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Abstract. In this paper, we prove Strichartz estimates for the (k, a)-generalized Laguerre
operators a!(—|z[>~*Ay, + |#|*) which were introduced by Ben Said-Kobayashi-Orsted,
and for the operators |z|>~¢Aj. Here k denotes a non-negative multiplicity function for
the Dunkl Laplacian Ay and a denotes a positive real number satisfying certain conditions.
The cases a = 1,2 were studied previously. We consider more general cases here. The
proof depends on symbol-type estimates of special functions and a discrete analog of the
stationary phase theorem inspired by the work of Ionescu-Jerison.
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1 Introduction

For the usual Laplacian A on R™ (n > 1), the following inequalities hold:

Heim ) S Clluoll z2mny,

UOHLP(R;Lq(Rn)
where (p,q) € [2,00]? satisfies 2/p + n/q = n/2 with (p,q,n) # (2,00,2). These estimates are
called Strichartz estimates and have been widely studied in the past thirty years. Strichartz [29]
proved them for p = ¢ by using the Fourier restriction estimates and a duality argument.
The most difficult part, that is the end-point case (p,q) = (2,2n/(n — 2)) with n > 3, was
proved by Keel and Tao [18]. These are used for well-posedness of linear and non-linear time-
dependent Schrodinger equations [14, 34]. See also the book [31]. For the Harmonic oscilla-

_ —Atfef s : .
tor Hos = 5, a similar estimates hold:

He_ltHosuoHLP([—T,T];L‘Z(]Rn)) < Crlluoll2(mny,
where the region [~T,7] cannot be replaced by R essentially due to the existence of L2-
eigenfunctions.

Given a root system R in R™ (we assume reducedness and do not assume crystallographic
condition for the definition of root system, see [2, Definition 2.1]), a [0, c0)-valued function
on R which is invariant under the finite reflection group € associated with R is called a non-
negative multiplicity function. For a non-negative multiplicity function k and a > 0, we define
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the (k,a)-generalized Laguerre operator by

_ el A £ )
N a

on R".

Hy, :
Here A} denotes the Dunkl Laplacian (see [2, formula (2.9)]). If £ = 0, the Dunkl Laplacian
coincides with the usual Laplacian: Ay = A = Z?:l 8%3_.

The (k, a)-generalized Laguerre operator Hy , is the generator of the (k,a)-generalized La-
guerre semigroup which is a holomorphic semigroup introduced by Ben Said, Kobayashi and
Orsted [2]. For the case k = 0 and a = 2 (resp. a = 1), the semigroup is the Hermite semi-
group [11, 16] (resp. the Laguerre semigroup [19, 20, 21]). These two semigroups are associated
with some realization (called the Schrodinger model) of minimal representations of the meta-
plectic group Mp(n,R) and a double cover of the indefinite orthogonal group O(n + 1,2). As
unitary representations of §f4(2, R) x €, they deformed these two representations with parame-
ters k and a, and obtained a family of unitary representations. The (k, a)-generalized Laguerre
semigroups are associated with them.

In [2], the Fourier transforms associated with the (k, a)-generalized Laguerre semigroups are
introduced and these various properties are studied. Recently, there have been several studies
related to these operators such as real Paley—Wiener theorem [23], LP-L4-boundedness of Fourier
multipliers [22], Hardy inequality [32] and wavelet transform [3].

The aim of this paper is to prove Strichartz estimates of Schrodinger equations associated
with the (k, a)-generalized Laguerre operators. This problem is proposed in [2] and solved in [1]
and [24] for a = 1 and a = 2 (see also [25], where they deal with orthonormal Strichartz
estimates). The (0, 2)-generalized Laguerre operator Hyo is just the Harmonic oscillator Hos
and so their results are a generalization of the classical result for H,s. Here, we deal with more
general cases.

For a = 1,2, the integral kernel of the Schrodinger propagator has a nice expression (due to [2,
formula (4.58)]), which immediately implies the dispersive estimate [2, Proposition 4.26]. Hence
the Strichartz estimates for a = 1,2 are a direct consequence of this estimate and the result
in [18] by Keel and Tao, see also [1, 25]. One of the difficulties to extend it to general a is a lack
of such a nice expression of the Schrédinger propagator. Actually, this is just expressed in terms
of an infinite sum of a product of special functions (see (1.5) and (1.6)). Therefore, we need to
control this sum uniformly with respect to some parameters. To overcome this difficulty, we use
a strategy inspired by the proof of Carleman estimates due to Ionescu and Jerison [17]. To be
precise, we reduce estimates of the sum to those of integrals and use the theory of oscillatory
integrals such as the stationary phase theorem with several parameters. One difference from [17]
is that we avoid using the dyadic decomposition which is used there many times. Instead, we
employ an appropriate scaling and simplify some arguments. In a sequel work [30], we will give
another approach based on a deformation of integrals developed in the proof for the Strichartz
estimates on flat cones [12].

In the last few decades, numerous works have focused on the dispersive estimates or the
Strichartz estimates for Schrédinger operators with critical electromagnetic potentials such as
Aharonov-Bohm magnetic fields (see [8, 9, 10, 13]) and Laplace-Beltrami operators on conic
manifolds ([12, 35]). Due to the spherical symmetry of their operator, the integral kernel of their
propagator has the form

Z Kl/(tv TI)TQ)HI/(QLHQ)’

v: eigenvalues on the sphere

where K, is the propagator in the radial direction and H, is the projection in the spherical
direction. To achieve optimal estimates for this integral kernel, one has to use the oscillatory
behavior of K,, and H,, in other words, some cancelation of the sum much like our case. In
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their paper, it is accomplished through the use of the complex contour deformation and certain
functional equations of the special functions. Therefore, their method appears to be inapplicable
when the radial propagator or the spherical projection is not expressed by special functions.
Typical scenarios involving these situations arise in the studies of the Schrodinger equation with
the degenerate trapping [6] or the wave equation on the Schwartzshild spacetime [7]. In their
works, the dispersive or Strichartz estimates for initial values with a fixed angular momentum
are considered, that is, they studied single modes only and did not consider the sum possibly
because of the difficulty to treat the oscillation of the sum.

In this paper, we deduce the asymptotic expansions of the radial direction and the spherical
projection first and then sum up them by exploiting their oscillatory behavior. Specifically,
we use the properties of the special functions in the first step only. Hence the authors believe
that the method employed here specifically in the second step remains applicable even when K,
and H, are not expressed in terms of special functions as is the case in [6, 7] (although we might
need more precise analysis of the radial propagators).

The second contribution of this paper is to give a naive application of the stationary phase
theorem (see Proposition 2.4). This is used to prove improved dispersive estimates for Hy, , (near
the diagonal) under the restriction 0 < a < 2. Our integral kernel has multiple parameters and it
seems important to consider when a similar statement the usual stationary phase theorem holds
uniformly with respect to additional parameters and when it is improved. Our Proposition 2.4
addresses intermediate cases between two scenarios where the decay order of an oscillatory
integral is improved, see Section 2.3.

Finally, we also obtain symbol-type estimates of higher-order derivatives for J-Bessel func-
tions, which was done in [17] up to second derivatives and was anticipated to be true for higher-
order derivatives there (see [17, Remark after Theorem 9.1]). It seems that the method used
in [17] via complex counter deformation cannot be applied to the estimates for higher-order
derivatives. Here we use an alternative method based on the stationary phase type theorem and
partially solve them at the cost of loss of estimates for some parameters. See Proposition 3.1
for the precise statement and Appendix A.4 for its proof. We also mention a recent work [26],
where the precise asymptotic behavior of the Bessel function is given although the authors do
not know whether our symbol-type estimates follow from the results in [26].

1.1 Main theorem

Let us state our main theorem. For a nonnegative multiplicity function k£ and a > 0, we write

Opa(@) = |27 T [fa, )M (1.1)

aER

and assume that the homogeneous degree of the measure ¥y o(z)dz on R" is positive

Oka = nt 2aer i(a) a2 > 0. (1.2)
Then it is shown in [2, Corollary 3.22] that the operator Hj , with domain Wy, ,(R"™) defined
in [2, equation (3.29)] is essentially self-adjoint on the Hilbert space L?(R"; ¥y q(z)dz). We
denote the unique self-adjoint extension of Hy , by the same symbol Hj, ,.

We write LY = LY(R™; ¥y, o(x)dx) and LP(I, L9) = LP(I; LY(R"; 9y o(x)dx)) for I C R. Recall
that an exponent pair (p, q) € [2,00]? is called oy ,-admissible if

1 Ok,a Ok,a
oy Zka _ Tha d 2,00,1).
p + q 2 an (p7 q, Ok,a) 7& ( &Y )

When n = 1, a nonnegative multiplicity function k is a constant function. In this case, we
regard k as a nonnegative real number k(o) (o € R), and we see > p k(a) = 2k.
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Theorem 1.1. We assume one of the following, which implies (1.2):

e n=1anda>2-— 4k,
en>2and (0<a<lora=2),
en>2 1<a<2andk=0.

Let (p,q), (p1,q1), (p2,q2) € [2,00)% be ok q-admissible exponents. Then, for T > 0, there ex-
ists C' > 0 such that

He_itHk’auHLp([—T,T};Lq) < Cllullzz, (1.3)
t
H/O o=k £(5)ds < Ol o oy 2y (1.4)
LPL([-T,T];L%)
where 7* denotes the Hélder conjugate of r: r* =r/(r —1) and in addition (p;,q;) # (2, Uz::fl)

when all of the conditionsn > 2, 1 < a <2 and k =0 hold.
Remark 1.2.

(1) The a = 1 case was treated in [1], where an additional assumption oy, > 1 is necessary
in order to use an upper estimate of .7 (2, %A;w;t) [2, Proposition 4.26] (see (1.5)
for the definition of .#) although it is not explicitly written there. When n = 1, the
assumption oy, > 1 implies our assumption a > 2 — 4k. Moreover, the end-point case

(2, ::kfl) is excluded in [1]. The end-point case follows from the result in [18].

(2) For n > 2 with a < 1, we also obtain a dispersive estimate, see the proof of Theo-
rem 1.1 in Section 6.2. On the other hand, the dispersive estimate might break for n > 2
with 1 < a < 2 (see Theorem 1.4 (i) and Remark 1.5). Nevertheless, the Strichartz esti-
mates still hold if & = 0 since its proof just relies on the dispersive estimate around the
diagonal of the integral kernel due to the nature of the 7T argument. The authors believe
that the Strichartz estimates do not hold for @ > 2 although they do not know its proof.

(3) We exclude an inhomogeneous end-point estimate for 1 < a < 2 with n > 2 and k = 0
since a global dispersive estimate is absent. A technique used in [15, 35] might be available,
however, our estimates are not sufficient to apply their method.

(4) In the above estimates, we cannot replace the time interval [—7,T] by R. In fact, we
take u # 0 be an L?*-eigenfunction of Hj, , and we denote the corresponding eigenvalue
by A € R (note that its spectrum is discrete, see [2, Corollary 3.22]). Then (1.3) im-
plies u € L1 since |e " ray(z)| = [e7 " u(z)| = u(z)|. On the other hand,

HefitHk*“UHLp(R;Lq) = HUHLP(]R;L‘I) =
although ||u| ;2 < oc.

Moreover, we can deduce global in time Strichartz estimates for —|x|*Ay.

Theorem 1.3. Under the same assumptions and notation as Theorem 1.1, there exists C > 0
such that

< C| /Il

t
e 20 gy < Clllliz, | [ e sy
0 LPy(R;LN)

LP2(R;L92)"
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1.2 Key theorem

We write Jy(z) for the J-Bessel function, Iy(w) for the normalized I-Bessel function, and C (t)
for the Gegenbauer polynomial of degree m. These functions are defined by

Iy(w) = e T ()7 gy ),

Vo (C)TTmA T +20) e d™
Cm(t) = m!  T'(v)I['(2m + 2v) (1= dtm (1= ‘
Now we define
7 (b, v;w;it) = T(bw + 1) i (E)bm Ty (W) (m + )~ 1CY (#) (1.5)
» Yy ) — 2 (m+l/) m
[e’e) . —bv
=T(bvr+1) mZ::O <I;U> e*%bmijb(m+l,)(iw)(m + V) ICY (t)

for b > 0,v > -1, w € C\ (—0,0) and ¢ € [—1,1], where we interpret (m + v)v~'Ck ()
as lim,~ o(m + v)v~1C¥ (t) when v = 0. Moreover, we take a branch of w’™ such that w"™ €
(0,00) for w € (0,00) and w”™|,—g = 0. Then the sum in (1.5) absolutely converges, and .# is
a continuous function (see [2, Lemma 4.17 (1)] or Section 6.1).

