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1 Introduction

The aim of this note is to describe the sign and orientation issue appearing the filtered A∞-
formulae in Lagrangian Floer theory using de Rham model in Bott–Morse setting. When we
work with only one relatively spin Lagrangian submanifold, we constructed the filtered A∞-
algebra in [4, 5] using the singular chain complex model. The sign and orientation are explained
in [5, Sections 8.3–8.5]. In the de Rham model version, see [6, Section 22.4] and also [7].
We gave a construction of the filtered A∞-bimodule using the singular chain model in [4, 5],
especially, the sign and orientation are described in [5, Section 8.8]. Sign and orientation in
Bott–Morse Hamiltonian Floer complex using the de Rham model version, see [6, Definition 19.3
and Proposition 19.5]. In this note, we discuss the sign and orientation issue appearing in
the construction of the filtered A∞-category for a collection of finitely many (relatively) spin
Lagrangian submanifolds. The construction of Kuranishi structures (a version of a tree-like
K-system in the sense of [6]) on moduli spaces of stable holomorphic polygons is discussed
in other papers [1, 3]. Here, we give a definition of A∞-operations in Bott–Morse case (see
Definition 3.3) using such Kuranishi structures. We verify the sign convention by showing
the filtered A∞-relation (see Theorem 4.4).

2 Preliminaries

We use the convention on orientation on the fiber product (in the sense of Kuranishi structure)
as in [5, Section 8.2]. Let p : M → N be a fiber bundle with oriented relative tangent bundle.
Restrict the fiber bundle to an open subset U of N , we may assume that U is oriented. Then
we give an orientation on p−1(U) ⊂ M using the isomorphism TM = p∗TN ⊕ TfiberM , where
TfiberM is the relative tangent bundle. Then our convention of the integration along fibers
of p : M → N is∫

U
α ∧ p!β =

∫
p−1(U)

p∗α ∧ β,
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where α ∈ Ω∗(U) and β ∈ Ω∗(p−1(U)
)
, Reversing the orientation of U induces reversing of

the orientation of p−1(U), hence the push-forward p!β does not depend on the choice of the
orientation of U . Therefore, for a proper submersion p : M → N with the oriented relative
tangent bundle, the integration along fibers

p! : Ωk(M) → Ωk−dimM+dimN (N)

is well defined.
We have the following properties.

Proposition 2.1.

(1) p!((p
∗θ) ∧ β) = θ ∧ (p!β), where θ ∈ Ω∗(N) and β ∈ Ω∗(M).

(2) Let p : M → N and q : N → B be fiber bundles with oriented relative tangent bundles. For
β ∈ Ω∗(M), we have (q ◦ p)!β = q! ◦ p!(β).

Using them, we find the following.

Corollary 2.2. (q ◦ p)!(p∗θ ∧ β) = q!(θ ∧ p!β).

Proposition 2.3 (base change). Let f : S → N be a smooth map. Denote by p : f∗M → S the
pullback of the fiber bundle p : M → N and f̃ : f∗M → M the bundle map covering f . Then
we have f∗ ◦ p! = p! ◦ f̃∗.

Proposition 2.4 (Stokes type formula, [6, Theorem 9.28]). Let p : M → N be a smooth map
(or a strongly smooth map from a space with Kuranishi structure to a smooth manifold)

dp!β = p!dβ + (−1)dimM+deg βp|∂Mβ.

We introduced the notions of a strongly smooth map and a weakly submersive strongly
smooth map from a space equipped with Kuranishi structure to a smooth manifold in [6, Def-
inition 3.40 (4), (5)]. We call a space equipped with a Kuranishi structure a K-space for short.
For a proper weakly submersive strongly smooth map p from a K-space X to a manifold N , we
define the integration along fibers using a CF-perturbation, see [6, Section 9.2]. In this note,
we suppress the notation for Kuranishi structures or good coordinate systems as well as CF
perturbations. Refer the indicated places in [6] for detailed statements. For the verification of
the sign convention in the filtered A∞-relations, it is sufficient to treat the integration along
fibers of a proper weakly submersive strongly smooth map as if the one for proper submersion
between smooth manifolds.

The statements above holds for a proper weakly submersive strongly smooth map p. For
Proposition 2.3, f∗M is the fiber product of f : S → N and p : M → N . When S and M are
K-spaces with a strongly smooth map f : S → N in the sense of [6, Definition 3.40 (4)] and
a weakly submersive strongly smooth map p : M → N , we have a compatible system of smooth
maps from Kuranishi charts of the fiber product S×N M to the manifold N and the obstruction
bundle on a fiber product Kuranishi chart of f∗M contains the pullback of the obstruction
bundle on a Kuranishi chart of M as a subbundle. Using the pullback CF perturbation on f∗M ,
we obtain Proposition 2.3 in such a situation.

The integration along fibers changes the degree of differential forms by

deg p!β = deg β − reldim p. (2.1)

Here reldim p = dimX − dimN , where dimX is the dimension of X in the sense of K-space,
see [6, p. 52]. A tuple (X, f1 : X → M1, f2 : X → M2) is called a smooth correspondence,
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if X is a K-space, f1, f2 are strongly smooth maps and f1 is weakly submersive. After taking
CF-perturbations, we define

CorrX : Ω∗(M2) → Ω∗(M1)

by (f1)! ◦ (f2)∗. For flat vector bundles Li on Mi, i = 1, 2, with a given isomorphism

f∗
1L1

∼= Of1 ⊗ f∗
2L2,

where Of1 is the orientation bundle of the relative tangent bundle of f1 : X → M1, Theorem 27.1
in [5] gives

CorrX : Ω∗(M2,L2) → Ω∗(M1,L1).

Using Proposition 2.4, we have the following.

Proposition 2.5 ([6, Proposition 27.2]).

d ◦ CorrXξ = CorrX ◦ dξ + (−1)dimX+deg ξCorr∂Xξ for ξ ∈ Ω∗(M2;L2).

Let (X12, f1,12 : X12 → M1, f2,12 : X12 → M2) and (X23, f2,23 : X23 → M2, f3,23 : X23 → M3)
be smooth correspondences with given isomorphisms

f∗
1,12L1

∼= Of1,12 ⊗ f∗
2,12L2, f∗

2,23L2
∼= Of2,23 ⊗ f∗

3,23L3. (2.2)

Taking the fiber product X13 over f2,12 and f2,23, we obtain a smooth correspondence

(X13, f1,13 : X13 → M1, f3,13 : X13 → M3)

with the isomorphism

f∗
1,13L1

∼= Of1,13 ⊗ f∗
3,13L3

induced by (2.2) and

Of1,13
∼= g∗1Of1,12 ⊗ g∗2Of2,23 .

Here we denote by g1 : X13 → X12 and g2 : X13 → X23 the projections of the fiber product of
Kuranishi charts,

X13

|| ""
X12

|| ""

X23

|| ""
M1 M2 M3.

