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Abstract. In this paper, we ‘construct’ a 2-functor from the unobstructed immersed Wein-
stein category to the category of all filtered A, categories. We consider arbitrary (compact)
symplectic manifolds and its arbitrary (relatively spin) immersed Lagrangian submanifolds.
The filtered A category associated to (X,w) is defined by using Lagrangian Floer theory in
such generality, see Akaho—Joyce (2010) and Fukaya—Oh—Ohta—Ono (2009). The morphism
of unobstructed immersed Weinstein category (from (Xi,w;) to (X2,ws)) is by definition
a pair of an immersed Lagrangian submanifold of the direct product and its bounding cochain
(in the sense of Akaho—Joyce (2010) and Fukaya—Oh—Ohta—Ono (2009)). Such a morphism
transforms an (immersed) Lagrangian submanifold of (X7, w;) to one of (Xa,ws). The key
new result proved in this paper shows that this geometric transformation preserves unob-
structedness of the Lagrangian Floer theory. Thus, this paper generalizes earlier results by
Wehrheim—Woodward and Mau’s—Wehrheim—Woodward so that it works in complete gen-
erality in the compact case. The main idea of the proofs are based on Lekili-Lipyanskiy’s Y
diagram and a lemma from homological algebra, together with systematic use of Yoneda
functor. In other words, the proofs are based on a different idea from those which are stud-
ied by Bottmann—Mau’s—Wehrheim—Woodward, where strip shrinking and figure 8 bubble
plays the central role.
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1 Introduction

The purpose of this paper is to ‘construct’ a 2-functor from the ‘unobstructed immersed Wein-
stein category’ to the ‘category of all filtered A, categories’. The next definition is a variation
of one proposed by Weinstein [82].

Definition 1.1 (informal definition). The unobstructed immersed Weinstein category is a cate-
gory whose object is a compact symplectic manifold and a morphism from (X1, w;) to (Xa,ws)
is a pair of an immersed Lagrangian submanifold Lis of (X1 x Xo, —7f(w1) + 75 (w2)) and
a bounding cochain b9 on it.
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The notion of a bounding cochain is introduced in [34] and its generalization to the immersed
case is by [4]. We emphasis that Definition 1.1 is an informal definition. Various issues which
will appear when one tries to define such a 2-category literary are discussed in Section 18.1.

We consider a 2-category whose objects are (strict and unital) filtered A, categories (see
[27, 36] and Section 3 for its definition) and morphisms are (strict and unital) filtered Ao
functors. See Section 10, Theorem 10.1 and Section 10.6 for a version of the construction of
such a 2-category.

The main result of this paper could be summarized as follows.

Informal Summary 1.2. There ezists a 2-functor from the unobstructed immersed Weinstein
category to the 2-category of all filtered Ao, categories.

This statement is informal and the author does not claim that its proof is in this paper. The
precise statements which we prove in this paper will be given in this introduction and the main
body of the paper. The relation between those results (proved in this paper) and the results
which would literary prove Informal Summary 1.2 is discussed in Section 18.1.

The idea to associate an Ay, category (whose object is a Lagrangian submanifold and whose
morphisms are Floer cohomology) is started by the author’s paper [22] (inspired by a S. Don-
aldson’s talk at University of Warwick 1992). The most essential step to make this construction
rigorous was carried out in [34], based on the virtual fundamental chain technique (see [49]).
The work [34] contains the detailed proof of the cases of a single Lagrangian submanifold and
a pair of Lagrangian submanifolds. The construction of a (unital and strict) filtered A, cat-
egory based on the Lagrangian Floer theory in [34] along the same line as [34] was written in
[2, 27, 36]. Akaho and Joyce [4] generalized this story and include Lagrangian submanifolds
which are not necessary embedded but are immersed. Thus we obtain the next theorem.

Theorem 1.3. Let (X,w) be a compact symplectic manifold and L a finite set of its spin
immersed Lagrangian submanifolds.™' We assume that the self intersection of elements of L
and intersection between two elements of L. are transversal. Then there exists a (strict and
unital) filtered Ao category, Futst((X,w), L), such that

(1) An object of Futst((X,w),L) is a pair (L,b) where L is an element of L and b is a bounding
cochain of L in the sense of [4, 34].

(2) The module of morphisms CF((L1,b1), (La,b2)) from (L1,b1) to (L2, b2) is given as follows:

(a) If Ly # Lo, then CF((L1,b1),(L2,b2)) is the free Ao module whose basis is identi-
fied with the intersection L1 N Lo. Here the universal Novikov ring Ao is defined in
Definition 2.1.

(b) If Ly = Ly = L, then CF((L1,b1),(L2,b2)) is the completion of the tensor prod-
uct Q(L X x f)) ® Ao of the de Rham complex Q(L X x L) and Ag. Here our immersed
Lagrangian submanifold L is given by an immersion L — X and L xx L is the fiber
product of L with itself.

(3) The cohomology group of CF((L1,b1),(La,bs)) is the Floer cohomology HF((L1,b1), (Lo,
ba)) defined in [4, 34].

Theorem 1.3 is Theorem 3.14 in Section 3, which is slightly more general.

Remark 1.4. In item (2b), we may also take H (L X x L; ; Ao) (the cohomology group with Ag
coefficient) instead of Q(L X x L) ®A0 The process to produce a structure on H (L X x L A())
from one on Q(L X x L) ® Ao is purely algebraic and automatic. See [34, Theorem 5.4.2°] for
example.

L1n the introduction, we assume spinness of Lagrangian submanifolds rather than relatively-spinness, for sim-
plicity. The statement in the relatively spin case will be given in the main body of the paper.
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Theorem 1.3 is not new and the most essential part of its proof had been given in [4, 34].
(We use the de Rham version, while [4, 34] uses the singular homology version. This difference
however is not important but is rather of technical nature.) In the de Rham version, it is also
written and proved in [2].

Theorem 1.3 is the object part of ‘2-functor’ mentioned in Informal Summary 1.2. The
main new point of this paper is the morphism part of the ‘2 functor’ mentioned in Informal
Summary 1.2. The next theorem is the key new result. Let (X;,w;) be a compact symplectic
manifold for ¢ = 1,2. We assume they are spin.> Let L, L2 be spin immersed Lagrangian
submanifolds of (X;,w;) and (X X Xa, =7} (w1) + 75 (w2)), respectively. We say that they are
transversal if the fiber product I~/1 X X, I~/12 is transversal. In that case, the map [Nq X x, Elg — X9
defines an immersed Lagrangian submanifold which we write L; X x, Li2.

Theorem 1.5. If L1 and Lo are unobstructed™® and the immersion I~/1 X X, I~/12 — X is self-
clean, then L1 xx, L12 s also unobstructed. There exists a way to obtain a bounding cochain
of L1 xx, L12 from bounding cochains of L1 and of L2, which is independent of the choices up
to gauge equivalence.

Theorem 1.5 is Theorems 6.3 and 7.3, which are proved in Sections 6 and 7. Note that
for generic (embedded) Lagrangian submanifolds L, Lis of (Xi,w;) and (X7 x Xa, =7 (w1) +
75 (w2)), the fiber product L; xx, L1z is an immersed Lagrangian submanifold of X,. How-
ever, it is not necessary embedded. Therefore, including immersed Lagrangian submanifolds is
inevitable.

Remark 1.6.

(1) The relation between a Lagrangian correspondence and an A, functor was studied in the
earlier works by Wehrheim-Woodward, Mau-Wehrheim-Woodward (see [63, 78] etc.).
Note that, in their situation where all the Lagrangian submanifolds involved are embedded
and monotone, the statement corresponding to Theorem 1.5 is classical (due to Oh), since
we can take 0 as the bounding cochain.

(2) To include more general objects than embedded and monotone Lagrangian submanifolds,
Wehrheim—Woodward proceeds as follows. They first consider embedded and monotone
Lagrangian submanifolds (with bounding cochain 0). They then enhance the set of such
Lagrangian submanifolds so that a sequence of Lagrangian correspondences

Ly Xx, Lig Xx, Log XXy -+ XXy Lg—1)k

is regarded as an object of Fut” (X}, w;), the extended version of Fut(X}, wy). Theorem 1.5
enables us to work with genuine geometric Lagrangian submanifolds rather than extended
objects. We will discuss the relation between our results and one by [63, 78] more in
Section 18.3

(3) The statement of Theorem 1.5 was known as a conjecture for a while. For example, the
author discussed this conjecture with several mathematicians during the years 2008-2015.
It was also mentioned by K. Wehrheim’s talk in 2012 [76] and is written as a ‘conjecture’
in [13]. More precisely, it had been conjectured that the virtual fundamental chain of an
appropriate moduli space of Figure 8 bubbles gives the bounding cochain in Theorem 1.5.
The conjecture of this form is still open. It is the opinion of the author that to prove
this version of the conjecture is a very interesting analytic problem. If this conjecture is
proved and a bounding cochain is obtained as the virtual fundamental chain of the moduli

12The case when X or X» is not spin is included in the main body of the paper.
L3 A Lagrangian submanifold is said to be unobstructed if there exists a bounding cochain of it.
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space of Figure 8 bubbles, the author has no doubt that such a bounding cochain is gauge
equivalent to the bounding cochain we obtained in Theorem 1.5. We will discuss this point
more in Section 18.2.

(4) Until 2015, the author did not have an idea to prove Theorem 1.5 other than those by using
‘strip shrinking’ and ‘Figure 8 bubble’, which are emphasized in [13].}* By this reason the
author did not have a plan to study this conjecture until 2015. In May 2015, the author
realized that using the method of Lekili-Lipyanskiy [59] and homological algebra we can
prove Theorem 1.5 much easier than the idea using ‘strip shrinking’ or ‘Figure 8 bubble’.
He then started working on Lagrangian correspondence and its relation to Lagrangian
Floer theory. (The main motivation of the author’s study is its application to the gauge
theory (see [17, 30, 31])). This paper is an outcome of that study.

We also remark that to define Floer cohomology of a Lagrangian submanifold (beyond the
monotone or exact cases) we need a bounding cochain. So proving the existence of a bounding
cochain is the key step for applications of Lagrangian Floer theory. In general, proving the
existence of a bounding cochain is not easy. Theorem 1.5 provides a useful tool to prove it.

The next theorem is a more functorial version of Theorem 1.5. Let L1, Lo and IL12 be finite sets
of spin immersed Lagrangian submanifolds of (X1, w1), (X2, w2) and (X1 x X, =77 (w1) +75 (w2)),
respectively. We assume each of them satisfies the transversality conditions in Theorem 1.3.
Moreover, we assume that for each L; € L; and Ljs € Lja the fiber product Ly xx, Li2 is
transversal and is an element of L.

Theorem 1.7. In the situation of Theorem 1.5, there exists a filtered Ao bi-functor
Su?st((Xl,wl),]Ll) X Su?st((Xl X XQ, —wf(wl) + W;(WQ)),L:[Q) — S’u?ﬁt((Xg,WQ),Lg)

such that it sends the pair of objects (L1,b1), (L12,b12) to L1 X x, L12 equipped with the bounding
cochain given in Theorem 1.5.

See Definition 5.1 for the definition of a filtered A, bi-functor. Theorem 1.7 provides the
morphism part of the ‘2-functor’ mentioned in Informal Summary 1.2. Theorem 1.7 is Corol-
lary 7.4 and is proved in Section 7. We call the bi-functor in Theorem 1.7 the correspondence
bi-functor. We like to mention that in the situation when all the Lagrangian submanifolds in-
volved are embedded and monotone, Theorem 1.7 was proved by Ma’u—Wehrheim—Woodward
in [63]. See Section 18.3 for more explanation on the relation of Theorem 1.7 to [63].

The next theorem gives a definition of the composition of morphisms in unobstructed im-
mersed Weinstein category. In other words, Theorem 1.8 could be used to give a definition of
unobstructed immersed Weinstein category as a (topological) 2-category.!-3

Let (Xj,w;), ¢ = 1,2,3, be compact symplectic manifolds which are spin. Let L;;, (ij) = (12),
(23) or (13), be finite sets of spin Lagrangian submanifolds of (X; x X;, —7}(w;) + 75 (w;)). We
assume that for any Lis € L2, Loz € Loz the fiber product Lis X x, Lo3 is transversal and
becomes an element of LL3.

Theorem 1.8. There exists a filtered A bi-functor

comp: Fubst((X1x Xo, —7](w1) + mowa), L1a) X Fulst((Xax X3, —7] (w2) + 75 (ws3)), Las)
— Suéﬁt((Xl X X3, —ﬂf(wl) + 71'5((4)3)), ng)

L4Gee [13] or Sections 18.2 and 18.3 for ‘strip shrinking’ and ‘Figure 8 bubble’. Studying them certainly are
interesting in its own and potentially can be applied to various geometric problems.

1-5YWe say ‘topological’ 2-category since to compose two (unobstructed immersed) Lagrangian correspondences
we need to assume transversality. Therefore, morphisms can be composed only generically.
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such that it sends a pair of objects (Li2,b12), (La2s,bas) to (L13,bi3), where Lig = Lia X x, Las
and b1z is a bounding cochain of L3 which is determined from bio and beg in a way independent
of the choices up to gauge equivalence. We call this functor the composition functor.

The composition functor is associative, in the sense that the next diagram commutes up to
homotopy equivalence, as Aso tri-functors

Fubst(X; x Xo) x Fubst(Xy x X3) Jubst( X x X3)
X Fubst( X3 x Xy) x Fukst( X3 x Xy)

l l (1.1)

Jubst( Xy x Xo) x Fubst(Xy x Xy) —— Fulst(X; x Xy).

The first half of Theorem 1.8 is Theorems 8.2 and 8.5 which are proved in Section 8. The
second half of Theorem 1.8 is Theorem 11.2 proved in Section 11.

Remark 1.9. Actually Theorem 1.7 follows from Theorem 1.8 by putting X; to be a point.

In the situation when all the Lagrangian submanifolds involved are embedded and mono-
tone, Theorem 1.8 (and Theorem 1.10 below) were also proved by Mau-Wehrheim-Woodward
in [63]. We also remark that Wehrheim-Woodward and Ma’u-Wehrheim-Woodward studied
a fiber product of Lagrangian correspondences (under the assumption that it becomes embedded
Lagrangian correspondence) in their study of the composition of Lagrangian correspondences.
See Section 18.3 for more explanation on the relation of Theorems 1.7, 1.8 and 1.10 to [63].

The next theorem says that the correspondence bi-functor in Theorem 1.7 is compatible
with the composition functor in Theorem 1.8. To state it, we need some digression. Let %;
be a strict and unital filtered A, category for ¢ = 1,2. Then we can define a filtered Ao
category FUNC(%61,¢2) whose object is a strict and unital filtered Ay, functor. (This is the
unital and strict version of Theorem 2.19 whose proof is the same as Theorem 2.19.) For three
strict and unital filtered A, categories €;, ¢ = 1,2, 3, we can define a filtered A, bi-functor

FUNC(E1, %) x FUNC(6s, 6s) — FUNC(€1,€3), (1.2)

which gives a composition of filtered Ay, functors among objects. (See Theorem 10.1.) The
bi-functor (1.2) is associative. Roughly speaking, (1.2) is defined as follows. We first define
a homotopy equivalence from functor category FUNC(€,%62) to a full subcategory of the DG-
category of left 4] and right 42 bi-modules. (This is a version of Yoneda’s lemma.) We also
prove that the composition of A, functors corresponds to the tensor product of the bi-modules.
Then using the fact that tensor product of bi-modules is an object part of the DG-bi-functor,
we obtain (1.2). (See Section 10.6.)

On the other hand, the correspondence bi-functor in Theorem 1.7 can be reinterpreted as
a filtered A, functor

SuEst((Xl X X2, —ﬂ‘(wl) + W;(WQ)),]LU)
— fUNC(SuEst((Xl,wl),}Ll),SuEﬁt((Xg,wQ),}Lg)) (1.3)

to the functor category.

Theorem 1.10. The next diagram commutes up to homotopy equivalence

Fubst( X x Xo) x Fubst(Xo x X3) —— Fubst( X x X3)

l l (1.4)

FUNC(Futst(X7), Fust( X))
 FUNC(Futst(Xo), Gutst(Xa)) 7 HNC(Sutst(X), Subst(X)).
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Here the vertical arrows are functors (1.3), the upper horizontal arrow is the composition functor
in Theorem 1.8 and lower horizontal arrow is the functor (1.2).1

Theorem 1.10 is Theorems 9.1 and 10.16 which are proved in Sections 9 and 10.

Remark 1.11. The object part of Theorem 1.10, that is, the commutativity of the diagram (1.4)
as the maps between the sets of objects, implies Theorem 1.7 by putting X; to be a point. The
(homotopy) commutativity of diagram (1.4) as A bi-functors is more involved.

All the constructions of this paper are based on a study of moduli spaces of pseudo-holomor-
phic curves. Even though we use the moduli space of pseudo-holomorphic quilts in the sense
of [81] we do not use the most difficult part of the analytic study of the moduli space of pseudo-
holomorphic quilts. Especially we do not study ‘strip shrinking’ and ‘Figure 8 bubble’. Our proof
relies much on the cobordism argument which was initiated by Y. Lekili and M. Lipyanskiy [59]
and various technique from homological algebra. By this reason, we do not need new analytic
detail to carry out in this paper, except we need to take a slightly different compactification of
the moduli space of pseudo-holomorphic disks bounding a Lagrangian submanifold Lis of the
product. This is because otherwise the moduli space of pseudo-holomorphic quilts would not
carry a Kuranishi structure. We will explain this point in Section 12 and also provide the detail
of this different compactification.

In Sections 13-15, we show that various filtered A, (bi)-functors we construct in this paper
are independent of the choices involved and also of the Hamiltonian isotopies of the Lagrangian
submanifolds involved.

In Section 16, we show that by a similar method used in the other part of this paper, we
can show Kiinneth theorem in Lagrangian Floer theory. (We remark that Kiinneth theorem in
Lagrangian Floer theory is also proved by [6, 7].)

Section 17 is devoted to the discussion of sign and orientation. More arguments on sign and
orientation are given in the paper [68] written by K. Ono.

Section 18 is a brief discussion on two points. One is the relation of this paper to the works by
Wehrheim—Woodwards—Ma’u—Bottman. The other is an issue which will appear to define/prove
‘Definition 1.1’/‘Informal Summary 1.2’ literary.

We expect that there are various applications of the whole construction (especially the part
to construct a filtered A, functor from a Lagrangian correspondence and several compatibility
statements about it, which is new in this paper). Some of the applications are now on the way
being worked out and being written or already available as a preprint. (See [17, 20, 30, 31]
and etc.) In this paper, we concentrate in defining the basic objects in as much general form
as possible, leaving applications to other papers. A generalization of the story to the case of
non-compact Lagrangian submanifolds is now studied by Yuan—-Gao [50].

The construction of this paper is based on various earlier works. The author tried to make
this paper independent from various earlier papers, except the detail of the proofs, as much as
possible. By this reason, this paper contains several review sections. Another reason why the
review sections are included is that we need to rewrite some of the earlier results to those based
on the de Rham version of virtual fundamental chain technique, which we use systematically
in this paper. We refer [40, 43, 46] for the most detailed exposition of the de Rham version of
virtual fundamental chain technique (Kuranishi structures and CF-perturbations). If the reader
wants to know definitions and statements of the theory in [40, 43, 46] only (and not its proof),
there is a summary in [45, Part 7.

The construction of Kuranishi structures on the moduli spaces of pseudo-holomorphic curves
are written in detail in [38, Part 4], [44, 47, 48]. It is written also in Section 12 of this paper

1-6We take appropriate finite sets L;; of Lagrangian submanifolds of X; x X;.
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emphasizing the part where the construction we need in this paper is (slightly) different from
the other papers.
The results of this paper were announced in [30, 31] together with the main idea of its proof.

2 Filtered A, category: Review

This section is a review of the homological algebra of filtered A, categories. There is nothing
really new in this section. Our purpose here is to provide the precise definitions of the various
notions we use in this paper. We give proofs only in the case when the author is unable to find
an appropriate reference in the literature. Our main reference in this section is [27]. There are
other references such as [8, 19, 25, 54, 55, 57, 58, 71]. In this section, we will discuss the algebraic
side of the story only. In the case when the reader has certain knowledge of A, categories, the
reader can skip this section and comes back when it is used in later sections.

2.1 A, category

We first recall certain notations.
Definition 2.1.

(1) Let R be a commutative ring with unit. We denote by AZ the set of all the formal sums

o0
> T, (2.1)
=0

where a; € R, Ay e Rand 0 = A\g < A1 < -+ < Ay < Ajpq < -+ with lim;_o0 A\ = 400.
We can define a ring structure on A% in an obvious way.

We call AOR the universal Novikov ring. In the case when R is a field, its maximal ideal
is the set of formal sums (2.1) with ag = 0. We write it as A¥. In the case when R is
a field, the field of fractions of AJ! is the set of the formal sums of the form (2.1) such
that Ao < Ap < -+ < A\ < Ajp1 < --- with Ay € R and lim;00 Ay = +00. We denote it
by A% and call it the universal Novikov field. We use the same notation Af (resp. AR)
for this ideal (resp. ring) in case R is a ring but is not a field. =~ We call R the ground
ring. Sometimes we omit R from the notation and write Ag etc. in place of Ag etc. In the
geometric applications in this paper, we use R = R, since we use the de Rham model for
homology theory of spaces.

(2) We define a filtration {§*Ag | A > 0} as follows. The subset Ao of Ag consists of
elements (2.1) such that A; < A implies a; = 0. We call it the energy filtration. It induces
a filtration on A and Ay in an obvious way. The energy filtration defines a metric on Ag, A,
A, such that § Ay is the e *-neighborhood of 0. The rings Ag, A, A} are complete with
respect to this metric. We call this metric the T'-adic metric. We use also the name energy
filtration for the filtration of various Ag (or A) modules induced by this filtration of Ag.

(3) A discrete monoid G is a discrete subset of R>q such that 0 € G and g1,92 € G = g1 + g2
eq.

(4) For a discrete monoid G, we define a subring Ag of Ag, where a formal sum (2.1) is an
element of Ag if and only if \; € G for all ¢ with a; # 0. The T-adic metric of Ag induces
one on Agq.

(5) Let C be a free R module. We denote by C the completion of C ®g Af. Here the T
adic metric on C ®p A(l;2 is induced from one on A(l;2 in an obvious way and the completion
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(10)

is taken with respect to this metric. We call such C a completed free Ag module. We
write ?C = {z € C |2 =0 mod T)‘}. An element of C' is identified with an (infinite)
sum Z@io T*iz; such that z; € C and \; € R>o with lim; o A; = +00.

For two completed free Ag modules C;, Co, we denote by C; ® Cy the T-adic comple-
tion of the algebraic tensor product over Ag. When C; is the completion of C; ®pr Ao,
fori=1,2, C; @C’Q is the completion of C1 ®pr Cy ®r Ag. An element of C; @Ao Cy is
identified with an (infinite) sum > °z; ® y; such that z; € FhC, y € F2C, with
lim; 00 Ai1 + Ai2 = 400.

If C is graded, then C is graded. (Here we consider either Z grading or Zsy grading. In
our geometric application, we mostly use Zg grading, for the sake of simplicity.) Suppose C'
is graded. We define its degree shift C[1] as follows. C[1]™ = C™*1. Here C™ is degree m
part.

An element x of a completed free Ag module C is said to be G-gapped if © = deg Tz,
where z, € C.

A Ag module homomorphism ¢ between completed free Ag modules C7, Cs are said to be
G-gapped if it sends an arbitrary G-gapped element to a G-gapped element. This condition
is equivalent to the condition that

o= T, (2:2)
geG
where ¢4 : C1 — C3 are R module homomorphisms.

For a G-gapped homomorphism ¢ as in (2.2), we write = ¢g: C7 — C2 and call it the
R-reduction of ¢.

Definition 2.2. A non-unital curved filtered A, category € is a collection of the set Ob(%),
the set of objects, a graded completed free Ag module €(c1, ca) for each ¢1,co € Ob(%), and the
operations

mg: %[1}(00, cl)@~ . -@%[1](0k_1, ck) — %[1](00, Ck),

of degree +1 for k =0,1,2,... and ¢; € Ob(%). (Note that in the case when k = 0 the domain
is 0 if Co 7& C1 and is Ao if co = Cl.)

We call €'[1](co, c1) the module of morphisms and my, the structure operations.

We assume the following three conditions:

(1)
(2)

3)

We require my, to satisfy the Ao, formula (2.6) described below.

The operations my, preserves the filtration.?! Namely,
my (3 (€1(co, 1) @ - - - @ C[1] (ch-1,¢x))) € TN (E[1](co, k).

We have mp(1) =0 mod T°, for some € > 0.

To describe the Ay, formula, we introduce notations. Let a,b € Db(%). We put

Bkcﬁ[l](a, b) = @ %[1](60,01)@---@%[1](0k,1,0k). (2.3)

A=C0,C1,-++,Ck—1,Ck=b

(Here and hereafter @ denotes the T-adic completion of the direct sum.)

21 Actually this condition follows automatically from Ao linearity.
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Note that in the case when k =0

0 if ¢y # cy,

24
AO if CcCo = C1. ( )

Bgcg[l} (C(), 01) = {

We denote

BE[1](a,b) = @ Bu[l)(a,b),  BZIl] ::@B%[l](a,b).
a,b

k=0,1,2,...

We define a homomorphism

A: By%[1] @ @Bkl (a,¢) ® By, €[1)(c, b)
ki+ko=k c
by
k
Ay @ @ap) =Y (210 @ 2p,) @ (2,41 @ @ 2p).-
k1=0

It induces maps

A: BLE[1] @ Bp€[1]® By, €[1], k=0,1,2,...,

ky+ko=k,
k1=0,...k

and A: B€[1] — B€[1]® B€[1]. Then (B€[1](a,a),A) and (B€[1],A) are graded formal

coalgebras.??

Operations my, define homomorphisms: By%'[1](a,b) — ©[1](a,b). It can be extended
uniquely to coderivations dy: B¥[1] — B€|[1], dy: B%€[1](a,b) — B%[1](a,b) by

di(z1 @ - @ xp) = Z(—l)*xl @ @My(Tey .o Tpph—1) @+ @ Ty,
14

where x = (degx1 + 1)+ --- + (degzs—1 + 1). We put
d:=) dy. (2.5)
k

Now the A, formula is

dod=0. (2.6)

Note that (2.6) is equivalent to the equality

k1—1

0= D D (1 muy (@1, @iy Wy (Tig1s - Ty -5 Tk), (2.7)

ki1+ko=k+1 i=0

where * = i + Z;-:l deg x;.
We use the notation deg’ x := dega — 1 then * = 37" _, deg’ z;.

22The coalgebra structure is defined by a map A: C — C ® C. Here the target of our A is the completion
C®C. In such a case it is called a formal coalgebra. Such a notion appears in the theory of formal groups.
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Remark 2.3. The sign convention in (2.7) is the same as [34] but is different from [71]. It
seems that two different conventions are related to each other by the process to take opposite
category (see Definition 2.30).

Remark 2.4. We can define the notion of a non-unital A, category over a ring R (which is
not filtered) in the same way except the following:

(1) We do not require the structure operations my, to preserve the filtration.

(2) We require mp = 0. In other words, we require strictness, in the sense of Definition 2.5 (2).

Note that item (2) is our convention. At this stage this is only a matter of convention. Namely,
we may include the curved case over (unfiltered) ring. It may be natural to do so in the case
when we study the situation where structure operations are converging (in the Lagrangian Floer
theory) and the version over C. Also in the case of monotone Lagrangian submanifolds with
minimal Maslov number 2 such a situation appears naturally.

Since we required my =0 mod T°¢, we include this condition.

There will appear more serious reasons related to item (2), as the story goes on. See Re-
marks 2.6 and 2.12.

Definition 2.5. Let % be a non-unital curved filtered A, category.

(1) We say € is G-gapped if all the operations my are G-gapped.

(2) We say € is a non-unital filtered A category if my = 0. We also say that € is strict
instead.

(3) If € is G-gapped, we define R-reduction € of our filtered A, category as follows. It is
an A, category over R in the sense of Remark 2.4.

(a) OB(F) = OB(F).

(b) For c,c € OB(F), there is a free R module € (c, ¢’) such that €(c, ) is a completion
of €(c,d) ®pr Ao, by the definition of a completed free Ag module. We take this R
module €(c, ') as the module of morphisms of %'

(¢) The structure morphisms my, are the R-reductions of my.

Note that my = 0 by Definition 2.2 (3). Other conditions for € to be an A, category
follow from the corresponding properties of €.
(4) We say € is unital (or € is a curved filtered A, category) if there exists e. € €(c, c¢) for
each ¢ € Ob(%) such that the following holds:
(a) If 21 € C(c,c), 2 € €(c,c) then ma(e., 1) = 21, ma(w2,e.) = (—1)8%27,,
b) fk+l#1, 210 @z € BeE[1](a,c), y1 @+ @y € Br€[1](c,b) then

mk-i—(—l—l(xlv"‘7$e7e07y17"'7yk) =0. (28)

(5) A filtered Ao algebra is a non-unital curved filtered Ay, category with one object. Its
unitality and strictness is defined as its unitality and strictness as a non-unital curved
filtered A category.

(6) Let € = (C,{my}) be an A algebra. We define 9(C; AL), the Maurer—Cartan solution
space of C, as the set of all elements b € C'' such that

(a) b=0 mod A, .23

23We study the case when this condition is not satisfied sometimes and define ﬁ(@; Ap). In such a case, the
equation (2.9) is more delicate to define since the left-hand side may not converge in T-adic topology. We do not
discuss this generalization in this paper. See, for example, [41].
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(b)
> my(b,...,b) =0. (2.9)
k=0
We remark that the left-hand side is an infinite sum, which converges in T-adic

topology.?4 25 An element of MM(€; A, ) is called a bounding cochain.

(7) Let ¢ be a non-unital curved filtered A, category. We define a non-unital filtered A,
category % as follows:

(a) An object of €* is a pair (¢, b), where ¢ € OB(%) and b € S/)JVT(‘K(C, c);Ay).

(b) If (¢, b), (¢, V') are objects of €*, then €*((c,b), (/,V')) = €(c, ') by definition.
(C) If (Ci,bi) € D%(%,) fori =0,...,k and z; € %s((ci_l,bi_l), (bci,bi)) = %(Ci_l,ci)

for i =1,...,k. Then we define the structure operations m;*"*’ of €* as follows:
(bo,---sbx;) _ ¢ ¢ €1 {4
my (mla s ,l'k) - Z W00+ 4L, (b()oa Ty, bllv SRR bkfl y Lk bkk)
Lo, Lk

The proof of the fact that this formula defines a non-unital filtered A, category is similar
to the corresponding result in the case of an Ay, algebra, which is proved as [34, Proposi-
tion 3.6.10]. We call €* the associated strict category to €. If € is unital, then ¢* is also
unital.

Remark 2.6. Note that (2.9) does not make sense in the case of an (unfiltered) A category.
In fact, the left-hand side is an infinite sum. (This is one reason why we assume strictness for
(unfiltered) A, category.)

There are several ways to go around this point. We will not discuss it here.

Remark 2.7. In Definition 2.5 (4), we required strict unitality. In [34, Definition 3.3.2], we
defined the notion of a homotopy unit of a filtered A, algebra. We can define the notion of
a homotopy unit of a filtered A, category in the same way. We do not discuss it in this paper,
since in our geometric application we can construct a strict unit by using the de Rham model.

Definition 2.8 (Bondal and Kapranov [10]). An A, category is said to be a differential graded
category or a DG-category if mp = 0 for k # 1,2.

Remark 2.9. In the usual definition of a DG-category, the space of morphisms % (c1,c2) is
a chain complex with boundary operator d and the composition map

o: (5(61,02) ®Cg(02703) — %(01703)

is assumed to be a chain map and the compositions are assumed to be associative (strictly).
We change the sign and define my(z) := (—1)%8%t1d(z), my(x,y) = (—1)desz(degyty o g
Then it satisfies Ao relation (2.7). (See [27, Example-Lemma 1.7].) There is an alternative
choice of the sign, that is, my(z) := d(z), ma(z,y) := (—1)%8%x o y. This is the choice in [46,
Definition 21.21 (2)(3)].

24In case ¥ is unital, we sometimes study the weaker equation which replaces the right-hand side by Ce for
some C € A;. See [34, Section 4.3].

25We can define an equivalence relation called gauge equivalence so that the As, structure defined by the
deformed operators m¢ depends only on the gauge equivalence class of b. See [34, Section 3.6.3].
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2.2 A, functor

Definition 2.10. Let %;, i = 1,2, be non-unital curved filtered A, categories. A filtered As
functor F : €1 — %> is a collection of F,, F, k=0,1,2,..., such that

(1) We are given a set theoretical map Z,: Ob(%1) — Ob(%2), which we call the object part
of Z#.

(2) For Cc1,Co € D[J(Cgl), ﬁk(cl, 02): Bkcgl [1](01, 02) — ng[l](ﬁob(cl),fob(@)) is a A() module
homomorphism of degree 0. It preserves filtration in a similar sense as Definition 2.2 (2).
We write .Z}, in place of F(c1, c2) sometimes.

(3) We require that %y = 0 mod T%, ¢ > 0. Note that .%; consists of maps %(c): Ay —
©2[1](Fob(c), Zob(c)) for each ¢ € OB(%1).

(4) We extend Zy(c1, c2) to a formal coalgebra homomorphism
ﬁcl, 02) : B%l [1](61, 02) — Bcfz[l](ﬁob(cl), 90})(02)).

Then é:(cl, ¢2) is a chain map with respect to the boundary operator d in (2.5).

Remark 2.11. In Definition 2.10, we include the case %y # 0, that is, a ‘curved’ filtered Ao,
functor. (In [27], we did not include it. However, the definition of filtered A~ algebra homo-
morphism in [34, Definition 3.2.29] includes the case fo # 0.)

The map .Z on By 61[1)(c1,¢c2) is defined by

Frr,. ) =Y > T, 3h) @ @ Ty (Thpytts - Th)s (2.10)
b=1 k1, kp
ky+-+kp=k

Y
li
+
[]e
3
=
®

—

% is a formal coalgebra homomorphism.

Remark 2.12. We define an A, functor between (unfiltered) A, categories in the same way.
We require %y = 0 in the unfiltered situation. There is more serious reason to require it
compared to Remark 2.4 (2). We remark that in our situation where %y # 0, the right-hand
side of (2.10) is an infinite sum. It converges in T-adic topology thanks to Definition 2.10 (3).
In the case when we work over the ground ring, the unfiltered case, the right-hand side of (2.10)
should be a finite sum.

Definition 2.13. Let % : € — % be a filtered A, functor between non-unital curved fil-
tered A, categories.
(1) We say .7 is strict if %5 = 0.
(2) Suppose €1, G, are G-gapped. We say # is G-gapped if all the maps % are G-gapped
for k=0,1,2,....
(3) A G-gapped filtered Ay functor between non-unital curved filtered A, categories induce
an A, functor between their R-reductions.

(4) Suppose % and %, are unital in addition. We say .# is (strictly) unital if the following
two conditions are satisfied:
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(a) Fi(ec) =ez,, (o)
(b) Frqes1(z1,. .., z0,€c,y1,...,y¢) =0 for k+ £ > 0.
(5) If Z: 61 — % is a filtered Ay, functor between non-unital curved filtered A, categories,

then we obtain a strict filtered A functor #°: € — €5 between their associated strict
categories as follows.

(a) Let c € OB(%1) and b € 5/7)7(‘5(0, ¢); Ay). We put

Fu(b) =Y F(b,...,b).
k=0

We can prove Z,(b) € ﬁ(‘g(ﬁob(c), Fob(€)); At). We define
Fop(c,b) = (Fop(c), Fu(b)).

(b) Let (Ci,bi) € D‘B(%{), 1 =20,...,k, and z; € Cgf((ci_l,bi_l),(ci,bi» = ‘Kl(ci_l,ci),
1=1,..., k. We put

. 4 14 L1 4
Fp(x1,... xp) = Z Fletlo++ly (boo, w1, b7, b T bk’“).
Lo, Ly

We also put .#; = 0. We can show that .73 and .#; define a strict filtered A, func-
tor F%: 67 — €5, in the same way as [34, Lemma 3.6.36, Definition-Lemma 5.2.15,
Lemma 5.2.16]. (They discuss the case of A, algebra.) We say .Z° is the associated strict
functor to ZF. If .Z is unital (resp. G-gapped), then so is % *.

(6) The identity functor S P: € — € is defined by
(a) S Do, = the identity map: OB(€) — OB(F).
(b) I P1(c1,c2): €(c1,c2) = €(c1,c2) is the identity map.
(¢) P, =0 for k # ob, 1.
7 2 is unital (resp. G-gapped) if so is €.
Definition-Lemma 2.14. Let Z': €, — %5, F2: € — % be filtered A, functors.

(1) We define their composition F = F2 o Fl1: € — €3 as follows:

2 1
Fob = Fob © Foby

o

Fler,e2) = FP2FL (1), Fho(e2)) 0 Fl(er, )

[¢]

B%i(c1,c2) = BE3(Fob(c1), Fob(c2)).

(2) If #!, Z? are strict (resp. unital, G-gapped), then .# = .2 0. %! is strict (resp. unital,
G-gapped).

(3) If F15, F2 are strict functors associated to .Z1, .#2, respectively, then .# 1% 0 .2 is the
strict functor associated to .#! o .Z2.

) FoIP=IF0F =7.

The proof is easy and is omitted.
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2.3 Functor category

Definition 2.15 ([27, Definition 7.49]). Let .#,¥: €1 — %2 be two curved filtered A, functors
between non-unital curved filtered A, categories.
A pre-natural transformation from % to ¢ of degree d is a family of operators 7 = {Ti(a,b)}

77c(a’ b): Bk(gl[l](a’ b) — %2[1](ﬁob(a)’gob(b))

of degree d for k =0,1,2,... and a,b € OB(%7), which preserves filtration in the same sense as
Definition 2.2 (2).26 We require that the image of 7Ty has strictly positive energy.

We write deg7 := d + 1 and deg’ := deg — 1 = d.27 We say that T is G-gapped if each
of Tx(a,b) is G-gapped. We denote by FUNC(.F,%9) the set of all pre-natural transformations
from .Z to 4. It is a completed free Ag module and is graded. We denote by FUNCH(F,9)
the degree d part. In other words, if T € FUNCY(.F,%), then deg T = d + 1 and deg'T = d.

Remark 2.16. We remark that 7y(a,b) = 0 if a # b and To(a, a) is a A9 module homomorphism
To(a,a): Bo%i[l](a,a) = Ao — G2[1](Fop(a), Yob(a)).
We denote by To(a) € €2[1)(Fob(a), Yon(a)) the element To(a,a)(1).
For a', bt/ € Ob(%2), let my 2 BE2[1](d,b') — €2[1](a’, V') be the projection.
Lemma—Definition 2.17.

(1) For each T = {Ti(a,b)} € FUNCLF,9), there exists uniquely a family

~

T(a7 b) : B(gl[l](ch b) - B%Q[l](ﬁob(a)a gob(b))a
of Ag module homomorphisms with the following properties:

T (@) %@ © T (a,0) = Tila,b)  on Byi[1](a,b),
AO?(a, b) = Z(§®S ?(c, b)—i—?(a, c) ®5§2) o A. (2.11)
Here ®, is defined by (A ®, B)(x,y) = (—1)deBdee’x 4(x) @ B(y).
(2) There exists 0T = {(6T )x(a,b)} € FUNC*THL(F 4) uniquely such that

— ~ o~

ST =doT 4 (—1)7+'T o d,

(3) o(6T) =0.
(4) A pre-natural transformation T is said to be a natural transformation if 6T = 0.
(1) is [27, Lemma 7.45]. (2) is [27, Lemma 7.48]. (3) is [27, Corollary 7.50].
Definition 2.18. Let . Z®: 4 — %, i = 0,....k, be curved filtered A, functors between
non-unital curved Ao, categories and 7(#) € FUNCE (ﬁ(i_l), ﬁ(@) fori =1,...,k (here k =

1,2,...). We define mk(T(l), e ,T(k)) =T € fUNCd(ﬁ(O),ﬁ(k)) as follows (d =dy +--- +
dp + 1).

261t means that deg’ Tx(a,b)(x) = deg’ x + d, where deg’ 71 ® --- @ xx = >_ deg’ x;.

2TThis convention is different from [27, two lines below equation (7.44)]. Actually in [27, equation (7.12.2)] deg’
is defined as deg+1, which is different from our convention here. The convention of this paper coincides with
[34, equation (3.2.2)], which seems better than one in [27]. (See a line after Definition 2.22, for example.) This
inconsistency does not affect to the calculation of the sign in [27] which we use much in this paper.
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If k = 1, then my (TW) = —§(TW), where ¢ is as in Definition 2.17 (2).
Suppose k > 2. Let x € B(%1[1]). We consider

by — Z x{ 2k+1)

Here A™: B(%1[1]) — B(%1[1]) ® - -- ® B(%)[1]) is defined inductively by A™ := (A®id)oA™ !,
Al = A. We put 1

T(x) = — 3 (—1)m(ZO) (x(V), 7O (x2)), ..., T® (@), Z® (xZF+D))

a
where %, = Zj L SH T deg! x"). Note that

k+1

deg’ T (x Zdeg Xy Zbeg TO 4 1.

Therefore, deg’T = Zk_l 9eg’ 7 + 1. This is consistent with Definition 2.2.

We consider the case when k = 0. We will define m§’ (1) € FUNC(F,.F) (the mgy operator
of the functor category). For ¢ € OB(%3), the mg operator of €, determine an element mp(1). €
CN)(Fob(c), Fob(c)). We put m7 (1), := —mgp(1),.

Theorem 2.19. Let 61, %2 be curved filtered A categories. Then, there exists a non-unital
curved filtered Ao, category FUNCC(61,62) such that

(1) The set of its objects OB(FUNCC(61,62)) consists of filtered Ay functors F: €1 — Ga.

(2) For F,9 € OB(FUNCC(€1,%2)), FUNCC(F,9) is the module of morphisms from F
to 9.

(3) The structure operations
my: By FUNCC(F,9) — FUNCC(F,9)
are as in Definition 2.18.

We denote by FUNC(€1, %) the full subcategory of FUNCC(€1,%,) the set of whose objects
are strict filtered Ao functors.

If 65 is strict, then FUNCC (1, 6s) and FUNC(61,62) are strict.

In case €1, € are unital and/or strict, we consider only unital and/or strict filtered Ao
functors as objects of FUNC(€1,%62). In that way, we obtain strict and unital filtered As
category.

This is [27, Theorem—Definition 7.55]. (Note that only the strict case is proved in [27,
Theorem—Definition 7.55]. However, the proof there can be applied without change in our
case. The functor category in the curved case is also studied in [19, Section 3.4].) We call

FUNCC(€),6s), FUNC(61,6) the functor category.

Proposition 2.20. A strict Ao, functor F : €1 — €5 induces strict A, functors F.: FUNC(E
©1) —» FUNC(C,6), F*: FUNC(62,6) — FUNC(61,€) such that (Fy)ob(¥) = F 0 ¥,
(F)ou(9) =4 o F. The same is true if we replace FUNC by FUNCC. (In that case, we do
not need to assume F to be strict.)

This is [27, Proposition—Definition 8.41].
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Definition 2.21. In the situation of Theorem 2.19, we assume that %), %2 are G-gapped. We
define a G-gapped filtered A, category FUN CG(CKl,‘Kg) as follows. Its object is a G-gapped
filtered Ay functors .#: € — %». The morphisms and the structure maps are the same as
Theorem 2.19 (2)(3). It is easy to see that the structure maps are G-gapped. The G-gapped
version of Proposition 2.20 holds. We may replace FUNC by FUNCC.

Hereafter, in the case of G-gapped category, we omit G and write FUNC(%1,62) in place
of FUNCE (€1, %).

Definition 2.22 ([27, Definition 8.2]). Let .#: 1 — %2 be a curved filtered A, functors
between non-unital curved filtered A, categories. We assume %5 is unital in addition. We
define the identity natural transformation 1d” as follows. Let e. € €3 (c,c) be the unit in %.
We put

107(0) = ~e,,(0) € G"(Fo(a), Fo(a), 1 =0 fork>1.

Note that deg’ €z, (a) = degez, () — 1 = —1. Therefore, deg Id7 = 0.
It is easy to see from definition that Id” satisfies (2.8) for the structure operations my
of FUNCC(%1,%>). Therefore, we have the following.

Lemma 2.23. If ¢, is unital, then FUNCC (%1, 62) is unital.

2.4 A.,-Whitehead theorem

In this subsection, all filtered Ao, categories are assumed to be strict (except in Remark 2.29).

Definition 2.24. Let € be a strict filtered Ay, category and ¢, € Ob(¥). Let x € €°(c, ).
We say that x is a homotopy equivalence if there exists y € €V(c/, ¢) such that

(1) my(z) =m(y) =0,
(2) ma(y,x) —e. € Immy, ma(z,y) — ey € Immy.

Two objects ¢, € Ob(€) are said to be homotopy equivalent to each other if there exists
a homotopy equivalence between them.
Homotopy equivalence is an equivalence relation by [27, Lemma 6.24].

Definition 2.25. Suppose that we are in the situation of Lemma 2.23 and we assume that %5
is strict. Two strict filtered Ay functors %,9: €1 — %> are said to be homotopy equivalent
to each other if they are homotopy equivalent as objects of FUNC(%1,%>2) in the sense of
Definition 2.24. (Note that FUNC(%1, %) is strict if @2 is strict.) The homotopy equivalence
among strict filtered A, functors is an equivalence relation. We can define the notion two G-
gapped strict filtered A functors to be homotopy equivalent (as G-gapped strict filtered Ao
functors) in a similar way.

Remark 2.26. We consider the case when %7, %> have only one object. In this case, curved
filtered Ay functors #,¥9: €1 — %5 are nothing but filtered A., homomorphisms. The notion
two (curved) filtered Ao homomorphisms to be homotopic is defined in [34, Definition 4.2.35].
We will define its category version in Definition 13.5. To distinguish one, we defined here from
one in Definition 13.5 we will use the terminology ‘homotopy equivalent’ in place of ‘homotopic’
in Definition 2.25.2% We will prove in Section 13 that ‘homotopic’ implies "homotopy equivalent’
(see Proposition 13.13). The converse is not correct (see Example 13.15).

28This notation is different from [27] at this point.
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Definition 2.27. Let %), %> be strict filtered A, categories. We assume that they are unital.
A strict Ao functor % : €1 — %5 is said to be a homotopy equivalence if there exists a strict Ao
functor ¢: € — %1 such that the composition ¥ o ¢ is homotopy equivalent to the identity
functor .# 2% and that 4 o.Z is homotopy equivalent to the identity functor .# 2%'. We say ¢
a homotopy inverse to #. Two strict Ay, categories are said to be homotopy equivalent to each
other if there exists a homotopy equivalence between them.

We assume that the ground ring R is a field in the next theorem.

Theorem 2.28. Let 61, 6> be filtered Ao categories. We assume they are unital, strict and
gapped. Let F: € — o be a strict and gapped Ao functor such that

(1) Fi: C1(cr1,c)) = Co(Fob(cr), Fob(c))) induces an isomorphism on my homology.

(2) For any cy € Ob(%,), there exists c1 € Ob(E]) such that Fop(c1) is homotopy equivalent

to co.

Then F is a homotopy equivalence.
If €1, 6>, F are G-gapped, we may take homotopy inverse which is G-gapped also. Moreover,
homotopy equivalence in (2) is taken to be G-gapped.

The non-filtered version of this theorem is [27, Theorem 8.6]. We can prove Theorem 2.28 in
the same way.

Remark 2.29. Note that we assumed strictness of € here. Actually Theorem 2.28 (1) does
not make sense in case mg # 0. In a slightly different way, we can define homotopy equivalence
of filtered A, categories in the curved case and Theorem 2.28 holds in that generality. See
Section 13 Theorem 13.11. (We remark that the assumption (1) of Theorem 13.11 does make
sense in the curved case since ¥ is strict. In the curved case, we replace (2) by the condition
that .Z,, is a bijection.)

2.5 A, -Yoneda embedding

Definition 2.30 ([27, Definition 7.8]). Let ¢ be a non-unital curved filtered Ay, category. We
define its opposite Ao, category €°P as follows:

(1) Ob(€°P) = Ob(%).
(2) Let ¢,d € Ob(€°P) = Ob(¥). We put €°P(c, ') = €(, ¢).

(3) We define structure operations m* of €°P by m(21,...,25) = (—=1)*myg(zg, ..., 21),
where x =3, ;. (degz; +1)(degz; + 1) + 1.

Lemma 2.31.

(1) €°P is a non-unital curved filtered Ao category.

(2) If € is unital (resp. strict, G-gapped), then so is €°P.
(1) is [27, Lemma 7.10]. (2) is immediate from the definition. (Definition 2.5 (3) (a).)

Definition 2.32. Let %), %5 be non-unital curved filtered A, categories. For a filtered Ay
functor .Z : 61 — 6, we can construct its opposite As functor FP: 67 — €,* as follows.

(1) Zop = Fob.
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(2) FP(x) == (—1)°®).F;(x°P). Here we put

xP =z, ® - Qx, (2.12)
and
e(x) = Z (dega; + 1)(degz; + 1). (2.13)
1<i<j<k

It is checked in [27, Definition-Lemma 7.23] that .#°P is a filtered Ao functor.
It is easy to see that if .# is unital (resp. G-gapped), then the functor .#°P is also unital
(resp. G-gapped).

The next lemma is easy to show.

Lemma 2.33. If €1, %> are non-unital strict filtered A, categories, then the set theoretical
map F — F°P is the object part of the isomorphism FUNC(1,62)P = FUNC(E,€57).
The same holds in the curved case.

The proof is easy and is omitted.

Definition 2.34. We define a filtered A, category CH as follows. Ob(CH) is the set of (all)
chain complexes of completed free Ag modules.?? Let (C,d), (C’,d) € Ob(CH). Then

CH*((C,d), (C',d)) = @5 Homp (C*,C"*F).
4

We define
my(z) ;=dox+ (=1)¥8¥ pod,  my(z,y) = (—1)deldeeytl)y o 4 (2.14)

where o is the composition. We put my = 0 for £ > 3 and £ = 0. It is checked in [27,
Proposition 7.7] that CH is a filtered A, category. It is strict and unital.

Suppose % is a non-unital strict filtered Ay, category. We will define the following four
functors

Von: € — FUNC(EP,CH), OpYon: €°P — FUNC(E,CH),
NonP: €°P — FUNC(E,CHP),  OpDon®®: € — FUNC(EP,CHP).

The object parts of them are defined by

(Yongy,(c)ob)(b) := €(b,c),  (OpDongy,(c))on(b) :
(@Ungg(c))ob(b) = Cg(bv C)7 (meongﬁ(c))ob(b) :
Definition 2.35. Let ¥ be a strict filtered Ao, category. We define a filtered Ao, func-

tor Yony(c): €°P — CH as follows. Yon,,(¢)ob(by) = €(bo,c). Let x € BrE°P(by,br) =
Bkcg(bk, bo), (RS Qjono(c)ob(bo) = ‘g(c, bo), k=1,2,.... Then

Yong, (€)1 (x)(y) := (1) m(xP, y).

See [27, Definitions 7.28], where fRep is used instead of PON. We apply the construction
of Yon,y,(c) to the opposite filtered Ay category €°P and define OpQon ,(c) as follows.

€ (c,b),
€ (c,b).

29T avoid Russell paradox in set theory, we fix a sufficiently large set (a universe) and consider only completed
free Ag modules contained in this set.



Unobstructed Immersed Lagrangian Correspondence and Filtered A., Functor 21

Definition 2.36. OpQon,y,(c): €°P — CH is defined by

(1) OpYong(c)(bo) = € '(c, bo),
(2) OpYony,(x)(y) = —(—1)de8 vdee"xm , (y,x). 210

Lemma 2.37. There exist a filtered Aoy functors YPon: € — FUNC(E°P,CH) and OpYon:
€ — FUNC(EP,CHP) such that its object part is given by Definitions 2.35 and 2.36.

The case of Qon is [27, Definitions 9.6 and Lemma 9.8]. The case of OpQon is obtained by
applying the case of Qon to the opposite category €°P.

Definition 2.38. We define QYon?: €°P — FUNC(E,CHP) and OpYon°P: €°P — FUNC(E°P,
CH®P) to be the opposite functors of Yon and OpYon, respectively.

Remark 2.39. The functors Qong; (c) and OpPon’p(c) are written as F°¢, °F respectively
in [27, Section 7.

Definition 2.40. We say strict filtered A, functors: ¢ — CHP, € — CH, €°° — CH,
€°P — CH°P are representable if they are homotopy equivalent to Qony (c), OpQon,,(c) and
Yongp(c), OpYony(c), for some ¢ € Ob(F) = Ob(E°P), respectively.

The next lemma is easy to show.
Lemma 2.41. The unitality and G-gappedness are preserved by Definitions 2.35, 2.36, 2.40.

Definition 2.42. We denote by Rep(€°P,CH) the full subcategory of FUNC(€°P,CH) such
that Ob(Rep(€°P,CH)) is the set of all filtered representable A, functors.

We denote by Rep®(€°P, CH) the full subcategory of FUNC(€P,CH) whose objects consist
of the G-gapped filtered representable A, functors. The filtered Ao, category iﬁepG(‘KOp,C’H)
is G-gapped.

We next define a filtered Ao, functor Yon: € = Rep® (€°P,CH).

Definition 2.43. For an object ¢ of €, the object Yon,y(c) of Rep(€°P,CH) is defined by
Definition 2.35.

Theorem 2.44 (Yoneda’s lemma). Let € be a G-gapped strict and unital filtered As cate-
gory. Then, there exists a homotopy equivalences of G-gapped filtered Ao, categories YPon: € =
Rep® (6P, CH), such that Yony,(c) is as in Definition 2.35.

This is a filtered version of [27, Theorem 9.1]. Using Theorem 2.28 instead of [27, Theo-
rem 8.6], the proof of Theorem 2.44 is the same as the proof of [27, Theorem 9.1].

Definition 2.45. We call Qon: € = Rep®(6°P,CH) the Ay, Yoneda functor.

Remark 2.46. In Section 2, we describe the result over Ay coefficient. In most of the places
we can use A coefficient and forget the filtration. However, we then need to assume that our
filtered A category is strict. So to work over A coefficient in our geometric application, a natural
way is to proceed as follows. We first define a curved filtered A, category over Ag. Take its
associated strict category. Change the coefficient ring from Ag to A. This is the way taken in [2].

We call a filtered Ay, category, Ag linear if its module of morphisms are Ag module and its
structure equations are Ag linear. An A, category over A (resp. R) is called also to be A linear
(resp. R linear).

There are certain cases where it is better to work over Ag. For example, reduction to R works
only for Ay linear category.

Yoneda’s lemma in the case of curved filtered A, category is discussed in [19, Section 4].

210There are errors in [27] on the corresponding statements. It is corrected here. It does not affect other parts
of [27] since the functor OpYPon is not used in [27]. It will be used in this paper.



22 K. Fukaya

3 Floer theory of immersed Lagrangian submanifolds: Review

This section is a review of Floer theory of immersed Lagrangian submanifolds. Our main purpose
here is to provide the precise definitions of various notions we use in this paper. We also include
certain discussions on orientation in the Morse—Bott case, which we use in later sections. If the
reader has certain knowledge on Lagrangian Floer theory and its immersed version, the reader
may skip this section and comes back when it is quoted in later sections.

The Floer theory of immersed Lagrangian submanifolds is developed by Akaho—Joyce in [4],
generalizing the case of embedded Lagrangian submanifolds in [34, 35]. Here we rewrite the
story by using the de Rham model. The main reference we use on the virtual fundamental chain
technique in the de Rham model is [40, 43, 46]. Note that [34, 35, 40, 43, 46] do not discuss the
construction of filtered Aso-categories but focus on filtered Ao, algebras. The references on the
category case are [2, 27, 36].

3.1 Immersed Lagrangian submanifold

Let (X,w) be a symplectic manifold of real dimension 2n. We assume it is either compact or
tame. We sometimes say that X is a symplectic manifold for simplicity.

