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Abstract. In this paper, we prove Strichartz estimates for the (k, a)-generalized Laguerre
operators a−1

(
−|x|2−a∆k + |x|a

)
which were introduced by Ben Säıd–Kobayashi–Ørsted,

and for the operators |x|2−a∆k. Here k denotes a non-negative multiplicity function for
the Dunkl Laplacian ∆k and a denotes a positive real number satisfying certain conditions.
The cases a = 1, 2 were studied previously. We consider more general cases here. The
proof depends on symbol-type estimates of special functions and a discrete analog of the
stationary phase theorem inspired by the work of Ionescu–Jerison.

Key words: Strichartz estimates; oscillatory integrals; representation theory; Schrödinger
equations

2020 Mathematics Subject Classification: 35Q41; 22E45

1 Introduction

For the usual Laplacian ∆ on Rn (n ≥ 1), the following inequalities hold:∥∥eit∆u0∥∥Lp(R;Lq(Rn))
≤ C∥u0∥L2(Rn),

where (p, q) ∈ [2,∞]2 satisfies 2/p + n/q = n/2 with (p, q, n) ̸= (2,∞, 2). These estimates are
called Strichartz estimates and have been widely studied in the past thirty years. Strichartz [29]
proved them for p = q by using the Fourier restriction estimates and a duality argument.
The most difficult part, that is the end-point case (p, q) = (2, 2n/(n − 2)) with n ≥ 3, was
proved by Keel and Tao [18]. These are used for well-posedness of linear and non-linear time-
dependent Schrödinger equations [14, 34]. See also the book [31]. For the Harmonic oscilla-
tor Hos =

−∆+|x|2
2 , a similar estimates hold:∥∥e−itHosu0
∥∥
Lp([−T,T ];Lq(Rn))

≤ CT ∥u0∥L2(Rn),

where the region [−T, T ] cannot be replaced by R essentially due to the existence of L2-
eigenfunctions.

Given a root system R in Rn (we assume reducedness and do not assume crystallographic
condition for the definition of root system, see [2, Definition 2.1]), a [0,∞)-valued function
on R which is invariant under the finite reflection group C associated with R is called a non-
negative multiplicity function. For a non-negative multiplicity function k and a > 0, we define
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the (k, a)-generalized Laguerre operator by

Hk,a :=
−|x|2−a∆k + |x|a

a
on Rn.

Here ∆k denotes the Dunkl Laplacian (see [2, formula (2.9)]). If k ≡ 0, the Dunkl Laplacian
coincides with the usual Laplacian: ∆0 = ∆ =

∑n
j=1 ∂

2
xj
.

The (k, a)-generalized Laguerre operator Hk,a is the generator of the (k, a)-generalized La-
guerre semigroup which is a holomorphic semigroup introduced by Ben Säıd, Kobayashi and
Ørsted [2]. For the case k ≡ 0 and a = 2 (resp. a = 1), the semigroup is the Hermite semi-
group [11, 16] (resp. the Laguerre semigroup [19, 20, 21]). These two semigroups are associated
with some realization (called the Schrödinger model) of minimal representations of the meta-
plectic group Mp(n,R) and a double cover of the indefinite orthogonal group O(n + 1, 2). As

unitary representations of S̃L(2,R)× C, they deformed these two representations with parame-
ters k and a, and obtained a family of unitary representations. The (k, a)-generalized Laguerre
semigroups are associated with them.

In [2], the Fourier transforms associated with the (k, a)-generalized Laguerre semigroups are
introduced and these various properties are studied. Recently, there have been several studies
related to these operators such as real Paley–Wiener theorem [23], Lp-Lq-boundedness of Fourier
multipliers [22], Hardy inequality [32] and wavelet transform [3].

The aim of this paper is to prove Strichartz estimates of Schrödinger equations associated
with the (k, a)-generalized Laguerre operators. This problem is proposed in [2] and solved in [1]
and [24] for a = 1 and a = 2 (see also [25], where they deal with orthonormal Strichartz
estimates). The (0, 2)-generalized Laguerre operator H0,2 is just the Harmonic oscillator Hos

and so their results are a generalization of the classical result for Hos. Here, we deal with more
general cases.

For a = 1, 2, the integral kernel of the Schrödinger propagator has a nice expression (due to [2,
formula (4.58)]), which immediately implies the dispersive estimate [2, Proposition 4.26]. Hence
the Strichartz estimates for a = 1, 2 are a direct consequence of this estimate and the result
in [18] by Keel and Tao, see also [1, 25]. One of the difficulties to extend it to general a is a lack
of such a nice expression of the Schrödinger propagator. Actually, this is just expressed in terms
of an infinite sum of a product of special functions (see (1.5) and (1.6)). Therefore, we need to
control this sum uniformly with respect to some parameters. To overcome this difficulty, we use
a strategy inspired by the proof of Carleman estimates due to Ionescu and Jerison [17]. To be
precise, we reduce estimates of the sum to those of integrals and use the theory of oscillatory
integrals such as the stationary phase theorem with several parameters. One difference from [17]
is that we avoid using the dyadic decomposition which is used there many times. Instead, we
employ an appropriate scaling and simplify some arguments. In a sequel work [30], we will give
another approach based on a deformation of integrals developed in the proof for the Strichartz
estimates on flat cones [12].

In the last few decades, numerous works have focused on the dispersive estimates or the
Strichartz estimates for Schrödinger operators with critical electromagnetic potentials such as
Aharonov–Bohm magnetic fields (see [8, 9, 10, 13]) and Laplace–Beltrami operators on conic
manifolds ([12, 35]). Due to the spherical symmetry of their operator, the integral kernel of their
propagator has the form∑

ν : eigenvalues on the sphere

Kν(t, r1, r2)Hν(θ1, θ2),

where Kν is the propagator in the radial direction and Hν is the projection in the spherical
direction. To achieve optimal estimates for this integral kernel, one has to use the oscillatory
behavior of Kν and Hν , in other words, some cancelation of the sum much like our case. In
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their paper, it is accomplished through the use of the complex contour deformation and certain
functional equations of the special functions. Therefore, their method appears to be inapplicable
when the radial propagator or the spherical projection is not expressed by special functions.
Typical scenarios involving these situations arise in the studies of the Schrödinger equation with
the degenerate trapping [6] or the wave equation on the Schwartzshild spacetime [7]. In their
works, the dispersive or Strichartz estimates for initial values with a fixed angular momentum
are considered, that is, they studied single modes only and did not consider the sum possibly
because of the difficulty to treat the oscillation of the sum.

In this paper, we deduce the asymptotic expansions of the radial direction and the spherical
projection first and then sum up them by exploiting their oscillatory behavior. Specifically,
we use the properties of the special functions in the first step only. Hence the authors believe
that the method employed here specifically in the second step remains applicable even when Kν

and Hν are not expressed in terms of special functions as is the case in [6, 7] (although we might
need more precise analysis of the radial propagators).

The second contribution of this paper is to give a naive application of the stationary phase
theorem (see Proposition 2.4). This is used to prove improved dispersive estimates for Hk,a (near
the diagonal) under the restriction 0 < a < 2. Our integral kernel has multiple parameters and it
seems important to consider when a similar statement the usual stationary phase theorem holds
uniformly with respect to additional parameters and when it is improved. Our Proposition 2.4
addresses intermediate cases between two scenarios where the decay order of an oscillatory
integral is improved, see Section 2.3.

Finally, we also obtain symbol-type estimates of higher-order derivatives for J-Bessel func-
tions, which was done in [17] up to second derivatives and was anticipated to be true for higher-
order derivatives there (see [17, Remark after Theorem 9.1]). It seems that the method used
in [17] via complex counter deformation cannot be applied to the estimates for higher-order
derivatives. Here we use an alternative method based on the stationary phase type theorem and
partially solve them at the cost of loss of estimates for some parameters. See Proposition 3.1
for the precise statement and Appendix A.4 for its proof. We also mention a recent work [26],
where the precise asymptotic behavior of the Bessel function is given although the authors do
not know whether our symbol-type estimates follow from the results in [26].

1.1 Main theorem

Let us state our main theorem. For a nonnegative multiplicity function k and a > 0, we write

ϑk,a(x) := |x|a−2
∏
α∈R

|⟨α, x⟩|k(α) (1.1)

and assume that the homogeneous degree of the measure ϑk,a(x)dx on Rn is positive

σk,a :=
n+

∑
α∈R k(α) + a− 2

a
> 0. (1.2)

Then it is shown in [2, Corollary 3.22] that the operator Hk,a with domain Wk,a(Rn) defined
in [2, equation (3.29)] is essentially self-adjoint on the Hilbert space L2(Rn;ϑk,a(x)dx). We
denote the unique self-adjoint extension of Hk,a by the same symbol Hk,a.

We write Lq = Lq(Rn;ϑk,a(x)dx) and L
p(I, Lq) = Lp(I;Lq(Rn;ϑk,a(x)dx)) for I ⊂ R. Recall

that an exponent pair (p, q) ∈ [2,∞]2 is called σk,a-admissible if

1

p
+
σk,a
q

=
σk,a
2

and (p, q, σk,a) ̸= (2,∞, 1).

When n = 1, a nonnegative multiplicity function k is a constant function. In this case, we
regard k as a nonnegative real number k(α) (α ∈ R), and we see

∑
α∈R k(α) = 2k.
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Theorem 1.1. We assume one of the following, which implies (1.2):

� n = 1 and a ≥ 2− 4k,

� n ≥ 2 and (0 < a ≤ 1 or a = 2),

� n ≥ 2, 1 < a < 2 and k ≡ 0.

Let (p, q), (p1, q1), (p2, q2) ∈ [2,∞]2 be σk,a-admissible exponents. Then, for T > 0, there ex-
ists C > 0 such that∥∥e−itHk,au

∥∥
Lp([−T,T ];Lq)

≤ C∥u∥L2 , (1.3)∥∥∥∥∫ t

0
e−i(t−s)Hk,af(s)ds

∥∥∥∥
Lp1 ([−T,T ];Lq1 )

≤ C∥f∥
Lp∗2 ([−T,T ];Lq∗2 )

, (1.4)

where r∗ denotes the Hölder conjugate of r: r∗ = r/(r− 1) and in addition (pj , qj) ̸=
(
2,

2σk,a

σk,a−1

)
when all of the conditions n ≥ 2, 1 < a < 2 and k ≡ 0 hold.

Remark 1.2.

(1) The a = 1 case was treated in [1], where an additional assumption σk,a ≥ 1 is necessary
in order to use an upper estimate of I

(
2,

σk,a−1
2 ;w; t

)
[2, Proposition 4.26] (see (1.5)

for the definition of I ) although it is not explicitly written there. When n = 1, the
assumption σk,a ≥ 1 implies our assumption a ≥ 2 − 4k. Moreover, the end-point case(
2,

2σk,a

σk,a−1

)
is excluded in [1]. The end-point case follows from the result in [18].

(2) For n ≥ 2 with a ≤ 1, we also obtain a dispersive estimate, see the proof of Theo-
rem 1.1 in Section 6.2. On the other hand, the dispersive estimate might break for n ≥ 2
with 1 < a < 2 (see Theorem 1.4 (i) and Remark 1.5). Nevertheless, the Strichartz esti-
mates still hold if k ≡ 0 since its proof just relies on the dispersive estimate around the
diagonal of the integral kernel due to the nature of the TT ∗ argument. The authors believe
that the Strichartz estimates do not hold for a > 2 although they do not know its proof.

(3) We exclude an inhomogeneous end-point estimate for 1 < a < 2 with n ≥ 2 and k ≡ 0
since a global dispersive estimate is absent. A technique used in [15, 35] might be available,
however, our estimates are not sufficient to apply their method.

(4) In the above estimates, we cannot replace the time interval [−T, T ] by R. In fact, we
take u ̸= 0 be an L2-eigenfunction of Hk,a and we denote the corresponding eigenvalue
by λ ∈ R (note that its spectrum is discrete, see [2, Corollary 3.22]). Then (1.3) im-
plies u ∈ Lq since

∣∣e−itHk,au(x)
∣∣ = ∣∣e−itλu(x)

∣∣ = |u(x)|. On the other hand,∥∥e−itHk,au
∥∥
Lp(R;Lq)

= ∥u∥Lp(R;Lq) = ∞

although ∥u∥L2 <∞.

Moreover, we can deduce global in time Strichartz estimates for −|x|a∆k.

Theorem 1.3. Under the same assumptions and notation as Theorem 1.1, there exists C > 0
such that

∥∥eit|x|a∆ku
∥∥
Lp(R;Lq)

≤ C∥u∥L2 ,

∥∥∥∥∫ t

0
ei(t−s)|x|a∆kf(s)ds

∥∥∥∥
Lp1 (R;Lq1 )

≤ C∥f∥
Lp∗2 (R;Lq∗2 )

.
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1.2 Key theorem

We write Jλ(z) for the J-Bessel function, Ĩλ(w) for the normalized I-Bessel function, and Cν
m(t)

for the Gegenbauer polynomial of degree m. These functions are defined by

Ĩλ(w) := e−
π
2
iλ
(w
2

)−λ
Jλ(iw),

Cν
m(t) :=

(−2)m

m!

Γ(m+ ν)Γ(m+ 2ν)

Γ(ν)Γ(2m+ 2ν)
(1− t2)−ν+ 1

2
dm

dtm
(
1− t2

)m+ν− 1
2 .

Now we define

I (b, ν;w; t) := Γ(bν + 1)
∞∑

m=0

(w
2

)bm
Ĩb(m+ν)(w)(m+ ν)ν−1Cν

m(t) (1.5)

= Γ(bν + 1)

∞∑
m=0

(
iw

2

)−bν

e−
π
2
bmiJb(m+ν)(iw)(m+ ν)ν−1Cν

m(t)

for b > 0, ν ≥ −1
2 , w ∈ C \ (−∞, 0) and t ∈ [−1, 1], where we interpret (m + ν)ν−1Cν

m(t)
as limν↘0(m+ ν)ν−1Cν

m(t) when ν = 0. Moreover, we take a branch of wbm such that wbm ∈
(0,∞) for w ∈ (0,∞) and wbm|w=0 = 0. Then the sum in (1.5) absolutely converges, and I is
a continuous function (see [2, Lemma 4.17 (1)] or Section 6.1).

In [2, Theorem C, equations (4.50) and (4.52)], it is shown that the integral kernel e−itHk,a(x,
x′) of e−itHk,a for 0 < |t| < π is given by

ck,a
ei

|x|a+|x′|a
a

cot(t)

(i sin(t))σk,a

∫
Rn

I

(
2

a
,
a(σk,a − 1)

2
;−i

2|x|
a
2 |x′|

a
2

a sin(t)
; ξ · x̂′

)
dµkx̂(ξ), (1.6)

where x̂ = x/|x|, ck,a is the constant defined in [2, equation (1.6)], · denotes the standard inner
product on Rn and dµkx̂ is the probability measure introduced in [2, equation (2.5)]. Moreover,
for k ≡ 0, we have a more explicit expression

e−itH0,a(x, x′) = c0,a
ei

|x|a+|x′|a
a

cot(t)

(i sin(t))
n+a−2

a

I

(
2

a
,
n− 2

2
;−i

2|x|
a
2 |x′|

a
2

a sin(t)
; x̂ · x̂′

)
. (1.7)

Theorem 1.1 for n ≥ 2 is a consequence of uniform bounds for I (b, ν;w; t):

Theorem 1.4. Let ν ≥ 0.

(i) Suppose 0 < b < 2 and ε > 0. Then there exists Cb,ν,ε > 0 such that

|I (b, ν;−iy; cosφ)| ≤ Cb,ν,ε(1 + |y|)(1−b)ν for y ∈ R, φ ∈ [0, π − ε].

When b = 1, we can take ε = 0.

(ii) Suppose b > 0. Then there exists Cb,ν > 0 such that

|I (b, ν;−iy; cosφ)| ≤ Cb,ν(1 + |y|)(2−b)ν for y ∈ R, φ ∈ [0, π].

In particular, when 1 < b < 2, the sum I (b, ν;−iy; cosφ) is uniformly bounded with respect
to y ∈ R and φ ∈ [0, π − ε]. Moreover, when b = 1, b ≥ 2 or ν = 0, the sum I (b, ν;−iy; cosφ)
is uniformly bounded with respect to y ∈ R and φ ∈ [0, π].

Remark 1.5. These estimates are sharp for b = 1, 2 with respect to the growth in y. In fact,
[2, equations (4.45), (4,46)] show |I (1, ν;−iy; cosφ)| = 1 and

I (2, ν;−iy;−1) = Γ

(
ν +

1

2

)
Ĩν− 1

2
(0) = 1,

which do not decay in y. The authors believe that they are sharp also for general b > 0. We
will pursue it in our sequel work [30].
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1.3 Idea of the proof

Here we give an idea of the proof of Theorem 1.4. We remark that the difficulty lies in the
uniformity with respect to the parameters y and φ. For the case |y| ≲ 1, the results are an
immediate consequence of the estimates given in [2] (for rigorous treatment, see Section 6.1).
Hence we consider the case |y| ≳ 1. Let us assume y ≳ 1 for simplicity.