Then we have the following.

Proposition 2.6 (composition formula, [6, Theorem 10.21]).

CorrX13 = CorrX12 ◦ CorrX23 .

See [6, Chapter 27] in the case with coefficients in local systems, see [6, Theorems 27.1
and 27.2]. In fact, the composition formula is a consequence of the properties mentioned above.
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3 Definition of A∞-operations

Let {Li} be a relatively spin collection of Lagrangian submanifolds, which intersects cleanly
in (X,ω). In a later argument, we glue the linearization operator of holomorphic polygons with
a Cauchy–Riemann type operator at each boundary marked point, which is sent to the clean
intersection of two branches of relatively spin Lagrangian submanifolds, to obtain a Cauchy–
Riemann type operator on the unit disk. For the orientation issue, the argument works for clean
intersections of distinct relative spin pair of Lagrangian submanifolds and clean self-intersection
of a relative spin Lagrangian submanifold. The description of the boundary of holomorphic
polygons in Lagrangian immersion case is found in the paper by Akaho and Joyce [2]. For the
sign and orientation issue, the argument presented here is also valid for immersed Lagrangian
submanifolds. Denote by Rα a connected component of Li and Lj . (We also consider the case
of self clean intersection.)

Let (Σ, ∂Σ) be a bordered Riemann surface Σ of genus 0 and with connected boundary and
z⃗ = (z0, . . . , zk) boundary marked points respecting the cyclic order on ∂Σ. Let u : (Σ, ∂Σ) →
(X,∪Li) be a smooth map such that u

( Å
zjzj+1

)
⊂ Lij , j mod k + 1, u(zj) ∈ Rαj , where Rαj is

a connected component of Lij−1 ∩Lij . (For an immersed Lagrangian with clean self intersection,
Rα is a connected component of the clean intersection.) For such u and u′, we introduce the
equivalence relation ∼ so that u ∼ u′ when

∫
Σ ω =

∫
Σ′ ω and the Maslov indices of u and u′

are the same. Denote by B the equivalence class. In this note, the dimension of moduli spaces
means their virtual dimension.

Consider the moduli space

Mk+1

(
B;Li0 , . . . , Lik ;Rα0 , . . . Rαk

)
of bordered stable maps of genus 0, with connected boundary and (k + 1) boundary marked
points, representing the class B.

Set L =
(
Li0 , . . . , Lik

)
and R =

(
Rα0 , . . . Rαk

)
and write

Mk+1(B;L;R) = Mk+1

(
B;Li0 , . . . , Lik ;Rα0 , . . . Rαk

)
.

Denote by evBj : Mk+1(B;L;R) → Rαj the evaluation map at zj .
For a pair of Lagrangian submanifolds L, L′ which intersect cleanly, we constructed the O(1)-

local system Θ−
Rα

on Rα in [5, Proposition 8.1.1]. Here Rα is a connected component of L ∩ L′.
In this note, we simply write it as ΘRα .

We recall the construction of ΘRα briefly. We assume that L, L′ are equipped with spin struc-
tures. In the case of a relative spin pair, we take TX ⊕ (V ⊗C) (on the 3-skeleton of X) instead
of TX and TL⊕V (resp. TL′⊕V ) (on the 2-skeleton of L (resp. L′) instead of TL, (resp. TL′).
Here V is an oriented real vector bundle on the 3-skeleton of X such that the restriction of w2(V )
to the 2-skeleton of L (resp. L′) coincides w2(TL) (resp. w2(TL

′)). The relative spin structure
with the background V is a choice of spin structure of V ⊕ TL, (resp. V ⊕ TL′). Then the
argument goes in the same way. See the proof of [5, Theorem 8.1.1]. For a point p in the self
clean intersection of a Lagrangian immersion i : L̃ → X, there are two local branches of the
Lagrangian immersion, i.e., i∗

(
Tp′L̃

)
and i∗

(
Tp′′L̃

)
where p′, p′′ ∈ L̃ with p = i(p′) = i(p′′). Then

we run the argument below by replacing TpL and TpL
′ by i∗

(
Tp′L̃

)
and i∗

(
Tp′′L̃

)
, respectively.

As written in [5, Section 8.8], we consider the space PRα(TL, TL
′) of paths of oriented

Lagrangian subspaces in TpX, p ∈ Rα, of the form Rα ⊕ λ(t) such that Rα ⊕ λ(0) = TpL and
Rα ⊕ λ(1) = TpL

′. Here λ is regarded as a path of Lagrangian subspaces in

VRα =
(
TpL+ TpL

′)/(TpL+ TpL
′)⊥ω =

(
TpL+ TpL

′)/(TpL ∩ TpL
′),

which is a symplectic vector space. Pick a compatible complex structure on it and consider the
Dolbeault operator ∂λ on Z− =

(
D2 ∩ {Re z ≤ 0}

)
∪ ([0,∞)× [0, 1]).
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We set µ(Rα;λ) = Index ∂λ. The parity of µ(Rα;λ) is independent of the choice of λ above,
since λ ⊕ TpRα is a path of oriented totally real subspaces of TpX with fixed end points, TpL,
TpL

′, p ∈ Rα which are oriented. Denote by µ(Rα) = µ(Rα;λ) mod 2. Then we have

dimMk+1(B;L,R) ≡ dimRα0 + µ(Rα0)−
k∑

i=1

µ
(
Rαi

)
+ k − 2 mod 2. (3.1)

We have the determinant line bundle of
{
Index ∂λ

}
λ∈PRα (TL,TL′)

. Pick a hermitian metric on X.
Denote by PSO(TpRα⊕λ) the associated oriented orthogonal frame bundle of TpRα⊕λ. Note that
PSO(TpRα⊕λ)|t=0 and PSO(TpRα⊕λ)|t=1 are canonically identified with PSO(L)|p and PSO(L

′)|p,
respectively. We glue the principal spin bundle PSpin(TpRα ⊕ λ) at t = 0, 1 with PSpin(L)|p
and PSpin(L

′)|p. There are two isomorphic classes of resulting spin structure on the bundle
TL∪ (λ⊕ TpRα)∪ TL′ on L∪ [0, 1]∪L′, where p ∈ L and p ∈ L′ are identified with 0, 1 ∈ [0, 1],
respectively. This gives an O(1)-local system OSpin on PRα(TL, TL

′). Proposition 8.1.1 in [5]
states that the tensor product det ∂λ ⊗OSpin descends to an O(1)-local system ΘRα on Rα.