Notation 3.1. For a symplectic manifolds (X,wx), (Y, wy), we denote (X XY, 7} (wx)+75(wy))
by (X,wx) x (Y,wy). Sometimes we denote (X, —wx) by —X by an abuse of notation. We
also denote (X,wyx) X (Y,wy) by X x Y sometimes. Moreover, we write —X x Y instead of
(X, —wx) x (Y,wy) sometimes.

Definition 3.2.
(1) An immersed Lagrangian submanifold L of (X,w) is a pair (I:,iL) where L is a smooth

ma~nifold of dimension n and iy, is a smooth map ¢7,: L — X such that its derivative dpir,:
TpL — T, (»X is injective and that i7w = 0.

(2) Sometimes we denote by L the image of iy, : L — X by an abuse of notation.

(3) In this paper, all immersed Lagrangian submanifolds are assumed to be compact and
oriented unless otherwise mentioned.

(4) Wesay L = (f), iL) has clean self-intersection if the following holds.
(a) The fiber product
Lxx L:={(p.a) € LxL|ir(p) =ir(a)}
is a smooth §ubma~nifold of L x L.
(b) For (p,q) € L xx L, we have
Tpo) (L xx L) = {(V,W) € T,L x T,L | (dyi)(V) = (dgir)(W)}.

We remark that the left-hand side is automatically contained in the right-hand side.
The condition is that the right-hand side is contained in the left-hand side. Herealfter,
we put L(+) = L xx L.

(5) We decompose L(+) into the disjoint union of finitely many connected components as
L(+)=Lu [] L(a), (3.1)
acAyp

where L is identified with the intersection of L(+) and the diagonal. We say L the diagonal
component of L(+) and other L(a)’s the switching components. We put Af ={o} U AL,
and L(o) = L.
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(6) We say that L has transversal self-intersection when it has clean self-intersection and all
the switching components are zero-dimensional.

Remark 3.3. We consider sometimes the case when L is not connected. In such a case, the
diagonal component is not actually a connected component. We however call it the diagonal
component by an abuse of notation.

We next define the notion of a relative spin structure of an immersed Lagrangian submanifold,
following [35, Definition 8.1.2].

Definition 3.4. Let L be an immersed Lagrangian submanifold which has clean self-intersection.
We fix a triangulation of X such that L is a subcomplex. It induces a triangulation of L such
that iz, sends each simplex of L to a simplex of X by a diffeomorphism.

A relative spin structure of L is the following objects.

(1) A real and oriented vector bundle V' on the 3 skeleton X of X.
(2) A spin structure o of the bundle i% (V) @ T'L on the 3 skeleton I~L[3] of L.

We call V' the background datum of our relative spin structure. We say also o is a V -relative
spin structure.

Remark 3.5. Let us put [st] = w?(V) € H?(X;Z3). Then a spin structure o of the bun-
dle 7% (V) @ TL on the 3 skeleton _Z/[?)} of L exists if and only if w?(L) = i% ([st]). Sometimes [st]
is called the background class. We use V rather than [st] since to define the notion of a rel-
ative spin structure it is more precise when we use it. (We may say L is [st]-relatively spin
if w?(L) = % ([st]). We need to be more precise to define the notion of a relative spin structure
of L.)

Note that the notion of a relative spin structure in Definition 3.4 depends on the choice of
a triangulation of X. We can however show that this notion is independent of such a choice in
a similar way as [35, Proposition 8.1.6].

The immersed Lagrangian Floer theory associates a filtered A, algebra to an immersed
Lagrangian submanifold (which is relatively spin and has clean self-intersection). The underlying
vector space of filtered A, algebra is the vector space of differential forms on Lxx L. (More
precisely, the completion of its tensor product with Ag.) By the same reason as the Floer
cohomology of a pair of Lagrangian submanifolds (with clean intersection), we need to use
a certain principal O(1) bundle, which is equivalent to a Zs-local system, on the switching
components. (It is unnecessary in the self-transversal case which was the case of [4].) We next
discuss this point following [34, Section 3.7.5], [35, Section 8.8] and will define O .

Definition 3.6.

(1) Let L(a) be one of the switching components of L(+). L(a) is a submanifold of (L x L)\
diagonal. We compose L(a) — L x L with the projection to the first factor to obtain
ig: L(a) — L. This is a smooth immersion. Using the projection to the second factor,
we obtain i,,.: L(a) — L.

(2) For x € X, we denote by LGR, the set of all the oriented n-dimensional subspaces V'
of T, X such that w =0on V. UxeX LGR, is a fiber bundle over X which we write LGR.

Below we assume

dim L — dim L(a) > 2 (3.2)
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for switching components L(a). The orientation problem of the general case can be reduced to
this case by the following trick. Let u: (X,0%) — (X, L) be a pseudo-holomorphic map (see
Definition 3.17). For the orientation problem, it suffices to consider the case ¥ C C. When we
replace X, L, u by X x C, L x 9%, u x identity, the moduli spaces of pseudo-holomorphic maps
(together with their Kuranishi structures), do not change by this process. Therefore, we may
assume (3.2) without loss of generality.

We take and fix a Riemannian metric on L. This is nothing but the reduction of the structure
group of its tangent bundle to SO(n).

Definition 3.7 (see [35, p. 687 and p. 721]). Let « € L(a).
(1) We denote by P? the set of all smooth maps A, : [0,1] = LGR, such that

(8) Aa(0) = (daia) Ty, ) L)

(b) Az(1) = (dia,r) (Ea,r($)~L)’ ~
(C) )\gg(t) 2 (dxia,l)(Tia,l(l’)L) N (dﬁz@,r)(j—;ar(x)L)

(2) For A\, € P?, we define the space I, as the set of all smooth maps o: [0,1] x R" — TX
such that o(¢;-): R™ — T, X is a linear isometry between R™ and the linear subspace A;(t)
of T, X.

(3) Let PsoL be the principal SO(n) bundle associated to the tangent bundle. We may
identify its fiber at p € L with the set of all orientation preserving isometries R™ — T}, L.
For x = (p,q) € L(a), we consider

(PSpinL>p X (PSpinL)q

P =
! {_17+1}

Here (PspinL)p is the double cover of the fiber of PsoL at p and can be identified with
Spin(n). The denominator {—1,+1} is the group O(1) consisting of (1,1) € Spin(n) X
Spin(n) and (—1, —1) € Spin(n) x Spin(n).

(4) For x = (p,q) € L(a), we define a map I, — (PsoL), x (PsoL), by restricting o € I,
tot =0,1. We also have a double cover P, — (PsoL), x (PsoL)q- We define the space TAI
by the fiber product I, = I\, X(pso1),x(PsoL), e

(5) We put

L= L.. Z={J L.

Az EPS Az EPY
The projection Z, — P2 is a fiber bundle.

We next want to regard U,erq) Z, as a fiber bundle over L(a)3. We use a relative spin
structure for this purpose. Let V' be a real and oriented vector bundle on the 3 skeleton Xig.
We fix a metric on it. We may assume that L(a)[3) is contained in X[3). Let = = (p,q) € L(a)3.
We denote by Pso(T'L © V') the principal SO bundle on Lz whose fiber at p is the set of linear
isometries R"*" — T,,L&V,,. (Herey = iz (p).) The spin structure of TL®V defines a fiber-wise
double cover Pspin(T'L & V) of Pso(T'L ® V) on L(a)iz. (Note that such a double cover may
not exist for PsoL.)

We choose an orientation preserving isometry I,: V, = R™. It induces an embedding
(PsoL)p = (Pso(T'L ®V)),. By taking a double cover, we have

(PSpinL)p — (Pspin(TL D V))p. (3.3)
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We put

(PSpin(TL D V))p X (PSpin(TL D V))q
{-1,+1} '

P.(V):=

Then it is a double cover of (Pso(TL® V)), x (Pso(T'L & V)),. By using (3.3),

Lo = T X(Pso(TLEV))px (Pso(TLaV))g Pa(V)

for (p,q) € L(a)i3). Note that this identification is independent of the choice of I,: V,, = R™.
This is because we use the same identification for the first factor and the second factor of the
numerator.

We remark again that we are given a spin structure of the vector bundle TE@iEV. Therefore,
the unions of (PspinT'L @ V'), (resp. (PspinT'L ® V')4) for p (resp. q) becomes a principal bundle
over L(a)iz. We thus obtain a fiber bundle 7 L(a)3) whose fiber at x is Zo.

We remark that P2 is homotopy equivalent to the loop space of the oriented Lagrangian
Grassmannian, QLGR(n — d), where d = dim L(a). It is well know that

LGR(n — d) = Uln — d)/SO(n — d).

In fact, U(n — d) acts transitively to the set of all the oriented Lagrangian linear subspaces
of C"~% and the isotropy group of this action at R"~% is SO(n — d). Therefore, we have an exact
sequence

1 =m(Un —d)) = m(LGR(n —d)) = m(SO(n — d))
— m(Un —d)) - m(LGR(n —d)) — 1.

We assumed (3.2), that is, n — d > 2. Therefore, m1(SO(n — d)) = Zg and 71 (U(n — d)) = Z.
Therefore, mo(QLGR(n — d)) = Z, m (QLGR(n — d)) = Zs. Moreover, the map 71 (QLGR(n —
d)) — m(SO(n — d)) is an isomorphism. It implies the next lemma.

Lemma 3.8. The double cover fw — T, 18 nontrivial.

Using A, as in Definition 3.7, we define a Fredholm operator as follows. (We follow [35,
Section 8.1.3] here.) We put

_={2z€C||z|<1}U{z€C|Rez >0, |Imz| <1},
Zy ={-s+V-ly |2,y eR s+ vV-lye 2 }.

Let k be a sufficiently large integer. (For example we may take k = 100.) We consider the
set of locally L? maps u: Z_ — T, X (resp. u: Zy — T, X) with the following properties:

1 u(t—I—\/i) (dzL)( 3 T(Z,)L) fort € R>q (resp. u(t+\/7) (dzL)( oz )E) for t € R<p),
2 u( \/7) S (dZL)( iy l(w)L) fort € RZO (resp. u(t—\/T) S (dZL)( ia,l(w)[:) fort € Rgo),

(1)
(2)
(3) u(exp(wr(3/2 — t))) € Aa(,t) (resp. u(exp(wx/jl(t — 1/2))) € Ao(z,1)),
(4)

k
Z/ ORe2l|| 7ty 2 dzdz < oo. (3.4)
=0"W

Here § > 0 is a fixed small number. See Figure 3.1.
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)\a(.%',t) na,r(x)'i
Z_
Ty (o)L _
U T, ()L
Zy )
/
Tia,l (I)L

Figure 3.1. Domains Z, Z_.

We consider the totality of such maps u and use the left-hand side of (3.4) as its norm. We
denote it by L%(Z_; T, X;Ma;0) (resp. Li(Z+; T.X;Xa;0)). This is a Hilbert space. We consider
the set of all the locally L2 | maps u: Z_ — T, X (resp. u: Zy — T, X) which satisfies (3.4)
with k replaced by k — 1 and denote it by L? |(Z_;T,X;0) (resp. L} (Z4;T:X;0)). (In other
words, we do not require (1), (2), (3) for this function space.)

We use the Cauchy—Riemann operator to define the operators 52_, N> 0y e

EZ,,AQ;: Li(Zf;TxX§)\a;5) — L%—l(Z*;TxX;é)a
0z net L Z43TuX 5 M0 6) = Li_1(Z4; T X3 6). (3.5)

The next lemma is now standard.

Lemma 3.9. The operators 527)\90, 52+,>\$ are Fredholm.

By moving x and A\, we obtain the family index bundles Ind (537, Aw)7 Ind (52 .+ )\w) and their
determinant real line bundles Det Ind (527’ ,\m), Det Ind (52 . )\ac)’ They are bundles over Z.

Lemma—Definition 3.10.

(1) The restriction of the pullback of Det Ind @Zf)\m): Det Ind(52+7,\z) to I, is trivial.

(2) Moreover, we can define a real line bundles on L(a) in a canonical way, which pulls back
to DetInd(8z_,x,), DetInd(9z, x,)-

(3) We denote by ©, , ©F | the principal O(1) bundles which correspond to the real line bundles
on L(a) in item (2).

(4) There exists an isomorphism ©, @ O = Det T'L(a).

Proof. This is [35, Proposition 8.8.1]. We refer to [35, pp. 721-722] for the proof of item (1).
We provide a bit more detail of the proof of item (2) than [35] here, since we use a certain
part of the construction in the proof of Lemma 3.11. Recall my(Z,) corresponds one to one to
integers k. Let Z,j be the corresponding connected component. Its union for z € L(a)z is
denoted by Zj. Its pullback to Z is denoted by Zj.
The double cover iz,k — I, , is nontrivial by Lemma 3.8. Therefore, (fwk) = mo(Zy ) is
trivial. We then have an exact sequence

T (i—m,k) — T (ik) — 7T1(L(a)[3}) — 1.

Therefore, m (fk) — m1(L(a)3) is surjective. Thus item (1) implies that we can define
a group homomorphisms 1 (L(a)[3)) — Z2 which pulls back to the homomorphism 1 (Zy,) — Z
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given by Det Ind(dz_ », ), DetInd(dz, »,). Thus we obtain real vector bundles on L(a)(3 which
pull back to Det Ind (gz,, ,\I) and Det Ind (52 . ,\m) on fk, respectively.

See the proof of [35, Proposition 8.8.1] for the proof of the fact that this line bundle is
independent of k. Since any real line bundles on the 3-skeleton uniquely extend to the whole
space, we obtain a real line bundles on L(a).

We next discuss item (4). This is proved in [35, Section 8.8]. We sketch its proof below since
we use a similar argument in the proof of Lemma 3.11. It suffices to show that the isomorphism
for an arbitrary loop v in L(a)(3). We choose a loop v and fix a trivialization of V on 7.

We will prove the isomorphism of family indices

Ind(gzﬂxm) ©® Ind(ngﬁ)\x) @ T,L(a) = Ind(gz)\:zﬂ), (3.6)
where the right-hand side is defined as follows. We put
Z(R)={2€C||z—R|<1}U{zeC||z+R|<1}U{zeC||Imz| <1, |Rez| < R}.

See Figure 3.2. We use A\, on 90Z(R)Nd{z € C | |z — R| < 1} and on 9Z(R) N 9d{z € C |
|z 4+ R| < 1} and dyiq,r, (Tz’a,l(m)L) (vesp. dyiay(T;,,(x)L)) on 0Z(R)N{z | Imz = —1} (resp.

ta,r

0Z(R)N{z|Imz = 1}) to define the boundary condition A\2 on 9Z(R). We then obtain
Ozmpz: Li(Z(R); TX;N;) = Li1 (Z(R); T,.X)

in the same way as 0z ,. (Since Z(R) is compact we do not use weighted Sobolev space but
use usual Sobolev space.)

_R +R
| 0 |

C )

Figure 3.2. Domains Z(R).

We glue two index problems 9z, and dz )\, at their ends and the result is 52( R)x2- Note
that, however, there is a degeneration of the operators dz_,, and 0z, ), at the end. The
eigenspace of 0 of this degeneration is exactly T, L(a). (See Definition 3.6 (1c).) Therefore, the
standard family index sum formula (see, for example, [21, Theorem 4.9]) gives (3.6).

Now we consider the family of indices of 0 Z(R),\2, Where we move z and A2, and regard it as
a bundle on Ik Then since we are working on Zj, the boundary has a canomcal spin structure
as family on the boundary condition \2. In fact, we fixed a trivialization of V. So the spin
structure of A\2(t) @ V corresponds one to one to the spin structure of A\2(¢). Therefore, the
determinant line bundle of the family 5Z( R),\2 On 7, is trivial. We thus proved item (4). |

We use the next lemma in the later sections. We consider two V-relative spin structures o
and o9 of L. Then the difference o1 — 09 is regarded as an element of H 1 (L; Zg). Using Lemma—
Definition 3.10, we obtain a line bundle ©, for each of the V-relative spin structures o; and o3.

In the next lemma, we write them as O, and O, , respectively.

Lemma 3.11. The tensor product’! ©, , @O,

o 18 the principal O(1) bundle corresponding to

z';l(al —09) — z';r(al —09) € Hl(L(a);Zg),

where o1 — oy € H! (E;Zg) is as above.

3-1See also [42, Proposition 3.10].
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Proof. We consider a loop v: S' — L(a)3) and fix a trivialization of V on 7. In the case when

(1g1(01 = 02) = ig (01 — 02)) N[7] =0, (3.7)
we will prove that ©,,, ® O, ,, is trivial on 7. In the case when

(i2 (01— 02) — i (01 — 02)) 1 ]7] £0, (3.8)
we will prove that ©,, ® ©, . is nontrivial on 7.

Let fgl (resp. fff) be the space fk we obtain as in the proof of Lemma—Definition 3.10 using
relative spin structure oy (resp. 02). As we proved during the proof of Lemma—Definition 3.10 (2),
the loop ~ lifts to fgl (resp. Z~TZ2)

We take the lift 3°1: ST — fgl (resp. 572: St — f,?) We compose it with the projection
to obtain 71: St — ! (resp. ~o2: St I,ZQ). (As we can show from the discussion below,
~?1 is not homotopic to y?2 if (3.8) holds.)

For each s € S, the element 77! (s) defines a path AJ'(-): [0,1] = LGR.(,) satisfying Defi-
nition 3.7 (1) (a) (b) (¢) for x = v(s). We obtain A\72(-) in the same way. We use them to obtain
Fredholm operators 5277)\21, 5Z+’/\g1, 527’/\;72, 52+7/\g2. by (3.5). It suffices to show that

Det Index (527?/\21 ) ® DetIndex (0, yo2) (3.9)

is a nontrivial real line bundle as a family index bundles over S' =+, if and only if (3.8) holds.
By Lemma—Definition 3.10,

Det Index (0, yo1) ® DetIndex(d,, yo1) = Det T'L(a)
= Det Index (52_)\?2) ® Det Index (5Z+7Agz ).
Therefore, (3.9) is isomorphic to
Det IndeX(5Z77>\g1) ® Det Index (gz+7>\52) ® Det T'L(a).
We define \s""7*(x) C T, X for z € 0Z(R) as follows.
We use 7' on 0Z(R)Nd{ze€C||z+ R| <1}, A2 on 0Z(R)Nd{z € C||z— R| <1}, and

di, (Tia,z(w(s))i) (resp;diT (Tia,z(v(s))i)) on 0Z(R)N{z |Imz = —1} (resp. 0Z(R)N{z | Imz =
1}). We then obtain 0 4g, yo1.o2 in the same way as AJ"?*. See Figure 3.3.

_ ~ +R
‘R di, U},,,w(s»l‘) ‘

ljl N < > : lfz

diL (T"U.L(V(A‘))I:)

Figure 3.3. Domains Z(R).

In the same way as the proof of Lemma—Definition 3.10 (4), the bundle (3.9) is isomorphic to
Det Index(9 gy \71:72).- (3.10)

Note that we consider the family of n-dimensional real vector spaces \5'*?%(z) parametrized
by (s,2) € St x 0Z(R) = S x S1. (3.8) implies that this bundle has nontrivial second Stiefel-
Whitney class. Therefore, the example given in the proof of [35, Proposition 8.1.7] implies that
the family index bundle (3.10) is nontrivial on S?.

(3.7) implies that the boundary condition corresponds to a trivial bundle. Therefore, we can
show that the family of index bundle (3.10) is trivial in this case.

The proof of Lemma 3.11 is complete. |
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Example 3.12. Let Ly be an embedded and spin Lagrangian submanifold of X, L a disjoint
union of two copies of Lo, and iy,: L — X the identity maps on each components. The fiber
product L x x L is disjoint union of 4 copies of Ly, where two are diagonal components and two
are switching components. We take two different spin structures o1 and o3 on Ly and use them
for the two connected components of L and obtain a relative spin structure.

Then ©7 is the trivial bundle on the diagonal components and is the line bundle corresponding
to o1 — 02 € H(Lo; Zs) on the switching components.

Let © be a principal O(1) bundle on a manifold M. We denote by Q(M;©) the R vector
space of smooth differential forms on M with coefficient ©, that is, the set of smooth sections
of QM © ©. Here QM is the real vector bundle of differential forms on M and © is the real line
bundle corresponding to the principal O(1) bundle O.

Definition 3.13. Suppose R =R or C. We put

CF (L; AT) = Q(L(+),07) @R Af
= (L) ®rAY) © D (2L(a), 07) BrAF). (3.11)
ac€Ay

Here @p is the T-adic completion of the algebraic tensor product.
We remark that CF (L; AOR) is a completed free AE module.
We also denote

CF(L;R) = Q(L(+),07) = (L) ® P L(a),0;)

acAy,

3.2 Moduli space of pseudo-holomorphic polygons

The purpose of this subsection is to prove the next theorem.

Theorem 3.14. Let L be a relatively spin immersed Lagrangian submanifold of (X,w). We
assume that L has clean self-intersection. Then we can define a structure of filtered A algebra
on the completed free graded AOR module CF(L;A(I)%). It is unital and is G-gapped for some
discrete submonoid G.

Remark 3.15. Theorem 3.14 is proved by Akaho-Joyce in [4] except the following points.
Those points are of technical nature.

(1) We include the case of clean self-intersection. Akaho-Joyce [4] restrict themselves to the
case of transversal self-intersection. This difference is not essential. In fact, Lagrangian
Floer theory in the Morse-Bott situation is fully worked out in [34]. I think [4] restricted
themselves to the transversal case only for the sake of simplicity of notations. We include
it, since we need to use the clean self-intersection case in Section 6.

(2) We use the de Rham model to work out the transversality issue, while [4] used the singular
homology. The author of this paper together with joint authors has completed detailed
account explaining the way to use the de Rham model in the virtual fundamental chain
technique after [4] was published (see [38, 40, 43, 46]). In his opinion using the de Rham
model is the shortest way to work out the virtual fundamental chain technique in the chain
level in detail and rigorously when we include Morse-Bott situation.

(3) We prove (exact) unitality of the algebra. In fact, using the de Rham model we can obtain
an exact unit (see [28]). When using singular homology, we obtain a homotopy unit but
it is hard to obtain an exact unit (see [34, Section 3.3] and [35, Section 7.3].)
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Remark 3.16. The filtered A, algebra (CF(L; Af), {m;}) in Theorem 3.14 depends on various
choices but is independent of the choices up to homotopy equivalence. See Remark 3.43 and

Section 14. (In Section 14, we will prove the case of filtered A, category, which implies the case
of filtered A, algebra.)

The proof of Theorem 3.14 will be completed in Section 3.3. In this subsection, we de-
scribe the moduli spaces of pseudo-holomorphic polygons, which are used to define the structure
operations my, of our filtered Ay, algebra.

Let L be as in Theorem 3.14 and @ = (ag,...,ax), a; € A}. (Here A} is as in Defini-
tion 3.2 (5).) We fix a compatible almost complex structure Jx on X.

Definition 3.17. Let ¥ € R>o. We define the set MV(L;&'; E) as the totality of all the ob-
jects (X;u; 25 ) with the following properties.

(1) The space X is a union of a disk plus a finite number of trees of sphere components attached
to the interior of the disk. ¥ is connected, simply connected and has at worst double points
as singularities. (In particular, ¥ = S*.) (See Figure 3.4.)

z
Z, 0

Figure 3.4. Domain X.

(2) The map u: ¥ — X is Jx-holomorphic.
(3) We put Z = (20, ...,2,). Then, the points z; € 9% = S! are mutually distinct. The k + 1

tuple of points (zo, ..., 2;) respects the counter clockwise cyclic order of S*.
(4) The map ~v: S*\ {z0,..., 2} — L is smooth and satisfies ir,(y(z)) = u(z) for z € S\
{Zo, ey Zk}.

(5) Fori=0,...,k, we have (lim,q,, v(2),lim, ., v(2)) € L(a;). Here L(a;) is as in (3.1). The
limit in the left-hand side is defined as follows. Let x,, = e»V~! € S1 where t,, is an in-
creasing sequence of real numbers converging to ¢ with e'V=1 = z;. We say lim,y,, v(2) =y
if limy, o0 Y(2m) = y for any such sequence x,,. The definition of lim, |, y(2) is similar.
(See Figure 3.5.)

(6) [prutw=E.

(7) (Stability) The set of the maps v: ¥ — ¥ with the following properties is a finite set:

(a) uowv = u,
(b) v

(c) v(zi) = 2,
(d) yov =~.32

32 Actually this condition follows from (a).

is biholomorphic,
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We write Aut(X;u;2;) the finite group consisting of the maps v satisfying (a), (b), (c), (d)
above. We call it the group of automorphisms of (3;u; Z; 7).

zsL Zi ZT

(p;»q;,) € L(a,)

Figure 3.5. lim.4., v(%).

Remark 3.18. Item (4) implies that v extends continuously to z; if L(a;) is the diagonal
component and that v does not extend continuously to z; if L(a;) is a switching component.

Definition 3.19. Let (3;u; 2 ), (X;u/;27;4) € M(L a; E). We say that they are equivalent
and write (3;u; Z;7) ~ (X4 27;9/) if there exists a map v: D? — D? such that

(1) the map v is biholomorphic,

(2) u=

3) = ( )

(4) y=+"ovon dD*\ {z0,..., 2}

We denote by ./\/l( E) the set of all the equivalence classes of this equivalence relation ~.
We define evaluatzon maps

ev = (evg,...,evy): M(L;a@; E) — HL(ai) (3.12)

evi(u; 2;7) := (limy(z), lim y(2)). (3.13)

2Tz zdz;

Here the right-hand side is as in Definition 3.17 (4).
Gromov compactness implies that the set

Go(L) = {E € Rxo | JAM(L; G E) # @} (3.14)

is discrete. We define G(L) to be the monoid generated by Go(L). In other words, G(L) is
the set of all nonnegative numbers which are sums of finitely many elements in Go(L). The
subset G(L) C R is discrete since Go(L) is discrete.
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We next define a compactification of /\o/l(L; a; F). We first describe a combinatorial or a topo-
logical structure of an element in the compactification by a tree with additional data. (This is
a standard method used by various people in various related situations.)

Definition 3.20. A stable decorated ribbon tree with k + 1 exterior vertices and energy E,
which we denote by (I, E(), a(), vo), is a connected tree I' with additional data described below.
Let Cp(I") be the set of vertices and C1(I") the set of edges.

(1) The set Cy(T) is decomposed as Co(I') = CIPH(T)LCEH(T). We call an element of Ci**(T")
(resp. C§**(T)) an interior vertex (vesp. an exterior vertez).

(2) All the vertices in Cg¥(T") have exactly one edge containing it.

(3) A ribbon structure of our tree I' is given. In other words, an embedding I' — R? is given
up to isotopy.

(4) The set C&*(T") contains exactly k + 1 elements. The choice of 0-th vertex vy € C&*(T') is
given.

(5) A map E(-): CI"Y(T') — Rx is given and

E= > E®).

veCint(T)

(6) A map a(-): C1(I") — Ar is given.
(7) (Stability) For each v € Ci*(T), one of the following holds:

(a) E(v)>0.
(b) The number of edges containing v is not smaller than 3.

(8) E(v) € G(L) for any v € CP(T).

We denote by T %41,k the set of all such (I', E(),a(), vo). We remark that we do not include
the data (1), (3) in the notation (I', E(-),a(:),vo). However, they are included as a part of the
data which an element of 7%} 1 g comprises.

We remark that 7 %1, p = @ unless £ € G(L).

Note that C§&**(I") consists of k + 1 elements. We enumerate them as vq, vi, ..., Vv so that vq
is one determined by item (4), and the order respects the counter clockwise orientation of R?
(into which T" is embedded by using ribbon structure). We call v; the i-th exterior vertezr. (See
Figure 3.6.)

Note that we have a decomposition C1(I') = CP(T') U CFY(T'), where C$**(T) is the set

of k+ 1 edges which contain one of the exterior vertices. We call an element of C{**(T") an
exterior edge and an element of C{"(T") an interior edge.

We next associate a fiber product of the spaces M(L;d; E) to each element of T %11 k.

Definition 3.21. Let I' = (T, E(-),a(-),vo) € T Rys1.5- Suppose v € Ci*(T). There exists
a unique edge eo(v) such that eg(v) lies in the same connected component as vy in "\ v. Thus,
using the ribbon structure we enumerate the edges containing v as

eo(v),e1(v),...,er (v), (3.15)

so they respect the counter clockwise cyclic ordering. (See Figure 3.7.) We put

a(v) = (a(ep(v)),...,alexr, (v))). (3.16)
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Figure 3.7. ¢;(v).

We take the direct product

[I M aw); Em). (3.17)

vecint(T)

We will define a map

sv: [ MELiav):EN)— ] Llae)) x L(a(e)) (3.18)

veCIY(T) ecCint(T)

as follows. Let e € CI"(T"). Suppose d(e) = {v,v'}. If v lies in the same connected component
as vo in I' \ Inte, then we put vi(e) = v. Otherwise, v’ lies in the same connected component
as vo in I'\ Inte. We put vi(e) = v/ in the latter case.

We define vs(e) such that d(e) = {vs(e),ve(e)}. (See Figure 3.8.)

Now let X = (xy : v € CJ™*(I)) be an element of (3.17). We will define

EV(X) = (EYo(X) 1 e € CIY(T)).
Here &7 ¢(X) € L(a(e)) x L(a(e)). Let e € C1(I'). Then there exists ks and k; such that
e = e, (vs(e)) = ex, (vi(e))-

(Actually ks = 0.) We define &7 ¢(X) := (evg, (Xy, ), evg, (Xy,)), where evy,, evy, are the evalua-
tion maps (3.12).
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Figure 3.8. wv;(e), vi(e).

Now we define
M(LT) = [ MELa@:;EG)ser < [ Draey-
veCint(T) eeCi™(T)

Here Ape)) = L(a(e)) C L(a(e)) x L(a(e)) is the diagonal and the fiber product is taken
over [[eec, ry L(a(e)) x L(a(e)). See Figures 3.9 and 3.10.
Let e; be the unique edge containing v;. We then put

A

ai(f) = a(e;), &’(F) = (ao(f),al (f),,ak(f‘))
We put T %z = {f € TRk1.E | d’(f‘) = Ei} and denote

M(Li@E) = [[ MLT). (3.19)
N

Moreover, we put

Mip(LE) = [ MG E). (3.20)

C_L'E(.AL)IhLl

Figure 3.9. The graph I'.

Definition 3.22. Let @ = (ag,...,ax) € (AL)*T!. We put L(@) = L(ag) x --- x L(ay). We
define an evaluation map

ev = (evp,...,evg): M(L;a; E) — L(@) (3.21)

as follows. Let I' € 7% E,a> Vi its i-th exterior vertex and e; the edge containing v;. In other
words, e; is the i-th exterior edge. Let v/ be the other vertex of e;. There exists j; such that e; is
the j;-th edge of v]. (Here we enumerate the edges of v} as in (3.15).) For X = (xy : v € C{™(I)),
we put ev;(X) 1= evj, (xy/).
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J.“:‘U =EW™) o

Figure 3.10. An element of M(L; f)

Using (3.21), we define
ev: [ MELiav);Er)— [ Llale) x La(e))

veCIY(T) ecCint(T)

in the same way as (3.18). We put
M(L;T) = [ MELavEEM)er x [ Arge) (3.22)

veCy™(I) ecCint(T")
This is a compactification of M (L; F).

We remark that we can also define My 1(L;E) or M(L;d; E) as the set of the stable
maps (X, u,2,y) with certain properties similar to Definition 3.17, which we omit. (See [4,
Definition 4.2].) Then we can define a stable map topology on it in the same way as [35,
Definitions 7.1.39 and 7.1.42] and [49, Definition 10.3]. (See also Section 12.2.)

Theorem 3.23. The spaces My1(L; E) and M(L;a; E) are compact and Hausdorff.

The proof is the same as the proof of [49, Lemma 10.4 and Theorem 11.1], [35, Theorem 7.1.43]
and is now standard.

Theorem 3.24. The spaces M(L;d; E) for various d, E have Kuranishi structures with corners,
which enjoy the following properties:

(1) The codimension m normalized corner, which we denote by Sy, M(L;d@; E), of M(L;d; E)
is identified with the disjoint union of M(L I‘) where T' is an element of &g a such
that #CPY(T) = m + 1.

(2) The map (3.21) is the underlying continuous map of a strongly smooth map.>> Moreover,
evo s weakly submersive.*

(3) The induced Kuranishi structure on M(L; f) C Sy M(L; @; )35 is isomorphic to the fiber
product Kuranishi structure (3.22).

(4) The isomorphism in item (3) satisfies the corner compatibility conditions, Condition 3.27,
below.

(5) The Kuranishi structures are compatible with the forgetful maps of marked points corre-
sponding to the diagonal component, in the sense of [28, Definition 3.1].

Remark 3.25. The notion of a normalized corner is defined in [43, 46]. See also [53]. For
example, the normalized boundary of [0, 00)? is the disjoint union of two copies of [0, c0). Note
that the two elements 0 of the two copies of [0, 00) correspond to the same point (0,0) in [0, c0)?
but are different in the normalized corner (boundary). This is the point where the notion
of a mormalized corner (boundary) is different from the notion of a corner (boundary). See
Figure 3.11.

33See [46, Definition 3.35 (4)].
34See [46, Definition 3.35 (5)].
3-5GSee [46, Proposition 24.16].
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/N

o— -

. boundary
normalized boundary

Figure 3.11. Normalized boundary.

We describe the corner compatibility conditions. We need some digression and discuss graph
insertion.

Definition 3.26. Let I' = (T, E(-),a(+),vo) € T z. We assume that for each v € Ci"*(T') we
have an element T', = ( vs Ey(+);ay(+), (vw)o) € TR Ev),a(v)- Here d(v) is as in (3.16).
We define

=T#(Iy v e G'(I) = (I, B°(-),a"(), ) € T Apa
as follows:

(1) We put the tree I'y at the position of the vertex v of I'. ' We join i-th exterior edge of I'y
with the i-th edge of I' containing v. We perform this construction to all the interior
vertices v of I'. We thus obtain I'*. (See Figure 3.12.)

v(])

| V
V(Z)

v(1)

1>
[ ]

Yo

Figure 3.12. re.
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(2) The decomposition Co(I') = C(T") L C§¥*(T") induces Co(T'®) = CIH(T*) L C&H(T*) by

crry = I ¢y (3.23)
Vecmt )
(3) In view of (3.23), Ey(-) and ay(-) induce E*(-) and a®(-), respectively.
(4) Let ep be the 0-th exterior edge and v, the vertex of ey such that v, ;é vp. The O-th

exterior vertex v§ of I'* is by definition the 0-th exterior vertex (Vy /)0 of T, 2

Let X = (xy: v € C™(I'*)) be an element of M(L;T*). (Here x, € M( ;@*(v); E*(v)).)
For v € Ci"Y(T"), we use (3.23) to obtain %(v) from X. It is easy to see that X(v) € M(L; V)
Furthermore, (x(v): v € Ci™(T')) is an element of M (L;T").

Suppose #CIY(T) = m + 1, #CPD,) =4, + 1 and ¢ = Zvecg’“(r) ly. Then

{4+ m+ 1= #CI(T*).
Theorem 3.24 (1) then claims

X € M(L;T*) C Spym(M(L; @, E)), (3.24)

%(v) € M(L;Ty) C Sp, (M(L; dy, E(v))). (3.25)
Note that M (L; f‘) is obtained as the fiber product of M(L;dy, E(v)). Therefore, (3.25) implies

X = (x(v) : v € (D)) € Sp(M(L;T)). (3.26)
On the other hand, Theorem 3.24 (1) claims

M(L;T) C Sin(M(L; @, E)). (3.27)
Combining (3.26) and (3.27), we obtain

M(L;T®) C Sp(Sm(M(L; @, E))). (3.28)
We have an (¢ +m)!/¢lm! fold covering map of spaces with Kuranishi structures,

Su(Sm(M(L; @, E))) = Spem(M(L; @, F))). (3.29)

(See [43], [46, Proposition 24.16].) By restricting to M(L;f") C Se(Sm(M(L;a, E))) (see
equation (3.28)), this map is a homeomorphism to its image. Now the corner compatibility
condition is stated as follows.

Condition 3.27 (corner compatibility condition). We consider two Kuranishi structures on
M(L; f") One (which we call the fiber product Kuranishi structure) is obtained as the fiber
product (3.22). The other (which we call the induced Kuranishi structure) is induced from the
Kuranishi structure on M(L; @, E) by the open inclusion (3.24). We consider two isomorphisms
between them:

(1) The isomorphism required in Theorem 3.24 (3).

(2) Applying Theorem 3.24 (3) to each of Ty, the inclusion in (3.25) is extended to an isomor-
phism between the induced Kuranishi structure and the fiber product Kuranishi structure.
It then induces an isomorphism between the induced Kuranishi structure and the fiber
product Kuranishi structure on the space (3.28). By (3.29) (which is an isomorphism
on M(L; f")), it induces an isomorphism between the induced Kuranishi structure and
the fiber product Kuranishi structure on M (L; F').
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We require that the two isomorphisms (1), (2) above coincide with each other.

Remark 3.28. Condition 3.27 looks rather complicated. Actually, in our geometric situation,
it is rather trivial that Condition 3.27 is satisfied. Corner compatibility conditions such as
Condition 3.27 are spelled out in [43], [46, Chapters 16 and 21] for the purpose of axiomatizing
the construction of a compatible system of perturbations of the compatible system of Kuranishi
structures. In other words, we spelled out the properties we need to construct a compatible
system of perturbations in a way independent of the geometric origin of the system of Kuranishi
structures.

In the case when L is an embedded Lagrangian submanifold, Theorem 3.24 is [35, Propo-
sitions 7.1.1 and 7.1.2].36 Its generalization is in [4] in the case when L has transversal self-
intersection. In the general case, we can use Morse—Bott gluing which can be worked out in
the same way as [35, Section 7.1.3]. (See also [24, 49].) In fact, the analytic detail of [35, Sec-
tion 7.1.3] is designed so that it works also in the Morse-Bott case in general. The detail of the
analysis to prove Theorem 3.24 is given also in [38, Parts 2 and 3] and in [44, 47, 48].

We next discuss the orientation. We first recall the definition of orientation local systems of
spaces with Kuranishi structure. Let I = {(Up, Ep, sp,p) | p € X} be a Kuranishi structure
of X. (We use the definition of [40, Definition 3.8]. So it has a tangent bundle in the sense of [35,
Definition A1.4].) We obtain a principal O(1) bundle O, = Det TU, ® Det TE,, on U,. By the
condition of the coordinate change in [40, Definition 3.2 (8)], Oy = 5,0, and this isomorphism
is compatible in the sense that the map O, = ¢;,.04 = g, ;.0 coinsides with O, = ¢ O,
We call such collection of {O, | p € X} together with isomorphisms O, = 3 O, satisfying
the above explained compatibility conditions, the orientation local system of our space with
Kuranishi structure (X ) Zj) and write it as O We write it also as Ox by an abuse of
notation.

If we construct a compatible good coordinate system {(Uy, Ep, sp,%p) | p € B} then {O), |
p € X} induces a system of principal O(1) bundles {O, | p € P} which is compatible with
the coordinate change in a similar sense as above. (Here Oy is a principal O(1) bundle on Uy.)
We can use it to define and study integration along the fiber in a similar way as the case of
manifolds. (See [40, Chapter 27] and [46].)

Suppose that f = {f, | p € X} is a weakly submersive strongly smooth map (X, Z/Al) — N
to a smooth manifold N. If © is a principal O(1) bundle on N, we pull it back to each U, to
obtain f;©. They are compatible with the coordinate change in a similar sense as above. We
denote the system {f,;© | p € X} by {*©. We can define a tensor product of several systems in
an obvious way.

An isomorphism between {*© and O is a system of isomorphisms of real line bundles f;© = O,
which commute with coordinate changes.

Let @ = (ag,...,ax), a; € Af. We use the principal O(1) bundles 0., and O,
defined in Lemma-Definition 3.10.

(XU

which are

Proposition 3.29. The V -relative spin structure of L canonically induces an isomorphism of
principal O(1) bundles

k
Omar) = Q) eviOg. (3.30)
=0

Proof. This is a straightforward generalization of [35, Proposition 8.8.6]. We provide the proof
below for completeness.

3-6Note that item (4) is not stated in [35, Propositions 7.1.1 and 7.1.2]. However, this compatibility is fairly
obvious from the construction.
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Let r = (X;u; 25 ) be an element of /f\/lv(L; a@; F). If suffices to consider the case when ¥ = D?.
We may also assume that the image of ~ lies in L.

We put ev;(r) = (pi,q:) € L(a;) and ir(p;) = ip(q:) = zi. We write z; = (pi,¢;) € L(a;) by
an abuse of notation. We fix a trivialization V,; = R™ and take an element \;, € Pz for each i.
(See Definition 3.7.)

We show that those choices together with the V-relative spin structure of L determine an
isomorphism of the principal O(1) bundles of the left and right-hand sides of (3.30) at .

For each i, we use )\;, to define an elliptic operator

02_pe,: Li(Z-5Te, X35 Aa;50) = Li_1(Z—; T, X;0)

o

as in (3.5). We can glue it with the linearized operator of the defining equation of M(L;a; E)
at ¢ to obtain an elliptic operator P on ¥ = D? whose symbol is the same as one of the Cauchy—
Riemann operator with «*T'X coefficient. Its boundary condition is given by concatenating
the family z € 9% — (diL)(TV(Z)fJ) with Az,’s. (See Figure 3.13.) We denote this family of
Lagrangian subspaces (the boundary condition) by A.

Figure 3.13. Family of Lagrangian subspaces .

We claim there is a canonical orientation of the determinant line bundle of the index of P.
We prove it below. Using the isomorphism «*TX =2 C" x ¥ (note that ¥ = DQ), we may
regard A as an S' parametrized family of Lagrangian subspaces of C". The trivialization of V/
and relative spin structure determine a trivialization of this family of subspaces as an abstract
vector bundle. We thus have a trivial complex vector bundle &y = C" x ¥ on ¥ = D?.

On the other hand, by an identification & rlgy, = R™ x 0¥ with A, (which may not be
consistent with the trivialization {x = C™ x ¥). This identification induces &|sy = v T X |ss.
In the same way as the proof of [35, Theorem 8.1.1], we can show that the difference of the
index of P and the Cauchy-Riemann operator of the bundle E with {yr boundary condition
has a canonical orientation. (This is based on the fact that this difference can be identified with
an index of a certain family of operators on CP! with complex linear symbols.)

The index of the Cauchy—Riemann operator of the bundle £ with Er as a boundary condition
is canonically identified with R". Therefore, the determinant bundle of the index bundle of P
is canonically trivialized.
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On the other hand, we find that

k
TU; © By & P Indexdy_ 5, = Index P (3.31)
=0

as a virtual vector space. (Here Ug is a Kuranishi neighborhood of ¢ and Eg is an obstruction
bundle.)

We remark (3.31) induces an isomorphism (3.30) at a point r. In fact, Det Index P is trivial.
Therefore, we obtain an isomorphism DetIndexdz_, = ©, by Lemma-Definition 3.10(3),
and an isomorphism Det TU, ® Det Ef = Orq(r.a,5) by definition. Thus we obtain (3.30).

We next explain the way to obtain a family of isomorphisms V,, = R™ and of )\;, and so that
the above isomorphisms induce a global isomorphism (3.30).

In fact, the independence of the choice of A, is the consequence of Lemma-Definition 3.10 (2).

Let us discuss the dependence of the identification V,, = R™. We first remark that to
prove Proposition 3.29 it suffices to prove this isomorphism on each loop of the domain, since
both sides are principal O(1) bundles. Let S' — C*((D? 8D?),(X, L)) be a smooth map.
It induces a map (Sl x D% S x 8D2) — (X, L). The pullback of V' by this map is a trivial
bundle since it is an oriented real bundle on S' x D?. Therefore, we have a continuous family
of isomorphisms V,,, & R™ on this S parametrized family.

The proof of Proposition 3.29 is complete. |

3.3 The filtered A, algebra associated
to an immersed Lagrangian submanifold

We now use Theorem 3.24 to prove Theorem 3.14. We refer [40, Definition 9.1] and [46] for the
definition of CF-perturbations on Kuranishi structures.

Proposition 3.30. Let Fy > 0. Then there exists a system of CF-perturbations S on the
moduli spaces M(L;a@; E) with Kuranishi structures which are outer collarings®" of thickenings
of the structures given in Theorem 3.24, for various @, E with E < Ey. It enjoys the following
properties (see [40, Definition 5.3] and [46] for the definition of a thickening):

(1) Each of & is transversal to zero.

(2) The evaluation map evq is strongly submersive with respect to this CF-perturbation (see
[40, Definition 9.2] and [46] for the definition of strong submersivity).

(3) They are compatible at the corners in the following sense. We consider the left-hand
side M(L; F) of (3.22) and require that the following two CF-perturbations on it coincide
each other.

(a) The space M(L;f‘) is a stratum of M(L;d; E) with respect to its corner structure
stratification (see [40, Definition 4.15] and [46] for the definition of the corner struc-
ture stratification). We restrict CF-perturbation S on M(L;a@; E) to M(L;f‘) and
obtain a CF-perturbation on it.

(b) The right-hand side of (3.22) is a fiber product of various connected components
of M(L;a; E). We take the restriction of & to the moduli spaces appearing as the
fiber product factors of the right-hand side of (3.22) and take the fiber product CF-
perturbation, in the sense of [40, Definition 10.13] and [46]. Since evq is strongly sub-
mersive, we can take the fiber product CF-perturbation ([40, Lemma—Definition 10.12]
and [46]).

37See [46, Chapter 17] for the definition of an outer collaring (it was called 7-collaring in [43]).
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(4) They are compatible with the forgetful map of the marked points which correspond to the
diagonal component other than 0-th one. The precise definition of compatibility is written
in [28, Definition 5.1].

Proof. The proof is mostly the same as the proof of [28, Section 5|, [40], [46, Chapter 12]
and [43], [46, Chapter 17]. We explain only the points where the discussion is slightly different.
We first observe that it suffices to define a CF-perturbation of the space M(L;d; FE) such
that a; is not the diagonal component for i # 0. In fact, then the CF-perturbation in the
general case is automatically determined by item (4).
We then remark the following.

Lemma 3.31. There exits ko (depending on Ey) such that the following holds. Let @ =
(ag, . ..,ax). Suppose M(L;d; E) # &, a; is not the diagonal component for i # 0, and E < Ej
then k < k.

Proof. This is a direct consequence of Gromov compactness. |

Thus we need to construct CF-perturbations on only finitely many spaces with Kuranishi
structures.

The rest of the proof is the same as [28, Section 5], [40, 43, 46]. The construction is by
induction on E. Suppose we have constructed CF-perturbations with the required properties
for M(L;a; F) with E < E; < Ey. We will construct one for M(L;d; E1). By the induction
hypothesis Proposition 3.30 (3), the boundary and corners of M(L;a; E7) are fiber products of
the moduli spaces for which CF-perturbations are already defined by the induction hypothesis.
We take the fiber product of those CF-perturbations to obtain CF-perturbations of the boundary
and corners of M(L; d; E) that are compatible with each other. Therefore, by using the relative
version of the existence theorem of CF-perturbations (see [43, Proposition 17.65 or 15.7] or [46,
Proposition 17.81 or 15.7]), we can extend it to M(L;d; E1). The proof is now complete by
induction. |

We use the CF-perturbations obtained in Proposition 3.30 to define the structure operations
of our filtered A, structure.

Definition 3.32.
(1) Let E < Ep, E € G(L). For (E,k) # (0,1), we define multi-linear maps
mP ¢ CF(L;R)®* — CF(L;R)
by
mPE(hy, . ) = (1) evo! (evihy X -+ X evihy; &°). (3.32)

Here CF(L;R) = Q(L;©7) (see Definition 3.13 and (3.11)). Note that hi,...,hy €
CF(L;R) and ev;h; are the pullbacks of differential forms with respect to the strongly
smooth map ev; (see [40, Definition 7.70] and [46]). evo!(x; &%) is the integration along the
fiber of the differential form with respect to the CF-perturbation (see [40, Definition 9.13]
and [46]). It depends on a positive number ¢ (see Remark 3.33 below). Here we consider
the moduli spaces M(L;@; E) and their Kuranishi structures and the CF-perturbations
obtained in Theorem 3.24 and Proposition 3.30 to define them.

The sign * in (3.32) is * = Zle i(degh; + 1) +1 when we take the convention of [46,
p. 552]. (The same correction term also appears in [72, Section 2.2.2].) (However, in this
paper we do not use this particular formula of * as we will mention in Remark 17.2.)
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We remark that by Lemma 3.34 below the right-hand side of equation (3.32) is an element
of CF(L;R).

We also define
m{(h) := dh. (3.33)

There is no sign when we use the convention of [46, Definition 21.29 (4)].

(2) We define my " CF(L; Ag)®* — CF(L; Ag) by

<E07 —— E E’E
m = E T m. .
E<FEy,EcG(L)

Remark 3.33. Here ¢ is a sufficiently small positive number. It is proved in [40], [46, Theo-
rem 9.15] that the integration along the fiber evol( e ;65) is independent of various choices
such as partition of unity, if € is sufficiently small. (The integration along the fiber depends
on ¢ and the CF-perturbation.) How much e should be small for this well-definedness to hold
is also CF-perturbation dependent. Note that, however, for a fixed Epy, we have only finitely
many moduli spaces to perturb. Therefore, we can take gg, which is Fy dependent, so that the
integration along the fiber is well-defined if ¢ < g¢ for those finitely many moduli spaces and
their CF-perturbations.

Lemma 3.34. The right-hand side of (3.32) is an element of CF(L;R).

Proof. Note that we may decompose mk’ to the sum mk = zm B¢ where m” 22 is defined
by M(L;a; E).
We may assume h; € Q(L(a;); ©,,). Then mg’g(hl, ..., hg) is nonzero for @ = (ag, a1, ...,ax)

with ag € A(L). We consider the following two cases separately.

Case 1: L(ao) is a switching component.

We define an involution 7: L xx L — L xx L by 7(p,q) = (¢,p). We take a; € A(L)
such that 7(L(ao)) = L(ag). By definition it is easy to see that 7%(©_,) = ©/ . Therefore, by
Lemma—Definition 3.10 we have “

7(0,,) = 0,, ® Det T'L(ap). (3.34)

ap

Proposition 3.29 implies that for hg € Q(L(ao); ©,) we can define the integration

/ __evihy x .- xevihg X evphg € R.
(M(L:G:E),&°)

In other words, we may regard
mZE(h1, ..., hy) € Q(L(ag); O, @ Det T'L(ap)).
Therefore, by (3.34) we may regard

mZe (R, ..., hy) € Q(L(ap); o), (3.35)
as required.

Case 2: L(ap) is the diagonal component.

In this case, L(ag) = L is oriented. By definition af, = ag. Moreover, ©, and ©/ are both
trivial bundles. We can prove (3.35) easily in this case, by using Proposition 3.29. |



Unobstructed Immersed Lagrangian Correspondence and Filtered A., Functor 43

Proposition 3.35. <EO’8 k=0,1,..., defines a filtered Asy structure modulo T0. Namely,
we have
k1—1
0= Z Z *Zm<EO’ (1, . :c,,m,fEO (Tig1y v Tithy)y---sTk) mod T

ki1+ko=k+1 i=0

for sufficiently small ¢ > 0. Here x; = deg' z1 + --- + deg’ z;. Moreover, 1 = [L(ag)] €
CF(L(ap),R) (the differential form (function) 1 on the diagonal component) is a unit.

Proof. The proof is now a routine using Proposition 3.30, Stokes’ formula [40, Proposition 9.26],
[46] and the composition formula [40, Theorem 10.20], [46] and proceed as follows.
It suffices to show

> > > (0w (b2 (i, higky) - he) =0, (3.36)

FE1+FEo=F ki1+ko=k+1i=1,....,k1

with * = deg’ hy +- - - +deg’ h;. We denote by evg! ( (./\/l 65)) the integration along the fiber of
the differential form defined by a CF-perturbation &€ of the space M with Kuranishi structure.
Now by Stokes’ theorem (see [40, Proposition 9.26] and [46]) and the definition, we have

k
(domZ)(hy,... hi) + > (=1)"mE(ha, ... dhi,... )
i=1
= evo!(evihy x -+ x evihg; (OM(L; d; E),(TS\E)) (3.37)

Here x = deg' hy + -+ +deg h;_1 + 1. Let b€ A(L) and 1 <i < j < k. We define

ab,i,j, 1) := (ao,...,ai,b,aj41,...,a5), a(b,i,j,2) == (b, ait1,...,a;).
Then by Theorem 3.24 (3), we have

OM(LiaE)= ]  ML;a(bi,5,2); B2evy Xeviy M(L;@(b,i,5,1); Er).  (3.38)
B1+E B, ()
Here the condition (x) in the notation of direct sum is
(*.1) By =0and (ao,...,aib,aj41,...,a;) = (b,b) does not hold.
(*.2) Ex =0 and (b,aj4+1,...,a;) = (b,b) does not hold.

See Figure 3.14.

By Proposition 3.30 (3), our CF-perturbations are compatible with the isomorphism (3.38).
Therefore, by the composition formula (see [40, Theorem 10.20] and [46]), the right-hand side
of (3.37) is equal to the sum

* * *
E evol(evlhl X oo X eVH_leVo!(eVth_l
b,i,j
E1+Eo=FE El E5>0

X eevi_ihy); (M(L; @b, i, 5,2); Ba), 6°) X eviahin

X eV ihys (M(L; @b, i, 4, 1); By), 69)).

By definition, this sum is (3.36) minus left-hand side of (3.37) up to sign. This proves (3.36)
up to sign. See [34, Chapter 8] and [46] for the sign in the case of an embedded Lagrangian
submanifold L. In the case L is immersed and has transversal self-intersection see [4]. The
way to generalize them to the case of an immersed Lagrangian submanifold which has clean
self-intersection is explained in Section 17.6 and in the paper [68] by Kaoru Ono.

The unitality is a consequence of Proposition 3.30 (4). [
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Figure 3.14. Boundary of M(L;d; E).

Note that one of the reasons why we stop our construction at £ = Ej is the running out
problem, which is explained in detail in [35, Section 7.2.3]. (See also [28, Section 14], [43, 46].)

The other reason why we need to fix Fgy and stop the construction at £ = Ey appears in
Remark 3.33. The well-definedness of the integration along the fiber (as well as Stokes’ theorem
and the composition formula) holds only for ¢ < ¢y, where ¢ is the parameter of our CF-
perturbation, and ¢ is dependent on moduli spaces (spaces with Kuranishi structures) which
we work with.>® As far as we consider the construction up to energy Fy and k < ko (k is the
number of input), we need to use only a finite number of moduli spaces so we can take the
same g for all of them.

On the other hand, the CF-perturbation we obtain this way is actually Ey dependent.

Note that we require the compatibility of CF-perturbations with forgetful maps of the marked
points corresponding to the diagonal component. Therefore, we only need finiteness of the
number of input which does not correspond to the diagonal component. The number of such
inputs can be estimated by the energy because of Lemma 3.31.

Even though we need to stop at £ = Fy and so can define only a filtered Ao, structure
modulo 750 we can still use it to define a filtered Ao structure as follows. The method is the
same as [35, Section 7.2], [28, Section 14] and [43, 46]. (Our discussion here is slightly sketchy
since it is the same as the papers quoted above. More detail is given in [2].)

Definition 3.36 (]28, Definition 8.5]). We consider ¢ € [0, 1] dependent families of operations
ml: CF(L;Ao)®* — CF(L;Ao),  ¢: CF(L;Ag)®* — CF(L;A)

which are G(L)-gapped. We say ({m}},{ci}) is a pseudo-isotopy modulo T of G-gapped
filtered A, algebra structures modulo 7% on CF(L) between {mg} and {m,lc} if the following
holds:

(1) The operations mfc and Ci; are continuous in C*° topology. The map which sends ¢ to mj%C
or ¢} is smooth. Here we use operator topology with respect to the C™ topology for m},
or cj,‘/€ to define this smoothness.

(2) For each (but fixed) ¢, the set of operators {mi} defines a G-gapped filtered A, algebra
structures modulo T# on CF(L; A).

