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Abstract. We describe the sign and orientation issue appearing the filtered A..-formulae
in Lagrangian Floer theory using de Rham model in Bott—Morse setting. After giving the
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1 Introduction

The aim of this note is to describe the sign and orientation issue appearing the filtered A.o-
formulae in Lagrangian Floer theory using de Rham model in Bott—-Morse setting. When we
work with only one relatively spin Lagrangian submanifold, we constructed the filtered A.o-
algebra in [4, 5] using the singular chain complex model. The sign and orientation are explained
in [5, Sections 8.3-8.5]. In the de Rham model version, see [6, Section 22.4] and also [7].
We gave a construction of the filtered Aso-bimodule using the singular chain model in [4, 5],
especially, the sign and orientation are described in [5, Section 8.8]. Sign and orientation in
Bott—Morse Hamiltonian Floer complex using the de Rham model version, see [6, Definition 19.3
and Proposition 19.5]. In this note, we discuss the sign and orientation issue appearing in
the construction of the filtered A.o-category for a collection of finitely many (relatively) spin
Lagrangian submanifolds. The construction of Kuranishi structures (a version of a tree-like
K-system in the sense of [6]) on moduli spaces of stable holomorphic polygons is discussed
in other papers [1, 3]. Here, we give a definition of A,-operations in Bott—-Morse case (see
Definition 3.3) using such Kuranishi structures. We verify the sign convention by showing
the filtered Ay -relation (see Theorem 4.4).

2 Preliminaries

We use the convention on orientation on the fiber product (in the sense of Kuranishi structure)
as in [, Section 8.2]. Let p: M — N be a fiber bundle with oriented relative tangent bundle.
Restrict the fiber bundle to an open subset U of N, we may assume that U is oriented. Then
we give an orientation on p~!(U) C M using the isomorphism TM = p*TN @ Tgpec M, where
Tiber M is the relative tangent bundle. Then our convention of the integration along fibers
of p: M — N is

/ompsﬁz/ pra B,
U p~1(U)
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9 K. Ono

where v € Q*(U) and 8 € Q*(p~}(U)), Reversing the orientation of U induces reversing of
the orientation of p~!(U), hence the push-forward p3 does not depend on the choice of the
orientation of U. Therefore, for a proper submersion p: M — N with the oriented relative
tangent bundle, the integration along fibers

IR Qk (M) N Qk—dim M+dimN(N)

is well defined.
We have the following properties.

Proposition 2.1.

(1) p((p*@) N B) =0 N (B), where 8 € Q*(N) and 5 € Q*(M).

(2) Letp: M — N and q: N — B be fiber bundles with oriented relative tangent bundles. For
B € Q* (M), we have (gop)B = q op(B).

Using them, we find the following.
Corollary 2.2. (gop)(p*0 AB) = q(0 A p3).

Proposition 2.3 (base change). Let f: S — N be a smooth map. Denote by p: f*M — S the

pullback of the fiber bundle p: M — N and f: f*M — M the bundle map covering f. Then
we have f*opy =pyo f*.

Proposition 2.4 (Stokes type formula, [6, Theorem 9.28]). Let p: M — N be a smooth map
(or a strongly smooth map from a space with Kuranishi structure to a smooth manifold)

dpi3 = pidB + (—1)dmMrdeslp) ) 8.

We introduced the notions of a strongly smooth map and a weakly submersive strongly
smooth map from a space equipped with Kuranishi structure to a smooth manifold in [6, Def-
inition 3.40 (4), (5)]. We call a space equipped with a Kuranishi structure a K-space for short.
For a proper weakly submersive strongly smooth map p from a K-space X to a manifold N, we
define the integration along fibers using a CF-perturbation, see [6, Section 9.2]. In this note,
we suppress the notation for Kuranishi structures or good coordinate systems as well as CF
perturbations. Refer the indicated places in [6] for detailed statements. For the verification of
the sign convention in the filtered A..-relations, it is sufficient to treat the integration along
fibers of a proper weakly submersive strongly smooth map as if the one for proper submersion
between smooth manifolds.

The statements above holds for a proper weakly submersive strongly smooth map p. For
Proposition 2.3, f*M is the fiber product of f: S — N and p: M — N. When S and M are
K-spaces with a strongly smooth map f: S — N in the sense of [6, Definition 3.40 (4)] and
a weakly submersive strongly smooth map p: M — N, we have a compatible system of smooth
maps from Kuranishi charts of the fiber product S x5y M to the manifold N and the obstruction
bundle on a fiber product Kuranishi chart of f*M contains the pullback of the obstruction
bundle on a Kuranishi chart of M as a subbundle. Using the pullback CF perturbation on f*M,
we obtain Proposition 2.3 in such a situation.

The integration along fibers changes the degree of differential forms by

deg pi 8 = deg 8 — reldim p. (2.1)

Here reldim p = dim X — dim NV, where dim X is the dimension of X in the sense of K-space,
see [6, p. 52]. A tuple (X, f1: X — My, fo: X — M>) is called a smooth correspondence,
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if X is a K-space, f1, fo are strongly smooth maps and f; is weakly submersive. After taking
CF-perturbations, we define

Corry: Q*(Ma) — Q*(M))
by (f1)1 0 (f2)*. For flat vector bundles £; on M;, i = 1,2, with a given isomorphism
filh1 20y @ fyLo,

where Oy, is the orientation bundle of the relative tangent bundle of f;: X — Mj, Theorem 27.1

in [5] gives

Corry: Q(Ma, L) — Q* (M, L1).
Using Proposition 2.4, we have the following.
Proposition 2.5 ([6, Proposition 27.2]).
do Corrxé = Corry odf + (—1)4mXTdeesCorry e for € € QF(My; La).