We denote by ∂Rα is the Dolbeault operator acting on sections of the trivial bundle Z− ×
(TpRα ⊗ C) on Z− with totally real boundary condition TpRα. Then the operator ∂Rαi⊕λi

=

∂Rαi
⊕ ∂λi

is the Dolbeault operator acting on the trivial bundle Z− × TpX on Z− with the
totally real boundary condition TpRα⊕λ. After gluing the linearization operator D∂ for a holo-
morphic polygon with ∂Rαi⊕λi

, where Rαi ⊕ λi ∈ PRαi
(TLi−1, TLi), i = 0, . . . , k, we obtain

a Cauchy–Riemann type operator on the unit disk. By [5, Theorem 8.1.1], the relative spin
structure for {Li}, namely relative spin structures for each Li with a common oriented vector
bundle V → X [3], determines an isomorphism ΦB below. For the definition and properties of
relative spin structure, see [5, Section 8.1.1].

Proposition 3.1 (cf. [5, Theorem 8.1.1]). A choice of relative spin structure determines the
following isomorphisms.

(1) Case that k = 0 (L is an immersed Lagrangian submanifold with clean self intersection or
Rα0 = L):

ΦB : evB∗
0 ΘRα0

→ evB∗
0 O∗

Rα0
⊗OM1(B;L).

(2) Case that k = 1:

ΦB : evB∗
0 ΘRα0

→ evB∗
0 O∗

Rα0
⊗OM2(B;L;R) ⊗ RB ⊗ evB∗

1 ΘRα1

∼= (−1)µα1 evB∗
0 O∗

Rα0
⊗OM2(B;L;R) ⊗ evB∗

1 ΘRα1
⊗ RB.

(3) Case that k ≥ 2:

ΦB : evB∗
0 ΘRα0

→ evB∗
0 O∗

Rα0
⊗OMk+1(B;L;R) ⊗ forget∗O∗

Mk+1

⊗ evB∗
1 ΘRα1

⊗ · · · ⊗ evB∗
k ΘRαk

.

In item (1), we suppress the orientation bundle of the biholomorphic automorphism group
Aut

(
D2, 1

)
, since Aut

(
D2, 1

)
is two-dimensional and does not affect the sign when we exchange

Aut
(
D2, 1

)
with other factors. In item (2), RB is the group of translations in the domain

D2 \ {±1} ∼= R × [0, 1] and M2(B;L;R) is the quotient of M̃2(B;L;R) by the translation
action of RB on the domain,

M̃2(B;L;R) = M2(B;L;R)× RB.
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The sign of the exchange of RB and the index of ∂λRα1
is (−1)µα1 . In item (3), Mk+1 is the

moduli space of bordered Riemann surfaces of genus 0, connected boundary and (k+1) marked
points on the boundary and forget : Mk+1(B;L;R) → Mk+1 sends [(Σ, ∂Σ, z⃗), u] to [(Σ, ∂Σ, z⃗)].
Here ORα0

, OMk+1(B;L;R) and OMk+1
are orientation bundles of Rα0 , Mk+1(B;L;R) and Mk+1,

respectively. We consider ev∗0O
∗
Rα0

⊗OMk+1(B;L;R) the orientation bundle of the relative tangent
bundle of ev0 : Mk+1(B;L;R) → Rα0 . In the notation in [5], we write

Mk+1(B;L;R) = Rα0 × ◦Mk+1(B;L;R)

and

Mk+1(B;L;R) = Mk+1(B;L;R)◦ ×Mk+1.

These descriptions are considered as the splitting of tangent spaces in the sense of Kuranishi
structures. One may consider ◦Mk+1(B;L;R) and Mk+1(B;L;R)◦ as a fiber of ev0 and a fiber
of forget, respectively. Using these notations, we have

ev∗0O
∗
Rα0

⊗OMk+1(B;L;R) = O◦Mk+1(B;L;R),

OMk+1(B;L;R) ⊗ forget∗O∗
Mk+1

= OMk+1(B;L;R)◦ .

If we denote by M2 the quotient stack of a point by RB, (2) is written in (3) with k = 2.
We give an orientation of Mk+1 =

(
∂D2

)k+1
/Aut

(
D2, ∂D2

)
as the orientation of the quo-

tient space following [5, convention (8.2.1.2)]. Then the orientation bundle of Mk+1(B;L;R)
is canonically isomorphic to the one of Mk+1(B;L;R)◦. Hence, for u =

[
u : (Σ, ∂Σ, z⃗) →(

X,
⋃

L∈L L,
⋃

Rα∈RRα

)]
, the relative spin structure of L, local sections σαi of O(1)-local sys-

tems Θαi around u(zi), i = 0, 1, . . . , k, determines a local orientation of the relative tangent
bundle of evB0 : Mk+1(B;L;R) → Rα, at u, i.e., the kernel of TuMk+1(B;L;R) → Tu(z0)Rα0 ,
which is denoted by o(σα0 ;σα1 , . . . , σαk

).

Remark 3.2. When k = 0 and Rα0 = L, the orientation on M1(B;L) is given in [5, Sec-
tion 8.4.1] When k = 1, the orientation bundle of M2(B;L;R) is given in [5, Proposition 8.8.6].
Note that Θ+

Rα
⊗ORα ⊗Θ−

Rα
is canonically trivialized. We write ΘRα = Θ−

Rα
in this note.

Since the evaluation maps are weakly submersive in the sense of Kuranishi structure, see
[6, Definition 3.40 (5)], i.e., after taking sufficiently large obstruction bundles, the evaluation
maps on Kuranishi charts are submersive, the push-forward (ev0)! is defined by taking CF-
perturbations. Hence, for a smooth correspondence (Mk+1(B;L;R), ev0, ev1 × · · · × evk), The-
orem 27.1 in [6] gives(

evB0
)
!
◦
(
evB∗

1 × · · · × evB∗
k

)
: Ω∗(Rα1 ; ΘRα1

)
⊗ · · · ⊗ Ω∗(Rαk

; ΘRαk

)
→ Ω∗(Rα0 ; ΘRα0

)
.

Namely, for ξi = ζi ⊗ σαi ∈ Ω∗(Rαi ; Θαi

)
, i = 1, . . . , k, we define(

evB0
)
!
◦
(
evB∗

1 × · · · × evB∗
k

)(
ζ1 ⊗ σα1 , . . . , ζk ⊗ σαk

)
=
(
evB0 ; o

(
σα0 ;σα1 , . . . , σαk

))
!

(
evB∗

1 ζ1 ∧ · · · ∧ evB∗
k ζk

)
⊗ σσα0

. (3.2)

Here
(
evB0 ; o

(
σα0 ;σα1 , . . . , σαk

))
!
is the integration along fibers with respect to the relative ori-

entation o
(
σα0 ;σα1 , . . . , σαk

)
of Mk+1(B;L;R) → Rα0 . Note that the right hand side of (3.2)

does not depends on σα0 , since σα0 appears twice in the right hand side of (3.2), and gives a dif-
ferential form on Rα0 with coefficients in Θα0 . For general ξi ∈ Ω∗(Rαi ; Θαi

)
, we use partitions

of unity on Rαi and extend the operation
(
evB0

)
!
◦
(
evB∗

1 × · · · × evB∗
k

)
multi-linearly.

