3 for p ∈ D, we see that φ

(
Pd
cE3,p

)
⊂ Pd

c+1E3,p ⊗KX,p for c ∈ R. ■

Lemma 3.12. The pairing C̃ : Pd
∗ Ẽ⊗Pd

∗ Ẽ → P∗
(
OX(∗D)

)
is perfect if and only if d

(p)
2 +d

(p)
3 =

− ordp(ω) for any p ∈ D.

Proof. The induced pairing C̃|Up : P∗E3|Up ⊗ P∗E3|Up → P(0)
∗

(
OX(∗D)

)∣∣
Up

is perfect for any
p ∈ D if and only if C̃ is perfect because the decomposition in Assumption 3.5 is orthogo-
nal with respect to C̃. By C

(
v
(p)
i , v

(p)
i

)
= 0 for i = 2, 3, the pairing C̃|Up is perfect if and only if

d
(p)
2 + d

(p)
3 = − ordpC

(
v
(p)
2 , v

(p)
3

)
= − ordp(ω). ■

Lemma 3.13. The following holds:

degPd
∗E2 =

1

2

(
−

∑
p∈X

ordp(ω) +
∑
p∈D

(
d
(p)
3 − d

(p)
2

)
+ 2− 2g

)
,

where g is the genus of X.

Proof. Since the morphism P d
d3
(E3/E2) → P d

d2
(E2)⊗KX induced by (3.3) is an isomorphism,

we obtain

degPd
∗ (E3/E2) +

∑
p∈D

∑
d
(p)
3 −1<c(p)≤d

(p)
3

c(p) dimGrP
d

c(p)
(E3/E2)p

= degPd
d3(E3/E2) = degPd

d2E2 + degKX

= degPd
∗E2 +

∑
p∈D

∑
d
(p)
2 −1<c(p)≤d

(p)
2

c(p) dimGrP
d

c(p)

(
E2,p

)
+ 2g − 2, (3.4)

Since ∑
d
(p)
3 −1<c(p)≤d

(p)
3

c(p) dimGrP
d

c(p)
(E3/E2)p = d

(p)
3 ,

∑
d
(p)
2 −1<c(p)≤d

(p)
2

c(p) dimGrP
d

c(p)
E2,p = d

(p)
2 ,

we obtain degPd
∗E2 = 1

2

(
−
∑

p∈X ordp(ω) +
∑

p∈
(
d
(p)
3 − d

(p)
2

)
+ 2 − 2g

)
from Lemma 3.8,

degPd
∗E3 = degPd

∗E2 + degPd
∗ (E3/E2) and (3.4). ■

Lemma 3.14. The following holds:

degPd
∗E4 =

1

2

(
−

∑
p∈X

ordp(ω) +
∑
p∈D

(
d
(p)
3 − d

(p)
2

)
+ 2− 2g

)
.

Proof. Let
[
v
(p)
2

]
and

[
v
(p)
3

]
be the images of v

(p)
2 and v

(p)
3 under the natural projection Pd

∗ Ẽ →
Pd
∗
(
Ẽ/E1

)
, respectively. The images

[
v
(p)
2

]
and

[
v
(p)
3

]
give a frame of Ẽ/E1 on Up such that

[
v
(p)
2

]
is a frame of E4/E1. Then we see that

degPd
∗ (E4/E1) =

1

2

(
degPd

∗
(
Ẽ/E1

)
+

∑
p∈D

(
d
(p)
3 − d

(p)
2

)
+ 2− 2g

)

=
1

2

(∑
p∈X

ordp(ω) +
∑
p∈D

(
d
(p)
3 − d

(p)
2

)
+ 2− 2g

)
,
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where the second equality holds from Lemmas 2.4 and 3.8. Considering the short exact sequence
0 → E1 → E4 → E4/E1 → 0, by Lemmas 2.4 and 3.8, we obtain

degPd
∗E4 = degPd

∗ (E4/E1) + degPd
∗E1

=
1

2

(
−

∑
p∈X

ordp(ω) +
∑
p∈D

(
d
(p)
3 − d

(p)
2

)
+ 2− 2g

)
. ■

Proposition 3.15. Suppose that q2 has a zero in X and d2, d3 ∈ RD satisfy the conditions that