First, we try to estimate the sum I using optimal estimates for the Bessel functions and the
Gegenbauer polynomials. We write

I (b, ν;−iy; cosφ) =Lb,νy
−bν

∞∑
m=0

(m+ ν)e−
π
2
bmiJb(m+ν)(y)ν

−1Cν
m(cosφ).

Since the estimates for finite m are easy to prove, we only consider the sum over m ≫ 1. By
the bounds for the Bessel functions |Jµ(y)| ≤ Cµ−

1
3 in (3.2) and the Gegenbauer polynomi-

als
∣∣ν−1Cν

m(cosφ)
∣∣ ≤ Cm2ν−1 in (3.3), we have∣∣∣∣∣y−bν

∞∑
m≫1

(m+ ν)e−
π
2
bmiJb(m+ν)(y)ν

−1Cν
m(cosφ)

∣∣∣∣∣ ≤ Cy−bν
∑
m≫1

m ·m− 1
3 ·m2ν−1

= Cy−bν
∑
m≫1

m2ν− 1
3 .

Since the sum
∑

m≫1m
2ν− 1

3 is not convergent for ν ≥ −1/3 at all and since the upper bounds for
special functions are optimal, such a direct method cannot be applied. Similarly, the estimate
based on |Ĩλ(−iy)| ≤ Γ(λ+ 1)−1 is far from a uniform estimate.

The drawback of the above strategy is to use the triangle inequality |
∑

·| ≤
∑

| · |. To obtain
a better estimate of the sum I (b, ν;−iy; cosφ), we need to make use of some cancellation of the
sum instead of using the triangle inequality. To do this, we write it as a sum of a WKB form

(m+ ν)e−
π
2
bmiJb(m+ν)(y)ν

−1Cν
m(cosφ) =: ζ(m, y, φ)eiS(m,y,φ),

where a phase function S is a real-valued function and an amplitude ζ does not oscillate
as m→ ∞ (uniformly in other parameters y, φ). Roughly speaking, it follows from the classical
formula (2.1) that we can replace the discrete sum by a sum of integrals of the form∫

m≫1
ζ(m, y, φ)eiS(m,y,φ)+2πimqdm, q ∈ Z. (1.8)

The problem on convergence (or uniform boundedness in some parameters) of such an integral
has a long history and is related to the stationary phase theorem [28]. We can anticipate that
a uniform estimate for the sum I can be proved by this theorem. On the other hand, we have
to be careful to justify it because of the following reasons:

� To use cancelation of the oscillation via the stationary or non-stationary phase theorems,
we need symbol-type (derivative) estimates of ζ. To do this, we have to study those of the
special functions Jµ and Cν

m.

� The integral (1.8) has a lot of parameters and we have to estimate it in a uniform way.

� The J-Bessel function Jb(m+ν)(y) has different asymptotic behaviors as m, y → ∞ on
the regions m ≪ y, m ≈ y, m ≫ y (see Proposition 3.1) and therefore the WKB
form ζ(m, y, φ)eiS(m,y,φ) has different properties on each region.

� The decay rate of Cν
m(cosφ) as m → ∞ becomes worse as φ → 0, π (see Proposition 3.3)

and hence estimates for φ = 0, π are also worse in general. Nevertheless, at φ = 0
with 0 < b < 2, we can improve the estimate since the first derivative of S(m, y, 0) vanishes
only on regions where m is small enough (see Theorem 1.4 (i) and Section 5.2).
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1.4 Related problems

In this subsection,1 we mention a few related problems, including those concerning Strichartz
estimates and fractional operators.

� Prove the optimality of our Strichartz estimates (see Theorem 1.1).

� Prove the Strichartz estimates for fractional operators such as Hα
k,a or (−∆k,a)

α (α > 0).
When α = 1/2, this corresponds to the Strichartz estimates for the wave equation.

� Study properties of the integral kernel E(x, y) of the spectral projection forHk,a and−∆k,a.
In [15], the Strichartz estimates on asymptotically conic manifolds are proved by using the
expression of E(x, y) and the stationary phase theorem.

1.5 Notation

Let

N = {0, 1, 2, . . .}, N∗ = {1, 2, 3, . . .}, R+ = (0,∞), R− = (−∞, 0).

For a parameter i ∈ I and Ai, Bi, we write Ai ≲ Bi for i ∈ I if there is a constant C > 0
independent of i ∈ I such that Ai ≤ CBi. We denote Ai ∼ Bi if both Ai ≲ Bi and Bi ≲ Ai hold
for i ∈ I.

2 Preliminary

2.1 A sum of monotonic functions

The next lemma is elementary and follows from the piecewise quadrature.

Lemma 2.1. Let f : R → [0,∞) be a continuous monotonically decreasing function. Then∑
m∈bN,m1≤m≤m2

f(m) ≤
∫ m2

m1−b
f(x)dx

for b > 0 and m1,m2 ∈ R with m1 < m2, where bN = {bn | n ∈ N}.

2.2 Discrete oscillatory integrals

In this paper, the following classical formula plays an important role:∑
m∈Z

eiS(m)ζ(m) =

∫
R
eiS(m)ζ(m)dm− 1

2πi

∑
q∈Z\{0}

1

q

∫
R
ei(S(m)+2πqm)ζ̃(m)dm, (2.1)

where ζ̃(m) = ζ ′(m)+iS′(m)ζ(m) (for example, see [17, Proof of Lemma 5.3]). In this paper, we
use this formula for a compactly supported smooth function ζ and a smooth function S, so the
convergence of the sum does not matter. From this formula, we can deduce a discrete analogue
of the non-stationary phase theorem.

Proposition 2.2. Let Cα > 0 for any nonnegative integer α and M ≥ 1, 0 < r ≤ 1, 0 < ρ ≤ 1,
k ∈ R. Suppose that supp ζ ⊂ [0,M ], |∂αmζ(m)| ≤ CαM

k−ρα. Suppose that a smooth real-valued
function S ∈ C∞(R;R) satisfies

dist(∂mS(m), 2πZ) ≥ r,
∣∣∂α+1

m S(m)
∣∣ ≤ CαM

−ρα|∂mS(m)|.
1The authors would like to thank the anonymous referees for suggesting several unsolved problems and inspiring

the writing of this subsection.
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Then, for each N > 0,∣∣∣∣∣
∞∑

m=1

eiS(m)ζ(m)

∣∣∣∣∣ ≤ CNM
k+1(1 + rMρ)−N ,

where CN > 0 depends only on 0 < ρ ≤ 1, N > 0 and a finite number of Cα.

Remark 2.3. In [17], the fact that CN is independent of r is important since they avoid to use
the stationary phase theorem there. In this paper, we do not use this fact, that is, we use the
case r = 1 only in this paper.

Proof of Proposition 2.2. The proof is a slight modification of [17, Lemma 5.3] and we discuss
briefly here.

By the assumption and the intermediate value theorem, there exists a unique k ∈ Z such
that ∂mS(m) ∈ (2πk, 2π(k + 1)). This implies r ≤ ∂mS(m)− 2πk ≤ 2π − r. By replacing S(m)
by S(m)− 2πk, we may assume k = 0 and r ≤ ∂mS(m) ≤ 2π − r.

From the formula (2.1), the problem reduces to the estimates for each integrals appearing
in (2.1). By the change of variable from m to Mρm, we have∫

R
eiS(m)ζ(m)dm =Mρ

∫
R
eiSM (m)ζM (m)dm, (2.2)

where we set SM (m)= S(Mρm) and ζM (m)= ζ(Mρm). Then the assumptions imply |∂αmζM (m)|
≤ CαM

k,
∣∣∂α+1

m SM (m)
∣∣ ≤ Cα|∂mSM (m)|, ∂mSM (m) ≥ rMρ and supp ζM ⊂

[
0, 4M1−ρ

]
. We in-

tegrate by partsN times in the right-hand side of (2.2) (use the identity (iS′
M (m))−1∂meiSM (m) =

eiSM (m) and Lemma A.1) and obtain∣∣∣∣∫
R
eiS(m)ζ(m)dm

∣∣∣∣ ≤Mρ · CNM
k(1 + rMρ)−N ·M1−ρ = CNM

k+1(1 + rMρ)−N ,

where the term M1−ρ comes from the volume of the support supp ζM . The second terms of the
right-hand side of (2.1) are similarly dealt with as in the proof of [17, Lemma 5.3]. ■

2.3 A variant of the stationary phase theorem

Here we give a variant of the stationary phase theorem which is used for an improvement of
estimates of I described in Section 5.2. We consider the following integral with parameters λ, φ:

I(λ, φ) :=

∫
R
eiλS(µ,φ)γ(µ, λ, φ)dµ

and its decay rate with respect to λ≫ 1
If we freeze the parameter φ, then the stationary phase theorem just implies that if µ 7→

S(µ, φ) is a Morse function (that is, all critical points are non-degenerate in the sense that
∂2µS ̸= 0 there), the optimal decay rate of I is λ−

1
2 . To obtain an improved decay, here we

consider the following two scenarios:

� If we assume that γ vanishes with order 2ν at all the critical points of S in addition, then
the optimal decay rate is improved to be λ−

1
2
−ν .

� If the symbol γ itself decays like (1 + λ)−ν , then the decay order becomes λ−
1
2
−ν .

The following proposition interpolates the above two situations in a uniform way with respect
to the parameter φ. A typical example of such a phase function is S(µ, φ) = (µ − φ)2. This
simple case could simplify the reading of the proof below.
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Proposition 2.4. Let ν ≥ 0 and c, C > 0. Suppose that S ∈ C∞([0, 1]2;R) and γ(·, λ, ·) ∈
C∞(R× [0, 1]) satisfy

supp γ(·, λ, φ) ⊂ [0, 1], |∂αµγ(µ, λ, φ)| ≤ Cαµ
2ν−α(1 + λφµ)−ν ,∣∣∂2µS(µ, φ)∣∣ ≥ c, |∂µ∂φS(µ, φ)| ≥ C

uniformly in µ ∈ [0, 1], φ ∈ [0, 1] and λ ≫ 1. Suppose that S(·, φ) has a unique critical
point µ0(φ) which is smooth with respect to φ and that µ0(0) = 0. Then |I(λ, φ)| ≲ λ−ν− 1

2

uniformly in λ≫ 1 and φ ∈ [0, 1].

Remark 2.5.

(1) Without the assumption µ0(0) = 0, we obtain I(λ, φ) ≲ λ−
1
2 only. The additional de-

cay λ−ν comes from the factor (1 + λφµ)−ν in the assumption of γ and the fact that
µ0(0) = 0 as is mentioned before.

(2) We observe that the critical point µ0(φ) of S is close to 0 if φ ∼ 0. There we take advantage
of the assumption that the symbol γ vanishes at zero with order 2ν like |γ(µ, λ, φ)| ≲ µ2ν .
On the other hand, if φ is away from zero, then the critical point µ0(φ) is also away
from zero. In this case, γ itself decays like λ−ν near the critical point (due to |φ| ≳ 1
and |µ0(φ)| ≳ 1), which makes us to prove the improved decay. The difficulty here is to
deal with the case where φ is small enough but depending on λ.

(3) The critical point of S(·, φ) is unique due to the condition
∣∣∂2µS(µ, φ)∣∣ ≥ c in this case.

Proof of Proposition 2.4. We may assume supp γ(·, λ, φ) ⊂
[
λ−

1
2 , 1
]
. In fact, we set

γ′(µ, λ, φ) = χ
(
λ

1
2µ
)
γ(µ, λ, φ),

where χ ∈ C∞([0,∞),R) satisfies χ(µ) = 1 on µ ≤ 1 and χ(µ) = 0 for µ ≥ 2. Using the
bound |γ(µ, λ, φ)| ≲ µ2ν , we have∣∣∣∣∫

R
eiλS(µ,φ)γ′(µ, λ, φ)dµ

∣∣∣∣ ≲ λ−ν

∣∣∣∣∫
R
χ
(
λ

1
2µ
)
dµ

∣∣∣∣ ≲ λ−ν− 1
2 .

Hence, we can replace γ by γ − γ′, where we note that γ − γ′ satisfies

supp(γ − γ′)(·, λ, φ) ⊂
[
λ−

1
2 , 1
]
, |∂αµ (γ − γ′)(µ, λ, φ)| ≤ Cαµ

2ν−α(1 + λφµ)−ν .

In the following, we assume supp γ(·, λ, φ) ⊂
[
λ−

1
2 , 1
]
.

(i) First, we consider the case φ ∈ [0, 1] satisfying µ0(φ) ≤ 2−1λ−
1
2 . Since the signature

of ∂2µS(µ, φ) does not change for µ ∈
[
λ−

1
2 , 1
]
and φ ∈ [0, 1], we have

|∂µS(µ, φ)| =

∣∣∣∣∣
∫ µ

µ0(φ)
∂2µS(µ

′, φ)dµ′

∣∣∣∣∣ =
∫ µ

µ0(φ)

∣∣∂2µS(µ′, φ)∣∣dµ′ ≥ c(µ− µ0(φ)) ≥ 2−1cµ

for µ ∈
[
λ−

1
2 , 1
]
. By integrating by parts and using supp γ(·, λ, φ) ⊂

[
λ−

1
2 , 1
]
, we have

|I(λ, φ)| =
∣∣∣∣(−iλ)−N

∫
R
eiλS(µ,φ)LNγ(µ, λ, φ)dµ

∣∣∣∣ ≤ λ−N

∫ 1

λ− 1
2

|LNγ(µ, λ, φ)|dµ,

where L = ∂µ ◦ (∂µS)(µ, φ)
−1 and we take N > ν + 1. We observe from the assumption and

Lemma A.1 that
∣∣LNγ(µ, λ, φ)

∣∣ ≲ µ2ν−2N , which leads to

|I(λ, φ)| ≲ λ−N

∫ 1

λ− 1
2

µ2ν−2Ndµ ≲ λ−ν− 1
2 .
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(ii) Next, we consider the case φ ∈ [0, 1] satisfying µ0(φ) ∈
[
2−1λ−

1
2 , 1
]
. Differentiating

(∂µS)(µ0(φ), φ) = 0 with respect to φ, we have

|µ′0(φ)| =
∣∣−(∂µ∂φS)(µ0(φ), φ)/∂

2
µS(µ0(φ), φ)

∣∣ ∼ 1,

and hence µ0(φ) ∼ φ for φ ∈ [0, 1] due to µ0(0) = 0. Now the assumption µ0(φ) ≥ 2−1λ−
1
2

yields φ ≳ λ−
1
2 .

By scaling, we have

I(λ, φ) =

∫
R
eiλS(µ,φ)γ(µ, λ, φ)dµ = µ0(φ)λ

−ν

∫
R
eiλµ0(φ)2Sφ(µ)γφ(µ, λ)dµ,

where we set

Sφ(µ) = µ0(φ)
−2S(µ0(φ)µ, φ), γφ(µ, λ) = λνγ(µ0(φ)µ, λ, φ).

We note that µ0(φ) is a unique critical point of S(µ, φ). Let ψ1, ψ2, ψ3 ∈ C∞(R; [0, 1]) such
that ψ1 + ψ2 + ψ3 = 1, suppψ1 ⊂

(
−∞, 34

]
, suppψ2 ⊂

[
1
2 ,

3
2

]
and suppψ3 ⊂

[
5
4 ,∞

)
. We write

I(λ, φ) = µ0(φ)λ
−ν

3∑
j=1

∫
R
eiλµ0(φ)2Sφ(µ)γφ(µ, λ)ψj(µ)dµ = µ0(φ)λ

−ν
3∑

j=1

Ij(λ, φ).

First, we deal with I2(λ, φ). Now we see |∂µS(µ, φ)| ≥ c|µ−µ0(φ)| for µ ∈ [0, 1] and φ ∈ [0, 1].
Then we have

|∂µSφ(µ)| = µ0(φ)
−1 · |(∂µS)(µ0(φ)µ, φ)| ≥ c|µ− 1|

for µ ∈ supp γφ(·, λ) and φ ∈ (0, 1]. Moreover, for α ∈ N and α′ ∈ N \ {0}, we have

|∂αµγφ(µ, λ)| = λνµ0(φ)
α|(∂αµγ)(µ0(φ)µ, λ, φ)|

≲ λνµ0(φ)
α(µ0(φ)µ)

2ν−α
(
1 + λµ0(φ)

2µ
)−ν

≲ µν−α,

supp(γφ(·, λ)) ⊂
{
µ0(φ)

−1λ−
1
2 ≤ µ ≤ µ0(φ)

−1
}
,

∣∣∂1+α′
µ Sφ(µ)

∣∣ ≲ |µ0(φ)|α
′−1

Thus the stationary phase theorem (see Lemma A.4 with k = 2, j = 0 and x0 = 1) implies

µ0(φ)λ
−ν |I2(λ, φ)| ≲ µ0(φ)λ

−ν ·
(
λµ0(φ)

2
)− 1

2 = λ−
1
2
−ν ,

where we use λµ0(φ)
2 ≳ 1.