For ξ ∈ Ω∗(Rα; Θα), we define the shifted degree

|ξ|′ = deg ξ + µ(Rα)− 1. (3.3)
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Definition 3.3. We set m0,0 = 0, m(1,0)ξ = dξ on
⊕

Ω∗(Rα; ΘRα), i.e., the de Rham differential
on differential forms with coefficients in the local system ΘRα . For (k,B) ̸= (1, 0),

mk,B(ξ1, . . . , ξk)

= (−1)ϵ(ξ1,...,ξk)
(
evB0

)
!
◦
(
evB∗

1 × · · · × evB∗
k

)
(ξ1 ⊗ . . . ,⊗ξk) ∈ Ω∗(Rα0 ; Θα0),

where ξi ∈ Ω∗(Rαi ; Θαi

)
and

ϵ(ξ1, . . . , ξk) =

{
k∑

i=1

(
i+

i−1∑
p=1

µ
(
Rαp

))
(deg ξi − 1)

}
+ 1. (3.4)

Then we define

mk =
∑
B

mk,BT
⟨ω,B⟩ :

k⊗
i=1

Ω∗(Rαi ; Θαi ⊗ Λ0

)[
1− µ

(
Rαi

)]
→ Ω∗(Rα0 ; Θα0 ⊗ Λ0)[1− µ(Rα0)].

Here

Λ0 =

ß∑
i

aiT
λi | ai ∈ R, λi → ∞ as i → ∞

™
and the symbol [1 − µ(Rα)] is the degree shift by 1 − µ(Rα), i.e., the grading of a differential
form is given by |ξ|′. By (2.1) and (3.1), we find that

|mk(ξ1, . . . , ξk)|′ ≡
k∑

i=1

|ξi|′ + 1 mod 2. (3.5)

Remark 3.4. Since the aim of this note is describe the sign and orientation for the filtered
A∞-operations, we use Λ0 as the coefficient ring. To make mk operations of degree 1, we need
to use the universal Novikov ring Λ0,nov introduced in [4].

4 Filtered A∞-relations

In the rest of this note, we verify the sign convention in the filtered A∞-relations∑
k′+k′′=k+1

mk′ ◦ m̂k′′(ξ1, . . . , ξk) = 0 for k = 1, 2, . . .

under the tree-like K-system and CF-perturbation described in [6]. Here m̂k,B is the extension
of mk,B as a graded coderivation with respect to the shifted degree |•|′. This relation is equivalent
to the following relations for decompositions of B into B′ and B′′, k′ + k′′ = k + 1,

m1,0 ◦mk,B(ξ1, . . . , ξk) +mk,B ◦ m̂1,0(ξ1, . . . , ξk)

+
∑

(k′,B′),(k′′,B′′ )̸=(1,0)

mk′,B′ ◦ m̂k′′,B′′(ξ1, . . . , ξk) = 0.

We compute mk′,B′ ◦ m̂k′′,B′′ . For (k,B) = (1, 0), m1,0 ◦m1,0 = 0 clearly holds.
From now on, we investigate the case that (k,B) ̸= (1, 0). Firstly we consider the case that

(k′, B′) = (1, 0) or (k′′, B′′) = (1, 0). We find that

m1,0 ◦mk,B(ξ1, . . . , ξk) = (−1)ϵ(ξ1,...,ξk)d
(
evB0

)
!

(
evB∗

1 ξ1 ∧ · · · ∧ evB∗
k ξk

)
, (4.1)
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mk,B ◦ m̂1,0(ξ1, . . . , ξk) =
k∑

j=1

(−1)
∑j−1

p=1 |ξp|′mk,B(ξ1, . . . , dξj , . . . , ξk)

=
k∑

j=1

(−1)
∑j−1

p=1 |ξp|′+ϵ(ξ1,...,dξj ,...,ξk)

×
(
evB0

)
!

(
evB∗

1 ξ1 ∧ · · · ∧ evB∗
j dξj ∧ · · · ∧ evB∗

k ξk
)

= (−1)ϵ(ξ1,...,ξk)+1
(
evB0

)
!
d
(
evB∗

1 ξ1 ∧ · · · ∧ evB∗
k ξk

)
. (4.2)

Here we note that

j−1∑
p=1

|ξp|′ + ϵ(ξ1, . . . ,dξj , . . . , ξk) =

j−1∑
p=1

deg ξp +

j−1∑
p=1

(
µ
(
Rαp

)
− 1
)
+ ϵ(ξ1, . . . , ξk)

+

(
j +

j−1∑
p=1

µ
(
Rαp

))

≡
j−1∑
p=1

deg ξp + ϵ(ξ1, . . . , ξk) + 1 mod 2.

In order to compute mk′,B′ ◦ m̂k′′,B′′ for (k′, B′), (k′′, B′′) ̸= (1, 0), we discuss the relation
between the orientation bundle of

Mk′+1(B
′;L′;R′)

evB
′

j
×

evB
′′

0
Mk′′+1(B

′′;L′′;R′′)

and the orientation bundle of the boundary of ∂Mk+1(B;L;R). The codimension 1 boundary
of the moduli space Mk+1(B;L;R) is the union of the fiber products of Mk′+1(B

′;L′;R′)
and Mk′′+1(B

′′;L′′;R′′) with respect to the evaluation maps evB
′

j : Mk′+1(B
′;L′;R′) → Rα and

evB
′′

0 : Mk′′+1(B
′′;L′′;R′′) → Rα, where

L′ =
(
Li0 , . . . , Lij−1 , Lij+k′′−1

, . . . , Lik

)
, L′′ =

(
Lij−1 , . . . , Lij+k′′−1

)
,

R′ =
(
Rα0 , . . . , Rαj−1 , Rα, Rαj+k′′ , . . . , Rαk

)
, R′′ =

(
Rα, Rαj , . . . Rαij+k′′−1

)
.

Here the union is taken over k′, k′′ such that k′ + k′′ = k + 1, all possible decomposition of B
into B′ and B′′, j = 1, . . . , k′, and Rα a connected component of Lij−1 ∩ Lj+k′′−1,.

Proposition 4.1.

(−1)κMk′+1

(
B′;L′;R′)

evB
′

j
×

evB
′′

0
Mk′′+1

(
B′′;L′′;R′′) ⊂ ∂Mk+1(B;L;R),

where

κ ≡ (k′′ − 1)(k′ − j) + (k′ − 1)

(
µ(Rα)−

j+k′′−1∑
p=j

µ
(
Rαp

))

+

(
j−1∑
p=1

µ
(
Rαp

))(
µ(Rα)−

j+k′′−1∑
p=j

µ
(
Rαp

))

+ dimRα0 + µ(Rα0)−

(
j−1∑
p=1

µ
(
Rαp

)
+ µ(Rα) +

k∑
p=j+k′′

µ
(
Rαp

))
+ k′.