� d
(p)
2 − 1 ≤ d

(p)
3 for p ∈ D,

� d
(p)
2 + d

(p)
3 = − ordp(ω) for p ∈ D,

� −
∑

p∈X ordp(ω) +
∑

p∈D
(
d
(p)
3 − d

(p)
2

)
+ 2− 2g < 0.

Then the filtered Higgs bundle
(
Pd
∗ Ẽ, θ̃

)
is good and stable, and the induced symmetric pairing C̃

is perfect. Conversely, if
(
Pd
∗ Ẽ, θ̃

)
is good and polystable, and the induced pairing C̃ is perfect,

then d2 and d3 satisfy the above conditions.

Proof. From Lemma 3.11,
(
Pd
∗ Ẽ, θ̃

)
is a good filtered Higgs bundle. From Lemmas 3.9, 3.13

and 3.14, we see that
(
Pd
∗ Ẽ, θ̃

)
is stable. From Lemma 3.12, we see that C̃ is perfect. ■

The following corollaries are part of Theorems 3.1 and 3.2.

Corollary 3.16. Suppose that
(
X,D

)
=

(
P1, {∞}

)
. There exists a polynomial f ∈ C[z]

such that

q2 = 3 · 2−5/3f2(dz)2, q3 = f3(dz)3.

If deg f ≥ 2, then there exists a harmonic metric of (E, θ) compatible with C.

Proof. By Lemma 3.3, there exists a polynomial f ∈ C[z] such that

q2 = 3 · 2−5/3f2(dz)2, q3 = f3(dz)3.

Then we see that ord∞(ω) = −(deg f + 2). Suppose that d
(∞)
2 = (deg f + 3)/2 and d

(∞)
3 =

(deg f + 1)/2 for p ∈ D. By Proposition 3.15, if deg f =
∑

p∈X ordp(ω) ≥ 2, then
(
Pd
∗ Ẽ, θ̃

)
is

a good stable filtered Higgs bundle with the perfect symmetric pairing C̃. Therefore, if deg f ≥ 2,
then there exists a harmonic metric of (E, θ) compatible with C from Theorem 2.18. ■

Corollary 3.17. Suppose that (X,D) =
(
P1, {0,∞}

)
. There exists a rational function f ∈

C
[
z, z−1

]
such that

q2 = 3 · 2−5/3f2(dz/z)2, q3 = f3(dz/z)3.

Moreover, if f has a zero in C∗ or f(z) = azb, a ∈ C∗, b ∈ Z, |b| ≥ 3, then there exists
a harmonic metric of (E, θ) compatible with C.

Proof. By Lemma 3.3, there exists a rational function f ∈ C
[
z, z−1

]
such that

q2 = 3 · 2−5/3f2(dz/z)2, q3 = f3(dz/z)3.

The case when f is of the form f(z) = azb reduces to the case of Corollary 3.16. Thus, there exists
a harmonic metric of (E, θ) compatible with C. Suppose that f has a zero in C∗. Then we obtain
that

∑
p∈X ordp(ω) ≥ 1. By Proposition 3.15, if we set d

(p)
2 and d

(p)
3 as (− ordp(ω) + 1)/2

and (− ordp(ω) − 1)/2, respectively, then there exists a harmonic metric of (E, θ) compatible
with C. ■
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Remark 3.18. In the case of (X,D) =
(
P1, {∞}

)
, if 2 < d

(∞)
2 ≤ (deg f + 3)/2 and d

(∞)
3 =

deg f + 2− d
(∞)
2 hold, then d2 and d3 satisfy the conditions in Proposition 3.15. Thus, we obtain

a family of harmonic metrics compatible with C which is parameterized by d
(∞)
2 .