381t might be possible to see carefully the moduli space itself and obtain a certain estimate of this number. How-
ever, to include such explicit estimate to the whole story of virtual fundamental chain (such as CF-perturbation
and de Rham theory) is rather cumbersome and so to use only the fact that there exists such g¢ for each individual
moduli space seems to be a better choice.
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(3) For each h; € CF(L;Ay),

d k—ko+1
dt (hl,---,hk)+ Z Z Ckl hl,...,m',;(hi,...),...,hk)
ki+ko=k+1 1=1
k—ko+1
- Z Z mzl(hl,...,CZQ(hi,...),...,hk)
k1+ko=k+1 =1
=0 modTF. (3.39)

Here x = deg’ hi+---+ deg’ hi_q.
(4) ¢t =0 mod A.

We put G(L) = {Ep,E1,...,Eg,...} with 0 = Ey < Ey < Ey < ---. By Proposi-
tion 3.35, we obtain {m<E“€} which defines a G(L)-gapped filtered Ao algebra modulo FE;
foreachi=1,2,....

We may regard {m<E”1’ } as a G(L gagped filtered A, algebra modulo E; by forgetting
the terms involving T%+1. We write it {my |, }.

Proposition 3.37. There exits €; such that if € < &; then there exists ({mt’z’a} {ct”}) which

is a pseudo-isotopy modulo T of G(L)-gapped filtered As algebra structures modulo T
on CF(L) between {m<E “} and {m;Ei+1’€|Ei}.

Proof. We remark that both {m:Ei’E} and {m,jEi“’E\Ei} are defined as in Definition 3.32. The
only difference is we use different CF-perturbations to define them. We use homotopy between
those two different CF-perturbations. We consider Kuranishi structures on M(L;a; E) x [0, 1]
which is a direct product with one on M(L; @; F) given in Theorem 3.24 and the trivial Kuranishi
structure on [0, 1].

Lemma 3.38. There exists a system of CF-perturbations @para of outer collarings of thickenings
of M(L;a; E) x [0,1] for various @ and E < Ey with the following properties:

(1) Each of @para 18 transversal to zero.

(2) evog x m: M(L;a; E) x [0,1] — L x [0,1] is strongly submersive with respect to this CF-
perturbation.

(3) They are compatible in a similar sense as Proposition 3.30 (3).

(4) Its restriction to M(L;a; E) x {0} coincides with the CF-perturbation we used to de-
fine {mk Ei’s} Its restriction to M(L;a; E) x {1} coincides with the CF-perturbation we
used to define {m<El+1’ £, }-

(5) They are compatible with the forgetful maps of the marked points which corresponds to the
diagonal component other than 0-th one. The precise definition of compatibility is written
in [28, Definition 5.1].

See [43, Section 21], [46, Chapter 21] for the precise meaning of the compatibility in item (3).
The proof of Lemma 3.38 is mostly the same as Proposition 3.30 and is omitted. See [43,
Section 21], [46, Chapter 21].

Remark 3.39. Note that m:Ei’E is different from m:E“rl’E g, even for sufficiently small . One
of the reasons why it is difficult to take them to be the same is explained in [34, Section 7.2.3].
Another reason appears in Remark 3.33. It is an opinion of the author that it is safer (if not
inevitable) to use “homotopy inductive limit” than working out infinitely many moduli spaces
simultaneously and check that we can take the same ¢ independent of them.
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Remark 3.40. We mention thickenings and outer collarings in Lemma 3.38. This is the way to
construct a CF-perturbation with appropriate properties taken in [43, 46]. As far as applications
concern, a CF-perturbation constructed on an outer collaring of a thickening of the original
Kuranishi structure can be used in the same way as a CF-perturbation constructed on the
original Kuranishi structure. (See [43, 46] for its reason.)

Now we put
mj,;,f(hl, ooy hg) + c%t,j(hl, o hy) Adt = (evg x )l (evihy X - X evihy; &° para) (3.40)

Here we use the space M(L;@; E) x [0, 1] with a Kuranishi structure and its CF-perturbation to
define the right-hand side. The variable ¢ is the coordinate of [0, 1]. Note that mg (b1, ..., hi)
and cz’t’s(hl, .+, i) are t-parametrized families of elements of C'F(L; R) which may be regarded
as smooth forms on L xx L x [0,1] that do not contain dt. (See [46, Section 22.4] and [72
Section 4.1] for the sign.) We put

zte' E. ite i,tEe E ite
: g T Mg ¢ = E T Cp k-
E<E; E<E;

Using Lemma 3.38 in place of Proposition 3.30, we can apply Stokes’ formula and the composition
formula in the same way as the proof of Proposition 3.35 and obtain (3.39). |

Proposition 3.41. There exits a positive number €; such that if €, < &;, then there exists
({m/’t’”} {c/’t’l’s}) which is a pseudo-isotopy modulo TFi of GgL) -gapped filtered Ao algebra
structures modulo TFi on CF(L) between {m<E“6} and {m<E“8 }

The proof is the same as the proof of Proposition 3.37 and so is omitted.
We also use the next algebraic result.

Lemma 3.42. Let E < E' and {mk} (resp {mk}) be G-gapped filtered A~ algebra modulo T
(resp TE) on C(L;Np). We regard {m,ﬁ} as a G-gapped filtered Ao algebra modulo T and
denote it by {m}c|TE} Let {c',;} be a pseudo-isotopy modulo T of G-gapped filtered Ao algebra
between {mg} and {m,uTE}. Then there exists {szr} and {CZJF} such that

(1) {mk+} is a G-gapped filtered Ao algebra modulo TE'.

(2) If we regard {mk+} as a G-gapped filtered Ao algebra modulo T, then it coincides
with {m)}.
({mk } i +}) is a pseudo-isotopy modulo TE' of G-gapped filtered A~ algebras be-
tween {m,j} and {m}g}

(4) If we regard {CZ+} as a pseudo-isotopy modulo T of G-gapped filtered Ao algebras, then
it coincides with {cff}

Proof. We may assume G(L) N [E,E'] = {E'}. We put {c O} := {c}}. They we can solve
differential equation (3.39) to obtain a coefficient of T#" of {m)"}. See [35, Section 7-1], [28,
Section 14] and [43, 46] for the proof of a similar but more difficult result. [ |

We take ¢; which is smaller than the constants in Propositions 3.37 and 3.41. Then we use
Propositions 3.37 and 3.41 and Lemma 3.42 inductively to find systems of operations {m<E“] i },

{m<E“] €Z+1} ({mt’w E} {ct’w E}) ({m/’t’Z’J E} {c/’t’w 6}) for j > ¢ with the following properties:

(1) The operators {m<E“] “1, {m;Ei’j’Ei“} define structures of G(L) gapped filtered A,
algebras modulo T on CF(L; Ao).
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(2) The pair ({mzzma}, ictua}) is a pseudo-isotopy modulo TFi of G-gapped filtered Ao,
algebras between {m,"*"'1 and {m<E’“’J 5”1}

(3) The pair ({m/,t,m 5} {c/,t,z,y 5}) is a pseudo-isotopy modulo TF of G-gapped filtered Ao
algebras between {m<E“3 “1 and {m<E“] 51+1}

(4) If j/ < j, then the system of structures {m
( m' obitsd, E} {c' obitod, E}) coincide with the system of structures {mk E“J ’61} {
({mt s “1 {ckw 1. ({m/tw “1 {c”t’w “1) as filtered As structures modulo TEJ or as
pseudo-isotopies modulo 77

(5) If ] — i, then m;EM,sZ}’ E{;m<El,1,€,+1} ({mt z,z,s} {ct,z,z,s}) ({m/,t,l,z,s {c/,t,z,] s}) co-
incide with {m, Bisei , {mp ey ({mt”} {ct”’g}) ({mp e} Lot }) respectively.
Note that ({m”e} {ct,m}) is obtained by Proposition 3.37 and ({m/ t’l’g} {c/ t’mg}) is
obtained by Proposition 3.41.

<FEi,J, 82} {m<EZ7J JEitl t,m a} é t,z,]a
’L:.] 7E'L+1

Now we put my = lim; m,jEi’j €1 Note that the right-hand side converges in T" adic topology

by item (4). This is the required filtered Ao structure. The proof of Theorem 3.14 is now
complete.

Remark 3.43. The filtered A, structure obtained by Theorem 3.14 is independent of the
choices up to pseudo—isotopy. We can prove it as follows. We can prove that for each E; the
structure {m< i-dy 5’} is independent of the choices up to pseudo-isotopy modulo 7% in the same
way as Proposition 3.37. We can next show that this pseudo-isotopy modulo T is independent
of the choices up to pseudo-isotopy of pseudo-isotopies modulo T¥i. We can use it in the same
way as above to show the required independence of the filtered A, structure up to pseudo-
isotopy. See [43, 46, Section 21.3]. We will discuss this point more in Section 14.

Remark 3.44. Let hy, hy be differential forms on a connected component L(a) of L X x L. We
can choose my g, so that ma g, (h1, he) = (—1)4@"M Ry A hy. (Here we use the sign convention
of [46, Definition 21.29 (5)].) In fact, the right-hand side is induced by the moduli space of
constant maps to L(a) with three marked points. This moduli space is transversal and we do
not perturb it.

To define my, g, (h1, ho) for k > 3, we use the moduli space of constant maps to L(a) with more
than three marked points, which may be obstructed. Such a moduli space may be nonempty
after perturbation. In the situation when L(a) is zero-dimensional (which was the situation
of [4]), except the case of dim L = 1 this moduli space has negative dimension and so we may
assume my, g, for & > 3 to be zero.

3.4 Filtered A, categories of immersed Lagrangian Floer theory

Situation 3.45. Let (X,w) be a symplectic manifold which is compact or convex at infinity.
We take V' a real oriented vector bundle on the 3-skeleton Xi3). We consider a finite set

L ={(Le,o0¢) |ce O}

of pairs L, = (L.,0.) of immersed Lagrangian submanifolds L. and their V-relatively spin
structure o.. We assume the next two conditions:

(1) The self-intersection of each L. is clean.

(2) The submanifold L. has clean intersection with L. for any ¢, € O.

We call such L a clean collection of V -relatively spin immersed Lagrangian submanifolds.
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The purpose of this subsection is to associate a filtered A, category Fut((X,w);V;L) to
a clean collection L of V-relatively spin immersed Lagrangian submanifolds. The actual work
to carry out for this purpose is in fact completed in the last subsection and we only need to
rephrase the outcome of the last subsection.

Let L. = (Lc,’LLC), where ir,: L. —» X is a Lagrangian immersion. We consider the
disjoint union L = J.¢g Le, and use i L, to obtain a Lagrangian immersion ir,: L—X. We
put L = (L 1 L) and apply Theorem 3.14. For ¢,c € 9O, we decompose L. X x L to connected
components as

U Lc,c’(a) if ¢ 7é 0/7

~ ~ acA,
Lo xx Ly = Lot ~
¢ L.U U Leo(a) ife=(.
O,GAC’C/

By Lemma-Definition 3.10, we obtain a principal O(1) bundle (Zj local system) ©~ on L x x L.
We denote its restriction to L¢(a) by O .,. We also remark that © is a trivial bundle on
the diagonal component.

According to Definition 3.13, we have

=Pal)ere P ALleo(a)0,,.,) S A

ceD c,c'eD
aG.Acyc/

Definition 3.46.

(1) The set of objects OB (Fut((X,w); V;1L)) consists of the pairs (L., o.) for ¢ € O.

(2) If ¢, € © with ¢ # ¢/, then the module of morphisms from (L., o.) to (L, 0. ), which we
denote by Fut((X,w); V;L)((Le,0c), (Le,00)), is

P ULew(a);0,,,) Ao

aGAC,C/

(3) In case ¢ = ¢, the module of morphisms from (L, 0.) to (L., 0.), which we denote by
Fub((X,w); V3 L)((Le, 0c), (Le, 0c)) s

Q( )®A0@ @ Q CC( ) @c_ca)@AO'
a€Ac.c

Hereafter, we write CF((Lc, 0c), (Le, o)) in place of Fub((X,w); V;L)((Le, 0c), (Lo, 00)).

In Theorem 3.14, we obtained the structure operation of our filtered A, algebra (Q (EC),
{my}) where

my: CF(L)®* — CF(L). (3.41)
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Definition 3.47. Let cg,...,c; € O and (L, 0,), i = 0,...,k, be corresponding objects. We
define the structure operations

k
my ®CF((LCi—17UCi—1)’ (Le;,0¢,)) = CF((Ley, 0¢y), (Ley,, 0cy, ) (3.42)
i=1

as the corresponding component of (3.41).
Remark 3.48.

(1) In Definition 2.2 (see (2.4)), we required that the map mg of filtered Ay, category is
mo: Ao — CF((Leyoc), (Leryop))

and is nonzero only when ¢ = ¢/. We can check that our structure morphism is zero in
case k = 0 and cg # ¢ as follows.

By definition, mg is defined by using the moduli space of pseudo-holomorphic disks with
one boundary marked point. It consists of (X, zp,u,vy) where ¥ is bordered Riemann
surface with one boundary component and of genus 0, zg € 9%, u: (X,0%) — (X, L)
and v: 0¥\ {20} = L. We require u = i. oy on 9% \ {20}. (See Definition 3.17 (4).)
Since 0% \ {20} is connected, the image of «y is contained in one of the connected compo-
nents of L, say L.. In that case ev of this element goes to L. X x Le. So mg(1) is contained
in the subspace mentioned above.

(2) It is also clear from the definition that the structure operation my of L is decomposed
as (3.42). Namely, the CF((L¢,,0¢,), (Le,, 0c, )) component of my(x1, ..., x)) depends only
on the component (1, ...,zy) of CF(L)®* such that 21 € CF((Ley, 0cy), (Leys 0y ), Ti €
CF((L¢; y,0¢; ), (Le;,0c,)) and x, € CF((Le,,_y,0c,_y)s (Ley, 0c,,)) for some cyq, ..., cp_1.

Theorem 3.49. Definitions 3.46 and 3.47 define a curved filtered Ao category. 1 € Q(ic)
becomes its unity.

Proof. This is immediate from Theorem 3.14 and Definition 2.2. [ |

Definition 3.50. Let ¢ be a filtered Ao, category and c its object. Then €'(c, ¢) together with
restrictions of structure operations define a structure of a filtered A, algebra. Let ¢, ¢ be two
objects. The restriction of structure operations define a map

n: BE(c,c)[1]®@€(c,d)® BE€(d,)[1] — €(c,¢),

where €(c, ') is the space of morphisms and is a completed free Ag module. We denote the
restriction of n to By%(c,c)[l] ® €(c,d) @ Be€(c,)[1] by nge, k,¢ = 0,1,2,.... They de-
fine a structure of filtered A, bi-module on €(c,c’) over € (c,c)-€(c/,c') in the sense of [34,
Definition 3.75]. (See also Section 5.1.)

In the case of a filtered A, category, € (c, ) is nothing but the filtered A, algebra associated
to a single (immersed) Lagrangian submanifold (L., o.). Moreover, € (c,c’) is nothing but the
filtered Ao, bi-module associated to a pair of (immersed) Lagrangian submanifolds (L., o.),
(Le,oer). Thus Theorem 3.49 reproduces many of the constructions in [34]. However, by this
trick to include the immersed case to reduce the construction of a filtered A, category to
one of a filtered A, algebra, one aspect which we mention below is lost. Let ¢: X — X be
a Hamiltonian diffeomorphism. As we is proved in [34, Theorem 4.1.5], we have an homotopy
equivalence

CF((L07 UC)? (LC’7 UC’)) ®Ag A= CF((L07 UC)? (QO(LC’)’ SD(UC’))) RAg A (343)
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of filtered Ao, bi-module, in the case when L. and L. are embedded. See Section 15 and
Theorem 15.5 for the immersed case. (The proof of Theorem 15.5 is actually the same as the
embedded case.) Note that here we move Ly by ¢ but do not move L. It is difficult to see what
is the corresponding construction in the case of a single immersed Lagrangian submanifold other
than the obvious one. Namely, we move various connected components by different Hamiltonian
diffeomorphisms. However, it is rather hard to see in which sense filtered Ay, algebra C'F(L) of
an immersed Lagrangian submanifold (with many components) is invariant.>® One big reason
for it is in (3.43) we have to use A coefficient rather than Ag coefficient. We will discuss related
issue in Section 15 more. Note that (3.43) is the most important property of Lagrangian Floer
homology for applications. In fact, the motivation of Floer to define Lagrangian Floer homology
is to study intersection of a pair of Lagrangian submanifolds and the most important property
of Floer homology for that purpose is (3.43).

The invariance of Floer homology (of A coefficient) of a pair under the Hamiltonian diffeo-
morphisms in the sense of [34, Theorem 4.1.5] will be discussed in Section 15.2 in a slightly more
sophisticated form.

Remark 3.51. In this subsection and in this paper, we take and fix a finite set of Lagrangian
submanifolds and define our category by using those finitely many Lagrangian submanifolds
only. It is more canonical to use all the Lagrangian submanifolds and construct a single big
filtered A, category. We do not try to do so in this paper since for the purpose of most of the
applications choosing an appropriate finite set of Lagrangian submanifolds and using only those
Lagrangian submanifolds are good enough and since it is simpler to write the detail in the case
when we work on a finite set of Lagrangian submanifolds. See Section 18.1 for more discussion
on this point.

3.5 Opposite A, category and w +— —w

In this subsection, we explain how the A, category Fut((X,w);V;LL) behaves when we replace
the symplectic form w by —w. We use this relationship when we study Lagrangian correspon-
dences.

Let L = {(L¢,0c) | ¢ € O} be a clean collection of V-relatively spin immersed Lagrangian
submanifolds as in Situation 3.45.

Lemma 3.52. We can regard IL as a clean collection of V -relatively spin immersed Lagrangian
submanifolds of (X, —w).

The proof is obvious.

Lemma 3.53. There exists V & T X -relatively spin structure o/, of L. such that L' = {(L., o) |
¢ € O} is a clean collection of V @& T X -relatively spin immersed Lagrangian submanifolds

of (X,w).

Proof. We remark that TX|;, = TL @ TL. Therefore, the lemma follows from the well known
fact that for any oriented real vector bundle W there exists a canonical spin structure on the
bundle W & W. [

From now on, we frequently identify the set I and . Now the main result of this subsection
is the following.

Theorem 3.54. We may take the various choices made in the definitions so that we have the
next isomorphism of filtered Ao, categories

Jub((X,w); VL) & Jub((X, —w); V o TX;1L')°P.

3-9Provably the unobstructed (immersed) Lagrangian cobordism is the correct formulation to work with, see [9].
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Remark 3.55. See also [77, Remark 5.3.3].

Proof. The proof is similar to the proof of [42, Theorem 1.3]. It is obvious that the set of
objects and the modules of morphisms are the same. We can show that the local system ©_
we use to define module of morphisms does not change when we replace background datum V
by V @ TX. This is because T X |, is spin and its spin structure is canonical. We need to study
a certain sign issue which will be discussed during the proof of Lemma 3.56 below.

Thus it remains to check that the structure operations coincide with each other. By the
argument of Section 3.4, it suffices to consider the case when IL consists of a single V-relatively
spin immersed Lagrangian submanifold (L, o).

We consider the moduli space M(L;a; E) in Definition 3.17. To specify the almost com-
plex structure and the symplectic form, we denote this moduli space as M((X,w, Jx); L; @; E).
For @ = (ap,...,a), we put @°® = (a,...,ap) and define a map

I: M(X,w, Jx); Lya; E) — M(X, —w,—Jx); L; @, F)
as follows. Let (X;u;2;7) € A/((X,w, Jx); L;@; E). For simplicity, we assume ¥ = D?. Then
we put z’ := (Zo, Zg, . . ., 21), where Z = (20, ...,zx), and v/(2) := u(z), 7 (2) ;== v(z). It is easy
to see that

o

I(DQ;u;Z;'y) = (Dz;u';é";'y’) € M((X, —w, —Jx); L;@?; E).
It is easy to see that we can extend I to a homeomorphism
I M(X,w,Jx);L;a@; E) > M((X, —w,—Jx); L; @; E). (3.44)

Lemma 3.56. The map (3.44) is a underlying continuous map of an isomorphism of Kuranishi
structures. The next diagram commutes:

M((X,w, Jx); L@ B) —— M((X, —w, —Jx); L;@; B)

e | |ev

L(+)k+1 - L(—i—)k'H,
where the map in the second horizontal arrow is (xg,x1,...,xk) — (To, Ty ..., 21).

Proof. The commutativity of the diagram is obvious from the definition. The proof of the first
half is the same as the proof of [42, Proposition 4.5]. |

We need to study the orientation carefully to complete the proof of Theorem 3.54. We
decompose

M(X,w,Jx); L;a; E) = UM((X,w,JX);L;Zi;E;d),
d

where M((X,w, Jx); L;d; F;d) is the compactification of the moduli space which consists of
the elements (DQ;Z; u,'y) with virtual dimension d + Zle dim L(a;). We define the moduli
space M((X, —w, —Jx); L; @°P; E;d) in the same way.

Let ho € Q%(L(ag);O0,,), ..., hi € Q% (L(ax); ©,,). We take a CF-perturbation to inte-
grate differential forms on the space M((X,w, Jx); L; a; F; d) with Kuranishi structure (see [40,
Definition 10.22]). By Lemma 3.56, it induces a CF-perturbation on M((X,w, Jx); L; @; E;d).

We compare the integrations

/ ev*(hg X hy X -+ X hg) (3.45)
M((Xw,Jx);L;8;E5d)
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and

/ ev*(hg X hg X -+ X hy). (3.46)
M((X,—w,—JIx);L;d°P; E:d)

Here integrations are defined by using CF-perturbations (see [40, Definition 10.22]).
We consider the case

d=>_degh;. (3.47)

Lemma 3.57. We use the V -relative spin structure to define the orientation of the moduli space
which we use for integration. Then (3.45) = (—1)* x (3.46), where

x =1+ Z deg’ h; deg’ h; + e.

1<i<j<k
Here e =0 if and only if d — (k — 2) is divisible by 4. Otherwise, ¢ = 1.

Proof. The proof is mostly the same as [42, Proposition 4.9].

The sign 219’ <j<k deg’ hj deg’ h; is induced by the fact that we exchange the order of i-th and
j-th marked points. Here deg’ rather than deg appears since the moduli parameter which moves
those marked points are exchanged also. The first term 1 appears since the moduli parameter
to move 0-th marked point is reversed. See the proof of [42, Proposition 4.9] for the detail of
the argument on those points. We finally explain the reason why ¢ appears. During the proof
of Proposition 3.29, we use the fact that the index Index P appearing (3.31) is isomorphic to
a complex vector space. This is because P is an operator on S? whose symbol is the same as
the Cauchy-Riemann operator. It implies that its (real) determinant bundle is trivial.

Since our isomorphism [ in Lemma 3.56 sends a Jx-holomorphic map u to a —Jx-holomorphic
map u, the map which is induced to Index P by [ is not complex linear. It is actually anti
complex linear. Therefore, it induces an orientation preserving map on Det P if and only if the
numerical index (the complex dimension) of P is even. Note that P is homotopic to the Cauchy—
Riemann operator on S? of a bundle with Chern number m, where m is the half of the Maslov
index. Therefore, this map is orientation preserving if and only if the Maslov index d — (k — 2)
is divisible by 4. This is the reason why € appears. (This point is also similar to the proof of [42,
Theorem 4.6].)

The rest of the proof is entirely similar to the proof of [42, Proposition 4.9]. |

We next show the following lemma.

Lemma 3.58. Suppose (3.47) holds. The orientation which we obtain when using V @& TX-
relative spin structure is different from one we obtain when using V -relative spin structure if
and only if (—1)¢ = —1.

Proof. We consider a map u: (D? 8D?) — (X, L). It induces a trivialization of u[} . (T'X)
since D? is contractible. On the other hand since TX |, = TL ® T L, we have another trivializa-
tion of ul} . (T'X).

It is easy to see that these two trivializations are homotopic each other if and only if (—1)¢ = 1.

We can use this fact to prove the lemma as follows. Let A\: S* — SO(n) be a loop representing
the generator of m1(SO(n)) = Zsy. Since the map m1(SO(n)) — m1(U(n)) = Z induced by the
inclusion is trivial, we have a map Ay : D? — U(n) which coincides with A on the boundary. We
identify {0} x D? x C"™ with {1} x D? x C" by using A; and obtain a rank n complex vector
bundle E on D? x S'. By construction, E|yp24 g1 has a real n-dimensional subbundle which is
obtained by gluing {0} x 0D? x R" with {1} x dD? x R™ using \. We denote it by F. Note that
the 2nd Stiefel-Whitney class of F' is nonzero by the choice of A.
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Using the pair (E, F'), we obtain an S!-parametrized family of Cauchy-Riemann operators
with boundary condition. Namely, for ¢t € S! we consider

0: L}(D* Elqyxp2: Fligxst) = L (D% Elgy<p2)

on E|g) 4 p2 with boundary condition determined by F' and obtain family of index bundle that is
a real vector bundle over S'. Using the fact that the 2nd Stiefel-Whitney class of F' is nonzero,
the calculation in the proof of [35, Proposition 8.1.7] shows that this bundle is unoriented.
This implies that the two orientations obtained by different trivializations of u|} . (T'X) are
different. This implies Lemma 3.58. |

Theorem 3.54 follows from Lemmas 3.57 and 3.58 and the definition of opposite category (see
Definition 2.30 especially its item (3)). [

4 Preliminary on Lagrangian correspondence

The review of the theory of filtered A, categories and the construction of the filtered A
category associated to a symplectic manifold is completed in the previous sections. In this
section, we start studying the relationship between Lagrangian correspondences and filtered Ao
functors, which is the main subject of this paper. This section is rather formal. We introduce
certain notations which we will use in later sections.

Definition-Lemma 4.1. Let L; (resp. Li2) be an immersed Lagrangian submanifold of (X7,
wi) (resp. (X1 x Xo, =77 (w1) + 75 (w2))).

(1) We say L is transversal to Ly if the fiber product El X X, I~L12 is transversal.

(2) Assume L; is transversal to Lia. We put Ly =14 X X, Lys. The composition iLy: Ly —
X1 X Xo — X3 is a Lagrangian immersion.

(3) We call Ly = (_flz, iLg) the geometric transformation of L1 by Lis.

Proof. We prove item (2). Let z = (y,(p,q)) € Ly and V € Ker(dyir,). Then V = (w,v)
where w € TyLi,v € TpLia. (dyir,)(w ) = (dpiLy,)(v) and (dpir,,)(v) € TXy @ 0. Since
L1 xx, Lia is transversal, there exists v € T,L12 such that wi((dpir,,)(v), (dpiry,) (') # 0.
Since (dpir,,)(v) € TX1 & 0 this implies w((dple)( v), (dpir,,)(v")) # 0. This contradicts the
assumption that Lio is an immersed Lagrangian submanifold. We have proved that Lo is an
immersed submanifold.

Let (v1,w1), (v2,ws) € T, " Loy where v; € T, I~/1, w; € Ty, )I~/12 Then we have (dir,)(v;) =
(m1(d(p,q)iL12)) (w;). Hence wy(wi,ws) = 0. Since w(w1,ws) = 0, it follows that wa (w1, w2) = 0
We proved that Lo is an immersed Lagrangian submanifold. |

It is not in general correct that the geometric transformation of an embedded Lagrangian
submanifold by an embedded Lagrangian correspondence has clean self-intersection.

Example 4.2. Let X = (—1,1) x S!, L; = {0} x S*. We take a symplectic diffeomorphism ¢
which is a composition of (s,t) — (s,t + 1/2) and a C! small Hamiltonian diffeomorphism.
(Here we identify [0,1]/0 ~ 1 = S'.) We can choose ¢ such that Ly N ¢(Ly) is not clean.
Let L1s C —X1 x X1 be the disjoint union of the diagonal and the graph of ¢. The geometric
transformation of Ly by Lo is not clean.

Definition 4.3. Let Ly C X7 and Lis C X12 be immersed Lagrangian submanifolds. We say L1
has clean transformation by Lo if

(1) The fiber product Ly x X, L5 is transversal.

(2) The geometric transformation Ly has clean self-intersection.
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Lemma 4.4. Suppose L1 has clean transformation by Lo and let Lo be its geometric transfor-
mation.

(1) If L1 and Li2 are oriented so is Lo.

(2) If Ly (resp. Li2) has Vi-relative spin structure (resp. w5 (TX1 @ Vi) @& w5 (Va)-relative spin
structure), then Lo has Va-relative spin structure.

Proof. Let z = (y,2) € L. Then there exists a canonical isomorphism of vector spaces
T.Lo® TyXl = TyLl ®T,L1s. (41)

This implies (1).
To prove (2), we first remark the following. Suppose we have a transversal fiber product
X xy Z. Then we can choose smooth triangulations of X', V, Z, X xy Z such that

1) The maps X — )Y and Z — ) send 2 skeletons X}y, Zi91 to the 2-skeleton.
(2> <~[2]
(2) The 2-skeleton of X' xy Z is contained in Xjp) Xy, 2.

To find such a triangulation, we first take a triangulation of X xy Z. We then can take enough
many vertices of X, Y, Z such that X Xy, Z|o] contains the 0 skeleton of X xy Z. We can
then take A7y), V), 2p (subdividing 0 skeleton if necessary), such that A XY Z1) contains
the 1 skeleton of the fiber product. We then can find a required triangulation.

On the other hand, the trivialization on 2 skeleton (ng)m of mf(T'X1 e V1) ®my(Va) T Lia
(that is nothing but the 7] (TX; & V1) @ 73 (V2)-relative spin structure) and the trivialization
on 2 skeleton (Ly)jg of TLy @ iz, V1 induce a trivialization of

T,X10 (V1)y © (Vo). @ T:L12 ® Ty L1 @ (V1)y
on the fiber product (L1)[2 X(x,), (L1)p2)- In view of (4.1), it induces a trivialization of
TpLo @ Ty X1 @ TyX1® (Vi)y ® (Vi)y @ (Va)- (4.2)

on (Lg)p. (Note that we use our choice of triangulation and item (2) here.)
We remark that if F/ is an oriented vector bundle then E @ FE is spin. In fact,

2
> up(E® E) = (Zwk(E@E)> .
k k

Hence wy(E @ E) = w1 (E) Uw;(E) = 0 since E is oriented.

Therefore, the existence of a trivialization of (4.2) on 2 skeleton (L2)[y implies the existence
of a trivialization of T'La @ V2 on (Lz)g. (Note that the trivialization and the spin structure
are identical notions on the 2 skeleton.) Therefore, Ly is Va-relatively spin as required. |

Remark 4.5. The proof of Lemma 4.4 gives some particular relative spin structure of Ls.
However, in this paper we use the existence of relative spin structure of Ly only. We make the
choice of its relative spin structure later during the proof of Theorem 5.25 (see Lemma 6.7).
This relative spin structure seems to be related to one obtained from the proof of Lemma 4.4.
We however do not try to clarify the relationship between those two relative spin structures in
this paper.

The next lemma will be used in later sections.
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Lemma 4.6. Let Lq, L~12 be immersed submanifolds of X1 and —Xi x Xo respectively.*!
We assume that L1 = (Ll,iLl) has clean transformation by Lis = (le,iL12) and denote by
Ly = (L2,1L2) the geometric transformation. Then

(L1 x Lo) xx,xx, (L12) (4.3)
is diffeomorphic to

Ly xx, Lo. (4.4)
Proof. (4.3) is the left-hand side of

(21 X (zl X X, iu)) X xy %X, L12 = (zl X X, £12) X X, (El X X, Eu)- (4.5)
On the other hand, (4.4) is the right-hand side of (4.5). Note that the equality (4.5) is given by

(1, (x2,91)),92) = ((w2,91), (21, 2))- =

We can generalize the definitions and lemmas of this section to the case when we have three
symplectic manifolds, as follows.

Definition-Lemma 4.7. Let (X;,w;) be a compact symplectic manifolds and V; its background
datum, for ¢ = 1,2,3. Let Lio2, Log be Lagrangian submanifolds of —X; x X5, —Xo x X3,
respectively.

(1) If the fiber product Lis = Lo X X, Los is transversal, then the map L1z — —X; X X3
induced by I~/13 — —X1 X X9 x —X9 x X3 - —X; X X3 is a Lagrangian immersion. We
assume that Li3 is self clean. In such situation, we call Li3 the geometric composition
of L12 and L23.

(2) If Ly and Los are oriented, then so is the geometric composition Lj3.

(3) If L1 has mi (T X, & V1) @75 (Va)-relative spin structure and Loz has 7} (T Xo @ Vo) & 7s (V3)-
relative spin structure, then the geometric composition Li3 has 7} (T'X; & V1) @ 75 (V3)-
relative spin structure.

Proof. The case when X is a point is proved already. The proof of the general case is the
same and so is omitted. |

5 The Kiinneth bi-functor in Lagrangian Floer theory

5.1 Algebraic framework of A, bi-functors and tri-functors

To define the notion of filtered A, bi-functor, we recall the following. Let (B1, A1), (B1,Asg)
be graded coalgebras. We define graded coalgebra structure

A: By ® By — (B1 ® By) ® (B1 ® Ba)
of By ® By by the next formula

Az ®y) = S(A1(z) ® Aa(y)), (5.1)
where

S((a1® 22) ® (y1 @ ) = (~1)*E V42 (21 @ 1) © (12 @ y2)).

The case of completed tensor product of formal coalgebra is the same. Note that in Definition 5.1
etc. we use the shifted degree. So we used deg’ in the above formula instead of deg.

41G6e Notation 3.1 for —X; X Xo.
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Definition 5.1. Let 41, %2, %3 be non-unital curved filtered A, categories. A filtered As
bi-functor F : €1 x €2 — €3 consists of F), and F, 1, k1,k2 = 0,1,2,3,..., of degree 0 with
the following properties (1), (2),(3), (4):

(1) Fop: OB(61) x OB(6,) — OB(63) is a map between sets of objects.

(2) For each c1,1,c12 € OB(61) and 2,1, c22 € OB(62), the bi-functor Fy, 1, associates a Ag
linear map

T ko (C1,1,€1,25C2.1,C22) kagl[l](cl,la01,2)@Bkg(gZ[l](CZl,CZ,Q)
— E3[1](Fob(c1,1, €2,1), Fob(c1,2, 2,2)).

(3) We require .Fy, ,(c1,1,¢1,2; 2,1, C2,2) to preserve the filtration in a similar sense as Defini-
tion 2.2 (2).

Note that the symbol &, x %> is used here. However, we do not define the product 47 x %, of
two A categories in this paper. In other words, €1 x %3 is simply a notation.

To describe the most important condition, we introduce certain notations.

Let A;: B€[1)((cin,cia) — BE[1](cia,cia) ® BEi[1](cia,ci2) be the formal coalgebra struc-
ture for i = 1,2,3. We define the formal coalgebra structure A on the completed tensor prod-
uct B%l[l](cl’l, 61’2) @B%Q[l](CQ}l, 6272) by (5.1).

The system of maps {%, i, } induces uniquely a formal coalgebra homomorphism

F(e11,¢19;¢2.1,¢29): BG[1)(e11,¢12) @ B6a[1](c21,ca2)
— B63[1](Fob(c1,152,1), Fob(c1,2,2,2)).

Note that the structure operations of %; induce a coderivation

di: B(gi[l](ci71,ci’2) — B‘Ki[l](cm, CZ'72).

—

(4) We regard .F(c1,1,¢1,2;¢2,1,¢2,2) as a chain map. Namely, we require

d3o F (e, 101, 22) = F(cr1, 1221, c22) 0 (di @id +1d @ da),

where ® is as in Definition 2.1 (6).

Definition 5.2. Let 61, %5, %3 be non-unital curved filtered A, categories and .%: €1 X %5
— %3 a filtered A, bi-functor.
(1) We say .Z is strict if %9 = 0.
(2) Suppose €1, 62, €3 are G-gapped. We say .Z is G-gapped if Fy, 1, are all G-gapped.
(3) Suppose €1, G2, €3 are unital. We say % is unital if the following holds:
(a‘) ‘gz]-yo(ecl ® ]') = ggal(l ® eCQ) = eyob(cl,cz))
(b) Fhy 40141,k (az%, e :E,lﬂ,ecl,y%, e ,yt}l;:c%, o ,azé) =0 for k1 + ko +£1 > 0,
(€) Py kotto+1 (m%, . x}cl;x%, e ,xiQ,ecz,y}, . yl}Q) =0 for k1 + ko + 5 > 0.
Example 5.3. Suppose %1, %> have only one object. We also assume that they are strict. Then

we may regard them as filtered Ao, algebras, which we denote by (Ci,{my}), (Ca, {my}). We
call a strict filtered A, bi-functor

F (Cfp, {mk}) X (CQ, {mk}) —CH
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a filtered Ao bi-module over (C, {my})-(C2,{my}). We also say left C; and right C5 filtered A
bi-module.

The notion of filtered Ay, bi-module is introduced in [34, Definition 3.7.5]. Below we will
check that Definition 5.1 coincides with the definition in [34] in this case.

Since %), %> have unique objects, %}, determines a chain complex, which we write (D, d).
(Here d is the boundary operator of this chain complex.) %}, 1, becomes a map

Py ket Bi, C1[1] ® By, Ca[1] — Hom(D, D)[1].
of degree one. We will define
Ny ko Blel[l] ®D®Bk202[1] — D.

We first define OP: B,C1[1] — BxC1[1] by OP(x) = (—1)*®)x°P_ where £(x) and x°P are (2.12),
(2.13), respectively. We remark

mP(x) = —my(OP(x)). (5.2)
We now put

My by (345 2) 1= (— 1) VIE (T, 1, (OP(x);2)) (v)
for (k1,ks) # (0,0) (note that deg'(z1 ® -+~ ® %) = k + 3 degx;) and

noo(y) = (—1)%Vdy. (5.3)

We call ny, 1, the structure operations of filtered A, bi-module (compare Definition 3.50).
We will prove that Definition 5.1 (4) becomes the following equality:

7 (251) . . . .
0= D (1) % (x50 (x(22); y; 221 222

C z

+n(dy(x); y;z) + (—1)48 XUy (x40 dy(2)). (5.4)

The notation is as follows. The symbol d1 (resp. 622) is the coderivation induced by the A
operations on C; (resp. C2). We put

Arx) =Y xEVoxZD Ayz) =Y 2 222,

The formula (5.4) is the defining relation of a filtered Ao, bi-module in [34, Definition 3.7.5].
We also call it the A relation.

Remark 5.4. In [34, Definition 3.7.5], the sign in the third term of right-hand side is

(_ 1)deg’ z+deg’ y ]

So it is slightly different. In [34], the bi-module is written D(1). Here we use the notation D
for a bi-module. So the definitions of this paper and of [34] are consistent. We discuss this point
more in Remarks 5.5 and 5.7.

Let us prove that Definition 5.1 (4) implies (5.4). (The main part of the proof is the check of
the sign.) Definition 5.1 (4) becomes the following identity in Hom(D, D)[1]:

(252) 1, (2:1)

Z(_l)deg’xcx deg’ze. ™ 1, (f(x@?l),zg?l)),ﬂ‘(xgﬁ),zg?z))) +my(F(x,2))

Cx

= Z(di(x),2) + (—1)18 X F (x, dy(2)). (5.5)



58 K. Fukaya

Here my, my in the left-hand side are the structure operations of CH[1]. They are related to the
composition and the differential by (2.14).
We plug in y € D in the first term of the left-hand side and obtain

Z(_l)*ly(x(m) Z(2;2)) (g(xg;l), Zg;l)) ()
= (=1)*n (0P (xZ));n(OP(xZV); y; 221); 222). (5.6)

Here

= (deg x( 2+ deg’ z( )) (deg x(2 D4 deg’ 7!, (2 D4 1) + deg’ x( )deg z( D

%0 = %1 + deg’ 25V deg' y + deg’ 252 (deg’ x3V + deg y + deg’ (2 D1)

= deg’ X( )deg x( ) + deg’ x(2 2) + deg’ y(deg’ z( D 4 deg’ 2% 2))

Note that in the sum (5.6) the case

( (21),

Cac

( x(32),

Cx

g;l)) =1®1 € ByC4[1] ® ByCs[1] or
23?) =1®1 € ByCi[1] @ ByCy[l]

are included only for the first term of (5.3). The contribution of the second term of (5.3) in
those cases actually coincide with the second term of the left-hand side of (5.5). Therefore, the
left-hand side of (5.5) coincides with (5.6) including those cases.

We replace x by OP(x) in (5.5). We remark that

OP (A (x)) = Y (—1yee = e
Therefore, (5.5) and (5.6) becomes
Z(—l)*?’n(xg;l);n( (2:2), 4. gl))7 (3;2))
— (F(d(OP(x)), 2)) (y) + (—1)*(F (OP(x), dx(2)) ) (1), (5.7

&7 0P (x22) @ OP (x).

where
*3 = deg’ x( 1 + deg’ y(deg z( )—i—deg z(2 2)) = deg’ X( )—i—deg ydeg’ z.
Using (5.2), we can calculate the right-hand side of (5.7) to obtain
—(=1)*n(di(x);y:2) + (—1)*n(x;y; da(2)),

where x4 = deg’ zdeg’ y and 5 = deg’ x + (deg’ z + 1) deg’ y = deg’ x + deg’ zdeg’ y + degy + 1.
Therefore, (5.7) becomes (5.4), as required.
Note that the order of ﬁ(xg; ) zg 1)) and Z# (x&i 2) zg 2)) appearing in (5.5) is reversed
n (5.6). This is because it is deﬁned so in (2.14). The sign
(_1)degx(degy+l) _ (_l)deg’xdeg’ y+deg’' y
there is actually the Koszul sign, that is, associated to the exchange of the symbols mo, x, y — vy,
o, x. This is an intuitive reason why rather complicate sign calculation in Example 5.3 works.

Remark 5.5. If D(1) has a structure of Ao, bi-module n, then its degree shift D has a Ay
bi-module n’ defined by

W(x,ys,2) = (—1)% "' (x,,2)s. (5.8)

Here ys is an element y € D(1) regarded as an element of D.
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Example 5.6. To any filtered Ao, category %, we can associate a filtered Ao, bi-module %'(1)
as follows. We put € (1)%(cy, c2) = €% (c1, ca). We define structure operation n by n(x, y,z) =
m(x,y,z). It is easy to see that this satisfies the A relation.

In view of Remark 5.5, it induces a structure of filtered Ao, bi-module on ¢ (without degree
shift) by

n(x,y,z) = (—l)deg/ m(x,y,z).

In case % is strict, the operator n’ induces a strict filtered Aoo-bi-functor .#: €°P x ¢ — CH as
follows. We put Z(c1,c2) = €(c1,c2). We define a map

‘g\él,kz : Bklcg[l] (C(), Cl) @Bk;g[l] (CQ, 63) — Hom(%”(cl, 02), CK(CQ, C3))[1]

by

(Fhr ko (%52))(4) = (= 1) My 4y 41 (%, Y, 2),

where * = degy deg’z. (Here degy appears instead of deg’y because of the sign in (5.8).) We
then compose it with OP, and obtain the required map

f%\kh]@ : BklchP[l](Cl, C()) @Bk;g[l](c% 03) — Hom(cg(cl, 62), %(Co, 03)).

This construction is an analogue of the fact that an arbitrary algebra is a bi-module over
itself.

Remark 5.7. A reason why we shifted the degree in [34] is Example 5.6. Namely, we can
put m = n if we shift the degree. The reason why we do not shift the degree of bi-module will
be clear in Section 10. There we will regard a left-#] and right-%2 bi-module as a ‘morphism’
from % to %. In that case, the bi-module in Example 5.6 plays the role of the identity
morphism. However, if we shift the degree then it will not behave as the identity morphism.
Until Section 10, we will use the convention of [34], that is, we shift the degree of bi-module. In
the way explained in (5.8), we can go from one to the other.

We next generalize the story of [34, Section 5.2.2.1] to our category case.

Lemma 5.8. Let 61, 62, 63 be non-unital curved filtered A, categories and 67, 65, €5 their
associated strict categories. Then any filtered Ay bi-functor F: € X o — €3 induces a strict
filtered Aoo bi-functor F°: €7 x €5 — 65. If F is unital or G-gapped, then so is F°.

Proof. Let ¢; € OB(%;), (¢i,b;) € OB(€]) for i = 1,2. We put

by =D Y Ty ko (D)1, 05).

k1=0 ko=0

We put elj = Zzoquk then e’ = f(ebl,ew). Since b; are bounding cochains for ¢ = 1,2,
we have di (e") =da(e?) = 0. (See [34, Lemma 3.6.36].) Therefore, Definition 5.1 (4) im-
plies d; (eb3) = 0. In other words, b3 is a bounding cochain. We define

Fop((c1,01), (c2,b2)) = (c3,b3).

Let x; € By, Gi[1)(ci,¢f) = By, 6/[1((ci, i), (¢7,07)), i = 1,2. We will define F; . (x1,%2).

79 71 1771 1771

For this purpose, we define t% : B‘Ki[l](c,},c%) — B%[l](c},c?) for i = 1,2,3 as follows. Let

X =T @ @ Xk, Where z; ; € G[1](cij—1,¢5), ¢ij € OB(6;), with ¢;0 = c}, Cik; = cg. We
define

thi(x;) =0 @i @M @ @ kit @ ayp, @ eliki (5.9)
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Sublemma 5.9.
(1) ¥ is a Ay module isomorphism.
(2) Ajothi = (1 @t72) 0 A;.
(3) cffl otV =t o d;. Here cffl is a coderivation induced from mb.

The proof is the same as the proof of [34, Lemma 5.2.12] and so is omitted. By Sub-
lemma 5.9 (1) there exists uniquely a Ag module homomorphism

F5((ch, b)), (ch,b8); (3,63, (3,b3)): B [1](cl, ch) @ BG[1](c3, é3)
— Bes[1)((ct,b}), (c3,63))
(Where ( 3 b3) = fg’b(( 1 bl) ( 2 b2))) such that s ot/?\s = fo (tbl ®tb2). Here and here-

7,’ 1 Z’ ) J\ 7

after, we write .#¢ in place of % J‘5((01,1)1) (02,1)2) (cl,bz) (c%,b%)), for simplicity. Sublem-
ma 5.9 (3) implies

d% o F5 = Fs o (dbl@idJrid@ch?). (5.10)
Sublemma 5.9 (2) implies

Azo 5 =50 (A1 Rid+id® Ay). (5.11)
(5.11) implies that F5 is induced by Fp k- In fact, 7 . is a composition of the restric-
tion of Z* to By, 61[1](cl, ¢}) ® By, 6|1 ](cl,cz) and the projection B%j]1 1((c3,09), (c3,03)) —

@1 ((cf,b7), (c3,03))-
Then (5.10) implies that it satisfies the required property, Definition 5.1 (4).
To show that %% is strict, we observe

Fo (1 (1) @t2(1)) = F (M, ) = e = ¢3(1).
Namely, 3‘\3(1) = 1. This implies F§(1) = 0. |
In the case when % is curved, we can not define the filtered Ay, bi-functor in Example 5.6.
However, we can still use the language of filtered A, bi-module to define a similar object.

Let %1, % be non-unital curved filtered Ao, categories. We define the notion of a left-¢7 and
right-%, bi-module as follows.

Definition 5.10. A left-%7 and right-%5 filtered Ao bi-module, is 7 = ({D¢;,c5 }, {ne/ c1,0,¢4 1)
where

(1) The object {D, ., } assigns a completed free graded Ag module D, ., to each ¢; € OB(%1),
Cy € D%(ng)

(2) To each ¢1,c) € OB(61), ca,cy, € OB(%2), we are given a Ag module homomorphism

n Bcgl [1] (0/1, Cl) @DCLCQ @ BCKQ[I] (02, 6,2) — Dc’l,c2

¢} ,c1,¢2,C5
of degree +1 which preserves the energy filtration.
(3) The following A, relation is satisfied:

0= Z Z Xl ais n(x21a1 2 yl:ag)v y2:a2)

+n(di(x), 2,¥) + (—=1)2n(x, 2, d2(y))- (5.12)

Here *1 = deg x1.4,, *2 = deg’ x +deg z. The notations are as follows: x € B%1[1](c], c1),

y € DCl,ACm z € B(gz[l](CQ,Cé). Ax = Zal X1:ap @ X2:q,- Ay = ZaQ Yias © ¥Youa,- The
symbol d; denotes the coderivation induced by the structure operations of %; and is defined
n (2.5).
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A filtered Ao, bi-module over G-gapped unital curved filtered A, category is said to be G-
gapped if all the structure operations are G-gapped. It is said to be wunital if the following
holds:

(1) The equality ny g(e1,y) = (—1)4°8¥n; o(y, e2) = y. Here e; is the unit of E;.

(2) If x or z contains the unit, then n(x;y;z) = 0 except the cases appearing in item (1).

We define
: @ 3%1 Cl, Cl c1 co ®B%2[1](C27 0/2)
C1,C2
— @ B(fl Cl,cl ’10’2 @B%Q[l](CQ,C/Q),
C1,C2
by
ﬁc’l /2 X, 2 y Z Z 1Xl:al X n(x2:alza3’1:a2) ® Y2:a0

a; a2

+di(x)®2z0y + (—1)?x® 2 @ dy(y),

where the notations are as in (5.12). Then the formula (5.12) is equivalent to iy o oty o = 0.

1Ch

Definition 5.11. Let 200 = ({DC1 02} {nc s }) be a left-%1 and right-%5 filtered A, bi-
module, for i = 1,2. A pre-bi-module honlwmorphzsm of degree d from 20 to 22 is f =

{fcl ,C1,C2 702 }a where

(¥) To each ¢1,c] € OB(€)), ca,cy € OB(%,), we are given a Ay module homomorphism

e eneneyt BEN(, 1) ® D, & BG[1)(ca,h) = DY,

c1,C2 ch
of degree d which preserves the energy filtration.

Let

fu o @ BE)(c),e1)® DY, ® BG[1)(ca, ch)

C1,C2

— @ BL[1(c, 1) ® D), ® B%,[1](c2, ch), (5.13)

C1,C2

be the formal bi-comodule homomorphism induced from f.
(5.13) is defined by

More explicitly, the map

/.
,C1,C2,Co

fc’l,c’ X,z y Z Z Xl:al ® f(X21a127y1:a2) ® Y2:a9s

ay a2

where * = deg fdeg’ x1.q, = deg'fdeg’ x1.4,. (Note that deg/'f = deg§, see Definition 2.15.)
We define a pre-bi-module homomorphism d(f) of degree degf+ 1, so that

— —~

() == 60— (~1)**TFod

holds.

We say a pre-bi-module homomorphism f is a bi-module homomorphism if its degree is 0 and
if d(f) = 0. When g = {9+ ¢, cs,c;,} i another pre-bimodule homomorphism, we define g o f so
that gof=gof.
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Note that d(f) = 0 is equivalent to

Z Z n(Xlzal s f(x2:a1 y 25 YI:ag)a Y2:a2)

ay a2

= f(d1(x), 2,y) + (=1)9E*FE(x, 2, dy(y))
+ ZZ deg X1: alf xlm,n(xml,Z,y1:a2),y2:a2).

aip a2

Definition 5.12. We define a DG-category BZMOD(%1, %) as follows:

(1) Tts object is a left-47, right-%5 filtered bi-module.

(2) For two objects 2 and %,, a morphism from Z2; to % is a pre-filtered As-bimodule
homomorphism. We write it as BZMOD(Z1, P»).

(3) The composition and the differential of BZMOD(%1, 62) are defined as in Definition 5.11.
It is obvious from definition that BZMOD(%1, 62) is a DG-category.

Definition 5.13. In Definitions 5.10 and 5.11, we can define G-gappedness and/or unitality of
bi-module and/or bi-module homomorphism in an obvious way if é; is G-gapped and/or unital
fori=1,2.

We next explain the relation between a filtered A, bi-module and a bi-functor. We need
a digression for this purpose.

Definition 5.14. Let %), 62, %3 be strict non-unital curved filtered A, categories. We will
define bijections between the following three objects:

(1) A filtered Ay, bi-functor .7 : €] X €2 — €3.

(2) A filtered Ao bi-functor .#: 6, x 61 — 65.

(3) A filtered A functor: 4: € — FUNC(62,63).

The bijection between (1) and (2) is constructed by using the isomorphism
S: By Gi[1((e1,1,¢12) ® B, Ga[1]((ca,1, c22) = Biy G[1]((c2,1, €22) © By, €[ ((e1,1, e12),

which is S(x @ y) = (—1)deg'xdeg’yy @ x.

We next construct bijection between (1) and (3).

Suppose .Z is given as in (1). Let ¢; € OB(%1). We first construct Yp(c1
tered Ao functor: 62 — 3. Let ca € OB(%2). Then we put (%,n(c1))ob(c2)
OB(3). Let ca1,c22 € OB(62). We define

) Wthh is a fil-
= (Cl, 02) S

(Gob(€1))ky (€21, €22) 0 Br,6a[1](c2,1,¢2.2) = E3[1](Fob(c1, c2,1), Fob(ci, c2,2))

by (gob(cl))kQ (6271,0272)()’) = 9(61,01;02,1,0272)07]{2(1,}/), where 1 € Bo%l[l](cl,cl) = Ao, Yy S
By, 63[1](c2,1,¢2,2). We thus defined %, (c1), which is a filtered Ao, functor: ¢ — 6.

Let €1,1,C1,2 € D%(Cgl) and x € Bklcgl[l](CLl, 6172).

We will construct %, (c1,1,¢1,2)(x), which is a pre-natural transformation from %,(c1,1)
to Y1 (6172).

Let C2,1,C22 € D%(ng) and y € Bkz(gQ[l](CQ’l, 02,2). Then

(G, (c1.1,¢1,2)(X))ky (c2,1, €2,2) 0 Br,62[1](c2,1,¢2.2) = EG3[1](Fob(ci,1, 2,1), Fob(c1,2, €2,2))
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is defined by

(Gry (c1,1,1,2) (%) ko (2,15 €22)(Y) = Ty kn(C1,1, €125 €21, C22) (X, YY)

It is straightforward to check that ¢ is a filtered A, functor.
The construction from (3) to (1) can be done by doing the same construction in the opposite
direction.

Example 5.15. Let % : €°P x € — CH be the filtered A, bi-functor in Example 5.6. Then
by Definition 5.14, we obtain a filtered A, functor € — FUNC(€°P,CH). This is nothing but
the A~ Yoneda functor.

Lemma 5.16. In the situation of Definition 5.14, there exists an equivalence of A categories
MNC(%l, fUNC(CgQ, ng)) — ]'7/{./\/’0(%2, ]'—MNC(%l, (53))
Proof. The proof is similar to the above construction and is a straightforward calculation. W

Using Lemma 5.16 and Definition 5.14, we obtain a filtered A, category so that its ob-
ject is a filtered A, bi-functor: %) x %5 — 3. This filtered A, category is equivalent to
FUNC(61, FUNC(%,,%5)) by definition. We denote this filtered A, category by BZFUNC(é1
X G2, €3). A morphism between two filtered A, bi-functors in this category is called a pre-natural
transformation. It is called a natural transformation if its my derivative is zero.

Note that during the discussion of Definition 5.14 and Lemma 5.16, we required the fil-
tered A, categories to be strict.

Lemma 5.17. In the situation of Definitions 5.10 and 5.11, we assume €; is strict fori =1, 2.
Then there exists an equivalence of DG-categories

BIFUNC(E® x 5,CH) = BIMOD(%,,%).

Proof. In the same way as Example 5.3, we can find a bijection between the sets of bi-modules
and of bi-functors appearing as objects of the above two categories. The fact that morphisms
and structure operations coincide can be proved by a similar straightforward calculations. B

Remark 5.18. Note that in the case when %), %> are curved the author does not know the
way to define a filtered Ao category BZFUNC (61 x €2,%3). Only in the case when €5 = CH,
we can use the notion of bi-module to define DG-category equivalent to BZFUNC(6) X €,CH)
for curved categories %), %,. The functor category in the curved case is defined in [19], which
may be adapted to the bi-functor case.

The next lemma is an analogue of Lemma 5.8.

Lemma 5.19. Let 61, 62 be non-unital curved filtered A, categories and €}, €5 their associated
strict categories. Then a left-¢1 and right-¢3 filtered Aoo bi-module 9 = ({De,,c5 }, {ne) c1,c2,¢4 })
induces a left-67 and right-€5 filtered Ax bi-functor 2°. If 9 s unital or G-gapped, then so
is D°.

If 21, Do are left-61 and right-63 filtered A bi-modules and | is a pre-filtered Ao bi-module
homomorphism from 21 to Zo. Then we can associate a pre-filtered bi-module homomorphism §°
from 5 to Z5. It induces a DG-functor from BIMOD(%1,%2) to BIMOD(67,%5).