Let (X12, fi,12: X12 — M, fa12: X1 — M3) and (Xa3, fo23: Xoz — My, f323: Xo3 — Ms3)
be smooth correspondences with given isomorphisms

f112L1 = Op 1, ® fo12L2, f323L2 = Oy, 53 ® f393L3. (2.2)
Taking the fiber product Xi3 over f312 and f5 23, we obtain a smooth correspondence

(X13, fi13: X1z = My, f313: X13 — M3)
with the isomorphism

fla13L1 = Oy, 15 ® f313L3
induced by (2.2) and

O 15 £ 9704, 1, @ G507, 4.

Here we denote by g1: X153 — X192 and go: X153 — Xog the projections of the fiber product of
Kuranishi charts,

Then we have the following.
Proposition 2.6 (composition formula, [6, Theorem 10.21]).
Corrx,, = Corrx,, o Corrx,,.

See [6, Chapter 27] in the case with coefficients in local systems, see [6, Theorems 27.1
and 27.2]. In fact, the composition formula is a consequence of the properties mentioned above.
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3 Definition of A..-operations

Let {L;} be a relatively spin collection of Lagrangian submanifolds, which intersects cleanly
in (X,w). In a later argument, we glue the linearization operator of holomorphic polygons with
a Cauchy—Riemann type operator at each boundary marked point, which is sent to the clean
intersection of two branches of relatively spin Lagrangian submanifolds, to obtain a Cauchy—
Riemann type operator on the unit disk. For the orientation issue, the argument works for clean
intersections of distinct relative spin pair of Lagrangian submanifolds and clean self-intersection
of a relative spin Lagrangian submanifold. The description of the boundary of holomorphic
polygons in Lagrangian immersion case is found in the paper by Akaho and Joyce [2]. For the
sign and orientation issue, the argument presented here is also valid for immersed Lagrangian
submanifolds. Denote by R, a connected component of L; and L;. (We also consider the case
of self clean intersection.)

Let (X,0%) be a bordered Riemann surface 3 of genus 0 and with connected boundary and
Z = (20,...,2;) boundary marked points respecting the cyclic order on 0¥. Let u: (X,0%) —
(X,UL;) be a smooth map such that u(zjsz) C Li;, j mod k+ 1, u(z;) € Ra;, where R, is
a connected component of L;, _, N L;,. (For an immersed Lagrangian with clean self intersection,
R, is a connected component of the clean intersection.) For such w and u/, we introduce the
equivalence relation ~ so that u ~ v when fzw = fz/ w and the Maslov indices of u and '’
are the same. Denote by B the equivalence class. In this note, the dimension of moduli spaces
means their virtual dimension.

Consider the moduli space

Mk+1(B;Lio7-~-,Lik;Rao,-uRak)

of bordered stable maps of genus 0, with connected boundary and (k + 1) boundary marked
points, representing the class B.
Set L = (Lz-o, . ,Lik) and R = (Rao, . ..Rak) and write

Mk+1(B;£;R) = Mk:-i—l(B;Lioa PN 7Lik§Raoa .. -Rak)-

Denote by evf: Mi11(B; L;R) — Ra, the evaluation map at z;.

For a pair of Lagrangian submanifolds L, L’ which intersect cleanly, we constructed the O(1)-
local system ©5 on R, in [5, Proposition 8.1.1]. Here R, is a connected component of L N L.
In this note, we simply write it as O, .

We recall the construction of ©p_ briefly. We assume that L, L’ are equipped with spin struc-
tures. In the case of a relative spin pair, we take TX @ (V ® C) (on the 3-skeleton of X)) instead
of TX and TL®V (resp. TL' ® V') (on the 2-skeleton of L (resp. L') instead of T'L, (resp. TL').
Here V is an oriented real vector bundle on the 3-skeleton of X such that the restriction of wy (V)
to the 2-skeleton of L (resp. L) coincides wo(TL) (resp. wo(TL')). The relative spin structure
with the background V is a choice of spin structure of V & TL, (resp. V @& TL'). Then the
argument goes in the same way. See the proof of [5, Theorem 8.1.1]. For a point p in the self
clean intersection of a Lagrangian immersion %: L — X , there are two local branches of the
Lagrangian immersion, i.e., i, (Tp/Z) and i, (Tpuz) where p/,p" € ;E with p = i(p/) = i(p"). Then
we run the argument below by replacing T,,L and T,L’ by i, (Tp/L) and 74 (TpuL), respectively.