The following proposition also gives part of Theorems 3.1 and 3.2.

Proposition 3.19. For the two cases of (X,D) =
(
P1, {∞}

)
or

(
P1, {0,∞}

)
, if f is constant,

then there does not exist any harmonic metric of (E, θ) compatible with C.

Proof. Suppose that f is a non-zero constant function and there exists a harmonic metric h
of (E, θ) compatible with C. Then we obtain the good filtered Higgs bundle

(
Ph
∗E, θ

)
defined

by (2.1). By Lemma 3.6, the decomposition (E, θ) = (E1, θ
′)⊕ (E3, θ

′′) extends to the decompo-
sition as the good filtered Higgs bundle and the induced filtered Higgs bundles

(
Ph
∗E1, θ

′) and(
Ph
∗E3, θ

′′) are polystable. Therefore, (E1, θ
′) and (E3, θ

′′) have harmonic metrics. However,
because the Higgs field θ′′ − λ2 id is nilpotent and non-zero, there does not exist any harmonic
metric of (E3, θ

′′) (see [4, Propositions 3.41 and 3.42] for details). Hence, there does not exist
any harmonic metric of (E, θ) compatible with C. If f ≡ 0, the Higgs bundle (E, θ) does not
have a harmonic metric since θ is nilpotent and non-zero. ■

3.2 The case of C

In this subsection, we consider the case when
(
X,D

)
=

(
P1, {∞}

)
and deg f = 1, where f is the

polynomial in Theorem 3.1. Let z be a holomorphic coordinate of C and let w = 1/z. We here-
after write (E, θ) = (KC,3, θ(q)) and C = CC,3. Let ψ be the morphism such that θ = ψdw/w.

Let Ẽ be a meromorphic extension of E defined as

Ẽ|U∞ = OU∞(∗∞)s
(∞)
1 +OU∞(∗∞)s

(∞)
2 +OU∞(∗∞)s

(∞)
3 ,

where U∞ is a neighborhood of ∞ and s
(∞)
1 , s

(∞)
2 and s

(∞)
3 are the sections defined as (3.2).

Let v
(∞)
2 = s

(∞)
2 and

v
(∞)
3 = s

(∞)
3 −

2C
(
s
(∞)
3 , s

(∞)
3

)
C
(
s
(∞)
2 , s

(∞)
3

) s(∞)
2 .

Then we obtain C
(
v
(∞)
i , v

(∞)
i

)
= 0 for i = 2, 3.

Lemma 3.20. Let Ẽ′ be a meromorphic extension of E, i.e., a locally free OP1(∗∞)-module Ẽ′

such that Ẽ′|C = E. Suppose that Ẽ′ satisfies the following:

� the pairing C̃ ′ induced by C satisfies C̃ ′
(
Ẽ′ ⊗ Ẽ′

)
⊂ OP1(∗∞),

� the morphism θ̃′ induced by θ satisfies θ̃′
(
Ẽ′

)
⊂ Ẽ′ ⊗KP1.

Then the meromorphic extension Ẽ′ is equal to Ẽ.

Proof. Let ψ′ : Ẽ′∞ → Ẽ′∞ be a morphism defined by θ̃′ = ψ′dw/w. Since the character-
istic polynomial det(t id − ψ′) is equal to det(t id − ψ), ψ and ψ′ have the same eigenvalues.
Thus, there exists the decomposition Ẽ′∞ = E′

1,∞ ⊕ E′
3,∞, where E′

1 = Ker
(
θ̃′ − λ1idẼ′

)
and

E′
3 = Ker

(
θ̃′ − λ2idẼ′

)2
. Let s′

(∞)
1 be a frame of E′

1 on a neighborhood U ′ of ∞. There exists
a holomorphic function h1 on U ′ \ {∞} such that s′