Sign Convention for A∞-Operations in Bott–Morse Case 9

Proof. Denote by Sw the operation, which exchanges

ΘRα1
⊗ · · · ⊗ΘRαj−1

and O∗
Rα

⊗OMk′′+1(B
′′;L′′;R′′)◦ .

Set the weight of ΘRαi
, ORα and OMk+1(B;L;R)◦ as µ(Rαi), dimRα and

dimMk+1(B;L;R)◦ = dimMk+1(B;L;R)− dimMk+1,

respectively. Then the weighted sign of Sw is (−1)δ1 , where

δ1 =

(
j−1∑
p=1

µ
(
Rαp

))(
dimMk′′+1

(
B′′;L′′;R′′)− dimRα − dimMk′′+1

)
≡

(
j−1∑
p=1

µ
(
Rαp

))(
µ(Rα)−

j+k′′−1∑
p=j

µ
(
Rαp

))
mod 2.

Comparing ΦB and Sw ◦
(
id⊗ · · · ⊗ id⊗ ΦB′′ ⊗ id⊗ · · · ⊗ id

)
◦ ΦB′

, we find that

OMk+1(B;L;R)◦ → OMk′+1(B
′;L′;R′)◦ ⊗O∗

Rα
⊗OMk′′+1(B

′′;L′′;R′′)◦

is (−1)δ1-orientation preserving.1 Here Mk+1(B;L;R)◦ is the fiber of Mk+1(B;L;R) → Mk+1,
i.e., the moduli space of bordered stable maps with a fixed domain bordered Riemann surface
equipped with fixed boundary marked points. The O(1)-local system

OMk′+1(B
′;L′;R′)◦ ⊗O∗

Rα
⊗OMk′′+1(B

′′;L′′;R′′)◦

is the orientation bundle of the fiber product

Mk′+1

(
B′;L′;R′)◦

evB
′

j
×

evB
′′

0
Mk′′+1

(
B′′;L′′;R′′)◦,

which is the moduli space of bordered stable maps with a fixed boundary nodal Riemann surface
equipped with fixed boundary marked points.

Now we compare the orientations of

∂Mk+1(B;L;R) = ∂
(
Mk+1(B;L;R)◦ ×Mk+1

)
and

Mk′+1

(
B′;L′;R′)

evB
′

j
×

evB
′′

0
Mk′′+1

(
B′′;L′′;R′′)

=
(
Mk′+1

(
B′;L′;R′)◦ ×Mk′+1

)
evB

′
j

×
evB

′′
0

(
Mk′′+1

(
B′′;L′′;R′′)◦ ×Mk′′+1

)
.

We note that OMk+1(B;L;R) = Rout ⊗ O∂Mk+1(B;L;R). Here Rout is the normal bundle of the
boundary oriented by the outer normal vector. We pick local flat sections σα0 , . . . , σαk

, σα of
O(1)-local systems ΘRα0

, . . . ,ΘRαk
,ΘRα and a local orientation oRα0

of Rα0 around u(z0). Then
we can equip Mk+1(B;L;R), Mk′+1(B

′;L′;R′) and the relative tangent bundle of

evB
′′

0 : Mk′′+1(B
′′;L′′;R′′) → Rα

with local orientations induced by them. Then a local orientation of Mk+1(B;L;R) = Rα0 ×◦

Mk+1(B;L;R) is given by oRα0
× o
(
σα0 ;σα1 , . . . , σαk

)
. As the fiber product of spaces with

Kuranishi structures equipped with local orientations,

Mk′+1

(
B′;L′;R′)

evB
′

j
×

evB
′′

0
Mk′′+1

(
B′′;L′′;R′′)

= Mk′+1

(
B′;L′;R′)× ◦Mk′′+1

(
B′′;L′′;R′′)

1(−1)-orientation preserving means orientation reversing.
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is locally oriented by

oRα0
× o
(
σRα0

;σRα1
, . . . , σRαj−1

, σRα , σRαj+k′′
, . . . , σRαk

)
× o
(
σRα ;σRαj

, . . . , σRαj+k′′−1

)
.

We fix z0 = +1, zj = −1 and consider the spaces of J-holomorphic maps M̃k+1(B;L,R),
M̃k′+1(B

′;L′,R′) and M̃k′′+1(B
′′;L,′′R′′) such that

Mk+1(B;L;R) = M̃k+1(B;L,R)/RB,

Mk′+1

(
B′;L′;R′) = M̃k′+1

(
B′;L′;R′)/RB′ ,

and

Mk′′+1

(
B′′;L′′;R′′) = M̃k′′+1

(
B′′;L,′′R′′)/RB′′ .

We may also write

M̃k+1(B;L;R) = Mk+1(B;L,R)× RB, etc.,

as oriented spaces.
The case that z0 = +1, z1 = −1 is discussed in [5, p. 699]. The case that z0 = +1, zj = −1

differs from the case that z0 = +1, z1 = −1 by an additional factor (−1)j−1 as below.
For orientation issue, we consider the top-dimensional strata of the moduli spaces and regard

M̃k+1(B;L;R) as an open subset of

Mk+1(B;L;R)◦ ×
j−1∏
i=1

(∂D)zi ×
j+k′′−1∏
i=j+1

(∂D)zi ×
k∏

i=j+k′′

(∂D)zi .

We simply write

M̃k+1(B;L;R) = (−1)j−1Mk+1(B;L;R)◦ ×
j−1∏
i=1

(∂D)zi ×
j+k′′−1∏
i=j+1

(∂D)zi ×
k∏

i=j+k′′

(∂D)zi ,

where z0 = +1, zj = −1,

M̃k′+1

(
B′;L′;R′) = (−1)j−1Mk′+1

(
B′;L′;R′)◦ × j−1∏

i=1

(∂D)zi ×
k∏

i=j+k′′

(∂D)zi ,

where z′0 = +1, z′j = −1, and

M̃k′′+1

(
B′′;L′′;R′′) = Mk′′+1

(
B′′;L;′′R′′)◦ × j+k′′−1∏

i=j+1

(∂D)zi ,

where z′′0 = +1, z′′1 = −1.
Note that

(−1)j−1
j−1∏
i=1

(∂D)zi ×
j+k′′−1∏
i=j+1

(∂D)zi ×
k∏

i=j+k′′

(∂D)zi = Mk+1 × RB,

(−1)j−1
j−1∏
i=1

(∂D)zi ×
k∏

i=j+k′′

(∂D)zi = Mk′+1 × RB′
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and

j+k′′−1∏
i=j+1

(∂D)zi = Mk′′+1 × RB′′ .

Marked points of Mk′+1(B
′;L′;R′) and Mk′′+1(B

′′;L;′′R′′) are related to marked points of
Mk+1(B;L;R) in the following way.(

z′0, . . . , z
′
k′
)
=
(
z0, . . . , zj−1, z

′
j , zj+k′′ , . . . , zk

)
,(

z′′0 , z
′′
1 , , . . . , z

′′
k′′
)
=
(
z′′0 , zj , . . . , zj+k′′−1

)
.

