| 
 SIGMA 21 (2025), 004, 74 pages       arXiv:2308.03265     
https://doi.org/10.3842/SIGMA.2025.004 
 
Quantum Modularity for a Closed Hyperbolic 3-Manifold
Campbell Wheeler
 Institut des Hautes Études Scientifiques, Le Bois-Marie, Bures-sur-Yvette, France
 
 
Received January 11, 2024, in final form December 23, 2024; Published online January 08, 2025
 Abstract 
This paper proves quantum modularity of both functions from $\mathbb{Q}$ and $q$-series associated to the closed manifold obtained by $-\smash{\frac{1}{2}}$ surgery on the figure-eight knot, $4_1(-1,2)$. In a sense, this is a companion to work of Garoufalidis-Zagier, where similar statements were studied in detail for some simple knots. It is shown that quantum modularity for closed manifolds provides a unification of Chen-Yang's volume conjecture with Witten's asymptotic expansion conjecture. Additionally we show that $4_1(-1,2)$ is a counterexample to previous conjectures of Gukov-Manolescu relating the Witten-Reshetikhin-Turaev invariant and the $\smash{\widehat{Z}(q)}$ series. This could be reformulated in terms of a ''strange identity'', which gives a volume conjecture for the $\smash{\widehat{Z}}$ invariant. Using factorisation of state integrals, we give conjectural but precise $q$-hypergeometric formulae for generating series of Stokes constants of this manifold. We find that the generating series of Stokes constants is related to the 3d index of $4_1(-1,2)$ proposed by Gang-Yonekura. This extends the equivalent conjecture of Garoufalidis-Gu-Mariño for knots to closed manifolds. This work appeared in a similar form in the author's Ph.D. Thesis.
 Key words: 3d index; asymptotic expansions; Borel resummation; character varieties; Chern-Simons invariants; circle method; closed three-manifolds; cocycles; dilogarithm; duality; Faddeev quantum dilogarithm; factorisation; flat connections; hyperbolic manifolds; modularity; perturbative invariants; $q$-difference equations; $q$-hypergeometric functions; quadratic relations; quantum invariants; quantum modular forms; resurgence; surgery; state integrals; stationary phase; Stokes constants; Stokes phenomenon; strange identity; three-manifolds; volume conjecture; Witten-Reshetikhin-Turaev invariants; $\smash{\widehat{Z}}$ invariants. 
pdf (2902 b)  
tex (2 mb)  
 
 
References 
- Andersen J.E., The asymptotic expansion conjecture, in Problems on Invariants  of Knots and 3-Manifolds, Geom. Topol. Monogr., Vol. 4, Mathematical  Sciences Publishers, 2004, 474-480.
 
- Andersen J.E., Kashaev R., A new formulation of the Teichmüller TQFT,  arXiv:1305.4291.
 
- Andersen J.E., Kashaev R., A TQFT from quantum Teichmüller theory, Comm. Math. Phys. 330 (2014), 887-934, arXiv:1109.6295.
 
- Andersen J.E., Kashaev R., The Teichmüller TQFT, in Proceedings of the  International Congress of Mathematicians-Rio de Janeiro 2018.  Vol. III. Invited lectures, World Scientific Publishing, Hackensack,  NJ, 2019, 2541-2565, arXiv:1811.06853.
 
- Andersen J.E., Mistegaard W.E., Resurgence analysis of quantum invariants of  Seifert fibered homology spheres, J. Lond. Math. Soc. 105  (2022), 709-764, arXiv:1811.05376.
 
- Andersen J.E., Mistegaard W.E., The full asymptotic expansion of the  WRT-invariant of all surgeries on the figure 8 knot, in preparation.
 
- Bar-Natan D., Garoufalidis S., On the Melvin-Morton-Rozansky  conjecture, Invent. Math. 125 (1996), 103-133.
 
- Batut C., Belabas K., Benardi D., Cohen H., Olivier M., User's guide to  PARI-GP, available at ftp: megrez.math.u-bordeaux.fr/pub/pari.
 
- Beem C., Dimofte T., Pasquetti S., Holomorphic blocks in three dimensions,  J. High Energy Phys. 2014 (2014), no. 12, 177, 119 pages,  arXiv:1211.1986.
 
- Beliakova A., Blanchet C., Le T., Laplace transform and universal  $\mathfrak{sl}_2$ invariants, arXiv:math.QA/0509394.
 