(∞)
1 = h1s

(∞)
1 . Then since C

(
s′
(∞)
1 , s′

(∞)
1

)
=

h21C
(
s
(∞)
1 , s

(∞)
1

)
is meromorphic, the function h1 is meromorphic on U ′. Therefore, we obtain

E′
1 = E1. It suffices to prove E′

3 = E3. Let E′
2 = Ker

(
θ̃′ − λ2idẼ′

)
and s′

(∞)
2 be a frame of E′

2

on U ′. Since the morphism φ′ = θ̃′|E′
3
− λ2idE′

3
: E′

3 → E′
3 induces the isomorphism

φ′ : E′
3/E

′
2 → E′

2 ⊗KP1 ,
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we can take a local section s′
(∞)
3 satisfying φ′(s′(∞)

3

)
= s′

(∞)
2 dw. Because C

(
s′
(∞)
2 , s′

(∞)
3

)
̸= 0,

we can construct v′
(∞)
2 and v′

(∞)
3 in the same way that we constructed v

(∞)
2 and v

(∞)
3 . Then

we obtain that C
(
v′

(∞)
i , v′

(∞)
i

)
= 0 for i = 2, 3 and φ

(
v′

(∞)
3

)
= v′

(∞)
2 dw. There exists a holo-

morphic function h3 on U ′ \ {∞} such that v′
(∞)
3 = h3v

(∞)
3 . Then we obtain v′

(∞)
2 = h3v

(∞)
2 .

Since C
(
v′

(∞)
2 , v′

(∞)
3

)
= C

(
h3v

(∞)
2 , h3v

(∞)
3

)
= h23C

(
v
(∞)
2 , v

(∞)
3

)
is meromorphic on U ′, h3 is mero-

morphic on U ′. Therefore, we obtain E3 = E′
3. ■

Because of Lemma 3.20, we focus on only filtered bundles over Ẽ. Let P∗Ẽ be a filtered
bundle over Ẽ. Suppose that

(
P∗

(
Ẽ
)
, θ̃
)
is good and the induced pairing C̃ is perfect. If s ∈ Ẽ∞

satisfies that for c ∈ R, s ∈ PcẼ∞ and s /∈ P<cẼ∞, we say that the degree of s is c and we write
deg s for the degree of s. We define deg s = −∞ if s = 0. Let d2 = deg v

(∞)
2 and d3 = deg v

(∞)
3 .

First, we prove the following lemma.

Lemma 3.21. The filtered Higgs bundle P∗
(
Ẽ
)
satisfies Assumption 3.5, that is,

P∗Ẽ∞ = P∗E1,∞ ⊕ P∗E3,∞.

Proof. Since the meromorphic 1-form ω = fdz has a pole at ∞, we obtain the desired decom-
position by Lemma 3.6. ■

Note that d3 − d2 ≥ −1 by Lemma 3.11.

Lemma 3.22. Let U be a small neighborhood of ∞. If d3 − d2 /∈ Z, then

PcE3|U = OU ([c− d2]∞)v
(∞)
2 ⊕OU ([c− d3]∞)v

(∞)
3 .

Proof. Let s′3 = w[d3−d2]v
(∞)
3 and d′3 = deg s′3. Then 0 < d′3 − d2 < 1. It suffices to prove

Pd2E3|U = OUv
(∞)
2 ⊕OUws

′
3 and Pd′3

E3|U = OUv
(∞)
2 ⊕OUs

′
3. Let u2 and u3 be local sec-

tions of Pd2E3 and Pd′3
E3 on U , respectively, such that u2 ̸= 0 in GrPd2(E3,∞) and u3 ̸= 0

in GrPd′3
(E3,∞). Then there exist gi, hi ∈ OU (∗∞) such that

v
(∞)
2 = g2u2 + g3u3, s′3 = h2u2 + h3u3.