Here z′j and z′′0 are identified, i.e., the boundary node of the domain curve of an element
in Mk+1(B;L;R). Then we find that

M̃k+1(B;L;R)

= (−1)δ1
(
Mk′+1

(
B′;L′;R′)◦

evB
′

j
×

evB
′′

0
Mk′′+1

(
B′′;L;′′R′′)◦)

× (−1)j−1
j−1∏
i=1

(∂D)zi ×
j+k′′−1∏
i=j+1

(∂D)zi ×
k∏

i=j+k′′

(∂D)zi

= (−1)δ1+δ2

(
Mk′+1

(
B′;L′;R′)◦ × (−1)j−1

j−1∏
i=1

(∂D)zi ×
k∏

i=j+k′′

(∂D)zi

)

evB
′

j
×

evB
′′

0

(
Mk′′+1

(
B′′;L′′;R′′)◦ × j+k′′−1∏

i=j+1

(∂D)zi

)
= (−1)δ1+δ2

(
Mk′+1

(
B′;L′;R′)× RB′

)
evB

′
j

×
evB

′′
0

(
Mk′′+1

(
B′′;L′′;R′′)× RB′′

)
= (−1)δ1+δ2+δ3RB′−B′′ ×

(
Mk′+1

(
B′;L′;R′)

evB
′

j
×

evB
′′

0
Mk′′+1

(
B′′;L;′′R′′))× RB′+B′′

= (−1)δ1+δ2+δ3Rout ×
(
Mk′+1

(
B′;L′;R′)

evB
′

j
×

evB
′′

0
Mk′′+1

(
B′′;L;′′R′′))× RB, (4.3)

where

δ2 =
(
k′′ − 1

)(
k′ − j

)
+
(
k′ − 1

)(
dimMk′′+1

(
B′′;L;′′R′′)◦ − dimRα

)
,

δ3 = dimMk′+1

(
B′;L′;R′).

RB′−B′′ and RB′+B′′ are the oriented lines spanned by (1,−1), (1, 1) ∈ RB′ ⊕ RB′′ , respectively.
Note that the ordered bases (1, 0), (0, 1) and (1,−1), (1, 1) give the same orientation of RB′⊕RB′′ ,
RB′−B′′ and RB′+B′′ are identified with Rout and RB, respectively.

Here is an explanation of the second equality, i.e., the appearance of (−1)δ2 . By the convention
in [5, Section 8.2], we have

Mk′+1

(
B′;L′;R′)◦

evB
′

j
×

evB
′′

0
Mk′′+1

(
B′′;L;′′R′′)◦

= Mk′+1

(
B′;L′;R′)◦◦ ×Rα × ◦Mk′′+1

(
B′′;L;′′R′′)◦

= Mk′+1

(
B′;L′;R′)◦ × ◦Mk′′+1

(
B′′;L;′′R′′)◦,

where

Mk′+1

(
B′;L′;R′)◦ = Mk′+1

(
B′;L′;R′)◦◦ ×Rα,
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and

Mk′′+1

(
B′′;L;′′R′′)◦ = Rα × ◦Mk′′+1

(
B′′;L;′′R′′)◦.

Using these notations, we have(
Mk′+1

(
B′;L′;R′)◦

evB
′

j
×

evB
′′

0
×Mk′′+1

(
B′′;L;′′R′′)◦)

×
j−1∏
i=1

(∂D)zi ×
j+k′′−1∏
i=j+1

(∂D)zi ×
k∏

i=j+k′′

(∂D)zi

= (−1)γ1
(
Mk′+1

(
B′;L′;R′)◦

evB
′

j
×

evB
′′

0
×Mk′′+1

(
B′′;L;′′R′′)◦)

×
j−1∏
i=1

(∂D)zi ×
k∏

i=j+k′′

(∂D)zi ×
j+k′′−1∏
i=j+1

(∂D)zi

= (−1)γ1
(
Mk′+1

(
B′;L′;R′)◦ × ◦Mk′′+1

(
B′′;L;′′R′′)◦)

×
j−1∏
i=1

(∂D)zi ×
k∏

i=j+k′′

(∂D)zi ×
j+k′′−1∏
i=j+1

(∂D)zi

= (−1)γ1+γ2Mk′+1

(
B′;L′;R′)◦ × j−1∏

i=1

(∂D)zi ×
k∏

i=j+k′′

(∂D)zi

× ◦Mk′′+1

(
B′′;L;′′R′′)◦ × j+k′′−1∏

i=j+1

(∂D)zi

= (−1)γ1+γ2

(
Mk′+1

(
B′;L′;R′)◦ × j−1∏

i=1

(∂D)zi ×
k∏

i=j+k′′

(∂D)zi

)

×
evB

′
j

×
evB

′′
0

(
Mk′′+1

(
B′′;L′′;R′′)◦ × j+k′′−1∏

i=j+1

(∂D)zi

)
,

where γ1 = (k′′−1)(k′−j), i.e., (−1)γ1 is the sign of switching marked points (zj+k′′ , . . . , zk) and
(zj+1, . . . , zj+k′′−1), and γ2 = dim(◦Mk′′+1(B

′′;L;′′R′′)◦)(dimMk′+1 + 1). Then δ2 = γ1 + γ2.
Now we return to the discussion on local orientations of the orientation bundle of

Mk′+1(B
′;L′;R′)

evB
′

j
×

evB
′′

0
Mk′′+1(B

′′;L′′;R′′) and ∂Mk+1(B;L;R).

Recall that

M̃k+1(B;L;R) = Mk+1(B;L,R)× RB. (4.4)

Set κ = δ1 + δ2 + δ3, i.e.,

κ ≡
(
k′′ − 1

)(
k′ − j

)
+
(
k′ − 1

)(
µ(Rα)−

j+k′′−1∑
p=j

µ
(
Rαp

))

+

(
j−1∑
p=1

µ
(
Rαp

))(
µ(Rα)−

j+k′′−1∑
p=j

µ
(
Rαp

))

+ dimRα0 + µ(Rα0)−

(
j−1∑
p=1

µ
(
Rαp

)
+ µ(Rα) +

k∑
p=j+k′′

µ
(
Rαp

))
+ k′.

Comparing (4.3) and (4.4), we obtain Proposition 4.1. ■
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From Corollary 2.2 in the setting of Kuranishi structures, Propositions 4.1 and 2.3, i.e., the
base change formula for integration along fibers, we find the following.

Lemma 4.2.

(
evB0 |∂Mk+1(B;L;R); ∂o

(
σα0 ;σα1 , . . . , σαk

))
!

(
j−1∏
i=1

evB∗
i ×

k∏
i=j+k′′

evB∗
i ×

j+k′′−1∏
i=j

evB∗
i

)
= (−1)κ

(
evB

′
0 ; o

(
σα0 ;σα1 , . . . , σαj−1 , σα, σαj+k′′−1

, . . . , σαk

))
!