- Bettin S., Drappeau S., Modularity and value distribution of quantum invariants  of hyperbolic knots, Math. Ann. 382 (2022), 1631-1679,  arXiv:1905.02045.
 
- Caliceti E., Meyer-Hermann M., Ribeca P., Surzhykov A., Jentschura U.D., From  useful algorithms for slowly convergent series to physical predictions based  on divergent perturbative expansions, Phys. Rep. 446  (2007), 1-96, arXiv:0707.1596.
 
- Charles L., Marché J., Knot state asymptotics II: Witten conjecture and  irreducible representations, Publ. Math. Inst. Hautes Études Sci.  121 (2015), 323-361, arXiv:1107.1646.
 
- Chen Q., Yang T., Volume conjectures for the Reshetikhin-Turaev and the  Turaev-Viro invariants, Quantum Topol. 9 (2018),  419-460, arXiv:1503.02547.
 
- Cheng M.C.N., Chun S., Ferrari F., Gukov S., Harrison S.M., 3d modularity,  J. High Energy Phys. 2019 (2019), no. 10, 010, 93 pages,  arXiv:1809.10148.
 
- Cooper D., Culler M., Gillet H., Long D.D., Shalen P.B., Plane curves  associated to character varieties of $3$-manifolds, Invent. Math.  118 (1994), 47-84.
 
- Costin O., Garoufalidis S., Resurgence of the Kontsevich-Zagier series,  Ann. Inst. Fourier (Grenoble) 61 (2011), 1225-1258,  arXiv:math.GT/0609619.
 
- Culler M., Dunfield N., Goerner M., Weeks J., SnapPy, a computer program for  studying the geometry and topology of $3$-manifolds, Release 3.0.3,  available at http://snappy.computop.org.
 
- Dimofte T., Quantum Riemann surfaces in Chern-Simons theory,  Adv. Theor. Math. Phys. 17 (2013), 479-599,  arXiv:1102.4847.
 
- Dimofte T., Gaiotto D., Gukov S., 3-manifolds and 3d indices, Adv.  Theor. Math. Phys. 17 (2013), 975-1076, arXiv:1112.5179.
 
- Dimofte T., Garoufalidis S., The quantum content of the gluing equations,  Geom. Topol. 17 (2013), 1253-1315, arXiv:1202.6268.
 
- Dimofte T., Garoufalidis S., Quantum modularity and complex Chern-Simons  theory, Commun. Number Theory Phys. 12 (2018), 1-52,  arXiv:1511.05628.
 
- Dimofte T., Gukov S., Lenells J., Zagier D., Exact results for perturbative  Chern-Simons theory with complex gauge group, Commun. Number  Theory Phys. 3 (2009), 363-443, arXiv:0903.2472.
 
- Folsom A., Males J., Rolen L., Storzer M., Oscillating asymptotics for  a Nahm-type sum and conjectures of Andrews, arXiv:2305.16654.
 
- Gang D., Romo M., Yamazaki M., All-order volume conjecture for closed  3-manifolds from complex Chern-Simons theory, Comm. Math. Phys.  359 (2018), 915-936, arXiv:1704.00918.
 
- Gang D., Yonekura K., Symmetry enhancement and closing of knots in 3d/3d  correspondence, J. High Energy Phys. 2018 (2018), no. 7,  145, 58 pages.
 
- Garoufalidis S., Chern-Simons theory, analytic continuation and  arithmetic, Acta Math. Vietnam. 33 (2008), 335-362,  arXiv:0711.1716.
 
- Garoufalidis S., The 3D index of an ideal triangulation and angle structures,  Ramanujan J. 40 (2016), 573-604, arXiv:1208.1663.
 
- Garoufalidis S., State integrals, the quantum dilog, and knots, Lecture,  18 September, 2018, Max Planck Institute for Mathematics.
 
- Garoufalidis S., Gu J., Mariño M., The resurgent structure of quantum knot  invariants, Comm. Math. Phys. 386 (2021), 469-493,  arXiv:2007.10190.
 
- Garoufalidis S., Gu J., Mariño M., Peacock patterns and resurgence in complex  Chern-Simons theory, Res. Math. Sci. 10 (2023), 29,  67 pages, arXiv:2012.00062.
 
