
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 20 (2024), 114, 24 pages

Real Forms of Holomorphic Hamiltonian Systems

Philip ARATHOON a and Marine FONTAINE b

a) Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
E-mail: philash@umich.edu

b) Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
E-mail: marine.fontaine@warwick.ac.uk

Received June 12, 2024, in final form December 10, 2024; Published online December 21, 2024

https://doi.org/10.3842/SIGMA.2024.114

Abstract. By complexifying a Hamiltonian system, one obtains dynamics on a holomorphic
symplectic manifold. To invert this construction, we present a theory of real forms which
not only recovers the original system but also yields different real Hamiltonian systems
which share the same complexification. This provides a notion of real forms for holomorphic
Hamiltonian systems analogous to that of real forms for complex Lie algebras. Our main
result is that the complexification of any analytic mechanical system on a Grassmannian
admits a real form on a compact symplectic manifold. This produces a ‘unitary trick’ for
Hamiltonian systems which curiously requires an essential use of hyperkähler geometry. We
demonstrate this result by finding compact real forms for the simple pendulum, the spherical
pendulum, and the rigid body.
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1 Background and outline

Real analytic Hamiltonian systems are closely related to complex holomorphic Hamiltonian sys-
tems. Indeed, if we treat the variables in a real analytic system as being complex we obtain
a holomorphic system. For this reason, it is not uncommon to treat these two concepts equiv-
alently. However, what this perspective overlooks is the possibility that many different and
distinct real analytic systems might each complexify to the same system. This motivates a the-
ory of real forms for holomorphic Hamiltonian systems which will allow us to treat different real
Hamiltonian systems as real forms of the same complex system.

This idea is not new and has been considered before in [16, 17, 18, 25]. However, these previous
approaches are limited to systems on C2n with real subspaces R2n as real forms. We generalise
this to dynamics on holomorphic symplectic manifolds and introduce a wider definition for what
it means to be a real form. This has the advantage of extending the scope of the theory to
include a greater variety of dynamical systems and also brings it into closer contact with ideas
in differential geometry. Below we give an outline of the work contained within.

1.1 Introduction

A real analytic manifold can be complexified to give a complex manifold [24, 28, 31]. The original
manifold appears as a totally real submanifold of half dimension, and thus, any such submani-
fold with this property shall be considered a real form of the complex manifold. If the original
manifold possesses an analytic symplectic form, then the complexification will be a holomor-
phic symplectic manifold. Exactly as with ordinary Hamiltonian dynamics, one can consider
a Hamiltonian vector field generated by a holomorphic function and investigate the dynamics
generated by its flow.
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We distinguish those real forms upon which the holomorphic symplectic form is either purely
real or pure imaginary; what we call a real- or imaginary-symplectic form. If such a real form
is invariant under the flow of a holomorphic Hamiltonian, then we justify why the restricted
dynamics on this real form can be considered to be a real form of the holomorphic Hamiltonian
system.

1.2 Reduction

If a holomorphic Hamiltonian systems admits some symmetry, it is natural to ask how this
symmetry might manifest on a real form. A more precise formulation of this question is to ask
how the complex and real symplectic reduced spaces might be related. We choose to address this
in terms of Poisson reduction. For when the symmetry of the holomorphic symplectic manifold
is in a certain sense compatible with respect to a real form, we show the extent to which the
Poisson reduced space for the real form can itself be considered a real form of the holomorphic
Poisson reduced space.

To demonstrate these results, we introduce a guiding example which finds use throughout
the paper: the example of a particular coadjoint orbit Orb(ζ) in glnC∗. Geometrically, this
orbit is the complex symmetric space DC of decompositions of Cn into two complementary
subspaces. Using a dual pair construction, we exhibit this orbit as a reduced space for an action
of GLmC on T ∗

1,0Hom(Cm,Cn). We then find various real forms inside T ∗
1,0Hom(Cm,Cn) which

are compatible with respect to the group action, and hence, descend to real-symplectic forms
on DC. These turn out to be related to the real GLnR, unitary U(l, n − l), and quaternionic
GLn/2H real forms of GLnC.

1.3 Branes

A hyperkähler manifold defines a holomorphic symplectic form for each choice of complex struc-
ture. Naturally, this provides us with a stock of examples of holomorphic symplectic manifolds.
In addition to this, complex-Lagrangian submanifolds taken with respect to one complex struc-
ture give real- and imaginary-symplectic forms with respect to two other complex structures,
respectively. This gives us a nice trick to generate examples of real- and imaginary-symplectic
forms. We adopt the terminology taken from ideas in string theory and refer to such submani-
folds as branes [15, 19].

We implement this trick for a particular manifold which we obtain through hyperkähler
reduction for an action of U(m) on Hom(Hm,Hn). For different choices of complex structure,
the underlying holomorphic symplectic manifold is either the coadjoint orbit Orb(ζ) or the
cotangent bundle to a complex Grassmannian. In this way, we demonstrate that complex-
Lagrangian submanifolds of T ∗

1,0GrC, such as the zero section or a fibre, correspond to real-
symplectic forms of DC. We also obtain an explicit diffeomorphism between DC and T ∗

1,0GrC
which interchanges their hyperkähler structures and turns out to be an essential ingredient for
the compact real-form result in the following section.

Incidentally, we generate new examples of complex-Lagrangian submanifolds of T ∗
1,0GrC and

provide symplectomorphisms between certain symmetric spaces with cotangent bundles of Grass-
mannians.

1.4 Integrability and dynamical systems

The generalisation of an integrable system to the holomorphic category is straightforward, con-
sidered for instance in [12] and extensively discussed for the real analytic category in [1, 30]. Our
main question is to ask whether holomorphic integrability is equivalent to integrability on a real
form. We answer in the affirmative and show that if a real form admits an analytic integrable
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system, then this may be extended to a holomorphic integrable system in a neighbourhood of
the real form. Conversely, if a holomorphic Hamiltonian system is integrable in the holomorphic
sense, then any real form of the dynamics is integrable in the real sense. This provides us with
a method for generating new integrable systems from old: begin with a real analytic integrable
system, complexify it and obtain real integrable systems on different real forms. We are partic-
ularly interested in when the real forms are compact symplectic manifolds. In this regard, we
show the following.

Theorem. For any real analytic mechanical system defined on a real, complex, or quaternionic
Grassmannian there exists a real Hamiltonian system defined on a non-empty open subset of
a compact symplectic manifold for which both systems complexify to the same holomorphic Hamil-
tonian system.

We demonstrate this result for the examples of the simple pendulum, the spherical pendulum,
and the rigid body. The phases spaces for these problems are the cotangent bundles T ∗S1, T ∗S2,
and T ∗SO(3), and their compact real forms turn out to be S2, S2 × S2, and CP 3, respectively.

2 Introduction

2.1 Holomorphic symplectic geometry

A holomorphic symplectic manifold is a complex manifold M equipped with a closed and non-
degenerate holomorphic 2-form Ω. This gives an isomorphism between the holomorphic tangent
bundle T ∗

1,0M and the real tangent bundle TM by identifying the complex-valued covector df
to x ∈M with the tangent vector Xf satisfying

Ω(Xf , Y ) = ⟨df, Y ⟩
for all Y ∈ TxM . In this way, we may associate to a holomorphic function f a Hamiltonian
vector field Xf . If we separate the holomorphic symplectic form into its real and imaginary
parts we obtain real symplectic forms ωR and ωI on M , where Ω = ωR + iωI . If we write the
complex structure on each tangent space as I, then these two forms are related by

ωR(I(X), Y ) = −ωI(X,Y ). (2.1)

Proposition 2.1. Let f be a holomorphic function defined on a holomorphic symplectic mani-
fold (M,Ω) and write f = u+iv as its decomposition into real and imaginary parts. The Hamil-
tonian vector field Xf is equivalently the Hamiltonian vector field of u on (M,ωR) and of v
on (M,ωI).

Proof. This follows immediately by expanding Ω(Xf , Y ) = ⟨df, Y ⟩ into real and imaginary
parts as

ωR(Xf , Y ) + iωI(Xf , Y ) = ⟨du, Y ⟩+ i⟨dv, Y ⟩. ■

This proposition shows that the Hamiltonian vector field generated by a holomorphic function
satisfies a bihamiltonian structure on M with respect to the two symplectic forms ωR and ωI .

To generalise the concept of real structures on complex vector spaces, we say that a real
structure on a complex manifoldM is an involution R whose derivative is everywhere conjugate-
linear. If non-empty, the fixed-point set of R can be considered a real form ofM . More generally,
a real form of a complex manifold shall mean a totally real submanifold of half dimension. Recall
that a submanifold N ⊂M is called totally real if TxN ∩ I(TxN) = {0} for all x in N .

We immediately caution that our use of the term ‘real form’ should not be confused with
the concept of a real-valued differential form. Our choice of language is designed to reflect the
corresponding notion of real forms in Lie theory.
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Definition 2.2. A real form N of (M,Ω) is called a real-symplectic form if the restriction of Ω
to N is purely real, and an imaginary-symplectic form if this restriction is purely imaginary.
Furthermore, a real structure R is said to be

� a real-symplectic structure if R∗Ω = Ω (conjugate-symplectic),

� and an imaginary-symplectic structure if R∗Ω = −Ω (anti-conjugate-symplectic).

Assuming they are non-empty, the fixed-point sets of real- and imaginary-symplectic struc-
tures are real- and imaginary-symplectic forms, respectively.

Proposition 2.3. A totally real submanifold N of (M,Ω) is a real-symplectic form if and only
if it is a Lagrangian submanifold with respect to (M,ωI). This implies N is a symplectic sub-
manifold of (M,ωR). Likewise, N is an imaginary-symplectic form if and only if it is Lagrangian
with respect to (M,ωR), and this implies it is a symplectic submanifold of (M,ωI).