In [2, Theorem C, equations (4.50) and (4.52)], it is shown that the integral kernel e~k (g,
2') of e ke for 0 < |t| < 7 is given by

el a1 32|
| f<2 alona=1) _ 2alflo') 5) a(t) "

R0 sin(t)) 7k a 2 asin(t)

where & = xz/|z|, ¢k, is the constant defined in [2, equation (1.6)], - denotes the standard inner
product on R™ and d,uljf is the probability measure introduced in [2, equation (2.5)]. Moreover,
for kK = 0, we have a more explicit expression

e (2, n—2 2flfle]f $> | (L7
(isin(t))™a a2 asin(t)

Theorem 1.1 for n > 2 is a consequence of uniform bounds for .# (b, v; w;t):
Theorem 1.4. Let v > 0.

(1) Suppose 0 <b < 2 and e > 0. Then there ezists Cy, e > 0 such that

el 42|
a

efitHO’a (

r,2') =c

,a

|7 (b, v; —iy;cos )| < Cp (1 + |y\)(1_b)” for yeR, @el0,m—c¢]
When b = 1, we can take € = 0.
(i7) Suppose b > 0. Then there exists Cy,, > 0 such that

|7 (b, v; —iy;cos )| < G (1+y))*""  for yeR, pel0x].

In particular, when 1 < b < 2, the sum Z(b,v; —iy;cos ) is uniformly bounded with respect
toy € R and ¢ € [0, 7 — €|. Moreover, whenb=1,b> 2 orv =0, the sum .Z (b, v; —iy; cos ¢)
is uniformly bounded with respect to y € R and ¢ € [0,].

Remark 1.5. These estimates are sharp for b = 1,2 with respect to the growth in y. In fact,
[2, equations (4.45), (4,46)] show |.#(1,v; —iy;cos¢)| =1 and

F(2,v;—iy; —1) =T (1/ + ;) fy_;(O) =1,

2

which do not decay in y. The authors believe that they are sharp also for general b > 0. We
will pursue it in our sequel work [30].
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1.3 1Idea of the proof

Here we give an idea of the proof of Theorem 1.4. We remark that the difficulty lies in the
uniformity with respect to the parameters y and ¢. For the case |y| < 1, the results are an
immediate consequence of the estimates given in [2] (for rigorous treatment, see Section 6.1).
Hence we consider the case |y| 2 1. Let us assume y 2 1 for simplicity.

First, we try to estimate the sum .# using optimal estimates for the Bessel functions and the
Gegenbauer polynomials. We write

S (b, v; —iy; cos p) :Lb,uy_by Z (m + l/)e_gbmi‘]b(m-i-u) (y)l/_lc;%(cos ®).

m=0

Since the estimates for finite m are easy to prove, we only consider the sum over m > 1. By
the bounds for the Bessel functions |J,(y)| < Cu~3 in (3.2) and the Gegenbauer polynomi-
als [v1C% (cos )| < Cm? ! in (3.3), we have

%
y S (4 v)e” B ) (0)r O (cos )| < Oy Y memT w2
m>1 m>1
1
_ Cysz/ Z m2uf§.
m>1

Since the sum ), m2 =3 is not convergent for v > —1/3 at all and since the upper bounds for
special functions are optimal, such a direct method cannot be applied. Similarly, the estimate
based on |I(—iy)| < T(\+1)~! is far from a uniform estimate.

The drawback of the above strategy is to use the triangle inequality | Y -] < > |-|. To obtain
a better estimate of the sum .# (b, v; —iy; cos ), we need to make use of some cancellation of the
sum instead of using the triangle inequality. To do this, we write it as a sum of a WKB form

(m 4 v)e” 27 ) ()1 i (cos @) =2 ((m, y, )50,

where a phase function S is a real-valued function and an amplitude ( does not oscillate
as m — oo (uniformly in other parameters y, ¢). Roughly speaking, it follows from the classical
formula (2.1) that we can replace the discrete sum by a sum of integrals of the form

/ C(m,y, ) Stmy el 2mimiqm, g 7. (1.8)
m>1

The problem on convergence (or uniform boundedness in some parameters) of such an integral
has a long history and is related to the stationary phase theorem [28]. We can anticipate that
a uniform estimate for the sum .# can be proved by this theorem. On the other hand, we have
to be careful to justify it because of the following reasons:

e To use cancelation of the oscillation via the stationary or non-stationary phase theorems,
we need symbol-type (derivative) estimates of (. To do this, we have to study those of the
special functions J, and C7,.

e The integral (1.8) has a lot of parameters and we have to estimate it in a uniform way.

e The J-Bessel function Jb(er,,)(y) has different asymptotic behaviors as m,y — oo on
the regions m < y, m = y, m > y (see Proposition 3.1) and therefore the WKB
form ¢(m, y, p)e'® (m.y:#) has different properties on each region.

e The decay rate of C¥ (cosp) as m — oo becomes worse as ¢ — 0,7 (see Proposition 3.3)
and hence estimates for ¢ = 0,7 are also worse in general. Nevertheless, at ¢ = 0
with 0 < b < 2, we can improve the estimate since the first derivative of S(m,y, 0) vanishes
only on regions where m is small enough (see Theorem 1.4 (i) and Section 5.2).
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1.4 Related problems

In this subsection,’ we mention a few related problems, including those concerning Strichartz
estimates and fractional operators.

e Prove the optimality of our Strichartz estimates (see Theorem 1.1).

e Prove the Strichartz estimates for fractional operators such as H', or (=Aj ) (a > 0).
When a = 1/2, this corresponds to the Strichartz estimates for the wave equation.

e Study properties of the integral kernel E(z, y) of the spectral projection for Hy, , and —Ay, 4.
In [15], the Strichartz estimates on asymptotically conic manifolds are proved by using the
expression of F(z,y) and the stationary phase theorem.
1.5 Notation
Let
N={0,1,2,...}, N*={1,2,3,...}, Ry = (0, 00), R_ = (—00,0).

For a parameter i € I and A;, B;, we write A4; < B; for i € I if there is a constant C' > 0
independent of i € I such that 4; < C'B;. We denote A; ~ B; if both A; < B; and B; < A; hold
for i € I.

2 Preliminary

2.1 A sum of monotonic functions
The next lemma is elementary and follows from the piecewise quadrature.
Lemma 2.1. Let f: R — [0,00) be a continuous monotonically decreasing function. Then
ma
> s [ e
mebN, mi; <m<mo mi1—b

for b >0 and my, mg € R with m; < ma, where bN = {bn | n € N}.

2.2 Discrete oscillatory integrals

In this paper, the following classical formula plays an important role:

Zeis(m)C(m) :/Reis(m)g(m)dm_l Z 1/Rei(s(m)+2”qm)§(m)dm7 (2.1)

27i q
meZ q€Z\{0}

where ((m) = ¢'(m)+iS’(m)¢(m) (for example, see [17, Proof of Lemma 5.3]). In this paper, we
use this formula for a compactly supported smooth function ¢ and a smooth function S, so the
convergence of the sum does not matter. From this formula, we can deduce a discrete analogue
of the non-stationary phase theorem.

Proposition 2.2. Let Cy > 0 for any nonnegative integer c and M > 1, 0<r <1,0<p <1,
k € R. Suppose that supp ¢ C [0, M], [0%¢(m)| < CoMF=P*. Suppose that a smooth real-valued
function S € C*(R;R) satisfies

dist (0, S(m), 27Z) > 7, 10215 (m)| < CaM (0, S(m)].

!The authors would like to thank the anonymous referees for suggesting several unsolved problems and inspiring
the writing of this subsection.
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Then, for each N > 0,

Z eis(m)C(m) < ONMFY A+ rMP)=N,
m=1

where Cy > 0 depends only on 0 < p <1, N >0 and a finite number of C,.

Remark 2.3. In [17], the fact that Cy is independent of r is important since they avoid to use
the stationary phase theorem there. In this paper, we do not use this fact, that is, we use the
case r = 1 only in this paper.

Proof of Proposition 2.2. The proof is a slight modification of [17, Lemma 5.3] and we discuss
briefly here.

By the assumption and the intermediate value theorem, there exists a unique k € Z such
that 0,,S(m) € (2rk,2n(k + 1)). This implies r < 9,,5(m) — 27k < 2w — r. By replacing S(m)
by S(m) — 27k, we may assume k = 0 and r < 9, S(m) < 27 —r.

From the formula (2.1), the problem reduces to the estimates for each integrals appearing
n (2.1). By the change of variable from m to M?m, we have

/ S ¢(m)dm = MP / MM ey (m)dm, (2.2)
R R

where we set Syr(m)= S(MPm) and (pr(m)= ((MPm). Then the assumptions imply |05, (m)|
< CoaM*, |05 Spr(m)] < CalOmSai(m)|, OmSai(m) > rM? and supp Cy C [0,4M'~F]. We in-
tegrate by parts IV times in the right-hand side of (2.2) (use the identity (iS4, (m)) ™ 9p,e*m (™) =
¢ (™) and Lemma A.1) and obtain

/ eis(m)C(m)dm‘ < M- CyMF(L+rMP)™N M = CyMETH (1 4 M),
R

where the term M!=” comes from the volume of the support supp ¢as. The second terms of the
right-hand side of (2.1) are similarly dealt with as in the proof of [17, Lemma 5.3]. [

2.3 A variant of the stationary phase theorem

Here we give a variant of the stationary phase theorem which is used for an improvement of
estimates of .# described in Section 5.2. We consider the following integral with parameters A, ¢:

I\ ) = /Re“‘g(’“"“a)v(u, A o)dp

and its decay rate with respect to A > 1

If we freeze the parameter ¢, then the stationary phase theorem just implies that if u +—
S(w, ) is a Morse function (that is, all critical points are non-degenerate in the sense that
825 # 0 there), the optimal decay rate of I is A~2. To obtain an improved decay, here we
consider the following two scenarios:

e [f we assume that v vanishes with order 2v at all the critical points of S in addition, then

the optimal decay rate is improved to be AT

e If the symbol ~ itself decays like (1 + A\)~", then the decay order becomes AT
The following proposition interpolates the above two situations in a uniform way with respect

to the parameter ¢. A typical example of such a phase function is S(u, ) = (u — ). This
simple case could simplify the reading of the proof below.
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Proposition 2.4. Let v > 0 and ¢,C > 0. Suppose that S € C"O([O, 1]2;R) and y(-, A\, ) €
C>*(R x [0,1]) satisfy

supp (-, A, ) € [0,1], 9 (ps A )| < Cap® (1 + App) ™,
025 (1, )| = ¢, 10u0,5(p,0)| > C

uniformly in p € [0,1], ¢ € [0,1] and X > 1. Suppose that S(-,¢) has a unique criticql
point po(p) which is smooth with respect to ¢ and that po(0) = 0. Then [I(\, )| SATV 72
uniformly in A > 1 and ¢ € [0, 1].

Remark 2.5.

(1) Without the assumption puo(0) = 0, we obtain I(A,¢) S A2 only. The additional de-
cay A~Y comes from the factor (1 + Apu)™" in the assumption of 7 and the fact that
to(0) = 0 as is mentioned before.

(2) We observe that the critical point po(p) of S is close to 0 if ¢ ~ 0. There we take advantage
of the assumption that the symbol v vanishes at zero with order 2v like |y(u, A, 0)| < p?”.
On the other hand, if ¢ is away from zero, then the critical point uo(p) is also away
from zero. In this case, 7 itself decays like A\™” near the critical point (due to |¢| 2 1
and |po(¢)| 2 1), which makes us to prove the improved decay. The difficulty here is to
deal with the case where ¢ is small enough but depending on A.

(3) The critical point of S(-, ) is unique due to the condition ‘825’(;1, go)’ > ¢ in this case.

Proof of Proposition 2.4. We may assume supp (-, A, ) C [)\_%, 1]. In fact, we set

1
Y (A 0) = x(ANz2p) (1, A, @),

where x € C([0,00),R) satisfies x(u) = 1 on u < 1 and x(u) = 0 for p > 2. Using the
bound |7(p, A, )| < ¥, we have

/Re“‘g(“’@'y’(u, A, @)du’ SAY

/X(/\éu)du‘ < ATVTE,
R
Hence, we can replace v by v — 4/, where we note that v — 7/ satisfies

1 o v—« —v
supp(y — ) (5 A 0) € [A72,1], (00 (y =) (s A )] < Cap™ (1 + App) ™.