Next, we consider the estimate of I1(λ, φ). We note that |∂µSφ(µ)| ≳ 1 for µ ∈ suppψ1.
Then the non-stationary phase theorem (see Lemma A.3 with µ = ν) implies

µ0(φ)λ
−ν |I1(λ, φ)| ≲ µ0(φ)λ

−ν ·
(
λµ0(φ)

2
)−ν−1

≲ φλ−ν ·
(
λφ2

)− 1
2 = λ−

1
2
−ν ,

where we use λµ0(φ)
2 ≳ 1.

Finally, we consider the term I3(λ, φ). We note that |∂µSφ(µ)| ≳ (|µ| + 1) for µ ∈ suppψ3.
Then, by integrating by parts N(> 1) times, we have

µ0(φ)λ
−ν |I3(λ, φ)| ≲ µ0(φ)λ

−ν ·
(
λµ0(φ)

2
)−N

≲ µ0(φ)λ
−ν ·

(
λµ0(φ)

2
)− 1

2 = λ−
1
2
−ν ,

where we use λµ0(φ)
2 ≳ 1. This completes the proof. ■
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3 Asymptotic expansion of special functions
and decomposition of the sum

3.1 Asymptotic expansion of Bessel functions

Here we discuss asymptotic behavior of Bessel functions. For our purpose, we need symbol-type
estimates, which is the estimates for higher order derivatives of the amplitudes. Such estimates
are studied in [17, Theorem 9.1] up to the second derivatives. However, their method cannot be
applied to estimates for higher-derivatives. Their theorem is not sufficient for our purpose since
we need estimates whose order depends on ν here. Now we write down the statement here and
give its proof in Appendix A.4.

We define

h1(z) =
√

1− z2 − z cos−1 z, (3.1)

where cos−1 z ∈ [0, π/2] for 0 ≤ z ≤ 1.

Proposition 3.1.

(i) There are smooth functions a±,y :
[
0, y − 1

2y
1
3

]
→ C such that

Jµ(y) = y−
1
4 (y − µ)−

1
4
(
a+,y(µ)e

iyh1(
µ
y
)
+ a−,y(µ)e

−iyh1(
µ
y
))

and for each α ∈ N, there exists Cα > 0 such that |∂αµa±,y(µ)| ≤ Cα(y − µ)−α, for y ≥ 8,
µ ∈

[
0, y − 1

2y
1
3

]
.

(ii) Let N > 0 and α ∈ N. Then there exist Cα > 0 and CαN > 0 such that

|∂αµJµ(y)| ≤


Cαy

− 1+α
3 for y ≥ 8, µ ∈

[
y − 2y

1
3 , y + 2y

1
3

]
,

CαNµ
− 1

4 (µ− y)−
1
4
−α
(
y−1(µ− y)3

)−N

for y ≥ 8, µ ∈
[
y + 1

2y
1
3 ,∞

)
.

Remark 3.2.

(1) The estimate for µ ∈
[
y + 1

2y
1
3 ,∞

)
is weaker than the one in [17, Theorem 9.1] at least

for α = 0, 1, 2. In fact, [17, Theorem 9.1] shows that Jµ(y) and its derivatives decay
exponentially with respect to y−1(µ− y)3 (due to the term e−yh2(µ/y) in [17]) although we
just obtain the polynomial decay here.

(2) Another drawback of this proposition compared to [17, Theorem 9.1] is not to give symbol-
type estimates of the Y -Bessel functions.

In particular, we have a uniform bound

|Jµ(y)| ≤ Cy−
1
3 y ≥ 8, µ ≥ 0. (3.2)

3.2 Asymptotic expansion of Gegenbauer polynomials

The following proposition is a refinement of [17, Lemma 10.2] and its proof is given in Ap-
pendix A.6.

Proposition 3.3. Let ν ≥ 0. There are functions g+(m,φ), g−(m,φ) which are smooth respect
to m ∈ [1,∞) and a function r(m,φ) defined for m ∈ N∗ such that

ν−1Cν
m(cosφ) =

∑
±
gν,±(m,φ)e

±imφ + r(m,φ)



12 K. Taira and H. Tamori

for m ∈ N∗ (we interpret the left-hand side for ν = 0 as limν↘0 ν
−1Cν

m(cosφ)), and

|∂αmgν,±(m,φ)| ≤ Cα,νm
2ν−1−α(1 +m sinφ)−ν , m ≥ 1,

|r(m,φ)| ≤ CN,νm
−N , m ∈ N∗

for each N > 0, α ∈ N, and φ ∈ [0, π] with constants Cα,ν , CN,ν > 0.

Remark 3.4.

(1) In particular, for each ε > 0, we have |∂αmgν,±(m,φ)| ≤ Cα,ν,εm
ν−1−α uniformly in φ ∈

[ε, π − ε].

(2) We do not impose that gν,± are continuous with respect to φ ∈ [0, π]. In this paper, we
just need uniform estimates of gν,± in φ ∈ [0, π].

(3) In [17, Lemma 10.2], a similar estimate for ν−1Cν
m(cosφ) divided by Cν

m(1) is given. Here
we also deal with the estimate for Cν

m(1). Moreover, the ranges of the parameters are
extended compared to there.

In particular, we have a uniform bound: For ν ≥ 0, there exists C > 0 such that∣∣ν−1Cν
m(cosφ)

∣∣ ≤ Cm2ν−1 m ∈ N∗, φ ∈ [0, π], (3.3)

where the left-hand side is interpreted as
∣∣ limν↘0 ν

−1Cν
m(cosφ)

∣∣ when ν = 0.

3.3 Decomposition of the sum

In this subsection, we divide the sum I (b, ν;−iy; cosφ) into three parts according to the asymp-
totic behavior of the Bessel function.

We fix b > 0 and set

Lb,ν := Γ(bν + 1)2bν . (3.4)

From (1.5), we obtain the formula

I (b, ν;−iy; cosφ) =Lb,νy
−bν

∞∑
m=0

e−
π
2
bmiJb(m+ν)(y)(m+ ν)ν−1Cν

m(cosφ). (3.5)

In the following, we consider the case y ≫ 1 for simplicity. The case y ≪ −1 is similarly dealt
with (see proof of Theorem 1.4 in Section 6.1).

We define

µ(m) := b(m+ ν). (3.6)

Corresponding to the asymptotic behavior of the Bessel functions, we define

Ω1 =

{
m ∈ [1,∞) | 1 ≤ µ(m) ≤ y − 1

2
y

1
3

}
,

Ω2 =
{
m ∈ [1,∞) | y − 2y

1
3 ≤ µ(m) ≤ y + 2y

1
3
}
,

Ω3 =

{
m ∈ [1,∞) | µ(m) ≥ y +

1

2
y

1
3

}
.

Lemma 3.5. For y ≫ 1, there exist χ0 ∈ C∞
c (R; [0, 1]) and χj,y ∈ C∞(R; [0, 1]) (1 ≤ j ≤ 3)

such that χ0(m) = 1 for µ(m) ≤ 2 or m ≤ 1 and

χ0(m) +

3∑
j=1

χj,y(m) = 1 for m ≥ 0, suppχj,y ⊂ Ωj , |∂αmχ2,y(m)| ≤ Cαy
−α

3 ,

|∂αmχ1,y(m)| ≤ Cαmax(m−α, (y − µ(m))−α), |∂αmχ3,y(m)| ≤ Cα(µ(m)− y)−α. (3.7)
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Proof. Let χ0 ∈ C∞
c (R; [0, 1]) and χj ∈ C∞(R; [0, 1]) for j = 1, 2, 3 such that χ0(m) = 1

for µ(m) ≤ 2 or m ≤ 1,
∑3

j=1 χj = 1 on R, suppχ1 ⊂
(
−∞,−1

2

]
, suppχ2 ⊂ [−2, 2] and

suppχ3 ⊂
[
1
2 ,∞

)
. We define

χj,y(m) = (1− χ0(m))χj

(
y−

1
3 (µ(m)− y)

)
for j = 1, 2, 3. They satisfies the desired properties. ■

For σ = (σ1, σ2) ∈ {±} × {±} and j = 2, 3, we set

S1,σ(m, y, φ) = σ1yh1

(
µ(m)

y

)
+
(
σ2φ− π

2
b
)
m, Sσ2(m, y, φ) =

(
σ2φ− π

2
b
)
m,

where h1 is defined in (3.1). We remark that S1,σ(m, y, φ) is defined for 0 ≤ µ(m) ≤ y. We
take y ≫ 1 such that Ω2 ∪ Ω3 ⊂ {µ(m) ≥ 8} in order to apply Proposition 3.1. We define

ζ1,σ(m, y, φ) = Lb,νy
−bν− 1

4χ1,y(m)(m+ ν)(y − µ(m))−
1
4 gν,σ2(m,φ)aσ1,y(µ(m)),

ζj,σ2(m, y, φ) = Lb,νy
−bνχj,y(m)(m+ ν)Jµ(m)(y)gν,σ2(m,φ), j = 2, 3,

where a±,y and gν,± are defined in Propositions 3.1 and 3.3 respectively and Lb,ν is a constant
defined in (3.4).

Now it follows from Propositions 3.1, 3.3, the formula (3.5) and Lemma 3.5 that

I (b, ν;−iy; cosφ) =
∑

σ∈{±}×{±}

I1,σ(y, φ) +

3∑
j=2

∑
σ2∈{±}

Ij,σ2(y, φ) +R(y, φ), (3.8)

where we set

I1,σ(y, φ) :=
∞∑

m=1

ζ1,σ(m, y, φ)e
iS1,σ(m,y,φ), Ij,σ2(y, φ) :=

∞∑
m=1

ζj,σ2(m, y, φ)e
iSσ2 (m,y,φ),

R(y, φ) := Lb,νy
−bν

∞∑
m=0

χ0(m)e−
π
2
bmiJµ(m)(y)(m+ ν)ν−1Cν

m(cosφ)

+ Lb,νy
−bν

∞∑
m=0

(1− χ0(m))e−
π
2
bmiJµ(m)(y)(m+ ν)r(m,φ)

for j = 2, 3. The remainder term R(y, φ) is easy to handle.

Proposition 3.6. There exists C > 0 such that

|R(y, φ)| ≤ Cy−bν− 1
3

for y ≫ 1 and φ ∈ [0, π].

Proof. Since χ0 is compactly supported, then the first term in the definition of R(y, φ) is
bounded by a constant times y−bν · y−

1
3 = y−bν− 1

3 due to (3.2) and (3.3). Moreover, the second
term has a similar bound since r(m, y) is rapidly decreasing by Proposition 3.3. ■

In the following, we focus on studying I1,σ and Ij,σ2 .
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3.4 Properties of the phase functions

Here we prove some estimates of the phase functions defined in the last subsection. We recall
h1(z) =

√
1− z2 − z cos−1 z and h′1(z) = − cos−1 z. For σ = (σ1, σ2) ∈ {±} × {±} and j = 2, 3,

we have

∂mS1,σ(m, y, φ) = −σ1b cos−1

(
µ(m)

y

)
+ σ2φ− π

2
b, ∂mSσ2(m, y, φ) = σ2φ− π

2
b,

where µ(m) is defined in (3.6).

Lemma 3.7. Let 0 < δ < 1 and σ ∈ {±} × {±}.

(i) For α ∈ N∗, there exists Cα > 0 such that

∣∣∂α+1
m S1,σ(m, y, φ)

∣∣ ≤ {Cαy
−α for 1 ≤ µ(m) ≤ δy,

Cαy
− 1

2 (y − µ(m))−α+ 1
2 for δy ≤ µ(m) ≤ y − 1

2y
1
3

and for m ∈ Ω1, y ≫ 1 and φ ∈ [0, π].

(ii) For α ∈ N∗ \ {1}, we have ∂αmSσ2(m, y, φ) = 0.

Proof. Since ∂z cos
−1 z = −(1− z2)−

1
2 , we have ∂2mS1,σ(m, y, φ) = σ1b

2
(
y2 − µ(m)2

)− 1
2 . We

have ∣∣∂α+1
m S1,σ(m, y, φ)

∣∣ = ∣∣∂α−1
m ∂2mS1,σ(m, y, φ)

∣∣ ≲ yα−1
(
y2 − µ(m)2

)−α+ 1
2

≤ y−
1
2 (y − µ(m))−α+ 1

2 .

If 1 ≤ µ(m) ≤ δy, then we have (y− µ(m))−1 ≲ y−1. Combining these estimates, we obtain the
part (i). The part (ii) is easy to prove. ■

3.5 Estimates of the amplitudes

In this subsection, we deduce estimates for ζ1,σ and ζj,σ2 which are defined in Section 3.3. Recall
from (3.6) that µ(m) = b(m+ ν).

Lemma 3.8. Let σ = (σ1, σ2) ∈ {±} × {±}, N > 0, 0 < ε < π/2 and α ∈ N. Then

(i) supp ζ1,σ(·, y, φ) ⊂ Ω1 and supp ζj,σ2(·, y, φ) ⊂ Ωj for j = 2, 3.

(ii) Let 0 < δ < 1. We have

|∂αmζ1,σ(m, y, φ)| ≲


y−bν− 1

2 (1 +m)2ν−α(1 +m sinφ)−ν when µ(m) ≤ δy,

y(2−b)ν− 1
4 (y − µ(m))−

1
4
−α(1 +m sinφ)−ν

when δy ≤ µ(m) ≤ y − 1
2y

1
3

for m ≥ 1, y ≫ 1 and φ ∈ [0, π]. In particular, for fixed ε > 0, we have

|∂αmζ1,σ(m, y, φ)| ≲

{
y−bν− 1

2 (1 +m)ν−α when µ(m) ≤ δy,

y(1−b)ν− 1
4 (y − µ(m))−

1
4
−α when δy ≤ µ(m) ≤ y − 1

2y
1
3

for m ≥ 1, y ≫ 1 and φ ∈ [ε, π − ε].
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(iii) We have

|ζ2,σ2(m, y, φ)| ≲

{
y(1−b)ν− 1

3 for φ ∈ [ε, π − ε],

y(2−b)ν− 1
3 for φ ∈ [0, π]

and for m ≥ 1, y ≫ 1. Moreover,

|∂αmζ2,σ2(m, y, φ)| ≲ y(2−b)ν− 1+α
3

for m ≥ 1, y ≫ 1 and φ ∈ [0, π].

(iv) We have

|ζ3,σ2(m, y, φ)| ≲



y(2−b)ν+ 1
12 (µ(m)− y)−

5
4

for y + 1
2y

1
3 ≤ µ(m) ≤ 4y, φ ∈ [0, π],

y(1−b)ν+ 1
12 (µ(m)− y)−

5
4

for y + 1
2y

1
3 ≤ µ(m) ≤ 4y, φ ∈ [ε, π − ε],

(1 +m)−N for µ(m) ≥ 2y, φ ∈ [0, π]

and for m ≥ 1, y ≫ 1. Moreover,

|∂αmζ3,σ2(m, y, φ)| ≲ y(2−b)ν− 1
4
−α

3

for m ≥ 1 y ≫ 1 and φ ∈ [0, π].

Proof. (i) This follows from the definition of ζ1,σ, ζj,σ2 and the support properties of χj,y (3.7).
(ii) It turns out from Lemmas 3.1, 3.3 and 3.5 that

|∂αmζ1,σ(m, y, φ)| ≲ y−bν− 1
4 (1 +m)2ν(y − µ(m))−

1
4 (1 +m sinφ)−ν

×max((y − µ(m))−α,m−α).

Now the claim in (ii) follows from the support property of ζ1,σ.
(iii) We note that Ω2 =

{
m ∈ R | y − 2y

1
3 ≤ µ(m) ≤ y + 2y

1
3

}
. This part directly follows

from Lemmas 3.1, 3.3 and 3.5.
(iv) We recall µ(m) = b(m+ν) and that ζ3,σ2(m, y, φ) is supported in Ω3 =

{
m ∈ R | µ(m) ≥

y + 1
2y

1
3

}
. By Lemmas 3.1, 3.3 and 3.5, for each N > 0 and α ∈ N, we have

|∂αmζ3,σ2(m, y, φ)| ≲ y−bν(1 +m)2ν−
1
4 (1 +m sinφ)−ν(µ(m)− y)−

1
4
−α
(
y−1(µ(m)− y)3

)−N

for m ≥ 1, y ≫ 1 and φ ∈ [0, π]. We note that y−1(µ(m) − y)3 ≥ 1/8 and µ(m)− y ≥ 1
2y

1
3

for m ∈ Ω3. All the estimates we desire are proved by these inequalities. ■

4 Estimates of I2,σ2
and I3,σ2

In this section, we prove bounds for I2,σ2 and I3,σ2 appearing in (3.8). They are easier to handle
than I1,σ. In this section, we assume b > 0, ν ≥ 0 and let σ2 ∈ {±}.