As written in [5, Section 8.8], we consider the space Pg, (T'L,TL’) of paths of oriented
Lagrangian subspaces in 7T, X, p € R, of the form R, @ A(t) such that R, & A(0) = T),L and
R, ® A1) =T,L'. Here X is regarded as a path of Lagrangian subspaces in

Vi, = (T,L + T, L) /(TyL + T,L') ™ = (T, L + T, L') /(T,L N T, L),

which is a symplectic vector space. Pick a compatible complex structure on it and consider the
Dolbeault operator 9y on Z_ = (D? N {Rez < 0}) U ([0,00) x [0,1]).
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We set p1(Ra; ) = Index 0. The parity of 1(Rq; \) is independent of the choice of A above,
since A @ T, R, is a path of oriented totally real subspaces of T, X with fixed end points, T}, L,
T,L', p € R, which are oriented. Denote by p(Ra) = p1(Ra;A) mod 2. Then we have

k
dim My1(B; £,R) = dim Rag + p(Ray) — 3 ft(Re,) +k—2 mod 2. (3.1)
=1

We have the determinant line bundle of {Index 8,\} NePr, (TLTLY)" Pick a hermitian metric on X.
Denote by Pso(TpRa®A) the associated oriented orthogonal frame bundle of T, pRa®A. Note that
Pso(TpRa®A)|i=0 and Pso(TpRa @ \)|i=1 are canonically identified with Pso(L)|, and Pso(L)|p,
respectively. We glue the principal spin bundle Pspin(T,Ra @ A) at t = 0,1 with Pspin(L)|p
and Pspin(L')|p. There are two isomorphic classes of resulting spin structure on the bundle
TLUAN®T,Ry)UTL on LU[0,1]UL’, where p € L and p € L' are identified with 0,1 € [0, 1],
respectively. This gives an O(1)-local system Ogpin on Pg, (T'L,TL"). Proposition 8.1.1 in [5]
states that the tensor product det d) ® Ogpin descends to an O(1)-local system O, on R,.

We denote by Op, is the Dolbeault operator acting on sections of the trivial bundle Z_ x
(TpRo ® C) on Z_ with totally real boundary condition T, R,. Then the operator gpba SN =
83 @ 8,\ is the Dolbeault operator acting on the trivial bundle Z_ x T, X on Z_ with the
totally real boundary condition T, R, @ A. After gluing the linearization operator D for a holo-
morphic polygon with 8Ra @), where R, & A; € Pr,, (TL;—1,TL;), i = 0,...,k, we obtain
a Cauchy-Riemann type operator on the unit disk. By [5, Theorem 8.1.1], the relative spin
structure for {L;}, namely relative spin structures for each L; with a common oriented vector
bundle V' — Xl determines an isomorphism ®% below. For the definition and properties of
relative spin structure see [5, Section 8.1.1].

Proposition 3.1 (cf. [5, Theorem 8.1.1]). A choice of relative spin structure determines the
following isomorphisms.

(1) Case that k =0 (L is an immersed Lagrangian submanifold with clean self intersection or

Ry, = L):

(I)BZ eVOB*@RQ —>eV0*OR ®OM1(BL)

(2) Case that k = 1:

B evgg*@Rao — ev(])g*O}"%ao ® Opy(Bicr) @ Rp ® evjlg*@Ra1

= (_1)“‘041 eVOB*O}k%aO ® OMQ(Bv‘CvR) ® eVlB*@Ro‘l ® RB
(3) Case that k > 2:

B evgg*@Rao — evp*OF,. s @ OpMyy(BiLR) ® forget™ O}y, .,

® ev! *@Ral @ @eviOR, .

In item (1), we suppress the orientation bundle of the biholomorphic automorphism group
Aut (Dz, 1), since Aut (D2, 1) is two-dimensional and does not affect the sign when we exchange
Aut(D?1) with other factors. In item (2), Rp is the group ) of translations in the domain
D%\ {£1} = R x [0,1] and My(B;L;R) is the quotient of Ma(B;L;R) by the translation

action of Rp on the domain,

May(B; L;R) = My(B; L;R) x Rp.
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The sign of the exchange of Rp and the index of EARQI is (=1)He1. In item (3), Myt is the
moduli space of bordered Riemann surfaces of genus 0, connected boundary and (k + 1) marked
points on the boundary and forget: My1(B; L;R) — My sends [(2, 0%, 2), u] to [(X, 0%, 2)].
Here OR,, s Oy, (Bic:r) and O, ave orientation bundles of Ry, My11(B; £;R) and M1,
respectively. We consider eviOp @ Oy, . (B;c;R) the orientation bundle of the relative tangent
bundle of evg: My41(B;L;R) — Ra,. In the notation in [5], we write

Mp1(B; LiR) = Rag X "Mpiy1(B; LiR)
and
Mip1(B; L R) = My (B; L5R)° X Mg

These descriptions are considered as the splitting of tangent spaces in the sense of Kuranishi
structures. One may consider ° My 1(B; £;R) and My11(B; L;R)° as a fiber of evy and a fiber
of forget, respectively. Using these notations, we have