Proof. The first statement is immediate from the definitions. If TxN is a Lagrangian subspace
with respect to ωI , then from (2.1) it follows that I(TxN) is the orthogonal complement to TxN
with respect to ωR. As I(TxN)∩ TxN = {0}, we see that TxN is a symplectic subspace of TxM
with respect to ωR for all x ∈ N . The case for imaginary-symplectic forms is similar. ■

Example 2.4 (cotangent lift of a real structure). Let C be a complex manifold together with
a real structure r with fixed-point set Fix r = Cr. We can lift this to a real structure R± on the
holomorphic cotangent bundle by setting

⟨R±(η), X⟩ = ±⟨η, r∗X⟩
for η ∈ T ∗

1,0C a covector to x and for all X ∈ Tr(x)C. This satisfies R∗
±λ = ±λ, where λ is the

canonical one-form. Therefore, we may lift real structures on C to either real- or imaginary-
symplectic structures on (T ∗

1,0C,Ωcan). The fixed-point set FixR+ is canonically symplectomor-
phic to T ∗Cr, and FixR− to iT ∗Cr, by which we mean the bundle of imaginary-valued 1-forms
on Cr.

Suppose we have a dynamical system on (M,Ω) generated by a holomorphic Hamiltonian f .
Given a real form N ⊂M we would like to be able to describe a real Hamiltonian system on N
which can, in a sense, be said to be a real form of the holomorphic system (M,Ω, f). This raises
two questions: what real forms N should we consider, and what should be the corresponding
real Hamiltonian?

In answer to the first question, we shall insist that N is a real- or imaginary-symplectic form.
For the sake of brevity, we shall throughout this paper mostly make reference to real-symplectic
forms, however the imaginary case is entirely similar. From Proposition 2.3, the restriction
of ωR to N is symplectic. If we write this restriction as ω̂R, then we have the real symplectic
manifold (N, ω̂R).

We now turn to the second question. In order for the dynamical system on M to induce
a dynamical system on N , we must suppose that N is invariant under the flow generated
by f . If we decompose the function into its real and imaginary parts as f = u + iv, then by
Proposition 2.1 the flow of f is equivalently the Hamiltonian flow of u on (M,ωR). For x ∈ N ,
the Hamiltonian vector field Xu belongs to TxN if and only if du yields zero when evaluated on
the orthogonal complement to TxN with respect to ωR. From the proof of Proposition 2.3, this
complement is I(TxN), and therefore we require ⟨du, I(TxN)⟩ = 0. Since f is holomorphic, the
Cauchy–Riemann equations show us that this is equivalent to ⟨dv, TxN⟩ = 0.

Theorem 2.5. Let (M,Ω) be a holomorphic symplectic manifold. A real-symplectic form
N ⊂M is invariant under the Hamiltonian flow generated by a holomorphic function f = u+iv
if and only if v is locally constant on N . In this case, the flow on N is identical to the Hamil-
tonian flow generated by the restriction of u to (N, ω̂R).
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For the situation described in this theorem, we can speak of the dynamical system (N, ω̂R, u)
as being a real form of the holomorphic system (M,Ω, f). The principal application we have
in mind is to identify different real Hamiltonian systems by recognising that they are both real
forms of the same holomorphic system.

More generally, we are interested in holomorphic Hamiltonians whose restriction to N is real
up to a constant phase. After all, we may always scale such a Hamiltonian by the constant
phase to obtain a real-valued restriction which generates a Hamiltonian system on N . For this
reason, in the presence of a real-/imaginary-structure we have the following.

Definition 2.6. Let (M,Ω) be a holomorphic symplectic manifold and R a real-/imaginary-
symplectic structure. A holomorphic Hamiltonian H will be called R-compatible with respect
to a real structure ∗ on C if

H ◦R = H∗.

2.2 Holomorphic Poisson geometry

A holomorphic Poisson manifold is a complex manifold P equipped with a holomorphic section π
of

∧2,0 TP with the property that the bracket

{f, g}(x) = πx(df, dg)

defined on the sheaf of holomorphic functions satisfies the Jacobi identity and is thus a com-
plex-valued Poisson bracket. Such a Poisson structure defines a fibrewise complex-linear map
♯ : T ∗

1,0P → TP which sends a covector df ∈ T ∗
1,0P at x to the tangent vector ♯df ∈ TxP

satisfying

⟨dg, ♯df⟩ = πx(df,dg) (2.2)

for all dg ∈ T ∗
1,0P at x. Exactly as with the real situation, the image of ♯ defines a com-

plex involutive (generalised) distribution called the characteristic distribution. One may define
a holomorphic symplectic form Ω on each leaf O of the distribution by

Ω(♯df, ♯dg) = π(df, dg). (2.3)

This form is non-degenerate and well defined thanks to ker ♯ = (Im ♯)◦ and is a closed holomor-
phic form as a consequence of the Jacobi identity. The leaves of the characteristic distribution
are therefore immersed holomorphic symplectic manifolds.

By decomposing a complex one-form into its real and imaginary parts df = du + idv, we
establish two real isomorphisms df ↔ du and df ↔ dv between the space of complex-linear
forms T ∗

1,0P with real-linear forms T ∗P . We can then define two real Poisson structures πR
and πI on P by setting

π(df1, df2) = πR(du1,du2) + iπI(dv1,dv2).

Applying (2.2) gives

♯df = ♯Rdu = ♯Idv. (2.4)

Consequently, the characteristic distributions coincide, and with the aid of (2.3) we see that the
real and imaginary parts of the holomorphic symplectic form Ω on a leaf O are precisely the
real symplectic forms ωR and ωI induced by the Poisson structures πR and πI , respectively.

In light of Proposition 2.3, the generalisation of Definition 2.2 requires a review of the appro-
priate analogues of Lagrangian and symplectic submanifolds in symplectic geometry to Poisson
geometry.
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� A submanifold N of (P, πI) is coisotropic if ♯I(TN
◦) ⊂ TN .

� A submanifold N of (P, πR) is called pointwise Poisson–Dirac if ♯R(TxN
◦)∩TxN = {0} for

every x ∈ N . For any dU ∈ T ∗
xN , this implies the existence of a unique du ∈ T ∗

xP which
projects to dU and for which ♯R(du) ∈ TxN . In this way, we may define a bivector ΠR

on N by

ΠR(dU1,dU2) = πR(du1,du2). (2.5)

If ΠR varies smoothly across N , then N is a Poisson–Dirac submanifold of (P, πR).

Definition 2.7. A real form N ⊂ P is a real-Poisson form of (P, π) if N is a coisotropic sub-
manifold of (P, πI) and an imaginary-Poisson form if N is a coisotropic submanifold of (P, πR).
A real structure R on a holomorphic Poisson manifold will be called a real- (+) or imaginary- (−)
Poisson structure if

πR(x)

(
R∗df,R∗dg

)
= ± πx(df,dg) (2.6)

holds at all x and for all holomorphic one-forms df, dg ∈ T ∗
1,0P at x. The notation R∗df denotes

the conjugate-adjoint, which for all X ∈ TR(x)P satisfies〈
R∗df,X

〉
= ⟨df,R∗X⟩. (2.7)

If non-empty, the fixed-point set N of a real-Poisson structure R is a real-Poisson form. To see
this, consider the complex-linear form df = du + idv for dv ∈ TxN

◦. For X in TxN , we have
that ⟨df,X⟩ is real and ⟨df, I(X)⟩ is imaginary, from which we see that R∗df = df at x in N .
It follows from (2.6) that π(df1,df2) is purely real, and so 0 = πI(dv1,dv2) = ⟨dv2, ♯Idv1⟩ for all
dv1, dv2 ∈ TxN

◦. The vector ♯Idv1 must therefore belong to TxN , and hence, N is a coisotropic
submanifold of (P, πI).

Proposition 2.8. If N is a real-Poisson form of a holomorphic Poisson manifold (P, π), then N
is a Poisson–Dirac submanifold of (P, πR). Furthermore, if the intersection between N and
a holomorphic symplectic leaf O is a submanifold of O, then N ∩ O is a real-symplectic form
of (O,Ω).

Proof. If N is a real-Poisson form, then the subspace TxN ∩ TxO is a coisotropic subspace
of (TxO, ωI). On the other hand, since N is a real form and O a complex submanifold, we must
have

(TxN ∩ TxO)⊕ I(TxN ∩ TxO) ⊂ TxO.

Therefore, the dimension of TxN ∩TxO must be less than or equal to half the dimension of TxO.
Yet since this is a coisotropic subspace it must be exactly half the dimension, and hence, a La-
grangian subspace. It follows from Proposition 2.3 that if N ∩O is a submanifold of O, then it
is Lagrangian with respect to (O, ωI) and therefore a real-symplectic form of (O,Ω).