4.1 Intermediate region

Proposition 4.1. We have

|I2,σ2(y, φ)| ≲

{
y(1−b)ν if b /∈ 2Z,
y(2−b)ν if b ∈ 2Z

for y ≫ 1 and φ ∈ [0, π].
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Proof. By Lemma 3.8 (i) and (iii), we have |ζ2,σ2(m, y, φ)| ≲ y(2−b)ν− 1
3 and

|I2,σ2(y, φ)| ≲ y(2−b)ν− 1
3

∑
m∈Ω2∩N

1 ≲ y(2−b)ν ,

where we recall Ω2 =
{
m ∈ R | y − 2y

1
3 ≤ µ(m) ≤ y + 2y

1
3

}
and use the number of element

of Ω2 ∩ N is bounded by y
1
3 times a constant.

We next consider the case b /∈ 2Z. A similar argument implies |I2,σ2(y, φ)| ≲ y(1−b)ν uniformly
in φ ∈ [ε, π−ε] (with a constant 0 < ε < π/2), where we use the first estimate in Lemma 3.8 (iii).
Thus, it remains to prove the bound of I2,σ2(y, φ) for φ ∈ [0, ε] ∪ [π − ε, π] with ε > 0 small
enough when b /∈ 2Z. In this case, we have −π

2 b, σ2π − π
2 b /∈ 2πZ. Then we find ε > 0 small

enough such that there is cε > 0 satisfying dist
(
σ2φ − π

2 b, 2πZ
)
≥ cε for φ ∈ [0, ε) ∪ (π − ε, π].

This implies dist(∂mSσ2(m, y, φ), 2πZ) ≥ cε for φ ∈ [0, ε) ∪ (π − ε, π]. Moreover, it follows from
Lemma 3.8 (iii) that |∂αmζ2,σ2(m, y, φ)| ≲ y(2−b)ν− 1

3
−α

3 . Clearly, we have ∂α+1
m Sσ2(m, y, φ) = 0

for α ≥ 1. Applying Proposition 2.2 with k = (2 − b)ν − 1
3 , r = cε, M ∼ y and ρ = 1

3 , for
each N > 0, we obtain |I2,σ2(y, φ)| ≲ y−N for φ ∈ [0, ε)∪(π−ε, π]. This completes the proof. ■

4.2 Decaying region

Proposition 4.2. We have

|I3,σ2(y, φ)| ≲

{
y(1−b)ν if b /∈ 2Z,
y(2−b)ν if b ∈ 2Z

for y ≫ 1 and φ ∈ [0, π].

Proof. We recall µ(m) = b(m + ν). Taking χ ∈ C∞(R; [0, 1]) such that χ(µ) = 1 for µ ≤ 2
and χ(µ) = 0 for µ ≥ 4 and setting χ = 1− χ, we write

I3,σ2(y, φ) =

( ∞∑
m=1

(χ(µ(m)/y) + χ(µ(m)/y))ζ3,σ2(m, y, φ)e
iSσ(m,y,φ)

)
=: I3,1,σ2(y, φ) + I3,2,σ2(y, φ).

First, we deal with the second term I3,2,σ2(y, φ). Let N > 0. Then Lemma 3.8 (iv) implies

|ζ3,σ2(m, y, φ)| ≲ (1 +m)−N−1 for m ∈ suppχ(µ(m)/y).

Thus we obtain

|I3,2,σ2(y, φ)| ≲
∞∑

µ(m)≥2y,m≥1

(1 +m)−N−1 ≲ y−N .

Next, we deal with the first term I3,1,σ2(y, φ). Lemma 3.8 (iv) implies

|ζ3,σ2(m, y, φ)| ≲ y(2−b)ν+ 1
12 (µ(m)− y)−

5
4 for m ∈ suppχ(µ(m)/y). (4.1)

Hence,

|I3,1,σ2(y, φ)| ≲ y(2−b)ν+ 1
12

∑
µ(m)∈[y+ 1

2
y
1
3 ,4y]

(µ(m)− y)−
5
4

≲ y(2−b)ν+ 1
12

∫ 4y

y+ 1
2
y
1
3−b

(µ− y)−
5
4dµ ≲ y(2−b)ν ,
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where we use Lemma 2.1 in the second inequality. Consequently, we obtain |I3,1,σ2(y, φ)| ≲
y(2−b)ν , which completes the proof for b ∈ 2Z. When b /∈ 2Z, a similar argument implies
|I3,1,σ2(y, φ)| ≲ y(1−b)ν uniformly in φ ∈ [ε, π − ε] (with a constant 0 < ε < π/2), where we use
the second estimate in Lemma 3.8 (iv) instead of (4.1). Thus, it remains to prove the bound
of I3,1,σ2(y, φ) when b /∈ 2Z for φ ∈ [0, ε] ∪ [π − ε, π] with ε > 0 small enough.

Finally, we suppose b /∈ 2Z and prove the bound for I3,1,σ2(y, φ) for φ ∈ [0, ε] ∪ [π − ε, π]
with ε > 0 small enough. In this case, we have −π

2 b, σ2π− π
2 b /∈ 2πZ. Then we find ε > 0 small

enough such that there is cε > 0 satisfying dist(σ2φ − π
2 b, 2πZ) ≥ cε for φ ∈ [0, ε) ∪ (π − ε, π].

This implies dist(∂mS3,σ2(m, y, φ), 2πZ) ≥ cε for φ ∈ [0, ε)∪ (π− ε, π]. Moreover, it follows from
Lemma 3.8 (iv) that |∂αmζ3,1,σ2(m, y, φ)| ≲ y(2−b)ν− 1

4
−α

3 . Clearly, we have ∂α+1
m S3,σ2(m, y, φ) = 0

for α ≥ 1. Now applying Proposition 2.2 with k = (2 − b)ν − 1
4 , r = cε, M ∼ y and ρ = 1

3 ,
for each N > 0, we obtain |I3,1,σ2(y, φ)| ≲ y−N for φ ∈ [0, ε) ∪ (π − ε, π]. This completes the
proof. ■

5 Estimates of I1,σ

In this section, we prove estimates for I1,σ, which are more delicate than those of I2,σ2 , I3,σ2 .
We assume b > 0, ν ≥ 0 and let σ ∈ {±} × {±}.

5.1 General bounds for b > 0

Proposition 5.1. Let ε > 0. Then

|I1,σ(y, φ)| ≲

{
y(1−b)ν for φ ∈ [ε, π − ε],

y(2−b)ν for φ ∈ [0, π]

and for y ≫ 1.

Proof. We deal with the case φ ∈ [0, π] only since the proof is almost same if we use the first
estimate of Lemma 3.8 (ii) instead of the second one.

The identity (2.1) implies

I1,σ(y, φ) =

∫
R
ζ1,σ(m, y, φ)e

iS1,σ(m,y,φ)dm

− 1

2πi

∑
q∈Z\{0}

1

q

∫
R
ζ̃1,σ(m, y, φ)e

iS1,σ(m,y,φ)+2πiqmdm, (5.1)

where we set ζ̃1,σ(m, y, φ) = ∂mζ1,σ(m, y, φ) + i(∂mS1,σ)(m, y, φ)ζ1,σ(m, y, φ). By Lemmas 3.7
and 3.8 (ii), for each ζ ∈

{
ζ1,σ, ζ̃1,σ

}
we have

|∂αmζ(m, y, φ)| ≲

{
y−bν− 1

2 (1 +m)2ν−α when µ(m) ≤ 3
4y,

y(2−b)ν− 1
4 (y − µ(m))−

1
4
−α when 3

4y ≤ µ(m) ≤ y − 1
2y

1
3

(5.2)

for m ≥ 1, y ≫ 1 and φ ∈ [0, π]. Moreover, supp ζ ⊂ Ω1 holds.
Now we consider an integral

Iq :=

∫
R
ζ(m, y, φ)eiS1,σ(m,y,φ)+2πiqmdm

for q ∈ Z and ζ ∈ {ζ1,σ, ζ̃1,σ}. Taking c0 > 0 such that |∂mS1,σ(m, y, φ)| ≤ c0 for m ≥ 1, y ≫ 1
and φ ∈ [0, π]. Now we show that

|Iq| ≲

{
y(2−b)ν for |q| ≤ c0/π,

y(2−b)ν(1 + |q|)−1 for |q| > c0/π,
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and for y ≫ 1 and φ ∈ [0, π]. These estimates immediately imply the bound |I1,σ(y, φ)| ≲ y(2−b)ν

due to the identity (5.1).
First, we deal with the case |q| > c0/π. Since |∂m(S1,σ(m, y, φ) + 2πqm)| ≥ 2π|q| − c0 ≳

(1 + |q|), for ν > 0, the integration by parts yields

|Iq| =
∣∣∣∣∫

R
∂m

(
1

∂m(S1,σ(m, y, φ) + 2πqm)
ζ(m, y, φ)

)
eiS1,σ(m,y,φ)+2πiqmdm

∣∣∣∣
≤
∫
R

(
|∂2mS1,σ(m, y, φ)||ζ(m, y, φ)|
|∂m(S1,σ(m, y, φ) + 2πqm)|2

+
|∂mζ(m, y, φ)|

|∂m(S1,σ(m, y, φ) + 2πqm)|

)
dm

≲ (1 + |q|)−1y−bν− 1
2

∫
1≤µ(m)≤ 3

4
y,m≥1

(1 +m)2ν−1dm

+ (1 + |q|)−1y(2−b)ν− 1
4

∫
3
4
y≤µ(m)≤y− 1

2
y
1
3

(y − µ(m))−
5
4dm ≲ (1 + |q|)−1y(2−b)ν ,

where we use (5.2), Lemma 3.7 (i) and the support property supp ζ ⊂ Ω1. The case ν = 0 can
be proved similarly if we use the integration by parts twice.

Next, we consider the case |q| ≤ c0/π. By the change of variable µ(m)(= bm+ bν) = yµ,

Iq =b
−1e−i(σ2

φ
b
−π

2
+ 2πq

b
)bνy(2−b)ν+ 1

2

∫
R
eiySq(µ,φ)γy,φ(µ)dµ,

where we set

Sq(µ, φ) = σ1h1(µ) +

(
σ2
φ

b
− π

2
+

2πq

b

)
µ, γy,φ(µ) = y(b−2)ν+ 1

2 ζ
(yµ
b

− ν, y, φ
)
.

Thus it remains to show∣∣∣∣∫
R
eiySq(µ,φ)γy,φ(µ)dµ

∣∣∣∣ ≲ y−
1
2 for y ≫ 1, φ ∈ [0, π]. (5.3)

By (5.2),

|∂αµγy,φ(µ)| ≲ µ2ν−α(1− µ)−
1
4
−α, supp γy,φ ⊂

{
µ ∈ R | 0 ≤ µ ≤ 1− 1

2
y−

2
3
}

for y ≫ 1 and φ ∈ [0, π].
We write∫

R
eiySq(µ,φ)γy,φ(µ)dµ =

∫
R
eiySq(µ,φ)γy,φ(µ)ψ1(µ)dµ+

∫
R
eiySq(µ,φ)γy,φ(µ)ψ2(µ)dµ

= I1 + I2,

where ψ1, ψ2 ∈ C∞
c (R; [0, 1]) satisfy ψ1(µ)+ψ2(µ) = 1 for µ ∈ [0, 1], ψ1(µ) = 1 for 0 ≤ µ ≤ 1−2δ

and ψ2(µ) = 1 for 1− δ ≤ µ ≤ 1 where δ > 0 is determined later. Since∣∣∂2µSq(µ, φ)∣∣ = ∣∣σ1∂2µh1(µ)∣∣ = ∣∣(1− µ2
)− 1

2
∣∣ ≥ 1 for µ ∈ suppψ1 ∩ [0, 1],

the stationary phase theorem (see Lemma A.5 (i) with λ = y) implies |I1| ≲ y−
1
2 . On the other

hand, using the change of variable µ′ =
√
1− µ (with µ = 1 − µ′2), we have dµ = −2µ′dµ′

and I2 =
∫
R eiyS̃q(µ′,φ)γ2(µ

′)dµ′, where we set S̃q(µ
′, φ) = Sq

(
1−µ′2, φ

)
and γ2(µ

′) = 2µ′γy,φ
(
1−

µ′2
)
ψ2

(
1− µ′2

)
. We note that

|∂αµ′γ2(µ
′)| ≲ µ′

1
2
−α, supp γ2 ⊂

{
1√
2
y−

1
3 ≤ µ′ ≤

√
2δ

}
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for y ≫ 1 and φ ∈ [0, π] and that S̃q is smooth with respect to µ′ close to 0 and φ ∈ [0, π]. It
follows from the identity

∂3µ′S̃q(µ
′, φ) = σ1∂

3
µ′
(
h1
(
1− µ′2

))
= 12σ1µ

′h′′1
(
1− µ′2

)
− 8σ1µ

′3h
(3)
1

(
1− µ′2

)
= 4

√
2σ1 +O(µ′) as µ′ → 0

that
∣∣∂3µ′S̃q(µ

′, φ)
∣∣ ≳ 1 for µ′ ∈ supp γ2 and φ ∈ [0, π] if δ > 0 is small enough (here we note

that h
(
1− µ′2

)
is smooth at µ′ = 0 although h(µ) is not smooth at µ = 1 ). Thus, the

stationary phase theorem (see Lemma A.5 (ii) with λ = y) implies |I2| ≲ y−
1
2 . This proves (5.3)

and completes the proof of Proposition 5.1. ■

5.2 Improvement for 0 < b < 2

In this subsection, we improve Proposition 5.1 near φ = 0 when 0 < b < 2.

Proposition 5.2. We assume 0 < b < 2. Then there exist φ0 > 0 such that |I1,σ(y, φ)| ≲ y(1−b)ν

for y ≫ 1, φ ∈ [0, φ0].

Remark 5.3. Combining with Proposition 5.1, we obtain the uniform estimates for φ ∈ [0, π−ε]
with arbitrary ε > 0.

In order to prove it, we need a more information about the phase function S1,σ. In the part (i)
of the next lemma, we use the assumption 0 < b < 2 crucially. This is used to prove that the
second term of the right-hand side in (2.1) is harmless.

Lemma 5.4.

(i) There exists ε0 > 0 such that |∂mS1,σ(m, y, φ)| ≤ 2π − ε0 for all m ∈ Ω1 and y ≥ 1
and φ ∈

[
0, (1− b

2)π
]
.

(ii) There exists φ1, c0 > 0 such that |∂mS1,σ(m, y, φ)| ≥ c0 for m ∈ Ω1, y ≥ 1 with µ(m) ≥ 1
2y

and φ ∈ [0, φ1].

Remark 5.5. If b ≥ 2, then ∂mS1,σ(m, y, φ) can take a value in 2πZ\{0}. This prevents better
estimates of I1,σ.

Proof of Lemma 5.4. We recall ∂mS1,σ(m, y, φ) = −bσ1 cos−1
(µ(m)

y

)
+ σ2φ− π

2 b.

(i) This follows from a direct calculation:
∣∣−bσ1 cos−1(z)+σ2φ− π

2 b
∣∣ ≤ πb+φ ≤ (1+ b

2)π for

φ ∈
[
0,
(
1− b

2

)
π
]
and 0 ≤ z ≤ 1. Then we set ε0 =

(
1− b

2

)
π, which is positive since 0 < b < 2.

(ii) This also follows from a direct calculation∣∣∣−bσ1 cos−1(z) + σ2φ− π

2
b
∣∣∣ ≥ (π

2
− cos−1 z

)
b− |φ| ≥ π

6
b− |φ|

for 1
2 ≤ z ≤ 1. Taking φ1 = c0 =

πb
12 , we obtain the bound in (ii). ■

Proof of Proposition 5.2. Define φ0 := min
((
1− b

2

)
π, φ1

)
> 0, where φ1 is as in Lemma 5.4.

Taking χ ∈ C∞(R; [0, 1]) such that χ(µ) = 1 for µ ≤ 1/2 and χ(µ) = 0 for µ ≥ 3/4 and
setting χ = 1− χ, we write

I1,σ(y, φ) =
∞∑

m=1

(χ(µ(m)/y) + χ(µ(m)/y))ζ1,σ(m, y, φ)e
iS1,σ(m,y,φ)

=: I1,1,σ(y, φ) + I1,2,σ(y, φ).
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By the support property of χ and Lemma 3.8 (ii), we have

|∂αm(χ(µ(m)/y)ζ1,σ(m, y, φ))| ≲ y(2−b)ν− 1
3
−α

3 .

Moreover, by virtue of Lemma 3.7 (i) and Lemma 5.4 (i), (ii), the phase function S1,σ satisfies the
assumption of Proposition 2.2 with r = min(c0, ε0),M ∼ y and ρ = 1

3 . Applying Proposition 2.2
with k = (2 − b)ν − 1

3 , for each N > 0, we obtain |I1,2,σ(y, φ)| ≲ y−N . Thus, it remains to
estimate I1,1,σ(y, φ).