V9ORay © OMygr (BiLR) = Oo Myt (BiLR):
OMya(BiLr) @ forget Ol = O,y (BiLiR)"-

If we denote by My the quotient stack of a point by Rp, (2) is written in (3) with £ = 2.
We give an orientation of My = (C'?DQ)kJrl/Aut(DQ,(?DQ) as the orientation of the quo-
tient space following [5, convention (8.2.1.2)]. Then the orientation bundle of My 1(B;L;R)
is canonically isomorphic to the one of My, 1(B;L;R)°. Hence, for u = [u: (%,0%,2) —
(X, Urer L, URQGR Ra)], the relative spin structure of £, local sections o4, of O(1)-local sys-
tems ©,, around u(z;), i =0,1,...,k, determines a local orientation of the relative tangent
bundle of ev¥: Myy1(B; L;R) — Ra, at u, i.e., the kernel of TyMy1(B; L;R) — Ty (z0) Rao»

which is denoted by 0(04y;0ay,---,0ay)-

Remark 3.2. When k£ = 0 and R,, = L, the orientation on M;(B;L) is given in [5, Sec-
tion 8.4.1] When k = 1, the orientation bundle of M2 (B; L;R) is given in [5, Proposition 8.8.6].
Note that @Ea ® Op, ® Of_ is canonically trivialized. We write ©, = OF in this note.

Since the evaluation maps are weakly submersive in the sense of Kuranishi structure, see
[6, Definition 3.40 (5)], i.e., after taking sufficiently large obstruction bundles, the evaluation
maps on Kuranishi charts are submersive, the push-forward (evy), is defined by taking CF-
perturbations. Hence, for a smooth correspondence (My11(B; L;R),evg,evy X -+ X evg), The-
orem 27.1 in [6] gives

(eVOB)! o (evf* X e X evg*): Q*(Ral;@Ral) ® ---®Q*(Rak;@R%) — Q*(RQO;GRQO).

Namely, for & = (; ® 04, € Q*(Rai; @ai), 1=1,...,k, we define

(evOB)! o (evf* R evf*) (Cl ®Tqyy--, Ck ® Uak)
= (ev(]f; O(UQO; Coyye - ,Jak))!(ev?*gl ARREWA evE*Ck) ® Oy - (3.2)
Here (eVOB; o(oao; Coys- - ,aak))! is the integration along fibers with respect to the relative ori-

entation 0(0ay; Tays---»0a,) Of Myi1(B; L;R) — Rq,y. Note that the right hand side of (3.2)
does not depends on o, since 04, appears twice in the right hand side of (3.2), and gives a dif-
ferential form on R,, with coefficients in ©,,. For general & € Q* (Rai; @ai), we use partitions
of unity on R,, and extend the operation (evg )! o (ev’f* X oo X eka*) multi-linearly.

For £ € Q*(Ry;O,), we define the shifted degree

€] = deg € + (Ra) — 1. (3.3)
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Definition 3.3. We set mg = 0, m(; ) = d§ on  Q*(Rq4; Or,, ), i-e., the de Rham differential
on differential forms with coefficients in the local system Op_. For (k, B) # (1,0),

w51, &)
= (—1)cEk) (evg) (ev?* X oo X evf*)(gl ® ..., &) € Q(Rag; Oap)s

where &; € QF (Rai; @ai) and

e(&1,..., &) = {Z(H—Zu ap > degfi—l)}+1. (3.4)

=1

Then we define

my = ka pTP) ®Q* R 0a, ® Mo) [1 = p1(Ra,) ]
=1

— Q*(Ra(ﬁ 6010 ® AO)[l - /L(Rao)]'

Here

Aoz{ZaiT’\i|ai€R,)\i—>ooasz’—>oo}
i

and the symbol [1 — u(R,)] is the degree shift by 1 — u(Ry), i.e., the grading of a differential
form is given by |£|. By (2.1) and (3.1), we find that

k

(&, &) =D 141 +1 mod 2. (3.5)

i=1

Remark 3.4. Since the aim of this note is describe the sign and orientation for the filtered
A-operations, we use Ag as the coefficient ring. To make my operations of degree 1, we need
to use the universal Novikov ring Ag nov introduced in [4].

4 Filtered A .-relations

In the rest of this note, we verify the sign convention in the filtered A..-relations
Z mk/oﬁlk//(fl,...,fk)zo fork:1,2,...
K4k =k+1

under the tree-like K-system and CF-perturbation described in [6]. Here my, p is the extension
of my, p as a graded coderivation with respect to the shifted degree |e|. This relation is equivalent
to the following relations for decompositions of B into B’ and B”, k' + k" = k + 1,

myoomgp(&r,..., &) +mgpomyo(ér,. .., &)

+ > My pr o Wy g (&1, - .-, &) = 0.
(k",B"),(k",B")#(1,0)

We compute mys g oy gr. For (k, B) = (1,0), mygomy o= 0 clearly holds.
From now on, we investigate the case that (k, B) # (1,0). Firstly we consider the case that
(k',B") = (1,0) or (K", B") = (1,0). We find that

mgomg (..., &) = (1) E-d(evf), (evP &L A+ AevE ), (4.1)
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k
j—1 ’
mgp ot o(&n -, &) = 3 (D)= oy g6, dg, L&)

j=1
k j—1
=N (= 1)Zp= [l (€ k)
j=1
x (evl)),(evP & A - Aevrde A+ Nevi*E)
= (—1)Cr 8t (v ) d(evPr e A AevErE). (4.2)

Here we note that

J—1

j—1
S IGl e, A, &) = Zdegsp+2 Ra,) —1) + (61, &)
p=1

= Zdeg &+el&,..., &)+ 1 mod 2.
p=1

In order to compute my g o g v for (K, B'), (K", B") # (1,0), we discuss the relation
between the orientation bundle of