In the following, we assume suppy(-, A, ¢) C [)\_%, 1]. X
(¢) First, we consider the case ¢ € [(1), 1] satisfying po(p) < 271A72. Since the signature
of GZS(,u, ¢) does not change for 4 € [A72,1] and ¢ € [0,1], we have

10,5 (1, )| =

m
/ 028 (1, )dy
po(w)

I
= / 025 (i, @) | A’ > (i — po(p)) > 27 ep
po(®)

for u € [)F%, 1]. By integrating by parts and using suppy(-, A, ) C [)F%, 1], we have

1
I\ )| = ’(—iA)_N/RelAS(“"")LN'V(M A, @)du‘ <AV Al LNy, A, 0)|dps,
2

where L = 9, 0 (9,5) (i, )~ and we take N > v + 1. We observe from the assumption and
Lemma A.1 that ‘Lny(u, A, cp)‘ < p?¥72N which leads to

M2V72Ndu 5 Aiui%.

1
I @) S AN /

1
AT 2
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(17) Next, we consider the case ¢ € [0,1] satisfying po(p) € [2_1)\7%,1]. Differentiating
(0uS) (o), ¢) = 0 with respect to ¢, we have

|16(0)| = |=(0.048) (1o(). ) /035 (o (), )| ~ 1,
and hence Mo(ip) ~ ¢ for ¢ € [0,1] due to pup(0) = 0. Now the assumption uo(p) > 2-1\ "2

yields ¢ = A7 2.
By scaling, we have

I\ p) = /R MRy (1, N, 0)dp = po ()N /R 025l (1, N)d,
where we set

Se(i) = 1o(@) 25 (no(@)is ), Yops A) = Xy (o)t A, @)

We note that pg(y) is a unique critical point of S(u, ). Let 91,19,93 € CP(R ,[ ,1]) such
that ¢ + o + Y3 =1, supp ¥y C (— ] supp o C [2, 2] and supp ¥3 C [ , ) e write
3
I\, ) = pol@)A~ Z / W0 (9752 00y, Ny ()l = po(@A 3 LA, ).
j=1

First, we deal with I2(\, ¢). Now we see [0,5(u, p)| > c|p—po(p)| for p € [0,1] and ¢ € [0, 1].
Then we have

10uSo (1)) = p10(0) ™" - [(0uS) (1o (@)t )| > clp — 1]

for 11 € supp7,(-,A) and ¢ € (0,1]. Moreover, for « € N and o/ € N\ {0}, we have

1057 (1 M| = N 110 ()1 (057) (0 (0) 11, A, ©)
S N p0(0)* (o))~ (1 + Auo(p)?p) " S ™,
supp(7(+ ) € {p0(9) IATE S p < o)}, 0N Su(u)| < o)

)
)

Thus the stationary phase theorem (see Lemma A.4 with £k =2, j = 0 and zy = 1) implies

(@A @)] S (@A™ - (Mo()?) 7 = A3

9

where we use Aug(p)? > 1.
Next, we consider the estimate of I1(\,¢). We note that [0,S,(n)| 2 1 for p € supp ).
Then the non-stationary phase theorem (see Lemma A.3 with © = v) implies

—v —v —Vv— —v -1 _1_,
o)A L @) S (@A™ (Ao(9)?) T S AT (Ap?) TE = AT,

where we use Aug(p)? > 1.
Finally, we consider the term I3(\, ). We note that [0,S,(1)| 2 (Jju| + 1) for 1 € supp 3.
Then, by integrating by parts N(> 1) times, we have

1o(2)A T [I3(A )| S o)A ™ - (Ao(9)?) ™ S mo(@)A™ - (Ao(p)?)

where we use Auo()? > 1. This completes the proof. |
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3 Asymptotic expansion of special functions
and decomposition of the sum

3.1 Asymptotic expansion of Bessel functions

Here we discuss asymptotic behavior of Bessel functions. For our purpose, we need symbol-type
estimates, which is the estimates for higher order derivatives of the amplitudes. Such estimates
are studied in [17, Theorem 9.1] up to the second derivatives. However, their method cannot be
applied to estimates for higher-derivatives. Their theorem is not sufficient for our purpose since
we need estimates whose order depends on v here. Now we write down the statement here and
give its proof in Appendix A.4.

We define

hi(z) = V1 — 22 — zcos ™! 2, (3.1)
where cos™! z € [0,7/2] for 0 < 2z < 1.
Proposition 3.1.

(1) There are smooth functions a+ y: [0, y— %y%] — C such that

Tu(@) =y~ 1y — )71 (ag g (e W)+ ay(u)e M)
and for each o€ N, there exists Co > 0 such that |0Fas (1) < Co(y — p)=%, fory > 8,
pe [0y —dys].
(1) Let N >0 and a € N. Then there exist Co > 0 and Con > 0 such that

1+«

Coy™ 3 fory>8, pely— 25,y + 2y%],
_1 _1_ _ —N
05 Ju(y)] <  Canp ™3 (0 —y) "3 (y 1 —y)*)
1
fory>8, pely+3ys,00).
Remark 3.2.

(1) The estimate for p € [y + %yé,oo) is weaker than the one in [17, Theorem 9.1] at least
for o« = 0,1,2. In fact, [17, Theorem 9.1] shows that J,(y) and its derivatives decay
exponentially with respect to ¥~ (1 — )3 (due to the term e~¥"2(1/%) in [17]) although we
just obtain the polynomial decay here.

(2) Another drawback of this proposition compared to [17, Theorem 9.1] is not to give symbol-
type estimates of the Y-Bessel functions.

In particular, we have a uniform bound

_1
[Juy) <Cy™3 y=>8, u=>0. (3.2)

3.2 Asymptotic expansion of Gegenbauer polynomials

The following proposition is a refinement of [17, Lemma 10.2] and its proof is given in Ap-
pendix A.6.

Proposition 3.3. Let v > 0. There are functions g4+(m, ), g—(m, @) which are smooth respect
to m € [1,00) and a function r(m, ) defined for m € N* such that

v IOy (cos ) Zgui m, @)e™ ™ +r(m, @)
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for m € N* (we interpret the left-hand side for v =0 as lim,~ v~ 1C% (cos ¢)), and
102 gy +(m, )| < Com® 171+ msin )™, m>1,
r(m, )| < Cn,m™,  meN*

for each N >0, a € N, and ¢ € [0, 7] with constants Cq,,Cn, > 0.

Remark 3.4.

1=a yniformly in ¢ €

(1) In particular, for each € > 0, we have |05,9, +(m, ¢)| < Cqpem”™
[e,m— €.

(2) We do not impose that g, + are continuous with respect to ¢ € [0, 7]. In this paper, we
just need uniform estimates of g, 4+ in ¢ € [0, 7.

(3) In [17, Lemma 10.2], a similar estimate for v~ *C¥, (cos ¢) divided by C¥ (1) is given. Here
we also deal with the estimate for C¥ (1). Moreover, the ranges of the parameters are
extended compared to there.

In particular, we have a uniform bound: For v > 0, there exists C' > 0 such that
lv™1CY (cos )| < Cm* ! meN*,  ¢el0,7], (3.3)

where the left-hand side is interpreted as ‘ lim,~\ o v~ 1 C¥ (cos go)’ when v = 0.

3.3 Decomposition of the sum

In this subsection, we divide the sum .# (b, v; —iy; cos ) into three parts according to the asymp-
totic behavior of the Bessel function.
We fix b > 0 and set

Ly, = D(bv +1)2%. (3.4)
From (1.5), we obtain the formula
j(b’ v; —iy; cos 90) :Lb,l/y_by Z e_%bmin(m—i-u) (y) (m + V)V_IC;;L(COS 30)' (35)
m=0

In the following, we consider the case y > 1 for simplicity. The case y <« —1 is similarly dealt
with (see proof of Theorem 1.4 in Section 6.1).
We define

w(m) :=b(m +v). (3.6)
Corresponding to the asymptotic behavior of the Bessel functions, we define
Q = {m € [1,00) | y— 25 < p(m) <y+2y7},

= {m € 100) | ulm) 2 -+ 30 }.

ol

1
QlZ{m€[1>W)|1§M(m)§y—2y

W=

Lemma 3.5. For y > 1, there exist xo € C°(R;[0,1]) and x;, € C*(R;[0,1]) (1 < j < 3)
such that xo(m) =1 for u(m) <2 orm <1 and

3
Xo(m) + ) xjylm) =1 form >0,  suppx;y C Qj, |0 x2,y(m)| < Cay ™3,
7j=1

|0 x1,y(m)| < Camax(m™, (y — u(m))™),  [Opxzy(m)| < Calp(m) —y)~*.  (3.7)



Strichartz Estimates for the (k, a)-Generalized Laguerre Operators 13

Proof. Let xo € C*(R;]0, 1}) and x; € C*(R;[0,1]) for j = 1,2,3 such that xo(m) =1
for p(m) < 2 or m < 1, Z] 1xj=1on R, suppx: C (—oo,—%], suppx2 C [—2,2] and
supp x3 C [%, ) We deﬁne

1

Xiw(m) = (1= xo(m))x;(y~* (u(m) — )

for j = 1,2,3. They satisfies the desired properties. |

For o = (01,02) € {£} x {£} and j = 2,3, we set

w(m T T
S1o(m, 9, 9) = o1y <(y)> +><02@-_‘§b)7n’ Sas (M, y, ) = (02¢-—‘§b>7n7

where hy is defined in (3.1). We remark that S; ,(m,y,¢) is defined for 0 < p(m) < y. We
take y > 1 such that Qo U Q3 C {p(m) > 8} in order to apply Proposition 3.1. We define

1 1
Co(m,y, ©) = Lyyy " 1x1,(m) (m + v)(y — 1(m)) ™1 gy, (M, ©)ag, y(1(m)),
Cj,Uz (m7 y7 QO) - Lb,VyibVXJ}y (m) (m + V)‘],Lt(m) (y)gV,Uz (m7 90)7 ] = 27 37

where a4 , and g, 4+ are defined in Propositions 3.1 and 3.3 respectively and Ly, is a constant
defined in (3.4).
Now it follows from Propositions 3.1, 3.3, the formula (3.5) and Lemma 3.5 that

I (bv;—iy;cosp) = Y Loy, +Z > Loy, 9) + Ry, 9), (3.8)
oce{x}x{t} J=2 goe{t}

where we set

[o.¢]
Il o y, Z <1 o(m,y, @ 1S1,a(m,y,§0)7 Ij,az (y’ (,0) = Z Cj,az (m7y7 (p)elng (m,y,go)’

m=1

R(y. ) = Loy Z Xo(m)e™ 2 ) (y) (m + v)v ™ O (cos )

+ Lb71/y_by Z 1 - XO gbmiJu(m) (y)(m + l/)’l“(m, (P)

m=0

for j = 2,3. The remainder term R(y, ) is easy to handle.

Proposition 3.6. There exists C > 0 such that
—p—1
[R(y, )| < Cy™™"s
fory>1 and p € [0,7].
Proof. Since xo is compactly supported then the first term in the definition of R(y, ) is

bounded by a constant times y~* -y~ 5= =yt 3 due to (3.2) and (3.3). Moreover, the second
term has a similar bound since r(m, y) is rapidly decreasing by Proposition 3.3. |

In the following, we focus on studying I , and [;,.
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3.4 Properties of the phase functions

Here we prove some estimates of the phase functions defined in the last subsection. We recall
hi(z) = V1 —22 — zcos™! z and B} (z) = —cos™! z. For 0 = (01,02) € {&} x {£} and j = 2,3,
we have

amsl,ﬂ'(m7 Y, 80) = —O'leOS_l <Iu(y"n)> + 02 — gb? amSUQ (’I?’L, Y, (70) =020 — gb7
where p(m) is defined in (3.6).
Lemma 3.7. Let 0 < § <1 and o0 € {£} x {£}.

(1) For a € N*, there exists Co > 0 such that

Coy™® for 1. < pu(m) < dy,
1 1
Cay 2 (y — p(m)) ™2 for 6y < p(m) <y — Fy3

[N

‘8%+1SI,0(m7 Y, @)‘ < {

and form € Qq1, y > 1 and ¢ € [0, 7.
(13) For a € N*\ {1}, we have 0%,S4,(m,y, ) = 0.

ol
z

Proof. Since 9,cos 'z = —(1 — 22)7%, we have 02,51 o(m,y, p) = o1b*(y* — p(m)?)
have

1

09181 o (m,y, )| = [0%57102,51 0 (m, y, 0)| S v (y? — p(m)?) "2
_1 Casl
<y 2(y—p(m) 2.