Since TxN ∩ TxO is Lagrangian with respect to (TxO, ωI), it follows from (2.1) that it is
symplectic with respect to (TxO, ωR) and therefore, N is pointwise Poisson–Dirac with respect
to (P, ωR). To show that ΠR in (2.5) varies smoothly, it suffices to show that the map T ∗N →
T ∗P |N which sends dU ∈ T ∗

xN to du ∈ T ∗
xP is smooth [11]. As TxP = TxN ⊕ I(TxN), we may

smoothly extend dU to a form on TxP by setting it to equal zero on I(TxN). We claim that
this extension is precisely du. By complex linearity of the form df = du + idv, we see that du
vanishing on I(TxN) implies dv vanishes on TxN , and hence dv ∈ TxN

◦. Let dw ∈ TxN
◦ be

arbitrary. From (2.4), we obtain ⟨dw, ♯Rdu⟩ = ⟨dw, ♯Idv⟩ which must equal zero as ♯Idv ∈ TxN
since N is coisotropic, and so ♯Rdu ∈ TxN as desired. ■



Real Forms of Holomorphic Hamiltonian Systems 7

Example 2.9 (complex Lie algebras as holomorphic Poisson manifolds and their real forms).
The prototypical example of a holomorphic Poisson manifold is the dual of a complex Lie alge-
bra g∗ equipped with the Kostant–Kirilov–Souriau (KKS) Poisson bracket

{f, g}(η) = πη(df |η,dg|η) = ⟨η, [df |η,dg|η]⟩,

where the one-forms df |η and dg|η on g∗ belong to the Lie algebra g upon which the Lie
bracket [ , ] is defined. Let ρ∗ be a real form on g which is also a Lie algebra automorphism with
non-empty fixed-point set gρ. In other words, gρ is a real form of g in the Lie algebraic sense.
This involution lifts to a real structure ρ∗ on g∗ given by the conjugate-adjoint as in (2.7). This
defines a real-Poisson structure on g∗ whose fixed-point set may be identified with the dual of gρ.
The negative −ρ∗ defines an imaginary-Poisson structure whose fixed-point set is the space of
imaginary-valued 1-forms on gρ.

3 Reduction

3.1 Holomorphic Poisson reduction

Let (M,Ω) be a holomorphic symplectic manifold and G a complex Lie group which acts on M
by holomorphic symplectomorphisms. The quotient topology on the orbit spaceM/G is not nice
in general, so we shall suppose that the orbit map P : M →M/G is a holomorphic submersion
between complex manifolds. By virtue of G acting symplectically, the Poisson bracket between
G-invariant functions is again G-invariant. This allows us to define a unique Poisson structure π̃
onM/G for which the projection map is a Poisson map. The space (M/G, π̃) is the (holomorphic)
Poisson reduced space.

Consider the fixed-point set MR of a real-symplectic structure R on M . We would like
to understand how this behaves with respect to Poisson reduction. In the presence of a real
structure it is reasonable to expect some degree of compatibility between the involution R and
the action of G. If we suppose that R maps G-orbits into G-orbits, then it descends to a real
structure on M/G which we shall denote by R̃. Using R̃ ◦ P = P ◦R, it follows from (2.6) and
the definition of π̃ that R̃ is a real-Poisson structure on (M/G, π̃). This compatibility condition
can be ensured if the following equivariant definition holds.

Definition 3.1. A holomorphic group action of a complex Lie groupG on a complex manifoldM
equipped with a real structure R will be called R-compatible with respect to a real group
structure ρ on G if for all g ∈ G and x ∈M

R(g · x) = ρ(g) ·R(x). (3.1)

For such a compatible group action, the real Lie group Gρ acts symplectically on the real
form

(
MR, ω̂R

)
. If in addition, we suppose the orbit map p : MR → MR/Gρ is also a submer-

sion between smooth manifolds, then we can equally consider the real Poisson reduced space(
MR/Gρ, Π̂R

)
. The following proposition establishes the relation between the two possible

choices of real reduced space,
(
MR/Gρ, Π̂R

)
and

(
(M/G)R̃, Π̃R

)
.

Theorem 3.2. There is a Poisson map Ψ from
(
MR/Gρ, Π̂R

)
into

(
(M/G)R̃, Π̃R

)
. This map

is an immersion with discrete fibres and image P
(
MR

)
. Moreover, if G-acts freely on MR, then

this map is an injection, and hence, P
(
MR

)
is an immersed Poisson submanifold of (M/G)R̃.
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Proof. The map Ψ sends the Gρ-orbit through x ∈ MR to the G-orbit through x. The com-
mutativity of the square below tells us that the image of Ψ is P

(
MR

)
.

MR M

MR/Gρ M/G

ι

p P

Ψ

Since P ◦ ι = Ψ◦p is smooth, it follows from an application of the submersion theorem that Ψ
is a smooth map.

For x in MR, consider the tangent vector ξ · x for ξ ∈ g. If ξ · x belongs to TxM
R, then

R∗(ξ · x) = ξ · x. By taking the infinitesimal version of (3.1), we have ξ · x = ρ∗(ξ) · x. It
follows that ξ · x is also the tangent vector generated by the element (ξ + ρ∗(ξ))/2. However,
this element is clearly fixed by ρ∗ and so belongs to the Lie algebra gρ of Gρ. It follows that the
tangent vector ξ · x belongs to Tx(G

ρ · x), which establishes

TxM
R ∩ Tx(G · x) = Tx(G

ρ · x). (3.2)

Consequently, the intersection of a G-orbit with MR is the discrete union of Gρ-orbits and so
the fibres of Ψ are discrete. For x ∈ MR, suppose g · x also belongs to MR for some g ∈ G.
By (3.1), we have g ·x = ρ(g) ·x, and therefore, if G acts freely onMR, then ρ(g) = g. Therefore,
(G · x) ∩MR = Gρ · x, which implies that Ψ is an injection.

Let x(t) be a curve in MR with tangent vector X at x = x(0) and suppose Ψ∗p∗X is zero in
TP (x)(M/G). This implies X ∈ Tx(G · x) ∩ TxMR which from (3.2) shows that p∗X = 0, and
hence, Ψ is an immersion.

Let U1 and U2 be locally defined real functions on (M/G)R̃. Since this is a Poisson–Dirac
submanifold of (M/G, π̃R) there exist extensions u1 and u2 on M/G whose Hamiltonian vector

fields on (M/G)R̃ are tangent to (M/G)R̃ and for which

{U1, U2}Π̃R
(P (x)) = {u1, u2}π̃R

(P (x)) = {u1 ◦ P, u2 ◦ P}πR(x) (3.3)

for any x ∈ MR. In the last equality we have used the fact that P is a Poisson map. The
extensions u1 and u2 may be assumed to be R̃-invariant. As P ◦R = R̃ ◦P , the functions u1 ◦P
and u2◦P are also R-invariant, and therefore their Hamiltonian vector fields are tangent toMR.
Since MR is a symplectic submanifold with respect to ωR, the right-hand side above is equal to

{u1 ◦ (P ◦ ι), u2 ◦ (P ◦ ι)}π̂R
(x),

where π̂R is the Poisson bivector for
(
MR, ω̂R

)
. As P ◦ ι = Ψ ◦ p, we can use the fact that p is

Poisson to rewrite this as

{u1 ◦Ψ, u2 ◦Ψ}
Π̂R

(p(x)).

By comparing this to the left-hand side in (3.3) and writing P (x) = Ψ(p(x)), it follows from
surjectivity of p that Ψ is Poisson. ■

Remark 3.3. If the action of G is free and admits an equivariant holomorphic momentum
map, then the holomorphic symplectic leaves of (M/G, π̃) are connected components of the
orbit-reduced spaces for the Hamiltonian action of G on M . If in addition, the G-action is
R-compatible with respect to a real form ρ, then the action of Gρ on MR is also free and
Hamiltonian and the symplectic leaves of

(
MR/Gρ, Π̂R

)
are the connected components of the

orbit-reduced spaces. The previous theorem tells us that Ψ(MR/Gρ) is an immersed Poisson



Real Forms of Holomorphic Hamiltonian Systems 9

submanifold of
(
(M/G)R̃, Π̃R

)
. This implies that Ψ

(
MR/Gρ

)
is a union of symplectic leaves

in (M/G)R̃, and since Ψ is Poisson, it restricts to a symplectomorphism between leaves in
MR/Gρ and leaves in (M/G)R̃. It follows that Ψ restricted to a Gρ-orbit-reduced space on MR

gives a symplectomorphism between this space and a real-symplectic form of a G-orbit-reduced
space on M .

3.2 A coadjoint orbit example

Consider the space Hom(Cm,Cn) of complex n × m matrices Q. The dual space is identified
with matrices P in Hom(Cn,Cm) via the trace pairing Trace(PQ). The holomorphic cotangent
bundle T ∗

1,0Hom(Cm,Cn) is then identified with the set of such pairs (Q,P ). The holomorphic
symplectic form is

Ω((Q1, P1), (Q2, P2)) = Trace(P2Q1 − P1Q2).

The groups GLmC and GLnC act symplectically by
(
Qg−1, gP

)
and

(
hQ,Ph−1

)
with momentum

maps

µm(Q,P ) = PQ, and µn(Q,P ) = QP.

Here we have identified gln and glm with their respective duals using the trace form.
Now suppose m ≤ n and let M be the open subset of the cotangent bundle where both Q

and P have maximal rank. One can show (see [29]) that µn is an orbit-map for the GLmC-
action on M and that the fibres of µm are orbits of GLnC. As the momentum map is Poisson
we can identify the Poisson reduced space M/GLmC with µn(M) ⊂ glnC∗. For ζ ∈ C×, the
orbit-reduced space µ−1

m (ζ · Idm)/GLmC is identified with the coadjoint orbit

Orb(ζ) = {ξ = QP | (Q,P ) ∈M, PQ = ζ · Idm} ⊂ glnC∗. (3.4)

Geometrically, ξ determines a decomposition Cn = Σ(m) ⊕ Λ(n−m), where Σ = ImQ and
Λ = kerP . Conversely, such a decomposition determines an element ξ where ker ξ = Λ and
ξ|Σ = ζ · IdΣ. Naturally, we see that the orbit is diffeomorphic to the symmetric space DC
given by

Definition 3.4. For F = R,C,H, the space of decompositions DF is the set

DF = (GrF(m;n)×GrF(n−m;n)) \∆, (3.5)

where ∆ is the closed subset of pairs (Σ,Λ) with Σ ∩ Λ ̸= {0}.