Mk’+1(B/; El, R/)evf’ Xevg/’ Mk"+1(B,/; ,CH; R//)

and the orientation bundle of the boundary of OMy;1(B; L;R). The codimension 1 boundary

of the moduli space My 1(B;L;R) is the union of the ﬁber products of Mg 1(B'; LR

and MkuH(B” L";R") with respect to the evaluation maps eV : M1 (B LR = R, and
: Mk//+1(B/,, ﬁ”,'R”) — R, where

L= (Lig,-+, Liy ,, Li, L), L= (Li; ys., Li

Gk —17 Zj+k//_1))

R' = (Rags- -+ Ra, 1, Ra, Ra Ray), R"=(Ra,Ra,...R

GHRI ain//_l)'

Here the union is taken over k', k" such that k' + k” = k + 1, all possible decomposition of B
into B’ and B”, j =1,...,k, and R, a connected component of L;, _, N Lj r_1,.

Proposition 4.1.

()" M1 (B3 L3R gy Xy M1 (B3 L5 R") C OMyi (B3 L3 R),

where

JH+E"—1
nz<k”—1><k’—j>+<k’—1><u<Ra>— > M(Rap)>
j—1 J+k =1
+ <ZM(R%)> (u(Ra)— > M(Ra,,)>
p=1

p=J

j—1 k
+ dim Ry + p(Ray) — (Z 1(Ra,) + 1(Re) + > u(R%)> + K.

=1 p=j+k"
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Proof. Denote by Sw the operation, which exchanges

GRO‘I R ® @Ra]—, and O}k%a & OMk"J,—l(B”?E//?RH)O'

1
Set the weight of O, , Or, and Oy, (B;c;R)e @S (Ra,), dim R, and
dim My 1(B; £L;R)° = dim My 1(B; L;R) — dim My 1,

respectively. Then the weighted sign of Sw is (—1)%, where

7j—1
o = (Z M(}g@p)) (dim M1 (B"; £, R") — dim Ry, — dim My 1)
p=1

= (g ,u(Rap)) (,u(Ra) - j+§:_1u(Rap)> mod 2.

p=J
Comparing ®” and Sw o (id Q- Rded?" @ide - ® id) o ®5' we find that
OMkJrl(B;E;R)O — OMk)/_'_l(B/;E/;R/)O & O}k%a & OMk//+1(B//;£”;R”)°

is (—1)%-orientation preserving.! Here My, 1(B; L£;R)° is the fiber of Myy1(B; L;R) — M1,
i.e., the moduli space of bordered stable maps with a fixed domain bordered Riemann surface
equipped with fixed boundary marked points. The O(1)-local system

*
OMk’+1(B/§£/§R/)O ® Og, @ OMk//+1(B”;£”;R//)°

is the orientation bundle of the fiber product

o

/ / / " " AN
M1 (B3 L5R) v X g M1 (B LY RY)
J

which is the moduli space of bordered stable maps with a fixed boundary nodal Riemann surface
equipped with fixed boundary marked points.
Now we compare the orientations of

OMp1(B; LiR) = 8(Mk+1(33 L;R)° x Mk+1)
and
M1 (BELERY) oo X g Mira (B L RY)
= (Mua (B £5R) X Mioia) o X (Mior (B £15R)° % M)
We note that Opq, (Bo;R) = Rout ® Ogam,, . (B;oR)- Here Royy is the normal bundle of the
boundary oriented by the outer normal vector. We pick local flat sections oq,...,0q,,0q Of

O(1)-local systems O, , ..., Or,, ,Or, and alocal orientation og, of Rq, around u(zp). Then
we can equip Mpi1(B; L;R), My 1(B'; £L';R') and the relative tangent bundle of

1!

v+ My (B"L";R") = Ra

with local orientations induced by them. Then a local orientation of My1(B; L;R) = Ra, X°
M1 1(B; L;R) is given by OR,, X o(aao;aal, e ,Uak). As the fiber product of spaces with
Kuranishi structures equipped with local orientations,

Mk’+1 (B/7 El; R/)evf/ Xevg” Mk”+1 (B”; £//; R//)
— Mk’+1 (B/7 £/7 R/) X OMk”+1 (B//; [://; R”)

1(—1)-orien‘ca‘cion preserving means orientation reversing.
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is locally oriented by

ORao X O(O-RaO;O—Ra17'"7O—Ra]-_170-Ra7o—Ra ...,UR%) XO(URa5URa]-7""URa

j+k”7 j+k”71)'

We fix zg = +1, z;j = —1 and consider the spaces of J-holomorphic maps ka+1(B;£,R),
M1 (B L R') and My (B”; L, R") such that

Mi1(Bi L5R) = Mys1(Bi £,R) /R,

M1 (B L5RY) = My (B £ R') /Ry,
and

My (B"; L7 RY) = My g1 (B";L"R")/Rpn.
We may also write

Mk+1(B; L;R)=My1(B;L,R) x Rp, etc.,

as oriented spaces.