We write I1,1,σ as in (5.1) and consider the integral

Iq =

∫
R
ζ(m, y, φ)eiS1,σ(m,y,φ)+2πiqmdm, for ζ ∈ {ζ ′1,σ, ζ ′′1,σ},

where we set

ζ ′1,σ(m, y, φ) =χ(µ(m)/y)ζ1,σ(m, y, φ),

ζ ′′1,σ(m, y, φ) =∂mζ
′
1,σ(m, y, φ) + i(∂mS1,σ)(m, y, φ)ζ

′
1,σ(m, y, φ).

As in the proof of Proposition 5.1, it suffices to prove the existence of φ0 > 0 such that

|Iq| ≲

{
y(1−b)ν for q = 0,

y(1−b)ν(1 + |q|)−1 for |q| ≥ 1,
(5.4)

and for m ≥ 1, y ≫ 1 and φ ∈ [0, φ0]. By Lemmas 3.7 (i), 3.8 (ii) and the support property of χ,
for ζ ∈ {ζ ′1,σ, ζ ′′1,σ}, we have

|∂αmζ(m, y, φ)| ≲ y−bν− 1
2m2ν−α(1 +m sinφ)−ν (5.5)

and supp ζ(·, y, φ) ⊂
{
m ≥ 1 | µ(m) ∈

[
µ(1), 34y

]}
.

First, we consider the case |q| ≥ 1. In this case, we have

|∂m(S1,σ(m, y, φ) + 2πqm)| ≳ (1 + |q|)

by Lemma 5.4 (i). By using integration by parts many times, for each N > 0, we have

|Iq| ≲ y−N (1 + |q|)−N

due to Lemma 3.7 (i) and the estimate (5.5). This proves the second estimates of (5.4).
Next, we consider the case q = 0. By the change of variable µ(m)(= bm+ bν) = yµ,

I0 = b−1e−i(σ2
φ
b
−π

2 )bνy(2−b)ν+ 1
2

∫
R
eiyS(µ,φ)γy,φ(µ)dµ,

where we set

S(µ, φ) = σ1h1(µ) +
(
σ2
φ

b
− π

2

)
µ, γy,φ(µ) = y(b−2)ν+ 1

2 ζ
(yµ
b

− ν, y, φ
)
.

By (5.5), the support property of χ and φ ≲ sinφ, we have

|∂αµγy,φ(µ)| ≲ µ2ν−α(1 + yφµ)−ν , supp γy,φ ⊂
[
µ(1)y−1,

3

4

]
.

Moreover, the phase function S(µ, φ) satisfies the assumption of Proposition 2.4 with the critical
point µ(φ) = cos

(
σ1
(
−π

2 + σ2
φ
b

))
. Now Proposition 2.4 with λ = y implies

|I0| ≲ y(2−b)ν+ 1
2 · y−ν− 1

2 = y(1−b)ν .

This completes the proof. ■
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6 Proof of the main theorem

6.1 Proof of Theorem 1.4

The claim (i) for b = 1 directly follows from [2, equation (4.45)]. Hence we may assume b ̸= 1.

Let R0 ≫ 1. First, we prove the theorem for |y| ≤ R0. To do this, we follow the argument
in [2, Lemma 4.17]. Using the bound

∣∣Ĩλ(w)∣∣ ≤ e|Rew|Γ(λ+ 1)−1, Cν
0 (t) = 1 and

∣∣ν−1Cν
m(t)

∣∣ ≲
(1 +m)2ν−1 for m ≥ 1 (see [2, equation (4.16)], [2, Fact 4.8] and (3.3)), we have

|I (b, ν;−iy; cosφ)| ≲
∞∑

m=0

(1 +m) · |y|bm · 1

Γ(bm+ bν + 1)
· (1 +m)2ν−1

=

∞∑
m=0

(1 +m)2ν

Γ(bm+ bν + 1)
· |y|bm,

which is convergent and bounded by a constant independent of y ∈ R with |y| ≤ R0.

Now the estimate for y ≥ R0 follows from the decomposition (3.8) of I and Propositions 3.6,
4.1, 4.2, 5.1, 5.2.

The case y ≤ −R0 is similarly dealt with due to the formula

I (b, ν; iy; cosφ) =Lb,νe
ibνπy−bν

∞∑
m=0

e
π
2
bmiJb(m+ν)(y)(m+ ν)ν−1Cν

m(cosφ),

which in turn follows from the identity Jµ
(
eiπy

)
= eiµπJµ(y) and (3.5).

6.2 Proof of Theorem 1.1

Now we use the following general result due to Keel–Tao.

Theorem 6.1 ([18]). Let X be a measure space and {U(t)}t∈R be a bounded family of continuous
linear operators on L2(X) such that there are C > 0 and σ > 0 such that

∥U(t)U(s)∗∥L1(X)→L∞(X) ≤ C|t− s|−σ

for all t, s ∈ R with t ̸= s. Let (p, q) ∈ [2,∞]2 such that

1

p
+
σ

q
=
σ

2
and (p, q, σ) ̸= (2,∞, 1). (6.1)

Then there exists C > 0 such that

∥U(t)u∥Lp(R;Lq(X)) ≤ C∥u∥L2(X),∥∥∥∥∫ t

−∞
U(t)U(s)∗f(s)ds

∥∥∥∥
Lp1 (R;Lq1 (X))

≤ C∥f∥
Lp∗2 (R;Lq∗2 (X))

,

where (p1, q1), (p2, q2) satisfy (6.1) and r∗ denotes the Hölder conjugate of r: r∗ = r/(r − 1).

First we note that the operator norm of an operator from L1 to L∞ is equal to the L∞-norm
of its integral kernel. We may assume T ≤ π

4 due to the argument in Appendix B.

First, we consider the cases

� n = 1 and a ≥ 2− 4k,

� n ≥ 2 and (0 < a ≤ 1 or a = 2).
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We claim∣∣e−itHk,a(x, x′)
∣∣ ≲ |t|−σk,a for |t| ≤ π

2
. (6.2)

Let us prove the claim for the case n = 1 and a ≥ 2− 4k. In this case, we have σk,a ≥ 1
2 and [2,

Proposition 4.29] implies

e−itHk,a(x, x′) = Γ(σk,a)
ei

|x|a+|x′|a
a

cot(t)

(i sin(t))σk,a

×

(
Ĩσk,a−1

(
2|xx′|

2
a

ai sin(t)

)
+

xx′

(ai sin(t))
2
a

Ĩσk,a−1+ 2
a

(
2|xx′|

2
a

ai sin(t)

))
. (6.3)

From the asymptotic expansion of the I-Bessel function [33, Section 7.23 (2), (3)], we see

Iν(±iy) =
e±iy

(±2πiy)1/2
(
1 +O

(
y−1
))

(6.4)

as y → ∞. Hence (6.4) and Ĩν(z) = ( z2)
−νIν(z) imply that there exists C > 0 such that∣∣Ĩσk,a−1(iy)

∣∣+ ∣∣y 2
a Ĩσk,a−1+ 2

a
(iy)
∣∣ ≤ C(1 + |y|)−σk,a+

1
2 ≤ C for any y ∈ R. Therefore, our claim

(6.2) follows from (6.3).
Let us consider the case n ≥ 2 and (0 < a ≤ 1 or a = 2). Since dµkx̂ is a probability measure,

we see∥∥∥∥∫
Rn

f
(
ξ · x̂′

)
dµkx̂(ξ)

∥∥∥∥
L∞(Rn×Rn)

≤ ∥f∥L∞([−1,1]).

Using this estimate and (1.6), we obtain

∣∣e−itHk,a(x, x′)
∣∣ ≤ck,a 1

| sin(t)|σk,a
sup

η∈[−1,1]

∣∣∣∣I(2

a
,
a

2
(σk,a − 1);−i

2|x|
a
2 |x′|

a
2

a sin(t)
; η

)∣∣∣∣.
Therefore, the claim (6.2) follows from Theorem 1.4 (ii).

By the claim and Theorem 6.1 with U±(t) := 1[0,T ](t)e
∓itHk,a , we obtain the homogeneous

Strichartz estimates (1.3) and∥∥∥∥∫ t

0
e−i(t−s)Hk,af(s)ds

∥∥∥∥
Lp1 ([0,T ];Lq1 )

≤ C∥f∥
Lp∗2 ([0,T ];Lq∗2 )

,∥∥∥∥∫ t

0
ei(t−s)Hk,af(−s)ds

∥∥∥∥
Lp1 ([0,T ];Lq1 )

≤ C∥f∥
Lp∗2 ([−T,0];Lq∗2 )

.

Since ∥∥∥∥∫ t

0
ei(t−s)Hk,af(−s)ds

∥∥∥∥
Lp1 ([0,T ];Lq1 )

=

∥∥∥∥∫ t

0
e−i(t−s)Hk,af(s)ds

∥∥∥∥
Lp1 ([−T,0];Lq1 )

,

we also obtain the inhomogeneous Strichartz estimates (1.4).
Next, we consider the case when 1 < a < 2 and k ≡ 0. Let 0 < φ0 < 2π. Take a finite partition

of unity {χj}Nj=1 ⊂ C∞(Sn−1; [0, 1]
)
on the sphere such that ω, η ∈ suppχj ⇒ ω ·η ≥ cosφ0. Due

to (1.7) and Theorem 1.4 (i), there exists C > 0 such that
∣∣χj(x̂)e

−itHk,a(x, x′)χj

(
x̂′
)∣∣ ≤ C|t|−σ0,a

for |t| ≤ π
2 and x, x′ ∈ Rn \ {0}, where we recall x̂ = x/|x|. Hence,∥∥χj(x̂)e

−i(t−s)Hk,a(x, x′)χj

(
x̂′
)∥∥

L∞(Rn
x×Rn

x′ )
≤ C|t− s|−σ0,a



Strichartz Estimates for the (k, a)-Generalized Laguerre Operators 23

for |t|, |s| ≤ π
4 with t ̸= s. Applying Theorem 6.1 with U(t) := 1[−T,T ](t)χj(x̂)e

−itHk,a , we obtain∥∥χj(x̂)e
−itHk,au

∥∥
Lp([−T,T ];Lq)

≤ C∥u∥L2 . Since the number N is finite and since
∑N

j=1 χj = 1,
we obtain the homogeneous Strichartz estimates (1.3).

The inhomogeneous Strichartz estimates (1.4) when 1 < a < 2 and k ≡ 0 follow from
the Christ–Kiselev lemma [5] and a complex interpolation since the end-point case (pj , qj) =

(2,
2σ0,a

σ0,a−1) is excluded (see the proof of [4, Theorem 6]).

6.3 Proof of Theorem 1.3

Let us define elements of sl(2,R) as follows e+ := ( 0 1
0 0 ), h :=

(
1 0
0 −1

)
, e− := ( 0 0

1 0 ). As-
sume σk,a > 0. Then it is proved in [2, Theorem 3.30] that there exists a unitary represen-
tation Ωk,a of the universal cover S̃L(2,R) of SL(2,R) on the Hilbert space L2(Rn, ϑk,a(x)dx)
(see (1.1) for the definition of ϑk,a) satisfying

Ωk,a

(
exp
(
te+
))
u(x) = e

it|x|a
a u(x), Ωk,a(exp(th))u(x) = etσk,au

(
e

2t
a x
)
,

Ωk,a(exp(te
−))u(x) = e

it|x|2−a∆k
a u(x), Ωk,a(exp(t(e

− − e+)))u(x) = e−itHk,au(x)

for any u ∈ L2(Rn, ϑk,a(x)dx). Let θ = arctan(t). We apply Ωk,a to the identity

exp
(
θ
(
e− − e+

))
= exp

(
−te+

)
exp

(
log
(
1 + t2

)
2

h

)
exp(te−)

in S̃L(2,R), and we obtain

e−iθHk,au(x) = e
−it|x|a

a
(
1 + t2

)σk,a
2

(
e

it|x|2−a∆k
a u

)((
1 + t2

)1/a
x
)

(6.5)

for any u ∈ L2(Rn, ϑk,a(x)dx).

Proof of Theorem 1.3. From (6.5), the integral kernel e
it|x|a−2∆k

a (x, y) of e
it|x|a−2∆k

a equals

e
it|x|a

(1+t2)a
(
1 + t2

)−σk,a
2 e−i arctan(t)Hk,a

((
1 + t2

)−1
a x, y

)
.

Therefore, the similar arguments as the proof of Theorem 1.1 and the equation(
1 + t2

) 1
2 sin(arctan(t)) = t

imply
∣∣e it|x|a−2∆k

a (x, y)
∣∣ ≲ |t|−σk,a for t ∈ R, and Theorem 1.3 follows. ■

A Asymptotic behavior of special functions

A.1 Leibniz’s rule

We frequently use the following formula, which directly follows from Leibniz’s rule.

Lemma A.1. Let r be a smooth function and N ∈ N\{0}. Then there exist smooth functions bjN
such that

(
∂x ◦ r(x)−1

)N
=

1

r(x)N

N∑
j=0

bjN (x)∂jx with |bjN (x)| ≲
N−j∑
k=1

∑
ℓ1+···+ℓk=N−j,

ℓ1,...,ℓk≥1

k∏
i=1

∣∣r(ℓi)(x)∣∣
|r(x)|

.
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Remark A.2. More precisely, we have

(
∂x ◦ r(x)−1

)N
=

1

r(x)N
∂Nx +

1

r(x)N

N−1∑
j=0

(
N−j∑
k=1

∑
ℓ1+···+ℓk=N−j,

ℓ1,...,ℓk≥1

CjN
ℓ1ℓ2...ℓk

k∏
i=1

r(ℓi)(x)

r(x)

)
∂jx

with constants CjN
ℓ1ℓ2...ℓm

> 0.

A.2 Non-stationary phase theorem with a singular amplitude

The following lemma is more or less well known and an easy consequence of integration by parts.
We give a proof for completeness of the paper.

Lemma A.3. Let µ > −1, γ ∈ C∞((0,∞)) which is supported in x ≤ 10 such that for α ∈ N,
we have |∂αx γ(x)| ≲ |x|µ−α for x ∈ (0,∞). Let f ∈ C∞(R) satisfy Im f(x) ≥ 0, f ′(x) ̸= 0
for x ∈ supp γ and f(0) ∈ R. We define

bµ(λ) := e−iλf(0)

∫ ∞

0
γ(x)eiλf(x)dx for λ ≳ 1.

Then for each α ∈ N

|∂αλ bµ(λ)| ≲ λ−µ−1−α, λ ≳ 1. (A.1)

In particular,
∣∣ ∫∞

0 γ(x)eiλf(x)dx
∣∣ ≲ λ−µ−1 for λ ≳ 1.

Proof. We only need to prove these estimates for sufficiently large λ.

First, we prove (A.1) for α = 0. Let χ ∈ C∞
c (R) such that χ(x) = 1 for |x| ≤ 1/2 and χ(x) = 0

for |x| ≥ 1. Define χλ(x) = χ(λx) and χλ(x) = 1− χλ(x). Then we have∣∣∣∣∫ ∞

0
γ(x)χλ(x)e

iλf(x)dx

∣∣∣∣ ≲ ∫ 1/λ

0
xµdx ≲ λ−µ−1. (A.2)

On the other hand, the integration by parts yields∣∣∣∣∫ ∞

0
γ(x)χλ(x)e

iλf(x)dx

∣∣∣∣ = λ−N

∣∣∣∣∫ ∞

0
LN (γ(x)χλ(x))e

iλf(x)dx

∣∣∣∣ ,
where we define L = ∂x ◦ (if ′(x))−1. By using Leibniz’s rule, Lemma A.1 and the assumption
f ′ ̸= 0 on supp γ, we obtain |LN (γ(x)χλ(x))| ≲ |x|µ−N . Hence, for N > µ+ 1,∣∣∣∣∫ ∞

0
γ(x)χλ(x)e

iλf(x)dx

∣∣∣∣ ≲ λ−N

∫ 10

1
2λ

xµ−Ndx ≲ λ−µ−1. (A.3)

The inequalities (A.2) and (A.3) imply (A.1) for α = 0.

To deal with the case α ≥ 1, we write

∂αλ bµ(λ) = iαe−iλf(0)

∫ ∞

0
(f(x)− f(0))αγ(x)eiλf(x)dx.

By Taylor’s theorem, we have ∂Nx (γ(x)(f(x)−f(0))α) = O
(
|x|µ+α−N

)
for x ∈ supp γ. Moreover,∣∣e−iλf(0)

∣∣ = 1 due to the assumption f(0) ∈ R. Hence the same argument as the case α = 0
gives (A.1) for α ≥ 1. ■
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A.3 Stationary phase theorem

In this paper, we use the following versions of the stationary phase theorem (the van der Corput
lemma). The proof is same as the proof of [27, Lemma 1.1.2] (see also in [28, p. 334]). The
statement about uniformity in a parameter follows from its proof and Lemma A.1. We consider
an integral

I(λ) :=

∫
R
γ(x)eiλf(x)dx for λ ≳ 1.