If 1 < p(m) < 8y, then we have (y — u(m))~! < y~!. Combining these estimates, we obtain the

~

part (i). The part (ii) is easy to prove. [

3.5 Estimates of the amplitudes

In this subsection, we deduce estimates for (1 , and (j,, which are defined in Section 3.3. Recall
from (3.6) that u(m) = b(m + v).

Lemma 3.8. Let 0 = (01,02) € {£} x {£}, N >0,0<e <7/2 and a« € N. Then

(2) supp C1,0(- Y, ) C Q1 and supp (.o, (¥, ) C Q; for j = 2,3.
(17) Let 0 <0 < 1. We have

y (1 + m)? (1 + msin )™ when p(m) < dy,

10.C10 (M, 9, 0)| S y2ow= ( pw(m))~ i “(1+ Tilsmap)*”
when 8y < pu(m) <y — 5y3

form >1,y>1 and ¢ € [0,7|. In particular, for fized € > 0, we have

—by—l —
. y (1+m)V o when p(m) < dy,
|0mC1o (M y, ) S 97 1y lq 5 Lyb
Y iy — p(m))~i when éy < p(m) <y — zy3

form>1,y>1and ¢ € [c,m—¢].
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(731) We have

(1-b)r—3 _
y 5 forpele,m—¢l,
m? ) fg
and form > 1, y > 1. Moreover,
085 Gaa (., 0)| Sy

form>1,y>1 and p € [0,7].
(tv) We have

1
3
5
G300 (M, )| S yI=0 13 (u(m) — y)~4
1
3

and form > 1, y > 1. Moreover,

1«
’8%43702 (m7 Y, 90)| S y(2ib)l/717§
form>1y>1 and p € [0,7].
Proof. (i) This follows from the definition of (1 +, {j,», and the support properties of x;, (3.7).
(23) It turns out from Lemmas 3.1, 3.3 and 3.5 that
98510 (m.y, @) Sy 7E (1 m)™ (y = u(m)) ™5 (14 misin ) ™
x max((y — p(m))~*,m=%).
Now the claim in (ii) follows from the supporlt property of (i .. )
(i4i) We note that Qp = {m € R |y —2y3 < u(m) <y+2ys}. This part directly follows
from Lemmas 3.1, 3.3 and 3.5.
(iv)IWe recall 11(m) = b(m+v) and that (3,5, (m,y, ¢) is supported in Q3 = {m € R | p(m) >
Y+ %gﬁ} By Lemmas 3.1, 3.3 and 3.5, for each N > 0 and « € N, we have
by b1 . Nw 1y -N
105.C.05 (M, 0)| Sy~ (14 m)™ =5 (14 msing) ™ (u(m) —y) "5~ (y~ " (u(m) — 9)*)

for m > 1,y > 1 and ¢ € [0,7]. We note that y~(u(m) —y)> > 1/8 and pu(m) —y > 1
for m € Q3. All the estimates we desire are proved by these inequalities.

<
H -

4 Estimates of Iy,, and I3,

In this section, we prove bounds for I ,, and I3 5, appearing in (3.8). They are easier to handle
than I ,. In this section, we assume b > 0, v > 0 and let o9 € {£}.
4.1 Intermediate region

Proposition 4.1. We have

1-byv

Y if b¢ 27,
L0, (y, 0)| S
| 2, 2(y QO)| {y(z_b)y ifb €2z

fory>1 and ¢ € [0,7].
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2—b)v

Proof. By Lemma 3.8 (i) and (iii), we have |Ca.0, (m, y, ¢)| < ot =3 and

l —
Bos (@)l SYP70775 3 15y,
meNaNN

where we recall Qy = {m1€ R|y— Zy% <ulm) <y-+ Qy%} and use the number of element
of 22 NN is bounded by y3 times a constant.

We next consider the case b ¢ 2Z. A similar argument implies | Iz, (y, )| < ¥~ uniformly
in ¢ € [e,7—¢] (with a constant 0 < ¢ < m/2), where we use the first estimate in Lemma 3.8 (iii).
Thus, it remains to prove the bound of Iy, (y,¢) for ¢ € [0,e] U [r — e, 7] with ¢ > 0 small
enough when b ¢ 2Z. In this case, we have —5b, oom — §b ¢ 27Z. Then we find £ > 0 small
enough such that there is ¢ > 0 satisfying dist (Ugg@ - 5b, 27TZ) > ¢, for p € [0,e) U (m — e, 7.
This implies dist(0p Sy, (M, Y, ), 27Z) > ¢, for ¢ € [0,e) U (r — e, 7]. Moreover, it follows from
Lemma 3.8 (iii) that |0%(2,0,(m,y, )| S y(2_b)”_%_%. Clearly, we have %S, (m,y,p) = 0
for « > 1. Applying Proposition 2.2 with k¥ = (2 — b)v — %, r=c, M ~yand p= %, for
each N > 0, we obtain |I2 4, (y, p)| <y~ for ¢ € [0,6)U(7—¢,7]. This completes the proof. W

4.2 Decaying region
Proposition 4.2. We have

(1-b

Y ifb ¢ 2Z,
I3.0, (Y, 0)| S

| 3, 2<y SO)’ {y(g_b)y Zfb c 27

fory>1 and ¢ € [0, 7].

Proof. We recall u(m) = b(m + v). Taking x € C*°(R;[0,1]) such that x(u) = 1 for p < 2
and x(u) =0 for u > 4 and setting ¥ = 1 — x, we write

Is.0,(y, ) = (Z (x(r(m)/y) +x(u(m)/y))(3.05(m,y, SD)eik%(m,y,w)>

m=1

=: 131,05 (ya ‘/7) + 1320, (y7 90)'

First, we deal with the second term I3 2 4, (y, ). Let N > 0. Then Lemma 3.8 (iv) implies

(G (my, @)l S (L+m)™ 1 for m € suppX(u(m)/y).

Thus we obtain

oo

oo ()l S Y, (4+m) NSy
pu(m)>2y,m>1

Next, we deal with the first term I3 1 5,(y,¢). Lemma 3.8 (iv) implies

N[

(2—b)y+%(

1G.oa (MY, 0)| Sy p(m) —y) for m € supp x(u(m)/y). (4.1)

Hence,

L _s
131,05 (4, 0)| S g0 F 12 S (ulm)—y) i
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where we use Lemma 2.1 in the second inequality. Consequently, we obtain |31 q,(y, )| S
y2=" which completes the proof for b € 2Z. When b ¢ 27Z, a similar argument implies
113100 (9, 0)| Sy 0% uniformly in ¢ € [e,m — €] (with a constant 0 < ¢ < 7/2), where we use
the second estimate in Lemma 3.8 (iv) instead of (4.1). Thus, it remains to prove the bound
of I3 1,0, (y, ) when b ¢ 2Z for ¢ € [0,e] U [r — ¢, 7] with € > 0 small enough.

Finally, we suppose b ¢ 27Z and prove the bound for I3 ,,(y,¢) for ¢ € [0,e] U [1 — &, 7]
with € > 0 small enough. In this case, we have —5b, oom — 5b ¢ 27Z. Then we find £ > 0 small
enough such that there is c. > 0 satisfying dist(c2¢ — 5b,27Z) > ¢, for ¢ € [0,e) U (7 — ¢, 7].
This implies dist(0,S3,5, (M, y, ¢), 27wZ) > ¢, for (p S LO €) (m —e,m|. Moreover, it follows from

Lemma 3.8 (iv) that [0%(3.1.0,(m,y, )| <y Y175, Clearly, We have 80‘+ng o(m,y, ) =0
for a > 1. Now applying Proposition 2.2 with k‘ = (2-0bw r=c, M~ yand p= 1
for each N > 0, we obtain |I31.5,(y, )| <y~ for ¢ € [0,6) U (7r — ¢g,m|. This completes the
proof. |

5 Estimates of I, ,

In this section, we prove estimates for I; ,, which are more delicate than those of I>,,, I3,.
We assume b > 0, v > 0 and let 0 € {£} x {£}.

5.1 General bounds for b > 0

Proposition 5.1. Let € > 0. Then

(1-b)v

y f0r¢€[€7ﬂ—_€]7
|Il,o(y390)| 5 {y(Qb)V

for ¢ €0, 7]
and for y > 1.

Proof. We deal with the case ¢ € [0, 7] only since the proof is almost same if we use the first
estimate of Lemma 3.8 (ii) instead of the second one.
The identity (2.1) implies

Ila /Clamy7 )15’10(my@)d

1
o X o[ Galmy S, (5.1)

GZ\{O}

where we set C1.o(m,y,¢) = OC1o(m, y,0) + 1O S1.0) (M., ©)C1o(m, y, o). By Lemmas 3.7
and 3.8 (ii), for each ¢ € {Cl o C1 U} we have

7b1,,,(1 + m)2y—a when pu(m) < %yu
(2-b)v—1 i S Tk
i(y — p(m))"37® when 3y < pu(m) <y — lys

form > 1,y > 1 and ¢ € [0, 7]. Moreover, supp ¢ C €; holds.
Now we consider an integral

Iq = Ac(m,y, ¢)eis1,0(m7yv¢)+2ﬂ-iqmdm

102¢(m, v, )| S {y (5.2)

for g € Z and ¢ € {§17U,§17U}. Taking ¢y > 0 such that [0,,S1,6(m,y, )| < cp form >1,y>1
and ¢ € [0,7]. Now we show that

< fre for gl < co/.
Y@L+ |g))~t for |g| > co/m,
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and for y > 1 and ¢ € [0, 7]. These estimates immediately imply the bound |I; ,(y, )| < y~0
due to the identity (5.1).

First, we deal with the case |¢| > co/m. Since |0m (S1,6(m,y, @) + 2mgm)| > 27|q| — co 2
(1+1ql), for v > 0, the integration by parts yields

1 . .
O v, elS1,0 (m,y,p)+2migm 4 ‘
/R (am(sl,a(mv Y, 90) + qum) C(m Y gp)) "

< / <|8'r2n51,0'(m7y) SO)HC(ma Y, ¢)| + |amC(m>y7§0)| > dm
n R |am(Sl,0'(m7y730) + 27rqm)|2 |am(Sl,0'(m7yv SO) + 27rqm)|

|Iq’ =

St gy / (1 +m)2~Ldm
1<p(m)<2y,m>1

1 (9—bw_1 _s5 1 (9B
+ (1+ |g) 1y 4/ Ay — p(m)"tdm < (1+ |q]) "'y,
2y<p(m)<y—3y3

where we use (5.2), Lemma 3.7 (i) and the support property supp ( C €2;. The case v = 0 can
be proved similarly if we use the integration by parts twice.
Next, we consider the case |g| < c¢p/m. By the change of variable p(m)(= bm + bv) = yu,

I, =blei(o2§ =5+ 50w, bt AeinQ(“’”)vy,w(ﬂ)dﬂ’

where we set

T 2mq _oywal (Y
Sy @) = orha (1) + (ozf —5t b) ueo we(p) =ytmArtag (7“ -~ V,yvso) -

Thus it remains to show

Aeiysq(u7@)7y7¢(u)dﬂ‘ < y*% for y>1, ¢el0,n]. (5.3)

By (5.2),
_ 1 1 2
100 Yo ()] S (L= p)737%,  suppyye C{peER[0<pu<1— L

for y > 1 and ¢ € [0, 7.
We write

/Reiysqw"p)’Yy,go(M)duz/Reiysq(u’(p)ﬁ’y,go(ﬂ)wl(u)du+/Reiysq(u’w)%,w(#)w?(ﬂ)d“

=1 + I,

where 1, 5 € C2*(R; [0, 1]) satisfy 61 (1) + (1) = 1 for i € [0, 1], 1 () = 1for 0 < pu < 12
and 1o(p) =1 for 1 —0 < p <1 where § > 0 is determined later. Since

0284 (1, 0)| = |o107ha ()| = | (1 —MQ)_%! >1  for p€suppyy N0,1],

the stationary phase theorem (see Lemma A.5 (i) with A = y) implies |I;]| < yfé. On the other
hand, using the change of variable ' = /T — p (with g = 1 — u’?), we have du = —2u'dy/
and I, = [, e¥Sa(W'2) o (1) Ay, where we set Sy ) = Sq(1—p2,¢) and vo(p') = 24y (1 —
)2 (1 — p'). We note that

1_ 1 _1
0572(u) S W27, suppyz C {ﬁy s < < \/25}
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for y > 1 and ¢ € [0, 7] and that S, is smooth with respect to y’ close to 0 and ¢ € [0,7]. Tt
follows from the identity

83,§q(u', p) = 0182,(h1 (1 — u’z)) = 1201;/]1’1'(1 — ,u’2) — 801//3h§3)(1 — ,u,’2)
= 4201 + O (i) as p' —0

that ‘82/5(1(;/,90)‘ 2 1 for ' € suppys and ¢ € [0,7] if § > 0 is small enough (here we note
that h(1— ) is smooth at p/ = 0 although h(p) is not smooth at g = 1 ). Thus, the
stationary phase theorem (see Lemma A.5 (ii) with A = y) implies |I3| < y~2. This proves (5.3)
and completes the proof of Proposition 5.1. |

Jun

5.2 Improvement for 0 < b < 2

In this subsection, we improve Proposition 5.1 near ¢ = 0 when 0 < b < 2.