3 =

Proof. The proof is the same as the proof of Lemma 5.8. In fact, we can take D(Chbl)’(%bﬂ :

D¢, c,, and
s RN R b b b b. . b b b b
N (T1, e TR 2 YL, e Y) .—n(e S L1, € .. € X, ez e Yy e e Y, € )

The proof of the statement on pre-filtered Ao, bi-module homomorphism can be proved in the
same way as [34, Section 5.2.2.3]. |
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We next discuss a composition of A (bi)-functors and pullback of bi-module by A (bi)-
functors. To discuss them systematically we introduce the notion of a multi-A,, functor.

Definition 5.20. Let m be a positive integer and let %;, i« = 1,...,m, and ¢’ be non-unital
curved filtered Ao, categories. A filtered Ao multi-functor F: €, X --- X 6, — €' consists
of Zon, and Fy, .., ki =0,1,2,3,..., of degree 0 such that

(1) A map: Zon: [[12 OB(E;) — OB(E") is given.

(2) Let cip,ci2 € OB(%), i =1,...,m. We put ¢; = (c15,...,Cm,), for j =1,2. Fp, .
associates a Ag linear map

Tkt rhim (C1; C2) ® By, 6i[1(cin, ci2) = C[1(Fob(E1), Fob(C2))

of degree 0.

(3) We require that Zy, . (Ci;¢2) preserves the filtration in a similar sense as Defini-
tion 2.2 (2).

{Zk, ...k } induces uniquely a formal coalgebra homomorphism

C1,CQ ®B<5 Cz 1,Ci72) — B(g/[l](ﬂob(é‘l),gob(éé)).

Note that the structure operations of %; induce coderivations

di: B€i[1](ci,ci2) = BEi[1)(cia, i)

—

(4) The homomorphism .% (¢;; ¢2) is a cochain map.

The unitality, strictness, G-gappedness of multi-functor are defined in the same way.
In the case when m = 3, the multi-functor is called the tri-functor.

Lemma 5.21. A filtered Ao, multi-functor F induces a strict filtered Ao multi-functor F*°
among the associated strict categories. The unitality and/or G-gappedness is preserved.

The proof is the same as Lemma 5.8 and is omitted.
Let €1,...,%, and 67, ...,%,, be non-unial filtered A, categories and .7 : 61 x --- X €, —
€ and 9: €| x - x €, - €" be Ay, multi-functors. We define its composition

GoF: G X XC_ | XCLX X Cy X Gy X+ XC —C"

(Go07)(x1® X1 QY1 @ QYm DXpy1 @ -+ @ Xp)
=9xX1®0 X 1@ F(y1®  QYm) @ X1 @ -+ @ Xg). (5.14)

It is easy to check that (5.14) defines a multi-functor.

Lemma 5.22. Suppose €1,...,%m and €' are strict. Then, we can define a filtered Ay cate-
gories MULFUNC(C) X -+ X G, E") such that

(1) Its object is a filtered Aoo multi-functor F: €1 X -+ X € — €.
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(2) There exists a filtered Ao bi-functor

MULFUNC(E, X -+ X C, €") x MULFUNC(E] % - X C",,Cr)
— MULFUNC(C) X -+ X Co1 X C] X -+ X Cpyp X Chop1 X =+ X Cy E")

such that (F,9) — 94 o F is its object part.

The proof of (1) is straightforward. (2) is a straightforward generalization of Theorem 10.1.

Now it is rather obvious how to define the notion of multi-module over (curved) filtered Ao,
categories and define the notion of a pullback of a multi-module structure by multi-functor. We
explain it below since we will use it.

Definition 5.23. Let €, 1,...,%, and €, 1,...,%, » be non-unial filtered A, categories A
left-%671, ..., 6m and right-%.1, ..., €, m filtered Ao multi-module, is ({Dg ¢}, {na,ggfmg’r}),
where

(1) Toeach @ € [[", OB(%;,), & € [[;, OB(E},), a graded completed free Ag module Dy, z,
is assigned.

(2) To each ¢,¢ € [, OB(6;1), ¢, ¢. € [12, OB(,), we are given a Ay module homo-
morphism

1

my
®Bcg1(c;‘7lycj,l) 55 ®®B%ﬂ Cjry ]r)_>DEYE;J
) =1

of degree +1 which preserves the energy filtration.

In case m +m’ = 3, we call it a tri-module.

The unitality and/or gappedness of multi-module over unital and/or gapped categories are
defined in an obvious way.

When 2¢ = ({DZ } {nz &G, }) is a left-¢;1,...,%6,, and right-%,.1,...,%, v filtered
Ao multi-module for E = 1,2, a multi-module pre-homomorphism from 2! to 92 of degree
d is f = {fz . } where the map fz ¢,

my
®B%1(C;71,Cj7l ®DEZ Cr ® ®B<€ C] T _77“) - Dzl,c
. j=1

is a degree dAy module homomorphism which preserves filtration.
The maps f induces a formal bi-comodule homomorphism

my
fa.e. @ ®B(51(C},zacgl ®D5,5T®B<5 s Ciir)

]l7jT“7 1

— ®B<gl(c;,l,cﬂ )& D2 - ®B% (¢ i)
j=1

in the same way as Definition 5.20 (1).
We define df = {(df)e & } by

(s, = ., T, — (1T g 0

C1,Cr cr,Cr*

Here ﬁé z. 1s the boundary operator induced from the structure operations of 2* as in item (3)

above.
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When § (resp. g) is a multi-module pre-homomorphism from @1 to 92 (resp 2? to @3)
define a multi-module pre-homomorphism fo g from 2! to 23 by fo g=fog.
Thus we obtain the following filtered DG-category:

(1) Its object is a left-%7 1, ..., € m and right-%,.1, ..., € ny filtered Ao multi-module.
(2) The module of morphisms is the set of multi-module pre-homomorphisms.

(3) The differential d and composition o is defined as above.

The unitality and/or gappedness of a multi-module homomorphism is defined in an obvious
way.

To a left-¢7 1, ..., 61m and right-€,.1, . .., 6.y filtered Ao, multi-module & we can associate
a left—%lfl, . ,%ﬁm and right-¢7,, . .. ,%Tfm, filtered Ay multi-module 27 in the same way as
Lemma 5.21.

If6.1,...,%m and 6,.1,...,%,, are strict then there exists a bijection between the set of
all the left-¢7 1, ..., % m and right-%,. 1, ..., €, v filtered A, multi-modules & and the set of all
the filtered A, multi-functors % : Sa”lof X -oe X CKZOTI; X Crq X -+ X €y — CH. Moreover, the
set of multi-module homomorphisms ‘can be identified with the set of natural transformations
in the category defined in Lemma 5.22.

Let €11, C1m, €r1y--.Crm, and 6] ,,..., %], be non-unial curved filtered A cat-
egories and F: €1 X -+ X € — €] be a multi-functor. TLet 2 be a left %ﬂl/lv" %’
and right €,1,..., %, m, multi-module. Then we can pull back 2 by .# and obtain a left
%1’71, .. ,%{,kil, Clis--- ,‘é,m(fl”kﬂ, .. ,%{’m, and right 6,1, ..., 6ym, bi-module, which we de-
note .#*%. We can perform a similar construction for A, categories which act from right. This
construction commutes with the process to associate 2° to 2.

In the strict case, the above construction coincides with the composition of multi-functors
via the identification between a multi-functor to CH and a multi-module.

5.2 A geometric realization of an A, tri-module 1

Situation 5.24. Let (X;,w1), (X2,w2) be symplectic manifolds and V; an oriented real vector
bundle on the 3-skeleton (X;)3) of X;, for i = 1,2. (Namely, V; is a background datum in the
sense of Definition 3.4.)

We consider a clean collection LL; (resp. Lg) of Vi (resp. V2) relatively spin oriented and
immersed Lagrangian submanifolds of X;. (See Situation 3.45.) We also take a finite set Lia of
(Vi@ T X1)®msVa relatively spin oriented and immersed Lagrangian submanifolds of — X x Xo
that have clean intersection. We also assume that L1 x Lo has clean intersection with L5 when
L, € L;, Lis € Lqo.

In this subsection and the next, we will prove the following theorem.

Theorem 5.25. There exists a left-Fut(X1, Vi, L1), Sub(—X1 x Xo, i (Vi @ TX1) & w5V, Li2)
and right-§ut(Xq, Vo, Lo) filtered Asy tri-module € % (L1, L12;1Le). It is unital and gapped.

We call it the correspondence tri-module.

Remark 5.26. We consider associated tri-module®! (see Lemma 5.19) over strict categories
Sutst( X1, Vi, L), Fubst(— X1 x Xo, 7f (V1i®T X1)Bm5Va, Lia), Futst(Xy, Vi, L;1). Then for objects
(L1,b1), (L12,b12), (La,ba) of those categories, the tri-module of Theorem 5.25 induces a chain
complex CF((L1,b1), (L12,b12); (L2,b2)). Its cohomology is isomorphic to the Floer cohomology
of HF((Ly2,b12); (L1 X Lo, by X b2)). This fact will be proved in Section 16 (see Theorem 16.17).
The product b; x by of bounding cochains is defined in Proposition 16.11.

51An Ae tri-module is a special case of a multi-module (see Definition 5.23), that is a multi-module over
three Ao categories.
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Proof. The proof of Theorem 5.25 occupies this and the next subsections. In the same way
as Section 3.5, it suffices to consider the case when IL;, Ls, LL1o consist of single immersed
Lagrangian submanifolds Lq, Lo and Lqo, respectively, and construct structure operations

n: BCF[1](L1) ®x, BOCF[1](L12) ® D[1] ®, BCF[1](Ls) — DI[1]
for a certain graded completed free Ag module D, such that they satisfy A, relation.’?

The construction of n uses certain compactified moduli spaces Mqr(d1, di2, d2; a—, ay; E) of
pseudo-holomorphic quilts, which will be defined in Definition 5.40. We will define it in three
steps. o

We first define Mqr(di, di2,d2; a—,aq; E) in Definition 5.27. This moduli space is the set
of pseudo-holomorphic quilts which do not contain disk bubbles and are not split into several
quilts (see Figure 5.1). It contains objects with sphere bubbles.

We then include objects with disk bubbles and define /\o/lQT(Eil, d12,d2;a—,a4; E) in Defini-
tion 5.37.

Finally, we include the process where a sequence of a pseudo-holomorphic quilts splits into
several pseudo-holomorphic quilts in the limit and define Mqr(d1, @12, d2; a—, ay; E) in Defini-
tion 5.40. The detail will follow.

We decompose the fiber products into connected components

Li(—l-) =1L, X X, L, = f/z U H Li(a)

fori=1,2, and

Lia(+) = L1a X x,xx, L1 = Lo U H Liz(a).

a€AL,,

See Definition 3.2 (5). We also decompose

R = (El X ig) X X1 xXo Elg = H R(a)
a€AR

o k; < k
Let a; = (ajyl,...,ajykj) S (.Az) J, a1 = (a1271,...,a127k) S ("42_12) , Ap,a_ € AR and E €

R>¢. (Here AJL“12 := Ar,, U{o} and o is the index of the diagonal component.) Below, we
identify R x R 2 C by (s,t) — s+ +/—1¢.

Definition 5.27. We consider (X; 21, Z12, Z2; u1, u2; 1, V12, ¥2) with the following properties (see
Figure 5.1):

(1) The space X is a bordered Riemann surface with ¥ O ([—1,1] x R). The closure of
¥\ ([-1,1] x R) is a finite union of (maximal) trees of spheres. We call its connected
component a tree of sphere components. We require that a tree of sphere components

intersects with [—1,1] x R at one point, which we call its root. All the roots are points
of ((=1,0) U (0,1)) x R.53

(2) Let €5 (resp. Q2) be the union of [—1,0] x R (resp. [0, +1] x R)) and the trees of sphere
components rooted on it. We require the maps ui: Q1 — (X1, J1) and ug: Qy — (Xa, J2)
to be pseudo-holomorphic.

52Here we shifted the degree of elements of D. This is because it is more consistent with the discussion of sign
in Section 17.
53We require that the root is not on {0, £1} x R.
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(3) We put z; = (%i1,..-,2ik), ¢ = 1,2. Then z;; € {—1} xR, 22 € {1} x R. Zzjp =
(212’1, ey 2127k), 212, € {O} xR. Ifj1 < jo then Im 21,5, > Im 21,425 Im 212,51 > Im 212,52 and
Im 29 j, < Imzpj,. See Remark 5.30 for this enumeration. We put || = {z1,..., 2}
|Z12| is defined in the same way.

(4) The maps v1: ({=1} xR)\|Z1| = L, v2: ({1} xR)\ || = L2, y12: ({0} x R)\|Z1o| = Laa
are smooth and satisfy

in(m(2) =w(z) i ze ({1} xR)\[Z],

in,(92(2)) = w2(z) if ze ({1} xR)\ [Z],
i (M2(2)) = (w(2),u2(2))  if 2 € ({0} X R) \ |21

=Uu
=Uu

~— —

(5) At 21, Zo, Z12, the maps 71, 72, 712 satisfy the switching condition, Condition 5.28 below.

(6) When z € [-1,1] x R, Imz — <00, the maps u;(z) and wuz(z) satisfy the asymptotic
boundary condition, Condition 5.29 below.

(7) The stability condition, Condition 5.31 below, is satisfied.
(8) le ujwy + fﬂg ujwy = E.

We will define an equivalence relation ~ among_the objects (¥; 21, 212, 25 u1, u2; 71, 12, 72)
satisfying (1)—(8), in Definition 5.32. We denote by Mqr(d1, di2, d2; a—, ay; E) the set of all the
equivalence classes of this equivalence relation. We call its element a pseudo-holomorphic quilt.

7. Yo v

L12

L,
%o,
25
L,
L,
L2
<123 F<Zz,z
L,
u, U, L,
X z,,

Figure 5.1. An element Mqr(d1, @12, d2;a—,a4; E).

We next describe three of the conditions in Definition 5.27. We put
HE={-1} xR,  &HT={1} xR, 0125 ={0} xR.

We call the line {0} x R the seam. We define the limit p = lim.cg,x 2|2, ; 71(2) as follows. If
Zn, 2 € ({=1} x R)\ |Z1], Im 2z, > Im 21 ; and limy, 00 2, = 21,5, then p = limy, o0 71(25). The
notations limzealz,szl,]- etc. are defined in the same way.
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The two switching conditions below are analogues of the switching conditions which appeared
in the immersed Lagrangian Floer theory. See Definition 3.17 (5) and Figure 3.5.

Condition 5.28 (switching condition 1).

(1) For each j, (limsep, 5,202 ; 11(2), limeeo s 212, ; 71(2)) € Li(ar ;).

(2) For each j, (lim.eg,s 212 ; 12(2), liMecoys 2120 ; 12(2)) € La(az,;).

(3) For each j, (lim,ep,,5 21215 ; 712(2), liMaeo,,5 2121, ; M12(2)) € Lia(a12,5).
Condition 5.29 (switching condition 2).

(1) There exists (P4oo,1,P+00,2) € R(a4) such that

lim (71 (=1+7vV-1),%(+1 +7V-1)) = ptoo1, lim Y12(TV—1) = piocy.

T—+00
(2) There exists (P—oo,1,P—o00,2) € R(a_) such that

TET_HOO(% (-1 —=7vV-1),%2(+1+7V-1)) = p_oo 1, Tli)liﬂoo Y12 (TV—=1) = p_so -

See Figure 5.2.

L

L(TV=1)
y,(—1+r\/—_l) &

¥, (+1+74=1)
R I %
R

© o0 ©
/

A Py 7D
}’12 (_oo\/__l) =P

Py

Figure 5.2. Switching condition 2.

Remark 5.30. Note that we enumerate the marked points on 71, v12 downward and the marked
points on 9 upward. This is related to the fact that we are constructing left Fut(Xy, Vi,1L;),
Sut(—X; x Xo, mf (Vi ®T X)) ®73Va,Li2) and right Fut(Xs, Va,Lg) filtered Ay tri-module. (We
also remark the input D corresponds to the end 7 — —00.)

In fact, we write the structure operation of this filtered A, tri-module as

n(w17"'7xk1;y17"'7yk12;z;w17"'7wk2)'

Here x; corresponds to the evaluation map at the i-th marked point of ~1, y; corresponds to the
evaluation map at the ¢-th marked point of 719, w; corresponds to the evaluation map at the
i-th marked point of v5. Thus the way we enumerate the marked points is consistent with the
way we write the structure operation.
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Condition 5.31 (stability condition). The set of all the maps v: ¥ — X satisfying the next
conditions is finite.

(1) The map v is a homeomorphism and is biholomorphic on each of the irreducible compo-
nents.

(2) upov=mwuy, ugov = us.
Definition 5.32. We define evaluation maps
1 12 12 2

ev = (evl,evu,eVQ) = ((ev%, .. .,evkl), (evl - ,ev,m), (evl, ... ,GV%Q)) :
k12

]{31 k'2
Mqr(dr, iz, G2;a—, a4; E) — HLl(al,j) X Hle(alz,j) X H La(az,5)

and
eVoo = (€Voo,—, Voo +): Mqr(d1,d12,d2;a—,a1; E) = R(a—) x R(ay)
as follows.

(1) We use Condition 5.28 (1) to define

Ly 2 2 = . _ - -
ev; (X 21, 212, Z2; u1, u2; 71,712, 72) = (Zeallglirzll,zl,j 71(2),Z6811§1;1TZ1J 71(2)) € Li(a1).

(2) We use Condition 5.28 (3) to define

ev? (3 21, 21, Zo; U1, U2 11, Y12, 72)
= lim z), lim z)) € Lia(aiaj).
(26312274212,3' 712( ) 2€012%,21212,; 712( )) 12( 12’J)
(3) The evaluation map ev? is defined in the same way by using Condition 5.28 (2).

(4) We use Condition 5.29 (1) to define

eVoo,+(2; 21, Z12, Z2; U1, 2; 1,712, V2)

= i (0 (14 7V71) 3 (H1+ 7VD)) e (V).

T

The definition of evy, — is similar. We call them evaluation maps at infinity.

Definition 5.33. We say (X; 21, 212, Z2; u1, u2; 71,712, 72) as in Definition 5.27 is equivalent
to (X5 2], 2y, Z5; ul, ub; 41, Vg, 74) if there exist v: ¥ — 3 satisfying the next conditions.
(1) The map v is a homeomorphism and is biholomorphic on each connected component.

(2) We require v(£21) = ), v(Q2) = Q). Here Q] is the union of [-1,0] x R C ¥ and the
trees of sphere components rooted on it. Q) is defined in the same way.

(3) ujov=1uy, uhov=us.
(4) v(zij) = 2, v(z12,5) = 219 j, where i = 1,2.

(5) YoV ="1,7 00V ="2, V20V = Y12.
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Remark 5.34. In Floer theory, the moduli space which is used to define the boundary operator
is the quotient space by R action. (This R action is induced by the translation of the R direction,
which is the second factor of [—1,1] X R in our situation.) The process to take the set of
equivalence classes of the equivalence relation in Definition 5.33 includes the process to take
the quotient by this R action. In other words, the object r = (¥; 21, 212, Zo; u1, u2; 71, V12, 72)
and 7r which is obtained from r by shifting everything by 7 € R are equivalent in the sense of
Definition 5.33.

There is no mathematical difference between the way we take here and the usual way to
take quotient by R action. They are slightly different ways to describe the same mathematical
contents.

In our situation, Condition 5.29 is a consequence of the other conditions. More precisely, we
have the following.

Lemma 5.35. Let (X; 21, 212, Z2; u1, u2; 71, v2, ¥12) be an object which satisfies conditions of Def-
inition 5.27 except possibly (6), for some dy, d2, d, E. (Note that ax appears only in (6).) Then
there exists a_, ay such that (6) =Condition 5.29 is satisfied.

Moreover, there exists Cy,cp > 0 such that

Hvkul(z)H < C’ke_ckumz‘, Hvkul(z)H < C’ke_ckllmzl.

Proof. We use (¢,7) as a coordinate of [0, 1] x [r9,00) and the point (¢,7) € [0,1] X [r9, 00) is
identified with z =t + v/—17 € C.

We may assume that there is no tree of sphere components whose root is a point z with 7 > 7.
We may also assume that Im z; j,Imz12; < —79. We define u: [0,1] x [19,00) — (X1, —=J1) X
(X2, J2) by u(z) = (u1(2), u2(2)).

The map u is pseudo-holomorphic and u({4+1} x [r,00)) C L1 X Lo, u({0} X [19,0)) C L12.
Moreover,

/ (= (1) + 75 (wn)) < 0o,
[Ovl]X[T(J? )

Since L1a and Lj x Lo have clean intersection (see Situation 5.24), there exists an element
Ptoo = (Ptoo,1,Pto0,2) € L12 N (L1 X Lg) such that

d(u(z)aeroo) < Ce_c‘lmzh Hvku(Z)H < Ck—Ck|1m2|

on [0,1] X (79,00). (See [48, Lemmas 2.4 and 2.5] for example.) We can discuss in the same way
for 7 < —79. |

We will next discuss the compactification of /\cleT(Eil, d12,d2;a—,a4; E). Note that we already
included objects with sphere bubbles in Mqr(d1, di2, d2; a—, ay; E). We need to include disk
bubbles and the process where elements split into several pieces in the second factor of [—1, 1] xR.
Note that disk bubbles may occur at the boundaries 9;€2, 3>€2 or the seam 0122, where pseudo-
holomorphic disks in X3, X3, —X; X X9 with boundary in L, Lo, Li2 can bubble, respectively.
The moduli spaces of such pseudo-holomorphic disks are described by the moduli spaces we
introduced in Section 3.2 and hence the moduli space of objects with disk bubbles is obtained
by an appropriate fiber product. We will describe it below.

Definition 5.36. Let M(L;d; E) be the moduli space introduced in (3.19). For the sake of
simplicity of notations, we use the next (slight abuse of) notations. Let @ = (a,a) (a € Ar). We
include M(L;a;0) = M(L; (a,a);0) and define it to be a single point consisting of a constant
map to L(a). In fact, this element is unstable. However, we include it as an exception here. See
Remark 5.39.
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Let
(7)) — (,5() i,(j + ™)+ C C )
aht) = (ao ,...,afn(igj)) € (‘ALZ-) @ fori=1,2,7=1,....k;
and
~12,(j 12,(j 12,35 my2, (j+1 .
gzl = (ag (]),...,aml’gj’()j)) € (AE) 12,09) for j=1,...,kps.
Here m; () and my3 (;) are nonnegative integers.
We put
., (1 i\ (ki ki 4
a; = (ajq,...,a7,) = (ag( ),...,ag( )) € (.AJL“Z) , i=1,2,
(] / o 12,(1) 12,(k12) + \ki2
a12 = (a1271,...,a127k12) = (CLO ,..,,ao 12 ) c (Ang) .
We define
() . (a1 i i,(2 i (j i, (ks i (ks m;
#j&“m = (al( ),...,a;l(zzl),al( ),...,a:n(ZEQ),...,al( ),...,a:n(i’(ii)) € (Aj{z) ,
where ¢ = 1,2 and m; = Zj m; (j)- We moreover put
-12,(5) . (. 12,(1) 12,(5 12,(k12) 12,(k + \mi2
#;d @)= (a7, .0, mlgj’()l),...,al b ,amlg(llf))) € (Ang) ,

where miz = > mis ;). (See Figure 5.3.)

atw b
I
% ; a2
61'(2)

Figure 5.3. Domain of an element of MQT(dl,dlg, do;a_,ay; E).

Definition 5.37. We define the set /\O/lQT (d1,d12,d2;a—,at; E) as the union of the fiber products

k1
[e]e)
S S S Nl . =21,(7).
MQT(al,a12,CL2,(L_,CL+,E) Xevo,...,evo HM(Ll,CL (']), ELj)
J=1
k12

/ . 212,(7).
Xevg,...,evo HM (L12,CL (])aE12,j)
j=1

k2
Xevonoevo | | M (La2; @9 By ), (5.15)
j=1

where #,;a"0) = a@y, #,;a'*0) = dyy, #,a*0) =dy, E'+ Y, E1j+ > F12j+ Y. B2 = E.
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We remark that in the first line of (5.15) the fiber product is taken over Hflzl Ly (a(l)’(j )) by
the evaluation maps

L. A (A A g L,(7)
evi: Mqr(dy,dyg, dy;a_,aq; ') = Li(ag™”’),

evp: M(Ll;al,(j);ELj) —>L1(a(1]’(j)),

The fiber product in the second line is taken over H;“jl Lio (aéz’(j )) by the evaluation maps

[e]e]

12, o o Y 12,(4)
evi’: M(ay, g, dy;a_,aq; E') = Lia(ay™"),

€vp: MI(L12; 6127(”; ElZ,j) — L12 (a(l)Q’(j)) .

The fiber product in the third line is taken in a similar way.

Remark 5.38. In the formula (5.15), we used a compactification M’(ng;dlz’(j);EmJ) of
the space M (L12;612’(j);E127j). Here M (L12;612’(j);E127j) is the moduli space of pseudo-
holomorphic disks whose source curve is D? without any disk or sphere bubbles. This compact-
ification is similar to the stable map compactification M(ng; Eim’(j); Elzyj) which we defined in
Section 3.2 but is slightly different from it. It is necessary to use different compactification for
our space Mqr(d1, di2,d2; a—,ay; E) to carry a Kuranishi structure. We will explain this point
in detail in Section 12.

Remark 5.39. As we mentioned before, we include the case when a factor M(Ll; at . El,j)
is M(Ly; (a,a);0). This moduli space consists of one point and is a constant map to a point
in Ly(a). Note that this element actually is not a stable map since its automorphism group is R.
This case corresponds to the case when the corresponding marked point is on the line {—1} x R
(and not on the disk bubble) and is mapped to an element of L;(a). We include this case in (5.15)
and etc. for the sake of simplicity of notation. When we regard this element as a ‘stable map’ we
shrink this disk and regard the ‘root’ as a marked point. (See Figure 5.4.) We consider the case
when M'(L2; (a,a);0) (resp. M(Lg; (a,a);0)) appears in the second (resp. third) line of (5.15)
in the same way.

marked point

constant map

Figure 5.4. Shrink an element of M(Ls; (a,a);0).

We have thus included the objects with disk bubbles. We finally define our compactification
as follows.

Definition 5.40. We define the set Mqr (a1, d12, d2; a—, ay; E) as the union of the fiber products

Maqr (@10, @12,0, G2,05 a0, a1; E1) X p(ay) MQr(@i1, 12,1, 2,15 a1, a5 E2) X giag) -+

X R(ay_1) MQT (@10, 12,0, To03 g1, ag; Ey). (5.16)
Here @y = d10,d1,1,...,01,¢, G12 = G12,0,012,1,- - -, A12,¢, A2 = d2,¢, A2 0—1,- .., 02,0, E1+- -+ Ep =
E and a_ = ag,ai,...,ar-1,a0 = ay € Ar. We use the maps evo, = (€Voo,—,€Veo +) to define

the fiber product.
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Figure 5.5. Fiber product (5.16).

Definition 5.41. We define the evaluation maps

ev = (evl,evw,eVZ) = ((ev%, . ev,lﬂ), (ev%27 ... ,ev,li), (ev%, .. ,evi2)) :

k1 k12 k2
Maqr(adr, di2, d2;a—,a4; E) — HLl(al,j) X HL12(a12,j) X H Ly(as;)
j=1 j=1 j=1

and
eVoo = (eVoo,—, €Veo 4+ )1 Mqr(di,di2,d2;a—,ay; E) = R(a—) x R(ay)

in the same way as Definition 5.32.

Proposition 5.42. We can define a topology on Mqr(di,di2,d2; a—,aq; E) by which this space
is compact and Hausdorff.

The topology we use is the stable map topology which is similar to [35, Definitions 7.1.39
and 7.1.42] and [49, Definition 10.3]. The proof of the proposition is similar to one in [49,
Definition 10.3]. The only new point is the way how we handle disk bubbles on the seam {0} x R
and more importantly the sphere bubbles on such disk bubbles. This is the point related to
Remark 5.38. We will discuss this point in detail in Section 12.

Theorem 5.43. The space Mqr(di,di2,d2;a—,ay; E) has a Kuranishi structure with corners
with the following properties:

(1) We denote the codimension d normalized corner of the space with Kuranishi structure,
Maqr(ai, di2, do;a—, aq; E), by SgMqr(di, dig, de;a—,ay; E). Then it is a union of the
fiber products

Sa, Maqr (a0, di2,0, d2,0; ao, a1; £1)
X R(ay)SdeMQr (@11, @121, G215 a1, a2; E2) X g(ay) * -

X Ray_1)Sd;MaQr (@10, @12,0, do,05 ag—1, ag; Ey)

of the form (5.16), where dy +---+dy+¢—1>d
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(2) The codimension d; normalized corner Sq, Mqr(dy j, 12,5, G2 5; a5, aj+1; E) is the union of
the closure of subsets

k1
oo
=/ =/ =/ / —
MQT(CLI’ dyg9, Ay a—, a4; F ) Xevg,...,evo H Sd’l [M(Ll; ai,j; E17j)
5 4
Jj=1

k12
N =
X evg,....ev0 H Sq. M (Lig;d125; E2,5)
j=1

12,65

k2

Xevo,...,evo H Sd’2 [_M(L% a:2,]'; E2,j)
! £
Jj=1

of (5.15) such that there are k}y + kb + k% + 1 factors other than those of the form of one
of M(Ly; (a,a);0), M(Lig;(a,a);0), M(Lg;(a,a);0) and

k1 k12 ko
dj =k + Ry + R+ i+ digg + Y dog,
j=1 j=1 J=1

(3) The evaluation maps defined in (5.32) are the underlying continuous maps of strongly
smooth maps.

(4) The evaluation maps defined in (5.41) are the underlying continuous maps of strongly
smooth maps. eve 4 is weakly submersive also.

(5) The fiber product description (5.15) and (5.16) are compatible with the Kuranishi struc-
tures. Namely, there exists an isomorphism between Kuranishi structures on the moduli
space Mqr (@1, a2, d2; a—,a4; E) with ones obtained as the fiber product Kuranishi struc-
tures of (5.15) or (5.16). Here on the spaces appearing in the second, third and fourth
factors of (5.15) we take the Kuranishi structures given in Theorem 3.24.

(6) The isomorphisms of the Kuranishi structures in item (5) satisfies corner compatibility
conditions which are similar to Condition 3.27.

(7) Given relative spin structures of L1, Lia, Lo (with background data Vi, ©7(Vi & TX1) ®
75(V2), Va, respectively) we can define a principal O(1) bundle ©1, , on R(a) such that the
orientation bundle of Mqr(di,di2,d2;a—,ay; E) is canonically isomorphic to the tensor
product of the pullbacks of @gu, 12.0; @;2’1,, ©,.- The isomorphism is compatible with
the description of the boundary which is a part of item (1).5*

Most of the proof of Theorem 5.43 is the same as the proof of Theorem 3.24 and is now becom-
ing a routine, in the study of pseudo-holomorphic curves based on the virtual fundamental chain
technique. (See [47].) The only point we need a discussion other than those in Theorem 5.43 is
the way how we handle the point mentioned in Remark 5.38. We will discuss it in Section 12.

See Sections 17.2, 17.6 and [68] for item (7).

We finally mention the gappedness, which is related to Gromov-compactness. We define

Go(L1, L2, Lo) := {E € R<q | Mqr (a1, @12, d2; 0, a4; E)

is nonempty for some dy, d12, do; a_, a+}.

54In the case of moduli space of holomorphic disks, a precise meaning of compatibility at boundary with
orientation is written as [46, Condition 21.6 (IX)], when L is embedded. There is an explicit correction term
of sign in [46, Condition 21.6 (IX)] which coincides with one in [35] and [72]. However, the discussion of this
paper is not affected by the explicit form of correction terms. See Remark 17.2. In the case L is immersed with
self-transversal intersection, it is given in [4, equation (73)]. The way to generalize it to the self-clean case is in
Section 17.6 and in the paper [68] by Kaoru Ono. In the way we explain in Section 17, the case of the moduli
space of quilt etc. can be reduced to the case of disks.
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Gromov compactness implies that Go(L1, L12, L2) is a discrete subset of R>o. Let Go(L1),
Go(L12), Go(L2) be as in (3.14).

Definition 5.44. We define G(L1, L12, L) to be the discrete submonoid generated by the union
of Go(L1, L2, L2), Go(L1), Go(L12), Go(L2).
The next lemma is obvious.

Lemma 5.45. The set G(L1, L12, Lo) is a discrete submonoid. If the moduli space M(dy, d12, do;
a_,a4; E) is non-empty, then E € G(L1, L12, L2).

The filtered Ay tri-module in Theorem 5.25 will be G(L1, L12, Lo)-gapped.

5.3 A geometric realization of an A, tri-module 2

Using the system of Kuranishi structures given in Theorem 5.43, we can define a system of
CF-perturbations. We will state it as Proposition 5.48 below. We first describe the situation
we work with precisely.

Lemma 5.46. The conclusions of Theorem 3.24 and Proposition 3.30 still hold when we replace
the compactification M(L12;d12; E12) by the other compactification M'(Li2;d12; E12).

The proof is the same as the proof of Theorem 3.24 and Proposition 3.30 once the definition
of M'(L12; d12; F12) is understood. See Theorem 12.24.

Situation 5.47. Let Ey > 0. We are given a system of CF-perturbations of M(Ly;dy; F1),
M(Lg; do; Eo), M'(L12;d12; E12) for Ey, Ea, E19 < FEjy, so that they satisfy the conclusions of
Theorem 3.24 and Proposition 3.30.

Proposition 5.48. Let Ey > 0. There exists a system of CF-perturbations S on the moduli
spaces M(dy, @12, d2; a—, ay; E) with Kuranishi structures which are outer collarings of thicken-
ings of those given in Theorem 5.43. It enjoys the following properties:

(1) The CF-perturbations S are transversal to zero.

(2) The evaluation map evq is strongly submersive with respect to this CF-perturbation (see
[40, Definition 9.2] for the definition of strong submersivity).

(3) They are compatible with the fiber product description of their corners given in Theo-
rem 5.43. Here we use CF-perturbations in Situation 5.47 on those factors in the same
sense as Proposition 3.30.

(4) They are compatible with the forgetful maps of the marked points which corresponds to the
diagonal component other than 0-th one. The precise definition of compatibility is written
in [28, Definition 5.1].

Proof. The proof is by the general theory of Kuranishi structures, such as those developed
in [40, 43, 46]. See [28] for item (4). |

Definition 5.49.
(1) We put
E = CF(Ll, ng, LQ;R) =~ Q((El X EQ) X X1 xXo I~/12; @7), (517)

where ©7 is a Zs local system defined on the ﬁlEr product (El X f/g) X X1 % X [~/12 by
Theorem 5.43 (7), and D = CF(L1, L12, L2; Ag) = D ®g Ag. Then D is a cochain complex
with differential § = d.



Unobstructed Immersed Lagrangian Correspondence and Filtered A., Functor 77

(2) We will define the structure operations

N st BrCF(L1iR)[1] @ By,,CF(L1g; R)[1] @ D[] ® By,,CF(Ly; R)[1] — D[1]

as follows. Let

X=T Q- QT € B]ﬁCF(Ll;R)[l],
Y=Y12® D Ykyy € Bklch(Ll%R)[l]’
z2=21® - Q2 € Bk2CF(L2;R)[1],

and w € D. Then

Ee o * * * *
LTS (x,y,w,z) := evoo,_%!(evlylxl N Nevy g T Aevig 1yt A A evig Yk,

AwAevy 21 A Aevyy zr,; &°). (5.18)

Here we use the integration along the fiber on the moduli spaces M(dy, dr2,d2;a—,a4; F)
with Kuranishi structures and its CF-perturbations & in Proposition 5.48 to define the
right-hand side (see [46, Definition 7.79]).°

(3) We finally put

<FEp,e _ Z E. FEe
Wy kioka — T My k1a,ka

E<Ey, EEG(L1,L12,L2)
This is a map

n:f,gl’;h: By, CF(L1)[1] ® By, CF(L12)[l] ® D[1] ® By,CF(L2)[1] — D[1].
Remark 5.50. We remark that we need a certain sign (—1)* in (5.18). We will prove in Sec-
tion 17 that there exists a choice of the sign so that A relation (5.19) holds with sign. The
sign « is in principle calculable from the discussion of Section 17 and the sign given in [4, 35, 46],
Section 17.6 and [68]. Since all we need to prove the main results of this paper are existence of
sign * and not its explicit formula we do not try to calculate it. We do not repeat this remark
in several other places.

Proposition 5.51. n,lel?lz k, defines a filtered Ao tri-module modulo TFo. Namely, it satisfies

the congruence

— § : *1 .. <Fp,e <FEp,e
O == (_1) 1“ 0 (X01;17y612;17n 0 (X61;2’y612;27w7Z62;1))Z62;2)
C1,C12,C2

+ (_1)*2n<E076 (C/Z\Xv y,w, Z) + (_1)*3n<EO7E (X7 El\yv w, Z)
(1) B (x,y, w0, d7) + (1) 6050 (o, w, )
+ (=1)*n<Fof(x,y 6w, z) mod T, (5.19)

This filtered Ao tri-module modulo TF° is unital.

The notations in (5.19) is as follows. We define x.,.1, X¢; ;2 by A(x) = ECl Xep1 @ Xepi2.
Here c; runs over a certain index set depending on x. The definitions of y¢,,:1, Yei0:1, Zeo;1, Zens2
are similar. The symbol d in the second (resp. third, fourth) term of (5.19) is the derivation

55We remark that ¢ is the boundary operator of D. The case ki, ka2, ki = 0, E # 0, the map ngbfo
may be nonzero and is a deformation of the boundary operator of D obtained by using moduli spaces
M(2,2,9;a—,a+; E).
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induced on BCF[1|(L;) (resp. BCFI[1|(Li2), BCFI1](Lz)) by its filtered Ay structure mod-
ulo TP0. § is the operator induced from the de Rham differential in the same way as (3.33).
We omit the indices k; etc. of the operator n since they are automatically determined by the
variables plugged in. The signs *;, i = 1,...,6, are determined by Koszul rule. We explain
Koszul rule in detail in Section 17.1

Proof. The proof is a routine using Theorem 5.43, Proposition 5.48, Stokes’ formula and the
composition formula and proceeds as follows.
By Stokes’ formula (see [46, Theorem 8.11]), we have

(_1)*55n<E7E(X7 y,w, Z) + (_1)*7H<E78(5(X7 y,w, Z))
= Z TEGVOO7+!(6VT’1x1 A A evikla:kl A ev’{llyl A A ev*{z,ﬂzykm Aw
E<FEy
A ev%zl VANEIVAN ev§7k22k2 : (8MQT(61, d12,d2;a—,a4; F), 65>) (5.20)

We include the symbol OMqr(ds, d12, d2; a—, at; E) in the right-hand side to clarify the fact that
we use this space to define the integration along the fiber. (We used Mqr(d1, di2, dz; a—, ay; E)
in (5.18).) There is actually a sign in the right-hand side of (5.20). We will explain it in
Section 17.2.

By Theorem 5.43 and (5.15), the normalized boundary OMqr(di, di2,d2;a—,ay; E) is the
union of the following four types of fiber products.

The first type is

Maqr(d1,0, @12,0, @2,0; a—, a; E1) X gay Mqr(a1,1,d12,1, G215 @, ay 5 Ea), (5.21)

where a1 U dy1 = d1, di2,0 U d12,1 = d12, dop U da1 = da2, 1 + Ey = E. See Figure 5.6.

R(a)
Figure 5.6. Fiber product (5.21). Figure 5.7. Fiber product (5.22).
The second type is
M(Ll; 5/1/, EQ) Xevy MQT(ﬁa, 612, 52; a—, 04, El). (5.22)
Here 5’1 = (a171, sy 141, b, A1 5415+, aLkl), 6,1/ = (b, A1y - - ,aLj) for some 1 <1 < j < kil

and b € Ar,. See Figure 5.7.
The third type is

M/(ng; 571/2; Eg) Xevp MQT(ﬁl, 5’12, 52; a—, Qy; El). (523)

Here 5’12 = (a1271, s A124-1, b, Q12,5415+ ak12), 6’1/2 = (b, Q1255 -« + 5 a127]’) for some 1 < < j <
k12 and b € Ar,,. See Figure 5.8.
The fourth type is

M(Ll; 5’2/, EQ) Xevo MQT(Zil, 512, 6’2, a—, a4, El). (5.24)
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Figure 5.8. Fiber product (5.23). Figure 5.9. Fiber product (5.24).

Here 6’2 = (G/Q’l, sy a24-1, b, A2 G415+, a27k2), C_LVQ/ = (b, A2y -« - ,CLQJ) for some 1 < < ] < kg
and b € Ar,. See Figure 5.9.

By the composition formula [46, Theorem 10.21], the integration along the fiber appearing
in (5.20) on the spaces (5.21) (resp. (5.22), (5.23), (5.24)) becomes the formula

*1 .. <Fp,e <Fo,e
E (_1) n (Xcl;laycp;lan (X61;25y012;27waZCQ§1)?ZC2§2)7
C1,C12,C2

(resp. the formula (—1)>"2r1</\E°’8 (c?x, y,w,z), the formula (—1)*n<Fo-(x, dy, w, z), and the for-
mula (—1)*n<%0¢(x,y, w,dz)). This implies (5.19). |

Thus we defined a filtered Ao tri-module modulo 770, The rest of the proof of Theorem 5.25
is the same as the last step of the proof of Theorem 3.14. We first define the notion of a pseudo-
isotopy of A tri-modules modulo 770 in a similar way as Definition 3.36 (see Section 14.4.1).
We next show that for E < E’ the Ao tri-modulo modulo 7% we constructed in Proposition 5.51
regarded as A, tri-module modulo T is pseudo-isotopic to the A, tri-module modulo TF we
constructed in Proposition 5.51. We then prove a similar algebraic lemma as Lemma 3.57. Us-
ing it, we complete the proof of Theorem 5.25 in the same way as the last step of the proof of
Theorem 3.14. Since this argument is now a routine, we omit the detail. |

6 Unobstructedness is preserved by an unobstructed
Lagrangian correspondence

In this section, we prove Theorem 1.5.

Situation 6.1. Suppose we are in Situation 5.24. Moreover, we assume that, for L1 € Ly and
Lis € 12, Ly has clean transformation by Lis. Let (L1,01) € Ly and (L12,012) € Lia. We
consider the geometric transformation (Lg,02) = L1 Xx, Li2 as in Definition 4.3, where the
relative spin structure o9 is given later in Definition 6.8. We assume (Lg, 03) is contained in Lo.

Situation 6.2. In Situation 6.1, we consider the filtered Ay tri-module €% (L1,Li2;L2) in
Theorem 5.25. We assume that (Li,01) € Lq and (Lj2,012) € L1 are unobstructed and take
their bounding cochains by € CF(Ly), bia € CF(L12).

The main result of this section is as follows.

Theorem 6.3. In Situation 6.2, we can choose a relative spin structure oo such that (La,02)
is unobstructed. Moreover, there exists a canonical choice of the gauge equivalence class of the
bounding cochain by. The gauge equivalence class of by depends only on those of by and bis.

As we mentioned in Remark 1.6 (3), the bounding cochain b2 had been conjectured to be
defined as the virtual fundamental chain of a certain moduli space (the moduli space of Figure 8
bubbles). The author was trying to understand how we can use such a bounding cochain to
generalize the argument by Lekili-Lipyanskiy beyond the monotone case using the Y-diagram.
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Then he found that for this purpose we need an equality that a certain element of the de
Rham complex of a Lagrangian submanifold becomes a cycle with respect to the deformed Floer
boundary operator via by, bi2, ba. The equality needed is (6.2). In fact, the homomorphism (7.7)
becomes a cochain map because of (6.2). As we will explain in Section 18.2, the heuristic
argument shows that the bounding cochain obtained as the virtual fundamental chain of the
moduli space of Figure 8 bubbles, after an appropriate gauge transformation, satisfies (6.2). The
author then found that the equality (6.2) is strong enough to characterize by (for given by, bi2)
and also (6.2) implies that by is actually a bounding cochain. Moreover, as we will see in
Proposition 6.6, we can solve (6.2) uniquely. Thus we can use the algebraic equation (6.2) in
place of studying the moduli spaces, to obtain the required bounding cochain.

Thus replacing the study of difficult moduli spaces by a simple algebraic lemma (see Propo-
sition 6.6) is the key new idea of this paper.

6.1 Right filtered A,, modules and cyclic elements

The main idea of the proof of Theorem 6.3 is the same as [30, Section 3| and is based on [30,
Proposition 3.5]. We repeat the argument here for the completeness sake and also here we work
over R, while in [30] we worked over Z,.

Definition 6.4. Let (C,{mj}) be a non-unital curved and filtered A, algebra.

(1) A filtered right Ass module over (C,{my}) is a left Ay and right (C,{my}) filtered A
bi-module in the sense of Definition 5.10.

(2) We say a filtered right Ao, module is G-gapped if its structure operations are all G-gapped.
More explicitly, a right filtered A module over (C, {m}) is (D,{n; | k =0,1,2,...}), where

(1) D is a completed free Ag module.

(2) The operation ny is a Ag moduli homomorphism
n,: D[1]®,, C[1]%% — D[1]

of degree 1 which preserves filtration in the same sense as Definition 2.2 (2).%1

(3) The following holds for any k, y € D, x1,...,z, € C:

0= Z nkl(nkg(y;xlv"'7$k2);xk2+17---7xk)
k1+ko=k

ko
D D D e (s M (g Tk T, (6.1)

ke1+ha=k+1 i=0
/ i—1 /
where x = deg'y + > %" deg’ ;.

Definition 6.5. Let (C,{ms}) be a G-gapped filtered A, algebra and (D, {n;}) a G-gapped
right filtered A, module over (C, {m;}). We say an element 1 € D of degree 0 a cyclic element’-2
if the following holds:

(1) The map C' — D which sends = to ni(1;z) is a A¥ module isomorphism C' — D.6
(2) n9(1) =0 mod A%

S1Here we shift the degree of elements of bi-module.

5-2The word cyclic element seems to be a standard one for an object satisfying a condition such as (1). We remark
that the notion of cyclic element has no relation to the cyclic symmetry of the filtered Ao algebra associated to
a Lagrangian submanifold.

53Gince deg’ 1 = —1, deg’ « = deg’ n1(1; ).
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Proposition 6.6. Let (C,{my}) be a G-gapped filtered A algebra and (D,{ny}) a G-gapped
right filtered Ass module over (C,{my}). Suppose 1 € D is a cyclic element, which is G-gapped.
Then there exists a unique G-gapped bounding cochain b of (C,{my}) such that

n(1) =0, (6.2)

where we defined n by

= mi(y;b, ..., b). (6.3)
k=0

Proof. We first prove the uniqueness. Let G = {\; | i = 0,1,2,...}, where 0 = Ay < A1 <
Aoy < ---. We put

oo o0 o [o.¢]
TSP TI o E T e At AR SUR
i=0 i=1 i=0 =0

according to the definition of G-gappedness. (Note that the coefficient of T (Ag = 0) of b is 0
since be C® A4 )
We calculate the coefficient of T** of the equation (6.2) and obtain

nlO 10, +anm no» n17 . ;bnk) =0. (64)
Here the second term is the sum over all k, m, ng,ny,...,n; such that
k
An = A+ Anp + > A, (6.5)
i=1

except the case k =1, m = 0, ng = 0, n; = n. (The case which we exclude here corresponds
to the first term.) Note that if k, m, ng,nq,...,n; satisfy (6.5) then n; < n for i = 0,... k.
Moreover, n; < n unless k = 1, m = 0, ng = 0, n; = n. Therefore, we can solve (6.4) and
obtain b, uniquely by induction on n. (Here we use Definition 6.5 (1).) Thus we proved that
there exists a unique G-gapped element b € C'® AR Af satisfying (6.2). It remains to prove that
this element b satisfies the Maurer—Cartan equation (2.9). We will prove

ka =0 mod T (6.6)

by induction on ¢ € Zy. We assume (6.6) for ¢ < n — 1 and will prove the case ¢ = n below.
We remark that the assumption implies that we have nggongg = 0. Using (6.1) and Defini-
tion 6.5 (2), we have ng(ny,o(Lo;2)) — n1,0(1o;myo(x)) =0 for z € C.
We next consider ng(ny o(1o;by)). Using (6.4), we find

no(n1.0(L0;bn)) = = Y 10(Mkm (Lngi bay s - - by )
We calculate the right-hand side using (6.1) to obtain
> ey m (Mg my (Lngi by -+ 3B )5 by )

=3 W (L by« Mgy B3 b )s -« by

= e (Lngibnys - mi0(bny)s -5 by, (6.7)
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Here the sum in the first line is taken over ki, ko, mq, ma, ng,...,n such that k1 + ko = k and
An = Amy + Amy + Ay + Zle An;, except k1 =0, m; = 0.
The sum in the second line is taken over k1, ko, m1, ms, ng, ...,n; such that k1 + ko = k+1

and Ay, = Ay + Ay + Ay + Zle An,, except mg = 0, ko = 1. (The excluded case corresponds
to the third line.)

The sum in the third line is taken over k, m, j, ng,...,n; such that j = 1,...,k and
An = Am + Apy + Zle An;y except ng = 0, k = 1, m = 0. We exclude this case since it is
excluded in the second term of (6.4).

Note that the first line of (6.7) vanishes because of the equality (6.2).

By using the induction hypothesis (6.6) for ¢ < n — 1, the sum of the second and third lines
cancel each other except the sum

- Z nO,l(]-O; mk,m(bnla s 7bnk))7

which is taken over k,m,nq,...,n; such that \,, = A\, + Zle An;- (In fact, this sum could be
canceled with ng 1(19; mg1(by)). However, this is the case excluded in the third line.)
Thus we have

n1.0(Lo;mio(bn)) = n1,0(n10(105bn)) = = D 10,1 (10; M (g - - - by ))-
Using Definition 6.5 (1), it implies
m170(bn) + thm(bnl, - ,bnk) =0.

It implies (6.6) for ¢ = n. The proof of Proposition 6.6 is now complete. [

6.2 A geometric realization of a cyclic element

In this section, we use Proposition 6.6 to prove the existence part of Theorem 6.3.
Suppose we are in Situation 6.1. By definition (see (5.17)),

CF((L1,01), (L12,012), (L2, 02)) 2 Q((L1 % L2) X x,xx, L12;07) ® Ag. (6.8)

Lemma 6.7. There exists a unique relative spin structure oo such that principal O(1) bundle ©~
in (6.8) is trivial on La.

Proof. We have
(le X Ez) X Xy x Xy L12 & (le X X, I~412) X x, Lo = Ly xx, Lo
(see Lemma 4.6). Therefore, the lemma follows from Lemmas 3.11 and 4.4. [

Definition 6.8. Let o2 be as in Lemma 6.7. We call (Lg,09) the geometric transformation
of (L1,01) by (L12,012).

Definition 6.9. In the situation of Definition 6.8, let b; (resp. bj2) be a bounding cochain
of CF(Ly,01) (resp. CF(L1a,012)). We define

nb12 s CF[1)(Ly; Lg; Lo) @ CF[1)(La, 02)®% — CF[1](Ly; L; Lo)
by

o o

bi,biz g, . _ § : § : . -

nk (yvxlv"'axk’) — nk1,k12,k(b17"'>b17b12a"'7b127y7x17"'7xk’)'
k1=0k12=0

The operation n in the right-hand is defined by Theorem 5.25.
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Now we have the following.

Lemma 6.10. In the situation of Definition 6.9, the operations n, b1,b12 ,k=0,1,2,..., define
a structure of right filtered Ass module on CF(Ly; L12; L) over C’F(LQ, 02).

The proof is a straightforward calculation and so is omitted.
In the simplest case £ = 0, Lemma 6.10 becomes

ngl,bm (ng1,b12 (h)) + nb1,b12 (h, mo(l)) =0. (69)

In a geometric language, its proof is roughly as follows. We assume for simplicity that all the
switching components of Lo are zero-dimensional. Let (p;, ¢;, i) € L1 X x, L12 X1, L2 be in the
switching component R(a;) for i = 1,2. We consider the case h = [p1,q1,71] and study
<ﬂb1’b12( o b12 ([p1, Q1,7°1]))7 [p2, g2, 7’2]>->

As usual in various Floer theories, we consider the one-dimensional moduli space M(aq,ag; F).
Its boundary contains the union of M(ay,a; E1) x M(a,as; E3) for various a and Ej, Eo
with E1+Es = E. The count of such boundary becomes (ng(no([p1,q1,71])), [p2, g2, r2]). (Here ng
is the boundary operator and we do not include bounding cochains b1, b12.) As usual in the
Lagrangian Floer theory, the one-dimensional moduli space M (a1, az; F) has other boundaries,
which corresponds to various disk bubbles. There are three kinds of disk bubbles, that are those
on Ly, L12, Lo. By including bounding cochains by and bys, the effect of disk bubbles on L1, Lo
are cancelled. Therefore, only the disk bubble at Ly remains. It gives the term nlf’bu (h;mp(1)).
Thus (6.9) follows. Using the algebraic formalism, we have developed so far we can convert this
geometric argument to algebraic ones, which is the calculation to prove Lemma 6.10.

Remark 6.11. In Lemma 6.10, we do not need to assume that (Ls, 09) is a geometric transform
of (Ll, 0'1) by (ng, 0'12).

Proposition 6.12. Let (Lo, 02) be the geometric transformation of (L1,01) by (L12,012). Then
we can choose our tri-module structure so that

1e QO((El X I~’2) XX1x X2 f/12§]R) C CF((Ll,O'), (ng,Ulg), (LQ,O’Q))
s a cyclic element of (C’F((LL o), (L2, 012), (L2, 02)) {nbl,blz})
Here 1 is the zero form (function) 1 on the diagonal component I~/2 C (f/l X X, I~/12) X X, f/Q.

Proof. Definition 6.5 672) is the consequence of the fact that d1 =0 and ngl’bu = +d mod T°.
We remark that n}"*"> = ngo; mod T¢. We also remark that modulo 7%, ng g, is defined as
the smooth correspondence via the moduli space M(&, &, a; 0, b;0) of energy zero. Namely,

10,0,1(h) = evoo ! (evi, _(h); B M(@,2,a;0,b;0)) mod T°. (6.10)

The notations are as follows. In the notation M(@, &, a; 0, b; 0), the symbol & in the first compo-
nent (resp. second component) indicates that we do not put marked points on the line Re z = —1
(resp. Rez = 0). The symbol a in the third component means that we put one marked point
on Rez =1 and require that this point goes to L(a) in the sense of Condition 5.28. The sym-
bol o in the fourth component means that we use the diagonal component Lo for the boundary
condition (switching condition 2, Condition 5.29) when Im z — —oo. The symbol b in the fourth
component means that we use the component Ly(b) for the boundary condition (switching con-
dition 2, Condition 5.29) when Im z — 4o00. The symbol 0 in the fifth component means that
we consider the pseudo-holomorphic curve with 0 energy. (It is nothing but a constant map.)
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In (6.10), the maps ev 4+ and evy — are evaluation maps defined on M(@, @, a;0,b;0) as in
Definition 5.41. We pull back the differential form A on ig by eveo,— and obtain a differential
form on M(&,d,a;0,b;0), a space with Kuranishi structure (see [46, Definition 7.7.1]). The
symbol &¢ denotes the CF-perturbation defined on M(&, &, a; 0, b;0) by Proposition 5.48. We
use it to define the integration along the fiber ev, 4! via the strongly submersive map eveg 4.
See Figure 6.1.

r (p.q,) (P(P.q)

L,(b)
T constant maps
q,# 4,
L@ p (r.a)  (P(p.a)
pel, (Pa) €L,
(p.a)el,,
v i, (p.g,)=1, (p.q,)
L, =Ly(0) (P(pa)p(pagel, =Lx, L,

Figure 6.1. An element of M(2,3,a;0,b;0). Figure 6.2. An element of M(Z, 3, a;0,a;0), a # o.

Lemma 6.13. M(&,3,a;0,b;0) is an empty set if a # b. If a = b the space M(D, D, a;0,b;0)
is diffeomorphic to La(a) and evaluation map evy is a diffeomorphism. Moreover, the moduli
space M(D, D, a;0,b;0) is transversal.