Lemma A.4. Let k ≥ 2 be an integer and j ≥ 0, x0 ∈ R, γ ∈ C∞(R \ {x0}) ∩ Cc(R)
and f ∈ C∞(R;R) such that |∂αx γ(x)| ≲ |x−x0|j−α, |f(x)| ≲ |x−x0|k and |f ′(x)| ≳ |x−x0|k−1

for x ∈ supp γ \ {x0}. Then |I(λ)| ≲ λ−
j+1
k for λ ≳ 1.

As a result, we also obtain the following version.

Lemma A.5. Let γ ∈ C∞(R \ {0}) ∩ Cc(R) and f ∈ C∞(R;R).

(i) Let ν ≥ 0. Suppose that |∂βxγ(x)| ≲ |x|ν−β for x ∈ R \ {0} and f ′′(x) ̸= 0 for x ∈ supp γ.
Then |I(λ)| ≲ λ−

1
2 for λ ≳ 1.

(ii) Suppose that
∣∣∂βxγ(x)∣∣ ≲ |x|

1
2
−β for x ∈ R \ {0}, f ′(0) = 0 and f ′′′(0) ̸= 0. If supp γ is

sufficiently close to 0, then |I(λ)| ≲ λ−
1
2 for λ ≳ 1.

Remark A.6.

(1) The main difference between Lemma A.4 and this lemma is that we do not assume f ′(0) = 0
in (i) for example.

(2) The estimates in (i) and (ii) are optimal. If in addition we assume that supp γ is close to

0 for the case (i), then the optimal estimate would be |I(λ)| ≲ λ−
1
2
(1+ν).

Proof of Lemma A.5. The proof of the part (i) is almost same as the case (ii). Thus we only
deal with the case (ii).

(ii) We may assume f(0) = 0 since
∣∣eiλf(0)∣∣ = 1. Moreover, we may assume that a := f ′′(0) is

sufficiently small since our result directly follows from [28, p.334, Corollary] for a away from 0.
For simplicity, we also assume a > 0 and f ′′′(0) ≥ 8.

First, we consider the case where a3λ ≪ 1. We write f ′(x) = ax + f ′′′(0)
2 x2 + g(x) with

g(x) = O
(
|x|3
)
. Then we can take supp γ small enough such that |f ′(x)| ≳ |x|2 for x ∈ supp γ

with |x| ≥ λ−
1
3 due to the assumptions a3λ ≪ 1 and f ′′′(0) ̸= 0. Take χ ∈ C∞

c ((−2, 2); [0, 1])
such that χ(x) = 1 for |x| ≤ 1 and set χλ(x) = χ

(
λ

1
3xv) and χλ = 1− χλ. Then∣∣∣∣∫

R
γ(x)χλ(x)e

iλf(x)dx

∣∣∣∣ ≲ ∫
|x|≤2λ− 1

3

|x|
1
2dx ≲ λ−

1
3
(1+ 1

2
) = λ−

1
2 .

On the other hand, the integration by parts yields∣∣∣∣∫
R
γ(x)χλ(x)e

iλf(x)dx

∣∣∣∣ ≤ λ−1

∫
R
|∂x
(
f ′(x)−1γ(x)χλ(x)

)
|dx

≲ λ−1

∫
|x|≥λ− 1

3

|x|−
5
2dx ≲ λ−

1
2 .

Thus we obtain |I(λ)| ≲ λ−
1
2 .

Next we consider the case where a3λ ≳ 1. Taking supp γ sufficiently close to 0, we may assume
the following three conditions hold: Critical points of f (on supp γ) are x = 0 or x = x0(a) with
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|x0(a)| ∈
[
a
4 ,

3
4a
] (

due to the factorization f ′(x) = x
(
a+ f ′′′(0)

2 x+ h(x)
)
with h(x) = O

(
x2
))
.

The second condition is |f ′′(x0(a))| ≳ |a|. The third condition is |f ′(x)| ≳ |ax| for |x| ≥ a.

By scaling, we have

I(λ) = a
3
2

∫
R
γa(x)e

iλa3fa(x)dx, fa(x) := a−3f(ax), γa(x) := a−
1
2γ(ax). (A.4)

We observe fa(x) =
1
2x

2 + f ′′′(0)
6 x3 +O

(
a|x|4

)
and

∣∣∂βxγa(x)∣∣ ≲ |x|
1
2
−β. Moreover, critical points

of fa are x = 0 or x = a−1x0(a) with
∣∣a−1x0(a)

∣∣ ∈ [14 , 34], |f ′′a (x)| ≳ 1 and |f ′a(x)| ≳ |x| for |x| ≥ 1.
Then we divide the integral (A.4) into three parts I1(λ), I2(λ), I3(λ), where the integrand of Ij(λ)
is supported close to 0 for j = 1, a−1x0(a)

−1 for j = 2 and |f ′′a (x)| ≳ 1 on the supports of the
integrands of I1(λ) and I2(λ) for sufficiently small a. Then Lemma A.4 with the large param-
eter λa3 gives |I1(λ)| ≲ a

3
2

(
λa3
)− 1

2
(1+ 1

2
)
≲ λ−

1
2 and |I2(λ)| ≲ a

3
2

(
λa3
)− 1

2 = λ−
1
2 (for the latter

case, we use f ′(x(a)) = 0 and use this lemma for the phase function f(x)− f(x(a))). Moreover,
integrating by parts many times, we have |I3(λ)| ≲ a

3
2

(
λa3
)−N

for all N > 0. Taking N = 1
2 ,

we obtain |I3(λ)| ≲ λ−
1
2 and hence |I(λ)| ≲ λ−

1
2 . ■

A.4 Asymptotics of the Bessel function

In this appendix, we prove Proposition 3.1. First, we seek a nice integral representation approx-
imating the Bessel function Jµ(y).

Lemma A.7. There exists χ1 ∈ C∞
c

((
−3π

4 ,
3π
4

)
; [0, 1]

)
such that χ1(w) = 1 for |w| ≤ 2π

3
and χ1(w) = χ1(−w) such that

Jµ(y) =
1

2π

∫
R
ei(y sinw−µw)χ1(w)dw +R0(µ, y) for µ ≥ 0, y ≥ 1, (A.5)

where R0(µ, y) satisfies |∂αµR0(µ, y)| ≤ CNα(1 + y + µ)−N for each N ∈ N.

Proof. It is known (see [33, Section 6.21 (3)], see also [17, equation (9.7)]) that the Hankel
function can be written as

Hµ(y) =
1

πi

(∫ 0

−∞
+

∫ πi

0
+

∫ ∞+πi

πi

)
ey sinhw−µwdw (A.6)

and ReHµ(y) = Jµ(y). Since the curve [−∞, 0] ∪ [0, πi] ∪ [πi,∞ + πi] is not smooth, we will
deform it to remove the corner at πi by using the Cauchy integral formula, where we note
that the corner at 0 is not involved with the asymptotics of Jν(y). More precisely, we take
a curve γ : R → C such that γ is smooth and |γ′(r)| = 1 except at 0, and

γ(r) =


r for r ≤ 0,

ir for 0 ≤ r ≤ 3
4π,

r − 2
3π − L+ iπ for r ≥ 3

4π + L,{
Re γ(r) ≥ 0,

Im γ(r) ∈
[
2π
3 , π

]
,

for
2

3
π ≤ r ≤ 3

4
π + 2L

with a constant L > 0. Since Re(y sinhw−µw) = y sinh(Rew) cos(Imw)−µRew and y, µ ≥ 0,
we have

Re(y sinhw − µw)|w=γ(r) ≤ 0 for r ≥ 0. (A.7)
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Now we take χ1 ∈ C∞
c

((
−3π

4 ,
3π
4

)
; [0, 1]

)
, χ2 ∈ C∞

c

([
2π
3 ,

3π
4 +2L

]
; [0, 1]

)
and χ3 ∈ C∞(R; [0, 1])

such that χ1 + χ2 + χ3 = 1 on [0,∞) and

χ1(r) = χ1(−r), χ1(r) = 1 for |r| ≤ 2π

3
,

χ3(r) =

{
0 for r ≤ 3

4π + L,

1 for r ≥ 3
4π + 2L.

By the Cauchy’s integral formula, we rewrite (A.6) as

Hµ(y) =
1

πi

∫ 0

−∞
ey sinhw−µwdw +

1

π

∫ π

0
ei(y sinw−µw)χ1(w)dw + R̃0(µ, y),

R̃0(µ, y) =
1

πi

∫
R
ey sinh γ(r)−µγ(r)χ2(r)γ̃

′(r)dr

+
e−iπµ

πi

∫
R
e−y sinhw−µwχ3

(
w +

2

3
π + L

)
dw.

Since the first term is purely imaginary, we obtain

Jµ(y) = ReHµ(y) =
1

2π

∫
R
ei(y sinw−µw)χ1(w)dw +Re R̃0(µ, y),

where we use χ1(r) = χ1(−r), suppχ1 ⊂
(
−3

4π,
3
4π
)
and y sin(−w)− µ(−w) = −(y sinw− µw).

Now we set R0(µ, y) := Re R̃0(µ, y). It suffices to prove |∂αµ R̃0(µ, y)| ≤ CNα(1 + y + µ)−N for
each N ∈ N, µ ≥ 0 and y ≥ 1.

We note that |∂r(y sinh γ(r) − µγ(r))| ≥ |y cosh(Re γ(r)) cos(Im γ(r)) − µ| ≳ y + µ for
r ∈ suppχ2, where we use |γ′(r)| = 1 and Re γ ≥ 0, Im γ ∈ [23π, π] on suppχ2. Moreover,
|∂w(−y sinhw − µw)| = y coshw + µ ≳ y + µ. Thus, the integration by parts with (A.7)
yields

∣∣∂αµ R̃0(µ, y)
∣∣ ≤ CNα(1 + y + µ)−N for each N ∈ N, µ ≥ 0 and y ≥ 1. ■

Remark A.8. This lemma might be proved also by integration by parts and by Schläfli’s
formula

Jµ(y) =
1

π

∫ π

0
cos(y(sinw)− µw)dw − sin(πµ)

π

∫ ∞

0
e−y(sinhw)−µwdw,

which follows from (A.6). However, to do this, we need to calculate the boundary terms at w = π
in the first term and the one at w = 0 in the second term explicitly. In the above proof, we
avoid it and use the deformation of the integral instead.

Now we study the first term (we call it F1(y, µ)) of the right-hand side in (A.5). To do this, we
use a variant of the stationary phase theorem. Roughly speaking, the phase function y sinw − µw
of F1(y, µ) has two non-degenerate critical points when µ≪ y and no critical points when µ≫ y.
When µ ≈ y, the critical points can become degenerate although the third derivative of the phase
function does not vanish there. The difficulty here is to deal with them in a uniform way. We
will use the following lemma with a = y − µ, b = y, f(w) = sinw − w.

Lemma A.9. Let χ ∈ C∞
c ((−3, 3)). Let f ∈ C∞([−3, 3];R) such that f (j)(0) = 0 for j = 0, 1, 2,

∓f ′′(w) ≤ 0 and c1|w| ≤ |f ′′(w)| ≤ c2|w| for 0 ≤ ±w ≤ 3 with a constant 0 < c1 < c2. For
a ∈ R, b ≥ 1 and j ∈ N, set

Ij(a, b) =

∫
R
χ(w)wjeiaw+ibf(w)dw. (A.8)
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(i) Suppose a, b ≥ 1, |a|
1
2 b−

1
2 ≤ 1, |a|

3
2 b−

1
2 ≥ 1/8. Then the map [−3, 3] ∋ w 7→ aw + bf(w)

has just two critical points w±(a, b) with ±w±(a, b) > 0. Moreover, we can write

I0(a, b) =
∑
±
I0,±(a, b)e

iaw±(a,b)+ibf(w±(a,b)), |∂αa I0,±(a, b)| ≤ Cαa
− 1

4
−αb−

1
4

uniformly in a, b ≥ 1, |a|
1
2 b−

1
2 ≤ 1, |a|

3
2 b−

1
2 ≥ 1/8.

(ii) For each j ∈ N and N > 0, there exist Cj > 0 and CjN > 0 such that

|Ij(a, b)| ≲

{
Cjb

− j+1
3 , a ∈ R, b ≥ 1, |a|

1
2 b−

1
2 ≤ 1,

CjN

(
|a|

3
2 b−

1
2

)−N |a|−j− 1
4 b−

1
4 , a ≤ −1, b ≥ 1, |a|

3
2 b−

1
2 ≥ 1/8.

Proof. When a = 0, then the claim in (ii) directly follows from the stationary phase theorem
(see Lemma A.4 with k = 3). Hence in the following, we assume a ̸= 0. Set

s = |a|
1
2 b−

1
2 , λ = |a|

3
2 b−

1
2 ,

F (w, s) = (sgn a)w + bλ−1f(sw) = (sgn a)w + s−3f(sw).

By the change of variable w 7→ sw, we have

Ij(a, b) = sj+1

∫
R
χ(sw)wjeiλF (w,s)dw. (A.9)

By the assumption on f , we have − c2
2 w

2 ≤ f ′(w) ≤ − c1
2 w

2 for |w| ≤ 3.
We note that there is Cα > 0 such that |∂αwF (w, s)| ≤ Cα for α ≥ 2 uniformly as long as s ≤ 1.

Moreover,

|∂wF (w, s)| =
∣∣(sgn a) + s−2f ′(sw)

∣∣ ≥ c
(
1 + |w|2

)
for |w| ∈

[
2c

− 1
2

1 ,∞
)

(A.10)

uniformly in a. Moreover, when a ≥ 0, the derivative ∂wF (w, s) = 1 + s−2f ′(sw) has just the
two critical points w±(s) with

±w±(s) ∈
[√

2c−1
2 ,

√
2c−1

1

]
and c1

√
2c−1

2 ≤
∣∣∂2wf(w±(s), s)

∣∣ ≤ c2

√
2c−1

1 .

When a < 0, then F (·, s) has no critical points. Moreover, w±(a, b) := sw±(s) are critical points
of the map w 7→ aw + bf(w).

(i) Suppose a, b ≥ 1, 0 < s ≤ 1 and λ ≥ 1/8. Let χ+ ∈ C∞
c ((0,∞); [0, 1]) such that

χ+(w) = 1 for w ∈
[√

2c−1
2 ,

√
2c−1

1

]
, suppχ+ ⊂

(
0, 2

√
c−1
1

]
.

Set χ−(w) := χ+(−w) and χ0 = 1− χ+ − χ−. We write (A.9) for j = 0 as

I0(a, b) =
∑
±

eiλF (w±(s),s)I0,±(a, b) +R1(a, b),

I0,±(a, b) := s

∫
R
χ(sw)χ±(w)e

iλ(F (w,s)−F (w±(s),s))dw,

R1(a, b) := s

∫
R
χ(sw)χ0(w)e

iλF (w,s)dw.

We prove that for α, β,N ∈ N,∣∣∂αλ (s∂s)βI0,±(a, b)∣∣ ≲ sλ−
1
2
−α,

∣∣∂αλ (s∂s)βR1(a, b)
∣∣ ≲ sλ−N . (A.11)
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First, we observe

|(s∂s)αw±(s)| ≲ 1 for 0 < s ≤ 1. (A.12)

The estimate for α = 0 follows from the fact ±w±(s) ∈
[√

2c−1
2 ,
√
2c−1

1

]
as we have proved. To

see (A.12) for α ≥ 1, we recall w±(s) are the critical points of F (·, s), that is,

1 + s−2f ′(sw±(s)) = 0 ⇔ f ′(sw±(s)) = s2.

Thus we have

f ′′(sw±(s))(w±(s) + s∂sw±(s)) = 2s. (A.13)

Since |f ′′(sw±(s))| ∼ s|w±(s)| ∼ s, we have s|w±(s)+ s∂sw±(s)| ≲ 2s, which implies |s∂sw±(s)|
≲ 1. This proves (A.12) for α = 1. Differentiating (A.13) many times and using induction
on α, we obtain (A.12) for general α ≥ 0. By Taylor’s theorem and the assumption on f , the
function F (w, s) = w + s−3f(sw) is smooth with respect to w and s ∈ [0, 1], where the point is
that F is smooth even near s = 0. It turns out from this fact, (A.12) and the Taylor’s theorem
that

F (w + w±(s), s)− F (w±(s), s) = g±(w, s)w
2,

where g± is smooth with respect to w ∈ suppχ± and s ∈ (0, 1] and satisfies∣∣∂αw(s∂s)βg±(w, s)∣∣ ≲ 1 for w ∈ suppχ±, s ∈ (0, 1].