Proposition 5.2. We assume 0 < b < 2. Then there ezist oo > 0 such that |I1 »(y, )| S y(-bw
fory>1, ¢ €0, po].

Remark 5.3. Combining with Proposition 5.1, we obtain the uniform estimates for ¢ € [0, 7 —¢]
with arbitrary € > 0.

In order to prove it, we need a more information about the phase function S ,. In the part (i)
of the next lemma, we use the assumption 0 < b < 2 crucially. This is used to prove that the
second term of the right-hand side in (2.1) is harmless.

Lemma 5.4.

(1) There exists eg > 0 such that |0pS10(m,y, @) < 2 —eg for allm € Q; and y > 1
and ¢ € [0, (1 — 2)x].

(13) There exists ¢1,co > 0 such that |0, S1,6(m,y, )| > co form € Oy, y > 1 with p(m) > %y
and ¢ € [0,p1].

Remark 5.5. If b > 2, then 0,51 +(m, y, ¢) can take a value in 27Z\ {0}. This prevents better
estimates of I ;.
@) + o2 — 5.
(#) This follows from a direct calculation: |—boy cos™(2) + o2 — 5b| < b+ < (1+ Byr for
p e [0, (1 — %)w] and 0 < z < 1. Then we set g9 = (1 - %)W, which is positive since 0 < b < 2.
(74) This also follows from a direct calculation

Proof of Lemma 5.4. We recall 0,51 5(m,y, ¢) = —bo1 cos_l(

‘—bal cos™H(2) + oo — gb‘ > (g —cos™! z) b—lp| > %b — ||

for % <z < 1. Taking 1 = ¢p = %’, we obtain the bound in (ii). n

Proof of Proposition 5.2. Define ¢q := min((l — g)ﬂ', <p1) > 0, where ¢ is as in Lemma 5.4.
Taking x € C*(R;[0,1]) such that x(u) = 1 for 4 < 1/2 and x(u) = 0 for p > 3/4 and
setting Y = 1 — x, we write

o0

I1,a(y, @) = Z (x(pu(m)/y) + Y(N(m)/y))ﬁ,a(m, v, SD)Gisl,g(m,y,w)

m=1

=116, 9) + 1120y, @)
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By the support property of ¥ and Lemma 3.8 (ii), we have

o

|05, (X (1(m) /y)C10 (M, y, 0))| S y(Q_b)"_%— 3.

Moreover, by virtue of Lemma 3.7 (i) and Lemma 5.4 (i), (ii), the phase function S} , satisfies the
assumption of Proposition 2.2 with » = min(cg, &9), M ~ y and p = % Applying Proposition 2.2
with k = (2 — b)v — 3, for each N > 0, we obtain |I12,(y,¢)| < y~V. Thus, it remains to
estimate I1 1 +(y, ¢).

We write I1 1, as in (5.1) and consider the integral

Iq - / C(ma Y, (p)eiSLU(mWM)JrZﬂiqmdm? for C S {Ci,(f’ Cil,a
R
where we set
(o (msyy, ) =x((m)/y)C10(m,y, ¢),
Lo (M, y, ©) =0m 1 o (M, y, @) +1(9mS1,6) (M, Y, 0)C1 o (1, Y, ).

As in the proof of Proposition 5.1, it suffices to prove the existence of ¢y > 0 such that

(1-b)v f =0
WL+ gl) for gl 2 1,

and for m > 1,y > 1 and ¢ € [0, po]. By Lemmas 3.7 (i), 3.8 (ii) and the support property of ¥,
for ¢ € {¢1 ,,¢7,}, we have

10%¢(m, y, )| Sy~ 2m® (1 + msin )™ (5.5)

and supp ((-,y,¢) C {m > 1| u(m) € [p(1), 3y] }-
First, we consider the case |¢| > 1. In this case, we have

0m (S1,0(m,y, ) + 2mgm)| 2 (1 + |q|)
by Lemma 5.4 (i). By using integration by parts many times, for each N > 0, we have
Iyl Sy V(1 +1gh)™N

due to Lemma 3.7 (i) and the estimate (5.5). This proves the second estimates of (5.4).
Next, we consider the case ¢ = 0. By the change of variable u(m)(= bm + bv) = ypu,

Io = b te iz 5= )bry (2-b)+3 / e Py, o (m)dp,
R

where we set

- $F_T =2tk (YR
S(p, ) Ulhl(u)+(02b 2)% Yy (1) =y 2<(b V,y,cp)-

By (5.5), the support property of x and ¢ < sin ¢, we have

.3
0%y ()] S 12 (1+ yeop) ™7, SUpp Yy, C [u(l)y 1,4]

Moreover, the phase function S(u, ¢) satisfies the assumption of Proposition 2.4 with the critical
point () = cos (o1 (=5 + 02%)). Now Proposition 2.4 with A = y implies
|IO‘ 5 y(27b)1/+% . yfu 2 _ y(l b)

This completes the proof. |
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6 Proof of the main theorem

6.1 Proof of Theorem 1.4

The claim (i) for b = 1 directly follows from [2, equation (4.45)]. Hence we may assume b # 1.

Let Ry > 1. First, we prove the theorem for |y| < Ry. To do this, we follow the argument
in [2, Lemma 4.17]. Using the bound }1:,\(111)‘ < elBewID(N+1)~1, C¥(t) = 1 and lv=ten ()] S
(14+m)?*~! for m > 1 (see [2, equation (4.16)], [2, Fact 4.8] and (3.3)), we have

ZO" 1
|‘ﬂ(b7 Vﬂ ly,COS@” ~ ( +m) ‘y| F(bm+by+ 1) ( +m)

3
Il
=)

(1+m)%

. bm
fom+ovr1) Y

I
WE

0

3
]

which is convergent and bounded by a constant independent of y € R with |y| < Ry.

Now the estimate for y > Ry follows from the decomposition (3.8) of .# and Propositions 3.6,
4.1,4.2, 5.1, 5.2.

The case y < — Ry is similarly dealt with due to the formula

o0
S (b, v;iy; cos p) :Lb,ueibmry_by Z egbmi*]b(m-i-u) (y)(m + l/)l/_lc;;m (cos ),
m=0

which in turn follows from the identity J,(ey) = €'*".J,(y) and (3.5).

6.2 Proof of Theorem 1.1

Now we use the following general result due to Keel-Tao.

Theorem 6.1 ([18]). Let X be a measure space and {U(t) }1er be a bounded family of continuous
linear operators on L?(X) such that there are C > 0 and o > 0 such that

IU@U ()"l 1 (x) Lo (x) < Clt =577

for all t,s € R with t # s. Let (p,q) € [2,00]? such that

422 and  (pg0) #(2,00,1). (6.1)
Then there exists C' > 0 such that

|U@)ull o w;zax)y) < Cllullzzix),

n VU £()s <clfl

Le (RsL1 (X)) LP2(R;L%2 (X))’

where (p1,q1), (p2,q2) satisfy (6.1) and r* denotes the Holder conjugate of r: r* =r/(r —1).

First we note that the operator norm of an operator from L! to L™ is equal to the L>-norm
of its integral kernel. We may assume 7' < 7 due to the argument in Appendix B.

First, we consider the cases

e n=1and a>2— 4k,

en>2and (0<a<lora=2).
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We claim

le itk (z,2/)| S |t~ for |t < (6.2)

Do 3

Let us prove the claim for the case n = 1 and a > 2 — 4k. In this case, we have oy, , > % and [2,
Proposition 4.29] implies

a /a
eiw cot (t)

(isin(t))T%.a

- 2\3333’]% zr' - 2\1‘1"\%
I, _ I —_— . 6.3
x ( ke (aisin(t) * (CLlSln(t))2 ko145 \ aisin(t) (6:3)

From the asymptotic expansion of the I-Bessel function [33, Section 7.23 (2), (3)], we see

e_itH’“ﬂa(a:, x') = I'(ok,q)

+iy

(1+0(y™)) (6.4)
as y — oo. Hence (6.4) and I,(2) = (£)™I,(z )1 imply that there exists C' > 0 such that
Loy -1 (iy)| + ‘ya Cpa— 142 2 (iy)| < C(1+ |y\) 7kat3 < O for any y € R. Therefore, our claim
(6.2) follows from (6. 3)

Let us consider the case n > 2 and (0 < a < 1 or a = 2). Since du¥ is a probability measure,
we see

Using this estimate and (1.6), we obtain

< |1 fllzoe(j=1,1))-
L0 (RN xR

[ e aake

‘e*itH’“v“ (z, x')‘ <Cha sup

| sin(t)|7Fa ei—1)

2 a .Qx%x/%
f(, e — 1);—1".";77) ’

a’ 2 asin(t)

Therefore, the claim (6.2) follows from Theorem 1.4 (ii).
By the claim and Theorem 6.1 with Uy(t) := 1)o7 (t)eTiHra  we obtain the homogeneous
Strichartz estimates (1.3) and

t
’/ e =9 e £(5)ds
0

t
‘/ ei(t_S)Hk’“f(—S)dS
0

< 1]l
Lr1((0,T); L)

Lpz ([0,77; qu)

< Clf]

LP1([0,T];L91) P3 ([-T,0]; qu)

Since

I’

171 (|=T,0);L91)

t
‘ /0 e_i(t_s)Hk*“f(s)dS

we also obtain the inhomogeneous Strichartz estimates (1.4).

Next, we consider the case when 1 < a < 2and k = 0. Let 0 < g < 27. Take a finite partition
of unity {x; é-vzl cC*® (S”_l; [0, 1]) on the sphere such that w,n € supp x; = w- 0= > cos pg. Due
o (1.7) and Theorem 1.4 (i), there exists C' > 0 such that |x;(&)e ke (z, ')y, (2 )‘ < Ct|~o0a
for |t| < T and x,2" € R™ \ {0}, where we recall # = x/|z|. Hence,

t
/O ei(t_s)Hk’af(—S)dS

L1 (j0,T];Lm) ‘

s (@)e ™k (2, 27) X ()| oo ) < CTE = 5770
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for \t\, |s| < 7 with ¢t # s. Applying Theorem 6.1 with U(t) := 1j_71](t)x;(%)e e ke we obtain
HX —itH (T1):Le) < C||lu||z2. Since the number N is finite and since Z X =1
we obtaln the homogeneous Strichartz estimates (1.3).

The inhomogeneous Strichartz estimates (1.4) when 1 < a < 2 and k£ = 0 follow from
the Christ-Kiselev lemma [5] and a complex interpolation since the end-point case (p;,q;) =
(2 290,0 ) is excluded (see the proof of [4, Theorem 6]).

7 00,a—1

6.3 Proof of Theorem 1.3

Let us define elements of s[(2,R) as follows e™ := (J¢), h := (§%), e = ({9). As
sume oo > 0. Then it is proved in [2, Theorem 3.30] that there exists a unitary represen-
tation Q4 of the universal cover SL(2,R) of SL(2,R) on the Hilbert space L*(R™, 9}, ,(z)dx)
(see (1.1) for the definition of ¥y ,) satisfying

it|z|?