Remark 3.5. The symplectic form on DC admits a rather elegant description. Recall that tan-
gent vectors to an element Σ of the Grassmannian may be identified with linear maps Σ → Cn/Σ.
Since (Σ,Λ) determines a decomposition of Cn, the tangent space to DC at this point may be
identified with pairs of maps (α : Σ → Λ, β : Λ → Σ). The KKS form on Orb(ζ) can be
shown to be

ΩKKS((α1, β1), (α2, β2)) = ζ Trace(β2α1 − β1α2).

3.3 Real forms of the coadjoint orbit

We shall now exhibit real-symplectic forms of Orb(ζ) via two simultaneous methods: as fixed-
point sets arising from real group structures on GLnC as in Example 2.9, and using real-
symplectic structures on M which descend through the reduction as in Theorem 3.2.

The group GLnC has three types of real forms up to isomorphism:
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1. Real: Equip Cn with a real structure x 7→ x. The real linear group GLnR is the fixed-point
set of ρ(g) = g.

2. Unitary: Equip Cn with a non-degenerate Hermitian form of signature (l, n− l) given by
(x, y) = x†Θy. The unitary group U(l, n− l) is the fixed-point set of σ(g) = Θ−1g−†Θ.

3. Quaternionic: For n even, endow Cn with a quaternionic structure by equipping it with
a conjugate-linear map J with J2 = −Id. The quaternionic linear group GLn/2H is the
fixed-point set of τ(g) = −JgJ.

The final ingredient we need is an additional quaternionic structure on Cm in the case m is even
which we also denote by J. With all of these structures in place we can introduce the following
involutions on T ∗

1,0Hom(Cm,Cn):

R±(Q,P ) = (Q,±P ),
T±(Q,P ) = (−JQJ,∓JPJ),

S+(Q,P ) =
(
iΘ−1P †, iQ†Θ

)
,

S−(Q,P ) =
(
−Θ−1P †,−Q†Θ

)
.

(3.6)

These are real-symplectic structures for + and imaginary-symplectic structures for −. The
GLmC-action is R±-, S±-, and T±-compatible with respect to ρ, σ, and τ , respectively. Moreover,
they each descend under the quotient to give the real-Poisson structures ±ρ∗, ±σ∗, and ±τ∗
appearing in Example 2.9.

Definition 3.6. The symmetric space Dunit
C ⊂ DC is the set of decompositions Cn = Σ ⊕ Λ

which are orthogonal with respect to the Hermitian form (x, y) = x†Θy.

If the Hermitian form is positive-definite, Dunit
C

∼= GrC(m;n). On the other hand, if the form
is indefinite, Dunit

C contains multiple connected components each corresponding to the signature
of the Hermitian form restricted to the component spaces of the decomposition.

Proposition 3.7. For ζ real, ρ∗ and τ∗ restrict to real-symplectic structures on Orb(ζ), and
−σ∗ to an imaginary-symplectic structure. Conversely, for ζ imaginary, −ρ∗ and −τ∗ restrict
to imaginary-symplectic structures, and σ∗ to a real-symplectic structure. By identifying Orb(ζ)
with DC, the fixed-point sets of these structures are

Fix(±ρ∗) = DR, Fix(±σ∗) = Dunit
C , Fix(±τ∗) = DH.

Proof. This can be shown by verifying that the involutions in (3.6) descend through the orbit
map µn to give the involutions ρ∗(ξ) = ξ, σ∗(ξ) = −Θ−1ξ†Θ, and τ∗(ξ) = −JξJ. ■

Remark 3.8. Let ⟨x, y⟩ = x†y denote the ordinary Hermitian forms on Cn and Cm. This allows
us to equip T ∗

1,0Hom(Cm,Cn) with a Kähler metric

g((Q1, P1), (Q2, P2)) =
1

2
Trace

(
Q1Q

†
2 +Q2Q

†
1

)
+

1

2
Trace

(
P1P

†
2 + P2P

†
1

)
. (3.7)

Looking ahead, we would like the involutions in (3.6) to be isometries of this metric. To ensure
this, we will from now impose the following:

� Compatibility between the real structure on Cn with the standard Hermitian form ⟨ , ⟩,
the Hermitian form ( , ), and the quaternionic structures J, in the sense that: ⟨x, y⟩ =
⟨x, y⟩, (x, y) = (x, y), and J(x) = J(x).

� Compatibility between the Hermitian form ( , ) defined by Θ and quaternionic structures J
with ⟨ , ⟩ in the sense that: ⟨Θx,Θy⟩ = ⟨x, y⟩ and ⟨J(x), J(y)⟩ = ⟨x, y⟩.

In plainer terms, if x 7→ x is ordinary complex conjugation on Cn, we require Θ to be a real
symmetric matrix with Θ2 = Idn, and J(x) = J x for J a real skew-symmetric matrix.
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4 Branes

4.1 Hyperkähler geometry

A hyperkähler manifold is a Riemannian manifold (M, g) equipped with three complex struc-
tures, I, J , and K, which satisfy the usual quaternionic relations, and for which (M, g) is Kähler
with respect to each of them. A hyperkähler manifold defines a holomorphic symplectic form
on M with respect to each complex structure. If we denote the Kähler forms by

ω1(X,Y ) = g(I(X), Y ), ω2(X,Y ) = g(J(X), Y ), ω3(X,Y ) = g(K(X), Y ),

then Ω1 = ω2+iω3, Ω2 = ω3+iω1, and Ω3 = ω1+iω2 each define holomorphic symplectic forms
on M with respect to the complex structures, I, J , and K, respectively.

Proposition 4.1. A submanifold N of a hyperkähler manifold M is a complex-Lagrangian
submanifold of (M, I,Ω1) if and only if it is an imaginary-symplectic form of (M,J,Ω2) and
a real-symplectic form of (M,K,Ω3).

Proof. It suffices to consider the tangent space TxM to a point x ∈ N . If N is complex-
Lagrangian with respect to (M, I,Ω1), then it is Lagrangian with respect to ω2 and ω3. This im-
plies that g(J(X), Y ) and g(K(X), Y ) are zero for all X,Y ∈ TxN , which means J(TxN) =
K(TxN) is the orthogonal complement to TxN . Consequently, TxN is a real form with respect
to both J and K, and so the first implication follows from Proposition 2.3.

Conversely, if N is an imaginary-symplectic form of (M,J,Ω2) and a real-symplectic form
of (M,K,Ω3), then it is Lagrangian with respect to both ω3 and ω2. This implies J(TxN)
and K(TxN) are both equal to the orthogonal complement to TxN , and so N is a complex
submanifold of (M, I) since I(TxN) = JK(TxN) = TxN . ■

Definition 4.2. A brane of a hyperkähler manifold shall mean a submanifold which is complex-
Lagrangian with respect to some holomorphic symplectic form associated to the hyperkähler
structure.

4.2 A hyperkähler structure on the coadjoint orbit

Consider the quaternionic spaces Hm and Hn viewed as right H-modules. Then the space
Hom(Hm,Hn) of n × m quaternionic matrices is itself a left H-module, where we denote left
multiplication by the quaternions i, j, k with the operators I, J , K. We can further equip this
space with a metric

g(A,B) =
1

2
Trace

(
AB† +BA†), (4.1)

where A† is the quaternionic conjugate-transpose. The tuple (g, I, J,K) defines a hyperkähler
structure on Hom(Hm,Hn). Observe that right multiplication by the compact symplectic group
Sp(m) ⊂ GLmH preserves the hyperkähler structure. The following lemma will facilitate us in
switching between different complex structures on this space.

Lemma 4.3. By writing elements A of Hom(Hm,Hn) as

A =



Q+ jP †,

Y † −X√
2

− j

(
iX + iY T

√
2

)
,

U + iV †
√
2

+ j

(
iV † − U√

2

)
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for (Q,P ), (X,Y ), and (U, V ) pairs of matrices in Hom(Cm,Cn)× Hom(Cn,Cm), we establish
isometric holomorphic symplectomorphisms between T ∗

1,0Hom(Cm,Cn) and Hom(Hm,Hn) for
the structures (I,Ω1), (J,Ω2), and (K,Ω3), respectively. Furthermore, these intertwine the
U(m) ⊂ Sp(m)-action with the U(m) ⊂ GLmC-action on T ∗

1,0Hom(Cm,Cn).

Proof. It is straightforward to verify that the metric in (3.7) is pulled back to (4.1). One can
then show that for the three choices of variables above, the roles of I, J , and K are cyclically
permuted, and thus, so are the holomorphic symplectic forms Ω1, Ω2, and Ω3. ■

From now on, supposem ≤ n and letM denote the open subset of Hom(Hm,Hn) consisting of
all elements A = Q+jP † for which Q has maximal rank. The U(m)-action onM admits a triple
of momentum maps µk : M → u(m)∗ for each Kähler form ωk. This allows us to introduce the
hyperkähler quotient

M̃ =
(
µ−1
1 (i · Idm) ∩ µ−1

2 (0) ∩ µ−1
3 (0)

)
/U(m).

Theorem 4.4. Let
(
M̃, g, I, J,K

)
be the hyperkähler reduced space for the action of U(m) ⊂

Sp(m) on M ⊂ Hom(Hm,Hn) at the regular value (i · Idm, 0, 0) ∈ u(m)∗ ⊗R3. We have the fol-
lowing holomorphic symplectomorphisms:

�

(
M̃, I,Ω1

) ∼= (T ∗
1,0GrC, i,Ωcan),

�

(
M̃, J,Ω2

) ∼= (Orb(−1), i,ΩKKS),

�

(
M̃,K,Ω3

) ∼= (Orb(i), i,ΩKKS).

Here Orb(ζ) is the coadjoint orbit in glnC∗ equipped with the Kostant–Kirilov–Souriau form
ΩKKS and GrC is the Grassmannian of complex m-dimensional subspaces in Cn.