The case that zg = +1, 21 = —1 is discussed in [5, p. 699]. The case that zp = +1, z; = —1
differs from the case that zg = 41, z; = —1 by an additional factor (—1)7~! as below.
__For orientation issue, we consider the top-dimensional strata of the moduli spaces and regard
Mi41(B; L;R) as an open subset of

j—1 jHE—1 k
M1 (B; L5R)° x [[0D), x  [[ (@D), x [] (0D)=.
=1 1=j+1 i=j+k"
We simply write
- A j—1 jHK—1 k
Mys1(Bi £5R) = (-1 Myea (B L5 R)° x [ [0D)= - [T 0Dz x [T (0D)-
i=1 i=j+1 i=j+k
where zg = +1, z; = —1,
Mk’+1 (B,;E,;R/) = (_1)]_1Mk’+1 (B,;E/;R/)O X H(@D)Zl X H (OD)ZZ,
i=1 i=j+k"
where 2 = +1, z; = —1, and
. j+k"—1
M1 (B L R") = My (B £ RY)" [ (9D)-,
i=j+1
where 2] = +1, z{ = —1.
Note that
gl Gk =1 K
(=17 ' T[@D), x ] (D) x [ (0D)z = Myy1 x R,
i=1 i=j+1 i=j+k"

j—1 k
(-1 [[@D):, x T[ (0D)s, = Miris x Ry
i=1

i=j+k"
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and

4k —1

H (8D)zL = Mk”—i—l X RBN.
i=j+1
Marked points of My 1(B’; £';R') and Myny1(B”; L;” R") are related to marked points of
Mj11(B; L;R) in the following way.
(205 s 20) = (205> 211, 2, Zjg ket -+ 21)
(Zg, Zi’, gou ey ZZ//) = (26/, Zjyeens Zj—i—k”—l)'

Here zé- and z{ are identified, i.e., the boundary node of the domain curve of an element
in Mp41(B; L;R). Then we find that
Mis1(B; L5 R)
— (_1)61 (Mk’—H (B,;EI;R/)O evf?’ XeVéB” Mk”—i—l (B”;ﬁ;” R//)O)

k-1

j—1 k
X (_1)j71 H(aD)Zz x H (aD)Zz X H (8D)Z1
1=1

i=j+1 i=j k"

7j—1 k
= (—1)01+0%2 (Mk/H(B’;E’;R’)Ox(—l)jIH(aD)Zi < 1] (aD)%)
=1

i=j+k"

JjH+E"—1
ovB’ Xevg// (Mk”—l-l (BI/; ﬁlI;R”)O X H (8-D)Z1>
! i=j+1
_ (_1)§1+52 (Mk’+1 (BI; ﬁ’;R/) « RB’) ev]B' Xevg’” (Mk”+1 (BH; E”;R”) « RB”)
_ (—1)51+62+53RB’—B” % (Mk’+1 (B/; ,C/;R/) evJB' Xev(ff” Mk;”+1 (B”; ﬁ;" R”)) % RBH—B”

= (—1)61+52+63R0ut X (Mk;’-f—l (B/, E/, R/) evB’ XeV(}]g// Mk”-f—l (B//; E;// R//)) X RB, (43)
J
where
5 = (K" = 1) (K = j) + (k' = 1) (dim Myr11 (B"; £"R")° — dim Ry,
83 = dim My 11 (B L'sR').

Rp/_pr and Rprygr are the oriented lines spanned by (1,—1),(1,1) € Rgr @ Rpn, respectively.
Note that the ordered bases (1,0), (0,1) and (1, —1), (1, 1) give the same orientation of Rg/®&Rpr,
Rp/_pr and Rp/, g are identified with R,y and Rp, respectively.
Here is an explanation of the second equality, i.e., the appearance of (—1)‘52. By the convention
in [5, Section 8.2], we have
Mkﬂ.},.l (B/, El, 73/)O evf/ Xev(})gll Mkli+1 (B//; E;// R”)O
— Mk’+1(B/;£I;R/)OO % Ra % OMk//+1 (B//; E;// RII)O
= Mk’—l—l (B/; E/; R/)O X OMk//+1 (B,/; ,C;” R//)o,

where

Mk’—H (B/; El; RI)O = Mk’+1 (B/; Ll; R/)oo X Ra,
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and
My i1 (B//; [,;// ,R//)o — R, % OMk”-i-l (B//; ,C;// R//)o.
Using these notations, we have

(Mis1 (B L5R) (pr X pr x Myraa (B £ R)°)

j—1 JHE" -1 k
x [[0D)- x ] D). x [] @D).,
i=1 i=j+1 i=j+k"

= (—1)71 (Mk/+1 (B/, ,C,, R/)o eva/ Xevég// XMk//+1 (B”; E;// R//)o)

j—1 k GHE"—1
x [[@D). x [ @D).. x ] ©@D)-,
i=1 i=j+k" i=j+1

= ()" (M1 (B L5 R) x * Mg (B"; £ R")°)

j—1 k jHE" -1
XH(‘?D)ziX H (0D)s, X H (OD).,
i=1 i=j+k" i=j+1
7j—1 k
= ()" My (B L5 R) < [[(0D)., x [] (0D)-,
i=1 i=j+k"
GHE =1
x *Myri1(B"; L' R")° x H (dD).,
i=j+1
j—1 k
= (—1)n+2 <Mk/+1(B’;£’;R’)° X H(GD)ZZ. X H (8D)Zi>
i=1 i=j+k"