Qo (exp(te™))u(z) = e o u(z), Q.o (exp(th))u(z) = et"kvau(e%;p),

it|z|2~ %Ay,

Qpalexplte u(e) = ¢ Fu(z),  Qalexpl(tle” —e))u(x) = e Hrou(z)
for any u € L?(R™, 9y o(x)dx). Let 0 = arctan(t). We apply ., to the identity

o 2
exp(@(e* — e+)) = exp(—te+) exp <1g(12+t)h> exp(te™)

in é\I:(Q, R), and we obtain

—it|z|*

e WHray(z) =e (1+ t2)

=5 (e“_A’“U> ((1+2)" ) (6.5)

for any u € L?(R™, 9y, o(x)dx).
it|z|*2A, it|z| "2 A,

Proof of Theorem 1.3. From (6.5), the integral kernel e~ & (z,y) of e™ a equals

it|z|®

e(+t2)a (1 + t2) eflarctan(t)H;C a ((1 + t2) _Tll,? y)

Therefore, the similar arguments as the proof of Theorem 1.1 and the equation

(1+ t2) sin(arctan(t)) =t

it\z|a_ Ap

a (z,y)| S |t[~7%e for t € R, and Theorem 1.3 follows. [

imply |e

A Asymptotic behavior of special functions
A.1 Leibniz’s rule
We frequently use the following formula, which directly follows from Leibniz’s rule.

Lemma A.1. Letr be a smooth function and N € N\{0}. Then there exist smooth functions b;n
such that

2

() (g

N—j
B with @ <Y Y H‘T

j= k=1 l1++Lp=N—j,i=1
L1yl >1

(89; o r(:c)
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Remark A.2. More precisely, we have

N—1 /N—j ko) (p ‘
(0 or(@) ™) =~ voN + o )ORIRCI | ey P
r(z) r(x)N < )

k=1 €14+l =N—j,
Ly 21

with constants Cgﬁz...zm > 0.

A.2 Non-stationary phase theorem with a singular amplitude

The following lemma is more or less well known and an easy consequence of integration by parts.
We give a proof for completeness of the paper.

Lemma A.3. Let p > —1, v € C*°((0,00)) which is supported in x < 10 such that for o € N,
we have |0%y(z)| < |x|P~* for x € (0,00). Let f € C®(R) satisfy Im f(xz) > 0, f'(x) # 0
for x € supp~y and f(0) € R. We define

bu(N) == ei’\f(o)/ v (z)eN @) dg for Az 1.
0

Then for each o € N
O3B S AT Az (A1)

)ei)‘f(w)dx‘ <AL for x> 1.

Proof. We only need to prove these estimates for sufficiently large A.
First, we prove (A.1) for a = 0. Let x € C°(R) such that x(z) = 1 for |z| < 1/2 and x(z) =0
for |z| > 1. Define x(x) = x(Az) and Xx(z) = 1 — xx(z). Then we have

‘/ 1>\f( %) A <

On the other hand, the integration by parts yields

/ooo’Y( )X (x)e™ D da

1/
/ zhdr < AR (A.2)
0

—\ N

/ T Y (@)m@)eM da

0

where we define L = 8, o (if'(x))~!. By using Leibniz’s rule, Lemma A.1 and the assumption
f' # 0 on supp+y, we obtain |LY (y(z)xx(z))| < |z[*~V. Hence, for N > p+ 1,

10
<A / 2P Ndg < AL (A.3)

1

/ (@)X ()N @ d
0

2\

The inequalities (A.2) and (A.3) imply (A.1) for o = 0.
To deal with the case a > 1, we write

05,0 = 7O |7 (f(@) — F(0) (@)
0
By Taylor's theorem, we have 93'(3(x) (/) £(0))°) = O(Ja**~~) for € supp~. Moreover

!e*i)‘f(ow = 1 due to the assumption f(0) € R. Hence the same argument as the case o = 0
gives (A.1) for o > 1. [
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A.3 Stationary phase theorem

In this paper, we use the following versions of the stationary phase theorem (the van der Corput
lemma). The proof is same as the proof of [27, Lemma 1.1.2] (see also in [28, p. 334]). The
statement about uniformity in a parameter follows from its proof and Lemma A.1. We consider
an integral

I(\) = / ()M @z for A > 1.
R

Lemma A.4. Let k > 2 be an integer and j > 0, g € R, v € C®(R \ {zo}) N C.(R)
and f € C®(R;R) such that |03y(x)| < |z — w0l =, |f(2)] < |v —ol* and |f'(2)] 2 o —zo|*
for z € suppy \ {zo}. Then |[IN)| <A™ % for A > 1.

As a result, we also obtain the following version.
Lemma A.5. Let v € C*(R\ {0}) NC.(R) and f € C*(R;R).

(i) Let v > 0. Suppose that 05~ ()| < |a|*~P for x € R\ {0} and f"(z) # 0 for x € supp~.
Then [I(N)] S A72 for A 2 1.

(13) Suppose that lafy(z:)l < |:E’%76 for x € R\ {0}, f(0) =0 and f"(0) # 0. If supp~y is
sufficiently close to 0, then [I(A)| S A™2 for A 2 1.

Remark A.6.

(1) The main difference between Lemma A.4 and this lemma is that we do not assume f'(0) = 0
in (i) for example.

(2) The estimates in (i) and (ii) are optimal. If in addition we assume that supp~ is close to
0 for the case (i), then the optimal estimate would be [I(\)| < A—2(H),

Proof of Lemma A.5. The proof of the part (i) is almost same as the case (ii). Thus we only
deal with the case (ii).

(i1) We may assume f(0) = 0 since |e )‘ = 1. Moreover, we may assume that a := f”(0) is
sufficiently small since our result directly follows from [28, p.334, Corollary] for a away from 0.
For simplicity, we also assume a > 0 and f”’(0) > 8.

First, we consider the case where a®\ < 1. We write f'(x) = az + wxz + g(z) with
g(z) = O(|l’|32 Then we can take supp~ small enough such that |f'(z)| > |z|? for € supp~y
with 2| > A73 due to the assumptions a3\ < 1 and f”(0) # 0. Take x € C°((—2,2);[0,1])
such that x(x) =1 for |z| <1 and set x\(x) = X()\%xv) and Xy =1 — xx. Then

iAf(0

/ (@)X ()N @) da
R

<[ eltasgacion ok
|z|<2A"3

On the other hand, the integration by parts yields

[ @@ s
R

<! /R 102 (f(2) "y (2) % () |z

< /\1/ o) e S AT
|

a|>27%

Thus we obtain [I(A)] < A™2.
Next we consider the case where a3\ > 1. Taking supp 7 sufficiently close to 0, we may assume
the following three conditions hold: Critical points of f (on supp+y) are x = 0 or z = xo(a) with
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|zo(a)| € [4,2a] (due to the factorization f'(z) = z(a+ f (a:)) with h(z) = O(2?)).
The second condition is | f”(zg(a))| = |a|. The third condltlon is |f’( )| = |ax| for |z| > a.
By scaling, we have

1

I(\) = a3 /R’ya(x)eikag’f”(x)dx, fa(z) = a3 f(ax), Yao(z) :=a” 2v(azx). (A.4)

We observe f,(z) = 522 + wyc?’ + O(alz|*) and J@ffya( z)| S |x]%_ﬁ. Moreover, critical points
of foarex = 0orz = a 'wg(a) with | zo(a)| € [, 3], [f/(x)| Z 1and |f(z)| 2 2| for x| > 1.
Then we divide the integral (A.4) into three parts I1(\), I2(A), I3(A), where the integrand of I;(\)
is supported close to 0 for j = 1, a lzg(a)~! for j = 2 and |f”(x)| = 1 on the supports of the
integrands of I;(\) and IQ()\) for suffigiently small a. Then Lemma A.4, with the large param-
eter Aa® gives |[1(\)] < a2 ()\a ) 2 2072) < A=3 and | (V)| < a2()\a ) 2 =A" 2 (for the latter
case, we use f’(z(a)) = 0 and use this lemma for the phase function f(z) — f(z(a))). Moreover
integrating by parts many times, we have |I3( 1)| < a2 ()\a ) N for all N > 0. Taking N =
we obtain [I3(A)| < A~ 2 and hence [T\ < A7z,

l""

A.4 Asymptotics of the Bessel function

In this appendix, we prove Proposition 3.1. First, we seek a nice integral representation approx-
imating the Bessel function J,(y).

Lemma A.7. There exists x1 € Cf((—%{,%{);[o, 1]) such that x1(w) = 1 for |w| < %’r
and x1(w) = x1(—w) such that
1

Ju(y) = o Rei(ysmw_“w)m(w)dw + Ro(p,y)  for pu=>0, y>1, (A.5)

where Ro(,y) satisfies [0 Ro(p, y)| < COna(1 +y + )N for each N € N.

Proof. It is known (see [33, Section 6.21(3)], see also [17, equation (9.7)]) that the Hankel
function can be written as

1 0 i co+mi ]
D=t ([ [ [T e o

and Re H,,(y) = Ju(y). Since the curve [—oo,0] U [0, 7i] U [ri, 00 + 7i] is not smooth, we will
deform it to remove the corner at wi by using the Cauchy integral formula, where we note
that the corner at 0 is not involved with the asymptotics of J,(y). More precisely, we take
a curve v: R — C such that « is smooth and |4/(r)| = 1 except at 0, and

r for r <0,
v(r) =< ir for 0<r< %W,
r—sm—L+ir for 7“2%77+L,
R >0, 2 3
ey(r) = 5 for —a<r<-w+2L
Im~(r) € [3F, 7], 3 4"

with a constant L > 0. Since Re(ysinhw — pw) = ysinh(Rew) cos(Imw) — pRew and y, u > 0,
we have

Re(ysinhw — pw)|y—yy <0 for r>0. (A7)
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Now we take x1 € C2°((—2F, 21);[0,1]), x2 € C°([3, 2F+2L];[0,1]) and x5 € C=(R; [0,1])
such that x1 + x2 + x3 =1 on [0, 00) and

27
x1(r) = x1(—r), xi(r) =1 for |r| < —

3?
(r) 0 for TS%W+L,

)=
X3 1 for r2%7r+2L.

By the Cauchy’s integral formula, we rewrite (A.6) as

1 /0 . 1 (™ . . _
H,(y) = — / eysinhw=pw qy) 4 — /0 el s w=iw)y (w)dw + Ro(p, y),

7T oo T
. 1 . B
Roluyy) = = /R Y SA))yo (1)3 (r)dr

1

—imp ) 2
+ 2 - / e ysinhw—pw, (w + -+ L) dw.
1 R 3

Since the first term is purely imaginary, we obtain

1 [ itrsimm s _
Ju(y) = Re Hy(y) = /R WS () dw + Re Ro(u, ),

T on

where we use x1(r) = x1(—7), supp x1 C (=3, 37) and ysin(—w) — p(—w) = —(ysinw — pw).

Now we set Ro(u,y) := Re Ro(p,y). It suffices to prove lﬁfjﬁo(u,y)] < Cna(1+y+p)~™N for
each N e N p>0andy>1.

We note that |0,(ysinh~(r) — py(r))| > |ycosh(Re~v(r))cos(Im~(r)) — pu| = y + p for
r € supp x2, where we use |y/(r)] = 1 and Rey > 0, Im~y € [%77,77] on supp x2. Moreover,
|Ow(—ysinhw — pw)| = ycoshw + u 2 y + p. Thus, the integration by parts with (A.7)
yields }Qcﬂfio(u,y)‘ < Ona(14+y+p)~ foreach N €N, > 0and y > 1. [

Remark A.8. This lemma might be proved also by integration by parts and by Schlafli’s
formula
1 s 3 oo 3
Ju(y) = / cos(y(sinw) — pw)dw — sm(ﬂ,u)/ eTyGsinhw) = gy,
0

T T 0

which follows from (A.6). However, to do this, we need to calculate the boundary terms at w = 7
in the first term and the one at w = 0 in the second term explicitly. In the above proof, we
avoid it and use the deformation of the integral instead.

Now we study the first term (we call it F(y, p)) of the right-hand side in (A.5). To do this, we
use a variant of the stationary phase theorem. Roughly speaking, the phase function y sin w — pw
of F1(y, 1) has two non-degenerate critical points when p < y and no critical points when p > y.
When p = y, the critical points can become degenerate although the third derivative of the phase
function does not vanish there. The difficulty here is to deal with them in a uniform way. We
will use the following lemma with a =y — pu, b =y, f(w) =sinw — w.