Moreover, we have g±(0, w) =
(
∂2wF

)
(w±(s), s) = s−1f ′′(sw±(s)), which satisfies |g±(0, s)| ≳ 1

uniformly in 0 < s ≤ 1. Consequently, I0,±(a, b) can be written as

I0,±(a, b) = s

∫
R
ψ0,±(w, s)e

iλg±(w,s)w2
dw,

where ψ0,±(w, s) = χ(s(w + w±(s)))χ±(w + w±(s)). We also note that∣∣∂αw(s∂s)βψ0,±(w, s)
∣∣ ≲ 1 for w ∈ R, s ∈ (0, 1].

Now we prove the first estimate of (A.11). For simplicity, we consider the case (α, β) = (1, 0)
or (α, β) = (0, 1) only. To do this, we write

∂λI0,±(a, b) = is

∫
R
ψ0,±(w, s)g±(w, s)w

2eiλg±(w,s)w2
dw,

s∂sI0,±(a, b) = s

∫
R

(
ψ0,±(w, s)

(
1 + iλs∂sg±(w, s)w

2
)
+ s∂sψ0,±(w, s)

)
eiλg±(w,s)w2

dw.

Now we apply the stationary phase theorem (see Lemma A.4 with k = 2, j = 0, 2, x0 = 0) and
obtain the first estimate of (A.11) for (α, β) = (1, 0), (0, 1). The estimates for its higher deriva-
tives are similarly proved. To prove the second estimate of (A.11), we use the fact that ∂wF (w, s)
does not vanish for w ∈ suppχ0 ∩ suppχ(s·) with the uniform estimate (A.10). Using the inte-
gration by parts many times with (A.10) with the estimates for its higher-order derivatives, we
obtain the second estimate of (A.11).

Next, we show

|∂γaI0,±(a, b)| ≤ Cγa
− 1

4
−γb−

1
4 , |∂γaR1(a, b)| ≤ CγN

(
a

3
2 b−

1
2
)−N

a−
1
4
−γb−

1
4 (A.14)
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for γ ∈ N and N > 0. Set Iγ0,±(a, b) = ∂γaI0,±(a, b). We can deduce
∣∣∂αλ (s∂s)βIγ0,±(a, b)∣∣ ≤

Cαβs
1+γλ−

1
2
−α−γ by (A.11) and induction due to Iγ+1

0,± = ∂aI
γ
0,±, ∂a = (∂aλ)∂λ + (∂as)∂s =

s
(
3/2∂λ + 2−1λ−1s∂s

)
and s ≤ 1, λ ≥ 1/8. In particular, we obtain

|∂γaI0,±(a, b)| ≤ Cγs
1+γλ−

1
2
−γ = Cγa

− 1
4
−γb−

1
4 .

The estimate for R1(a, b) is similarly proved.
Since w±(a, b) = sw±(s), we have λfa,b(w±(s)) = λw±(s) + bf(sw±(s)) = aw±(a, b) +

bf(w±(a, b)) and hence

I0(a, b) =
∑
±
I0,±(a, b)e

i(aw±(a,b)+bf(w±(a,b))) +R1(a, b).

Finally, we show that R1(a, b) can be absorbed into either I0,+ or I0,−. To do this, it suffices to
show

∣∣∂αa (e−i(aw±(a,b)+bf(w±(a,b)))R1(a, b)
)∣∣ ≤ CαNa

− 1
4
−αb−

1
4 . We observe∣∣∂αa eiλfa,b(w±(s))

∣∣ ≤ Cαs
−α = Cαa

−α
2 b

α
2 .

since ∂a(λfa,b(w±(s))) = s−1w±(s). Thus the second inequality of (A.14) with N ≫ 1 gives the
desired estimate.

(ii, 1) First, we consider the case a ∈ R, b ≥ 1 and s ≤ 1. Let χ1 ∈ C∞
c (R; [0, 1]) such that

χ1(w) = 1 for |w| ≤
√
2c−1

1 , χ1(w) = 0 for |w| ≥ 2

√
c−1
1 .

Set χ2 = 1− χ1. We write (A.9) for j = 0 as

Ij(a, b) =s
j+1

∫
R
χ(sw)wj(χ1(w) + χ2(w))e

iλfa,b(w)dw =: Ij,1(a, b) + Ij,2(a, b).

The second term is easy to handle: The integration by parts with (A.10) yields |Ij,2(a, b)| ≤
CjNs

j+1λ−N for N > 0. Taking N = j+1
3 , we have |Ij,2| ≲ sj+1λ−

j+1
3 = b−

j+1
3 . Thus, we

focus on the estimate for I1,j . When λ ≤ 1 (which is equivalent to |a| ≤ b
1
3 ), then |Ij,1(a, b)| ≲

sj+1 = |a|
j+1
2 b−

j+1
2 ≤ b−

j+1
3 . On the other hand, when λ ≥ 1, then the stationary phase theorem

(see Lemma A.4 with k = 3) implies |Ij,1(a, b)| ≲ sj+1λ−
j+1
3 = b−

j+1
3 . Thus we obtain |Ij(a, b)| ≲

b−
j+1
3 .
(ii, 2) Suppose a ≤ −1, b ≥ 1, s ≤ 1 and λ ≥ 1/8. The case s ≥ 1 is dealt with later.

Since λ ≥ 1/8, it suffices to prove the inequality for large integer N . By the assumption on f ,
we have f ′a,b(w) ≥ 1 + cw2 and

∣∣f (α)a,b (w)/f
′
a,b(w)

∣∣ ≤ Cα(1 + |w|)−1 for sw ∈ suppχ with a con-
stant Cα independent of s, λ for α ≥ 2. In fact,∣∣f ′′a,b(w)∣∣ = bλ−1s

∣∣f ′′(sw)∣∣ ≤ bλ−1s2 · |sw| ≲ (1 + |w|),∣∣f (α)a,b (w)
∣∣ = bλ−1sα

∣∣f (α)(sw)∣∣ ≤ bλ−1s3
∣∣f (α)(sw)∣∣ = O(1)

for α ≥ 3.
Now we set L = Dw ◦ (f ′s,λ(w)). Then the integration by parts yields

Ij(a, b) = λ−Nsj+1

∫
R
LN1

(
χ(sw)wj

)
eiλfa,b(w)dw,

for N1 ∈ N. Taking N1 large enough, we have∣∣LN1
(
χ(sw)wj

)∣∣ ≤ C
(
1 + w2

)−1
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with a constant C > 0 independent of s, λ and w ∈ suppχ. Here the independence with
respect to s, λ follows from the estimates for fa,b(w). Thus we have |Ij(a, b)| = O

(
λ−Nsj+1

)
.

Taking N1 = N + j + 1
2 , we have

λ−N1sj+1 =
(
|a|

3
2 b−

1
2
)−N · |a|−

3
2
j− 3

4 b
1
2
j+ 1

4 · |a|
j+1
2 b−

j+1
2 =

(
|a|

3
2 b−

1
2
)−N |a|−j− 1

4 b−
1
4 .

(ii, 3) Suppose a ≤ −1, b ≥ 1, s ≥ 1 and λ ≥ 1/8. To deal with this case, we do not use (A.9)
but the definition (A.8). Since a ≤ −1 and f ′(w) < 0, we have |∂w(aw + bf(w))| ≥ a. Thus
the integration by parts yields |Ij(a, b)| ≤ CN ′ |a|−N ′

for all N ′ > 0. Now take N ′ > 0 large
enough such that |a|−N ′ ≤

(
|a|

3
2 b−

1
2

)−N |a|−j− 1
4 b−

1
4 , which is possible since s ≥ 1 implies |a| ≥ b.

This completes the proof. ■

Proof of Proposition 3.1. Set a = y−µ, b = y and f(w) = sinw−w. Then it turns out that
aw + bf(w) = y sinw − µw and f satisfies the assumption of Lemma A.9. We observe

∂µ = (∂µa)∂a + (∂µb)∂b = −∂a, |a|
3
2 b−

1
2 = |µ− y|

3
2 y−

1
2 ,

s ≤ 1 ⇔ |µ| ≤ 2|y|, λ ≥ 1/8 ⇔ |y − µ| ≥ 1

2
y

1
3 ,

∂αµ I0(a, b) = (−i)α
∫
R
eiy sinw−iµwwαχ1(w)dw.

Then the part (ii) follows from Lemmas A.7 and A.9 (ii) when µ ≤ 2y holds. The case µ ≥ 2y
follows from the integration by parts in the above expression of ∂αµ I0(a, b), where we use

|∂y(y sinw − µw)| ≥ µ− |y| ≥ 1
4(µ+ y).

Since w±(a, b) are critical points of aw + bf(w), that is, w±(a, b) = ± cos−1( b−a
b ), we have

aw±(a, b) + bf(w±(a, b)) = ±yh1
(
µ

y

)
,

where we recall h1(z) =
√
1− z2 − z cos−1 z. This proves the part (i) if we set

a+,y(µ) =
1

2π
I0,+(a, b) + e

−yh1(
µ
y
)
R0(µ, y), a−,y(µ) =

1

2π
I0,−(a, b). ■

A.5 Asymptotics of the Beta function

For m ∈ [1,∞) and ν > 0, we define

Fν,1(m) := ν−1Γ
(
ν + 1

2

)
√
πΓ(ν)

· Γ(m+ 2ν)

Γ(m+ 1)Γ(2ν)
. (A.15)

By [2, Fact 4.8, equation (4.30)], we have Cν
m(1) = Γ(m+2ν)

Γ(m+1)Γ(2ν) and hence

Fν,1(m) = ν−1Γ
(
ν + 1

2

)
Cν
m(1)

√
πΓ(ν)

for m ∈ N. (A.16)

We denote the Beta function by B(x, y). Then it is known that B(x, y) = Γ(x)Γ(y)
Γ(x+y) . We may

write

Fν,1(m) = ν−1Γ
(
ν + 1

2

)
√
πΓ(ν)

· 1

mB(m, 2ν)
. (A.17)
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Proposition A.10. Let α ≥ 0 be an integer and ν > 0. Then there exists Cν,α > 0 such that

|∂αmB(m, 2ν)| ≤ Cν,αm
−2ν−α, |∂αmFν,1(m)| ≤ Cν,αm

2ν−1−α

for all m ∈ [1,∞).

Proof. First, we note that it suffices to prove these estimates for sufficiently large m. As is
well known (essentially due to Stirling’s formula), we have B(m, 2ν) ∼ Γ(2ν)m−2ν as m → ∞.
This implies that the estimates for Fν,1(m) follow from the estimates for B(m, 2ν) and (A.17).
The case α = 0 follows from B(m, 2ν) ∼ Γ(2ν)m−2ν as m → ∞. Hence, in the following, we
consider the estimates for α ≥ 1.

Let ψ ∈ C∞(R; [0, 1]) satisfy ψ(t) = 1 for t ≥ 1/2 and ψ(t) = 0 for t ≤ 1
4 . Since B(m, 2ν) =∫ 1

0 t
m−1(1− t)2ν−1dt, we have

∂αmB(m, 2ν) =

∫ 1

0
tm−1gα,1(t)dt+

∫ 1

0
tm−1gα,2(t)dt,

where we set gα,1(t) = (log t)α(1− t)2ν−1ψ(t) and gα,2(t) = (log t)α(1− t)2ν−1(1− ψ(t)).
First, we deal with the second term. Since supp gα,2 ⊂ {t ≤ 1/2} and since |(log t)α| ≲ |t|−1

for 0 < t ≤ 1/2, we have∣∣∣∣∫ 1

0
tm−1gα,2(t)dt

∣∣∣∣ ≲ ∫ 1
2

0
tm−2dt ≲ 2−m ≲ m−2ν−α

for sufficiently large m ≥ 1.
Next, we consider the first term. We note∣∣∂βt gα,1(t)∣∣ ≤ Cα|1− t|2ν−1+α−β for t ∈ [0, 1].

Now we write

tm−1 = e(m−1)(log t) = ei(m−1)f̃(t), f̃(t) = −i log t.

Then f̃ ′(t) = −i/t ̸= 0 and Im f̃(t) ≥ 0 hold for t ∈ suppψ ∩ (−∞, 1]. Now it follows from
Lemma A.3 with λ = m, µ = 2ν − 1 and the change of variable x = 1− t that∣∣∣∣∫ 1

0
tm−1gα,1(t)dt

∣∣∣∣ ≲ m−2ν−α

holds for sufficiently large m ≥ 1. This completes the proof. ■

A.6 Asymptotics of the Gegenbauer polynomials

In this appendix, we prove Proposition 3.3 using non-stationary phase theorem. The case ν = 0
is easy to deal with (see the proof of Proposition 3.3 below) and hence we focus on the case ν > 0.

By [2, equation (4.30)] (see also [17, Section 10]) and (A.16),

ν−1Cν
m(cosφ) =Fν,1(m)

∫ 1

−1
(cosφ+ i(sinφ)u)m

(
1− u2

)ν−1
du (A.18)

for ν > 0, m ∈ N∗ and φ ∈ [0, π], where Fν,1 is defined in (A.15). To get an asymptotics
of Cν

m(cosφ), we extend N∗ ∋ m 7→ Cν
m(cosφ) to a function on m ∈ [1,∞) (up to a negligible

term). However, since the integrant (cosφ+ i(sinφ)u)m is not a single-valued function, we have
to do it a bit carefully.
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First, we deal with the case φ ∈
(
π
4 ,

3
4π
)
. We consider two branches of logarithmic smooth

functions log+ z : C \ {iy | y ≤ 0} → C and log− z : C \ {iy | y ≥ 0} → C such that log+(cosφ+
i sinφ) = iφ and log−(cosφ− i sinφ)) = −iφ for all φ ∈ [0, π]. We define smooth functions f± by

f±(φ, u) = −i log±(cosφ+ i(sinφ)u)∓ φ

for (φ, u) such that cosφ + i(sinφ)u belongs to the domain of log±. We note that ([0, π] ×
R±) ∪

((
v[0, π4

]
∪
[
3
4π, π

])
×
[
−1

2 ,
1
2

])
is included in the domain of f±. Then eimf±(φ,u) =

(cosφ+ i(sinφ)u)me∓imφ for all m ∈ N∗ and ±u > 0. Now let χ±, χ0 ∈ C∞(R; [0, 1]) such that
χ+ + χ0 + χ− = 1 on R, suppχ0 ⊂

[
−1

2 ,
1
2

]
, suppχ+ ⊂

[
1
4 ,∞

)
and suppχ− ⊂

(
−∞,−1

4

]
. We

define

Hν,±(m,φ) :=

∫ 1

−1
eimf±(φ,u)χ±(u)

(
1− u2

)ν−1
du,

Eν(m,φ) :=

∫ 1

−1
(cosφ+ i(sinφ)u)mχ0(u)

(
1− u2

)ν−1
du,

where Hν,±(m,φ) is defined for all m ∈ [1,∞) although Eν(m,φ) is defined only for m ∈ N∗

whenever φ ∈
(
π
4 ,

3
4π
)
(note that cosφ + i(sinφ)u may be zero for u ∈ suppχ0). By these

construction and (A.18), we have

ν−1Cν
m(cosφ) =Fν,1(m)

(
eimφHν,+(m,φ) + e−imφHν,−(m,φ) + Eν(m,φ)

)
(A.19)

for m ∈ N∗ and φ ∈
(
π
4 ,

3
4π
)
.

Next, we consider the case φ ∈
[
0, π4

]
∪
[
3
4π, π

]
. We define

E′
ν(m,φ) :=

∫ 1

−1
eimf+(φ,u)χ0(u)

(
1− u2

)ν−1
du, m ∈ [1,∞),

φ ∈
[
0,
π

4

]
∪
[
3

4
π, π

]
,

where we note that cosφ + i(sinφ)u ∈ C \ {iy | y ≤ 0} whenever φ ∈
[
0, π4

]
∪
[
3
4π, π

]
and

u ∈ suppχ0. Then

ν−1Cν
m(cosφ) =Fν,1(m)

(
eimφHν,+(m,φ) + e−imφHν,−(m,φ) + eimφE′

ν(m,φ)
)

(A.20)

holds for m ∈ N∗ and φ ∈
[
0, π4

]
∪
[
3
4π, π

]
.

Now we show that Hν,±, Eν and E′
ν satisfy symbol-type estimates. The basic idea of the

proof for Hν,± and Eν is to use the non-stationary phase theorem with a singular amplitude (see
Lemma A.3). To do this, we observe that our phase function f±(φ, u) satisfies |f ′±(φ, u)| ≳ | sinφ|
on u ∈ suppχ± (see the proof below). Although ∂uf±(φ, u) = 0 when φ = 0, π, we consider
a large parameter λ = m sinφ rather than m and can apply Lemma A.3.

Lemma A.11. Let α ≥ 0 be an integer and ν,N > 0.

(i) There exists CN,ν > 0 such that |Eν(m,φ)| ≤ CN,νm
−N for m ∈ N∗ and φ ∈

(
π
4 ,

3
4π
)
.