Proof. For the distinguished complex structure I, we use Lemma 4.3 to identify Hom(Hm,Hn)
with T ∗

1,0Hom(Cm,Cn). The U(m)-action admits a holomorphic extension to the GLmC-action
demonstrated in Section 3.2 with momentum map µm = µ2 + iµ3 given by µm(Q,P ) = PQ.

In this basis µ1(Q,P ) = i
(
Q†Q − PP †). We claim that each GLmC-orbit in M intersects

µ−1
1 (i · Idm) precisely in a single orbit of U(m). To show this, consider how the action of g in

GLmC sends Q†Q− PP † to

g−†Q†Qg−1 − gPP †g†. (4.2)

If Q has maximal rank, we may act by the appropriate g to assume that Q†Q is the identity.
If we then use the singular value decomposition g = uDv† and suppose that v†PP †v is a diag-
onal matrix Λ with non-negative diagonal entries, then (4.2) becomes u

(
D−†D−1 −DΛD†)u†.

We can always find a D for which this equals the identity, and hence, have established that the
intersection is non-empty.

To show that this intersection is a single U(m)-orbit, let µ1(Q,P ) = i · Idm and sup-
pose that (4.2) is equal to Idm. By again writing g as uDv†, we find from substituting
Q†Q= Idm+PP † into (4.2) that we must have D−†(Idm + S)D−1 = Idm + DSD†, where
S = v†PP †v. This can only hold when D is the identity, and hence, g is unitary.

From this claim, it follows that
(
M̃, I,Ω1

)
may be identified with the holomorphic symplectic

reduced space

µ−1
m (0)/GLmC.

There is a well-defined identification between this quotient and T ∗
1,0GrC which sends the equiva-

lence class [(Q,P )] to the plane Π = ImQ and covector QP , interpreted as a map Cn/Π → Cn.
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Observe that the canonical one-form on the cotangent bundle pulls back under this identification
to the canonical one-form on T ∗

1,0Hom(Cm,Cn).

For a different choice of distinguished complex structure, we apply the same argument.
For J , we must consider µ−1

m (−Idm) for µm = µ3 + iµ1, and for K we have µ−1
m (i · Idm)

where µm = µ1 + iµ2. In both cases, the momentum conditions imply that the matrices (X,Y )
and (U, V ) all have maximal rank, and a slight alteration to the claim above establishes that
the quotients may be identified with the holomorphic symplectic reduced spaces in (3.4). ■

Remark 4.5. The theorem establishes that T ∗
1,0GrC and Orb(ζ) admit a hyperkähler metric.

This metric on T ∗
1,0GrC is the Calabi metric appearing in [9] whose Kähler form we denote

by ωC. The Kähler form on Orb(ζ) we write as ωK. Following on, from Remark 3.5 one can
show that on Orb(ζ) ∼= DC the Kähler form is given by

ωK((α1, β1), (α2, β2)) =
i|ζ|2
2

Trace
(
α†
1α2 − α†

2α1

)
+

i|ζ|2
2

Trace
(
β†1β2 − β†2β1

)
.

4.3 A curious diffeomorphism

Theorem 4.4 allows us to identify Orb(ζ) with T ∗
1,0GrC. This identification is quite curious

as it is not a biholomorphism with respect to their standard complex structures. This has
been explored before in [7]. For our purposes we will need to consider the geometry of this
identification in greater detail.

We begin by claiming that the identification is equivariant with respect to the coadjoint action
of U(n) ⊂ GLnC on Orb(ζ) ⊂ glnC∗ and with respect to the cotangent lift of U(n) to T ∗

1,0GrC.
To see this, notice that in addition to the Sp(m)-action on Hom(Hm,Hm) given by multiplication
to the right, there is also an action of Sp(n) given by left-multiplication. In order to preserve
the left H-module structure on Hom(Hm,Hm) this action is left matrix multiplication but with
the element-wise multiplication occurring to the right. Using Lemma 4.3, this U(n) ⊂ Sp(n)-
action can be seen to intertwine with the U(n) ⊂ GLnC-action on T ∗

1,0Hom(Cm,Cm) for any of
the distinguished complex structures I, J , or K. By navigating our way through the proof of
Theorem 4.4, we find that this action descends through the reduction to give the desired actions
on Orb(ζ) and T ∗

1,0GrC.

Theorem 4.6. There exists a U(n)-equivariant isometric diffeomorphism

Φ: Orb(i) −→ T ∗
1,0GrC

with the properties

Φ∗ReΩcan = ImΩKKS, Φ∗ ImΩcan = ωK, Φ∗ωC = ReΩcan. (4.3)

Write Φ(ξ) = (Π, η), where Π is an element of GrC and η : Cn/Π → Π is a covector to Π. The
map Φ is given explicitly by

Π =
{
x+

√
ξ†ξ(x) | x ∈ Im ξ

}
, (4.4)

η =
1

2

(√
ξ†ξ −

√
ξξ† − iξ − iξ†

)
. (4.5)

Proof. The map Φ is obtained by identifying M̃ with Orb(i) and T ∗
1,0GrC. We have already

argued above why this identification is U(n)-equivariant. The pullbacks in (4.3) follow by keeping
track of the Kähler forms ω1, ω2, ω3 and recognising that Ωcan ≡ Ω1 and ΩKKS ≡ Ω3.
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To describe the map Φ explicitly, we must delve back into the proof of Theorem 4.4. The ele-
ment (Π, η) is represented by the equivalence class of U(m)-orbits through (Q,P ) satisfying the
three momentum conditions

µ1(Q,P ) = i
(
Q†Q− PP †) = i · Idm and (µ2 + iµ3)(Q,P ) = PQ = 0.

Using Lemma 4.3, we may write

Q =
U + iV †

√
2

and P = −U
† + iV√

2
(4.6)

to see that the corresponding element ξ of Orb(i) is represented by the equivalence class of
U(m)-orbits through (U, V ) satisfying the same three momentum conditions

µ3(U, V ) = i
(
U †U − V V †) = 0 and (µ1 + iµ2)(U, V ) = V U = i · Idm.

The subspace Π is the image of Q, and hence, is equal to the set
{
U(y) + iV †(y) | y ∈ Cm

}
.

Using the momentum condition V U(y) = iy and writing x = U(y), this set can be written
as

{
x+V †V (x) | x ∈ ImU

}
. Recall from the proof of Theorem 4.4 that ξ = UV , and so the image

of U is also the image of ξ. Furthermore, the µ3-momentum condition tells us that U †U = V V †,
from which it follows that ξ†ξ is equal

(
V †V

)2
. These are all positive-semidefinite Hermitian

matrices, meaning the matrix square root is well defined, from which (4.4) now follows.
Finally, we recall once more from the proof of Theorem 4.4 that η = QP , and then use (4.6)

to write this in terms of U and V . Another application of the condition U †U = V V † combined
with the matrix square root gives (4.5). ■

We are especially interested in the case m = 1 for which GrC is the projective space CPn−1.
Recall from (3.5) that Orb(i) may be identified with the space of decompositions of Cn into
a line Σ and a complementary (n− 1)-dimensional space Λ. Using the standard Hermitian form
on Cn, we may take the orthogonal complement Λ⊥ and instead view the orbit as the set of
pairs of non-orthogonal lines

(
Σ,Λ⊥).

Proposition 4.7. For when m = 1, the map Φ: Orb(i) → T ∗
1,0GrC sending ξ to (Π, η) may be

identified with the map(
CPn−1 × CPn−1

)
\∆ −→ T ∗

1,0CPn−1,

which sends a pair of non-orthogonal lines Σ = Im ξ = Span{x} and Λ⊥ = (ker ξ)⊥ = Span{y}
to the line Π = Span{z} and the covector

η =
|x||y|
2⟨y, x⟩zw

†.

Here we have introduced

z = x̂+
⟨y, x⟩
|⟨x, y⟩| ŷ and w = ŷ − ⟨x, y⟩

|⟨x, y⟩| x̂. (4.7)

Proof. For the pair
(
Σ,Λ⊥), the corresponding element ξ of Orb(i) is the map with ker ξ = Λ

and ξ|Σ = i · IdΣ. We therefore have

ξ = i
xy†

⟨y, x⟩ , (4.8)

from which we obtain√
ξ†ξ =

|x|
|y||⟨x, y⟩|yy

† and
√
ξξ† =

|y|
|x||⟨x, y⟩|xx

†.

The expressions for Π and η now follow immediately from (4.4) and (4.5). ■
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4.4 Branes of the coadjoint orbit

Theorem 4.4 together with Proposition 4.1 allow us to identify various branes of M̃ with sub-
manifolds of T ∗

1,0GrC and Orb(ζ). The rows in the table below serve as a mnemonic to keep
track of the types of these submanifolds,

T ∗
1,0GrC Orb(−1) Orb(i)

real complex imaginary

complex imaginary real

imaginary real complex

(4.9)

For instance, the first row says that complex-Lagrangian submanifolds of Orb(−1) are identified
with real-symplectic forms of T ∗

1,0GrC and imaginary-symplectic forms of Orb(i). We already
have a few examples of real- and imaginary-symplectic forms of Orb(ζ) using Proposition 3.7.
Our goal in this section is to show that these examples provide branes in M̃ and to describe the
corresponding submanifolds which appear in the table above.

In a slight abuse of notation, to denote the involutions on Hom(Hm,Hn) we write R±, S±,
and T± given by

R+(X,Y ), S+(U, V ), T+(X,Y ),

R−(U, V ), S−(X,Y ), T−(U, V ).

We are using Lemma 4.3 and equations (3.6) to define the involutions in terms of where they
send either (X,Y ) or (U, V ). By defining the involutions in this way, we ensure that they each
descend to the real- and imaginary-symplectic structures on Orb(−1) and Orb(i) appearing in
Proposition 3.7.