Lemma A.9. Let y € C((—3,3)). Let f € C°°([-3,3];R) such that £9)(0) = 0 forj =0,1,2,
FfM(w) <0 and c1|w| < |f"(w)] < ealw] for 0 < +w < 3 with a constant 0 < ¢1 < ¢y. For
a€R,b>1andjeN, set

Ij(a,b)—/Rx(w)wjei““’“bf(wdw. (A.8)
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(i) Suppose a,b > 1, ]a|%b7% <1, |a]%lf% > 1/8. Then the map [—3,3] 3 w +— aw + bf (w)
has just two critical points wi(a,b) with +w4(a,b) > 0. Moreover, we can write

Io(a,b) = Z[Oi(a’ b)eiawi(avb)-f—ibf(w:t(‘lab))’ 0%1 1 (a,b)| < Caa—i—ab—i
+
uniformly in a,b > 1, \aﬁb‘é <1, ]a\%b_% >1/8.
(i1) For each j € N and N > 0, there exist C; > 0 and Cjn > 0 such that

I. < Cib T, a€R, b>1, |a|2b"2 <1,
’J<a7b)’r\/ 3, _1\—N .11 3. 1
CjN(’a|2b 2) la|73b731, a< -1, b>1, |a2b"2 > 1/8.

Proof. When a = 0, then the claim in (¢7) directly follows from the stationary phase theorem
(see Lemma A.4 with k£ = 3). Hence in the following, we assume a # 0. Set

s=lal2b72,  A=lal?b72,
F(w,s) = (sgna)w + bA"! f(sw) = (sgna)w + s f(sw).

By the change of variable w — sw, we have
Ij(a,b) = 7! / Y(sw)wl e (W) quy, (A.9)
R

By the assumption on f, we have —Zw? < f/(w) < —%w? for |w| < 3.
We note that there is Cy, > 0 such that |05 F(w, s)| < Cy, for a > 2 uniformly as long as s < 1.
Moreover,

0w F (w,s)| = |(sgna) + s f(sw)| > c(1 + |w|?) for |w| € [2¢ %, 00) (A.10)

uniformly in a. Moreover, when a > 0, the derivative 0, F(w,s) = 1 + s 2f'(sw) has just the
two critical points wy (s) with

twy(s) € [\/2051, 20;1] and c1y/2¢;t < ‘(‘fvf(wi(s),s)} < cay/2e

When a < 0, then F(+, s) has no critical points. Moreover, wy (a,b) := sw4(s) are critical points
of the map w — aw + bf (w).
(7) Suppose a,b>1,0<s<1and A>1/8. Let x4 € C((0,00);[0,1]) such that

X+(w)=1 for we [\/202_1, \/201_1], supp x4 C (0,2 01_1].
Set x_(w) := x4+ (—w) and xo =1 — x4+ — x—. We write (A.9) for j =0 as

Io(a,b) =Y MW=L 4 (a,b) + Ri(a,b),
+

Io+(a,b) :=s / X(sw)xt (w)eNF ) =F w9
R

Ri(a,b) == s/ x(sw)xo(w)e™M @) dy.
R
We prove that for a, 3, N € N,

109 (505)To +(a, )| S sA272, |83 (s05)° Ra(a, b)] < sxY. (A.11)
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First, we observe
|(s05)w+(s)] <1 for 0<s<L1. (A.12)

The estimate for a = 0 follows from the fact +wy(s) € [4/ 2¢5 %, \/261_1] as we have proved. To
see (A.12) for a > 1, we recall w4 (s) are the critical points of F (-, s), that is,

1457 2f (swe(s)) = 0 & f'(swy(s)) = 5%
Thus we have
T (swi(s))(w(s) + sOswi(s)) = 2s. (A.13)

Since |f"(swx(s))| ~ slwi(s)| ~ s, we have s|w(s)+ sOsw(s)| < 2s, which implies [sOsw4 ()|
< 1. This proves (A.12) for « = 1. Differentiating (A.13) many times and using induction
on «, we obtain (A.12) for general a@ > 0. By Taylor’s theorem and the assumption on f, the
function F(w,s) = w + s~3 f(sw) is smooth with respect to w and s € [0, 1], where the point is
that F' is smooth even near s = 0. It turns out from this fact, (A.12) and the Taylor’s theorem
that

F(w + wi(s)’ S) - F(wi(s)vs) = gi(w’ 5)w27

where g1 is smooth with respect to w € supp x+ and s € (0, 1] and satisfies
|05(505) g2 (w,8)| S1 for w €suppxs, s € (0,1].

Moreover, we have g+(0,w) = (02F)(w+(s),s) = s~ f”(sw+(s)), which satisfies [g+(0,s)| > 1
uniformly in 0 < s < 1. Consequently, Iy +(a,b) can be written as

2

lo+(a,b) = 5/ ¢o,i(w,s)ei>\gi(w76‘)w dw,
R

where g 4 (w, s) = x(s(w + w+(s)))x+(w + w+(s)). We also note that
0% (s95) o, e (w,s)| S1 for weR, se(0,1].

Now we prove the first estimate of (A.11). For simplicity, we consider the case («, 5) = (1,0)
or (a, ) = (0,1) only. To do this, we write

2

Oxlo+(a,b) = is/ onyi(w,s)gi(w,s)w%i)‘gi(w’s)w dw,
R

50slp +(a,b) = s / (w(),i(w, s)(l + iAs0594+ (w, s)wz) + 50510+ (w, s))ei)‘gi(w’s)dew.
R

Now we apply the stationary phase theorem (see Lemma A.4 with k =2, j = 0,2, g = 0) and
obtain the first estimate of (A.11) for (a, 8) = (1,0),(0,1). The estimates for its higher deriva-
tives are similarly proved. To prove the second estimate of (A.11), we use the fact that 9, F'(w, )
does not vanish for w € supp xo Nsupp x(s-) with the uniform estimate (A.10). Using the inte-
gration by parts many times with (A.10) with the estimates for its higher-order derivatives, we
obtain the second estimate of (A.11).

Next, we show

O Io4(a,b)| < Coa~ 17 b1, OV Ry (a,b)| < Cn(a2b2) Na—17 b1 A.l4
a+Y, Y Y
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for y € Nand N > 0. Set I3 +(a,b) = 931+ (a,b). We can deduce |85 (s95)°I] (a,b)| <
Cops' ™A™ 3ma=Y by (A.11) and induction due to I'YJrl = 0aly y; Ou = (9aN)Ox + (0a8)0s =
5(3/20y +27'A71s9,) and s <1,A >1/8. In partlcular we obtain

|00 1o+ (a,b)| < C«,SHW)\*%*'Y = C'chifﬁfbfi

The estimate for Ry(a,b) is similarly proved.
Since w4 (a,b) = swi(s), we have Afyp(w+(s)) = Awi(s) + bf(swi(s)) = aw+(a,b) +
bf(w(a,b)) and hence

Io((l, b) = Z IO,:t(av b)ei(awi (a,b)—l—bf(wi (a,b))) + Rl (a7 b)
+

Finally, we show that Rj(a,b) can be absorbed into either 1.707+ or Ip,—. To do this, it suffices to
show |9 (e*i(“wi(a’b)erf(wi(a’b)))Rl(a, b))| < Cana™77*b~1. We observe

‘8(1 iMap(w(s ‘<CS O‘:Caa_%b%.

since 9y (A fap(ws(s))) = s twy(s). Thus the second inequality of (A.14) with N > 1 gives the
desired estimate.
(14, 1) First, we consider the case a € R, b > 1 and s < 1. Let x1 € C2°(R; [0, 1]) such that

x1(w) =1 for |w| < y/2¢rt, x1(w) =0 for |w| > 2

Set x2 =1 — x1. We write (A.9) for j =0 as
Ii(a,b) =g/t! / x(sw)w? (x1(w) + Xz(w))ei)‘f“vb(w)dw =:1;1(a,b) + Ij2(a,b).
R

The second term is easy to handle: The integration by parts with (A.10) ylelds |12(a,b)] <
Cins'™IA"N for N > 0. Taking N = ]H, we have |Ijo] < e :b_T. Thus, we
focus on the estlmate for I; j. When A <1 (which is equivalent to |a| < b3) then [I;1(a,b)| S
st = |a| T 70~ < b5, On the other hand, when A > 1, then the stationary phase theorem
(see Lemma A.4 Wlth k= 3) implies |1} 1(a, b)| < sIHIA=" = =%, Thus we obtain |1;(a,b)

=

(74, 2) Suppose a < —1, b > 1, s < 1 and A > 1/8. The case s > 1 is dealt with later.
Since A > 1/8, it suffices to prove the inequality for large integer N. By the assumption on f,
we have f; (w) > 1 + cw? and } (w)/ fop(w w)| < Co(1+ |w|)~! for sw € supp x with a con-
stant Cy independent of s, A\ for « 2 2. In fact,

’ ~

[ fap(w)] = 0A7 s| f"(sw)| <OAT'S® - [sw] S (1 + Jw)),
119 ()] = bA715%| £ (sw) ] < bATLS| f@ (sw)| = O(1)

for o > 3.
Now we set L = D,, o (f! ,(w)). Then the integration by parts yields

Ii(a,b) = )\—st+1/LN1 (X(Sw)wj)ei)\fayb(w)dw,
R

for N7 € N. Taking Nj large enough, we have

‘LNl (X(Sw)wj)‘ < C(l + w2)_1
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with a constant C' > 0 independent of s, A and w € suppy. Here the independence with
respect to s, A follows from the estimates for f,,(w). Thus we have |I;(a,b)] = O(A"Vsit1).
Taking Ny =N +j + %, we have

ANt = (Ja)2b72) N - ja| "2 3620t o' b = (|a|2b72) Vo Eb R,

(4, 3) Suppose a < —1,b>1, s > 1 and A > 1/8. To deal with this case, we do not use (A.9)
but the definition (A.8). Since a < —1 and f’(w) < 0, we have |9y (aw + bf(w))| > a. Thus
the integration by parts yield% ]Ijl(a,l])\;] < -C]MGTN/ for all N’ > 0. Now take N’ > 0 large
enough such that |a| =V < (la|2b72) " |a| 7~ 7b” 1, which is possible since s > 1 implies |a| > b.

This completes the proof. [ ]

Proof of Proposition 3.1. Set a =y —p, b=y and f(w) = sinw —w. Then it turns out that
aw + bf(w) = ysinw — pw and f satisfies the assumption of Lemma A.9. We observe

N

31 3

au - (8ua)aa + (aub)ab = _am |a’§bfi = ‘:U’ - yliyi 5
11

s<leful <2y, A=1/8e|y—pl =gy,

O Toa,b) = (<0)" [ ety (w)du.

Then the part (ii) follows from Lemmas A.7 and A.9 (ii) when p < 2y holds. The case u > 2y
follows from the integration by parts in the above expression of Bﬁ‘.fo(a, b), where we use

10y (ysinw — pw)| > p— |y| > 3(n+y).

Since w4 (a, b) are critical points of aw + bf(w), that is, w(a,b) = +cos™1 (252

), we have
aw(a,b) + bf (wi(a,b)) = £yh ('Z) ,
where we recall hy(z) = v/1 — 22 — zcos™! 2. This proves the part (i) if we set
1 —yh1 (1) 1
aty(p) = 5-lo+(a,b) +e " Ro(u,y), a—y(p) = 5—lo—(a,b). u

A.5 Asymptotics of the Beta function

For m € [1,00) and v > 0, we define

_ allv+s)  Tim+2)
Fon(m) o= v e o 1 DT (@) (4.15)

By [2, Fact 4.8, equation (4.30)], we have C},(1) = % and hence

1F(Z/ + %)C’ﬁl(l)

F, =v f . Al
1(m) =v NGO or meN (A.16)
We denote the Beta function by B(z,y). Then it is known that B(z,y) = FF(Z;)_E;‘U)) . We may
write
r i 1
Fon(m) = v LT 2) (A.17)

’ Val(v) mB(m,2v)
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Proposition A.10. Let a > 0 be an integer and v > 0. Then there exists C, o > 0 such that
05 B(m,20)| < Cpram™0, |08 E,1(m)| < Cypam® =
for allm € [1,00).

Proof. First, we note that it suffices to prove these estimates for sufficiently large m. As is
well known (essentially due to Stirling’s formula), we have B(m,2v) ~ I'(2v)m~2" as m — oo.
This implies that the estimates for F),;(m) follow from the estimates for B(m,2v) and (A.17).
The case o = 0 follows from B(m,2v) ~ T'(2v)m~2 as m — co. Hence, in the following, we
consider the estimates for o« > 1.

Let 1 € C™(R; [0,1]) satisfy 1(t) =1 for ¢t > 1/2 and ¢(t) = 0 for ¢ < 1. Since B(m,2v) =
fol tm=1(1 —¢)?v~1d¢t, we have

1 1
0B, 2) = [ " gaarr [ gaaiar
0 0

where we set go1(t) = (logt)*(1 — )21 (t) and gaa(t) = (logt)*(1 — )2 =1 (1 — (¢
First, we deal with the second term. Since supp ga,2 C {t < 1/2} and since |(logt)
for 0 <t <1/2, we have

))-
°|

S

1

1 2
/ tmlga,g(t)dt‘ < / tmAdE <2 <yl
0 0

for sufficiently large m > 1.
Next, we consider the first term. We note

107 ga 1 ()| < Call —t*~1H2=8 for te0,1].
Now we write

gm—1 _ o(m=1)(logt) _ ei(m—l)f(t)’ F(t) = —ilogt.