We obtain deg (g2u2) = d2 and deg (g3u3) ≤ d′3 − 1 since deg (g2u2) ∈ (d2 + Z) ∪ {−∞} and
deg (g3u3) ∈

(
d′3+Z

)
∪{−∞}, where for a ∈ R, we write a+Z for {a+n | n ∈ Z}. Similarly, we

obtain deg (h2u2) ≤ d2 and deg (h3u3) = d′3. Therefore, v
(∞)
2 and ws′3 are linearly independent

in Pd2E3|∞. Similarly, v
(∞)
2 and s′3 are linearly independent in Pd′3

E3|∞. ■

Lemma 3.23. Let U be a small neighborhood of ∞. If d3 − d2 = −1, then

PcE3|U = OU ([c− d2]∞)v
(∞)
2 ⊕OU ([c− d3]∞)v

(∞)
3 .

Proof. Suppose that a2wv
(∞)
2 + a3v

(∞)
3 = 0 in GrPd3(E3,∞) for a2, a3 ∈ C. Since(

ψ − 2−1/3w−1f
)(
v
(∞)
2

)
= 0 and

(
ψ − 2−1/3w−1f

)(
v
(∞)
3

)
= wv

(∞)
2 ,

we obtain

0 =
(
ψ − 2−1/3w−1f

)(
a2wv

(∞)
2 + a3v

(∞)
3

)
= a3wv

(∞)
2 in GrPd3(E3,∞).

Thus, a3 = 0 and a2 = 0, that is, wv
(∞)
2 and v

(∞)
2 are linearly independent in GrPd3(E3,∞). ■

Lemma 3.24. Let U be a small neighborhood of ∞. If d3 − d2 ∈ Z≥0, then

PcE3|U = OU ([c− d2]∞)v
(∞)
2 ⊕OU ([c− d3]∞)v

(∞)
3 . (3.5)



Harmonic Metrics for Higgs Bundles of Rank 3 in the Hitchin Section 17

Proof. We take a local frame
(
wnv

(∞)
2 , v = av

(∞)
2 + bv

(∞)
3

)
of P0E3 on U , where n ∈ Z,

a, b ∈ H0(U,OP1(∗∞)). There are two cases.

Case 1. There exists c ∈ R such that dimGrPc E3,∞ = 2.

Case 2. There exists c ∈ R such that dimGrPc E3,∞ = 1.

Lemma 3.25. In Case 1, Par(P∗E3,∞) = Z or Par(P∗E3,∞) = Z+1/2 holds. Here, Z+1/2 =
{n+ 1/2 | n ∈ Z}.

Proof. The induced pairing C̃|U : P∗E3|U⊗P∗E3|U → P(0)
∗ (OU (∗∞)) is perfect by Lemma 3.21.

Therefore, for c ∈ Par(P∗E3,∞), the non-degenerate symmetric pairing

GrPc (E3,∞)⊗GrPc (E3,∞) → GrP
(0)

2c (OU,∞)

is induced. Then since dimGrP
(0)

2c (OU,∞) ̸= 0, we see that 2c ∈ Z. ■

We first consider the case of Par(P∗E3,∞) = Z. Then the induced pairing

GrP0 (E3,∞)⊗GrP0 (E3,∞) → GrP
(0)

0 (OU,∞)

is non-degenerate. We see that C
(
wnv

(∞)
2 , v

)
̸= 0 in GrP

(0)

0 (OU,∞) since C
(
wnv

(∞)
2 , wnv

(∞)
2

)
= 0

and deg v = deg
(
wnv

(∞)
2

)
= 0 hold. Then we obtain

ord∞C(v, v) = ord∞ a+ ord∞ b− deg f − 2 ≥ 0,

ord∞C(wnv
(∞)
2 , v) = ord∞ b− deg f − 2 + n = 0.