J+E"—1
1. pIl, 511\ ©
XerB’ XeVOB” (Mk”Jrl (B 7£ ,R ) X H (6D)ZZ>,
i=j+1
where v, = (K" —1)(k' —j), i.e., (—1)" is the sign of switching marked points (z; s, ..., 2x) and

(Zj41s- -5 Zjakr—1), and 2 = dim(° M1 (B”; L R")°)(dim Mys41 + 1). Then da = 1 + 2.
Now we return to the discussion on local orientations of the orientation bundle of

Mk’H(B/%E,SR/)eVB’ Xev(l)s” Mk"+1(B”;£H;RH) and OMiy1(B; L;R).
J
Recall that
Mis1(B; £;R) = Myy1(B; £,R) x Rp. (4.4)
Set k = 01 + d2 + I3, i.e.,

k=K' —1)(K —j)+ (K —-1) (M(Ra) - j+z_1:“(R%)>
+ (jl M(Rap)> </‘(Ra) - j+kzl ”(Rap)>

p= p=J
j-1 k
+dim Ray + p(Rag) — (Z #(Ra,) + (Ra) + Y M(Rap)> +
p=1 p=j+k"

Comparing (4.3) and (4.4), we obtain Proposition 4.1. [
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From Corollary 2.2 in the setting of Kuranishi structures, Propositions 4.1 and 2.3, i.e., the
base change formula for integration along fibers, we find the following.

Lemma 4.2.

j—1 k J+E" -1
B . . | | Bx | | Bx | I Bx
(eVO |8./Vlk+1(B;E;R)7 80(0a07 Oaqy-++s Uak))! < ev; X ev; X ev; >
i=1 =7

i=j+k
K B’ .
=(-1) (evo ,0(00[07 Oars-10a; 150 Oa,, r_ys - ,aak))!
Jfl k,/ kl/
B’x B’x B’x B, . B«
o (H ev; * X H evy * x (evj o (evy ;0(0a;iTazs-+s0a, ) © Hevi ))
i=1 i=j+1 =1

as operations applied to

j—1 k J+k" -1
(@Cz) ®< X Ci) ®< (09 Cz‘);
i=1 i=j+k" i

where & = (@ 0q,, © = 1,..., k. Here 80(Ga0;aal,...,aak) s the local orientation of the
relative tangent bundle OMy1(B; L;R) — Re, induced from o(aao; Coyye-- ,aak).

Note that 8o(aa0;aal,...,aak) is not the boundary orientation of 9°My,1(B;L;R) in-
duced from the orientation o(aao; Tayye-- ,aak) of °My11(B; L;R). They differ by (—1)dim Fag,
Namely, for u € OM11(B; L;R), the local orientation o(aao; Tays e a%) of °My11(B; L;R)
and the local orientation do (aao; Tapse--s O‘ak) of the relative tangent bundle of oMy 1(B; L; R)
— Ry, are related as follows:

TuMps1(B; L;R) = Rout X TuOMy11(B; L;R),
TuMpi1(B; LiR) = Tyzp)Rap X Tu" My 1(B; L;R).

Then, under the following identification
Rout X TuaMk+1(B§ ,C,R) = Rout X Tu(zo)Rao X TanMkJrl(B; ﬁ; R)7

we define the local orientation 00(0ay; Tays - - -5 0a,) of the relative tangent bundle of OMj1(B;
L;R) — Rq, so that

OR., X 0(Cap; Tars- -5 0a;) = Rout X OR., X 00(0ap; Tars s Oay)-
Note that
B' . _B . :
evy’ ompg, 1=1,...,5—1,
B _ B// B L. . 7i
ev; |8Mk+1(B;E;R) - eVi_j_A,_l O TR, =725+ k" — 17
/ . .
eviBik”_;_loTrg/’ Z:]+k/,,...,k',

where Wg/ and Wg// are projections from the fiber product

M1 (B LR ) i Xy M (B L7 RY)

to My (B L5 R') and My 1(B”; L, R"), respectively. Note that o, appears twice in the
right hand side of the equality in Lemma 4.2, hence the right hand side does not depends on
the choice of local section o, of the O(1)-local system ©,.

Next, we compute my pr o tyr g with (K, B") # (1,0), (K”,B") # (1,0). Armed with
Lemma 4.2, we regard &;, ¢ = 1, ..., k, as differential forms on R,, in the computation below.
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Lemma 4.3.
mk’,B’ o ﬁlk”,B”(fl) . ,ék) = (—1)'4 (GVE)B B ))!(evgB B )*51 FANEIVAN ev,(cB B ) fk), (45)
where

k +E7—1

=1 i=j

. (ﬁuw%)) (1m0 - Mzﬁ_lmap)) S K mod 2

p=j

Proof. By the definition of m; g and its extension ﬁ\‘% B as a graded coderivation, we have
Wy g o My pr(&1, ..., Ek)

(_1)22;11 |£i|/mk’,B, (617 .. )mk}",B” (5]’ . 7§j+k”—1)) N 75]4})

I

<
I
—_

(— 1)54(evo ) (ev1 ELN - /\evf_lﬁﬁjq

Il

<
Il
—

N ev JB/ ((eVOB”) (evl 5] BAN evﬁjl*§j+ku_1)) VANERIRIVAN evgl*fk), (46)

where

j—1
04 = Z &l + (&, ompr B (& 1)y - &) F(&Go - Errr—1)s

i=1
and evgB/’ RE s My (B LR, e X, e M1 (B"; L R") = Ry, is the evaluation map at
the j-th marked point on the ﬁber product
Mk’+1 (B/7 ﬁl; R/)evf/ Xevég” Mk/'Jrl (B”; ﬁ”; R”).