Then f'(t) = —i/t # 0 and Im f(t) > 0 hold for ¢ € suppt N (—oco,1]. Now it follows from
Lemma A.3 with A = m, p = 2v — 1 and the change of variable x = 1 — ¢ that

1
/ tM1ga71(t)dt‘ S m721/7a
0

holds for sufficiently large m > 1. This completes the proof. |

A.6 Asymptotics of the Gegenbauer polynomials

In this appendix, we prove Proposition 3.3 using non-stationary phase theorem. The case v =0
is easy to deal with (see the proof of Proposition 3.3 below) and hence we focus on the case v > 0.
By [2, equation (4.30)] (see also [17, Section 10]) and (A.16),

1
v IC (cos @) =F1(m) / (cos  + i(sin @)w)™ (1 — u2)”du (A.18)
-1
for v > 0, m € N* and ¢ € [0,7], where F,; is defined in (A.15). To get an asymptotics
of CY (cosy), we extend N* 5 m — CV (cos ) to a function on m € [1,00) (up to a negligible
term). However, since the integrant (cos ¢ +i(sin¢)u)™ is not a single-valued function, we have
to do it a bit carefully.
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First, we deal with the case ¢ € ( T 4 ) We consider two branches of logarithmic smooth
functions log™ z: C\ {iy | y <0} — C and log™ 2: C\ {iy | ¥y > 0} — C such that log™ (cos ¢ +
isin ) = ip and log™ (cos p —isin ¢)) = —ip for all ¢ € [0, 7]. We define smooth functions fi by

felp,u) = —ilogi(cos e +i(sinp)u) Fo

for (cp, u) such that cos ¢ + i(sin¢)u belongs to the domain of log. We note that ([0, 7] x
Ry) (( ] [47r ﬂ]) [—%,%D is included in the domain of fi. Then elmfx(eu) —

(cosp + 1(sm gp) )"eTime for all m € N* and +u > 0. Now let x4, xo € C®(R; [0, 1]) such that

X+ +Xo+x- =1onR, suppxo C [~3,5], supp x4+ C [§,00) and supp x— C (—o0,—%]. We

define

1
Hy,+(m,p):= / eimfi(@’u)xi(u)(l _ u2>u—1du7
-1

! —1
E,(m,p):= /_l(cosg0+ i(sin @)u)xo(uw) (1 — u2)y du,

where H,, +(m, ¢

) is defined for all m € [1,00) although E,(m, ) is defined only for m € N*
1

(note that cosp + i(sin@)u may be zero for u € supp xp). By these

is
whenever ¢ € ,% )
A.18), we have

construction and (
v 10 (cos ) =F,1(m) (" Hy 1 (m, ) + e ™ H, _(m, ) + E,(m,¢)) (A.19)

formGN*and«pG(Z,4 )

Next, we consider the case ¢ € [O, ﬂ U [%77, 7r]. We define

1
E(m, ) = / o) (1) du, mee (L oc),

s 3
pE [0, Z} U [47?,%} ,

where we note that cos¢ +i(sing)u € C\ {iy | y < 0} whenever ¢ € [0,5] U [37, 7] and
u € supp xo. Then

v Ol (cos ) =Fy (m) (679 H,  (m, ) + ¢ " H, _(m, ) + "Bl (m, ) (A:20)

holds for m € N* and ¢ € [0, ﬂ U [%ﬂ', 7r].

Now we show that H, +, E, and Ej satisfy symbol-type estimates. The basic idea of the
proof for H, + and E,, is to use the non-stationary phase theorem with a singular amplitude (see
Lemma A.3). To do this, we observe that our phase function fi (¢, u) satisfies | f} (¢, u)| 2 | sin ¢|
on u € supp x+ (see the proof below). Although 9, f+(p,u) = 0 when ¢ = 0,7, we consider
a large parameter A = msin ¢ rather than m and can apply Lemma A.3.

Lemma A.11. Let a > 0 be an integer and v, N > 0.

(i) There exists Cn, > 0 such that |E,(m, )| < Cn,m™ form € N* and ¢ € (

(it) There exists Co N, > 0 such that |03 E),(m,¢)| < Conpm™ (1 + msing)”
[1,00) and ¢ € [0, ﬂ U [%W,W].

T 3
T am).-
N for m €

(t3i) There exists Cqop > 0 such that |05,H, +(m, @)| < Coom™*(1+msing)™ for m € [1,00)
and ¢ € [0, 7).
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Proof. (i) Since |cosp + i(sinp)u| < \/g for u € supp xo and ¢ € (F, 27), we have

m
2

| cos ¢ +i(sinp)u|™ < <2> <m™N

for m € N*. The estimate for F, directly follows from this inequality.

(1) Setting ¥ (u) := xo(u) (1 —u?)""", we write E/,(m, ) = Jz e+ (@) (4)du.

First, we consider the case a = 0 by using the integration by parts. Since log™ (cos¢ +
isinp) = ip, we have

1 d 1 .. T
Fo(p,u) =i / < log* (cos ¢ + i(sin @)r)dr = — / sin p(cos 1<?”;%0>7“>dr (A.21)
uw dr uw  cos?p+risin o

and hence Im f (p,u) = [ __ B9 4 This implies Im f+(p,u) > 0 for u € [-1,1]. In

o A u cos? p+r2sin? @ .
fact, this is trivial for u > 0. For u < 0, we write

/1 (sin’e)r /1 (sin*o)r / R G L
= 2
u 0 u

cos? ¢ + r2sin? ¢ cos? o + r2sin? ¢ cos? o 4+ r?sin® ¢

/1 (sin2 cp)r d
= T,

_y cos2 p +r2sin? ¢

which is non-negative.
Now we set L = 9, o (19, f+(¢,u))~ . By integrating by parts, we have

B, (m, )| = m™

/ eimf+ (@) LN¢(u)du
R

SmN/ ‘LN¢(U)‘dU
R
by virtue of Im f (o, u) > 0. Since 0% f1 (p,u) = (—=1)*1(a — 1)!(sin p)¥(cos ¢ + iusin )=,
for each o > 2, we obtain |9, f1 (@, u)|™t < [sinp|~! and |02 fy (o, w)||Oufsr(p,u)| "t < 1 for
u € [-1,1] and ¢ € [0,Z] U [3m,7]. By Lemma A.1, we conclude |LN¢(u)| < |sing|™V
and hence |E},(m, )| < m N[sing|™ for ¢ € [0,5] U [37, 7| (we note that 1 is compactly
supported). On the other hand, the inequality Im fy(p,u) > 0 also implies |E}(m,p)| < 1.
Combining these estimates, we have proved (ii) for o = 0.

Next, we consider the case o > 1. We note

OBy m, o) =i [ IO f () du)du
R

As in the case of a = 0, we can deduce |LV(f1(p,u)*(u))| < |sing|*, which leads to the

part (ii) for a > 1 since f(0,u) = fy(m,u) =0.

(i) We deal with the case + only. There exists ¢ > 0 such that |cos¢ +iusing| > ¢
for u € supp x4+ and ¢ € [0,7]. Since Im fy (p,u) = ful Cosfﬁ%dr, which is proved above,
we have Im f (¢, u) > 0 for u € supp x4+ and ¢ € [0, 7]. Mo(ﬁ"eover7 e have f+(p, 1) =0.

Now we prove (iii) for a = 0. Set m’ = msine and g(p,u) = (sing) ' fi(p,u). Then we
write Hy, (m,p) = f_ll eim’g(“"’“)m(u)(l — u2)l’71du. Since

%g(p,u) = (—=1)* Ha — 1)!(sin ¢)* " (cos ¢ + iusin p) @

for @ > 1 and since |cos ¢ + iusin | € [%, 1] for ¢ € [0, Z] U [%W,W], we have

10ug(p,u)] > ¢, |0%g9(p,w)||0ug(p,u)| ™" < C

with a constant ¢ > 0 and C/, > 0. By Lemma A.3 with A = msiny and the change of
variable = 1 —u, we obtain |H, (m,¢)| S (m')™" for m’ = msing > 1. On the other
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hand, it follows from Im fi(p,u) > 0 that |H, (m,¢)| < 1. Combining these estimates,
we obtain |H, 4 (m,¢)| S (14+m/)™" = (1 +msing)~" for msing > 1. For msing < 1, this
estimate is easy to prove.

Finally, we consider the case v > 1. We observe that

0 Hys (i) = i® [ @950 1 (,0)% (1 = 0?)” s (u)du
R

and ‘8 f+(p,u)¥| < (sinp)*(1 — u)max(@=8.0) gince fi(p,u) = O((1 —u)) by (A.21). Thus,
a similar argument as the case o = 0 shows that |05, H, 1+ (m, )| < (sing)*(1 + msing)™" "
Using an inequality sin (1 + msinp)~! < m™!, we obtain (iii) for a > 1. n

Proof of Proposition 3.3. First, we consider the case v = 0. From [2, equation (4.28)], we
have
2cos(my) MY eIy

li . =
Vll)%l/ 1C¥ (cosp) = - -

Thus, we can take g, +(m, ) = 1/m and r(m, ¢) = 0.
Next, we consider the case v > 0. For ¢ E (Z,37), we set gy1(m,p) = F,1(m)H,1(m,¢)
and r(m, ) = F,,1(m)E,(m,¢). For ¢ € [0, 2] U [37, 7], we set

oo (M, ) = Fyy(m)(Hy (M, ) + E,(m, 9)), g, (m, ) = Fya(m)Hy,—(m, ¢)

and r(m, ) = 0. Then Proposition 3.3 directly follows from the identities (A.19), (A.20),
Proposition A.10 and Lemma A.11. |

B Finite time Strichartz estimates

Here, we show that the Strichartz estimates hold for finite time 7" assuming that they hold for
each time t with |t| < Ty. The following argument is more or less well known. For simplicity,
assuming Ty < T < 2Ty, (1.3) and (1.4) hold for Ty and T'— Ty, we shall show that (1.3) and (1.4)
hold for T.

Set U(t) = e tka, Since U(t + s) = U(t)U(s), [-T,T] = [~To, To] U [T, —To] U [Tp, T
and T < 2Ty,

HU(t)UO”ip([_T,T];Lq) = HU(t)UOHiP ([~To,To);L9) + HU(t)U(_TO)uoHi”([—T-ﬁ-TO,O];Lq)
+|U)U (TO)UO”Lp [0,T—T);L9)
S Mol + U (=To)uoll} 2 + [|U(To)uoll; > = 3lluoll} -,

where we use the fact that U (t) is unitary in the last line. This proves (1.3) for T'.
Set I'f(t) fo (t — s)f(s)ds. To see that (1.4) holds for T, it suffices to prove

HFfHLpl([—T,—To}U[To,T];LQQ) 5 ||f||LP§([_T’T];L‘ZS)‘ (Bl)

We firstly observe

due to the duality of |[U(t)uollre(o,1p);09) S ||u0HL2 which in turn follows from (1.3) for Tp.
Setting Ty f(t) = [;/* U(t — 5) f(s)ds and Fgf = [7, U(t — s)f(s)ds, we have T' = I'y + Ty,

< Sl
L2

To
/0 U(—s)f(s)ds (B.2)

Lp2( [0,T0]; Lq2)
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Since I'1 f(t) = U(t) (;‘FO U(—s)f(s)ds, the homogeneous estimate |U (¢)uo |l o ((—1,77;09) S Iluoll 2
implies

S
L2 N~~~
(B2)

To
102l (1 1) H /0 U(=s)f(s)ds

||f||Lp§([O,TQ};Lq§)'

On the other hand, setting g(t) = f(t + 1p), we have I'af(t) = fg_To Ut —To — s)g(s)ds.
Using (1.4) for T'— Ty(< Tp), we obtain

t
ICa o ayaony = | [ 016 = )51 6l 5 sy muat

LP1([0,T=To]; L)

Combining them, we conclude [T f| Loy (17, 7920 ) S || ]| Similarly, we have

LP3([-T,T};L%)’
HerLpl([_T,—TO};qu) S Hf”LPE([fT,T};Lq;)'

Thus we have proved (B.1).
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