For the next step, we must express each of these 6 involutions in terms of (Q,P ), (X,Y ),
and (U, V ). Once we have these expressions, we will be able to use the proof of Theorem 4.4 to
track how they descend to involutions R̃±, S̃±, T̃± on M̃ . We claim that

� R̃+ is identically ρ∗ on Orb(−1) and the imaginary cotangent-lift of the real structure
on GrC with fixed-point set GrR. Conversely, R̃− is identically −ρ∗ on Orb(i) and the
real-cotangent lift of the real structure GrR ⊂ GrC.

� S̃+ is equal to S̃− and identically gives σ∗ on Orb(i) and −σ∗ on Orb(−1).

� T̃+ is identically τ∗ on Orb(−1) and the imaginary cotangent-lift of the real structure
on GrC with fixed-point set GrH. Conversely, T̃− is identically −τ∗ on Orb(i) and the
real-cotangent lift of the real structure GrH ⊂ GrC.

It follows that the fixed-point sets for each of these involutions are simultaneously real-symplectic
forms with respect to one complex structure, and imaginary-symplectic forms with respect to
another. Therefore, from Proposition 4.1 we conclude that they are branes in M̃ .

The task of establishing the previous claim is a matter of computation from which we shall
spare the reader. We will however flesh out in more detail the resulting complex-Lagrangian
submanifolds. Take for instance R+. This involution sends (U, V ) to

(
−iV T, iUT

)
, and hence,

sends ξ = UV in Orb(i) to ξT. Similarly, for T+ one can show that ξ is sent to −Jξ†J. The fixed-
point sets are identified with the following submanifolds of Orb(ζ) ∼= DC.

Definition 4.8. The complex symmetric space Dortho
C ⊂ DC is the space of decompositions

which are orthogonal with respect to the non-degenerate symmetric bilinear form (x, y) 7→ xTy.
Additionally, the set of orthogonal decompositions with respect to the non-degenerate skew-
symmetric bilinear form (x, y) 7→ xTJ y is denoted by Dsymp

C ⊂ DC.
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Finally, we consider the complex-Lagrangian submanifold of T ∗
1,0GrC arising from S±. This

involution sends (Q,P ) to (ΘQ,−PΘ). Peering back inside the proof of Theorem 4.4, we recall
that Π = ImQ and η = QP . The fixed-point set is then equal to the space of Θ-invariant
m-dimensional subspaces Π of Cn with tangent vectors η satisfying η = −ΘηΘ. Since Θ2 = Idn
and Θ† = Θ, Cn decomposes orthogonally into the ±1-eigenspaces E+ ⊕E− of Θ. With respect
to this decomposition, the fixed-point set is equal to the space X defined as follows.

Definition 4.9. Let Cn = E
(l)
+ ⊕E(n−l)

− be an orthogonal decomposition with respect to the stan-
dard Hermitian form ⟨ , ⟩. Consider the submanifold Gr(E+)×Gr(E−) ⊂ GrC of m-dimensional
subspaces Π which distribute over the decomposition, that is to say, where Π = Π+ ⊕Π− for
Π+ ⊂ E+ and Π− ⊂ E−. The orthogonal complement also distributes over the decomposition
Π⊥ = Π⊥

+ ⊕ Π⊥
− and we may identify cotangent vectors to Π with linear maps η : Π⊥ → Π.

The space X is the subbundle of T ∗
1,0GrC over Gr(E+)×Gr(E−) consisting of those covectors η

Π⊥
+ ⊕Π⊥

−

Π+ ⊕Π−

for which η(Π⊥
+) ⊂ Π− and η(Π⊥

−) ⊂ Π+.

Remark 4.10. Observe that X will typically consist of multiple connected components corre-
sponding to the various possible dimensions of Π+. There are two special cases worth noting.
When l = n, X is the zero section of T ∗

1,0GrC. On the other hand, if l = m, one of the connected
components of X is the fibre of T ∗

1,0GrC over the point Π = E+. We recognise that these are
indeed complex-Lagrangian submanifolds.

Theorem 4.11. The hyperkähler reduced space M̃ admits the brane submanifolds listed in the
rows of Table 1. In particular, the complex symmetric spaces Dortho

C and Dsymp
C are complex-

Lagrangian submanifolds of Orb(ζ), and the X are complex-Lagrangian submanifolds of T ∗
1,0GrC.

Corollary 4.12. The map Φ: Orb(i) → T ∗
1,0GrC restricted to the fixed-point sets of R̃±, S̃±,

and T̃± define real symplectomorphisms:

(DR, ImΩKKS) ∼= (T ∗GrR, ωcan), (Dortho
C , ωK) ∼= (iT ∗GrR, ωcan),

(DH, ImΩKKS) ∼= (T ∗GrH, ωcan), (Dsymp
C , ωK) ∼= (iT ∗GrH, ωcan).

(Dunit
C ,ReΩKKS) ∼= (X , ωC),

5 Integrability and dynamical systems

5.1 Holomorphic integrability

Definition 5.1. A collection of holomorphic functions f1, . . . , fn on a holomorphic symplectic
manifold M (2n) defines a holomorphic integrable system if the functions Poisson commute with
respect to the complex Poisson bracket and if the derivatives are linearly independent in an open
dense subset.

The regular fibres of a holomorphic integrable system are complex-Lagrangian submanifolds.
These fibres are Lagrangian with respect to both ωR and ωI , and therefore the real and imaginary
parts of the fk define real integrable systems with respect to both ωR and ωI . This is an example
of a bi-integrable system and has been observed numerous times before [4, 13].
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Table 1. Each row represents a brane of M̃ . The table follows the template in (4.9) to demonstrate which

submanifolds are real-/imaginary-symplectic forms and complex-Lagrangian submanifolds of T ∗
1,0 GrC

and Orb(ζ).

T ∗
1,0GrC Orb(−1) Orb(i)

R̃− T ∗GrR Dortho
C DR

T̃− T ∗GrH Dsymp
C DH

S̃± X Dunit
C Dunit

C

R̃+ iT ∗GrR DR Dortho
C

T̃+ iT ∗GrH DH Dsymp
C

In the ordinary setting of real integrable systems a great deal of effort can be spent checking
a collection of integrals are linearly independent almost everywhere. In this respect working
within the rigid category of analytic functions has an advantage: if any two such functions agree
in an open set, then they must be identical thanks to the identity theorem. More generally,
any subset which enjoys this property is sometimes referred to as a key set [3, 23]. If we have
an analytic real form N of M , then every open subset of N is also a key set. This can be
seen by working in an analytic chart C2n in which N appears as R2n and considering the series
expansion. These ideas hold more generally for holomorphic forms, and it is by applying these
arguments to df1 ∧ · · · ∧ dfk that we prove the following.

Lemma 5.2. Let f1, . . . , fk be holomorphic functions defined on a connected, complex mani-
fold M . If the dfj are linearly independent somewhere, then they are independent everywhere in
an open dense subset of M . If, in addition, N is an analytic real form of M , then the dfj are
also linearly independent in an open dense subset of N .

Proposition 5.3. Suppose u1, . . . , un is an integrable system of analytic functions on an an-
alytic real-symplectic form (N, ω̂R). The holomorphic extensions of these functions defined in
a neighbourhood of N is a holomorphic integrable system.

Proof. Let f1, . . . , fn be the holomorphic extensions defined in some neighbourhood ofN . Since
the fj are purely real on N their Hamiltonian vector fields are tangent to N , and so since N is
Lagrangian with respect to ωI , we have

{fj , fk}(p) = Ω(Xfj , Xfk) = ωR(Xuj , Xuk
) = {uj , uk}R(p) = 0

for p ∈ N . As N is a key set, it follows that {fj , fk} must be zero everywhere in the neighbour-
hood of N . Finally, if the duj are independent at p ∈ N , then so are the dfj . ■

We now consider a partial converse to this proposition. Suppose f1, . . . , fn is a holomorphic
integrable system on M . By restricting the real and imaginary parts of these functions to
a connected and analytic real-symplectic form N , we obtain a collection of 2n real functions.
Let A denote the algebra of functions on N generated by taking the Poisson bracket with respect
to ω̂R between these functions. Fix some x ∈ N for which the dimension of

Span{dwx | w ∈ A}

is maximal. We can then select k functions w1, . . . , wk belonging to A whose derivatives form
a basis of this space at x. These functions are analytic, and so, since their derivatives are
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linearly independent at some point they must be independent on an open dense set U of N .
From the maximality assumption, the fibres of w1, . . . , wk must coincide with the fibres of A in U .
The fibres of A are contained in the intersection of the level sets of f1, . . . , fn with N . However,
as the regular fibres of the holomorphic integrable system are Lagrangian with respect to ωR,
and as N is symplectic with respect to ωR, any submanifold contained in these intersections must
be isotropic with respect to (N, ω̂R). The algebra A is therefore a complete algebra on (N, ω̂R)
in the sense defined in [8].

This construction might appear underwhelming. Indeed, as the regular fibres of f1, . . . , fn
and N are both real 2n-dimensional submanifolds in M , the generic transversal intersection
between them is a point. A foliation of N into points qualifies as a non-commutative integrable
system, albeit not an interesting one. On the other hand, it is important to appreciate the
significance of this to dynamics. Suppose the flow of a holomorphic Hamiltonian on M admits
a holomorphic integrable system f1, . . . , fn. If the flow leaves N invariant, then A is a complete
algebra of first integrals. A result of [8] shows that this implies integrability in the standard
sense.

Theorem 5.4. Suppose the flow of a holomorphic Hamiltonian on (M,Ω) admits a holomorphic
integrable system. If the flow leaves an analytic real-symplectic form N invariant, then the
corresponding real Hamiltonian system on (N, ω̂R) is integrable.