◦

(
j−1∏
i=1

evB
′∗

i ×
k′∏

i=j+1

evB
′∗

i ×

(
evB

′∗
j ◦

(
evB

′′
0 ; o

(
σα;σαj , . . . , σαj+k′′−1

))
!
◦

k′′∏
i=1

evB
′′∗

i

))

as operations applied to(
j−1⊗
i=1

ζi

)
⊗

(
k⊗

i=j+k′′

ζi

)
⊗

(
j+k′′−1⊗

i=j

ζi

)
,

where ξi = ζi ⊗ σαi, i = 1, . . . , k. Here ∂o
(
σα0 ;σα1 , . . . , σαk

)
is the local orientation of the

relative tangent bundle ∂Mk+1(B;L;R) → Rα0 induced from o
(
σα0 ;σα1 , . . . , σαk

)
.

Note that ∂o
(
σα0 ;σα1 , . . . , σαk

)
is not the boundary orientation of ∂◦Mk+1(B;L;R) in-

duced from the orientation o
(
σα0 ;σα1 , . . . , σαk

)
of ◦Mk+1(B;L;R). They differ by (−1)dimRα0 .

Namely, for u ∈ ∂Mk+1(B;L;R), the local orientation o
(
σα0 ;σα1 , . . . , σαk

)
of ◦Mk+1(B;L;R)

and the local orientation ∂o
(
σα0 ;σα1 , . . . , σαk

)
of the relative tangent bundle of ∂Mk+1(B;L;R)

→ Rα0 are related as follows:

TuMk+1(B;L;R) = Rout × Tu∂Mk+1(B;L;R),

TuMk+1(B;L;R) = Tu(z0)Rα0 × Tu
◦Mk+1(B;L;R).

Then, under the following identification

Rout × Tu∂Mk+1(B;L;R) = Rout × Tu(z0)Rα0 × Tu
◦∂Mk+1(B;L;R),

we define the local orientation ∂o(σα0 ;σα1 , . . . , σαk
) of the relative tangent bundle of ∂Mk+1(B;

L;R) → Rα0 so that

oRα0
× o(σα0 ;σα1 , . . . , σαk

) = Rout × oRα0
× ∂o(σα0 ;σα1 , . . . , σαk

).

Note that

evBi |∂Mk+1(B;L;R) =


evB

′
i ◦ πB

B′ , i = 1, . . . , j − 1,

evB
′′

i−j+1 ◦ πB
B′′ , i = j, . . . , j + k′′ − 1,

evB
′

i−k′′+1 ◦ πB
B′ , i = j + k′′, . . . , k,

where πB
B′ and πB

B′′ are projections from the fiber product

Mk′+1

(
B′;L′;R′)

evB
′

j
×

evB
′′

0
Mk′′+1

(
B′′;L′′;R′′)

to Mk′+1(B
′;L′;R′) and Mk′′+1(B

′′;L′′;R′′), respectively. Note that σα appears twice in the
right hand side of the equality in Lemma 4.2, hence the right hand side does not depends on
the choice of local section σα of the O(1)-local system Θα.

Next, we compute mk′,B′ ◦ m̂k′′,B′′ with (k′, B′) ̸= (1, 0), (k′′, B′′) ̸= (1, 0). Armed with
Lemma 4.2, we regard ξi, i = 1, . . . , k, as differential forms on Rαi in the computation below.
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Lemma 4.3.

mk′,B′ ◦ m̂k′′,B′′(ξ1, . . . , ξk) = (−1)κ
′(
ev

(B′,B′′)
0

)
!

(
ev

(B′,B′′)∗
1 ξ1 ∧ · · · ∧ ev

(B′,B′′)∗
k ξk

)
, (4.5)

where

κ′ ≡ ϵ(ξ1, . . . , ξk) +
k∑

i=1

deg ξi − k − 1 + j + k′

(
µ(Rα)−

j+k′′−1∑
i=j

µ
(
Rαi

))

+

(
j−1∑
p=1

µ
(
Rαp

))(
µ(Rα)−

j+k′′−1∑
p=j

µ
(
Rαp

))
+
(
k′ − j

)
k′′ mod 2.

Proof. By the definition of mk,B and its extension m̂k,B as a graded coderivation, we have

mk′,B′ ◦ m̂k′′,B′′(ξ1, . . . , ξk)

=

k∑
j=1

(−1)
∑j−1

i=1 |ξi|′mk′,B′
(
ξ1, . . . ,mk′′,B′′

(
ξj , . . . , ξj+k′′−1

)
, . . . , ξk

)
=

k∑
j=1

(−1)δ4
(
evB

′
0

)
!

(
evB

′∗
1 ξ1 ∧ · · · ∧ evB

′∗
j−1ξj−1

∧ evB
′∗

j

((
evB

′′
0

)
!

(
evB

′′∗
1 ξj ∧ · · · ∧ evB

′′∗
k′′ ξj+k′′−1

))
∧ · · · ∧ evB

′∗
k′ ξk

)
, (4.6)

where

δ4 =

j−1∑
i=1

|ξi|′ + ϵ
(
ξ1, . . . ,mk′′,B′′

(
ξj , . . . , ξj+k′′−1

)
, . . . , ξk

)
+ ϵ
(
ξj , . . . , ξj+k′′−1

)
,

and ev
(B′,B′′)
j : Mk′+1(B

′;L′;R′)
evB

′
j

×
evB

′′
0

Mk′′+1(B
′′;L′′;R′′) → Rαj is the evaluation map at

the j-th marked point on the fiber product

Mk′+1

(
B′;L′;R′)

evB
′

j
×

evB
′′

0
Mk′′+1

(
B′′;L′′;R′′).

Here the numbering of the marked points is the same as that on Mk+1(B;L;R). We also have(
evB

′
0

)
!

(
evB

′∗
1 ξ1 ∧ · · · ∧ evB

′∗
j−1ξj−1 ∧ evB

′∗
j

((
evB

′′
0

)
!

(
evB

′′∗
1 ξj ∧ · · · ∧ evB

′′∗
k′′ ξj+k′′−1

))
∧ evB

′∗
j+1ξj+k′′ ∧ · · · ∧ evB

′∗
k′ ξk

)
= (−1)η1

(
evB

′
0

)
!

((
evB

′∗
1 ξ1 ∧ · · · ∧ evB

′∗
j−1ξj−1 ∧ evB

′∗
j+1ξj+k′′ ∧ · · · ∧ evB

′∗
k′ ξk

)
∧ evB

′∗
j ◦

(
evB

′′
0

)
!

(
evB

′′∗
1 ξj ∧ · · · ∧ evB

′′∗
k′′ ξj+k′′−1

))
= (−1)η1

(
evB

′
0

)
!