Proof. Since M(@,d,a;0,b;0) consists of constant maps, the lemma is obvious except the
statement about transversality. See Figure 6.2 in the case when a = b is not diagonal component.

We show that M (@, @, a; 0, a;0) is transversal. We remark that this moduli space is identified
with a connected component of the moduli space of pseudo-holomorphic strip between Ly x Lo
and l~}12. Using the assumption that ﬂl X .Z/Q is of clean intersection with I~}12, it is standard that
this moduli space is transversal. (In fact, the moduli space of pseudo-holomorphic strips with 0
energy which bounds L and L’ is transversal if L and L’ are of clean intersection.) |

Definition 6.5 (1) is an immediate consequence of Lemma 6.13. The proof of Proposition 6.12
is complete. |

Theorem 6.3 follows immediately from Propositions 6.13 and 6.6.

Definition 6.14. In the situation of Theorem 6.3, we call (Lo, 02,b2) the geometric transfor-
mation Of (Ll, g1, bl) by (ng, 012, b12).

6.3 Well-definedness of bounding cochains up to gauge equivalence

In this subsection, we prove that when we change the bounding cochains b, b12 by gauge equiv-
alences the bounding cochain by in Definition 6.14 changes by a gauge equivalence. Here we
discuss only an algebraic part. Namely, we fix the tri-module in Theorem 5.25. The indepen-
dence of bs of the construction of the tri-module in Theorem 5.25 will be proved in Section 14,
Theorem 14.6. The statement we prove is the next proposition.

Situation 6.15. Let C, C12, Cy be curved filtered A, algebras and Let (D,n) be a left Cy,
(2 and right C5 tri-module. Let 1 € D be an element such that
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(1) The map Cy — D which sends z to ny(1;x) is an Af module isomorphism Cy — D.
(2) no(1) =0 mod A%

A pair of bounding cochains by and by of Cy, C15 defines a right filtered A, module structure
on D over Cs by the next formula:

k1 1k
WU (g ag) = Y ek k(O B8 ). (6.11)
k1,k12

1 is its cyclic element. Therefore, by Proposition 6.6 there exists a unique bounding cochain by
such that

S wbe (1;05) = 0.
k

We write b2 == B(bl, blg).

Proposition 6.16. If by, bia are gauge equivalent to V), V), then B(by,b12) is gauge equivalent
to B(by,biy).

Proof. We recall the definition of gauge equivalence in [34, Section 4.3]. For a completed free Ag
module C, we define Poly([0,1],C) to be the set of all formal sums

imi(s)T)‘i + (i yi(s)T’\’) ds, (6.12)
i=1 i=1

where x;, y; are polynomials (with variable s) with coefficients in C' and )\; € R with
lim; oo A; = +00. s and ds are formal variables.
For so € R, we define Ev(s,: Poly([0,1],C) — C by sending the element (6.12) to

Z zi(s0)T™ € C.

In [34, Definition 4.2.9], we defined filtered A structures on the modules Poly([0, 1], Cy),
Poly([0, 1], C1), Poly([0, 1], C).

During the proof of [34, Theorem 5.2.3], it is proved that if D is a filtered Ay, bi-module
over C, Cy then Poly([0, 1], D) is a filtered Ay, bi-module over Poly([0, 1], C}), Poly([0, 1], C2).
We can prove the same statement for tri-module in the same way. Thus in our situation,
Poly([0,1], D) is a filtered Ay, tri-module over Poly([0, 1], C}), Poly([0, 1], Ci2), Poly([0, 1], Cs).

Moreover, Ev, defines a filtered A, algebra homomorphism or a filtered A, tri-module
homomorphism.

The cyclic element 1 € D may be regarded as an element of Poly([0, 1], D).

By assumption that by (resp. bi2) is gauge equivalent to b} (resp. b)5), there exists a bounding
cochain by (resp. bj2) of Poly([0,1],C1) (resp. Poly([0, 1], C12)) such that

Evo(b1) = b1, Evy(by) = b], Evo(b12) = b1, Evi(b12) = b)s.

Using b; and bjo in the same way as (6.11), we can define a structure of right filtered Ay
module {n"*'2} on Poly([0,1], D) over Poly([0, 1], C2).

It is easy to see that 1 € Poly([0,1],D) is a cyclic element of {nzl’b”}. Therefore, by
Proposition 6.6 there exists a bounding cochain bs of Poly([0, 1], C2) such that

> npt®E(1;65) = 0.
k
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It follows that

> nph12 (13 Bo(b2)*) = 0.
k

Therefore, the uniqueness part of Proposition 6.6 implies Evo(bs) = by. In the same way, we
can show Ev;(bg) = b’2. Thus by is gauge equivalent to b’2 as required. [ |

7 Representability of correspondence functor

7.1 Statement

Suppose we are in Situation 6.1. We consider the correspondence tri-module €% (L1, L12; Lo)
which is a left SuE(Xl, Vi, Ll) xSuE(—Xl X Xo, WT(Vl@TXl)@WSVQ, ng) and I'ight guE(XQ, Vo, LQ)
tri-module and which we obtained in Theorem 5.25.

Notation 7.1. Here and hereafter, we denote
Su{?(—Xl X Xz) = Suk((Xl, —wl) X (Xg,cug),ﬂ'i(‘/l ) TXl) D F;(Vg),ng)

and Fut(X;) = Fut((Xy,w1), Vi,L1), Fut(Xs) = Fu((X2,w2), Va,La), for simplicity of nota-
tions. We also denote by Fubst(—X; x X»), Fubst(X), Fukst(Xo), their associated strict cate-
gories (see Definition 2.5 (8)).

By the tri-module analogue of Lemma 5.19, the tri-module €.% (L1, L12;L2) induces a left-
Sukst(Xy), Subst(—X; x Xo) and right-Futst(Xs) filtered Ao tri-module ¥.%°(IL1, Li2; Lo).
It can be regarded as a tri-functor

Fulbst(X1)P x Fubst(—X; x X2)P x Fubst(Xy) — CH.
By taking opposite functor and using Definition 5.14 and Lemma 5.22, we obtain”!

MWW: Fubst(—X; x Xo) — FUNC(Fuest(X), FUNC(Fubst(X)P, CHOP)). (7.1)
Definition 7.2. Let

(L12,b12,012) = L12 € OB(Fukst(X12)), (L1,b1,01) = L1 € OB(Fukst(X)).

By (7.1), we obtain a strict and unital filtered Ay functor: Fubst(Xs)P? — CHP. We de-
note this functor by We,,(£1), where W stands for Wehrheim-Woodward. We call W¢,, the
correspondence functor associated to Lis.

Let Lo = (L, 09,b2) € OB(Futst(X2)) be the geometric transformation of £1 by L2 in the
sense of Definition 6.14.
We defined

OpYonP: Fubst(Xo) — FUNC(Fubst(X2)P, CHP) (7.2)
in Section 2.5. The main result of this section is the following.

Theorem 7.3. Lo represents 17\/\512 (L1) up to homotopy equivalence.

TIMWW stands for Ma’u-Wehrheim-Woodward. As we mentioned in the introduction, Ma’u-Wehrheim—
Woodward proved Corollary 7.4 in the case all the Lagrangian submanifolds involved are embedded and monotone.
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We will prove Theorem 7.3 in the next subsection. Corollary 7.4 below says that for each
pair (Lq2,b12) of a Lagrangian submanifold of —X; x X5 and its bounding cochain, we can
associate a filtered A functor Fukst(X;) — Fulst(Xs) in a canonical way.

Corollary 7.4. There exists a strict and unital filtered Ao functor
MWW: Fubst(— X x Xo) — FUNC(Fubst(X;), Fubst(X2)) (7.3)
such that its composition with

OpYonP: FUNC(Fubst(X;), Futst(Xs))
— FUNC(Fuest(X1), FUNC (Futst(X2)%, CHP))

is homotopy equivalent to the functor MWW in (7.1). Here OpQoniP is induced by the functor
OpYon® in ((7.2)).

Proof. A.-Yoneda lemma (see Theorem 2.44) implies that there exists a homotopy inverse
(OpYon®) L. Rep(Fubst(X2)°P, CHP) — Fubst(Xy)

to the Yoneda functor Qon. (Here Rep denotes the full subcategory consisting of objects which
are homotopy equivalent to one in the image of Yoneda functor. See Definition 2.42.)7? Tt
induces

((OpYon°P) _1) .o FUNC(Futst(X1), Rep(Fubst(Xo)°P, CHP))
— FUNC(Futst(X), Jutst(X2)).

On the other hand, Theorem 7.3 implies that the filtered Ay, functors m factor through
Su?st(—Xl X Xg) — i)%ep(%u?ﬁt(Xl),Suéﬁt(Xg))). (74)
We compose (7.4) with ((OpQon°?)~1)  to obtain required filtered A functor MWW. [

Definition 7.5. We call the filtered A, functor MWW in Corollary 7.4 the correspondence
bi-functor, when we regard it as a bi-functor

Subst(—X1 x Xa) x Fubst(X;) — Fubst(Xy).

For a given unobstructed Lagrangian correspondence L12, the correspondence bi-functor in-
duces a filtered A functor We,, : Futst(X;) — Fubst(Xs). We call it the correspondence functor
associated to the unobstructed immersed Lagrangian correspondence L.

7.2 Proof

In this subsection, we prove Theorem 7.3.

Proof. To prove Theorem 7.3, it suffices to show the next proposition.

Proposition 7.6. There exists a natural transformation J from OpQony(L2) to )7\/\512([11)
which has a homotopy inverse.

"2The filtered Ao category, functor, tri-module etc. which are defined by using the moduli space of pseudo-
holomorphic curves are always gapped because of Gromov compactness.
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Proof. We remark
FUNC(Fukst(X2)P CHP) =2 FUNC(Futst(Xs),CH)P.

We regard OpQong} (L2) and )7V\£12(£1) the objects of the right-hand side.
Let ¢, co, ..., ¢t be objects of Futst(Xs). We recall that the functor OpQon;,(L2) for objects
is defined by ¢ — C'F (L3, ¢). The morphisms part of OpQon’p (Ly) is a map

CF(Lg,¢0) ® BrFutst(X2)[1](co, cx) — CF(La, k)
defined by

Z® (ylv" . 7yk) = m(Z,yl,... ayk?) € CF(£27CI<:)'

Here z € CF(La,¢9), yi € CF(ci—1,¢;), and m is the structure operation of the filtered A
category Futst(Xs). (We remark that m already includes the deformation by the bounding
cochain.) The Bar complex By ... of an Ay category is defined in (2.3).

On the other hand, the object part of ng([,l) is ¢ = CF(Li,Li2;c). Here, when the
Lagrangian submanifold which is a part of the data in ¢ is L}, then we put

CF(Ll,ng; C) = CF(Ll, L12; LIQ),

where the right-hand side is defined in Definition 5.49 (1).
The morphism part of W,,,(£1) is a map

CF(Ll, L12; Co) X Bk%ufﬁt(Xg)[l](Co, Ck) — CF(Ll, L12; Ck)
and is defined by
w® (Y1, .-, yk) = (WYL, ..., yx) € CF(L1, Lig; cx). (7.5)

Here w € CF(L1,Li2;¢), yi € CF(¢i—1,¢), and n is a filtered Ay right module structure
on CF(Ly, Lo;c;).”® Note that using the notation n®»*12 appearing in Lemma 6.10, n is de-
fined by

n(wiyr, ..., yk) = n"02 (w; P20y e eb2hty b)) (7.6)

where by ; are bounding cochains for i = 1,2. Here we denote an object ¢; as a pair (L2, b2,)
of L9, € Ly and its bounding cochain and b ;. Thus by ; is a bounding cochain which is a part
of data consisting ¢;. The symbol e® is defined by

%)
b
— b ... .
e Z ®---®b
k=0 & times

The operation (7.5) is a map
CF (L1, Li2;¢0) ® Bkgufst(Xg)[l](co, ¢x) = CF (L1, Lig;ck).

See Figure 7.1.
Now the object part Z,,(¢): CF(Ly, Li2;¢) — CF(Lo,¢) of J is defined by

Tob(€)(2) = n(1;2), (7.7)

where n is as in (7.6) and 1 € CF(Ly, L19; L) is the cyclic element in Proposition 6.12.
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Lo Loy
b2'k b?,k

k Yk Yk

< be

71722 '7 >
Y2 <—
bay b2,
Filjl ?(/ z

L12 L12
I bao I ba
b2.0 bQ
Loy Ly
w 1
Figure 7.1. n(w;y1,...,yx). Figure 7.2. Zi(co,ck) (291, Yk)-

The morphism part
%(Co, Ck)l CF(Ll, Lio; Co) & Bkgufﬁf[l](Xz)(Co, Ck) — CF(;CQ, Ck)
is defined by

Te(©)(z3 1, k) = n(L52,91, -, Yk)- (7.8)
See Figure 7.2.

Lemma 7.7. The maps 7 is a natural transformation. (Namely, its boundary in the functor
category is 0.) In other words, it is a filtered right As, module homomorphism.

Proof. (6.2) implies that (7.8) is a chain map. Then the lemma follows from A, formula of n.
(See (5.4). The element x there is empty here (that is, 1 € BoCF (L1, L1)).) [ |

Lemma 7.8. Z,,(c): CF(Ly, L12;¢) — CF(La,¢) is an isomorphism of Ay modules.

Proof. Since 1 is cyclic, the definition implies that Z,,(¢) mod A is an isomorphism. The
lemma then follows easily. |

Now Proposition 7.2 follows from the next Lemma 7.9. |

Lemma 7.9. Let €1, 6> be unital and strict filtered Ao categories and F, G unital and strict
filtered Ao functors from €, to 3. Let T be a natural transformation from & to 4. We
assume that, for each object c of €1, T. € €2(F (c),9(c)) is a homotopy equivalence. Then T is
a homotopy equivalence in the functor category. (See Definition 2.24.)

This lemma seems to be well-known. For the sake of completeness, we will prove it below.

Proof. For simplicity of sign, we consider the case when the degree of 7 is 0. (We use only
such cases.) We use the notation of Proposition 7.9. We will construct natural transformations
§:9 — F of degree 0 and H: F — F of degree —1 such that My (H) = M(S,T) — ID#,

73We remark that we take an opposite functor while defining m
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where Dz : .% — Z is the identity natural transformation. (Here 91, is the structure operation
of the functor category.)
We use the induction on the number filtration and will construct

Sp: Bréi[l)(c,c) — 62(%(c), Z (), Hi: Bréi[l(c,d) = €(Fo(c), Z())

by induction on k so that they satisfy the following conditions (7.9), (7.10) and (7.11). Suppose S;
is defined for 7 < k and H; is defined for 7 < k. We define

Swy: Béi[1(c,d) = BG[1)(%(c), Z (<)),
Huy: BE[1(c,d) = BG[1)(Folc), Z (<))

~

Siry(x) = Zg\(xal) ® S<p(Xc2) @ <§(XC;3)=

Hiy(x) = 3 (~1)%F %1 F(x01) © Hep (x02) © F (xe),

C

where ((A®id)oA)(x) = . Xe;1 ®Xe2 @X(3. Here we define S<i, such that it is S; on B; @ (¢, ¢)
with 4 < k and is zero otherwise. H<y, is defined in a similar way.
We require

m(ggk(x)) — S<p(dx) =0 for x e B;%1[1](c, ) with i < k. (7.9)

We also require
Zm (Xes1) ® Ten(xe2) @ 9 (%e3) ® S<i(Xe) © F (%))
= m(H<p(x)) + Hep(dx) (7.10)
for x € B;¢1(c, ) with 0 < i < k. Here
(A®id®id®id) o (A ®id®id) o (A ®id) o A)(x)
= Z Xyl @ Xep2 © X3 @ Xed @ Xej5-

c

Moreover, we require

ma(To(c) ® S<o(c)) = €z, (), 7., (c) + M1(Ho(c)). (7.11)

Let us start the construction of S and Hj by induction. We first consider the case k = 0.
By assumption, To(c) € %2(F(c),¥(c)) is a homotopy equivalence. Therefore, there exists
So(c) € 62(9(c), F(c)) and Ho(c) € €2(-F (c),-Z (c)) such that

mi(So(c)) =0,  ma(To(c),So(c)) = ez, (), 7 () + M1 (Ho(c))

We thus obtain required Sp(c) and Ho(c).

Suppose we have obtained S; and H; for i < k such that (7.9) and (7.10) are satisfied. We
will construct Sk41 and Hy41.

Let x € By1%1(c,c’). We put

O(x) = m(Spy (%)) — Sy (dx) € €a(Z(c), F()).
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Using (7.9), we can easily check that
m1 (O(x)) + O(d1(x)) = 0. (7.12)

Here d; is the coderivation induced by m;. In fact, (7.12) follows from 90t (91, (Swy)) =0
and (7.9).

On the other hand, we use M (M2(T, Sry)) = M2(T, M1(Sxy)) together with (7.10), (7.11),
and obtain

ma(To(c), O(x)) = my(B(x)) + B(dix), (7.13)
where

Z m Xc 1 ® T(Xc 2) /\<Xc;3) &® Sgk(xc;zl) & @XC;B))-

(7.12), (7.13) together with the fact that x — ma(7o(c),x) is a chain homotopy equivalence:
é2(c, ') — €5(c, ) imply that there exists

Sl/c-l—l: Br161[1](c,d) = 62(%(c), Z ()

such that when we use this S; ., for Sp41 to define S/§k+1> then (7.9) for k + 1 replaced by k
holds. We also use 0 for Hy41 to define H,(k+1)' We then consider

—

k—l—l) Z m(F Xc 1 ® 72k+1(xc 2) ® g(xc 3) ® S<k+1(xc 4) & ﬁ(xc;S))

—m (g1 (%)) = Hepop (dx)

By induction hypothesis, E(41y(x) = 0 for x € B;%i(c,¢) with 0 < i < k. We use it
and (7.11) to obtain my(E(41)(x)) — Eg41)(d(x)) = 0 by an easy calculation. Then we again
use the fact © — mo(To(c),z) is a chain homotopy equivalence: %»(c,c) — %a(c,c) to obtain
Corr: By1%61(c,c) = 62(%(c), Z () and Hyy1: Br161(c, ) — Ga(Fo(c), F(')) such that

Ej11)(x) +m2(To(c), Corr(x)) = m(Hp41(x)) + Hpta (C/i\lx)v
my (Corr(x)) — Corr(&l\lx) =0.
Then S11 = S, +E(x+1) and the above Hy 1 satisfy (7.9) and (7.10) with k replaced by & + 1.
We thus obtained a natural transformation S: 4 — .# such that My(.7,S) is homotopic to
the identity natural transformation .# — .%.
In the same way, we can find §’: 4 — .F such that M (S’, T) is homotopic to the identity
natural transformation ¥4 — ¢. Using associativity of 9y up to homotopy, it implies that S’

is homotopic to S. Therefore, S’ is a homotopy inverse to .7. The proof of Lemma 7.9 is now
complete. |

The proof of Theorem 7.3 is complete. |

8 Compositions of Lagrangian correspondences

8.1 Unobstructedness of composed correspondences

The main result of this subsection is Theorem 8.2 below.
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Situation 8.1. Suppose that L1, Ly and L1 are as in Situation 6.1. We also assume that Lo,
L3 and Loz are as in Situation 6.1.

For (ng, 0'12) € L9 and (ng, 0’23) € Las, we assume that mx, oir,,: I~/12 — X is transversal
t0 Tx, 01Lgg: I~/23 — X2 and put

L1 = L1y Xx, Los. (8.1)

Together with f)lg — —Xi1 x X3 it becomes an immersed Lagrangian submanifold Lq3
of —X; x X3. We assume that L3 has clean self-intersection. We remark that L3 is (77 (V1 &
TX,) x m3(V3))-relatively spin by Definition-Lemma 4.7.

Theorem 8.2. There exists a (m7(V1 & TX1) x m5(V3))-relatively spin structure o13 of L3
with the following properties. Suppose that bia and bes are bounding cochains of (Li2,012)
and (Las, 093), respectively. Then there exists a bounding cochain bis of (L13,013). Moreover,
there is a canonical way to determine bis from bio and bog up to gauge equivalence.

We can enhance the map (Li2, b12), (Las, bag) — (L13,b13) to an A functor as in Theorem 8.5
below.

Situation 8.3.

(1) Suppose that Lj, Lo, L3 and Li2, Lo3 are as in Situation 8.1. We also assume L;, L3 and
LL13 are as in Situation 6.1.

(2) Moreover, we assume the following. Let (L2, 012) € Lia, (La3, 023, b23) € Lag. The fiber
product L3 as in (8.1) together with 13 in Theorem 8.2 gives a pair (L13, 013). We require
that (L13,013) is an element of Lys.

Notation 8.4.

(1) In Situation 8.3, we write (L3, 013) = (L2, 023)o(L12,012) and call (L13, 013) the geometric
composition of (Leg, 023) and (L12,012).
(2) Suppose that bjy and bes are bounding cochains of (L2, 012) and (Las, 023), respectively.
Then by Theorem 8.2, we obtain a bounding cochain b13 of (L13,013). We put
(L13,013,b13) = (L2g, 023, ba3) o (L12, 012, b12). (8.2)

(3) Let Fut(—X1 x Xo), Jub(—X2 x X3), Fub(—X; x X3) be the filtered A, categories obtained
in Theorem 3.14, the set of whose objects are Lo, LLog, L3, respectively. We denote by
Sukst(— X1 x Xo), Fulst(— X x X3), Fubst(—X; x X3) the associated strict categories.

Theorem 8.5. In Situation 8.3, there exists a strict, unital and gapped filtered Ao, bi-functor
€0mp: Sufst(—Xl X X2) X SuEst(—Xg X Xg) — Sukﬁf(—Xl X Xg) (83)
such that its object part Comp,y, is the map given by (8.2).

Remark 8.6. In the case when all the Lagrangian submanifolds involved are embedded and
monotone, Theorem 8.5 was proved by Ma'u-Wehrheim-Woodwards in [63].

Proof. The proofs of both Theorems 8.2 and 8.5 are similar to the proof of Theorem 6.3,
Corollary 7.4 and use tri-module and Proposition 6.6. Namely, we use the next result.

Proposition 8.7. In Situation 8.3, there exists a left-Fut(—X1 x X3) and right-Fut(—X; x X3),
Sub(—Xo x X3) filtered Aoy tri-module €.F (L13; L12, Las).
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The proof is similar to the proof of Theorem 5.25 and is given in the next subsection. We
remark however that ‘left’ and ‘right’ appear in the opposite way in Proposition 8.7 compared
to Theorem 5.25. The reason will become clear when we discuss the Y-diagram in Section 9.

We now prove Theorem 8.2 assuming Proposition 8.7. Suppose we are in the situation
of Theorem 8.2. We define L3 as in (8.1). For each relative spin structure oi3 of Li3, the
tri-module in Proposition 8.7 associates a Ag module CF((Li3,013); (L12,012), (L23,023)). We
denote it by CF(L13; L12, Log) for simplicity.

Lemma 8.8. There ezists a unique choice of 013 such that CF(Lys; L2, Log) is isomorphic
to Q(L13 X X1 x X3 ng;R) ®r Ao on the diagonal component Lqs.

The proof is given at the end of Section 8.2.
We define

n,: COF(L13)® ® CF(Ly3; L2, Lag) — CF(L13; L2, La3)
by

[e's) 9]
nk:(xlr"axk‘;y) = Z E nk;k127k23($1a"'7xk’;y;b127"'7b12;b237"'7b23)a
k12=0 k23=0

where 1y, 1), ks 18 @ structure operation of the tri-module of Proposition 8.7.

Lemma 8.9. {n; | k =0,1,2,...} defines a structure of left filtered Aso module on C'F(Lqs3; L12,
Los) over the filtered Ao algebra CF(Lys).

The proof is a straightforward calculation using Proposition 8.7.

We remark that we can define the notion of a cyclic element for a left filtered A, module
and Proposition 6.6 holds in the case of left filtered Ao, modules. In fact, a left ¥ module D
becomes a right °P module, and the Maurer—Cartan equation of €°P is the same as that of €.

Lemma 8.10. We may take our tri-module structure so that the element
1€ Q%L13) € Q(L13 X x,x x5 L13;R) ®r Ao = OF (L13; L12, L)
is a cyclic element of the left filtered Aoy module CF(L13; L12, Log) in Lemma 8.9.

The proof is given at the end of Section 8.2.
Now we use Proposition 6.6 to find uniquely a bounding cochain b13 of L3 such that

nb13(1) = 0. (8.4)

By using Proposition 6.16, we can show that gauge equivalence class of the bounding cochain by3
depends only on those of b12 and bas, when the filtered Ay tri-module €.% (L13;L12, Lo3) is given.
The independence of the choices to define €. (L13;L12,La3) is Theorem 14.31 in Section 14.
We have proved Theorem 8.2 assuming several results postponed to later subsections.
We turn to the proof of Theorem 8.5. The proof is similar to Section 7. By Proposition 8.7,
we obtain a strict and unital filtered A,, bi-functor

FP Fust(— X x Xy) x Fubst(—Xo x X3) — FUNC(Futst(—X1 x X3)°P,CH).

Let £12 = (le, J12, blg), £23 = (L23, 0923, b23) be ObjeCtS of 3u?5t(—X1 XXQ) and gu%ﬁf(—Xg X
X3), respectively. By Lemma 8.8 and (8.4), we obtain £13 = (L12,013,b13) which is an object
of Fubst(—X; x X3).

Let ¥ be a strict filtered Ao category. Then there exists a filtered A, functor YPon: ¢ —
FUNC(EP,CH) =2 BIMOD(E, \y), from € to the category of left-¢ modules such that its
object part is ¢ — (b — €'(b, c)).
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Proposition 8.11. ﬁ(ﬁi(ﬁm, L93) is homotopy equivalent to (YPon)on(L13) as filtered Ao func-
tors: Futst(—X; x X3) — CH.

Proof. The proof is similar to the proof of Theorem 7.3. We repeat the proof for completeness.
We denote by

FU Fubst(— X x X3)%P x Fubst(—X; x X3) x Fubst(—Xo x X3) = CH
the strict tri-functor associated to .# bi,
Let Eg, i =0,...,m, be objects of Fubst(—X; x X3). We define

T QCF(LGY, L)) @ CF(L), L15) — CF (LY L12, L23)
=1

by the next formula

grtri

Tin(@15 5 Tm3Y) = F00.me1 (T - T3 Y5 D, T 1). (8.5)
Note that
T1® @ Ty @Y € Bpyp1ubst(—X7 x X3)(ﬁ137£g?))

and 1 € CF(L3; Li2, Lag). So the right-hand side of (8.5) is defined by Proposition 8.7.

Lemma 8.12. (8.5) defines a natural transformation F = {7, | m = 0,1,2,...} from
ﬁ(ﬁ;(ﬁlg,ﬁgg) to Yon(L13).

Proof. Using the fact that 1 is a cycle in CF(L13; L12, L23), the lemma is an immediate con-
sequence of Proposition 8.7. |

Lemma 8.13. %: CF(ﬁg%),ﬁlg) — C’F([,g%); Elg,ﬁgg) is an isomorphism of Ay module.

Proof. Using the fact that 1 is a cyclic element, we can easily show that ) becomes an
isomorphism modulo Ay. Therefore, .7 itself is also an isomorphism. (We used G-gappedness
here. In fact, we construct the inverse by induction on energy filtration. This induction works
when the set of exponents of T appearing in the operations is discrete.) |

By Lemmas 8.12 and 8.13, we can use Lemma 7.9 to show that .7 is a homotopy equivalence.
The proof of Proposition 8.11 is complete.

Using Proposition 8.11 and A,, Yoneda lemma, we can prove Theorem 8.5 in the same way
as Corollary 7.4. [}

8.2 Construction of a tri-module

In this subsection, we prove Proposition 8.7 and complete the proof of Theorems 8.2 and 8.5.
The proof of Proposition 8.7 is based on a moduli space of pseudo-holomorphic maps from a
cylinder, which we describe below.

By the same trick as Section 3.4, it suffices to consider the case when ILio, LLos, L3 consist
of single elements L2 = (L12,012), Log = (Les,023), L13 = (L13,013), respectively. We consider
the cylinder

W =58 xR=1[0,3]/~xR. (8.6)
Here ~ identifies 0 € [0, 3] with 3 € [0, 3]. We define Wy, Wa, W3 by

Wi =[0,1]xRcW, Wy=[L2xRcW, W;=[23xRcW (8.7)



Unobstructed Immersed Lagrangian Correspondence and Filtered A., Functor 95

SZ3

Lo

Figure 8.1. Quilted drum W.

and also put S;_1); = {i} x R = W1 N W;, i = 1,2,3. (Here Sp1 = S31, Wo = W3 by
convention.) Note that OW7; = S31 U S12 etc. See Figure 8.1. We call Si2, Sa3, S31 the seams.
We decompose

Lig xx,xx, iz = | Li2(a), Loz xxyux; Los = | Las(a),

a€A12 ac€Az3
Lz xx,xx; Lis = | Lis(a),
ac€Ai3
(Lia x Loy x Lug) Xx2pxzxxz A= | Rizs(a), (8.8)
a€Ai23

where A in the fourth line is the diagonal X; x Xox X3 C X7 x X2 x X2 (see Definition 3.2 (5)).%*
Let djir = (iir1s - - Giir i,y ) € (Agin)Fir for @i’ = 12,23,13. We call W the quilted drum.

We define the moduli space Mpg (@12, des, di3;a—,a4; E) for a_,aq € Aja3, E € [0,00) as
follows.

Remark 8.14. In the case when X; is a point, this moduli space is mostly the same as the
one we used in Section 5.2. In this paper, the role of Lagrangian submanifolds of X; and of
—X; x X; are much different. The former gives an object of a filtered A, category Fut(X;), the
latter gives a filtered Ao, functor Fut(X;) — Fu€(X;). By this reason, we use different names
and notations to those moduli spaces.

Definition 8.15. We consider (X; 29, 253, 213; U1, U2, us; Y1, Y2, y3) with the following properties
(see Figure 8.2):

(1) The space ¥ is a bordered Riemann surface which is a union of W and trees of sphere
components attached to W. The roots of the trees of sphere components are not on the
seams 512, 523, 513.

(2) We denote by 31 the union of W; together with trees of sphere components rooted on Wj.
We define Y3, ¥3 in the same way. The map w;: ¥; — X; is —Jx, holomorphic for
i=1,2,3.582

(3) Zii’ = (Zii’,la'-'azii’,kii/)a 1w = 12,23, 13, and Zig! j S Su/ We put |Zu/| = {Zii’,].’"'a
Zii’,kii/}-

81n (8.8), A2 ete. contains the index of the diagonal component. So it corresponds to A} in Definition 3.2 (5).
8-2The reason we consider —.J x,; holomorphic maps and not Jx,; holomorphic maps will be explained in Re-
mark 9.4.
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(4) The maps v;ir: Siir \ |Zir| = Li are smooth and satisfies ir,, (Vi (2) = (ui(2),up(2))-
When we identify S = R we require z; y,; < 24,5 for j < j" and (i,7") = (1,2) or (2,3)

and z13,; > 213,50 for j < j/.83

(5) At Zj;, the map 7,y satisfies the switching condition
( lim  (z),  lim  5i(2)) € Liv(ai ;) (8.9)

ZESii/TZv-/ . Zesii’izii’,j

1,7

for (¢,7) = (1,2),(2,3) and

edim | () Jim | w(2) € Lur(oury)

i/ ,j i’y

for (i,7') = (1,3). Here we identify S; = R and then 7, | have obvious meaning.

(6) When z € St x R with m(z) — o0, the maps uj(z), ua(z), ug(z) satisfy the asymptotic
boundary condition Condition 8.17 below. (Here mp: S* x R — R is the projection to the
second factor.)

(7) The stability condition, Definition 8.18 (2) below, is satisfied.

(8) fﬂl ujwy + f92 ujwa + fﬂs ujws = —E. We remark that the left-hand side is non-positive
since u; is —Jx, holomorphic.

We will define an equivalence relation ~ between objects (X; Z12, Za3, Z13; U1, u2, u3; v1, V2, ¥3)
which satisfy Conditions (1)—(8), in Definition 8.18 (3). We denote the set of all the equivalence
classes of this equivalence relation by Mpgr(@i2, dos, di3;a—,a4; E). We call its element (or an
element of its compactification) a pseudo-holomorphic drum.

Ria3(as)

223,2
Y23 ’

Riz3(a)

o))
Figure 8.2. An element of Mpg(di2,das, d13;a—,a4; E).

Remark 8.16. We enumerate 212 ; and 223 ; upward and z13 ; downward. Therefore, we obtain
a left-Fut(— X7 x X3) and right-Fut(—X; x Xy), Fub(—Xy x X3) filtered A tri-module by the
same reason as explained in Remark 5.30.

Condition 8.17. The asymptotic boundary condition for m(2z) — —oc is as follows.

8-3Gee Remark 8.16 for this enumeration.
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(1) We require the limit lim,_, o u;(¢,7) exists and is independent of ¢t € [0,1]. We write
this limit limg, )0 u1(2). We require limy, ;) oo u2(2), limy, ) oo us(2) exist in
a similar sense.

(2)

lim  wi(z), lm  wu(z), lim wg(z)) € Rigs(a_).
w2 (z)——o00 w2 (z)——o00 w2 (z)——o0

The asymptotic boundary condition for ma(z) — +o00 is defined in the same way using Ri23(a ).

Definition 8.18. Let
L= (Za 5127 2237 513; U, U2, U351, 72, 73)) ;/ - (2/7 2‘1/2) g2/37 5{37 ulla u/27 U/3, ’Yia 7&7 fYé)
be objects satisfying Definition 8.15 (1)—(6).
(1) An isomorphism from r to ¢’ is a map v: ¥ — ¥’ such that

(a) It is biholomorphic.

(b) It sends X; to X.

(c) It sends Z; to Z},.
)

/ _ / _
(d U; OV = Ujy V50 OV = Yig-

(2) ris said to be stable if the set of all isomorphisms from ¢ to ¢ is finite.

(3) We say 1 is equivalent to ¢’ if there exists an isomorphism from g to p'.

We define evaluation maps

oo i/
eviy = (Vi 1,.--,eVir k., ) MpRr(di2,de3, d13;a—,ay; E) — H Liy (i k) (8.10)
j=1

by the left-hand side of (8.9).
We also define

Voo = (evoo7+, evooy,) : MDR(dm, 523, 613; a—,Qa4; E) — R123(CL+) X ngg(a,) (811)

by the left-hand side of Condition 8.17 (2).

Proposition 8.19. We can define a topology on Mpr(@i2,das,d13;a—,ar; E) such that it has
a compactification Mpr(di2,das,d1s;a—,aq; E), which is a compact metrizable space. They
have Kuranishi structures with corners and enjoy the following properties:

(1) The normalized boundary of Mpr(di2, das, d13;a—,a4; E) is a disjoint union of 2 types of
fiber products which we describe below.
(2) The evaluation maps (8.10) and (8.11) extend to strongly smooth maps with respect to this

Kuranishi structure. eveo 4 s weakly submersive. The extension is compatible with the
description of the boundary in item (1).

(3) The orientation bundle of Mpgr(di2,das, d13;a—,a4; E) is isomorphic to the tensor prod-
uct of the pullbacks of ©~ by the evaluation maps (8.10) and (8.11). For the compo-
nent Risz(ay), we take ©F in place of ©.

(4) It is compatible with the forgetful map of the marked points corresponding to the diagonal
components in the sense of [28, Definition 3.1].
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We describe the boundary components:

(I) The first type of boundary corresponds to the bubble at one of the Lagrangian boundary
conditions Lj2, Lo3, Li3. We describe the case of Lis. Let b € Ar,, and ¢ < j. We

=1 =9 .
put diy = (@120, .-+, G12,i, Q12 41, - - -, Q12 k15 )5 G179 = (b, @12441,...,a125). This boundary
corresponds to the fiber product

Mg (@ly, @23, G13; a—, a3 B1) X 1,0y M’ (L12; dly; E2). (8.12)

Here E + F» = E. We remark that we use the compactification M’ in the second factor.
(See Remark 5.38 and Section 12 for this compactification.) The bubble at Loz and Li3
are described by the following fiber products:

Mg (@12, @33, d1s; a—, at; F1) X1,y M (Las; G333 E2), (8.13)

Mg (@12, Gas, G1s; a—, a3 B1) Xp,,0) M (L13; dls; E2). (8.14)

Here @35, G35 and a1y, @35 are defined in the same way as Gio, Gr9-

-
\
11

Figure 8.3. An element of (8.12). Figure 8.4. An element of (8.15).

L,(b)

(IT) The second type of boundary corresponds to the limit where the domain will split into
two parts along the second factor of S x R. It is described by the fiber product below.
Let jiy € {0,... kir}. We put @}, = (a1, i, ) doy = (@it g 415 Qi gy, ) i
17’ =12 or 23 and 5222/ = (aii/,l, e ,aii/J“,), a,}l/ = (aii/J“,H, ce ,aii@k“,) if 7/ = 13.

Note in case ji = 0 (vesp. jir = ki), Gy = @ (resp. az, = @),

7
S T . 22 22 22 .
MDR (CL12, a/23, a13, a_, a, El) XL123(a) MDR (a12, a237 a13, a, a+, EQ), (815)
where E; + E9 = FE and a € Ajs3.

We will discuss the orientation in Section 17.3. The proof of the other parts of Proposition 8.19
is similar to the proof of Theorem 5.43 and is now a routine. So we only explain (8.12)—(8.14).

We required that u; is —Jx, holomorphic. Therefore, we may regard (uj,uz2) in a neigh-
borhood of 712 as a pseudo-holomorphic map from (—¢,0] x R to —X; x Xo, by (t,7) —
(ui(t,7),u2(—t, 7)) where ¢ = 0 is Sj2. See Figure 8.5. Therefore, when a bubble on 72
occurs it corresponds to a disk bubble as in Figure 8.6. Note that the marked points on 719 is
enumerated upward. Therefore, the marked points on the boundary of the bubble is enumer-
ated according to the counter clockwise orientation (see Figure 8.6). This implies that we can
describe such a bubble as in (8.12). The explanation of (8.13) is similar.
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Let us discuss (8.14). Note that the domain ©; (resp. 23) lies right-hand side (resp. left-hand
side) of the seam 713. Therefore, (u1,u3) in a neighborhood of v13 can be regarded as a pseudo-
holomorphic map from [0,e) X R to —X; x X3 by (¢,7) — (u1(—t,7),us(t, 7)) where t = 0 is Si3.
See Figure 8.7. Note that the marked points on 73 are enumerated downward. Therefore, the
marked points on the boundary of the bubble are enumerated according to the counter clockwise
orientation (see Figure 8.8). This implies that we can describe such a bubble as in (8.14).

X .0 _} ~X; x Xy

Y12
Figure 8.5. Folding the pseudo-holomorphic map near the seam 1.
2125
212;4

—X1 x Xy 212;3

212;2

Z12;1

Figure 8.6. Bubble on the seam 1.

_)(3 _X] —} 7X1 X X3

713

Figure 8.7. Folding the pseudo-holomorphic map near the seam 2.

Proposition 8.20. For each Ey, there exists a system of CF-perturbations S on the spaces
M(d12,dos, d13;a—, aq; E) with Kuranishi structures, which are outer collarings of thickenings
of those in Proposition 8.19, for E < Eg and such that the following holds:

(1) The CF-perturbations S are transversal to 0.

(2) The evaluation maps €Veo 4, €Voo,— are strongly submersive with respect to these CF-
perturbations.®*

(3) The CF-perturbations are compatible with the description of the boundary. Namely, the
restrictions of the CF-perturbations on the boundaries coincide with the fiber product CF-
perturbations in the sense of [40, 46, Lemma—Definition 10.6].

(4) The CF-perturbations are compatible with the forgetful maps of the boundary marked points
corresponding to the diagonal component in the same sense as [28, Definition 5.1].

The proof is the same as Proposition 5.48 and is now a routine. We omit it.

84We do not require that the map (eVoo,+,€Voo,—) is strongly submersive.
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Z213,1

213,2

213,3 X1 x X3

213,4

213,5

Figure 8.8. Bubble on the seam 2.

We now use Propositions 8.19 and 8.20 to define a filtered A, tri-module modulo TF° as
follows. We put

CF(Ly3; L1z, Las) = @D QR(a))® A,.

a€A123

We next define structure operations
N it CF(L13)®13 @ CF(Lyg; Lua, Las)
® CF(L12)®"2 @ CF(La3)®** — C'F(L1a, Lag, L13).

Let hyy = (hjyr1 ®---® hiil7kii/) € CF(LZ»Z»/)@)’W. We consider the case h;; ; is a differential form
and is in Q(Lyy (s j)). (See Definition 3.46.) Let h_o € Q(R(a—)).
We define Q(R(a4)) component of ntkTQE < by

ka3,k13
Voo, +!(evighizs Aevi, h_ o Aevighis Aevishys; (TS\S) (8.16)
Here we use the space M(d2, d2s, d13;a—,a4; F) and its CF perturbatlon S to define the inte-
gration along the fiber in (8.16). We now put nlffok’; s 1= EE<EO 515 .

Lemma 8.21. n,jfok’; ke defines a filtered Ao tri-module modulo TFo. Namely, it satisfies

0= Z (_1)*1n<E0.7E . . (chs;l;

kc12,17k023,17k5013,1
€13,€12,C23

<Eo,e (z WX );x )
k312,2§kc23;27k013;2 613;2) 9 012;17y023;1 9 612;27y023;2

+ (=105 (zwidx, y) + (=1) 55 (2 w;x, dy)
+ (_1)*4nf,*E,27€ (JZ§1U;X7 Y) + (-1 )*55(115535237]{13 (Z;w;x’y))

+ (—1)*611,?150,;;37,613 (z;0w;x,y) mod TF. (8.17)

Here Ax = 2012 Xeioil @ Xepo:2. We define Yeys:1, Yeosi2s Zeisils Zeis;2 in the same way. The signs
are by Koszul rule. 0§ is the operator induced from the de Rham differential in the same way
s (3.32), (3.33).

Proof. The proof is similar to the proof of Proposition 5.48 and is now a routine. By Stokes’
theorem (see [40, Proposition 9.26] and [46]), the sum of fifth and six terms is obtained by a simi-
lar formula as (8.16) but using the integration along the fiber on the boundary OM (@12, da3, @13;
a_,ay; F). This boundary is described by (8.12)—(8.15). By using the composition formula
[40, 46, Theorem 10.20], we find that (8.12), (8.13), (8.14) and (8.15) correspond to 2nd, 3rd,
4th and first term of (8.17), respectively. |

The rest of the proof of Proposition 8.7 is the same as the last step of the proof of The-
orem 5.25. Namely, we show that n<¥"¢ is homotopic to n<%<¢ modulo T if E < E’ and
also n<F¢ is homotopic to n<¢". We use this fact and homological algebra to find required
filtered A, tri-module. [ |
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Proof of Lemma 8.8. The proof is the same as the proof of Lemma 6.7. We first observe
(I:lg X Egg X ilg) XX12><X22><X§ A = Elg XX1xX3 Elg. (8.18)

Therefore, CF (L2, Lo3, L13) is Q(fqg X X1 % X3 I~/13, @) ® Ao with some local system ©. By using
Lemma 3.11, we can uniquely choose relative spin structure o153 so that © is trivial. |

Proof of Proposition 8.10. The proof is the same as Proposition 6.12. It suffices to show
that ng is congruent to the identity map modulo A;. By definition, ng is congruent to the map
determined by the moduli space M(&, &, a13; 0, a13;0). Here o denotes the diagonal component
and we use the diffeomorphism (8.18) to identify 493 with Af,,. (Here Ajo3 (resp. Apr,,) is the
set of connected components of the left-hand side (resp. right-hand side) of (8.18).) Using the
fact that M (@, d, a13;0,a13;0) consists of constant maps, we can easily show that it induces
the identity map. |

9 Compatibility of compositions

9.1 Statement

Theorem 9.1. Suppose we are in Situation 8.3. Let L15 € OB(Fubst(—X; x Xo)), Log €
OB (Fubst(—Xo x X3)). We put L13 = Loz 0 L19 = Comp,y,(L12, La3). Then the correspondence
functor We,, associated to L13 is homotopy equivalent to the composition We,, o Wr,, of the
correspondence functors associated to L1o and Log respectively. Namely,

W5230£12 ~ WLQS © Wﬁu' (91)
Note that

Wey, o Subst(X;1L;) — Fubst(Xo; La), Weoe: Subst(Xo;Lo) — Fubst(Xs;Lg),

Weye: Subst(Xq;L;) — Futst(Xs; La).
(9.1) is a homotopy equivalence as strict, unital and gapped filtered A, functors from Futst(X7;
Ll) to 311?5’(()(3; Lg).

In this section, we prove the following weaker version of Theorem 9.1.

Proposition 9.2. Suppose we are in the situation of Theorem 9.1. Let L1 = (L1,01,b1) be an
object of Fukst(X1;1Lq). We put

1 2 2 2 2
Weaori)n(£1) = £5) = (L5),05 087). Wiedan(C1) = £57 = (L5, 057 57).
Then we have the following:

(1) (Lgl), aél)) = (Lg), U§2)). Here the equality is as submanifolds equipped with relative spin
structures.
(2) b:(gl) is gauge equivalent to bgz) in the sense of [34, Definition 4.3.1].

Proposition 9.2 is the object part of Theorem 9.1. The morphism part will be proved in the
next section. Proposition 9.2 (1) is proved in Section 17.4.
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Figure 9.1. Domain ).

9.2 Lekili-Lipyanskiy’s Y-diagram

The proofs of Theorem 9.1 and Proposition 9.2 are based on moduli spaces of configurations
introduced by Lekili-Lipyanskiy in [59], which they called a Y-diagram. In this subsection, we
define and study the moduli space of Y-diagrams.

We consider the domain Y = YUY, U Y3 C C as in Figure 9.1. The boundary 9) has three
connected components 9;) = 0Y NAY; (i = 1,2,3), which are diffeomorphic to R. We choose
the diffeomorphism so that the direction of the arrow in Figure 9.1 coincides with the positive
direction of R.

The closure of the domain ) minus a point S12 N S23 N S13 has 4 ends. We identify the
end which is the neighborhood of the white circle in Figure 9.1 with S! x (—00,0]. We take
a diffeomorphism ¢123: S* x (—00,0] — ) to an open subset such that

Condition 9.3.

(1) ¢123 is an anti-biholomorphic diffeomorphism to its image, which is a neighborhood of the
point S12 N Ss3 N Si3 minus Si2 N Sz N Si3.

(2) We identify S! x (—00,0] C S x (—00,00) = W, where W is as in (8.6). Then we require
Wi 0 (S x (=00,0]) = ¢15()1)
fori =1,2,3.

Remark 9.4. We emphasis that ¢123 is an anti-biholomorphic map. In fact, ¢123(¢,7) =
e?™(7+) and the complex structure of the domain is j(9/dt) = 8/07. We will identify the image
of ¢123 as a part of the domain of the pseudo-holomorphic drum appearing in Section 8. Then
a Jx, holomorphic map on W; will become —Jx, holomorphic from an open set of the drum.
This is the reason why we required that the map w; is —Jx, holomorphic in Definition 8.15 (2).

The other three ends intersect with )y and )o (resp. V2 and Y3, Vi and )3). We take
a diffeomorphism ¢;;: [—1,1] X (—00,0] — Y to an open subset for (ii') = (12),(23), or (13)
such that the following conditions hold.

Condition 9.5.

(1) The map ¢;; is biholomorphic.

(2) We require [—1,0] X (—o0,0] = <Z>Z»_Z'/1 (V). [0,

] x (=00,0] = ¢ (Vi) for (id') = (12) or (23).
We also require [—1,0] x [0, +00) = ¢35 (Vs X

[0, +00) = ¢15 (V;) for i = 1,3.
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¢l 23

Figure 9.2. §Z51237 (bii'-

We next put Sy = Y; N Yy for (i7') = (12),(23), or (13). Sy is diffeomorphic to R. We
call S;;; a seam and the point S12 N So3 N S13 the hole. We take a diffeomorphism between the
seams and R as follows:

(sol) Suppose that (#i') = (12),(23). Then for —7 which is sufficiently negative the point of Sy
corresponding to —7 lies in the image of ¢;;.

(s02) Suppose that (ii’) = (13). Then for 7 which is sufficiently positive the point of Si3
corresponding to 7 lies in the image of ¢;3.

See the arrows in Figure 9.1 which show the orientation of the seams. Note that this orientation
coincides with the way we enumerate the marked points on the seams in the case of pseudo-
holomorphic drums.

We orient the boundary of ) by the usual counter clock-wise orientation of a boundary of
a domain of C (see the arrows in Figure 9.1). Then on the images of ¢, the orientation
of the boundary and the seams coincide with the way we enumerate the marked points in
Definition 5.27 (3).

We decompose fiber products to connected components

Liv xxxx, Liv = | Lir(a),  Lixx,Li= |J Li(a),

aeALii/ aE.ALZ.
Li xx, Liv xx, Lv = | Rir(a), (9-2)
aeARii’
(L12 X L23 X L13) X(X1><X2><X3)2 A= U R123(a), (93)
ac€Ai23

where A is the diagonal in (X7 x X x X3)2. See Definition 3.2 (5).
= o k.. - k:
Let d;r = (aii/,la e ;an’/,kii,) € (ALm) W, = (ai,la S 76%',1%) € (-ALi) i, Qo123 € Al23. Let
oo = (Ao0,12, 00,235 Aoo,13) With aeoiir € AR, -
We next define the set My<612, 623, 613; 61, 62, 53; 00,1235 C_ioo; E)

Definition 9.6. We consider

(35 21, 22, 255 212, Z23, Z13; U1, Uz, U35 V1, Y25 V33 V125 V23, V13)
with the following properties (see Figure 9.3):

(1) The space ¥ is a bordered Riemann surface which is a union of ) and trees of sphere
components attached to ). The roots of the trees of sphere components are neither on
S12, So3, S13 nor on OY.
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(2) We denote by ¥; the union of ) and the trees of sphere components rooted on ;. We
define X9, Y3 in the same way. The map u;: ¥; — X; is Jx, holomorphic for ¢ = 1,2, 3.

(3) Zi= (i1, 2ik), t = 1,2,3, and z;; € ;Y. We require z; ; < z; j# for j < j', where we
identify 0;) = R using the counter clockwise orientation.

(4) Zigt = (Zii’,la---azii’,kii/)a 1w = 12,23,13, and Zij' ;€ S;iv. We require Ziy 5 < il 5! for
j < j', where we identify S; = R as in (sol),(s02). We put |Zjy| = {2 1, - - Zist k) }-

(5) The maps v;: X NY; \ || — L; are smooth and satisfy ir, (7:(2)) = us(2).

(6) The maps iy : Siir \ |Ziir| = Ligr, (i') = (12), (23), (13), are smooth and satisfy
iz, (i (2)) = (ui2), ug (2)).

(7) On Z;, the map ~; satisfies the switching condition

Li ; li , Li(a: +). 9.4
(ZESJiTInZi,j %(Z)’ZEBE}WI)I}NZL;‘ %(2)) < l(“w) ( )

[ad

Here we identify 0¥ N Y; = R by the counter clockwise orientation and then 1, | have
obvious meaning similar to Definition 3.17 (5).

(8) On Zj;7, the map 7, satisfies the switching condition

(s, v flim | w(@) € Lulawy) (9:5)

Here we identify S; = R by (sol), (so2) and then 7, | have obvious meaning similar to
Definition 3.17 (5).

(9) On the image of ¢, the map ~;; satisfies the asymptotic boundary condition

lim ((7i(=7), 7 (7)), % (=7)) € Riv(asew) i (id') = (12) or (23),

T—+00

im ((v1(7),73(=7)), M13(7)) € Ri13(a0o13)- (9.6)

T—+00
(10) On the image of ¢123, the map ~;;s satisfies the asymptotic boundary condition

lm  (y12(=7),723(=7),713(7)) € R123(000,123)- (9.7)

T—+00

(11) The stability condition, Definition 9.7 (2) below, is satisfied.
(12) le uj(wr) + f22 uj(w2) + f23 ui(ws) = E.
In Definition 9.7 (3), we will define an equivalence relation ~ among the objects
(X; Z12, 223, 2133 U1, U2, U33 Y1525 V33 V125 V235 V13)
satisfying (1)—(12). We denote by ﬁy(612,6237613;61,62,63;(1007,,600,+;E) the set of all the

equivalence classes of this equivalence relation.

Definition 9.7. Let

= (E; 21,22,23;212,2237213;1&1#2,”3;71,’72,73;7127’723,713),
/I Y Ay B By A A A / /Y Y N | / /
r=(Z ’ZlaZ23237212722372137UlvU2au37717/7277&’7127’7237’713)

be objects satisfying Definition 9.6 (1)-(10) and (12).
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fele]
Figure 9.3. An element of My(dm, 523, 6713; 61, 62, @3, Uoo,—, doo,—i-; E)

(1) An isomorphism from r to ¢’ is a map v: ¥ — ¥/ such that

(a) It is biholomorphic.
(b) It sends ¥; to X.
(c) It sends Z; to Z/ and Zj to Z,.
(d) wfov = v 0ov ="y, Yyov="yi.
(2) 1 is said to be stable if the set of all isomorphisms from ¢ to r is finite.

(3) We say 1 is equivalent to ¢’ if there exists an isomorphism from g to /.

We define the evaluation maps

ki
[e]e)
evi = (evi1,...,evik,): My(di2,d2s, d13; A1, d2, A3, Goo,123, G’ ) — H Li(a; ) (9.8)
j=1
and

eV = (8Vigr 1, -+, @Vi k.., )
k.

7
[e]e)

My (@12, da3, d13; A1, A2, 03, 000,123, Goo; ) — H Ly (ai 1) (9.9)
=1

by the left-hand sides of (9.4) and (9.5), respectively.
We also define
e/‘\loo = (eVoo,123a eVoo) = (eVoo,1237 (eVoo,12a €Veo0,23, eVoo,13)) :
My (@12, Go3, G313 A1, A2, 03, 000,123, oo )
— R(aoo,123) X L12(ao0,12) X L23(ao0,23) X L13(a00,13) (9.10)

by using the left-hand side of (9.6) and (9.7).

Proposition 9.8. We can define a topology, stable map topology, on the moduli space

oo

My (@12, d23, A13; A1, A2, 03, Goo,123, Goo; F)

such that it has a compactification My (@12, d23,d13;d1, A2, 43, Goo,123, Goo; E), which is a com-
pact metrizable space. They have Kuranishi structures with corners which enjoy the following
properties:
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(1)
(2)

3)

(4)

The normalized boundary of My (@12, d23, d13; G1, 2, 43, Goo,123, oo E) is a disjoint union
of 4 types of fiber products which we describe below.

The evaluation maps (9.8), (9.9) and (9.10) extend to strongly smooth maps with respect
to this Kuranishi structure. The map eve in (9.10) is weakly submersive. The extension
is compatible with the description of the boundary in item (1).

The orientation local system of My (@12, d23, d31; A1, 2, 43, Goo,123, Goo; E) is isomorphic to
the tensor product of the pullbacks of ©~ by the evaluation maps (9.8), (9.9) and (9.10).
For the component Li3(a13) we take O in place of ©.

The Kuranishi structures are compatible with the forgetful maps of the marked points cor-
responding to the diagonal components.

We now describe the boundary components:

(D

(IT)

The first type of boundary corresponds to a bubble at one of the Lagrangian boundary
conditions Lja, Log, L13. We describe the case of Lia. Let b € Ap,, and i < j. We put
aly = (a12,0, -, @12, 0,012 11, -+, Q12 k15), Gio = (b,@12i41,.-.,a12;). This boundary
corresponds to the fiber product

Sl = oo o o o . / L2 .
My (@, 23, d31; @1, Ga, 035 Goo,123, (oo B1) X 1,,0) M’ (L12; @195 Ea). (9.11)

Here Fq + E5 = E. We remark that we use the compactification M’ in the second factor.
The compactification M’ is discussed in Remark 5.38 and Section 12. See Figure 9.4. The
bubble at Loz and L13 are described by the following fiber products:

I . ’ L2
My (@12, a3, G315 @1, G2, 035 oo, 123, Goo; B1) X ) M (La3; da3; Ea), (9.12)

— - =1 L= - — - / . -2 .
My (@12, da3, @135 A1, G2, @3} Goo,123, Goo; E1) X 1y5) M’ (L13; di3; E2). (9.13)

Here @35, @35 and a1y, @35 are defined in the same way as dio, Gr9-

L, (b)

Figure 9.4. Boundary of type (I).