5.2 Compatible momentum

As we remarked earlier, the level sets of an arbitrary holomorphic integrable system f1, . . . , fn
and a real-symplectic form will typically intersect transversally in a point. In practice, it is
reasonable to expect some compatibility between f = (f1, . . . , fn) → Cn and a real-symplectic
structure R. Ideally, we would like R to act on the fibres of µ. This can be ensured with the
following definition.

Definition 5.5. Let g be a complex Lie algebra and µ : M → g∗ a holomorphic momentum map
on the holomorphic symplectic manifold (M,Ω). The momentum µ is R-compatible with respect
to a real-symplectic structure R if there exists a real-Poisson structure ρ∗ on g∗ satisfying

µ ◦R = ρ∗ ◦ µ. (5.1)

Notice that this is a generalisation of Definition 2.6 of what it meant for a Hamiltonian to be
R-compatible. Now suppose µ is a R-compatible holomorphic integrable system on M and let
ξ1, . . . , ξn be a real basis for gρ. The holomorphic integrable system given by µ̂ = (g1, . . . , gn)
where gk = ⟨µ, ξk⟩ is functionally equivalent to µ and purely real on MR. The fixed-point
set of a real structure is analytic [27] and so by Lemma 5.2 the integrals g1, . . . , gn must be
linearly independent in an open dense subset of MR. It follows that the restriction of µ defines
a real integrable system on MR. This generalises the result of [18] to holomorphic symplectic
manifolds.

Theorem 5.6. Let µ : M → Cn be a holomorphic integrable system on a holomorphic symplectic
manifold (M,Ω). If µ is R-compatible with respect to a real-symplectic structure R on M with
non-empty fixed-point set MR, then the restriction µ̂ : MR → Fix ρ∗ is a real integrable system
on

(
MR, ω̂R

)
.

Proposition 5.7. Suppose an action of a complex Lie group G on (M,Ω) by holomorphic
symplectomorphisms admits an equivariant momentum map. The action admits an equivariant,
R-compatible holomorphic momentum map if and only if the G-action is R-compatible with
respect to some real group structure ρ. Moreover, when this holds, the restriction µ̂ : MR → (gρ)∗

is an equivariant momentum map for the action of Gρ on
(
MR, ω̂R

)
.
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Proof. If the action of G is R-compatible, then differentiating (3.1) shows

R∗(Xξ) = Xρ∗ξ, (5.2)

where Xξ denotes the Hamiltonian vector field generated by ξ ∈ g. This implies that the mo-
mentum map satisfies

µ ◦R = ρ∗ ◦ µ+ c

for some constant c ∈ g. The equivariance of µ along with the fact that the coadjoint action is
ρ-compatible imply that c is central; that is, it is fixed by the coadjoint action. Furthermore,
since R is an involution it follows that ρ∗c = −c. The map µ−c/2 is then an R-compatible equiv-
ariant momentum map. Conversely, if (5.1) holds, then so does (5.2). This can be integrated to
show that the G-action is R-compatible with respect to ρ. ■

5.3 Compact real forms of mechanical systems

A mechanical system on a configuration space M is a Hamiltonian system on the cotangent
bundle T ∗M with Hamiltonian

H(η) = g(η, η)︸ ︷︷ ︸
kinetic energy

+ V (x)︸ ︷︷ ︸
potential

,

where g is a fibrewise inner product and V is a function defined on the base M . Observe that
for any mechanical system the Hamiltonian is invariant under negation η 7→ −η of the fibres.

Theorem 5.8. Let HC be a holomorphic function on Orb(i) with

HC∣∣
DF

= H ◦ Φ
∣∣
DF
,

where H is a real Hamiltonian on T ∗GrF and DF is the imaginary-symplectic form for ei-
ther F = R or H. If H(η) = H(−η), then HC is purely real on the compact real-symplectic
form Dunit

C
∼= GrC.

Secondly, let HC be a holomorphic function on Orb(i)×Orb(i) with

HC∣∣
Orb(i)

= H ◦ Φ
∣∣
Orb(i)

,

where H is a real Hamiltonian on T ∗GrC and Orb(i) is an imaginary-symplectic form inside
Orb(i) × Orb(i). If H(η) = H(−η), then HC is purely real on the compact real-symplectic
form GrC×GrC.

Proof. For when l = n, the Hermitian form used in the definition of S̃ is positive definite
and the fixed-point set Dunit

C is identified with GrC. The involution S̃ is identified via Φ with
the involution which negates covectors η 7→ −η. As a holomorphic function is determined
uniquely by its restriction to a real form, if H is invariant with respect to this involution, then
HC ◦ S̃ = HC. Hence, HC is real on Fix S̃.

We now consider the twisted involution (ξ1, ξ2) 7→ (R̃−(ξ2), R̃−(ξ1)) defined on Orb(i)×Orb(i)
with the holomorphic symplectic form 1

2ΩKKS ⊕ 1
2ΩKKS. The fixed-point set{(

ξ, R̃−(ξ)
)
| ξ ∈ Orb(i)

}
(5.3)

is an imaginary-symplectic form symplectomorphic to (Orb(i), ImΩKKS). The involutions R̃−
and S̃ commute, and hence, H(η) = H(−η) implies HC ◦

(
S̃ ⊕ S̃

)
= HC. It follows that HC is

real on Fix
(
S̃ ⊕ S̃

)
. ■
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Remark 5.9. The theorem above is a more precise version of our main theorem appearing in
the introduction. To apply the theorem, we suppose we have a mechanical system on T ∗GrF
given by a real analytic Hamiltonian H. The complexification HC is a holomorphic function
which is not necessarily defined everywhere. For this reason, there can be no guarantee that
the restriction to the compact real form is globally defined. It must however be defined on
some non-empty open subset since the intersection of the imaginary-symplectic form DF and
the compact real-symplectic form is non-empty. In the examples to follow, we shall see that the
Hamiltonians are defined everywhere on the compact form.

We will now demonstrate a few applications of this result. Owing to the low-dimensional
isomorphisms RP 1 ∼= S1, CP 1 ∼= S2, and RP 3 ∼= SO(3), we can use the theorem to find compact
real forms of well-known mechanical systems: the simple pendulum, the spherical pendulum,
and the rigid body. To do this, we will need to see how kinetic energy and potential energy pull
back through Φ.

Proposition 5.10. The standard U(n)-invariant kinetic energy |η|2 on T ∗CPn−1 pulls back
through Φ to the function |ξ|2 − 1 on Orb(i), where |ξ|2 = Trace ξξ†.

Let π : T ∗CPn−1 → CPn−1 denote projection onto the base. The map π̃ : Orb(i) → Fix S̃ =
Dunit

C given by

π̃(ξ) =
1

2(|ξ|+ 1)

[
i
(
ξξ† + ξ†ξ

)
|ξ| + ξ − ξ†

]
(5.4)

satisfies Φ ◦ π̃ = π ◦ Φ.

Proof. A covector η : Cn/Π → Π in the standard metric has magnitude Trace ηη†. Using the
expressions in Proposition 4.7, we obtain the first part directly by calculation.

For the second part, π̃(ξ) has image Span{z} and kernel (Span{z})⊥ for z in (4.7). Using (4.8),
we see that π̃(ξ) must be equal to izz†/|z|2. Another calculation using Proposition 4.7 gives the
expression above. ■

Example 5.11 (the simple pendulum). Form = 1 and n = 2, the orbit Orb(i) may be written as{
ξ =

1

2

(
t+ ix y + iz
−y + iz t− ix

)
| t = i, det ξ = 0

}
⊂ gl2C∗. (5.5)

This gives the affine variety x2 + y2 + z2 = 1 over C3 which we denote by CS2 and call the
complex 2-sphere. Writing x = (x, y, z), we find that

R̃−(x) = (x,−y, z), and S̃(x) = (x, y, z). (5.6)

Furthermore, the map π̃ in (5.4) simplifies considerably to

π̃(x) =

√
2√

1 + |x|2
Re(x), (5.7)

where |x|2 = |x|2 + |y|2 + |z|2. We claim that the holomorphic Hamiltonian

HC(x) =
1

2

(
x2 − y2 + z2 − 1

)
+

x
√
2√

1 + x2 − y2 + z2

restricted to Fix R̃− = DR is the pullback of the usual Hamiltonian for the simple pendulum

through the symplectomorphism (DR, ImΩKKS)
Φ→

(
T ∗RP 1, ωcan

)
. The kinetic energy comes
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from Proposition 5.10, where |η|2 = |ξ|2 − 1 =
(
|x|2 − 1

)
/2. For the potential, we note that

the base RP 1 is identified with the circle x2 + z2 = 1, and so we take the potential to be the
x-component in (5.7). Restricted to the real-symplectic form Fix S̃ = S2 this is

HC∣∣
S2 = − cos2 ψ + cosφ

given in terms of spherical polar coordinates. Compare this with the original Hamiltonian
H(η, θ) = |η|2 + cos θ on T ∗S1.

Example 5.12 (the spherical pendulum). Consider the pullback of the Hamiltonian for the
spherical pendulum through the symplectomorphism

(
CS2, ImΩKKS

) Φ→
(
T ∗CP 1, ωcan

)
. As in

the previous example, the kinetic energy pulls back to
(
|x|2 − 1

)
/2. If we take the vertical to be

about (0, 1, 0), then the y-component in (5.7) gives the height of the pendulum. Thus,

H ◦ Φ
∣∣
CS2 =

1

2

(
|x|2 + |y|2 + |z|2 − 1

)
+

y + y√
2
√
1 + |x|2 + |y|2 + |z|2

.

The Hamiltonian is invariant under the U(1)-action on T ∗CP 1 which rotates about the vertical.
Since Φ is U(2)-equivariant, this corresponds to the circle action on CS2 which fixes x and z.
As CS2 is equipped with the imaginary part of ΩKKS, this circle action is the Hamiltonian flow
generated by the imaginary part of y. Hence, the angular momentum J about the y-axis pulls
pack to

J ◦ Φ =
y − y

2i
.