((
evB

′∗
1 ξ1 ∧ · · · ∧ evB

′∗
j−1ξj−1 ∧ evB

′∗
j+1ξj+k′′ ∧ · · · ∧ evB

′∗
k′ ξk

)
∧ (πB′)! ◦ π∗

B′′
(
evB

′′∗
1 ξj ∧ · · · ∧ evB

′′∗
k′′ ξj+k′′−1

))
= (−1)η1

(
evB

′
0

)
!
◦ (πB′)!

(
π∗
B′
(
evB

′∗
1 ξ1 ∧ · · · ∧ evB

′∗
j−1ξj−1 ∧ evB

′∗
j+1ξj+k′′ ∧ · · · ∧ evB

′∗
k′ ξk

)
∧ π∗

B′′
(
evB

′′∗
1 ξj ∧ · · · ∧ evB

′′∗
k′′ ξj+k′′−1

))
= (−1)η1+η2

(
evB

′
0 ◦ πB′

)
!

(
π∗
B′
(
evB

′∗
1 ξ1 ∧ · · · ∧ evB

′∗
j−1ξj−1

)
∧ π∗

B′′
(
evB

′′∗
1 ξj ∧ · · · ∧ evB

′′∗
k′′ ξj+k′′−1

)
∧ π∗

B′
(
evB

′∗
j+1ξj+k′′ ∧ · · · ∧ evB

′∗
k′ ξk

))
= (−1)η1+η2

(
ev

(B′,B′′)
0

)
!

(
ev

(B′,B′′)∗
1 ξ1 ∧ · · · ∧ ev

(B′,B′′)∗
k ξk

)
,
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where

η1 =

((
j+k′′−1∑

i=j

deg ξi

)
+

(
µ(Rα)−

j+k′′−1∑
i=j

µ
(
Rαi

)
+ k′′ − 2

))(
k∑

i=j+k′′

deg ξi

)
,

η2 =

(
j+k′′−1∑

i=j

deg ξi

)(
k∑

i=j+k′′

deg ξi

)
.

The second equality is a consequence of Proposition 2.3 (base change formula) for integration
along fibers, i.e., evB

′∗
j ◦

(
evB

′′
0

)
!
= (πB′)! ◦ π∗

B′′ . The third equality follows from Corollary 2.2.
Note that

ev
(B′,B′′)
i =


evB

′
i ◦ πB

B′ i = 0, 1, . . . , j − 1,

evB
′′

i−j+1 ◦ πB
B′′ , i = j, . . . , j + k′′ − 1,

evi−k′′+1B
′ ◦ πB

B′ , i = j + k′′, . . . , k.

We set

δ5 = η1 + η2 =

(
µ(Rα)−

j+k′′−1∑
i=j

µ
(
Rαi

)
+ k′′ − 2

)(
k∑

i=j+k′′

deg ξi

)
.

Then we have(
evB

′
0

)
!

(
evB

′∗
1 ξ1 ∧ · · · ∧ evB

′∗
j−1ξj−1 ∧ evB

′∗
j

((
evB

′′
0

)
!

(
evB

′′∗
1 ξj ∧ · · · ∧ evB

′′∗
k′′ ξj+k′′−1

))
∧ evB

′∗
j+1ξj+k′′ ∧ · · · ∧ evB

′∗
k′ ξk

)
= (−1)δ5

(
ev

(B′,B′′)
0

)
!

(
ev

(B′,B′′)∗
1 ξ1 ∧ · · · ∧ ev

(B′,B′′)∗
k ξk

)
. (4.7)

Set κ′ = δ4 + δ5, i.e.,

κ′ =

j−1∑
i=1

|ξi|′ + ϵ
(
ξ1, . . . ,mk′′,B′′

(
ξj , . . . , ξj+k′′−1

)
, . . . , ξk

)
+ ϵ
(
ξj , . . . , ξj+k′′−1

)
+

(
µ(Rα)−

j+k′′−1∑
i=j

µ
(
Rαi

)
+ k′′ − 2

)(
k∑

i=j+k′′

deg ξi

)
.

Recall the definitions of the shifted degree in (3.3) and the ϵ(ξ1, . . . , ξk) in (3.4) and the fact
on the degree of mk (3.5), we find that

κ′ ≡ ϵ(ξ1, . . . , ξk) +
k∑

i=1

deg ξi − k − 1 + j + k′

(
µ(Rα)−

j+k′′−1∑
i=j

µ
(
Rαi

))

+

(
j−1∑
p=1

µ
(
Rαp

))(
µ(Rα)−

j+k′′−1∑
p=j

µ
(
Rαp

))
+
(
k′ − j

)
k′′ mod 2.

Combining (4.6) and (4.7), we obtain Lemma 4.3. ■

Now we show the following.

Theorem 4.4. The operations mk, k = 0, 1, . . . , that is the Bott–Morse A∞-operation in the de
Rham model, in Definition 3.3 satisfy the filtered A∞-relation∑

k′+k′′=k+1

mk′ ◦ m̂k′′(ξ1, . . . , ξk) = 0 for k = 1, 2, . . . .
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Proof. By Proposition 4.1, we find the following.

Claim 4.5. The summation of the right hand side of (4.5) over k′, k′′, B′, B′′ such that
k′ + k′′ = k + 1, B = B′ +B′′, (k′, B′), (k′′, B′′) ̸= (1, 0) is equal to

(−1)κ+κ′(
evB0 |∂Mk+1(B;L;R)

)
!

(
evB∗

1 ξ1 ∧ · · · ∧ evB∗
k ξk

)
.

Note that

κ+ κ′ ≡ ϵ(ξ1, . . . , ξk) + 1 + k +
k∑

i=1

deg ξi + dimRα0 + µ(Rα0)−
k∑

p=1

µ
(
Rαp

)
≡ ϵ(ξ1, . . . , ξk) + 1 + dimMk+1(B;L;R) +

k∑
i=1

deg ξi mod 2.

Using Proposition 2.5, we have

d
(
evB0

)
!

(
evB∗

1 ξ1 ∧ · · · ∧ evB∗
k ξk

)
=
(
evB0

)
!
d
(
evB∗

1 ξ1 ∧ · · · ∧ evB∗
k ξk

)
+ (−1)ν

(
evB0 |∂Mk+1(B;L;R)

)
!

(
evB∗

1 ξ1 ∧ · · · ∧ evB∗
k ξk

)
, (4.8)

where ν = dimMk+1(B;L;R) +
∑k

i=1 deg ξi.
Combining (4.1), (4.2), Claim 4.5 and (4.8), we have

m1,0 ◦mk,B(ξ1, . . . , ξk) +mk,B ◦ m̂1,0(ξ1, . . . , ξk)

+
∑

(k′,B′),(k′′,B′′ )̸=(1,0)

mk′,B′ ◦ m̂k′′,B′′(ξ1, . . . , ξk) = 0

for all (k,B) ̸= (1, 0). Recall that, in the case that (k,B) = (1, 0), m1,0 = d clearly satisfies
m1,0 ◦m1,0 = 0. Hence, we obtain Theorem 4.4. ■
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