Here the numbering of the marked points is the same as that on My, 1(B;L;R). We also have

(evg ) (evl NSTARERRA ev 1£] 1A ev ((evgl) (evl FEN N evfii’*gj+k,,,1))

VAN er+1£j+k// VANCIERAN evk/ Ek)

=(—1)™m (evOBl)!((evl N A erB/#ifj 1A evfﬁﬁj%u JANREIIVAN evgl*fk)

A evB * (evé3 )i (evl TEN A evﬁi’*§j+k//_1))
=(-nm (evoB/)!((evl HSWARERNA evj 1§j 1A evfﬁfﬂku ARERW\ evg/*ﬁk)
A (mpr)ioThy (evl NN evﬁjl*ﬁﬁku_l))
=(—1)™m (ev(?/)! o (mp)i(7p (evl NIWARERVA evf_,*lfj_l A evﬁ*lfﬁku A AevBg)
A (v & Ao N evi "Ej 1))
= (1) (evf o), (mh (evE e A A evf_,ﬁﬁjq)
A Tgn (ev1 FEN N ev5:/*§j+k//_1)
AT (er+1fj+k” o Aevi *6)

= (=1 ey ), (e A ner ),
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where
JHk"—1 GHK—1 k
m = (( > deg&) + (u(Ra) - > i(Ray) +k”—2)>< > deg&),
i=J i=j i=j+k"
j+k:”—1 k
N2 = ( Z deg&)( Z deg@).
i=j i=j+k

The second equality is a consequence of Proposition 2.3 (base change formula) for integration

along fibers, i.e., evE™* o (evB”)! = (mp)1 o . The third equality follows from Corollary 2.2.

J
Note that

evP ork, i=0,1,...,5—1,
evi? P = L evB omB, =g R -,
evi—k”+1B, o Wg,, 1=7+ k‘”, oy k.
We set
JHE"—1 k
05 =M1+ 12 = (M(Ra) = Y #(Ray) + K - 2) ( > degﬁz‘)-
i=j i=j+k"

Then we have
(eVOBI)!(eVFI*gl A A evﬁlﬁéj_l A erB/* ((evoB")!(ev?"*gj A A ev,?:/*fﬂku_l))
A\ erBiﬁfj_;_k// VANEERIVAN evg/*fk)
= (—1)% (ev(()B,’BH))! (ev(lB"B”)*gl A A ev,(ﬂB/’B”)*{k). (4.7)

Set k' = 4 + 05, i.e.,

j—1
K = Z &l 4 e(Cry e smpr e (&G Ehr—1) s -5 k) F€(&G s Ejrrr—1)
i—1

JH+E' -1 k
+ <N(Ra) - Z M(Rai) + k" — 2) ( Z degfi)-

i=j i=j k"

Recall the definitions of the shifted degree in (3.3) and the €(&1,...,&) in (3.4) and the fact
on the degree of my, (3.5), we find that

k k-1
K=el€r,. &)+ degi—k—1+j+F (u(Rc» - > u(Rm)>

i=1 i=j
j—1 jHk"—1
+ (Z M(Rap)> (,u(Ra) - Z u(Rap)) + (k' —j)k" mod 2.
p=1 p=j
Combining (4.6) and (4.7), we obtain Lemma 4.3. [
Now we show the following.
Theorem 4.4. The operations my, k = 0,1, ..., that is the Bott—-Morse A -operation in the de

Rham model, in Definition 3.3 satisfy the filtered Aoo-relation

Z mk/ofﬁku(&,...,gk)zo fOI‘kZl,Q,....
k' +k"=k+1
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Proof. By Proposition 4.1, we find the following.

Claim 4.5. The summation of the right hand side of (4.5) over k', k", B', B" such that
K+k =k+1, B=B+B", (k,B),(k",B") # (1,0) is equal to

(=1 (VG lomps (BieR)) (€VETEL A - A evi &),

Note that

k
6(51,.--,&;)+1+k+zdeg£z+dlmRao+u a0) = Y 1(Rq
i=1 p=1

/
K+ K

k
(&1, &) + 1+ dim M1 (B; £5R) + Y degd; mod 2.

Using Proposition 2.5, we have

d(evOB)!(evf*ﬁl A+ A eka*fk) = (evf)!d(ev?*él Ao A eka*fk)
+ (=1 (V8 lomy s (BizsR) ) (€VEFELA -+ N evi™ &), (4.8)

where v = dim M1 (B; L;R) + Zle degé;.
Combining (4.1), (4.2), Claim 4.5 and (4.8), we have

mygomyp(&r,..., &) +mepomyo(&r,. .., &)

+ > My g o Wy g (&1, -, &) =

(K,B"), (K", B")#(1,0)

for all (k,B) # (1,0). Recall that, in the case that (k,B) = (1,0), myp = d clearly satisfies
mygomyo = 0. Hence, we obtain Theorem 4.4. |
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