- Garoufalidis S., Gu J., Mariño M., Wheeler C., Resurgence of  Chern-Simons theory at the trivial flat connection, Comm. Math.  Phys. 406 (2025), 20, 60 pages, arXiv:2111.04763.
 
- Garoufalidis S., Kashaev R., Evaluation of state integrals at rational points,  Commun. Number Theory Phys. 9 (2015), 549-582,  arXiv:1411.6062.
 
- Garoufalidis S., Kashaev R., From state integrals to $q$-series,  Math. Res. Lett. 24 (2017), 781-801, arXiv:1304.2705.
 
- Garoufalidis S., Kashaev R., A meromorphic extension of the 3D index,  Res. Math. Sci. 6 (2019), 8, 34 pages, arXiv:1706.08132.
 
- Garoufalidis S., Lê T.T.Q., Asymptotics of the colored Jones function of  a knot, Geom. Topol. 15 (2011), 2135-2180,  arXiv:math.GT/0508100.
 
- Garoufalidis S., Lê T.T.Q., From 3-dimensional skein theory to functions  near $\mathbb{Q}$, arXiv:2307.09135.
 
- Garoufalidis S., Storzer M., Wheeler C., Perturbative invariants of cusped  hyperbolic 3-manifolds, arXiv:2305.14884.
 
- Garoufalidis S., Wheeler C., Modular $q$-holonomic modules,  arXiv:2203.17029.
 
- Garoufalidis S., Zagier D., Asymptotics of Nahm sums at roots of unity,  Ramanujan J. 55 (2021), 219-238, arXiv:1812.07690.
 
- Garoufalidis S., Zagier D., Knots and their related $q$-series,  SIGMA 19 (2023), 082, 39 pages, arXiv:2304.09377.
 
- Garoufalidis S., Zagier D., Knots, perturbative series and quantum modularity,  SIGMA 20 (2024), 055, 87 pages, arXiv:2111.06645.
 
- Grassi A., Gu J., Mariño M., Non-perturbative approaches to the quantum  Seiberg-Witten curve, J. High Energy Phys. 2020  (2020), no. 7, 106, 50 pages, arXiv:1908.07065.
 
- Grünberg D.B., Moree P., Sequences of enumerative geometry: congruences and  asymptotics, Experiment. Math. 17 (2008), 409-426,  arXiv:math.NT/0610286.
 
- Gukov S., Three-dimensional quantum gravity, Chern-Simons theory, and the  A-polynomial, Comm. Math. Phys. 255 (2005), 577-627,  arXiv:hep-th/0306165.
 
- Gukov S., Manolescu C., A two-variable series for knot complements,  Quantum Topol. 12 (2021), 1-109, arXiv:1904.06057.
 
- Gukov S., Mariño M., Putrov P., Resurgence in complex Chern-Simons  theory, arXiv:1605.07615.
 
- Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants,  J. Knot Theory Ramifications 29 (2020), 2040003, 85 pages,  arXiv:1701.06567.
 
- Gukov S., Putrov P., Vafa C., Fivebranes and 3-manifold homology,  J. High Energy Phys. 2017 (2017), no. 7, 071, 81 pages,  arXiv:1602.05302.
 
- Hikami K., Hyperbolic structure arising from a knot invariant,  Internat. J. Modern Phys. A 16 (2001), 3309-3333,  arXiv:math-ph/0105039.
 
- Hikami K., Mock (false) theta functions as quantum invariants, Regul.Chaotic Dyn. 10 (2005), 509-530, arXiv:math-ph/0506073.
 
- Jones V.F.R., A polynomial invariant for knots via von Neumann algebras,  Bull. Amer. Math. Soc. 12 (1985), 103-111.
 
- Jones V.F.R., Hecke algebra representations of braid groups and link  polynomials, Ann. of Math. 126 (1987), 335-388.
 
- Kashaev R.M., The hyperbolic volume of knots from the quantum dilogarithm,  Lett. Math. Phys. 39 (1997), 269-275,  arXiv:q-alg/9601025.
 
- Khovanov M., A categorification of the Jones polynomial, Duke  Math. J. 101 (2000), 359-426, arXiv:math.QA/9908171.
 
- Lawrence R., Zagier D., Modular forms and quantum invariants of  $3$-manifolds, Asian J. Math. 3 (1999), 93-107.
 
- Mariño M., From resurgence to BPS states, Talk, Strings 2019, Brussels.
 