Thus, we obtain ord∞ a ≥ n, and we can take the local frame
(
wnv

(∞)
2 , bv

(∞)
3

)
of P0E3 on U . It

implies the equation (3.5). In the case of Par(P∗E3) = Z+ 1/2, the induced pairing

GrP−1/2(E3,∞)⊗GrP−1/2(E3,∞) → GrP
(0)

−1 (OU,∞)

is non-degenerate. We see that C
(
wnv

(∞)
2 , v

)
̸= 0 in GrP

(0)

−1 (OU,∞) since C
(
wnv

(∞)
2 , wnv

(∞)
2

)
= 0

and deg v = deg
(
wnv

(∞)
2

)
= −1/2 hold. We obtain

ord∞C(v, v) = ord∞ a+ ord∞ b− deg f − 2 ≥ 1,

ord∞C(wnv
(∞)
2 , v) = ord∞ b− deg f − 2 + n = 1.

Therefore, we can take the frame
(
wnv

(∞)
2 , bv

(∞)
3

)
of P0E3 on U.

In Case 2, we may assume that degwnv
(∞)
2 ̸= deg v. Let c2 and c3 denote degwnv

(∞)
2 and

deg v, respectively. Then −1 < c2, c3 ≤ 0 holds. The induced pairing

GrPc2(E3,∞)⊗GrPc3(E3,∞) → GrP
(0)

c2+c3(OU,∞)

is perfect because of C
(
wnv

(∞)
2 , wnv

(∞)
2

)
= 0. Thus, we obtain c2 + c3 = −1. Moreover, we

obtain that

ord∞C
(
wnv

(∞)
2 , v

)
= ord∞ b− deg f − 2 + n = −(c2 + c3) = 1.

Lemma 3.26. One of the following holds:

� ord∞ a > n,

� c2 < c3 and ord∞ a = n.
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Proof. Because of 2c3 < 0, we obtain

ord∞C(v, v) = ord∞ a+ ord∞ b− deg f − 2 ≥ 1,

and it gives ord∞ a ≥ n. Suppose ord∞ a = n. Then we obtain ord∞C(v, v) = 1. It implies
that 2c3 ≥ −1, and we see that 2c3 > −1 because c2 ̸= c3 and c2 + c3 = −1 hold. Therefore, we
obtain c2 < c3. ■

Lemma 3.27. The condition that ord∞ a > n cannot occur.

Proof. Suppose ord∞ a > n. Then we obtain that deg bv
(∞)
3 = deg v = c3. Therefore, we see

that d3 − c3 ∈ Z and d2 − c2 ∈ Z. This contradicts d3 − d2 ∈ Z and |c3 − c2| < 1. ■

Lemma 3.28. The condition that c2 < c3 and the condition that ord∞ a = n cannot occur at
the same time.

Proof. Suppose that c2 < c3 and ord∞ a = n hold. Then we obtain that

deg bv
(∞)
3 = deg

(
v − (aw−n)wnv

(∞)
2

)
= c3.

This contradicts d3 − c2 ∈ Z and |c3 − c2| < 1. ■

By Lemmas 3.27 and 3.28, we see that Case 2 cannot occur. ■

By Lemmas 3.22–3.24, we obtain the following theorem.

Theorem 3.29. For the good filtered Higgs bundle
(
P∗Ẽ, θ̃

)
with the perfect pairing C̃, there

exists a neighborhood U of ∞ such that

P∗Ẽ|U = P∗E1|U ⊕ P∗E3|U .

Moreover, P∗E1|U and P∗E3|U are represented as

PcE1|U = OU ([c− deg f − 2]∞)s
(∞)
1 ,

PcE3|U = OU ([c− d2]∞)v
(∞)
2 ⊕OU ([c− d3]∞)v

(∞)
3 .

Corollary 3.30. If the polynomial f ∈ C[z] is of degree 1, there is no harmonic metric of (E, θ)
compatible with C.