The second type of boundary corresponds to a bubble at one of the Lagrangian boundary
conditions Lj, Lo, Ls. We describe the case of L1. Let b € A, and ¢ < j. We put (z} =
(@1,05--.,014,0,01 j41,- -+, 01k ), ar = (b, @141, ---,01,5). This boundary corresponds to
the fiber product

— — ) BT — =2,
My (@12, d3, G13; Ay, A2, @3} Goo,123, oo E1) X 1, ) M (L1;d1; Es). (9.14)

Here E7 + E5 = E. See Figure 9.5.
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The bubble at Ly and Lg are described by the following fiber products:

— - - o =1 - - =22,

My (@12, 23, G13; A1, Gy, 035 oo,123, (oo B1) X 1) M (La; d3; Ea), (9.15)
— — - - =1, — =2,

My (@12, da3, @13; A1, 2, @33 Goo,123, oo E1) X gy M (L3; ds3; Es). (9.16)

Here d3, a3 and ds, ds are defined in the same way as daj, ay.

L,b)

Figure 9.5. Boundary of type (II).

(ITII) The third type of boundary corresponds to the limit where the domain will split into
two parts on the image of ¢123. It is described by the fiber product below. Let j;;» €

{0, ey kml} We put (3:212/ = (aiigl, cee ,aii/J‘ii,), 6121’ = (aiigjﬁ,ﬂ, ces ,aii%h,) for (ZZ,) = (12)
r (12). We also put @i5 = (a131,---,@13j13), @13 = (@13 j15+1s - - - @13 k15). Note that in

case ji = 0 (vesp. jiy = kiir), djy = @ (vesp. a3, = @) for (i) = (12) or (13) (the case of
(#¢") = (13) is similar):

22 =2 22 o o o o
MY(G12:CL23’@13»G17G27G3,aaaoo,E2)
e B S .
XR123(CL)MDR(Q12701237a137a00,1237a7E1)7

where F1 + Fo = FE and a € Ajs3. See Figure 9.6.

J

R123(a)

Figure 9.6. Boundary of type (III).

(IV) The fourth type of boundary corresponds to the limit where the domain will split into
two parts on the image of ¢;. It is described by the fiber product below. We con-
sider the case of ¢10. Let j € {0,...,ki2}, j1 € {0,...,k1}, jo € {0,...,ko}. We
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—

=] _ —2 _ .1 .
put dis = (@12,1,.--,012,j15), G1a = (@12 1041, - W12k1p)- G = (Gi1,---,ai4), A; =
(@iji41s---,aik,) fori=1,2:

R R )
MQT(amaalaan%o,w,a, E1)
G2 Gom. dya: Q2. G2, :
X La(a)My (a127 d23, G13; @7, G, G35 (s Go0,13, Goo,31), Goo, 123} Ez)a (9.17)

where Fy + E> = F and a € Ap,,. See Figure 9.7. The cases of ¢23 and ¢;3 are described
by the next fiber products:

1 o1 ol _
MQT( 235 A2, A3; Aoo,235 A5 El)
S22 o o 2 2 )
Xng(a)MY (a127 Q93,135 a1, g, A3; co,123, (aoo’lg, a, CLOO713>7 Eg), (9.18)
e N IS )
My (@12, d3, @13 @7, 2, @33 Goo,123, (Goo,12, Goo,23, @); E2)

X Lys(@Mar (@13, @1, @33 o023, a5 Bn). (9.19)

Note that @iy and @35 is defined in the same way as @, and d7,. We define a3 =
21
(@131, -+, 013,j15) T13 = (@13,415415 - -5 Q13 13)-

Ly,(a)

W\

Figure 9.7. Boundary of type (IV).

We will show item (3) of Proposition 9.8 in Section 17.4. We observe that the four types of the
boundaries are described by the fiber products explained above. In the case of boundaries of
types (I), (II), (IV), we only need to check that the order of the marked points in the moduli
space of Y-diagrams coincides with those of previously defined moduli spaces. We remark
that the boundary of types (IV) with (i4') = (13) the map ¢13 identifies the domain of Y-
diagram with [—1, 1] x [0, c0), and for other (4i’) the map ¢;; identifies the domain of Y-diagram
with [—1, 1] x (—o0, 0] (see Condition 9.5 (2)). Taking this fact into account the above mentioned
coincidence of the order of marked points is correct in this case also.

In the case of boundaries of type (III), we also remark that the map ¢123 is anti-holomorphic.
So the Jx, holomorphic map on the intersection of €2; with the image of ¢123 will become a —Jx;,
holomorphic map on an open subset of the drum appearing in Section 8.

Once we observe these points, the proof of Proposition 9.8 is now a routine.

Proposition 9.9. For each Ey, there exists a system of CF-perturbations & on
My (@12, d23, G135 A1, G2, 3, Goo,—; Goo,+; )

(with respect to Kuranishi structures which are outer collarings of thickenings of those in Propo-
sition 9.8) for E < Ey such that the following holds:
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(1) They are transversal to 0.
(2) The evaluation map eve, is strongly submersive with respect to this CF-perturbation.

(3) The CF-perturbations are compatible with the description of the boundary. Namely, the
restriction of the CF-perturbation on the boundary coincides with the fiber product CF-
perturbation in the sense of [40, Lemma—Definition 10.6] and [46].

(4) The CF-perturbations are compatible with the forgetful maps of the boundary marked points
corresponding to the diagonal component, in the sense of [28, Theorem 5.1].

The proof is the same as Proposition 5.48 and is now a routine. We omit it.

The next step is to rewrite a geometric result Proposition 9.8 to an algebraic one. This is
a process we have done in Sections 3.3, 5.2 and 7.2 as well as several other references especially
in [46, Part II] and proceed as follows. We regard the evaluation map evys as an ‘output’ and
other evaluation maps as ‘input’s. In other words, we take differential forms on the targets of the
evaluation maps other than evyz, we then pull them back to the moduli space in Proposition 9.8
and use the CF-perturbation of Proposition 9.9 to push it out to the target of the evaluation
map eviz. We thus obtain a map between de Rham complexes. It will be the Y-diagram
transformation below

@yﬂz&,k%,kls;khk%ka : CF(LB; Liz, L23)
® By, CF[1](L12) ® By CF[1](La3) ® By, CF[1](L13)
® CF (L1, L12; Ly) ® CF(Lg, Log; L3)
® By, CF[1](L1) ® By,CF[1)(L2) ® By,CF[1](Ls) — CF (L1, L13; L3). (9.20)

See (9.22). Note that we can find the domain and codomain of the map (9.20) by inspecting the
targets of the evaluation maps of various kinds.

To obtain the basic property of the map (9.20) we use Stokes’ theorem and the composition
formula as follows. We consider the commutator of the map (9.20) and the de Rham differential.
Stokes’ theorem implies that the commutator is equal to the map obtained from the boundary
of the moduli spaces of Proposition 9.8 in the same way as we obtain the map (9.20). We have
described the boundary of the moduli space in Proposition 9.8 and found that the boundary
consists of four types of fiber products. Actually each of types (I), (II), (IV) is a union of three
kinds of boundaries. In the case of type (I) it is a union of components corresponding to three
kinds of disk bubbles, that are, those at Lia, L23, and Li3. In the case of type (II) it is a union
of components corresponding to three kinds of disk bubbles, that are those at Lq, Lo, and Ls.
In the case of type (IV) it is a union three different ends, where strips escape at the image
of ¢12, ¢o3, or ¢13. Thus the formula (9.23) contains ten terms corresponding to those different
kinds of boundaries.

Note that each boundary component is described as the fiber product of a moduli space of
Proposition 9.8 (whose energy is not greater than E) and another moduli space. In the case of
type (I), the another moduli space is one we used to define the filtered Ao, category associated
to L;j. In the case of type (II), the another moduli space is one we used to define the filtered A
category associated to L;. In the case of type (III), the another moduli space is the moduli space
of pseudo-holomorphic drums. In the case of type (IV), the another moduli space is one we used
to define the filtered Ay, tri-module associated to L;, L;j, L;.

Therefore, by the composition formula (see [46, Theorem 10.21]), the terms corresponding to
those 4 types of boundary components are obtained as compositions of the map (9.20) (whose
energy is smaller than F) and one of the following: a map induced from the structure operations
of the filtered A, category associated to L;;; a map induced from the structure operations of
the filtered A, category associated to L;; a map induced from the structure operations of
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the filtered tri-module €% (L13;L12,La3); a map induced from the structure operations of the
filtered tri-module €% (LL;, L;;; LL;).

The formula we obtain in this way is (9.23) in Proposition 9.11.

This process to go from geometry to algebra is straightforward and is now becoming a routine.
Since the formula is long (contains many terms), let us first describe it in a simple case and
explain how it will be used in this simple case.

We assume that L, L3, L;; are embedded and monotone. Suppose that Lo is a union of
embedded monotone Lagrangian submanifolds L%, 1 = 0,...,k, which intersects transversally
each other. We consider the case when there is no marked points which maps to Ly, L3 or L;;.
We use the cyclic element 1193 (that is the function 1 on the diagonal component) and insert it
at the hole in the middle of the Y-diagram. The map (9.20) in this case becomes

k
CF(Ly, L12; LY) ® R CF[1)(L5 ', L) @ CF(LS, Los; Lg) — CF(Ly, Lus; Ls). (9.21)
i=1
We recall that the tri-module CF(L;, Lij; L;) is used to define the filtered A functor W, via
Yoneda functor. In the simplified case we are discussing, we fix L;; and put no marked points
on the seam. So it is actually a bi-module. Thus the right-hand side of (9.21) corresponds to
the filtered A functor We ..

The direct sum of the left-hand side of (9.21) for various L3,..., L5 becomes the derived
tensor product ten(CF'(Lq, Li2; LY), CF(L%, Las; Lg)). See Lemma-Definition 10.6. As we will
discuss in Section 10.1 (see Proposition 10.10), the derived tensor product of filtered A, bi-
module corresponds to the composition of the corresponding filtered Ao, functors. Thus the
left-hand side of (9.21) corresponds to the composition We,, o Wr,,.

We will show that by taking the direct sum over various L3, ..., L% the map (9.21) becomes
a chain homotopy equivalence and will use it to show (9.1).

Actually, we need to include bounding cochains. We also need to show that the map (9.21)
becomes a left-Futst(X;) and right-Futst(X3) bi-module homomorphism. Moreover, we need to
show the functoriality when we have several components of L;; and morphisms (an element of
Floer’s chain complex) from L;; to L;j. To work these out, we need (9.20) and its basic property
Proposition 9.11 in its full generality. (This part of the proof is carried out in Section 10.4 after
preparing various algebraic results.)

We go back to the general case and explain the way to define operations (9.20) using Propo-
sitions 9.9 and 9.8.

Let hoo7123 € Q(R(aoo,lgg)), hii’,j S Q(Lii’(aii’,j)a hii’ = (h’ii’,h cey hii’,k“/) (ii/ = 12, 23 or 13),
hoo,ii’ S Q(Ln’/(aoo’ii/)) (ii/ =12 or 23), hm’ S Q(Li(ai,j), h;, = (hz‘,la - :hi,k’i) (’L =1,2 or 3).
Then the (aoo,13) component of

Y T o erasor s (Boo1233 M2, hog, igs hog 19, hog 231 By h, hg)
is by definition
eVm713!(eVZo7123hw7123 A eV>(1(2h12 A ev§3h23 A ev’{3h13
A eVéquhOOJQ AN eVZO723hoo,23 A ev}‘hl A\ eV;hQ AN eVghg; é\s) . (9.22)

Here the integration along the fiber appearing in the formula (9.22) is taken on the moduli
space My (d12, o3, @13; A1, A2, A3, Goo,123, Goo; L) using the CF-perturbation &¢. 91 We then put

<Ep,e o }: E Ee
gykm,k%,kw;khkz,% T T g/yku,kzs,kw;kl,kmks'
E<Ey

<E0,€ . .
We call gykm,k%kls;khk%% the Y diagram transformation.

91The sign is discussed in Section 17.4.
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We usually omit the indices k12, kos, k13; k1, k2, k3 above since it is determined automatically
from the input.

Remark 9.10. The order how the variables appears in (9.22) does not coincide with the order
of the tensor factors in (9.20). The former coincides with

CF(ng; L12,L23) X BCFD](Lu) X BCF[l](L23) X BCF[l](ng)
& CF(Ll, Lio; LQ) & CF(LQ, Logs; L3) X BCF[l](Ll) X BCF[l](LQ) X BCF[l](Lg)

The formula looks easier to read when written in this order. The order of the tensor factors
of (9.22) is one the Y-diagram transformation will be applied in Section 10.4.

Proposition 9.11. The Y diagram transformation @ﬂljfok’; ksikr ko kg SQLISfiEs the following
congruence:

(1) % T <F0= (hog 1935 d(h12), hos, hig; hoo,12, hoo 23 i, ha, hy)

+ (—1)2% T <0 (hog 193; h1a, d(hos), hig; hoo,12, heo,23; 1, ha, hy)

+ (1) T <F0 (hog 193; iz, Doz, d(h13); hoo 12, Fros, 23,h17h2, h3)
+ (=)D T <P (hog 123 iz, g, Mus; hoo 12, hoo 233 d h2, h3)
+ (—1)*% T (ho,123; hia, has, his; hog 12, hos, 23,h1, h3)
+ (—1)*% T < (hog 193; hia, has, his; hog 12, hos, 23,h1,h2, h3))
+ Y ()T T EE (oS (W hog 1933 W hEE);

C12,€23,C13

c12;2 1,¢23;2 p.c13;5l, ..
h12 h23 h13 hOO,127 hOO,23a 5 h17 h27 h3)

* <Eo,e .12l .
+ E )SY T <0F (hoo,123; WK, has, hys;
C1,C2,C12

<E0,€ (hCh h012 2, hoo 12 h22'1) hoo 23 h01§2 h62§2’ h3)
+ Z 1) 7 <F0€ (heg 1935 h12, 3 hyg; hoo 123

€2,C3,C23
<Ep,e (1,¢2;1 1,¢23;2. €2;2 1 .¢3;2
n>o (h2 yhos" b 23,h ) hy,hy”" hy )

%104, <Fo, c1;1 pc13;l, <Ey, . c13;2,
- E (1) on<Fos (WY hi¥ & T <70F (hoo 1933 hig, hag, W5
C1,C3,C13

hoo12, hoo,23: K] hy h$2) h§¥!) =0 mod T, (9.23)

Here A(h;) =) hc“ ®hc“2 A(h;y) = ZC ,h;?’ ® hgi” ? and all the signs are by Koszul
rule.%?

Proof. The proof uses Propositions 9.8 and 9.9 together with Stokes’ theorem (see [40, Propo-
sition 9.26] and [46]) and the composition formula (see [40, Theorem 10.20] and [46]). It goes
in the same way as the proofs of other similar statements we proved before. In fact, the first
three terms correspond to the boundary of type (I) and the fiber products (9.11), (9.12), (9.13),
respectively. The operator d in the first three terms are induced by the structure operations of
Fut(—X,; x X]).

The 4-th, 5-th and 6-th terms correspond to the boundary of type (II) and the fiber prod-
ucts (9.14), (9.15) and (9.16), respectively. The operator d in the 4-th, 5-th and 6-th terms are
induced by the structure operations of Fut(L;).

9-2Gee Section 17.1 for the way the Koszul rule determines the sign.
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The 7-th term corresponds to the boundary of type (III) and the fiber product (9.17). Note
that the structure map n appearing in the 7-th term is one of the tri-module ¢.% (IL13; L2, Log).

The 8-th, 9-th and 10-th terms correspond to the boundary of type (IV) and the fiber products
(9.17), (9.18), and (9.19), respectively. The structure map n appearing in the 8-th, 9-th and
10-th terms is structure operation of the tri-module €.% (LL;, L;;; L;).

The sign will be discussed in Section 17.4. |

In the same way as Definition 2.5 (8), we can modify our operations and change the congruence
in (9.23) to the equality. Namely, we have the following.

Proposition 9.12. There exists a map

YT CF(ng, L23,L13) X BCF[l](ng) ® BCF[l](LQg) & BCF[l](ng)
® CF(Ly, L12, L2) ® CF(Lz, Las, L3)
© BCF[1](L1) @ @BCF[1](Ls) @ BCF[1)(L) — CF(L1, L3, L3) (9.24)

such that if we replace % T <E0¢ by % T the formula (9.23) holds as an exact equality. Namely,
(=1)"Y T (hoo,123; d(hy2), ha3, hy3; hoo 12, hoo 23; hi, ha, h3)

+ (=1 T (hoo123; hi2, d(h23), hig; P 12, heo 233 1, ha, hy)
+ (1) T (hoo123; hiz, has, d(hi3); hoo 12, hoc, 237h1,h2, h)
+ (=Y T (hoo23; N1z, haz, huz; hoo 12, hoo 233 d h2, h)
+ (=1 T (hoo,123; hi2, haz, huz; hoo 12, heo, 237h1, hs)
+ (=1)"°Y T (hoo123; hua, hag, hug; heo 12, hoo, 237h1;h27 h3))
0 ()T (n(hiE P bz by b
C12,623,C13

€12;2 1,€23;2 p,Cc13;51,
hi5, hog™ hi™; hoo 12, hoo 237 5 1, hp, h)

+ Z 1)@ T (h hoo123; D5 hog, hyg;n (hcl’ h$32; hog 12; S )

C1,C2,C12
L1.C132 c2;2
hooQSah ,h5*" hy)
* . c23;1 . .
+ E VY T (hoo,i23; hi2, o3 hig; hoo 12;
C€2,C3,C23

"(h?lv hg?;z; hoo,23; h§3;1)§ hy, h§2;27 hzcas;z)
— > (=D on(h{" b 2T (hoo 1233 hia, hog, {5
C1,¢3,C13
hoo,12, Boo 23: WV o, h§¥?) h§¥h) = 0. (9.25)
Moreover, % T = & 7 <Eo¢ mod T,
We call .7, the Y diagram transformation also.

9.3 Proof of Proposition 9.2 (2)

In this subsection, we prove Proposition 9.2 (2).
Let £12 = (L12,012,b12) (resp. £23 = (L23,023,b23)) be an object of Suést(—Xl X XQ)
(resp. Fubst(—Xo x X3)). Let £13 = (L13,013,b13) be the geometric composition La3 o L13.
Let £1 = (L1,01,b1) and we put

Lo = (La,09,b2) = Wepp(£1), L3 = (L3703ab:(31)) = Wy (L2)
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and

£ = (L3, 03,08)) = Wey (£1).
We remark that the underlying Lagrangian submanifold of £é1)
grangian submanifold of £32 . This is obvious since

is equal to the underlying La-

Lo xx, Loz = L1 Xx, L12 Xx, Loz = L1 Xx, L13.

The coincidence of the relative spin structure is the main part of Proposition 9.2 (1) which we
will prove in Section 17.4. We will prove in this subsection the next proposition.

Proposition 9.13. The bounding cochain bgl)

Definition 4.3.1].

s gauge equivalent to b:(f) in the sense of [34

Proof. We use the next algebraic lemma to prove Proposition 9.13.

Lemma 9.14. Let (D, {n;}) be a G-gapped right filtered Ay, module over (C,{my}). Let 1),
13 be cyclic elements of D and b, b3 bounding cochains of C such that

S n (1060, 40) =0,
k=0

We also assume
1M =1® mod A, (9.26)
Then b is gauge equivalent to b2,

Proof. We use a certain result and notations of [34] in the proof. Let € be a model of [0,1] x C
in the sense of [34, Definition 4.2.1]. Let © be a model of [0,1] x D in the sense of [34
Definition 5.2.21], which is a right € module. Such € and D exists by [34, Lemma 4.2.13 and
Theorem 5.2.23]. Since Evaly @ Eval;: ® — D @ D is surjective (see [34, Definition 5.2.23)),
we have Al € ® such that (Evalg)(A1) = 0, (Eval;)(A1) = 1® — 1), Using (9.26), we may
choose A1l such that

Al1=0 mod A;. (9.27)

We put 1 = Incl(1M)) + A1. (9.27) implies that 1 is a cyclic element of the right ¢ module ®.
Therefore, by Proposition 6.6 there exists a bounding cochain b of ¢ such that

S i (ish,. . b) =0
k=0

We remark that (Evalo)(A) = Evah)(i) 1), Therefore, using the uniqueness part of
Proposition 6.6 we find that (Evalo)(b) b, (Evall)(b) = b3, Hence b)) is gauge equivalent
to b®@), as required. |

We go back to our geometric situation and use Y diagram transformation #.7 to define
a map

MY CF(Ll, Lio; Lz) X CF(LQ, Los; Lg) — CF(Ll, Lis; Lg) (928)
by

0
_bia _bos _bus. Db by b
MY (hoo 4,12, hoo+,23) = D T (11235 €712, €"3,€"13; hog 4,12, hoo,+,23;€71, €7, €73 ).
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Ls

MY (hoo 412, hoo,+,23)

L/

Khoc.,+.12

Figure 9.8. The map .#Z% .

Here 1193 € CF(L12; Los; L13) is the cyclic element we used in Lemma 8.10. (See Figure 9.8.)
In other words, it is the function 1 on the diagonal component of

(I~42 X I~/23 X EIS) X (X1 x X2 xX3)2 A= f,13 X X1x X3 f,13,

Note that CF(L;, Ly; Ly) for ii' = 12,23 or 13 is a filtered Ay, tri-module over C'F(L;),
CF (L), CF(Ly). Therefore, bounding cochains of CF(L;), CF (L), CF(L;) deform their
‘boundary operators’ to obtain a boundary operator. Namely, if b;b;;/, b,/ are bounding cochains
of CF(L;), CF(L;»), CF(Ly), we put dvistirib (z) = n(eb, ebi'; z;eb), where n is the structure
operations of the tri-module in Theorem 5.25.

Lemma 9.15. The map .#% in (9.28) is a chain map with respect to the boundary opera-
tors dbribrzibz - gbaibasiby by" | dbribasib b

Proof. We put hoo 123 — 1123, h12 = 6b12 h23 == €b23 h13 = 6b13 h1 = ebl h2 = €b2 h3 = 6 <1>
and apply Proposition 9.12. The first 6 terms of (9.24) vanish because h” , h; are exponen-
tials of the bounding cochains. The 7Tth term vanishes because 1123 is a cycle with respect
to the differential of C'F(Lys; L12, Log) twisted by bia, bes, b13. In fact, this is the definition
of biz. (See (8.4).) The 8th, 9th, 10th terms give the elements gﬂ(dbl’b“’b?(hoo,lz),hoo,gg),
gﬂ(hoqlg,dbl?b23;b(l)(hoo,23)), and db1’b13’ (Q/y( 00,12, Poc,23)) respectively. The lemma fol-
lows. |

For 7' = 12,23 or 13, we denote by 1;; the function 1 on the diagonal component of L; x X;x X,
L.

Lemma 9.16. Z//f(llg, 123) = 113 mod A+.
Proof. The operation % .7 are defined modulo Ay by the integration along the fiber of the mod-

uli space My (@12, d23, d13; d1, A2, 43, Goo,123, Goo; 0), which consists of constant maps. Using this
fact and the definitions, we can prove the lemma easily in the same way as Proposition 6.12. H

We recall that on CF(Ly, L13; L3) we have a structure of right C'F(L3) module ng. In fact,
we put ng(y;z1,...,25) = n(ebl;eb13; YT, ,:ck) (see Lemma 6.10).
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By the definition of b:(f) , we have
S (168, 0) =0, (9.29)
k=0
We put 1)3 = %7 (112, 123). Then by Lemma 9.15, we have
S (155857, 05Y) = 0. (9.30)
k=0

By (9.29), (9.30? and Lemma 9.16, we can apply Lemma 9.14 to conclude that bél) is gauge
equivalent to b32 . The proof of Proposition 9.2 (2) is complete. |

10 The compatibility as 2-functors
10.1 The composition of A, functors defines a bi-functor
To obtain a more functorial version of Theorem 9.1, we need the following algebraic result.

Theorem 10.1. Let 6; be a unital, strict and gapped filtered A, category for i =1,2,3. Then,
there exists a filtered Ao, bi-functor

€omp: .FZ/U\[C(CKL ng) X .FZ/{NC(CKQ, ng) — .7-7/{./\/'6(%1, ng) (10.1)
such that Compob(ﬁlg, fgg) = 93 0 F19.

We fix a discrete monoid G C Rx(. Here and hereafter the objects FUNC (%1, 62) are strict,
unital and G-gapped filtered A, functors.

Remark 10.2. Theorem 10.1 could be a part of the construction of an (A ) 2-category whose
object is a filtered A, category. See Section 10.6.

The unfiltered version of this statement is in [61]. We prove it here since we need the
construction of the functor €omp for our application to geometry in Sections 10.2 and 10.5. Our
proof below is different from the proof in [61].

Proof. Let %1, %> be unital, strict and gapped filtered A, categories.

Lemma—Definition 10.3. There exists a filtered A functor
RYon: FUNC(C,C2) — BIMOD(61,6)P,
which is a homotopy equivalence to its image. We call this functor the relative Yoneda functor.
Proof. The functor OpQon (for ¥2) and the isomorphism in Lemma 2.33 induces
FUNC(C1,6) = FUNC(EP, 65" )P — FUNC(E,Y, FUNC(62,CH))P.
On the other hand, in Definition 5.14, we defined an isomorphism
FUNC(EY, FUNC(2,CH)) =2 BIMOD(61;%2).

The lemma follows. [ |
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Let us describe the functor $8%)on more explicitly below. Let §: %1 — %> be an object
of FUNC(%61,%,). We first define left-%]; and right-¢% bi-module R)on,(F). Let ¢; be an
object of €; for i = 1,2. We put D, ., = 62(Fon(c1),¢2). Let x € B€1(c),c1), 2 € D, ey,
y € B%s(c2,¢5). We define n(x, 2,y) € Dy o = €2(Fon(cy), ) by

1

n(x,2,y) = (—1)% Ym(F(x), 2, y). (10.2)

Remark 10.4. In the definition of relative Yoneda functor, we use OpQ)on which is defined by
using opposite category €°P. Moreover, we use the isomorphism FUNC (61, 6s) = FUNC(6;”,
%,")°P. Since we take the operation taking opposite twice x in the left-hand side becomes x in
the right hand side. The +1 in Definition 2.30 (3) cancels with the minus sign in Definition 2.18.

A rather complicated process to define OpQ)on becomes a simple and natural formula (10.2),
when we write it explicitly.

The languages of functors and of bi-modules are mostly equivalent when the target is CH.
However, the identification includes the process taking opposite.

We will check (5.12). Let Ax =}, Xa;;1 ® Xay52, AY = Y0, Yap1 @ Vg0 By definition, we
have

Z Z(_l)*2n(xa1§17 n(xll1§27 2y yag;l)? ya2;2)

ay a2

=33 (1) m(F(%ars1)s M (Kagi1): 2 Yar): Yar:2) (10.3)

ay a2

where *9 = deg’ X4,.1 and *3 = deg’ x,4,.1 + deg’y.

Moreover,
n(d(x), 2,y) = (=1)%Ym(F(dx), z,y) = (~1)%Ym(d(F(x)), 2, y). (10.4)
Here the second equality follows from the fact that § is a filtered A, functor. Furthermore,
(—1)2e B (x 2, d(y)) = D (=1) " m(F(x), 2, d(y)), (10.5)

al

where *4 = deg’ x + deg z + deg’y.

Formulas (10.3), (10.4), (10.5) and the A formula for m imply (5.12) with sign modified
(see Remark 10.5), using the fact that § is a cohomomorphism. Thus D, ., equipped with this
bi-module structure is R on;, (F)(c1, c2).

Remark 10.5. In this and the next sections, we use the sign convention of filtered A., modules
(multi-modules) so that the degree of elements of modules are not shifted. In other words,
in (10.5), deg z appears in place of deg’ z. The sign (—1)9°8'Y in (10.2) appears by this reason.
See Remark 5.5.

A natural transformation 7 from § to & gives To(c1) € Ga(Fob(c1), Bob(c1)). It induces
a cochain map %2(®ep(c1), c2) = Ga(Fob(c1), c2). This is a part of a bi-module homomorphism
from MY on,, (B) to RYon,, (F). The direction of the arrows are opposite. This is the reason
why the opposite category appears in Lemma—Definition 10.3.

The next lemma-definition, Propositions 10.10 and 10.23 are closely related to the work [75]
by Toén.

Lemma—Definition 10.6. Let €, 6>, €5 be filtered A, categories. There exists a filtered Aso
bi-functor

ten: BIMOD(CKl,%Q) X BIMOD(%Q,CK?,) — BIMO’D(CKl, 653)

We call it the derived tensor product functor.
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Proof. Let
12 12 12
0 ({Dcl 02} nc’l,c1,cz7c’2})
be an object of BZIMOD(%6,,%>) and let
23
({DC2 03} nc’2,62,037c/3})
be an object of BZIMOD(%,%2). We will define an object
({Dcl CB} {ncl,cl,63,03 })
of BIMOD(¢,,%5).
Let ¢1, ) € OB(61), c3,cy € OB(€3). We put
D, =D}, ®BG[1)(cr ch) ® ®DZ... (10.6)
c2,ch
We remark that B%a[1](c2, ) contains 1 € By%a[1](ce, c2) = Ap when ¢y = .
Let x € B¢1[1](c), c1), y € B63[1](c3,¢) and
Z=URVRWE DgcQ ® B6,[1](c2, ch) ®Dz303 C D2,
We define nc P : Bé[1)(cd), a1 )®D§?CS ® B3[1](c3, ) — Di,ic/s by
Za n'2(x, 1, V1) ® Vo @ w if y =1 € By%s(cs, ),
YU v, ® 1% (v, w,y) if x =1¢€ By%i(c1,¢)),
Z le(U,V ;1) XV ;2
ni/g,cl,c;;,c’ (X7 2, y) = ¢ a* ¢ 23 (107)
' : + 20 (—1)"u @ va;1 @ 07 (Va2 w)
+(~1)deeuy @ d(v) @ w ifx=y=1,
0 otherwise,

where * = degu + deg’ vo;1 and Av =" v ® vgo. It is straightforward to check (5.12) with

sign modified (see Remark 10.7). We thus defined teny,.

Remark 10.7. We remark that in the second, fourth and fifth lines of the right-hand side we

used degu and not deg’ u.

Remark 10.8. Note that in the case of D13 = ten(©12,©23), the ‘left multiplication’ and the
‘right multiplication’ exactly commute. This is the reason why we take 0 in the fourth case
of (10.7). In fact, ny; in the bi-module structure is a chain homotopy between ng 1(nio(z, 2),y)

and (—1)%8" %ny o (2,101 (2, y)).

We next define the morphism part of the bi-functor ten. Let

Q(j)’m - ({ gjl,cg} {nC1701702’C2})

be an object of BZMOD(%,,%2) for j = 1,2 and

)23 — ({ g,ég} { chyc2, 03703})

an object of BIMOD(%,,%,) for j = 1,2. A pre-bi-module homomorphism §2: D

(resp. f23: ®1):23 _ ©(2):23 ) consists of

okt Bu@ill(er, ) @ DYU2 @ B%all](ch, e2) — D22

c1,C2

(resp. fio yy: Brya[l](ca, ch) ®D(/)/ ® By, €s[1](ch, c3) — DE23),

C€2,C3

1),12

(2,12
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See Definition 5.11. We define its tensor product {2 @ §2% = '3 as follows. We define Dg?é? in
the same way as (10.6). '3 consists of the maps

ekt Buill(er, ) © DY0® @ Bl (ch, e5) — D2

c2,C3
which we define by the next formula. Let x € Bé1[1](c},c1), y € B%3[1](cs, c5) and

z=u®@vewe DWI2E BE[1](c, ) @ DX c D13

C1,C2 C5,C3 Cc1,c3 °
We put

i s (% 2,)

_ Z degf deg x+deg utdeg’ vq;1+deg’ va;2) fk1 *(x U, Vg 1) ® Va2 @ fZ?kg (Va;g, w, y).

Here (1® A)o Av =) Va1 @ Vg2 ® V3. We can easily show that 13 gives a chain map

BIMOD(%L%2)(@(1),127@(2)712) 2 BIMO’D(%Q,%3)(@(1),2379(2),23)
— BIMOD(%,,%63) (@(1),13’ 9(2),13)

Moreover, this map (f12, f23) = 112 ® §23 = 13 is compatible with composition. Namely,

(f(l),12 o f(z),12) s (f(l),23 o f(2),23)
_ (_1)degf<1)’23 deg f(2):12 (f(l),12 ®, f(1),23) o (f(z),m s #2),23)'

See (2.11) for ®s.
Therefore, by putting other operations to be zero we obtain a required bi-functor. The proof
of Lemma—Definition 10.6 is complete. |

The derived tensor product functor induces
BIMOD(61,62)°° x BIMOD(%s,65)® — BZMOD(%1,%63)°P

which we denote also by ten.
Remark 10.9. The proof shows that ten is actually a bi-DG-functor between DG-categories.
The proof of the next proposition is the most nontrivial part of the proof of Theorem 10.1.

Proposition 10.10. Assume that €1, 6>, €35 are unital, strict and gapped. Let F15: €1 — G-
and Foz: Co — €3 be filtered Ao functors. Then the object teng,(RYonyy (Fi2), RYon,, (F23))
of BIMOD(%1,%63)°? is homotopy equivalent to RYon,y,(Fas o F12).

The proof is given in Section 10.5.

Remark 10.11. Suppose that 41, %2 and %3 are associative rings with unity. They can be
regarded as unital A, categories. Let F19: €1 — %2 and Fa3: 65 — %3 be unital ring homo-
morphisms which are special cases of A, functors.

The bi-module associated to %12 is %2 which is regarded as a right % module by right
multiplication and a left 47 module by x - y = F12(z)y. We write this bi-module as ¢, (42)«,-
In the same way %23 corresponds to ¢, (%3)¢,. Their tensor product is «, (62)¢, Q% ¢, (63)s =
¢, (€3)¢,. Here the left ) module structure is induced by %33 o #15. This is Proposition 10.10
in this case.
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Now we are in the position to complete the proof of Theorem 10.1. We consider the bi-functor
ten o (RYon x RYon): FUNC(61,62) x FUNC (s, €3) — BIMOD(%1,63)°P.

We consider the full subcategory Rep(%1, €3) of BLMOD(6),%3)°° whose object is homotopy
equivalent to an image of RYon: FUNC(61,€3) — BIMOD(61,%3)°P. Proposition 10.10
implies that the image of ten o (RYon x RYon) is contained in this full subcategory.
Moreover, by Lemma-Definition 10.3 and Theorem 2.28, there exists a filtered A, func-
tor Rep (61, 63) — FUNC(E1,%3) which is a homotopy inverse to /8 on. Therefore, there exists
a filtered Ao functor Comp: FUNC(61, 62) x FUNC (62, 63) — FUNC(61,€3) such that the

next diagram commutes up to homotopy equivalence:

mNC(%l,%Q) X FUNC((KQ,(K;J,) E— .FUNC((K;[,%;J,)

l l (10.8)

BIMO’D(CKl,(KQ)Op X BIMO’D((KQ, %3)op E— BIMO'D(%MCK?,)OP.
This is the required functor. |

Remark 10.12. The construction of the composition functor we gave in this subsection is
rather indirect. In other words, we did not provide an explicit formula how the pre-natural
transformations are sent by this functor. This is because an explicit homotopy inverse to the
Yoneda functor is not given. We can certainly find some formula by following the proof. In
fact, the Yoneda functor is explicitly given in [27] and the proof of Theorem 2.28 in [27] is by
induction each of whose steps is in principle can be made explicit. However, the explicit formula
which we may obtain in that way seems to be very complicated and is not practical to use it.

10.2 Proof of Theorem 9.1
In this section, we prove Theorem 9.1. Before starting the proof, we twist the (category version

of the) map #'.7 in Proposition 9.12 by bounding cochains. We denote by L;, L;; or El(j ), Egi;)
objects of Futst(X;), Futst(—X; x X;). We recall

k
ByCF[1](L;, L) = P R Cred, )
L= W =p; I=1

and BCF'[1](L;, L) is their completed direct sum over k. We define the modules By,C'F[1](L;,
L)), BOCF[1)(L;y, L.,) in the same way.
We define a map t;: ®;?:1 CF(E?*U,EZ(J))[H — BOF[1)(L;, £1) by

bo by

. br— b,
to(w1, ... mp) == e meM g e et

(see (5.9)). It induces t;: BOF[1](L;, £;) — BCF[1](L;, £}). We define tz: BCF[1](Lyy, L;) —
BCF1](L;y, L],) in the same way.
We now define the map

¥ T BCF[1)(L1, L)) ® BCF[1](L12, £55) ® BCF[1](La3, L)
@ CF(L}, Lho; £5) ® BCF(1)(Lh, L2) @ CF(La, Lyy; Ly) @ BCF[1)(Ll, L3)
® BCF(1](LY3, L13) ® CF(L13; L12, La3) — CF (L1, L13; L3) (10.9)

by composing t; with %.7. (We do not apply t; to the factors CF (LY, L£19; £5), CF(La, Ly3; L3),
CF(Ly, L13;L3).)
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Lemma 10.13. (9.25) holds when we replace YT, ci, n by @95, czb, n, respectively. Here
d’, n® are defined by tyo d®=do t:, t; 0 n’=no t;.

This is immediate from Proposition 9.12.

Proof of Theorem 9.1. Let L£12, Lo3 be as in Theorem 9.1 and L3 = Lo3 0 L12. We apply
the relative Yoneda functor RQon,, to We,,. By definition we obtain ¢.% (L1,Li3;L3). We
fixed L£13 € L3 so we regard .7 (L1, L13; L3) as a left-Futst(X;) and right-gukst(Xs3) bi-module.
It assigns WD (L, L3) = CF(Ly, L13; £3) to L£; € Db(Fubst(X;)) for i = 1,3.

We apply the relative Yoneda functor RQon,, to W, and W,,,. We then obtain tri-
modules €.% (L1, L19;Lo) and €.% (Lo, Las; L3), respectively. We fix £19 and Lo3 and regard
them as left-Futst(X;) and right-Fubst(Xs) and left-Futst(X2) and right-Futst(X3) modules
respectively. We consider We,, o W,,, and apply the relative Yoneda functor RQon,, to it.
Then, by Proposition 10.10, we obtain ten(%.% (L1, L12; La), €F (Lo, Las; L3)). We regard it as
a left-Futst(X;) and right-Futst(X3) bi-module. To £; € Ob(Fubst(X;)) for i = 1,3, it assigns

WLy, Ls) = €D CF (L1, L12; L2) @ BCF[1](L2, L£5) @ CF(LY, Loz; L3). (10.10)
L2,L

The pre-bi-module homomorphism we look for is a system of maps

BCOF[1)(£1, £4) @ WLy, £5) ® BOF(1](L5, £3) = W (L1, L3).
Namely,

T: BCF[1)(L1, £1) ® CF(LYy, L12; L2) ® BCF(1)(L2, L5)

®@ CF (LY, Log; L5) @ BOCF[1)(L%, L3) — CF (L1, L13; L3).

We define

T (hy, hoo 4,12, 02, oo 1 23, h3)
= (—1)* T%(1123; D12, D23, D13; hoo 4+ .12, Poo 1 23; h1, ha, hy).

Here @;y = 1 € BoCF(L;7) and 1123 € CF(L12, L23; L13) is the cyclic element. The sign (—1)*
is determined by the Koszul rule. We count the way exchanging the order of the variables using
the shifted degree deg’ for elements of BCF[1](L}, £;) (or BCF[1](L;, £;)) and deg for elements
of CF (L}, L12; L2) etc. Then we put the sign according to whether the total count is even or
odd.

Remark 10.14. The sign in (10.13) is also by Koszul rule. However, it is different from the
one we describe above. Namely, deg’ is used also for elements of tri-modules, CF ( ’1, L1925 L)
etc. We change the sign of the maps in the same way as (5.8) (see also (10.2)) to go from one to
the other.

The condition that 7 is a bi-module homomorphism is a consequence of Lemma 10.13 and the
fact that 1193 becomes a cycle (after twisting the boundary operator by the bounding cochains

b12, bas, b13).
We continue the proof of Theorem 9.1 and prove that 7 is a homotopy equivalence. In view
of Lemma 7.9, the next step is to prove that the chain map

Tooiercs: W(L1, Ls) = W (Ly, Ls) (10.11)

is a chain homotopy equivalence for arbitrary £1, £3. By Proposition 10.10, the derived tensor
product (10.10) is chain homotopy equivalent to

CF(W£23 (Wﬁu (‘Cl))a '63) = CF(Wﬁlg (El); Lo3; »CS) (10.12)
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In fact, the chain homotopy equivalence from (10.12) to (10.10) is given by
r—= 1@, (10.13)

for © € CFWgr,s(Wry,(L1)),L3). Here 119 € CF(Ly, L12;We,,(L£1)) is the cyclic element
which becomes the unity in CF(W;,,(£1)) by the isomorphism

CF(Ly, L12; Wiy, (£1)) = CF(Wey, (£1))-

Note that if we regard = as an element of the right-hand side of (10.12), then 112 ® x is an
element of

CF(*Clv Ll?; Wﬁm (‘Cl)) & CF(Wﬁlg (‘Cl)y ‘623; ‘63)7

which is contained in (10.10) as the case Lo = L = W,,,(L1).

The map (10.13) is identified with the map #1200 in (10.33), which we will use to prove
Proposition 10.10.

Thus to prove that (10.11) is a chain homotopy equivalence, it suffices to show that the
composition

CF()/VL12 ([,1), £12; ﬁg) — W(2) ([,1, ﬁg) — W(l)(ﬁl, £3) (10.14)
is a chain homotopy equivalence. By definition, (10.14) is the map

hoo +,23 — T (21,112, D2, hoo + 23, D3)

= U T(1193; D12, D23, D13; 112, hoo + 23; D1, D2, T3). (10.15)

Here @; =1 € ByCF(L;), for i =1,2,3.
Lemma 10.15.

(1) CF(ngz (El),ﬁgg;ﬁg) = W(l)(ﬁl,ﬁg) = Q(Ll X Xy L12 X X, L23 X X3 Lg,@_)@f\o.

(2) The map (10.15) is congruent to the identity map modulo Ay wvia the isomorphism of
item (1).

Proof. (1) is immediate from the definition. (2) then follows from the fact that energy 0 part
of the map .Z#" is defined by the moduli space of constant maps. |

To complete the proof of Theorem 9.1, we need to discuss the following point. Note that
while we proved Proposition 9.2 we showed that the two bounding cochains, written as 1)31) and
bgz) there, are gauge equivalent. However, they are not necessary equal. In the above argument,
we used b\, In fact, CF(Ly, Las; L3) using by gives W, : Fubst(Xy) — Fubst(Xs).

On the other hand, CF(Ly, L13; £3) with b\ gives W, : Jubst(X;) — Fubst(Xs3). Therefore,
to complete the proof of Theorem 9.1, we need to compare CF(Ly, L13; L3) with two different
choices of bounding cochains and show that they are homotopy equivalent as left-Futst(X;) and
right-§utst(X3) bi-modules. We can prove it in the same way as the proof of Proposition 9.2 as
follows.

We consider Poly(CF(L1,L13;L3)) which is a left-Fubst(X;) and right-Poly(Fut(X3)) bi-
module. (See [34, Section 5.2.3] and the proof of Proposition 6.16.) Here Poly(Fut(X3))
is an A, category obtained from Fuf(X3) replacing the morphism modules CF(Ls, L%) by
Poly(CF (L3, LY)).

The Ao category Poly(Fut(Xs3)) is curved. Note that each objects of Fubst(X3) which
is in the image of the functors We,, o We,, (resp. Wr,,) comes with a choice of bound-

ing cochains b:(f) (resp. bél)). We can lift those choices to a bounding cochain b such that
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Eval,—g (13) = bgl) and Eval;—q (3) = b:(f). (See the proof of Lemma 9.14.) We use b to eliminate
curvature and obtain an object of associated strict category of Poly(Fut(X3)), which we denote

by Poly ;; (Sut(X3)).
By the proof of Proposition 9.2, there exists a commutative diagram of A, functors

Jubst(Xy) ——  FUNC(Fubst(X3)°P,CH)

=J{ lEval’s‘:0

Subst(X;) —— FUNC(Poly,,(Fut(X3))°P,CH) (10.16)

= T T Eval?_,

Jubst(Xy) ——  FUNC(Fubst(X3)°P,CH).

Here the first horizontal arrow is obtained by using bgl) and the third horizontal arrow is obtained

by using bgf). Since the right vertical arrows are homotopy equivalences, we obtained the required
homotopy equivalence.
The proof of Theorem 9.1 is complete. |

10.3 The compatibility as bi-functors
We can strengthen Theorem 9.1 as follows.

Theorem 10.16. The next diagram commutes up to homotopy equivalence of unital, strict and
gapped filtered Ao, bi-functors:

Subst(— X7 x Xo) x Fubst(— Xy x X3) —— Sukst(— X x X3)

! !

FUNC(Fubst(X1), Fubst(X2))
< FUNC(Sutst(X), Sutst(s) ——— FUNC(Futst(X1), Jubst(X3)).

Here the first horizontal arrow is (8.3) and the second horizontal arrow is (10.1) in the case
of €; = Subst(X;). The vertical arrows are correspondence bi-functors.

The proof will be given in Section 10.4.

Remark 10.17. Theorem 10.16 enhances Theorem 9.1, and Theorem 9.1 enhances Proposi-
tion 9.2. Below we explain the difference between those three statements. Theorem 10.16 is
a coincidence between two bi-functors

Jubst(— X7 x Xo) x Fubst(—Xo x X3) — FUNC(Fubst(X7), Fubst(X3)). (10.17)

We first fix an object L2 (resp. La3) of Fubst(—X; x Xs) (resp. Futst(—X2 x X3)). Then the two
bi-functors (10.17) give two objects of FUNC(Fubst(X7), Fubst(X3)). The coincidence of those
two objects, which are the functors: Futst(X;) — Fubst(X3), is Theorem 9.1. Note that a func-
tor: Fukst(Xp) — Fukst(Xs3) gives a set theoretical map: OB (Fubst(X;)) — OB (Futst(X3)).
The coincidence of two such set theoretical maps is Proposition 9.2.

Theorem 9.1 contains the coincidence of the morphism parts of the functors: Fubst(X;) —
Sutst(X3). To prove Theorem 9.1, we proved that (10.11) is homotopy equivalence of left-
Sutst(X1) and right-Fubst(X3) bi-modules.

Theorem 10.16 includes statements on the coincidence of the way the morphisms of Futst(—X;
X X9) and of Futst(—Xo x X3) are mapped by (10.17). In the homology level, it implies the
following. Suppose L12, L), (resp. Laog, L3) are objects of Futst(—X; x Xa) (resp. Fubst(—Xo x
X3)) and L1, L) are objects of Futst(X).
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(10.17) defines a homomorphism
HF(L12,LY5) ® HF(La3, L3) — Hom(HF (L1, L)), HF (L3, L5)). (10.18)

Here L3 (resp. £}) is obtained by transforming £ (resp. £}) via the composition of £12 and La3
(resp. L}, and L3). Theorem 10.16 implies that the homomorphisms (10.18) obtained by the
following two different ways coincide.

The first way to obtain (10.18) is the following. Let £13 (resp. £]3) be the composition of L2
(resp. L£},) and La3 (resp. Lh3). Then the composition bi-functor induces a homomorphism

HF (L2, L)9) @ HF (L3, L) — HF(L13, L£]3). (10.19)
On the other hand, by (7.3), we have
HF(£13, £/13) — Hom(HF(ﬁl, ﬁll), HF(£3, Eé)) (1020)

The composition of (10.19) and (10.20) defines a homomorphism (10.18).
The second way to obtain (10.18) is the following. We have the following homomorphisms
from (7.3):

HF(L12,LY5) — Hom(HF (L1, L£Y), HF (Lo, L£5)),
HF(La3, L) — Hom(HF (Lo, L5), HF (L3, £5)). (10.21)

Here L19 (resp. L)) transforms £q (resp. £]) to Lo (resp. £5). On the other hand, the compo-
sition of homomorphisms define a homomorphism

Hom(HF (L1, £,), HF (L2, £y)) ® Hom(H F(La, £3), HF(Ls, £4))
s Hom(HF (L1, L)), HF (L3, L})). (10.22)

The composition of (10.21) and (10.22) is the second way to obtain (10.18).

To prove Theorem 10.16, we need more homological algebra. In Section 10.1, we used the
derived tensor product to define the composition bi-functor of functor categories. In this sub-
section, we define the derived Hom functor.

Definition 10.18. Let 4" and %(;), i = 1,2 be strict, unital and gapped filtered A categories
and D1 a left-¢,%(;) right-¢(9) tri-module. For ¢ € OB(¥), we define a left-6(;) right-%(y)
bi-module D|. as follows:

(1) If ¢; € OB(€(;)), then D|c(e1, c2) = D(c, c1;ca).

(2) For x € By, ¢m[1](c15¢1), ¥ € Br,%2)[1](ch, c2) and v € D|c(c), ch) = De, c);¢h), we
define ny, i, (x;05y) € Dlc(c1, c2) = D(c, c15¢2) by the tri-module structure on ®. This is
the structure operation ny, 5, of D|..

Definition 10.19. Let ¢ and %(;, ¢ = 1,2,3,4, be strict filtered Ao categories and D
(resp. D2) be a left-¢,%(1) right-€(2) (resp. left-€,6(3) right-¢(,)) filtered A, tri-module.
Let ¢; € OB(%(;)). We define Home (D1, D2)(c2, c3;¢1,¢a) as the set of objects

f = (f’m;c,c’)c,c’ED%(%);k:O,l,Q,...

such that i : Bp€[1](c,d) @ Dile(c1,c2) = Dalc(es, ca) is a filtered Ag module homomor-
phism.
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Remark 10.20. We remark that $omy (D1, D2)(c2, c3;¢1,¢4) is the direct product

[[Hom(BiE[1)(c,¢') @ Dilo(cr, c2), Dale(cs, ca)).

c,c!
In the definition of derived tensor product, we used direct sum, see (10.6).

Lemma-Definition 10.21. There exists a left-(o),%(3) Tight-¢(1),%(4) multi-module, denoted
by Homy (D1,D2), so that (ca, c3;c1,cq) — Homy (D1, D2)(c2, c3; ¢1,¢4) in Definition 10.19 is its
object part. (We define the boundary operator of the right-hand side during the proof.)

We write it HHomy (D1,D2) and call it the left € hom-module.

Proof. Let X)) € B]ﬂ(g(l)[ ](cl,c’l) Yo € BkQCK(g)[l](c’Q,CQ), X(3) € Bks%(g)[l](c;g,cg), Yu) €
By, € (4)[1](ca, c}), and | € f)Um(g(@l,@g)(Cg,Cg,Cl,C;l)

We define ng, iy ks ks (Y(2)5 X(3): > X (4)) = 8 € Homg (D1, D2)(ch, 35 ¢}, ca), as follows. We
putg—Olfk:1+k27é0andk3+k4;éO

If ks 4+ k4 = 0 and k1 4 ko # 0, we define

My k,0,0(Y (2 T, X(1)) (25 V) = Bhiey e, (2, U)

= Z ZCl’ ZC§Z,27X(1)avay(2))), (1023)

with
* = deg' z¢;1 + degf + deg y(2)(degf + degv + deg’ x + deg’ z) + deg’ X(1) deg’ z.

Here v € Di(d,ch,c3;¢),¢ca), 2 € Bp€[1)(c,d), Az = .21 ® ze2 and n is the structure
operation of 9.
If k3 4+ k4 # 0 and k1 4 ko = 0, we define

10,0,k3,k4 (X(S)a f, Y(4))(Z7 ’U) = Bk;ca,c (Z; U) = Z(_l)*n/(zc;b X(3)> f(ZC;Z? U)a Y(4))7 (1024)

Cc

with * = degy ) (deg’ z + degv) + deg’ X(3) deg’ z.1 + degfdeg z.,1. Here v, z, 21,22 are as
above and 1’ is the structure operation of D3s.
Ifk1:k2:k3:k4:0, Weput

110’0(1, f’ 1)(Z; ’U) = ng;CQ,CIQ (Z; U)
= Z n/(zc;la f(zc;27 U)) - (_1)deg Fdeg’ Feil Z f(zc;h n(zc;27 U))
c

[

— (—1)%&¥(dz, v). (10.25)

Note that all the signs in (10.23), (10.24) and (10.25) are by Koszul rule.
We can check Ao, relation as follows. (Since the signs are by Koszul rule, the fact that the
equality holds with signs is in fact automatic.) Let d be a map from

B BEy (e, )

/ / /
€5,C1,C5C

® Hom(B€[1](c,d) @ D1(c, ¢, ¢35 ¢1, €a), Da(c, 2, €35 ¢1, ca)) @ BE(y[1](cy, 1)
to itself which is the coderivation induced by the structure operations. We will prove

(nod)(y,f,x)(z;v) = 0. (10.26)
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Suppose k1 = ko = k3 = k4 = 0 for simplicity. We have
(W od)(P(z v =" (—1)%& 1N (7,1 n(f)(2e0, v))
+ (DI S () (21, 022, )

+ (=) (n(f)) (dz, v)

_ Z(_l)deg' zetdegf(deg’ zetdeg’ 2e2) /(71 0 (209, f(Zes3,v)))

. Z(_l)deg FHitdeg’ zeiatdeg zea(deg Ay (7 ) §(ze0, (203, v)))

" Z 1)des’ zea (degHDHAee Ty (5 §(dzes2, v))

n Z —1)deg’ zendeg’ meotdegtdeg zea deg o/ (7 K700 1(2e3,v)))
c

n Z(_l)deg/ zc;2+1f(zc;1, (22, M(Ze3,v)))
c

n Z(_l)udeg/ 21§ (dze1, 0(2e2,v))

i Z(_l)deg f+deg f deg’ zc;1+deg Z“ln/(zc;b f(dzc;% U))

+ Z degf+degf (deg’ zc;14+1) /(dzc;h f(Zc;z, U))

+Z ch, dZCQ7 ))

+ Z - 1+deg Zc%ﬁlf(tjzalan(za%U))'
(&

The 1st and 8th terms of the right-hand side cancel by the A, relation of n’. The 2nd and 4th
terms cancel. The 3rd and 7th terms cancel. The 5th and 9th terms cancel by the A relation
of n. The 6th and 10th terms cancel. Thus we checked (10.26) in the case k1 = ko = k3 = k4 = 0.
The other cases are similar. |

Lemma—Definition 10.22. There exists a filtered A bi-functor

which is given by Lemma—Definition 10.21 for the object part.
We call this bi-functor the derived hom-functor and write its as $Hom.

Proof. Let ¢ and %(;), i = 1,2,3,4, be strict filtered A categories and D1, D] (resp. Da, D)
be left-%", () right-%(2) (vesp. left-¢,%(3) right-¢4)) filtered Ao, tri-module.
Suppose §1: D) — D1 and F2: Dy — D) are tri-module homomorphisms. We will define

(8‘”{,32*) 57)01'[15@(@1,@2) %ﬁom‘/’g( ! 9/2)

Let | = (J020) cop(e)); Home (D1, Da). Here fercacacs = (joLizcnc

c,c )c,c’EDb(%) and

fooretts BE1](e,d) @ D1l (c2, e3;¢1,ca) = Dol (ca, c35¢1, ca).

c,C
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We define g = ( ’f,%’z*)@ as follows. g = (961’62703’84)Ci€95(%(i))7 geLC2ea.ca — (gg&cz,c&m; e,d €
Db(%)), and gi}c’,c%cs’c“: B%(c,d) @ )| (e1, 253, c4) = Dh|c(c1, 25 ¢3,¢4) is

goEe (g, 0) 1= Y (1) YT me g (7§22, 81 (2033, 0))).-

C

Here v € @/ |c(c1,¢2;¢3,¢4), 2 € BE(c,d) and (A® 1) 0o A)(y) = Do Zel @ Zes2 @ Ze:3.