(ii) There exists Cα,N,ν > 0 such that |∂αmE′
ν(m,φ)| ≤ Cα,N,νm

−α(1 + m sinφ)−N for m ∈
[1,∞) and φ ∈

[
0, π4

]
∪
[
3
4π, π

]
.

(iii) There exists Cα,ν > 0 such that |∂αmHν,±(m,φ)| ≤ Cα,νm
−α(1+m sinφ)−ν for m ∈ [1,∞)

and φ ∈ [0, π].
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Proof. (i) Since | cosφ+ i(sinφ)u| ≤
√

5
8 for u ∈ suppχ0 and φ ∈

(
π
4 ,

3
4π
)
, we have

| cosφ+ i(sinφ)u|m ≤
(
5

8

)m
2

≲ m−N

for m ∈ N∗. The estimate for Eν directly follows from this inequality.
(ii) Setting ψ(u) := χ0(u)

(
1− u2

)ν−1
, we write E′

ν(m,φ) =
∫
R eimf+(φ,u)ψ(u)du.

First, we consider the case α = 0 by using the integration by parts. Since log+(cosφ +
i sinφ) = iφ, we have

f+(φ, u) = i

∫ 1

u

d

dr
log+(cosφ+ i(sinφ)r)dr = −

∫ 1

u

sinφ(cosφ− i(sinφ)r)

cos2 φ+ r2 sin2 φ
dr (A.21)

and hence Im f+(φ, u) =
∫ 1
u

(sin2 φ)r

cos2 φ+r2 sin2 φ
dr. This implies Im f+(φ, u) ≥ 0 for u ∈ [−1, 1]. In

fact, this is trivial for u ≥ 0. For u ≤ 0, we write∫ 1

u

(
sin2 φ

)
r

cos2 φ+ r2 sin2 φ
dr =

∫ 1

0

(
sin2 φ

)
r

cos2 φ+ r2 sin2 φ
dr +

∫ 0

u

(
sin2 φ

)
r

cos2 φ+ r2 sin2 φ
dr

=

∫ 1

−u

(
sin2 φ

)
r

cos2 φ+ r2 sin2 φ
dr,

which is non-negative.
Now we set L = ∂u ◦ (i∂uf+(φ, u))−1. By integrating by parts, we have

|E′
ν(m,φ)| = m−N

∣∣∣∣∫
R
eimf+(φ,u)LNψ(u)du

∣∣∣∣ ≤ m−N

∫
R

∣∣LNψ(u)
∣∣du

by virtue of Im f+(φ, u) ≥ 0. Since ∂αu f+(φ, u) = (−1)α−1(α − 1)!(sinφ)α(cosφ + iu sinφ)−α,
for each α ≥ 2, we obtain |∂uf+(φ, u)|−1 ≲ | sinφ|−1 and |∂αu f+(φ, u)||∂uf+(φ, u)|−1 ≲ 1 for
u ∈ [−1, 1] and φ ∈

[
0, π4

]
∪
[
3
4π, π

]
. By Lemma A.1, we conclude

∣∣LNψ(u)
∣∣ ≲ | sinφ|−N

and hence |E′
ν(m,φ)| ≲ m−N | sinφ|−N for φ ∈

[
0, π4

]
∪
[
3
4π, π

]
(we note that ψ is compactly

supported). On the other hand, the inequality Im f+(φ, u) ≥ 0 also implies |E′
ν(m,φ)| ≲ 1.

Combining these estimates, we have proved (ii) for α = 0.
Next, we consider the case α ≥ 1. We note

∂αmE
′
ν(m,φ) = iα

∫
R
eimf+(φ,u)f+(φ, u)

αψ(u)du.

As in the case of α = 0, we can deduce
∣∣LN (f+(φ, u)

αψ(u))
∣∣ ≲ |sinφ|α−N , which leads to the

part (ii) for α ≥ 1 since f+(0, u) = f+(π, u) = 0.
(iii) We deal with the case + only. There exists c > 0 such that |cosφ+ iu sinφ| ≥ c

for u ∈ suppχ+ and φ ∈ [0, π]. Since Im f+(φ, u) =
∫ 1
u

(sin2 φ)r

cos2 φ+r2 sin2 φ
dr, which is proved above,

we have Im f+(φ, u) ≥ 0 for u ∈ suppχ+ and φ ∈ [0, π]. Moreover, we have f+(φ, 1) = 0.
Now we prove (iii) for α = 0. Set m′ = m sinφ and g(φ, u) = (sinφ)−1f+(φ, u). Then we

write Hν,+(m,φ) =
∫ 1
−1 e

im′g(φ,u)χ+(u)
(
1− u2

)ν−1
du. Since

∂αu g(φ, u) = (−1)α−1(α− 1)!(sinφ)α−1(cosφ+ iu sinφ)−α

for α ≥ 1 and since |cosφ+ iu sinφ| ∈
[

1√
2
, 1
]
for φ ∈

[
0, π4

]
∪
[
3
4π, π

]
, we have

|∂ug(φ, u)| ≥ c, |∂αu g(φ, u)||∂ug(φ, u)|−1 ≤ C ′
α

with a constant c > 0 and C ′
α > 0. By Lemma A.3 with λ = m sinφ and the change of

variable x = 1− u, we obtain |Hν,+(m,φ)| ≲ (m′)−ν for m′ = m sinφ ≥ 1. On the other
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hand, it follows from Im f+(φ, u) ≥ 0 that |Hν,+(m,φ)| ≲ 1. Combining these estimates,
we obtain |Hν,+(m,φ)| ≲ (1 +m′)−ν = (1 +m sinφ)−ν for m sinφ ≥ 1. For m sinφ ≤ 1, this
estimate is easy to prove.

Finally, we consider the case α ≥ 1. We observe that

∂αmHν,+(m,φ) = iα
∫
R
eim

′g(φ,u)f+(φ, u)
α
(
1− u2

)ν−1
χ+(u)du

and
∣∣∂βuf+(φ, u)α∣∣ ≲ (sinφ)α(1− u)max(α−β,0) since f+(φ, u) = O((1 − u)) by (A.21). Thus,

a similar argument as the case α = 0 shows that |∂αmHν,+(m,φ)| ≲ (sinφ)α(1 +m sinφ)−ν−α.
Using an inequality sinφ(1 +m sinφ)−1 ≤ m−1, we obtain (iii) for α ≥ 1. ■

Proof of Proposition 3.3. First, we consider the case ν = 0. From [2, equation (4.28)], we
have

lim
ν→0

ν−1Cν
m(cosφ) =

2 cos(mφ)

m
=

eimφ + e−imφ

m
.

Thus, we can take gν,±(m,φ) = 1/m and r(m,φ) = 0.

Next, we consider the case ν > 0. For φ ∈
(
π
4 ,

3
4π
)
, we set gν,±(m,φ) = Fν,1(m)Hν,±(m,φ)

and r(m,φ) = Fν,1(m)Eν(m,φ). For φ ∈
[
0, π4

]
∪
[
3
4π, π

]
, we set

gν,+(m,φ) = Fν,1(m)(Hν,+(m,φ) + E′
ν(m,φ)), gν,−(m,φ) = Fν,1(m)Hν,−(m,φ)

and r(m,φ) = 0. Then Proposition 3.3 directly follows from the identities (A.19), (A.20),
Proposition A.10 and Lemma A.11. ■

B Finite time Strichartz estimates

Here, we show that the Strichartz estimates hold for finite time T assuming that they hold for
each time t with |t| ≤ T0. The following argument is more or less well known. For simplicity,
assuming T0 < T < 2T0, (1.3) and (1.4) hold for T0 and T−T0, we shall show that (1.3) and (1.4)
hold for T .

Set U(t) = e−itHk,a . Since U(t + s) = U(t)U(s), [−T, T ] = [−T0, T0] ∪ [−T,−T0] ∪ [T0, T ]
and T < 2T0,

∥U(t)u0∥pLp([−T,T ];Lq) = ∥U(t)u0∥pLp([−T0,T0];Lq) + ∥U(t)U(−T0)u0∥pLp([−T+T0,0];Lq)

+ ∥U(t)U(T0)u0∥pLp([0,T−T0];Lq)

≲ ∥u0∥pL2 + ∥U(−T0)u0∥pL2 + ∥U(T0)u0∥pL2 = 3∥u0∥pL2 ,

where we use the fact that U(t) is unitary in the last line. This proves (1.3) for T .

Set Γf(t) =
∫ t
0 U(t− s)f(s)ds. To see that (1.4) holds for T , it suffices to prove

∥Γf∥Lp1 ([−T,−T0]∪[T0,T ];Lq2 ) ≲ ∥f∥
Lp∗2 ([−T,T ];Lq∗2 )

. (B.1)

We firstly observe∥∥∥∥∫ T0

0
U(−s)f(s)ds

∥∥∥∥
L2

≤ C∥f∥
Lp∗2 ([0,T0];L

q∗2 )
(B.2)

due to the duality of ∥U(t)u0∥Lp([0,T0];Lq) ≲ ∥u0∥L2 which in turn follows from (1.3) for T0.
Setting Γ1f(t) =

∫ T0

0 U(t− s)f(s)ds and Γ2f(t) =
∫ t
T0
U(t − s)f(s)ds, we have Γ = Γ1 + Γ2.
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Since Γ1f(t) = U(t)
∫ T0

0 U(−s)f(s)ds, the homogeneous estimate ∥U(t)u0∥Lp([−T,T ];Lq) ≲ ∥u0∥L2

implies

∥Γ1f∥Lp1 ([T0,T ];Lq2 ) ≲

∥∥∥∥∫ T0

0
U(−s)f(s)ds

∥∥∥∥
L2

≲︸︷︷︸
(B.2)

∥f∥
Lp∗2 ([0,T0];L

q∗2 )
.

On the other hand, setting g(t) = f(t + T0), we have Γ2f(t) =
∫ t−T0

0 U(t − T0 − s)g(s)ds.
Using (1.4) for T − T0(< T0), we obtain

∥Γ2f∥Lp1 ([T0,T ];Lq1 ) =

∥∥∥∥∫ t

0
U(t− s)g(s)ds

∥∥∥∥
Lp1 ([0,T−T0];Lq1 )

≲ ∥g∥
Lp∗2 ([−T+T0,T−T0];L

q∗2 )
.

Combining them, we conclude ∥Γf∥Lp1 ([T0,T ];Lq1 ) ≲ ∥f∥
Lp∗2 ([−T,T ];Lq∗2 )

. Similarly, we have

∥Γf∥Lp1 ([−T,−T0];Lq1 ) ≲ ∥f∥
Lp∗2 ([−T,T ];Lq∗2 )

.

Thus we have proved (B.1).
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H. Poincaré Anal. Non Linéaire 2 (1985), 309–327.

[15] Hassell A., Zhang J., Global-in-time Strichartz estimates on nontrapping, asymptotically conic manifolds,
Anal. PDE 9 (2016), 151–192, arXiv:1310.0909.

[16] Howe R., The oscillator semigroup, in The Mathematical Heritage of Hermann Weyl, Proc. Sympos. Pure
Math., Vol. 48, American Mathematical Society, Providence, RI, 1988, 61–132.

[17] Ionescu A.D., Jerison D., On the absence of positive eigenvalues of Schrödinger operators with rough po-
tentials, Geom. Funct. Anal. 13 (2003), 1029–1081.

[18] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955–980.

[19] Kobayashi T., Mano G., Integral formulas for the minimal representation of O(p, 2), Acta Appl. Math. 86
(2005), 103–113.

[20] Kobayashi T., Mano G., The inversion formula and holomorphic extension of the minimal representation of
the conformal group, in Harmonic Analysis, Group Representations, Automorphic Forms and Invariant The-
ory, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., Vol. 12, World Scientific Publishing, Hackensack,
NJ, 2007, 151–208, arXiv:math.RT/0607007.

[21] Kobayashi T., Mano G., The Schrödinger model for the minimal representation of the indefinite orthogonal
group O(p, q), Mem. Amer. Math. Soc. 213 (2011), vi+132 pages, arXiv:0712.1769.

[22] Kumar V., Ruzhansky M., Lp-Lq-boundedness of (k, a)-Fourier multipliers with applications to nonlinear
equations, Int. Math. Res. Not. 2023 (2023), 1073–1093.

[23] Li S., Leng J., Fei M., Real Paley–Wiener theorems for the (k, a)-generalized Fourier transform, Math.
Methods Appl. Sci. 43 (2020), 6985–6994.

[24] Mejjaoli H., Dunkl–Schrödinger semigroups and applications, Appl. Anal. 92 (2013), 1597–1626.

[25] Mondal S.S., Song M., Orthonormal Strichartz inequalities for the (k, a)-generalized Laguerre operator and
Dunkl operator, arXiv:2208.12015.

[26] Sher D.A., Joint asymptotic expansions for Bessel functions, Pure Appl. Anal. 5 (2023), 461–505,
arXiv:2203.06329, .

[27] Sogge C.D., Fourier integrals in classical analysis, Cambridge Tracts in Math., Vol. 105, Cambridge Univer-
sity Press, Cambridge, 1993.

[28] Stein E.M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton
Math. Ser., Vol. 43, Princeton University Press, Princeton, NJ, 1993.

[29] Strichartz R.S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave
equations, Duke Math. J. 44 (1977), 705–714.

[30] Taira K., Tamori H., Integral representation for the (k, a)-generalized Laguerre semigroups, in preparation.

[31] Tao T., Nonlinear dispersive equations: local and global analysis, CBMS Reg. Conf. Ser. Math., Vol. 106,
American Mathematical Society, Providence, RI, 2006.

[32] Teng W., Hardy inequalities for fractional (k, a)-generalized harmonic oscillators, J. Lie Theory 32 (2022),
1007–1023, arXiv:2008.00804.

[33] Watson G.N., A treatise on the theory of Bessel functions, Cambridge Math. Lib., Cambridge University
Press, Cambridge, 1995.

[34] Yajima K., Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987),
415–426.

[35] Zhang J., Zheng J., Strichartz estimates and wave equation in a conic singular space, Math. Ann. 376
(2020), 525–581, arXiv:1804.02390.

https://doi.org/10.1016/j.jfa.2021.109350
https://doi.org/10.1016/j.jfa.2021.109350
https://arxiv.org/abs/2003.03086
https://doi.org/10.1016/S0294-1449(16)30399-7
https://doi.org/10.1016/S0294-1449(16)30399-7
https://doi.org/10.2140/apde.2016.9.151
https://arxiv.org/abs/1310.0909
https://doi.org/10.1090/pspum/048/974332
https://doi.org/10.1007/s00039-003-0439-2
https://doi.org/10.1007/s10440-005-0464-2
https://doi.org/10.1142/9789812770790_0006
https://arxiv.org/abs/math.RT/0607007
https://doi.org/10.1090/S0065-9266-2011-00592-7
https://arxiv.org/abs/0712.1769
https://doi.org/10.1093/imrn/rnab256
https://doi.org/10.1002/mma.6449
https://doi.org/10.1002/mma.6449
https://doi.org/10.1080/00036811.2012.692780
https://arxiv.org/abs/2208.12015
https://arxiv.org/abs/2203.06329
https://doi.org/10.2140/paa.2023.5.461
https://doi.org/10.1017/CBO9780511530029
https://doi.org/10.1017/CBO9780511530029
https://doi.org/10.1215/S0012-7094-77-04430-1
https://doi.org/10.1090/cbms/106
https://arxiv.org/abs/2008.00804
https://doi.org/10.1007/BF01212420
https://doi.org/10.1007/s00208-019-01892-7
https://arxiv.org/abs/1804.02390

	1 Introduction
	1.1 Main theorem
	1.2 Key theorem
	1.3 Idea of the proof
	1.4 Related problems
	1.5 Notation

	2 Preliminary
	2.1 A sum of monotonic functions
	2.2 Discrete oscillatory integrals
	2.3 A variant of the stationary phase theorem

	3 Asymptotic expansion of special functions and decomposition of the sum
	3.1 Asymptotic expansion of Bessel functions
	3.2 Asymptotic expansion of Gegenbauer polynomials
	3.3 Decomposition of the sum
	3.4 Properties of the phase functions
	3.5 Estimates of the amplitudes

	4 Estimates of I_{2,s_2} and I_{3,s_2}
	4.1 Intermediate region
	4.2 Decaying region

	5 Estimates of I_{1,s}
	5.1 General bounds for b>0
	5.2 Improvement for 0<b<2

	6 Proof of the main theorem
	6.1 Proof of Theorem 1.4
	6.2 Proof of Theorem 1.1
	6.3 Proof of Theorem 1.3

	A Asymptotic behavior of special functions
	A.1 Leibniz's rule
	A.2 Non-stationary phase theorem with a singular amplitude
	A.3 Stationary phase theorem
	A.4 Asymptotics of the Bessel function
	A.5 Asymptotics of the Beta function
	A.6 Asymptotics of the Gegenbauer polynomials

	B Finite time Strichartz estimates
	References