Proof. If deg f = 1, by Remark 3.18 and Theorem 3.29, there does not exist any good polystable
filtered Higgs bundle over Ẽ with a perfect pairing. By Theorem 2.18, there is no harmonic
metric of (E, θ) compatible with C. ■

By Corollary 3.16, 3.30 and Proposition 3.19, we obtain Theorem 3.1.

Remark 3.31. Theorem 3.29 gives the classification of compatible harmonic metrics of (E, θ).
In other words, compatible harmonic metrics of (E, θ) are given by filtered Higgs bundles in
Theorem 3.29 and parameterized by d2, which can take any value in the interval (2, (deg f+3)/2].



Harmonic Metrics for Higgs Bundles of Rank 3 in the Hitchin Section 19

3.3 The case of C∗

In this subsection, we consider the case of
(
X,D

)
=

(
P1, {0,∞}

)
. To complete the proof of

Proposition 3.2, it suffices to study the case of f = azb, a ∈ C∗, b = 1, 2 because of Corollary 3.17
and Proposition 3.19. Suppose that f = azb. Let s1, s2, s3 be sections defined as follows: with
respect to the frame

(
dz/z, 1, (dz/z)−1

)
,

s1 =

5 · 2−5/3f2

22/3f
1

 , s2 =

−2−5/3f2

−2−1/3f
1

 , s3 =

−22/3f
1
0

 .

Since the function f has no zero in C∗, (s1, s2, s3) is the frame of E. We see that

(
θ +

(
2−1/3fdz

)
/z idE

)
(s1, s2, s3) = (s1, s2, s3)

3 · 2−1/3f 0 0
0 0 1
0 0 0

 dz

z
.

Thus, we can take the frame (v1, v2, v3) of E such that

(
θ +

(
2−1/3fdz

)
/z idE

)
(v1, v2, v3) = (v1, v2, v3)

3 · 2−1/3f 0 0
0 0 1
0 0 0

 dz

z
,

C(v1, v1) = 1, C(vi, vi) = 0 i = 2, 3,

C(v2, v3) =

{
1 if f = az2,

z if f = az.

We define Ẽ, Ei, θ̃ and C̃ as in Section 3.1,

Ẽ =
3⊕

i=1

OP1(∗D)vi, E1 = OP1(∗D)v1, E2 = OP1(∗D)v2,

E3 = OP1(∗D)v2 ⊕OP1(∗D)v3, E4 = OP1(∗D)v1 ⊕OP1(∗D)v2.

By Theorem 2.18, it suffices to find a stable good filtered Higgs bundle over
(
Ẽ, θ̃

)
such that C̃

is perfect. Under the change of coordinate z 7→ z1 = αz, dz/z remains unchanged, while βzb

transforms to βαbzb. For this reason, we will consider filtered Higgs bundles over
(
Ẽ, φb

)
,

where φb is the Higgs field satisfying

φb(v1, v2, v3) = (v1, v2, v3)

zb 0 0
0 0 1
0 0 0

 dz

z
.

Let ψb be the morphism defined as ψb dz/z = φb.

Proposition 3.32. Let u1, u2 and u3 be sections of Ẽ defined as follows:

u1 = z−2v1 +

√
−1

2
z−3v2 +

√
−1z−1v3,

u2 = zv2, u3 = −1

2
z−1v2 + zv3.

We set a filtered Higgs bundle
(
P∗Ẽ, φ2

)
as

PcẼ0 = OP1,0([c]0)u1 ⊕OP1,0([c]0)u2 ⊕OP1,0([c]0)u3,

PcẼ∞ = OP1,∞([c]∞)v1 ⊕OP1,∞([c]∞)v2 ⊕OP1,∞([c]∞)v3.

Then
(
P∗Ẽ, φ2

)
is a stable good filtered Higgs bundle with the perfect pairing C̃.
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Proof. We have

ψ2(u1) = z2u1 −
√
−1u3, ψ2(u2) = 0, ψ2(u3) = u2,

ψ2(v1) = z2v1, ψ2(v2) = 0, ψ2(v3) = v2.