It is straightforward to check that (§7, §2«) is a chain map and multi-module homomorphism.
Moreover, if §1 0 &1 = 1, G0 F2 = H2, then (H7, H2x) = (B, Bay) o (7, F2«). Thus we obtain
a required bi-functor. (It is actually a DG-functor.) [

The next proposition is a Hom version of Proposition 10.10.

Proposition 10.23. Let ¢, 6(;), i = 1,2,3, be strict unital and gapped filtered A categories,
and F: €1y — € and G: € X C(9) — €(3) strict, unital and gapped filtered A (bi-) functors.
We consider YonoF: €1y — FUNC(EP,CH) and regard it as a bi-functor €°P x €y — CH. It
can be regarded as a left-¢, right-¢(y, bi-module, which we denote by D 1y. We apply (bi-module
analogue of) the relative Yoneda functor to G to obtain RYon,,(G), which becomes a left-€ € o)
right €3y tri-module, which we denote by D).

We next consider the composition GoF : €1y X €(2) — € (3) and apply (the bi-module analogue
of) the relative Yoneda functor. We obtain a left-6(1y, € 2) Tight-€(3) bi-module and denote it
by D3). Now we claim that D 3y is homotopy equivalent to Homey (D (1), D(9)) as a left-6(1),%(2)
right-€(3) tri-module. Here the left 61y module structure on $omy (D (1), D (2)) is induced from
the right 61y module structure on D). (We do not use left € module structure on D 9) to
define this left €1y module structure.)

We remark that by definition ®(3) is induced from D) by F. The proof will be given in
Section 10.5.

Remark 10.24. We consider the case when ¢ and ¢y are unital associative algebras, (o) is
trivial, and F is a unital ring homomorphism. We use the notation of Remark 10.11. Then D y)
is the bi-module cg‘ﬁcg(l) and Dy is given by a left € right ¢(3) bimodule chcg(B).

Therefore, Homy (D (1), D(9)) is Homy (¢%%,,,, ¢ D¢,5). The map sending ¢ to ¢(e) gives an
isomorphism between Homcg((@ﬂ%g(l),ch(g(g)) and (5(1)D%’(3) as left ¢(y) right ¢(3) modules. Note
that the left (1) action on %0 Des) 18 defined by F: €(1) — ¢ and the left action of €.

The bi-module %(I)Dg@) corresponds to the composition G o F. We thus checked Proposi-
tion 10.23 in this case.

10.4 Proof of Theorem 10.16
Proof of Theorem 10.16. We first consider the composition
Jukst(— X7 x Xo) x Fubst(— Xy x X3)

s FUNC(Fubst(X1), Fubst(Xa)) x FUNC(Fubst(Xs), Fuest(X3))
— FUNC(Futst(X,), Fubst(X3)) (10.27)

and compose it with the relative Yoneda functor. By the commutativity of diagram (10.8) (see
Propositions 10.10), the composition (10.27) is homotopy equivalent to

Fubst(— X7 x Xa) x Fubst(—Xo x X3)
— BIMOD(Futst(X ), Futst(X2))°P x BZMOD(Futst(Xs), Fukst(X3))P
— BIMOD(Futst(X ), Futst(X3))°P, (10.28)
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where the first functor is the composition of the correspondence bi-functor and the relative
Yoneda functor and the second functor is the derived tensor product. Let L£12 (resp. Lo23) be an
object of Fubst(—X; x X2) (resp. Fubst(—Xs x X3)). By the definition of the correspondence
bi-functor the first functor is as follows.

Let L£; be an object of Futst(X;) for ¢ = 1,2,3. Then L5 (resp. Lo3) is sent to the
left-Futst( X ) right-Futst(X2) bi-module €.% (L1, L12; L2) (resp. left-Futst(Xy) right-Futst(Xs)
bi-module Cgﬂ(LQ,ng;Lg)), which sends ,Cl and ,CQ (I‘G‘Sp. ,CQ and ,Cg) to CF([,l,[,lg;EQ)
(resp. CF(La, Lo3; L3)). This is the object part of the functor. The morphism part is determined
by the left-Futst(— X7 x X2) module structure of €% (L1, L12; La) (resp. the left-Futst(—Xox X3)
module structure of .7 (La, Los; L3)).

Therefore, by the definition of the derived tensor product, the composition (10.28) sends the
pairs ([,1,,63), (,612,,623) to

D1 (Lq, L12, L23; L3)

= @ CF(L1, L12;£2) ® BCF(1)(La, L) @ CF(Lh, Lag; Ls). (10.29)
La,Lh

We consider (10.29) for various L1, L3, L12, L23 and obtain the object part of the composi-
tion (10.28). The morphism part is determined by the left Fubst(—X; x X3), Fubst(—Xs x X3),
Sutst(X ), right Fukst(X3) quatro-module structure of (10.29).

We thus described the bi-functor (10.27) composed with the relative Yoneda functor.

We next study the composition

Sukst(— X7 x Xo) x Fubst(— Xy x X3) — Fubst(—X; x X3)
— FUNC(Futst(X7), Jubst(X3))
— BIMOD(Fubst(X;); Fubst(X3))°P. (10.30)

By definition, the first functor composed with

Non: Fukst(—X; x X3) — FUNC(Fukst(—X; x X3)°P,CH)
>~ BIMOD(Futst(—X; x X3),%)°P

is given by Cgﬁ(ﬂ‘qg; ]ng, ]ng) which is a left—Su{%st(—Xl X Xg) right—&u?st(—Xl X XQ), 311{35{(—)(2
x X3) tri-module. (See Proposition 8.11.)

We consider the composition of the second and third functors in (10.30) and apply (the
object part of) the relative Yoneda functor PonR,,,. We then obtain a left-Futst(—X; x X3),
Sutst(X;) right-Futst(Xs3) tri-module €.#(Li,L13;L3). (See Lemma-Definition 10.3.) Here
left Futst(—X; x Xq), Fubst(— X2 x X3) module structure on ¢.%# (L1,L13;1L3) is induced by its
left Fubst(—X; x X3) module structure via the bi-functor Futst(—X; x Xa) x Fukst(— X x X3) —
C‘{u?ﬁt(—Xl X Xg)

We next use Proposition 10.23. We put

Gy = Subst(— X1 x Xa) x Fubst(—Xa x X3), l2) = Sukst(X1),
C(3) = Sutst(X3), € = Futst(—X; x X3).

Then
D) = €F (Lis; L1a, Lag), D) = ¢F (L1, Laz; La).

@(3) is the pull—back of @(2) by comp: Suést(—Xl X XQ) X Su?st(—Xg X X3) — Su?ﬁf(—)ﬁ X Xg).
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Proposition 10.23 then implies that ©3) is homotopy equivalent to
HOMgest(— x; x x3) (€F (L13; Lz, Laz), €.F (L1, Las; L)) (10.31)

as left-Fuest(— X1 x Xo),Fulbst(—Xo x X3), Jukst(X;) and right-Fust(Xs) quatro-module.!®!
Note that the quatro-module (10.31) associates

Dy(L1, L12, L23; L3)

= [[ Hom(BCF[1](£L3, £13) ® CF(Lh3; L12, Las), CF(Ly, L13; Ls)) (10.32)
5137013

to Lo, Lo3, L1, L3
We thus described two compositions

guést(—Xl X XQ) X Sufst(—Xg X X3) — BIMOD(%uEst()ﬁLSuEst(Xg))OP,

which are (10.29) and (10.32) together with their quatro-module structures. Theorem 10.16
claims that they are homotopy equivalent as quatro-modules. To prove it, we will construct
a quatro-module homomorphism from (10.29) to (10.32).

By definition, such a quatro-module homomorphism is a map

@ BOFN(L:,£5)© BOF(|(L1s, L) © BOFI] (L5, L)
L£4,L5,L55,L53
® Dl( ,17 ,12a ,23; ‘Cé) ® BCF[l]( gv£3) - DQ('Cla '612’ LQS; ‘63)

Therefore, it can be regarded as a homomorphism from

BCF[1](£y, L)) ® BCF[1)(L12, L15) ® BCF[1](L23, Lh3)
® CF(LY, L19; L2) ® BOF[1](L2, L3) ® CF(Ly, Lag; L3) ® BOF[1](L3, L3)
® BOF[1](L13, L3) ® CF(L13; L12, L23)

to CF(Ly, L13; £3). The Y-diagram transformation 2.7° in (10.9) is such a homomorphism and
therefore defines a pre-quatro-module homomorphism. The condition that it becomes a quatro-
module homomorphism is exactly the formula (9.24), which we proved in Lemma 10.13.

To prove that this quatro-module homomorphism is a homotopy equivalence, it suffices to
show that the chain maps, which are parts of this quatro-module homomorphism, are chain
homotopy equivalences (see Proposition 7.9). The chain map induced by #.7 b is nothing but
the chain homotopy equivalence (10.14) which we produced during the proof of Theorem 9.1 in
Section 10.2.

We can study the difference between two bounding cochains bgl) and bgf) in the same way
as the last step of the proof of Theorem 9.1 by enhancing diagram (10.16), so that it includes
left—%u?st(—Xl X XQ), gu?ﬁt(—Xg X Xg) structure.

The proof of Theorem 10.16 is now complete. |

Remark 10.25. To prove the commutativity of the diagram in Theorem 10.16 for the object
part, it suffices to show that D1 = CF(L1; L12; L2) @ BCF[1](L2)@CF(La; Log; L3) is homotopy
equivalent to D} := CF(Lq, L13; L3) as left-Fubst(X7) right-Futst(X3) bi-modules.

To prove the commutativity of the morphism part, we need to include the compatibility of the
homotopy equivalence with the left Fubst(—X; x X2) x Fubst(—Xy x X3) bi-module structures,
as we have done above.

10-1 A ctually we use the variant of Proposition 10.23 where F: C(1y — C is replaced by a bi-functor. The proof of
the variant is the same as the proof of Proposition 10.23.
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10.5 Proof of Propositions 10.10 and 10.23

In this subsection, we prove Propositions 10.10 and 10.23. We need certain calculations of the
sign for the proof. Note that in this paper the sign is almost always by the Koszul rule and by
this reason the cancellation with the sign is mostly automatic. A certain nontrivial sign issue
appears in this subsection by the following reason. We need to regard a filtered A, category 4
itself as a left-% right-¢ bi-module. In such a case an element v of €(c,c’) as an element of
bi-module appears with sign (—1)4°8? in the A, formula. In the case v is regarded as an element
of a morphism complex of an A, category, it appears with sign (—1)4°&¥+1 in the A, formula.

By several maps, which we will define in this subsection, an element of €'(c,¢') as an element
of a bi-module in the domain becomes an element of the morphism complex in the co-domain
or vice versa. This process shifts the degree. It is not obvious to understand the way how this
process affects the sign, since the Koszul rule does not tell it to us. By this reason, we need
to add a certain correction term to the usual Koszul sign. The author is unable to provide
the general principle on the way how the correction terms are determined. Instead, he puts
the correction terms ‘by hand’ (see, for example, (10.37)) and check that the sign works by
a calculation.'0-?

Fortunately, this happens only in the purely algebraic situation so that we do not need to
understand the geometric origin of the correction terms. In fact, Propositions 10.10 and 10.23 are
algebraic statements and hold independent of the origin of A, categories and functors in their
statements. For the construction of various operations using moduli spaces, the fundamental
formulas among those operations are always with Koszul sign. We will use this fact in Section 17.

Proof of Proposition 10.10. Let F;;,1): 6; — %it1 be a filtered A functor for i = 1,2.
Let ¢; € OB(%1), c3 € OB(¢3). We put

D*(c1, e3) := €3((Fa3)ob ((F12)ob(c1)), c3),
D*(c1,¢3) i= €D Go((Fr2)on(c1), c2) © BEa(ca, ch) © G3((Fas)on(ch), ¢3)-

/
€2,C5

Note that D! is the object part of the bi-module R on p (F23 © F12) and D? is the object part
of the bi-module teng,(RYony, (Fi2), RYon,y, (Fa3))-
We define flg;o’oi Dl(cl, 03) — Dz(cl, 63) by

F12:0,0(2) = €(Z12) (1) @ 1 @ 2. (10.33)

Here the symbol e(z,,) . (¢,) 18 the unity of the object (#12)ob(c1) and the symbol 1 is an element
of Bo6a((-Z12)ob(c1), (Z12)ob(c1)), which is isomorphic to Ag. Hereafter, we omit 1 from the
notation. It is obvious that .#12.00 is a chain map.

We also define %1 : D?(cy,c3) — D(c1,c3) by Fo1(x,y,2) = (—1)48%m, (§gg(x,y), z). Here
m is the structure operation of €3.

Let n is the (0,0) part of the left-%7 right-¢3 bi-module structure of D?(cq, c3). Here we use
the sign convention so that degree of elements of bi-module is not shifted. Namely,

NzRy®2) =Y (1) Yiem(z,yi) @y ® 2
C
+ Z(_l)degm+deg/ Yiegp ® Vie® m(§23(}’2;c), Z)
Cc

+ (-1 @dy) © 2. (10.34)

10-2 Actually a similar problem occurs during the proof of Yoneda’s lemma.
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This is a special case of (10.7). We will check that #1.9 is a chain map. We calculate

(S21 0m)(z,y, 2)
= Z(_l)deg, yc;1ﬂ21(m($7 YC;I)v YC;27 Z)

+ (- )degxﬂzl x dy, Z degx+deg,ye;1f21 ($7yc;1,m(§23(}’a2)’z))
= 2 (s m (0¥ ¥ea).2)
A m(323 (x’ y)’z) N (_1)deg' Yeil Zm(.§23(flf, yc;1)7 m(§23(yc§2)7 Z))

By Ay relation, this coincides with (no %)(x,y, 2) = (—1)degwm(m(§23(x,y), z)).
Lemma 10.26. #1200 becomes a (0,0) part of a filtered bi-module homomorphism.
Proof. We first define

jl?;k1,k3 : Bklcgl[l](cla Cll) @DI(CII’ C{’i) ®3k3<g3[1](cé’ Ci’i) - D2(Cla 03)

as follows. If k3 # 0, then Sk, 1y = 0. If k3 = 0, we put Fa4, 0(X,2) = €(2),(c1) @ ﬁz(x)
® z. We will prove that they define an A, bi-module homomorphism. Let

EBB% (c1,¢}) ® DY(c}, c3) ® BE3[1)(ch, c3)

cl,c3
— @B%l (c1,¢)) ® D*(c}, c3) @ BE3[1](c4, c3)
[CARA
be the formal bi-comodule homomorphism induced by #9240, k1 = 0,1,2,.... Let d be

the boundary operator on @Clpcg B%[1](c1,¢)) @ D¢, ¢y) ® BE3[1)(ch, ¢3) induced by the bi-
module structure and

n: B6i[1](c1,c)) ® D¥(c,, &y) @ BEs[1](c5, c3) — Di(c), c3),

which is the structure operation of the bi-module structure as in (10.7). Let x € B%1[1](c1,c}),
z € 9Y(c),c), w € By, 63[1](c}, c3). We calculate

(no ﬁg)(x, 2, W)
=) 0 (Fra(xe1) ® (6 ® Fia(xe2) ® 2) @ W)

S (—1)dE Xete @ Fra(xe1) @ m((Fas 0 Fr2) (Xe2), 2, W) if ky # 0,
= Y (1)’ e ® Fia(Xe1) @ m((Faz 0 F12) (Xe2), 2)
+e®d(§12(x)) ® z if k3 = 0.

Note that in the case when k3 # 0 the formula (10.7) implies that the summand in the second
line vanishes unless x..; = 1. In the case when k3 # 0 and x.; = 1, it becomes the sum in the
third line.

In the case when k3 = 0 after a certain cancellation, there remains another term, that is, the
fifth line.

Remark 10.27. Note that deg’ e = —1. However, as we remarked in Remark 10.7 here the sign
dege = 0 is used.
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On the other hand,

dx®z0w)=dx)®z0w+ (—1)d8*tex @ > @ d(w)
+ Z(_l)deg/xcl;lxcl;l @ m((g23 © 912)()%1;2)7 ZaWCQ;l) & Wey;2.

C1,C2

Therefore, if k3 # 0, we have

(F120d)(x,2,w) = Y _(~1)1% %1te @ Fip(xc1) © m((Fas 0 Fr2) (Xe2), 2, W)

[

If k3 = 0, we have

(ﬂlg e} d) (X, Z)
= Z(_l)deg/ Xeiilg ® %Q(Xc;l) & m((%g o %2) (Xc;Q), z) +e® d(ﬁm(x)) R z.

Therefore, %15 is a filtered A, bi-module homomorphism. [ |
Lemma 10.28.

(1) The composition F21 0 F1200 is equal to the identity.
(2) The composition 1200 © F21 is chain homotopic to the identity.

Proof. (1) follows by an easy and straightforward calculation. We will prove (2). Let = €
C2((F12)ob(c1),¢2), y € B&a[1](c2,ch), z € €3((F23)on(ch), c3). We observe

(H12,00 0 Io1) (2, y, 2) = (-1)*8"e @ m, (%23(33, ¥),z).

We define H(z,y, 2) == (-1)%€%e @ (z ® y) ® =.
Let n be as in (10.34). We calculate
(no9)(@,y,2) = ()™ n(e® (z@y) @ 2)
=20y ®z+ (-1 e® (M@ ya) ©ye) ©2

te® (z@dy)® 2
+ Z(_l)deglyc;le @ (T QY1) ® m(§23(}’c;2), z)

— (-1)*2"e @ m(Fas(, ), 2).
On the other hand,

('6 © n)(l‘? Yy, Z) = Z(_l)deg/yc;l'ﬁ(m(l‘a yC;l) QY2 ® Z)

c

+ (—1)deegy (:L‘, dy, z)

+ Z(_l)degx-i-deg’ yc;lyj(x’ Vel m(yc’% z))
c

= Y () e (m(r © yer) © Yer) © 2

c

—e®(x®ci(y)) ® z
+ Z(—l)deglyc;lﬂe @ (T QY1) ® m(§23(}’c;2)7 z).
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Therefore,
(n oH+Ho n)(m, Yy, Z) =rRy®z— (_1)degwe ® m(§23(:b, Y)7 Z)v
as required. |

Lemmas 10.26 and 10.28 together with Proposition 7.9 imply that %15 is a homotopy equiv-
alence. Proposition 10.10 follows. |

Proof of Proposition 10.23. We use the notation of Proposition 10.23.
Let ¢; € OB(%;), ¢, € OB(¥). By definition, we have

Dylger) = Cle, (Flonler)),  Dle ca;e3) = €3)((G)ob(c, c2); ¢3),
D3)(c1, c2;c3) = €3y ((Gob(Fob(c1), c2); €3).

We put

Fob(c1)s c2);c3),

W (c5e1), D) (e, e25¢3)).

D'(c1, c23¢3) = D3)(c1, 23 ¢3) = E3)((
D?(cy,co;¢3) = H Hom (B¢ [1](c, )

c,ck

gob(
29

Note that D! is the object part of the tri-module associated to G o F and D? is the object part
of the tri-module (Hom)y (D (1), D (2))-

Note that the left module structure n of D) coincides with the Ay, operation m of ¢". We
define

A12:000: D'(er,e25¢3) = D (e, ea5¢3), 11 D*(c1,¢05¢3) = D'(eq,c2;¢3)
as follows. Let u € D'(cy,c2;¢3), 2 € BE(c,c), v € Dy(c’;e1). We put
f12;0,0;0<u)(z; 1)) _ (_1)(degu+1)(degv+deg’ Z)l‘l(z @ v; U)

Here n is the left 4" module structure on D ;). Note that the sign is different from Koszul sign
and contains the correction term degv + deg’ z. We will check that 412:0,0,0 is a chain map. We
have

12,000 (n(w)) (25 v) = (—1)""n(z; v;n(u)), (10.35)
where
x1 = (degu + 1+ 1)(degv + deg’ z) = deg u(deg’ z + degv).
On the other hand,
n(F2000(u)(zv) = Y (—1)IE A 0 (7,1 5190 0,0 (1) (Zes2; v))
+ Z(—l)deg utdeg’ Ze1tl 719.0.0.0(1) (Ze1, W(Ze2, v))

DI 000w s )

= z:(—l)*2 Zn(zc;l, n(Zc;2 ® v;u))

C

+ Z(—l)*S'n(zc;l @ m(ze2;v);u) + (—1)*4n(dz ® viu), (10.36)
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where

x9 = degudeg' z.1 + degu(deg’ z..2 + degv) + degv + deg’ z..2
= degu(deg' z + degv) + deg’ z.2 + deg v,
x3 = degu + deg’ z..1 + 1 + degu(deg' z.;1 + deg’ z.;2 + degv + 1)
+ deg’ Zel + deg’ Zeo +degv + 1
= degu(degv + deg’ z) + deg v + deg’ z..2,
x4 = degu+ 1+ degu(deg’ z + degv + 1) + deg’ z + degv + 1
= degu(deg’z + degv) + deg’ z + deg v.
Thus (10.35) = (10.36) is a consequence of the A, relation. We remark that in the A, relation
of n, the degree of v should be counted as deg’v (and not as degv), since v here appears as an
element of the morphism complex of Ay, category (and not as an element of a bi-module). We
also remark that the operator m appearing in the second term of the right-hand side of (10.36)
coincides with n in this case.

Let ¢ = (peer k) € D?%(c1,c2;¢3). We put Hoy(p) = Pereaies (@7, (c)). Here er () €
Ga(Fob(c1), Fob(c1)) is the unity. It is obvious that .#; is a chain map.

Lemma 10.29. 12,00, becomes a (0,0) part of a filtered left €1y bi-module homomorphism.

Proof. Let x € By, €1)[1](c], c1), u € DY (c1,¢25¢3), z € BE(¢,d), and v € D(1)(¢; Fop(c1)) =
C(c, Fob(c1)). We put

F1oe.0.0(x 1) (z;v) 1= (—1)des’ xtdegutl)(deg’ zhdeg )y (4 @ ) @ x; ). (10.37)

We show that this defines a left 47 module homomorphism.
We remark that the left 47 module structure on D? is induced only from the right-%; module
structure structure on ®(y). Namely,

(P(Zc;lvn(zc;2>v>x))-

n(x, (P)(Z; U) _ Z(_l)deg p+deg’ zc;1+1+deg’ x(deg p+deg’ z+degv)

C

See (10.23). This is the case when x ¢ By%1[1](c1, c2). When x = 1, we have
(n()(z0) = Y _(—1)TE 2ea 4B L (5,1 (2,9, 0))

c
+ Z(_l)degwdeg/ zC:ln(Zc;l, (p(ZC;g, ’U)) + (—l)degSD—H(p(CZZ, 1)).
c

See (10.25). On the other hand, the left 47 module structure on D! is induced from the left ¢
module structure on D) via F.

We also remark that m(z,v,f(x)) = (—1)%ee"*n(z; v; x).
We now calculate

Ha(n(x;u))(z;v)
= Z(_l)deg/ xa:lle(Xa:l; n(xa:2; u))(z; U) + A2 (CZX; ’LL) (Z; 1))

~

=Y (-1)"(z2® v ® F(xa)in(F(xa2);v)) + (-1)2n(z @ v @ dF(x);u), (10.38)

with

*1 = deg’ X4.1 + (deg’ x + degu)(deg’ z + degv), *9 = (deg’ x + degu)(deg’ z + degv).
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Here Ax =), Xq:1 ® Xq:2. On the other hand,

(n(Hr2(x;1))) (2 v)
= Z n(Xq:1; H12(Xa:2; 1)) (2;0)

= Z )2 F12(Xa:2; U) (Ze:1; W(Ze:2; V5 Xa:1))
+ Z 1) 410(Ze:1; F12(%; 1) (Ze2; v)) + (—1)*5 Fha(x; u) (dz; v)
—Z )50 (2e:1 @ M(Ze:2; 05 F (Xa. 1)) ® Xq:2; 1)
+Z 1)*"1(2e:15 1(Ze:; 03 %5 1)) + (—1)n(dz @ v @ x; ) (10.39)

with
*3 = deg’ x4.1(deg’ X4.0 + degu + deg’ z + degv) + 1 + deg’ x40 + degu + deg’ z.1,
x4 = deg’ z..1(deg’ x + degu), x5 = deg’ x + degu + 1,

anle.S
x¢ = (deg’ x + degu)(deg’ z + degv) + deg’ z..o + deg v,

*7 = (deg’ x + degu)(deg’ z + degv) + deg’ z..o + deg v,
xg = (deg’ x + degu)(deg’ z + degv) + deg’ z + degv.

Therefore, the Ao relation implies (10.38) = (10.39). We remark again that in the Ay relation
of n, the degree of v should be counted as deg’ v (and not degv).
The proof that .#12.0 0.0 extends to a tri-module homomorphism is similar. |

Lemma 10.30.

(1) The composition F21 0 F1200 is equal to the identity.
(2) The composition 1200 © F21 is chain homotopic to the identity.

Proof. (1) is easy to show. We prove (2). We remark that
(12,00 © 21 () (7 0) = (~1){CEFFDUE L0 (5.0 05 g e)),

where the notations are as above.
We define $: D?(c1, c2;c3) — D?(c1, c2;c3) by the next formula:

() (50) 1= (~1)dertdosvided st o 0 )

Let n be the structure operations of D ;) and D), which induce a boundary operator ¢ on
D?(c1,¢2;¢3). See Lemma-Definition 10.21. We calculate

() (z5v) = Y (—1)2 et 0B n (71, 6(0) (225 )

+ Z(_l)deg p+deg’ ZC;lj:')((p)(Zc;l; TI(ZC;Q; v)) + (_1)deg 26 () (JZ; ’U)

10-33We remark that during the calculation of the sign % we use the fact that the operator n appearing in the
third line is related to the operator m in the sixth line by (10.2).
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—Z ch (P(Z02®U e))
+Z ©(2Ze;1 ® n(Ze;2,0); e)JF(*l)*SSO(CiZ@U;e),

with
= deg’ z..1(1 + deg @) + deg ¢ + deg' z..2 + degv + 1,
*9 = deg ¢ + deg’ z.1 + deg ¢ + deg’ z + deg v, x3 = deg’ z + degv.

Here A(z) = )", %1 ® 2Z¢;2. On the other hand,

(9(3(p)) (25 0) = (—1)degtdeg’ ztdegv 5y (5 @ v €)
= (=1)"n(z @ v;p(€) + (1) > n(ze1; ¢(ze2 @ vie))

[

+ (—D*%(z ®v)
+Z o(ze15m (zc;z;v);e)~|—(—1)*8<p(cfz®v;e)),

with

x4 = deg o + deg’ z + deg v + deg p(deg’ z + degv + 1) = (deg p + 1)(deg’ z + degv),
x5 = deg ¢ + deg’ z + deg v + deg p deg’ z..1 = %1 + 1, x6 = 1,

x7 = deg ¢ + deg’ z + degv + deg’ z.;1 + 1 + degp = *2 + 1,

xg = deg o + deg’z + degv + 1 + deg p = x3 + 1.

Therefore, ) is the chain homotopy we look for.

Proposition 10.23 follows from Lemmas 10.29, 10.30 and Proposition 7.9.

10.6 A note on 2-categories of A,, categories

We remark that the diagram

BIMO’D(%l; sz) BIMO’D(%l; %2)
XBIMOD(%Q; %3) XBIMOD(%;;; (54) XBIMOD(%Q; <54)
l l (10.40)

BIMOD(%1;%3) x BIMOD(65;€y) —— BIMOD(%1:%))

strictly commutes. Here the arrows are the derived tensor product functor ten. The same holds
if we replace BZMOD(x;*) by BZMOD(x; x)°P. This implies that the diagram

FUNC(€1,6) FUNC (€1, 6)
XMNC((KQ,(@),)X‘FUNC(%&(K@ X‘FUNC(%27%4)

| | (10.41)

mNC(%l,%g)XmNC(%?”%AL) —_— FUNC(%l,%@

commutes up to homotopy equivalence. Here the arrows are the composition functors comp.
Since we take homotopy inverses to relative Yoneda functors to obtain comp from ten, the
diagram (10.41) does not commute strictly. Using the version of Whitehead theorem with the
notion ‘homotopic’ rather than ‘homotopy equivalent’ (see Section 13), the ‘set of choices of
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homotopy inverse’ seems to be ‘contractible’. So we might be able to prove the associativity of
comp in a certain A, sense. That might give a definition of Ay, category of A, categories. The
author does not try to work it out here. Instead, he points out the following.

Let &7 be a set whose elements are strict, unital and gapped filtered A, categories. We
construct a DG-2-category €(.«7) whose object set is &7 and morphism category from 4 € &7 to
%> € of is a full subcategory €(%, 62) of BLMOD(%); 62)°P such that the object set of €(%7, %2)
consists of the bi-modules which are homotopy equivalent to an element of the image of the
relative Yoneda functor RYony, : OB(FUNC(C1,62)) — OB(BIMOD(1,6>)°P).

The composition bi-functor of €(«7) is ten. By the strict commutativity of (10.40), the
composition bi-functors of €(f) are strictly associative as DG-tri-functors.

Lemma-Definition 10.3 implies that FUNC(%1,%2) is homotopy equivalent to €(%,%2).
Moreover, this homotopy equivalence intertwines composition bi-functors of €(7) with the
composition bi-functors of FUNC(%1,6>) up to homotopy equivalence.

It is an opinion of the author that we can use €(«7) as the ‘2-category of A, categories’ for
most of the purposes.

11 Associativity of compositions

11.1 Statement of the result of Section 11
In this section, we prove the associativity of the composition functor defined in Theorem 8.5.

Situation 11.1. Let (X;,w;, Vi) be a symplectic manifold (X;,w;) equipped with a back-

ground datum V;. Let L4y for i = 1,2,3 be a finite set of (Vi ® TX;) ® w5 (Vig1) rela-

tively spin Lagrangian submanifolds of —X; X X;11. Let L;;19), ¢ = 1,2, be a finite set of

71 (Vi ® TXit1) @ 75 (Vigre) relatively spin Lagrangian submanifolds of —X; x X;1o. Let Li4 be

a finite set of 7}(V1 @ T'X1) & 75(Vy) relatively spin Lagrangian submanifolds of —X; x Xj.
We assume

(1) For 1 = 1,2,3 and for any element Li(i+1) of ]Li(i+1) and L(i+1)(i+2) of L(i+l)(i+2)7 we
assume that the fiber product L1 1) X x;,, L(i11)(i+2) 1S transversal. We also assume that
its immersion to Xj(;42) has clean self-intersection.

(2) For i = 1,2,3, the geometric composition of an element of L;; 1y and of Ljj1)it2) is
contained in L;(;19).

(3) We assume the same condition as item (1) for the pairs (Li2,La4), (L13,L34).

(4) The geometric composition of an element of Lis and of Lgy is contained in Lis. The
geometric composition of an element of IL13 and of L34 is contained in Li4.

For 1 <i < i <4, let Fut(—X; x X;) be the filtered A, category defined in Theorem 3.49
whose objects is an element of L;y and Fubst(—X; x X;/) the strict category associated to
Sut(—X; x Xy).

Theorem 11.2. Suppose we are in Situation 11.1. The next diagram commutes up to homotopy
equivalence:
Jubst(— X7 x Xo) x Fubst(— Xy x X3) Jukst(— X7 x X3)
X Futst(— X3 x Xy) X Fubst(— X3 x Xy)

l l (11.1)
Subst(— X1 x Xo) x Fubst(— Xy x Xy) —— Fubst(—X; x Xy),

where all the arrows are defined by the composition functor in Theorem 8.5. The homotopy
equivalence is one of unital, strict and gapped filtered Ao, tri-functors.
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The proof of Theorem 11.2 occupies the rest of this section. The proof is completed in
Section 11.4. The argument of Section 11.4 is similar to Section 10.4. The commutativity
of (11.1) is homotopy equivalence between two tri-functors. Using relative Yoneda embedding,
it is equivalent to homotopy equivalence between certain two quatro-modules. For the proof, we
will construct a quatro-module homomorphism between them. The quatro-module homomor-
phism which we call Double-pants transformation is defined by using a moduli space of objects
which we call Double-pants. Double-pants in this section plays the role Y-diagram played in
Section 10.

11.2 Opposite bi-modules and opposite drums
For the proof of Theorem 11.2, we need a certain digression.

Definition 11.3. Let ; be a filtered Ao, category fori = 1,2 and © = (D, n) a left-%), right-%,
bi-module. We define the opposite bi-module D°P = (D°P, n°P), which is a left-%,", right-¢;"
module by the next formula. Let x € B%,"(co,dh), z € BE P (c),c1), y € DP(ch,c}) =
D(ch;c3),

nP(x;y32) = (—1)"n(2°P; y; x°P). (11.2)

Here the sign * is by Kuszul rule +1. (See Definition 2.30.) We remark there are two convention
of the degree of bi-module, one is shifting the degree of an element of D the other is not shifting
the degree of an element of D. We put * = &(x) + deg’ x deg’ z + deg’ y(deg’ x + deg’ z) + 1 when
we take the first convention and * = &(x) + deg’ xdeg’ z + degy(deg’ x + deg’ z) + 1 when we
take the second convention.

It is easy to check (11.2) satisfies the Ao, relation.

Example 11.4. In Section 2.5, we defined the Yoneda functor Yon: € — FUNC(€°P,CH) and
the opposite Yoneda functor OpQon: €°P — FUNC(E,CH). These two functors define left-€,
right-%¢ bi-module structures on € (c,c’). It is easy to check that they are opposite bi-modules
each other.

We next define the opposite drum.

Definition 11.5. Suppose we are in the situation of Definition 8.15. We consider the ob-
ject (X; 219, 223, Z13; U1, ug2, u3;Y1,72,7v3) such that they enjoy the same properties as Defini-
tion 8.15 except the following:

(i) w1 is a Jx,-holomorphic map from Wy and g is a Jx,-holomorphic map from Wj.

(ii) We enumerate Zj2, Zo3 downward and Zj3 upward.

We denote by MODpR(ﬁ%g,623,613;CL_,CL+;E) the set of isomorphism classes of such objects.
We call an element of M‘l’)‘%(&'m, a3, d13;a—, a4 ; E) or its compactification an opposite pseudo-
holomorphic drum.

Proposition 11.6. The moduli space /6;1%1}{(&'12,623,613;&,,&+;E) has a compactification, ab-
breviated by M%pR(ﬁlg,&'gg,d’lg;a_,a+;E), which is compact and Hausdorff. The compactifica-
tions have a system Kuranishi structures and CF-perturbations. They induce a left Futst(—X; X
X2), Sutst(—Xa x X3) and right Futst(—X, x X3) tri-module.

The proof is the same as the argument of Section 8.2. For example, Figures 8.5 and 8.6 are
replaced by the next Figures 11.1 and 11.2.

We denote the tri-module obtained in Proposition 11.6 by €.%°P (L2, Las;L13). We recall
that in Section 8 we defined the left-Fut(—X; x X3) right-gut(—X; x Xa), ub(—Xs x X3)
tri-module %ﬂ(ng; Lio, 1[423).
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—X, -Xi _’ — X1 x Xy

Y12

Figure 11.1. Opposite version of Figure 8.5.

Z12;1

212;2
212;3 —X1 x X

212;4
212;5

Figure 11.2. Opposite version of Figure 8.6.

Lemma 11.7. €.%°P(IL12,Les; L13) is the opposite module to € .F (L13;1L12,Las).

Proof. We define
OOOp oo
J: MPg(a12,d23,d13;a—,a1; ) — Mpr(d12, des, di3;a—,ay; E)

as follows. We take F': S x R — S! x R by F(t,7) = (1 —t,7). This is an anti-holomorphic
map. In view of (8.7), this operation exchanges the domains W; and Wj. Moreover, it revert
the enumeration of the marked points on the seams. Thus composing F' with the maps in the
moduli space, we obtain a bijection J. It is easy to see that the compactification is preserved.
We can take the Kuranishi structures and CF-perturbations so that they are preserved by J.
We remark that the map J reverse the enumeration of the marked points on the seams. This
means that the operators obtained from these two moduli spaces are related by the operation
taking the opposite category. Therefore, in view of Example 11.4, the lemma holds up to sign.
In Section 17.3, we define orientation of the moduli spaces of the drums and opposite drums via
appropriate doubling constructions. Therefore, Theorem 3.54 implies that the sign becomes one
of the opposite module. |

In Section 8, we defined the functor
comp: Fub(—X; x Xo) x Fub(—Xo x X3) — Fub(—X; x X3), (11.3)
so that the composition
Pon o comp: Fub(—X; x Xo) x Fub(—Xs x X3) — FUNC(Fub(—X; x X3)°P,CH)

is the tri-module %Q(ng; ng, ng).
On the other hand, the tri-module analogue of Lemma—Definition 10.3 defines

9%2)011: .7‘7/[/\[6(%1 X %2,%3) — TRIMO'D(%;[,%Q;(K;J,)OP.

Corollary 11.8. €. %°P(LL12,Las;L13) is homotopy equivalent to the tri-module obtained by ap-
plying RYon,,, to (11.3).

This is a consequence of Lemma 11.7 and Example 11.5.
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11.3 Double pants

In this subsection, we work in Situation 11.1. The proof of Theorem 11.2 is based on a study of
a moduli space of pseudo-holomorphic maps from a space divided into pieces, which we explain
now. We consider the non-compact Riemann surface W of genus zero with 4 ends and its
division W = U?Zl W; as in Figure 11.3 below.

Figure 11.3. Domain W.

The domain W is biholomorphic to S? minus 4 points. It is divided into 4 domains W,
1 = 1,2,3,4. The intersection S;;; = W; N Wy is an arc for it/ = 12,13, 14, 23, 24, 34, which we
call a seam. We call four points where three of the seams intersect the holes.

Figure 11.4. Domain W (alternative view).

We consider the domain W minus holes and remove a relatively compact set from it. Then
the complement is biholomorphic to the disjoint union of the two copies of (—oc,0] x S and
the two copies of [0, 00) x S1. Each of those connected components are divided into three pieces
by seams. In other words, each of them intersects with three of W;’s among four, as is shown
in Figures 11.5 and 11.6. We take and fix a bi-holomorphic map between each of those ends
and (—o00,0] x St or [0,00) x St.

We take the orientation of the seams .S;; as follows:

(seol) For it' = 12,23,34, we orient the seams so that it goes from the positive end to the
negative end.

seo or i1’ = 14, we orien e seam so that it goes from the negative end to the positive
2) For i’ 14 ient th that it f th ti d to th iti
end.
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W
] (back side) ‘4]3 _-1-
J (hack‘side)
W,
W. 1
S12 l
T —> —o0

Figure 11.5. Negative ends of the domain W.

T — +oo

input
output

S12
Figure 11.6. Positive ends of the domain W.

(seo3) For i’ = 13, we orient the seam so that it goes from the end written in the left-hand side
of Figure 11.5 to the end written in the right-hand side of Figure 11.5. For i7’ = 24, we
orient the seam so that it goes from the end written in the right-hand side of Figure 11.6
to the end written in the left-hand side of Figure 11.6.

See Figures 11.5 and 11.6 for this orientation.

We observe that Figure 11.5 coincides with the negative end of the opposite drum used to
define €.F°P(LL12, Las;L13) and €.7°P(IL13,L3s; L14). The right figure in Figure 11.6 coincides
with the positive end of the opposite drum used to define 4% °P (L2, Los; L14). In the left side
of the Figure 11.6, the positive end is actually an input. So we rotate the figure by 180 degree
so that it becomes the negative end. Then it coincides with the negative end of the drum!™!
used to define €.% (Lag; Las, Lay).

We decompose the fiber product to the connected components as

Liyp X x,xx, Liir = U Liy(a). (11.4)

“eALw

Situation 11.1(2) implies that the fiber product in the left-hand side is clean. Note that one of
the components of (11.4) is the diagonal component.

11.13We emphasise that this is not the opposite drum.
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For i,i',i" € {1,2,3,4} with i < ¢ <", we decompose

(Liir X Lign X Lign) X (x,xx,xx,02 A= |J  Rarin(a),
a€A 11

414

where A is the diagonal in (X; x X x X;z)%. This is the decomposition to the connected
components. Situation 11.1(4) implies that the fiber product in the left-hand side is clean.
Let

gir = (a’ii’,lﬂ cet 7aii,1kii’) € (ALn/)kii/a a; = (az}lv cee 7ai,ki) € (-ALi)kza aijrin € Agirin .
[e]e)
In the next definition, we define Mpp (@ )iir; (asirir )iirin; E).

Definition 11.9. We consider (X; (Ziy )1<iciz<a; (i1 = 1,2, 3,4); (Vi )1<i<ir<a) With the follow-
ing properties.

(1) The bordered nodal curve ¥ is a union of W and trees of sphere components attached
to W. The roots of the trees of sphere components are not on |, ;; S

(2) For i = 1,2,3,4, we denote by ¥; the union of W; together with the trees of sphere
components rooted on W;. The map u;: ¥; — X; is Jx, holomorphic for ¢ = 1,2, 3, 4.

(3) Zir = (Ziir,1s- -+ Ziit kyy,) and zgr; € Sy We require zi; < 2y for j < j', where
we identify S;; = R by using the orientation defined in (seol), (seo2), (seo3). We put
|Ziar| = {ziwr 15 - - - 5 Zidt e, 0}

(4) The map ~;ir: Sir \ |Zr| — L,y is smooth and satisfies ir,, (Vi (2) = (ui(2),up (2)).
(5) At Zj, the map 7,y satisfies the switching condition
( lim ’}/Z'Z'/(Z), lim ’yz-i/(z)) € Ly (aii/,j). (115)

ZESii/TZ--/ . ZGSii’*LZii’,j

il ,j

Here we identify S;» = R and then 1, | have obvious meaning (see Definition 3.17 (5)) by
using the orientation of S;;.

(6) At the negative end of W, the following asymptotic boundary condition is satisfied:

EIPOO(’YH(T% 723(7), 713(—7)) € Ri23(ai123),

T

lim (y13(7), v34(7), v14(—7)) € Ri34(a134). (11.6)

T——00
(7) At the positive end of W, the following asymptotic boundary condition is satisfied:

lm (y23(7), v34(7), v14(—7)) € Roza(aiza),

T—+400
im_ (v12(7),724(7), v24(—7)) € Ri24(a124). (11.7)

T—+00

(8) The stability condition, which is defined in the same way as Definition 9.7 (2), is satisfied.
4 *
9) >imy fzi u;w; = E.

In the same way as Definition 9.7 (3), we define an equivalence relation ~ among the ob-
jects (3 (Ziwr)1<icir<as (Wi)i=1,2,3,4; (Vir )1<i<ir<a) satisfying (1)—(9). We denote the set of all
the equivalence classes of this equivalence relation by Mpp ((@;ir)ii; (aiirin )i E) . We call its
element a pseudo-holomorphic double pants.
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We define evaluation maps
eviy i Mpp (@i )iwrs (@i )ivrirs E) — Lig (agy ) (11.8)

by using (11.5). We define evaluation maps

evigir s Mpp (@i )iirs (@iiin )iz s E) — Rigrin (igrin) (11.9)
by using one of (11.6)—(11.7).

Proposition 11.10. We can define a topology on Mpp ((@iir)iir; (agirin)izin; E) such that it has
a compactification Mupp (@i )iir; (azirin )izin; E), which is a compact metrizable space. They have
Kuranishi structures with corners which enjoy the following properties:

(1) The normalized boundary of Mpp((@iir)iir; (azirin )i E) is a disjoint union of 2 types of
fiber products, which we describe below.

(2) The evaluation maps (11.8) and (11.9) extend to strongly smooth maps with respect to this
Kuranishi structure. (11.9) is weakly submersive. The extension is compatible with the
description of the boundary in item (1).

(3) The orientation local system of Mpp((dii)iir; (aizrir )isrir; E) is isomorphic to the tensor
product of the pullbacks of ©~ by the evaluation maps (11.8) and (11.9). For the component
Ri24(a124), we take O in place of O~ .

(4) The Kuranishi structure is compatible with the forgetful map of the marked points corre-
sponding to the diagonal components.

We describe the boundary components.

(I) The first type of boundary corresponds to the bubble at one of the Lagrangian bound-
ary conditions L;y. We describe the case of L1. Let b € Ap,, and i < j. We put dt, =
(a1270, s, @124, b, a127j+1, e ,a12,k12), 6%2 = (b, a12,i+1, - - - ,a127j). We put 6’12 = C_L}Q, C_igz, = Eim
for 47’ # 12. This boundary corresponds to the fiber product

Mop (@ )i,irs (@i )i B1) Xy, M (Liz; 1o En).

Here Eq1 + E5 = E. We remark that we use the compactification M’ in the second factor,
which is a moduli space of pseudo-holomorphic disks (see Remark 5.38 and Section 12). See
Figure 11.7. The bubble at L;; for i’ # 12 can be described in the same way.

(IT) The second type of boundary corresponds to the limit where the domain will be divided
into two parts at the ends. There are 4 ends of our domain. We first consider the case of the
ends in the left-hand side of Figure 11.5.

Let ji € {0,...,kip} for it/ = 12,23 or 13. We put dj; = (@ 1,...,0u;,), Gy =

(22

s —92 _ — _
(@iit j, 1415+ - @it ) for 46" =12 or 23. We also put @35 = (aiir 1, @it j,., ) G = (@it j, 15
ooy @i, ) for i’ = 13. We then put @, = az, for i’ = 12,23 or 13 and @, = d@;; otherwise.
/ / 7
Let a € Aj23. We put ajy3 = a and aj;,n = azeen for id'i" # 123.

Now this boundary is described by the next fiber product

—/

Mpp ((C_izli’)ii/; (agrin)iivirs B1) X Rygg(a) MDR (@0 )iir=12,23,13; 0123, a; B2),

where By + Ey = E and a € Ar,,. See Figure 11.8. Note that MY ((@};)i; a, a123; E2) is the
moduli space of opposite pseudo-holomorphic drums as in Definition 11.5.

In the case of the end in the right-hand side of Figure 11.5, the end is described by the fiber
product

Mop (@) 03 (@irgn iavirs B1) X Ryga(a) MR (@ )iir—13,34,14; @134, a5 Eb).

Here @, @, and @, are defined in a way similar to the first case.
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(back side)

Figure 11.7. Bubble of Type I. Figure 11.8. Bubble of Type II.

In the case of the end in the left-hand side of Figure 11.6, the end is described by the fiber
product

Mop (@) ;5 (@grin iarirs B1) X Raga(a) MR (@ )iir—23,34,24; a234, a; Bo).

Here &'}i,, .., and @, are defined in a way similar to the first case. We remark that the second
factor is the moduli space of pseudo-holomorphic drums'!? as in Definition 8.15. The reason
why pseudo-holomorphic drums appear here is explained right after the orientation of seams
(seol), (seo02), (seo3) are defined.

In the case of the end in the right-hand side of Figure 11.6, the end is described by the fiber

product
ML (@ )iir=12,24,143 @, 01245 B2) X ooy Mop (@) 503 (algrgn iavirs Er).

Here the moduli space of opposite pseudo-holomorphic drums appears. Moreover, it appears as
the first factor. The reason is in the case of this end, Rj24(a) corresponds to the output of the
second factor.

The proof of Proposition 11.10 is similar to various other propositions we discussed before in
this and other papers and so is omitted. (See Section 17.5 for the proof of Proposition 11.10 (3).)

Proposition 11.11. For each Ey, there exists a system of CF-perturbations S on the space
Mopp (@i )i (agir )i E) (with respect to Kuranishi structures which are outer collarings of
thickenings of those in Proposition 11.10) for E < Ey such that the following holds:

(1) They are transversal to 0.

(2) The evaluation map (11.9) is strongly submersivel> with respect to this CF-perturbation.

(3) The CF-perturbations are compatible with the description of the boundary. Namely, re-
striction of the CF-perturbation on the boundary coincides with the fiber product CF-
perturbation in the sense of [40, Lemma—Definition 10.6] and [46].

11-2Not opposite drum.
11-3G8ee [40, Definition 9.2] and [46] for its definition.
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(4) The CF-perturbations are compatible with the forgetful maps of the boundary marked points
corresponding to the diagonal component, in the sense of [28, Theorem 5.1].

The proof is similar to the other similar statements we discussed already and is now a routine.
We omit it.

We now use Propositions 11.10 and 11.11 to produce certain operations in a similar way
as previous sections. We need certain notations. For 1 < ¢ < ¢ < 4 and 1 < j < kjy,
let hii’,j € Q(Lu/(au/,]),Q_) We put hii’ = (hii’,la---vhii/,k“/) € Bk;“,CF[].](,C“/,,C;Z,) For
i1'i" = 123 or 134, let

higrin € QU Rygrin (@igrin); ©7) C CFP(Lyjr, Lirin; Ligr),
and for 771" = 234, let
hass € Q(Ra34(a234); 07 ) € CF(Los; Lo3, L34).

Definition 11.12. We define .@L@fEﬁ((hii/)W;h123,h134,h234) € Q(Ri24(a124);©7) by the

next formula

evigy! <H evihy A H evinhigin; 65>. (11.10)
i<i! i1/ =123,134,234

—

Here we use the moduli space M((@;i)sir; (asirin)ivin; E) and its CF-perturbation & to de-
fine (11.10). There is actually a sign in the right-hand side. We will explain it in Section 17.5.
We extend 22 .7E< by Ay linearly and use it to define

92 7<Foc. T BCF()(Liv; Ljy) @ CFP(Lhy, Lys; L13)
<3/

® CFP(L3, L54; L14) @ CF(LYy; Loz, L34) — CFP(L12, Loa; L7,) (11.11)

by the next formula 2227 <Fo< = > BB TE9 2 TE< We call 222 .7<F0¢ the double pants
transformation.

We next state the main property of the double pants transformation. We need some notations.
Let hyin € CFOp(ﬁii/,ﬁi/i//;ﬁii//) for ii'i"” = 123 or 134, hosq € CF(£24;£23;£34) and h;,; =
(hii/,la ey hii’,k“/) € Bkii’ CF[].](EMI, [’;2’) We put Ah”/ == Zc hfz’,1 X hZCZ,Q For P = jj/j// = 123,

-1 o,

134 or 234 we define h’" as follows. Let T, be one of the four ends corresponding to p = jj'j":
(1) h2f =h% and W2 = W7 if Sjy does not intersect with W,
(2) Wy = h;,l and h?;' = hfl,2 if S;y N W, # & and W, lies at the —oo side with respect to
the orientation of the seam S;; .
(3) hi = hfi(,p )2 and ho = hfz,l if Sy NW, # & and W, lies at the oo side with respect to
the orientation of the seam .S;; .

In case p = jj'j" = 124, we define h; by exchanging the conditions (2) and (3).

We also put djj’(}}ii’)ii’ = (h},);#7 where h},, = hy; for ii’ # jj’ and h?, = afhjj/. We then
put d(hgir)iir = > djjr (Biir )iar-
Proposition 11.13. The double pants transformation 92 T <F0 satisfies the next congruence
modulo T :

22 T <F=(d((hyp)iw); haos, hasa, hoss )
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+ Y 927 (h
¢(12),¢(23),¢(13)

noP (h}g3,c(12);l’ h;gi‘l,c@i’));/7 h123; h}§3,c(13);/)’ h134, h234)
134,¢(id’
. Z 927" ((hy o ))u‘/3
¢(13),¢(34),c(14)

134,6(13)57 1 134,¢(34)y/ L 134,¢(34)
h123,n°P (hy s hgy s hisa;hyy ). hasa)

- Z 9P T <Fos ((h?i3,4’c(ii ))u‘/5 hi23, haza,n(h3s ' hosashag ¥ b3t )
¢(23),¢(34),c(24)
_ Z P (hg4,c(12) ’ héi4,c(24) :
c(12),¢(24),c(14)
.@93<E0’E((h124’c(ii/)) 5 h123, h134, h234); hii4’c(14);/) =0 mod TEO. (11.12)

ii/ 1;1;’ 9

123,c(ii')y
i )ii”

Here n is the structure operation defined by the moduli space of pseudo-holomorphic drums in
Section 8 and n°P is the structure operation defined by the moduli space of opposite pseudo-
holomorphic drums in Definition 11.6. The signs (which we omit from the above formula) are
by Koszul rule.

Proof. Using Propositions 11.10, 11.11, Stokes’ formula (see [40, Proposition 9.26] and [46]),
and the composition formula (see [40, Theorem 10.20] and [46]), the proof goes in the same way
as the proof of Proposition 3.35. In fact, the first term of (11.12) corresponds to the end of
Type I (see Figure 11.7) and the second-fifth terms of (11.12) corresponds to the end of Type II
(see Figure 11.8).

In fact, Type I ends are described by the fiber products of the moduli spaces of double
pants diagrams and of pseudo-homomorphic polygons. Type II ends are described by the fiber
products of the moduli spaces of double pants diagrams and of (opposite) pseudo-homomorphic
drums. |

We can use Proposition 11.13 to prove the next lemma in the same way as we used Proposi-
tions 3.30, 3.41 in Section 3.3.

Lemma 11.14. We can define 22T which is congruent to 22 .7 <F0¢ modulo T and which
satisfies the same formula as (11.12) except the congruence is replaced by the equality.

We call 2227 in Lemma, 11.14 also a double pants transformation. We next twist the 2.7
by bounding cochains. Let b;;; be bounding cochains of £;;;. We define

¢: [[BCF[)(Liw) — [] BCF1)(Liv)

i<i! i<i!
by the same formula as (5.9). We then put PPTN = 9P T o (t5® id).

Lemma 11.15. 9@55 satisfies the same formula as (11.12) except we twist d and n by b and
the congruence is replaced by the equality.

The proof is easy and so is omitted.

11.4 Proof of the associativity

Now we use the double pants transformation to prove Theorem 11.2. The proof is similar to the
arguments of Sections 9 and 10.
We first prove the next proposition, which is similar to Proposition 9.2.
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PI’OpOSitiOl’l 11.16. In Situation 11.1, let ,612 = (L12,0'12,b12) (7‘68]). [,23 = (L237023,b23),
L34 = (L3g,034,b34) ) be an object of Fubst(— X1 x Xs) (resp. Fubst(—Xox X3), Fubst(—X3x Xy)).
We put

L3 = (L13,013,b13) = Comp(Li2, La3), 5(1) = (L§4)7 81)7 bﬁ)) = Comp (L3, L34),
and

Loy = (Lo, 094, bag) = Comp(Las, L1), L7 = (L), 02 007)) = comp(L12, Loa).
Then we have the following:

(1) (Lﬁ), U&)) = (Lg), ULB) Here the equality is as submanifolds equipped with relative spin
structures.

(2) bg? is gauge equivalent to bﬁ) in the sense of [34, Definition 4.3.1].

Proof. (1) is proved in the same way as Proposition 9.2 (1), which is proved in Section 17.4.
We prove (2) below.

(1)
We put h;y = ebi for 1 < i < i’ < with i’ # 14 and hyy = ePid. Let hjrgr = Ly
for 4i'i" = 123,134,234. Here 1;;» is the function 1 on the diagonal component, which is
diffeomorphic to Lyin. We define

§2)4 = -@ggb(( i )iits 123, P34, hasa).
We consider the filtered Ay tri-module €. % (L14; L12, Lo4) and twist it by the bounding cochains

b12, bag. We then obtain a left filtered Ao module €% (L14;1L12,1Log) over Fubst(—X; x Xy).
By Lemma 11.15, we have

n(e:1{,) = o. (11.13)

Let 1522)4 pe the function 1 € CF(Li4; L12, L24) on the diagonal component, which is diffeo-
morphic to Li4. By definition (see formulas (8.4) and (6.3)), we have

(2)
n(ei;153) = 0. (11.14)
By the definition of 2.5 b and 1&12)4, we find that
1), =1 mod AL (11.15)

Using (11.13), (11.14), (11.15), we can (p)ply (the left module analogue of) Lemma 9.14 to

conclude that by, is gauge equivalent to b1 £ |
Proof of Theorem 11.2. We first study the composition
Jubst(— X7 x Xo) x Fubst(—Xy x X3) x Fulst(—X3 x Xy)
— Fubst(— X x X3) x Fubst(— X3 x Xy) — Fubst(—X; x Xy). (11.16)

We apply the object part of the relative Yoneda functor to
Sukst(— X1 x Xo) x Fubst(— Xy x X3) — Fubst(—X; x X3).