If we write elements in CS2 × CS2 as pairs (x1, x2), then using (5.6) and the definition of
the conjugate-diagonal copy of CS2 in (5.3) we extend H and J to holomorphic functions

HC =
1

2
(x1x2 − y1y2 + z1z2 − 1) +

y1 − y2√
(x1 + x2)2 + (y1 − y2)2 + (z1 + z2)2

,

JC =
(y1 + y2)

2i
.

This integrable system is compatible with respect to the real structure (H,J) 7→ (H,−J)
on C2. Therefore, from Theorem 5.6 it provides a real integrable system on the compact real
form S2 × S2. For reference, we provide in Figure 1 the energy-momentum diagrams for the sys-
tems on T ∗S2 and S2 × S2.

Example 5.13 (the rigid body). The matrix in (5.5) allows us to identify real vectors (t, x, y, z)
in R4 \ {0} with a group of 2× 2 matrices. We can use this to define a group structure on RP 3

which turns out to be isomorphic to SO(3). The Hamiltonian H for the rigid body is a left-
invariant function on T ∗SO(3). Consequently, it may be written as H = f ◦ µ where µ is the
momentum map for the right-action of SO(3) on T ∗SO(3) and f is a positive definite quadratic
on the Lie algebra so(3)∗ ∼= R3 which defines the kinetic energy.

Now consider DC for the case m = 1 and n = 4. As before, we may identify vectors x
in C4 with matrices X in M2(C) and consider the SL2C-action given by right multiplication.
This gives a Hamiltonian action of SL2C ⊂ GL4C on Orb(i) with momentum map,

µC : Orb(i) −→ sl2C∗.

This action is both R̃− and S̃-compatible for the real group structure σ(g) = g−† with Fixσ =
SU(2). It follows from the U(4)-equivariance of Φ that the Fixσ = SU(2)-action on DR pushes
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J

H

T ∗S2

J

H

S2 × S2

Figure 1. Energy-momentum diagram for the spherical pendulum and its ‘compact real form’. The

black points are rank zero critical points of (H,J).

forward to give the action of SO(3) on T ∗SO(3) mentioned above. Therefore, from Proposi-
tion 5.7

µC
∣∣
DR

= µ ◦ Φ
∣∣
DR
.

The holomorphic momentum µC is also compatible with respect to S̃ and so restricts to the
momentum map for the SU(2)-action on Dunit

C
∼= CP 3 which is given by

µC
∣∣
CP 3 : CP 3 −→ su(2)∗, [x] 7−→ i

(
X†X
|x|2 − Id

)
.

Thus, we obtain a holomorphic Hamiltonian f ◦ µC on Orb(i) which is purely real on the real-
symplectic form CP 3 and restricts to the left-invariant rigid-body Hamiltonian on the imaginary-
symplectic form (DR, ImΩKKS)

Φ→ (T ∗RP 3, ωcan).

6 Concluding comments and scope for further work

Our work in this paper has relied upon the existence of a hyperkähler structure on a particular
class of coadjoint orbits. More generally, for any coadjoint orbit G/H of a compact Lie group G,
the complexified orbit GC/HC admits a hyperkähler structure [6, 22]. Moreover, such orbits are
known to be diffeomorphic to T ∗(G/H). Therefore, it seems reasonable to suspect that a more
general version of Theorem 5.8 might hold for mechanical systems on any coadjoint orbit of
a compact Lie group.

Another example of hyperkähler geometry appearing in classical mechanics is the Calogero–
Moser system for n mutually interacting point particles on a line. Here it is known that
the collisions can be regularised to obtain a symplectic reduced space for the action of U(n)
on T ∗u(n) [21]. The complexified Calogero–Moser space is also hyperkähler, and by changing
the complex structure the resulting holomorphic symplectic manifold is the Hilbert scheme of n
points in the affine plane [32]. As with our examples above, one could try to find additional
real forms for the Calogero–Moser system by considering the real forms of GLnC or by look-
ing for complex-Lagrangian submanifolds of the Hilbert scheme. In this regard, the literature
concerning involutions of holomorphic symplectic manifolds could be of use [5, 10, 14].

Theorem 5.6 suggests that it might be of interest to complexify a real integrable system and
look for compatible real forms. The existence of a compact integrable real form is of particular
interest since their theory is better understood. In efforts towards the classification of integrable
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systems the nature of the critical points of the momentum map plays a significant role. Non-
degenerate critical points are determined locally by a Cartan subalgebra of the real symplectic
Lie algebra [26]. In this respect, the study of holomorphic integrable systems might afford
an advantage over its real counterpart: unlike the real symplectic Lie algebra, every Cartan
subalgebra of the complex symplectic Lie algebra is equivalent up to conjugacy. This implies
that for a holomorphic integrable system, all non-degenerate rank zero critical points are locally
the same. It is intriguing to contemplate how this might contribute to the task of classification,
similar in spirit to that in [20].

Finally, our original motivation for considering real forms was to translate the study of
one dynamical system into another via the complexification; somewhat analogous to the Wick
rotation used in physics. In this vein, we would like to report on the first author’s recent work at
transferring the study of the 2-body problem on a sphere to the problem on the hyperboloid [2].
For this particular system, the classification of relative equilibria on the sphere can be used to
obtain a classification for those on the hyperboloid by working on the complexified holomorphic
system. This prompts us to ask more generally how knowledge of one real form might be used
to deduce properties for another.
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[10] Cattaneo A., Automorphisms of Hilbert schemes of points on a generic projective K3 surface, Math. Nachr.
292 (2019), 2137–2152, arXiv:1801.05682.

[11] Crainic M., Fernandes R.L., Integrability of Poisson brackets, J. Differential Geom. 66 (2004), 71–137,
arXiv:math.DG/0210152.

[12] Crooks P., Rayan S., Abstract integrable systems on hyperkähler manifolds arising from Slodowy slices,
Math. Res. Lett. 26 (2019), 9–33, arXiv:1706.05819.

https://doi.org/10.1007/978-3-662-05650-9
https://doi.org/10.1134/S1560354723060011
https://arxiv.org/abs/2012.12166
https://doi.org/10.1007/978-3-540-48926-9
https://doi.org/10.1016/S0034-4877(05)80042-4
https://doi.org/10.1112/jtopol/jtr002
https://arxiv.org/abs/1008.3108
https://doi.org/10.1007/BF01446293
https://doi.org/10.5802/tsg.199
https://doi.org/10.1023/A:1023023300665
https://doi.org/10.1023/A:1023023300665
https://arxiv.org/abs/math-ph/0109031
https://doi.org/10.24033/asens.1367
https://doi.org/10.1002/mana.201800557
https://arxiv.org/abs/1801.05682
https://doi.org/10.4310/jdg/1090415030
https://arxiv.org/abs/math.DG/0210152
https://doi.org/10.4310/MRL.2019.v26.n1.a2
https://arxiv.org/abs/1706.05819


24 P. Arathoon and M. Fontaine

[13] Doss-Bachelet C., Françoise J.P., Integrable Hamiltonian systems with two degrees of freedom associated
with holomorphic functions, Theoret. and Math. Phys. 122 (2000), 170–175.

[14] Franco E., Jardim M., Menet G., Brane involutions on irreducible holomorphic symplectic manifolds, Ky-
oto J. Math. 59 (2019), 195–235, arXiv:1606.09040.

[15] Gaiotto D., Witten E., Probing quantization via branes, in Surveys in Differential Geometry 2019. Differen-
tial Geometry, Calabi–Yau theory, and General Relativity. Part 2, Surv. Differ. Geom., Vol. 24, International
Press, Boston, MA, 2022, 293–402, arXiv:2107.12251.

[16] Gerdjikov V.S., Kyuldjiev A., Marmo G., Vilasi G., Complexifications and real forms of Hamiltonian struc-
tures, Eur. Phys. J. B Condens. Matter Phys. 29 (2002), 177–181.

[17] Gerdjikov V.S., Kyuldjiev A., Marmo G., Vilasi G., Construction of real forms of complexified Hamiltonian
dynamical systems, in Nonlinear Physics: Theory and Experiment, II (Gallipoli, 2002), World Scientific,
River Edge, NJ, 2003, 172–178.

[18] Gerdjikov V.S., Kyuldjiev A., Marmo G., Vilasi G., Real Hamiltonian forms of Hamiltonian systems, Eur.
Phys. J. B Condens. Matter Phys. 38 (2004), 635–649, arXiv:nlin.SI/0310005.

[19] Gukov S., Witten E., Branes and quantization, Adv. Theor. Math. Phys. 13 (2009), 1445–1518,
arXiv:0809.0305.

[20] Izosimov A., Singularities of integrable systems and algebraic curves, Int. Math. Res. Not. 2017 (2017),
5475–5524, arXiv:1509.08996.

[21] Kazhdan D., Kostant B., Sternberg S., Hamiltonian group actions and dynamical systems of Calogero type,
Comm. Pure Appl. Math. 31 (1978), 481–507.

[22] Kovalev A.G., Nahm’s equations and complex adjoint orbits, Quart. J. Math. Oxford Ser. (2) 47 (1996),
41–58.

[23] Kozlov V.V., Integrability and nonintegrability in Hamiltonian mechanics, Russ. Math. Surv. 38 (1983),
3–67.

[24] Kulkarni R.S., On complexifications of differentiable manifolds, Invent. Math. 44 (1978), 46–64.

[25] Kyuldjiev A., Gerdjikov V., Marmo G., Vilasi G., Real forms of complexified Hamiltonian dynamics, in
Geometry, Integrability and Quantization (Varna, 2001), Geom. Integrability Quantization, Vol. 3, Coral
Press Scientific Publishing, Sofia, 2002, 318–327.
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