- Melvin P.M., Morton H.R., The coloured Jones function, Comm. Math.  Phys. 169 (1995), 501-520.
 
- Murakami H., Murakami J., The colored Jones polynomials and the simplicial  volume of a knot, Acta Math. 186 (2001), 85-104,  arXiv:math.GT/9905075.
 
- Nahm W., Conformal field theory and torsion elements of the Bloch group, in  Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin,  2007, 67-132, arXiv:hep-th/0404120.
 
- Neumann W.D., Extended Bloch group and the Cheeger-Chern-Simons  class, Geom. Topol. 8 (2004), 413-474,  arXiv:math.GT/0307092.
 
- Neumann W.D., Zagier D., Volumes of hyperbolic three-manifolds,  Topology 24 (1985), 307-332.
 
- Ohtsuki T., On the asymptotic expansion of the quantum $\rm SU(2)$ invariant  at $q=\exp(4\pi\sqrt{-1}/N)$ for closed hyperbolic 3-manifolds obtained by  integral surgery along the figure-eight knot, Algebr. Geom. Topol.  18 (2018), 4187-4274.
 
- Olver F.W.J., Asymptotics and special functions, AKP Classics, AK Peters/CRC  Press, Ltd., Wellesley, MA, 1997.
 
- Park S., Inverted state sums, inverted Habiro series, and indefinite theta  functions, arXiv:2106.03942.
 
- Reshetikhin N.Yu., Turaev V.G., Ribbon graphs and their invariants derived from  quantum groups, Comm. Math. Phys. 127 (1990), 1-26.
 
- Reshetikhin N.Yu., Turaev V.G., Invariants of $3$-manifolds via link  polynomials and quantum groups, Invent. Math. 103 (1991),  547-597.
 
- Rozansky L., The universal $R$-matrix, Burau representation, and the  Melvin-Morton expansion of the colored Jones polynomial, Adv.  Math. 134 (1998), 1-31.
 
- Sloane N.J.A. et al., The on-line encyclopedia of integer sequences,  2024, https://oeis.org.
 
- Thurston W.P., The geometry and topology of three-manifolds, Princeton  University, 1979.
 
- Thurston W.P., Three-dimensional manifolds, Kleinian groups and hyperbolic  geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
 
- Turaev V.G., Quantum invariants of knots and 3-manifolds, 3rd ed., De Gruyter Stud. Math., Vol. 18, De Gruyter, Berlin, 2016.
 
- Wheeler C., Modular $q$-difference equations and quantum invariants of  hyperbolic three-manifolds, Ph.D. Thesis, Rheinische  Friedrich-Wilhelms-Universität Bonn, 2023, available at  https://hdl.handle.net/20.500.11811/10811.
 
- Wilf H.S., Zeilberger D., An algorithmic proof theory for hypergeometric  (ordinary and ''$q$'') multisum/integral identities, Invent. Math.  108 (1992), 575-633.
 
- Witten E., Quantum field theory and the Jones polynomial, Comm. Math.  Phys. 121 (1989), 351-399.
 
- Witten E., Analytic continuation of Chern-Simons theory, in  Chern-Simons Gauge Theory: 20 Years After, AMS/IP Stud. Adv.  Math., Vol. 50, American Mathematical Society, Providence, RI, 2011,  347-446, arXiv:1001.2933.
 
- Yoshida T., The $\eta$-invariant of hyperbolic $3$-manifolds,  Invent. Math. 81 (1985), 473-514.
 
- Zagier D., Holomorphic quantum modular forms, Lecture, 28 Febuary 2020,  Hausdorff Center for Mathematics, available at  https://www.youtube.com/watch?v=2Rj_xh3UKrU.
 
- Zagier D., Vassiliev invariants and a strange identity related to the  Dedekind eta-function, Topology 40 (2001), 945-960.
 
- Zagier D., The dilogarithm function, in Frontiers in Number Theory, Physics,  and Geometry. II, Springer, Berlin, 2007, 3-65.
 
- Zagier D., Quantum modular forms, in Quanta of Maths, Clay Math.  Proc., Vol. 11, American Mathematical Society, Providence, RI, 2010,  659-675.
 
- Zeilberger D., A holonomic systems approach to special functions identities,  J. Comput. Appl. Math. 32 (1990), 321-368.
 
 
 | 
 |