These imply that
(
P∗Ẽ, φ2

)
is good. Moreover, we have

C(u1, u2) =
√
−1, C(u3, u3) = −1, C(v1, v1) = 1, C(v2, v3) = 1.

Thus, the pairing C̃ is perfect. We also have

C(u2, u3) = z2, v1 = z2u1 −
√
−1z−2u2 −

√
−1u3.

These imply that the induced pairings C̃ : P∗E1⊗P∗E1 → P(0)
∗ (OP1(∗D)) and C̃ : P∗E3⊗P∗E3 →

P(0)
∗ (OP1(∗D)) are not perfect. Therefore, we obtain that deg(P∗E1) < 0 and deg(P∗E3) < 0.

Since u2 = zv2 is a local frame of P0,0E2 on C and v2 is a local frame of P0,0E2 on P1 \ {0},
we see that

deg(P∗E2) = deg(P0,0E2) = −1.

The sections z2u1 −
√
−1u3 = v1 +

√
−1zv2 and u2 = zv2 form a local frame of P0,0E4 on C.

Thus, zv1∧v2 is a frame of det(P0,0E4) on C. The section v1∧v2 is a local frame of det(P0,0E4)
on P1 \ {0}. Therefore, we obtain that

deg(P∗E4) = deg(P0,0E4) = −1.

As a result,
(
P∗Ẽ, φ2

)
is stable. ■

Proposition 3.33. Let u′1, u
′
2 and u′3 be sections of Ẽ defined as follows:

u′1 = z−1v1 +

√
−1

2
z−2v2 +

√
−1z−1v3,

u′2 = v2, u′3 = −1

2
z−1v2 + v3.

We set a filtered Higgs bundle
(
P∗Ẽ, φ1

)
as

PcẼ0 = OP1,0([c]0)u
′
1 ⊕OP1,0([c]0)u

′
2 ⊕OP1,0([c]0)u

′
3,

PcẼ∞ = OP1,∞([c]∞)v1 ⊕OP1,∞([c− 1/2]∞)v2 ⊕OP1,∞([c− 1/2]∞)v3.

Then
(
P∗Ẽ, φ1

)
is a stable good filtered Higgs bundle with the perfect pairing C̃.

Proof. We have

ψ1(u
′
1) = zu′1 −

√
−1u′3, ψ1(u

′
2) = 0, ψ1(u

′
3) = u′2,

ψ1(v1) = zv1, ψ1(v2) = 0, ψ1(v3) = v2.

These imply that
(
P∗Ẽ, φ1

)
is good. Moreover, we have

C
(
u′1, u

′
2

)
=

√
−1, C

(
u′3, u

′
3

)
= −1, C(v1, v1) = 1, C(v2, v3) = z.

Thus, the pairing C̃ is perfect. Since we also have

C
(
u′2, u

′
3

)
= z, v1 = zu′1 −

√
−1z−1u′2 −

√
−1u′3,
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we obtain that deg(P∗E1) < 0 and deg(P∗E3) < 0 in the same way as Proposition 3.32.
Since u′2 = v2 is a global frame of P0,1/2E2, we see that

deg(P∗E2) = deg(P0,1/2E2)−
1

2
= −1

2
.

The sections zu′1−
√
−1u′3 = v1+

√
−1z−1v2 and u

′
2 = v2 form a global frame of P0,1/2E4. Thus,

v1 ∧ v2 is a frame of det(P0,1/2E4). Therefore, we obtain that

deg(P∗E4) = deg(P0,1/2E4)−
1

2
= −1

2
.

As a result,
(
P∗Ẽ, φ1

)
is stable. ■

By Propositions 3.32, 3.33, Corollary 3.17 and Proposition 3.19, we obtain Theorem 3.2.
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