We then obtain the filtered Ay tri-module € .%°P(Lg, Los; L13) by Corollary 11.8.
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On the other hand, applying the object part of the relative Yoneda functor to the composition
%u?st(—Xl X X3) X 311?5{(—)(3 X X4) — 311?5{(—)(1 X X4),

we obtain the filtered Ay tri-module €.7°P(LL13,L34;L14) by Corollary 11.8. Therefore, by
Proposition 10.10, applying the relative Yoneda functor to the composition (11.16) gives the
derived tensor product

Dy = ten(€¢ . F°P(Lig, Lag; L13), €.F P(IL13, Li3a; L1a))

over Futst(—X; x X3). The quatro-module structure on D; is defined in the same way as one in
the derived tensor product (see Lemma—Definition 10.6). Here the quatro-module structure is
left-Fubst(— X, x Xa), Futst(—Xo x X3), Fubst(—X3 x Xy) and right Futst(—X; x X4) module
structure.

We next consider the composition

Jubst(— X7 x Xo) x Fubst(—Xy x X3) X Fust(—X3 x Xy)
— Fubst(— X7 x Xg) x Fubst(—Xo x Xy) — Fubst(—X; x Xy). (11.17)

By definition (see Proposition 8.11), the composition functor
Fubst(—Xo x X3) x Fubst(— X3 x Xy) — Fubst(—Xy x Xy)
composed with the Yoneda functor
Yon: Fubst(—Xo x Xy) — FUNC(Fubst(—Xy x X4)°P;CH)

gives a left-Suést(—Xg X X4), right-&ufst(—Xg X Xg), 3uEst(—X3 X X4) tri-module. %ﬁ(LM;
Loz, L3s). On the other hand, applying the relative Yoneda functor to

Futst(— X1 x X2) x Fubst(—Xo x Xy) — Fubst(—X; x Xy)

gives the left-Fubst(— X7 x Xo), Fubst(—Xy x Xy) right-Futst(— X3 x Xy) tri-module €. P (L2,
Loy; Lyy).
Therefore, we can apply Proposition 10.23 by putting
1) = Subst(— X2 x X3) x Fubst(—X3 x Xy), o) = Fubst(—X1 x Xo),
%(3) = Subst(— X1 x Xy), € = Fukst(—Xo x Xy),
D) = €FP (L2, Lag; L1a), Do) = €-F (Laa; Los, Laa),

to find that applying relative Yoneda functor to the map (11.17) gives a left-Fubst(—X; x Xo),
Jubst(— Xy x X3), Fust(— X3 x Xy) and right Fubst(—X; x X4) quatro-module

Dy = $H0Mgeat(—xox x,) (€F (Laa; Lag, Las), € F P (LL1g, Lag; L14)).
Now a quatro-module homomorphism from D; to D5 is a map from

BCF[1](L12, L15) ® BOF[1](L23, Ly3) @ BCF[1](L34, L34)
® CFP(LYy, L3; L13) @ BCF[1](L13, L13) ® CFP(LY3, L34; L14)
® CF(Loa; Lo3, L34) @ BOF(1](Loa, L9y) @ OF (L4, L1y) (11.18)

to CFOP(Li2, Loa; L1y).
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The double pants transformation 222.7° is such a map. Note that in (11.11) £,; Loz, L34
appears in CF(...) and all similar triple appears in CF°P(...). This coincides with (11.18).
The main property of double pants transformation, that is, Lemma 11.15, implies that 22.7 b
gives a quatro-module homomorphism.

Thus we obtained a natural transformation from (11.16) to (11.17). The fact that it induces
an isomorphism for objects can be proved in the same way as the last part of the proof of
Theorem 10.16 (see Section 10.4). We can combine it with the argument of the proof of Propo-
sition 11.16 to complete the proof of Theorem 11.2 in the same way as the last step of the proof
of Theorem 9.1 (see Section 10.2). [ |

12 Two different ways to compactify the moduli space
of pseudo-holomorphic disks in the direct product

12.1 The reason why we need a different compactification

Let (Li2,012) be a 77 (V1 & TX;) @ w5 (V2) relatively spin Lagrangian submanifold of —X; x Xo.
(Here Vj is a vector bundle on (Xi)[;;] for i = 1,2.) Let us consider the set M(Lj2;d12; F), which
we defined in Definition 3.19.

Definition 12.1. The subset /C;I(ng;é’lg;E) of /\O/l(L12;612;E) consists of the equivalence
classes [(X; u; Z;y)] such that ¥ is a disk. In other words, it consists of the stable maps with no
sphere or disk bubbles.

In Section 3 (see formula (3.20)), we compactified ﬁ(ng; di12; E) to M(L12;d12; E). In Def-
inition 5.37, we did not use this compactification but mentioned that we use a slightly different
compactification M’ (L12; d12; E) to define the partial compactification M(dl, d12,d2;0—,a1; F)
of the space M(a1, d12,d2;a—,a; E). See Remark 5.38. In this section, we define this compact-
ification M’ (L12; d12; F) and its Kuranishi structure.

We first explain the reason why we need to use different compactification from M(Ljo; @12; F).
Actually, the space M(d1,@12,d2;a—,a4; E) will not carry Kuranishi structure if we use the
compactification M(Lig;d12,; F) in (5.15). We explain its reason in the following example.

Example 12.2. We consider a neighborhood of an element (£,7) of the fiber product. We
define &, n below. Let

g = ([_17 1] X R7'®7 (0,0),@;11,1,’11,2;’}’1,’}/12,’)/2) € M(®7 (a12)7®;a—7a+;E1)-
In other words, we consider the case when the source curve ¥ is [—1, 1] x R and has no sphere

bubble, and consider only one (boundary) marked point (0,0) which is (0,0) € {0} x R. See
Figure 12.1.

Figure 12.1. Element &.
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We also consider
n=(S5us; (1);93) € M(Lig; (a12); Ea). (12.1)

Here ¥ is the union of D? and S? glued at 0 € D? and [oo] € S? = CU{o0}, uz: ¥ — —X; x Xo
is a pseudo-holomorphic map such that u3(9%3) C L1z and 1 € 9% is a boundary marked point.
See Figure 12.2.

Figure 12.2. Element 7.

We assume (u1,u2)(0,0) = us(1) and regard the pair (£,7) as an element of the fiber product

oo

M(D, (a12), Dy a—, ay; E1) X1, (a15) M(L12; (a12); E2).

This fiber product is similar to (5.15) but we use M(L12; (a12); E2) in place of M'(L12; (a12); F2).
We assume E = Fy + Fy. See Figure 12.3.

Figure 12.3. Element (£, 7).

Let us consider a neighborhood of this element in the compactified moduli space. For sim-
plicity, we assume that the element (£,7n) is Fredholm regular in the fiber product. We put
ud = ug|p2 and u* = uz|g2. We denote by VIl V4 VS the parameter to deform &, ud, v,
respectively. We have two kinds of extra parameters which resolve the singular point. One
is [0,€) which parametrizes the way to resolve the boundary node and the other is D? which
parametrizes the way to resolve the interior node. Therefore, we might imagine that the gluing

analysis implies that the neighborhood of (£,7) in M(2, &, &;a_,a4; E) is parametrized by
VA X p are) VE Xxyxx, V% [0,€) x D2, (12.2)

However, (12.2) does not parametrize a neighborhood of (£, 1) correctly. To see this we examine
the process of gluing more carefully. Actually it suffices to see the pre-gluing, which is the
process to obtain approximate solution of the nonlinear Cauchy—Riemann equation by using
partition of unity. (The process to modify it to obtain an actual solution is the same as other
well-established cases.)

The maps ud and ©® are maps to the direct product —X; x X5. So we write ud = (u?, u‘%)
and u® = (uj, us).

We first glue (ug,u2) with ud. This gluing is parametrized by the parameter p € [0,¢)
with p # 0. We put w;(s,t) = ui(—s,t) and regard (u;,u2) as a map from a neighborhood
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of (0,0) in [0,1] x R to —X7 x X» and glue it with ud. We obtain a map (uy,us)#,u’ from
[0, 1] x R to —X1 X X2.

We them regard (U1, us)#,u? as a pair of maps (u}, uy) where u}: [0, 1] xR — X7, ub: [0,1] x
R — X5 such that (u}(0,¢),u5(0,t)) € Li2. By an abuse of notation, we may regard the
pair (u},u)) as (ul#pul,uQ#qu See Figure 12.4.

el

Figure 12.4. ul#pul,u2#pu2

We next glue v® to this pair (ul#pu‘f, UQ#pU/S). This gluing is parametrized by the parame-
ter € D?. We assume 6 # 0. We observe that the marked point 0 € D? at which we glue the
sphere bubble becomes a pair of points (—c(p),0) € [—1,0] xR and (¢(p),0) € [0,1] xR after the
first gluing. Therefore, when we glue u® we glue w5 : S? — X to ul#pu‘f at the point (—c(p),0)
and glue u§: S% — Xy to ug#,ug at the point (0,c(p)). (Here @5 is obtained from u§ by using
anti-holomorphic involution of the source.) We thus can write the element obtained by the
gluing as (ul#pu‘f#gﬂﬁ,uz#pug#gug). See Figure 12.5.

B,

biholomorphic ‘ |2

Y

c(p)

Figure 12.5. (ul#pu‘f#gﬂi, uQ#pug#gug) .

In this way, we obtain a family of approximate solutions parametrized by (12.2).

Now the issue is that this family does not have correct dimension. In fact, it has two more
parameters than the correct parameter. Let us elaborate on this point below.

Let v: S — S? be a biholomorphic map which preserves co € C U {oo} = S2. We re-
mark that u5 o v and u5 are the same element of the moduli space of pseudo-holomorphic
spheres with one marked point in X;. However, (uj, u§ o v) is a different element from (uj,us)
in the moduli space of pseudo-holomorphic spheres with one marked point in —X; x Xs.
Thus (ul#pu?#gﬂi, uQ#pug#gug o v) may become the same element as (ul#pu‘f#gﬂi, uQ#pug
#ou3) but (ur,up ov) # (u1,uz).

Another point is that, using the notation (ul#pu‘f#gﬂﬁ, uQ#pug#gug), we can glue uj and u$
by different gluing parameter at interior nodes. Namely, we have a family of elements of our
moduli space (ul#pu?#glﬁl, Uz#pug#QQU%) where 6; # 62 may occur.

In fact, a part of the freedom to reparametrize the first (but not the second) factor by v
corresponds to the freedom to choose 61 # 6>. We will elaborate on this point. We iden-
tify (52,00) = (CU{oo},00). For ; € C in a neighborhood of 1, we define v;: (CU {oo}, 00) —
(CU {o0},00) by v;(2) = 32. Then the element (ul#pu‘f#ﬁglﬂﬁ,w#pug#%u; o Ua) represents
the same element as (ul#pu‘f#glﬂsl,uz#pug#@u;). See Remark 12.3 below. We now observe
that the real dimension of the group of automorphisms of (CU{co}, 00) is 4. On the other hand,
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the extra parameter by allowing 6 # 63 is 2. Thus we can conclude the dimension of (12.2) is 2
plus the correct dimension of our moduli space.

In other words, we can not define Kuranishi structure of our compactification if we use
M(ng; 512; E) in place of MI(L12; 512; E) in (515)

Remark 12.3. To elaborate on the fact
d — d dy  — d
(Ul #pul #391 usly u?#p“Q #92“’3 o Uj) ~ (U]_ #pul #01 ’Ui, u?#p“Q #02“3)7
we consider the case when 6, = 65 = 0, that is,
d —s d S d —s d S 12.3
(ul#pu1#0u1>u2#pu2#0u2 OU:,) ~ (ul#pul#Oul’u2#pu2#0u2)- ( . )

In this case, the domain of those elements are depicted as in Figure 12.6 below.

Sf 2

Q0

Figure 12.6. The domain in the case when 6; = 65 = 0.

There are two sphere bubbles on the domain. We denote by S7 and S3 the sphere bubbles
which lie in the left and the right of the seam, respectively. The maps on S? and S7 are u$
and u$ for the right-hand side of (12.3). In the case of left-hand side of (12.3), the maps on S?
and S3 are u§ and u§owy, respectively. We define 95 to be an isomorphism from the configuration
as in Figure 12.6 to itself so that oy is the identity map outside S5 and is v; on S5. Then it is
easy to see that

(ur# pull #0105, uat pu§ #ous) o O; = (wr#pu #0T05, us us F#ous o v;).

This implies the equivalence (12.3).

We can choose the various additional data which we use to perform the gluing process so
that the equivalence in the case 6; = 0 can be extended to the case 6; # 0. (We omit the detail
of this part since the rigorous proof is not necessary for the proof of our results. The discussion
here is a motivation to introduce new compactification.)

We also observe the following. We take the limit as p goes to 0 in (12.3). The domain depicted
by Figure 12.6 converges to the domain depicted by Figure 12.3. The automorphisms ©; however
cannot be extended to this limit. In fact, in the domain of Figure 12.3 two sphere bubbles
become the one sphere bubble and so we are not allowed to take two different biholomorphic
maps on the sphere bubble. Therefore, ‘the limit’ of left and right-hand sides (as p goes to 0)
are not equivalent. By this reason, it seems likely that it is impossible to define an appropriate
topology which is Hausdorff, if we use M(L12;@12,5; E12,5) in place of M'(Li2;di2,5; E12,5) in
Theorem 5.43 (2).

Remark 12.4. A similar problem already appeared in [42] (see the proof of [42, Lemma 6.62)).
In [42, Lemma 6.62], we compared two moduli spaces. One is the space of pseudo-holomorphic
maps u from a disk to —X x X so that u(E)Dz) lies in the diagonal. The other is the space of
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pseudo-holomorphic maps u’ from a sphere to X. We can use reflection principle to identify those
two moduli spaces. When we consider their stable map compactifications the identification does
not extend. To explain this fact, we consider the case when u is a map from D? with a sphere
bubble to —X x X so that u(@Dz) lies in the diagonal. Suppose that u is (41, uz) on the bubble.
Then the corresponding element u’ is a map from S? with two sphere bubbles and the maps
on those sphere bubbles are u; and ug, respectively (see Figure 12.7). When we replace us
by wug o v; the object in the compactification of the moduli space of disks changes. However,
the corresponding objects in the compactification of the moduli space of spheres are equivalent.
This is similar to the situation of Example 12.2 and Remark 12.3.

(51

(ﬂla u2)

D? 52 U2
Figure 12.7. Reflection principle at infinity.

In [42], the problem is slightly less serious since there we need to show two well-defined
numbers to coincide. So we can use the fact that the problem occurs only in codimension > 2
strata and use dimension counting argument. Here we need to work out the chain level argument.
So we describe the different compactification M’(L12;d@; E) in detail in this section.

Remark 12.5. We remark that the problem of different reparametrizations applied to the first

and the second factors in the bubble, which we described in Example 12.2, does not occur for

the disk bubble but occurs only for the sphere bubble. Let us elaborate on this point below.
Let us consider the same & as Example 12.2. We replace 1 as in (12.1) by

n = (D% us; (1);73) € M(Li2; (a12); Ea).

Namely, we assume the source curve of 7 is a disk. The group of automorphisms of the
pair (Dz, 1) of a disk with one boundary marked point 1 € dD? is identified with the group of
affine transformations z — ¢, 4(2) = az + b with a € R, and b € R. Here we identify D?\ {1}
with the upper half plane {z € C | Im z > 0}.

Let u® = (uf, u3) be a representative of an element of M(Lig; (a12); Es), where ul: D? — X,
and ug: D? — Xo.

Note that in this case (u(li, ug o gomb) does not represent an element of ./\o/l(ng; (a12); E2) in
general, since this element may not satisfy the boundary condition.

Remark 12.6. The compactification M}, , (L12;a; E) which we will define in the next sub-
section, is ‘smaller’ than My, ,(L12;d@; E). An intuitive reason why we need smaller compact-
ification lies in the fact that Mqr (L1, L12, L2; p, q) is also ‘smaller’ than M (L2, L1 X Lo;p, q).
In fact, we can define

forgetqp: M(L12, L1 X La;p,q) — Mqr(L1, L2, La; p, q)-

Here p = (p1,p2) € (L1 X La2) N L12, ¢ = (q1,92) € (L1 X La) N Lya.
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The space /C/Ol(Lm, L; x La;p, q) is a partially compactified moduli space of pseudo-holomor-
phic strips. Its element is an equivalence class of (3;u) where ¥ is a strip [0, 1] x R with trees of
sphere bubbles and u: ¥ — —X; X X3 is a pseudo-holomorphic map. We require that u|{0}xR
(resp. ul{1y1xr ) lifts to a map to Lis (vesp. to Ly x Ly) and u is asymptotic to p (resp. ¢) when
the R-factor of the domain goes to —oo (resp. +00).

The space Mqr (L1, L12, L2;p, q) is a partially compactified moduli space of pseudo-holo-
morphic quilt. Its element is an equivalence class of (X';uy,ug). Here ¥/ is [—1,1] x R with
trees of sphere bubbles, which is decomposed to ¥} U X such that ¥} (resp. ¥5) is [-1,0] x R
(resp. [0,1] x R) together with sphere bubbles. u;: ¥ — X, is a pseudo-holomorphic map. We
require that u[{_1yxgr (vest. ua|{11xr) lifts to a map to L (resp Lg) We also require a matching
condition, that is, the map 7 — (u1(0,7), uz(0, 7)) lifts to a map to Lis. Furthermore, we require
asymptotic boundary condition given by p, q.

We define forgetgr as follows. Let (¥;u) represent an element of M(ng, Ly x La;p,q). We
write u = (u1,uz) where u; is a map to X;. We consider (3;u;) and shrink all the unstable
sphere components of ¥ on which wu; is constant to obtain ¥. Using the map (¢,7) — (—t,7)
(which is a map [—1,0] x R — [0,1] x R), we obtain ¥} from Xf. The map w; induces
a map u}: Y] — Xj. In a similar (and simpler) way we obtain X and uf: X — X;. We
glue X} and Y5 on the line {0} x R to obtain ¥'. It is easy to see that (X';u], u)) represents an
element of Mqr (L1, Li2, L2; D, q).

Using Lemma-Definition 14.33, we can extend the map forgetgr so that it includes the case
when the objects have disk bubbles.

The map Dob in formula (17.9) is an inverse of forgetgr on certain open dense subsets.

12.2 The definition of the compactification M’(L1; d; E)

Based on the observation in the previous subsection, we define the compactification M'(L2; a;
E). For later use, we also include the case when there are interior marked points and will
define My, 4, (L12; a3 E).

Definition 12.7. We consider objects
(((217 217 qllnt wllnt) ul)a ((22) 22)7 211(1t wl2nt) u2)7 j7/y>
with the following properties:

(1) The space ¥;, i = 1,2, is a bordered curve of genus zero with one boundary component.

Zi = (2i0, ..., 2ix) are mutually distinct boundary marked points of ¥; such that the enu-
meration of the marked points respects orientation of the boundary. th (Z;-Ibt, ceey z;n;)
and wmt = (wzvl, cee wz,&) are mutually distinct interior marked points on ¥;. Marked

points are not nodal points.

(2) The maps u;: X1 — —Xi, ug: X9 — Xy are pseudo-holomorphic. (We do not assume
that ((EZ, Z;, Zjnt u_imt) uz) is stable. The stability condition we assume is Definition 12.10
below.)

(3) We shrink all the unstable sphere components of (El, Ziy Z _;mt) (that is, the sphere compo-
nents which have less than 3 nodal or marked points in zmt) We denote by ( , 25, 2—,»th)
the marked bordered nodal curve obtained by this shrinking. (We use the same symbols Zi,
Zint for marked points by an abuse of notation.) (We remark that we forget w"* when
we define ¥Y.) Then, .#: X} — XY is a biholomorphic map such that j(ZLj) = 25,
f(zllnjt) = 212“; (See Figure 12.8.)

(4) The map ~v: 0¥\ 21 — L5 is continuous and satisfies

202 (7(2)) = (u1(2), us(F (2))- (12.4)
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(Note that (12.4) implies (u1(2),u2(F(2))) € L2 for z € 031.) (We also remark 03 =
oxY.)

(5) We require the switching condition, Condition 12.8, below.
(6) We require the stability condition, Definition 12.10, below.

(7) — le wiwy + le ujwe = E.

¥y 22,0

Figure 12.8. Source curve of an element of My, , (L12;d; E).

int

We call 2™ an interior marked point of first kind and w;y an interior marked point of second

,L’]
kind .
We denote by M/e, A (L12; @; F) the set of the equivalence classes of such objects with respect
to the equivalence relation ~ defined in Definition 12.9.

Condition 12.8. For each j, (lim.eps; 212, ; 7(2), lim.eo, 5212, ; 7(2)) € Li2(a1;)-

Definition 12.9. Let & = (((31, 21, 2™, @™), u1), ((S2, 2, 2™, 00"), ug), 7, y) and let & =
(24, 2], 2 i) uh), (85, 25, 237, a5), ub), #,+') be objects satisfying (1)—(5) of Defi-
nition 12.7.

A weak isomorphism from & to &' is a pair of maps (11, 12) with the following properties:

(1) The map t;: ¥; — X} is biholomorphic.

(2) bilzi5) = 2 ;-

(3) There exist permutations o: {1,...,¢} — {1,...,¢}, o;: {1,...,4;} — {1,...,4;} such
that ; (zf}t) = z%fl;zj), and that 1; (w;n]t) = w,ib.f‘atl’_(j), for i =1,2.

(4) uj o)y =, for i =1,2.

(5) Note that (1)—(3) above implies that 1/; induces a map ¥, : 9 — %0, We require: .#"otp; =
1y o .# on V.

A weak isomorphism (11, 12) is said to be an isomorphism if o and o; in item (3) are the identity
maps.
We say & is equivalent to £ and write & ~ £ if there exists an isomorphism from & to £’
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Definition 12.10. An object £ satisfying (1)—(5) of Definition 12.7 is said to be stable if the
set of isomorphisms from £ to £ is finite.

We say £ is source stable if the set of (1, 12) which satisfies (1), (2), (3), (5) of Definition 12.9
(but not necessary (4)) is finite.

Remark 12.11. We consider (((31, 21, 2™, @i™), u1), (32, 22, 2™, W5™), uz), &, ) such that
there exists an unstable disk component ¥ (a) of ¥; on which u; is constant. Such an object can
still be stable in the sense of Definition 12.10. In fact, if ug is non-constant on ¥s(a) = #(X1(a)),
then by condition Definition 12.10 (4) there is no continuous family of automorphisms supported
on this component.

Example 12.12. We consider the situation of Example 12.2. The element 7 corresponds in our
compactification to an element 7’ from the domain as in Figure 12.9. X; o = X9 is a disk in this
case and .# is the identity map. uq, up are defined on the sphere bubbles rooted on X, 32,
respectively. By the definition of our equivalence relation, the object is equivalent if we replace uo
by ug o v. Here v: S? — S? is a biholomorphic map which preserves the point 0 where sphere
bubble is attached. Therefore, the problem mentioned in Example 12.2 disappears.

J JZQ
2 <

J
Figure 12.9. Element 7.
Let
i=(ig,i1,12), o {1,...,0} = {1,....0'}, G {10 = {1, 0 (12.5)
be a triple of injective maps. It induces a forgetful map
i Mz/’glly%(ng;Ei; E) = My, 4,(L12; @ E), (12.6)

as follows.
Let

(21, 20, 2™ d), w ), (B2, 22, 2™, w05), uz), 7, 7) € My(Laz; @; E).

We put th/ z;‘izj), wmt’ wmt( - We consider

&= (((Z1, 21, 2™, ™), w1, ((Sa, 22, 2™, 05, u2), S, 7).

We shrink components such that there are infinitely many automorphisms supported on it and
obtain

é-l — ((( 1,51/,51mtl ’(Ellnt/) ) ((22’22/’ —»21nt/’w12nt/)7u12)’ j/,'}/)-

We define i*(§) = ¢'.
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Definition 12.13. Let
&= (((Z, 21, 2™, ), w), (B2, 2, 2™, 05), u2), 7, 7)
be an element of M/, o (L12;d; E). We say an element
f (((2/1’ —»1/’ —int/ ,U—J»llnt/) ) ((2/2’ —»2/’ —»mt/’wlzntl) U/Q),j/,’)/)
of the space M/M:l,ﬂz (L12;@; F) is a source stabilization of & if the following holds:

(1) There exists i as in (12.5) such that i*(¢') = &.
(2) For any isomorphism (11, 12): & — &, there exists an weak isomorphism (¢}, ¢%): & — &
such that the next diagram commutes:

LI 3]

Lo

IFLLIING 35

where the vertical arrows are the maps shrinking unstable sphere components.

(3) The element &’ is source stable.

We call an interior marked point of £ an added marked point if it does not correspond to
a marked point of &’. (There are £ — ¢ + ¢; — ¢, added marked points on each 3; (i = 1,2).)

We next define a topology, stable map topology, on Mj(Li2;d; E), in a similar way as [49,
Definition 10.3], as follows.
We first consider the case of elements

&= (((Z1, 21, 2™, 0), ur), (B2, 2, 2™, 05", uz), 7, 7)

and

of Mj(Li2;d@; E) such that ¢ and £(k) are all source stable. In such case, we define the following.
Definition 12.14. We say limsy_,o, £(k) = £ if the following holds:

(1) (Zi(k), Zi(k), Z™(k), W™ (k)) converges to (3, Z;, Z™, @i™) as k — oo in the moduli space

[as)
of bordered marked nodal curves, for i = 1, 2.

(2) Let M;(e) be the e neighborhood of the set of the nodal points of ¥;. Using a universal
family of nodal marked bordered curves together with item (1), we take a smooth em-
bedding J; 1 : ¥; \ Mi(e) — Xi(k), such that it converges to the identity map as k goes to
infinity. (Here we regard X;(k) as a subset of the total space of the universal family.)
Moreover,

i, (ZZ]) le(k>'

Jik
(b) Jin(z") = 20 (k).
J

ik(w) = wi (k).
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(3) For any small € > 0, we have

klgglo sup{d(u;(k)(J; k(2)), ui(2)) | z € £; \ Mi(e)} = 0.

(4) There exist e, — 0, d — 0 such that for each connected component S; (k) of ¥;(k) \
Ji (3 \ Mi(ex)) we have Diam S; 4(k) < 0.

(5) We may choose M;(ex) and &, — 0 with the following property. Let 9;(s;) be the image
of MNi(ey) in XY. Then & (M1 (ex) NXY) € Na(er) N XY, Now we require

Jim sup{d(S (k) (T1,(2)), Top (S (2))) | 2 € 1 \ M (en)} = 0.

Remark 12.15. We require C” convergence in item (3). Since the maps are pseudo-holomor-
phic, it implies C™ convergence for any n.

Definition 12.16. Let & ¢(k) € M}, , (L12;d; E). We say limg o0 §(k) = £ if there exists ¢/,
0y, 6y, i as in (12.5) and &7, &(k)T € M), , (L12;@; E) such that
s€1,%9

(1) (&) =& 1" (€(k)T)

respectively.
(2) limsgo0 & (k) =&T.

We will use the next lemma to show that Definition 12.16 determines a topology. (See
Lemma 12.19.) Lemma 12.17 is also used during the construction of the Kuranishi structure, in
Section 12.3.

£(k). Moreover, 1, £(k)T are source stabilizations of &, £(k),

Lemma 12.17. We consider

£ e My, ,(L12; @G E), ¢W e M/gu) 4 eén(le;@; E),

5(2) € MI€<2>,42),€§2) (L12;a; E).
Suppose that i’(*l)f(l) =17, €@ = ¢ for some forgetful maps (1), i2)- We assume that €M @) gre
source stable. Let £ (k) be a sequence of source stable objects such that limsy_,o&® (k) = ).
Then there exists a sequence of elements 5(1)(14:) which are source stable and such that

ity (€D (k) = i@ (k)

and limsy_,o €M (k) = €0,

3&”@ /f@(k) §<3>"/// \£<2)(k)
| SN

N \

Figure 12.10. £® and ¢ (k) in Lemma 12.17.  Figure 12.11. ¢® and ¢ (k) in the claim.



158 K. Fukaya

Proof. We claim that there exist €3, ¢B)(k) such that limsy_,c £ (k) = @) and i’(*32)§(3) =
@), 1(31)5(5) =¢M 32 £B3) (k) = €@ (k). Here 1(32) '2‘31) are appropriate forgetful maps. (Dur-
ing the proof of thls clalm we do not use the assumption that £ is source stable.)

The proof of this claim is by an induction on the number of added marked points of £V, We
put

5(2) = (((251)7 51(1)7 5’1@)71“13’ wgi)dnt) ) ugl))v ((Egl)a 52(1)7 EQ(i)’int7 ,u—)'éi)7iﬂt) ) u2)7 j(l) ’ 7(2))
fori=1,2 and
D (k) = (P k), 22 (&), 2™ k), 2™ (k)), u? (R)),
(S (k), 287 (k), 257 (k), W™ (k) , ua (k)), -7 O (), 72 (k)),
&= (((Z1, 21, 2™, w), ((S2, 2, 2™, @5"), us), &, 7).

Suppose the number of added marked point is one. We consider the case when the added marked
point is of type 2 and is wgl)’mt in ;. (The other cases are similar and so are omitted.)

Note that there are holomorphic maps W](-Z) : Ey) — X, which shrink certain irreducible com-
ponents. _

Case 1: We assume that the irreducible component containing wgl)’mt is not shrunk by
71'51): Egl) — 1. .

Case 1-1: Suppose 7r§1) (wgl)’mt) is not in the image of a nodal or a marked point of Z( ) There
exists a point w in X7 which goes to 7'['( )( g ), mt) by 775 ). The pomt w is not nodal or marked.
We add w as an extra added marked point to Z( ) to obtain § . We then take one marked
point w(k) on Z( )(k:) for each k, which is ‘close’ to  and add w(k) to €@ (k) to obtain £®) (k)
such that llmskﬁoof(?’)(k‘) — 5(3). It is easy to see that £3) and £®)(k) have the required
properties. .

Case 1-2: Suppose 7r§1) (wgl)’mt) is the image of a marked point w’ of 252). We add a sphere
bubble S at w’ to 232) and add one marked point @ on this bubble. (Then the sphere compo-
nent S has one node and two marked points. One of the two marked points corresponds to w’
and the other is 1.) We thus obtain (). (See Figure 12.12.)

u]gl),mt

5(1)

(1) (1),int (2) /
3

w’

Figure 12.12. Case 1-2.

We consider 252)(14:). We take the marked point w’(k) corresponding to w’. We add a sphere
bubble S(k) at w’(k) and a marked point (k) on S(k). We thus obtain £3)(k) in the same
way. It is easy to see that £, @) (k) have the required property.
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Case 1-3: Suppose 7151) (wgl)’im) is in the image of a node z of 252). We add a sphere bubble
at x to 252) and add one marked point on this bubble. (Then this sphere component has two
nodal points and one marked point.) We thus obtain £¢®). (See Figure 12.13.)

(1),int
wy

i (i) = o ()

5(1)

i () = 7P () T
§

Ujﬁl),mt

5(3)

@
Figure 12.13. Case 1-3.

We consider Z?)(k). There are two cases. If there is a nodal point z(k) corresponding to x
in E](LQ) (k) then we add a sphere bubble S(k) at x(k) and do the same construction as above to
obtain £®) (k). If there is no nodal point in EgQ)(k) corresponding to x, then there is a ‘neck
region’ corresponding to z. We add a marked point in this neck region to obtain & (3)(k7). (See
Figure 12.14.)

wgS),int(k)
X

L

¥ (k)
Figure 12.14. Put a marked point on the neck region.

It is easy to see that £, €3 (k) have the required property.

We remark that Case 1-2 and Case 1-3 can occur at the same time. Also the marked point w’
in Case 1-2 or a node x in Case 1-3 may not be unique. We can take any of such choices to
prove the claim in those cases.

Case 2: We assume that the component containing wgl)’im is shrunk by 7r§1): Egl) — 2.

We consider the point _7T§1) (wgl)’im) € >1. We consider three subcases.

Case 2-1: ﬁgl)(wil)’mt) € 1 is not in the image of a nodal or a marked point of Zgz)‘ The
construction is the same as Case 1-1.

Case 2-2: 7T§1) (wgl)’mt) € Y1 is in the image of a marked point of 2&2). The construction is
the same as Case 1-2.

Case 2-3: 7751) (wgl)’mt) € 1 is not in the image of a nodal point of 29). The construction is
the same as Case 1-3.

We thus proved the claim in the case when the number of added marked points in & @ is 1.

Now we prove the claim by the induction of the number n of added marked points in €.
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(Such an induction is possible since during the proof of this claim we do not use the assumption
that £(1) is source stable.)

The case n = 1 is already proved. Suppose the claim is proved for n — 1. We remove
one added marked point from 1) and obtain €1, We apply induction hypothesis to ob-
tain £€3)=, G~ (k).

Now we apply the case n = 1 taking €1, €B8)= ¢B)=(k) as €M), ¢@) @) (k). It implies the
claim in the case of n.

We have thus proved the claim.

We remark 1?31)(53)) = ¢, Namely, €1 is obtained by forgetting certain marked points
of £B3). We forget the corresponding marked points of £®)(k) and obtain £M) (k). Since €M)
is source stable 5(1)(k) is source stable for sufficiently large k. Then limsk_>oo§(3)(k) = ¢6)
implies limsy, oo (k) = €1 Since ify,) (€@ (k) = €2 (k) we have iy (61 (k) = ity (@) (k).
The proof of the lemma is complete. |

Note that we proved the next lemma also during the proof of the claim in the proof of
Lemma 12.17.

Lemma 12.18. We consider

o 1 i
§€ Mz,el,zQ (ng;a; E)7 f( ) € M;(l)jgl)’gél)(LlQ;a; E)7

6(2) c MIZ(Z),ZgQ),Zém (L12; 5:7 E)
Suppose that
ity (W) =iy (e®) = ¢

. . . 3 /
J{Z;}f@);@;t (1), i(2)- Then there exists §( ) e M£<1)7£g3>7e<23

i (@) =M, i, () =€,

Here iZ‘3 1) i& 5) are appropriate forgetful maps.

y(L12;a; E), where €§3) = Egl) +09 - 4;,

(2

We now show that Definition 12.16 determines a topology on M'(L1g;d; E). For a sub-
set A C M'(Li2;d; E), we define its closure A¢ as the set of all elements & such that there exists
a sequence {(k) € A which converges to £ in the sense of Definition 12.16. Using Kuratowski’s
theorem (see, for example, [56, Chapter 1, Theorem 8]), it suffices to show the next lemma to
prove the existence of the topology on M'(L1g;a; F) for which A — A° becomes the process
taking the closure.

Lemma 12.19. The following 4 properties are satisfied: (a) @° = @. (b) A C A°. (c) A = A°.
(d) (AU B)¢ = A°U B°.

Proof. (a), (b), (d) are trivial to check. We verify (c). Let (i) € A® which converges to

£ € A, We take £(i,5) € A such that lim; .o &(7,5) = £(¢). It suffices to find j; such that
Using Lemma 12.17, we may assume that &, £(7), £(i,j) are all source stable. Let X, X(i),

%(7,7) be the source curves of &, £(4), £(7,7) and u, u;, u; ; are maps on them, respectively.

Let € > 0 be an arbitrary positive number. We take sufficiently small neck of ¥ such that
the diameter of the image by w of each of the neck is smaller than €. Let ¥ be the complement
of the neck. We are given embedding of 3¢ to X(7) and to X(3, j).

By Definition 12.14, there exists I such that if ¢ € I then the diameter of each of the u; image
of connected component of 3(i) \ X is smaller than 2e. Moreover, there exists .J; such that
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if ¢ > I, j > J;, then the diameter u; ; image of each of connected component of ¥(7, j) \ o is
smaller than 3e.

By Definition 12.14 again, there exists I’ such that if i € I’ then the C? distance between ;|5
and u|y, is smaller than €. Moreover there exists IJ’. such that if i > I', j > J!, then the C?
distance between wu; j|x, and u|x, is smaller than 2e.

This implies that if j; > max{.J;, J/} then £(i, j;) converges to £ in the sense of Definition 12.14.
This proves (c). [ |

In (3.19), we defined a compactification M (Li2;d; E), whose element is a bordered stable
map with boundary marked points, switching specified by @ and with energy E. We can include
interior marked points and define My(Lj2;a; E). The way to include interior marked points is
the same as [34, Definition 2.1.24] and so its detail is omitted.

Lemma—Definition 12.20. We can define the forgetful map
fo: Moo, re,(L12; @ E) = My, 4, (L12; 3@ E),

which is continuous.

Proof. Let ((E,Z Zint U int Uy _'mt) u,*y) be an element of My 4o, (ng;(i; E,y). Here
the object (X,z, 2™ U wi™ U W) is a bordered nodal marked curve of genus zero with one
boundary component. (z are boundary marked points, Z™ are first ¢ interior marked points,
Wit = (w‘f‘%,.. w‘lng) are next {1 interior marked points and Wi = (w‘ﬁ, : w12n22) are
last /5 interior marked points.) The map u: (£,0%) — (—X1 x Xo, L12) is pseudo- holomorphic
and y: 90X\ 7 — 1:42 is a lift of the restriction of w.

We put v = (u1,u2), where u; is a map to X; from ¥. We consider ((2,5’, Zint uﬁm),ui)
for:=1,2.

We remark that, for i = 1, we forget the marked points wi* and, for i = 2, we forget the
marked points wmt

We shrink unstable sphere components of ((E, Z, Zint _'mt) uz) Here an unstable sphere
component of ((E,Z, Zint y uﬁnt),ui) is an unstable sphere component of the source curve
(Z, Z, Zint y ﬁ%nt) on which u; is constant. We denote by ((Ez, Zi, Z; Zint | *mt) ul) the pair of
a bordered marked curve and a map obtained by this shrinking.

We next forget o _’mt and let (EO Z, _'mt) be the bordered marked curve obtained from (EZ, Z,

mt) by shrinking all the unstable sphere components.
We remark that (Z‘l, 721,z lmt) is canonically isomorphic to (EQ, Zs, *mt) In fact, they both are
> zint

obtained by shrinking all the unstable sphere components of (X, Z, 2 ) Therefore, we obtain
a biholomorphic map .# : (21, z1, _'lmt) (22, 2, _’mt) We define

fg((27 57 Z—»int U 7“D'mt U U—}»12nt) u ,Y)

:(((21,21,21 Uu_fllnt) ),((22,22,22 UU?IQHt) U/Q),j,'y).

nt

Note that we regard the interior marked points ,73;1 as interior marked points of first kind

and wmt as interior marked points of second kind.
The continuity of the map is easy to show from the definition. |

Example 12.21. We consider the case when Lis is embedded and @ consists of one element
which corresponds to the diagonal component. We define an element

(1, 21), u1), (22, 22), u2), 7, 7)

of M go(L12;@; E) as follows.
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Y = ¥ = Xy is obtained by gluing the disk D? with S at 0 € D? and oo € §%2 = C U {c0}.
We take 21 = 23 = 1 € 9D? as the (boundary) marked point. We take a holomorphic map

u: (2,82) — (—Xl X XQ,ng).

We denote its restriction to D? by ud = (u‘f,ug). (Here u$ is a map to X;.) We denote its

restriction to S% by u® = (u§,u$). u;: ¥; — X; is a map which is u? on D? and is u; on S2.
Note XV (in the sense appearing in Definition 12.7(3)) is D? in this case. Let .#: X{ — %9 be
the identity map. We put v = u®|gx. We thus obtain & = (((X1, z1), u1), ((2, 22), u2), 7,7) €

M{(L12;@; E). See Figure 12.15.

)
N

5
Figure 12.15. (((Z1,21),u1), (B2, 22),u2), 7, 7).

We describe the fiber fg~(&) € Mo(L19;@; E). Tt is a real 4-dimensional compact space.
For a € C\ {0} and b € C, we put v, (2) = az + b, and

)
Ugp = (ul,u3 0v4p): S — —X1 X Xo.

Since oo is a fixed point of v, we can glue it with ud to obtain Ugp: (X,0%8) = (—X1 x X2, Li2).

Then &, = (((3,1),uqp),7) is an element of Mo(L12;@; E) for any a, b and fg(&q) = £. Those

elements are parametrized by (C\ {0}) x C and consists a non-compact space. See Figure 12.19.
The other elements of this fiber is described below in Figures 12.16, 12.17, 12.18.

Figure 12.16. First stratum. Figure 12.17. Second stratum.

Figure 12.16 shows an element which has two sphere bubbles. The map on the sphere
component directly attached to a disk is constant in the X; factor and the map on the other
sphere component is constant in the X, factor. The element in the fiber fg~1(¢) of the form
Figure 12.16 is parametrized by the position of the nodal point between two sphere components.
So this part of the fiber is identified with C.

In Figure 12.17, the role of X; and X5 is exchanged from one in Figure 12.16. This part of
fiber is also identified with C.
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(A

constant map

Figure 12.18. Third stratum. Figure 12.19. Fourth stratum.

The closures of the parts Figures 12.16 and 12.17 intersect at one point that is one depicted
in Figure 12.18. Here the map on one of the sphere components is a constant map.

The elements of the form depicted in Figures 12.16, 12.17, 12.18 together with {{, | (a,b) €
(C\ {0}) x C} consists a compact 4-dimensional space, which is the fiber fg=*(¢).

Proposition 12.22. The space M/Mhéz (L12;@; E) is compact and Hausdorff.

Proof. The proof is similar to the proof of [49, Theorem 11.1] and [49, Lemma 10.4] and proceed
as follows.

We first prove that the moduli space is sequentially compact. Let &£ be a sequence in
M2,£1 0 (L12;d; E'). We can add marked points to & so that it becomes source stable. Since the
number of irreducible components of elements of ./\/12751742 (L12; @; F) is bounded, we may assume
that the number of marked points we add to & is independent of k. Therefore, to prove the
existence of convergent subsequence of & it suffices to assume that &, are source stable. We
assume so below.

Since the moduli space of stable marked curves is compact, we may assume that the sequence
of source (marked) curves of & converges. So using the local trivialization of the universal
family, we obtain a diffeomorphism between source curves of £, and the limit, outside the neck
region. Therefore, the maps u;, ¢ = 1,2, which is a part of & can be regarded as a map u;
from 3;, the limit curve. If uy; converges, there is nothing to show.

Suppose uy, ; does not have a convergent subsequence. Then the first derivative of uy ; diverges
somewhere.

If it diverges on a disk component, we can add two interior marked points of the first kinds
there in the same way as the proof of [49, Theorem 11.1] so that after we perform this replacement
finitely many times the sequence of maps uy; does not diverge on the disk component.

Suppose uy; diverges on a sphere component. Then we can add two interior marked points
of the second kind around that point in the same way as the proof of [49, Theorem 11.1] so
that after we perform this replacement finitely many times the sequence of maps uy; does not
diverge on the sphere component either.

Thus by adding marked points the sequence of maps wuy,; converges. The proof of sequential
compactness is complete.

We next prove the Hausdorffness. It is easy to see from the definition and Lemma 12.17
that M27£17£2(L12;6; E) satisfies the first axiom of countability. Therefore, it suffices to show
the following. “For each sequence & in M/Mﬂz (L12; d@; F) its limit is unique.” We will prove it
below.

Suppose limy_yoo & = &, limpoo & = &. By definition, there exists &, é,’f, £, €, such
that they are all source stable, 1*(&) =&, i* (éfﬁ) =&, limskﬁoofk = é, limsk%mé}€ = é’ and
i*(§) =&, 1*(¢) = ¢ Here i* are forgetful maps. A A )

By Lemma 12.18, we can find & such that i} () = &, 5(&)) =&, for certain forgetful
maps i} and i3.
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By taking a subsequence, we may assume that fg converges. Let £ be the limit. Then by
the continuity of forgetful map we have i} (") = €, i5(¢") = ¢ £ = ¢ follows.
To complete the proof, it suffices to show the next lemma.

Lemma 12.23. The space M, o z2(ng; a; E) satisfies the second aziom of countability.

Proof. The proof is by induction on E. In the case of smallest E for which MZ,&,& (L19;a; F) is
non-empty, we have M/Ml,fz (Li2;@; E) = My, 0,(L12; @3 E). 1t is easy to see that the right-hand
side satisfies the second axiom of countability.

Suppose we have proved that Mj, o (L12;d; E') satisfies the second axiom of countabili-
ty for E/ < E. We consider the case of E. Note that M, . ¢,(L12;@; E) has a stratifica-
tion SkM€7£1,€2(L12,a E) by its combinatorial types. We will prove that Sk./\/(&£17£2(L12, a; F)
satisfies the second axiom of countability by downward induction on k. For the stratum of small-
est virtual dimension, SkM/E,él,éz(Lu;a; E) is a fiber product of various Mg/j/l’g/?(ng;C_i; E)
with E/ < E, and hence satisfies the second axiom of countability. Suppose we have proved
Sk+1My 4, 4,(L12; @ E) satisfies the second axiom of countability. We will study the case of k.
As we will prove in Section 12.4 later, each point p of Sy 1M, o, (ng, d; E) has a Kuranishi
neighborhood (V},, €y, sp, 1p). Therefore, p has an open nelghborhood W, in S’fMMl,Kz (L12;d; F)
which satisfies the second axiom of countability. In fact, W), is a closed subset of an orbifold.
Since Sk+1./\/127€1?e2 (L12; @; F) satisfies the second axiom of countability by induction hypothesis
and since it is sequentially compact, we can cover its open neighborhood by a finitely many W,.
Note that

SkMiy, 1, (Ln2; @ E)\ | Wy,

i

is sequentially compact and is contained in a fiber product of various ./\O/Olglygll A (Lyg;a; E') for
E’' < E. Therefore, it is contained in an open subset which satisfies the second axiom of count-
ability.

Thus Slee,el,ZQ (L12;@; F) is covered by a finitely many open subsets each of which satisfies
the second axiom of countability. This implies that SkMQ,gth(Lm;fi; E) satisfies the second
axiom of countability. The proof of Lemma 12.23 is complete. |

The proof of Proposition 12.22 is now complete. |

12.3 Kuranishi structure of the compactification M’(Lq; @; E)

Let @ = (ao,...,ax) and let & = (((S1, 21, 2™, @), ur), ((S2, 22, 23, W5), u2), .7, 7) be an
element of M’(L12;d; E). We define evaluation maps

ov — (eva, evint,(l)’ evint,(2),1’ evint,(2),2) .
k
Mgy 0, (La2: @ E) — ] Lia(ag) x (X1 x X2) x X{' x X2, (12.7)
j=0

evd(§) == (’71(21,0),--~,’Y1(21 k)),
' s (un (21%), ua (25%)))

evint’(2)’i(§) = (ul (w;nlt)’ s Ui (W
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Theorem 12.24. M%,Zl,ﬁz(Lm;‘_i; E) has a Kuranishi structure. The evaluatz’on map ev® be-
comes an underlying continuous map of a strongly smooth map. The map, evo, the evaluation
map at the 0-th boundary marked point, is weakly submersive. They satisfy the same compati-
bility conditions as Theorem 3.24.

Proof. We prove the case of M'(L12;d@; E) = My o(L12;@; E) below. The general case is
similar. (We use the case M’(L12;@; E) only in this paper.) See Remark 12.34.

Most of the proof is similar to the proof of Theorem 3.24, which was given in the reference
quoted there. We describe the place where the proof of Theorem 12.24 is different from the
proof of Theorem 3.24. Especially we discuss the way how we include the maps .#, which is
a part of the data defining an element of M’(Li2;d; E) (see Definition 12.7 (3)), in the gluing
analysis etc., which we use to construct a Kuranishi chart. The proof occupies this and the next
subsections.

For this purpose, we review the construction of the Kuranishi structure discussed in various
literatures, explaining the places where the construction here is to be modified. Since the most
detailed description of the gluing analysis is given in [48], we follow the description of [48,
Section 8]. (We follow [38, Part 4] on the discussion about stabilization of the domain since that
part is omitted in [48].)

Let £ = (((21, 21, 2™, &™), u1), (32, Z2, 2, i), u2), .#,v) be an element of the moduli
space M, 1.0 (L12; d; E). We first assume that it is source stable.

Let {Z | a € compd} (resp. {74 | a € compi}) be the set of the disk (resp. sphere)
components of ;. The (bordered) nodal curve Ed (resp. 2?,;1) together with marked or nodal
points on it determines an element of M4 Fiaslin (resp Mj, ), which we denote by f (resp. & ,.)
Here ./\/ld i is the moduli space of complex structures of disks with k; boundary and Kz a
interior marked points and Mj. is the moduli space of complex structures of spheres with £; , in-
terior marked points. (We requlre that the enumeration of the boundary marked points respects
the orientation of the boundary of the disk.)

Let CM¢ k..o CMj be the Deligne-Mumford type compactifications of M kg 7> respectively.
Namely, we add stable nodal disks or spheres to compactify thern Let m: C .= CM%I be the
universal family. Namely, T CM — C/\/l,c ¢ comes with sections 5 ,j=1,. k s 5=1,...,¢,
such that for r € CMH the fiber 7~ e ) together with the rnarked pomts ((;?(;))jzlw’k),
(s3(r))j=1,..¢)) becomes a representative of r.

Let m: C; — CM;,_ be the universal family in a similar sense.

Definition 12.25 (compare [38, Definition 16.2] and [48, Definition 8.6]). Suppose an element £
of Ml&h 0 (L19;d@; E) is source stable. A source gluing data 9% at  is the following objects:

(1) A neighborhood Vd (resp. V;,) of§ (vesp. &) in Mgia i (resp. ./\/lz’a).

(2) A trivialization of 7: Ck lia C/\/lk 4. (esp. m: G — CMj, ) on V a (Tesp. V7).
Here trivialization is one in O™ category and is requlred to be cornpatlble w1th the sec-
tions ((ﬁd)] 1 kia)s (85)j=1,.6,)- (We remark that m: Clﬂa,&a — CMdZ_ 0. 18 a fiber
bundle on V » since elements of V-d are nonsingular.) o o

(3) For each (boundary or interior) nodes of Ed or 37, we take analytic families of coordi-
nates of the corresponding marked points on Vd or V;,. (Note that one node is contained
in two irreducible components. We take an analytlc farnlly of coordinates at each of them.)

The notion of an analytic family of coordinates is defined in [48, Definitions 8.1 and 8.5].

(4) The objects in (1), (2), (3) are preserved by all the weak isomorphisms (11, 12): & — &.

The above conditions are mostly the same as one appearing in the construction of Kuranishi
structure on M(Li9;a; E), for example. We need additional conditions to include the map .#.
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(5) All the interior marked points on the disk components are of first kind. All the marked
points on the sphere components are of second kind.

(6) By (5) and Definition 12.7 (3), for each of disk component & o of X1 there exists corre-
sponding disk component of Y5, which we write £ o Namely, & gives an isomorphism
between & o and £ o~ We require that 1% o= = V4 2 Moreover we require the trivialization
on V{ o given in (2) is the same as the trivialization on Vg a

(7) We require that the coordinate at nodal points given by (3) on disk component 5517 ., coincide
with those on 58@. (We require this condition both for boundary and interior nodes.)

(8) We will require all the analytic families of coordinates are extendable in the sense we will
define later in Definition 12.32.

We remark that for any element of M’(Lj2;d@; E) we can find its source stabilization such
that the conditions (5)—(8) are satisfied.

We next include the process to start with & € M'(Lj9;d; E) which is not necessary source
stable and add marked points to obtain an element of ./\/l’g’ 01,65 (L19; a@; F) which is source stable.

Definition 12.26 (compare [38, Definition 17.5]). Let
&= (((Z1, 21, 2™, @), w), ((S2, 2, 5™, 05", ug), 7, 7)

be an element of M}, , (L12;d; E).
A stabilization data .  at £ is the following objects:

(1) A source stabilization £ of £ is given. In particular, i*(¢') = &.

(2) We require that the number of the irreducible components of the source curve of ¢’ is the
same as one of &.

(3) A gluing data in the sense of Definition 12.25 is given at £’

(4) We write &' = (1, 21, 2" @) ). (2, 2. 2% 6Y), ua), 7.7).

Note that we use the same symbols ¥;, Z;, u;, &, v for ¢ as . In fact, item (2) implies
that we can identify the source curves of ¢’ and of £. We do not put prime in the notation
of interior marked points of &’. Since ¢ has no interior marked points it does not cause
confusion.

(5) Let 21 ; be an interior marked point of first kind, which is necessary on the disk component
by item (2) and Definition 12.25 (5). Suppose it is contained in Eiaj. We put S (z1,j) = 22,5
and /(E‘f,aj) = Eg}aj. We define u}-i: 2(11,@]- — —X;1 X Xy by u?(z) = (u1(2),u2(H(2))).

(a) If u is non-constant, we require that u is an immersion at z1 ;.

(b) In the situation of (a), we take and ﬁx a codlmensmn 2 submanifold A M of — X1 x X,
which intersects transversally with u at u (21,3)

6) Let w;; be an interior marked point of second kind, which is necessary on the sphere
7‘7
component by item (2) and Definition 12.25 (5). Suppose it is contained in X3,

(a) If u; is non-constant on Zf a0 We require that u; is an immersion at w; j

(b) In the situation of (a), we take and fix a codimension 2 submanifold N @) of X; which
intersects transversally with u; at u;(w; ;).

(7) The data in item (6) are invariant under the action of the group of weak isomorphisms
of £&. (Note that a weak isomorphism is the identity map on the disk components.)

It is easy to see that stabilization data always exist.
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Remark 12.27. We need to add marked points of second kinds to stabilize the source curve.

We next describe the way how we use gluing data to parametrize the deformation of the
source objects.

Let & be a source stable element of M) e (ng; a; E). We take its gluing data as in Defini-
tion 12.25 and use the notation of Definition 12 25.

Let {(3b d,cpf) 8) |be Nodea, j=1 2} be the set of pairs of boundary nodes and analytic
families of coordinates at those points. (Since each boundary node is contained in two irreducible
components, there are two choices j = 1,2 of this pair for each boundary node.)

Let {(?n b,int s %bmt) |be Nodez it J =1, 2} be the set of pairs of interior nodes of ¥; and
analytic families of coordinates at those points (1=1,2).

We denote by {Z | a € comp} (resp. {35 | a € comp?}) the set of disk (resp. sphere) com-
ponents of 3;. Together with nodal or marked points the (bordered) Riemann surfaces Ef}a, Eia
determine §z ar & o~ Its neighborhood V( ) and V( gs) in Deligne-Mumford type moduli spaces
are determined by Definition 12.25 (1).

We consider the direct product

IT veo < II II v = IJ oovex [T I Di (12.8)

a€compy i=1,2 accomp; beNode =12 beNode]; .

Here [0, 1)}, is a copy of [0, 1) taken for each b € Node}; and D is a copy of D? = {z € C | |z] < 1}
taken for each b € Node;"

The space (12.8) parametrizes the deformation of the source curve of £. We will define
a map Glue = (Gluey, Glues)

Glue;: (12.8) = CM{ 4y, (12.9)

to describe it.
Let o € V(&) = V(f%a) 2 €V(E,) and let fd (o), & (0% ,) be its representative. We

za

denote by E?,a (a;’i), 35 a(05a) the underlylng (bordered) Riemann surface (Actually it is either
a disk or a sphere.)
We also denote

d
g = ((Ja)aecomp‘f’ (Ui,a)aECUmﬁ? (Ug,a)aecomp§)~ (12'10)
We call o the source deformation parameter .
Let 7, € [0,1)p and v, € D2. We write
r= ((rb)bENodeg’ (tb)beNodefint’ (tb)beNode;im)' (1211)

We call r the gluing parameter.
We consider the disjoint union

So)=Sie)ue(o)= [T JI =)o T IT S0

1=1,2 aecomp? 1=1,2 a€comp?

For each b € Node8 and b € NodeZ int» the analytic families of coordinates we have taken in
Definition 12.25 (3) induce holomorphic embeddings gofga D%O — (o), go,g imt. D? = $(o),
for j =1,2,i=1,2, where D>0 = {z € D?|Imz > O} Weput

Sen =S\ J U U 2@\ U U U ™D (),

J=12i=12 bGNodeg Jj=1,2:=1,2 bENodei‘im

which we decompose to 3(o,r) = 21 (0, 1) U Sa(0, ).
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Definition 12.28. We define an equivalence relation ~ on 3(c,r) as follows:

1) If b € Node} and z,w € D? 52> ry), @ = 1,2, with |zw| = rp, Argz = — Argw, then
1),0 92,0 20 2 =0
gog’&’a (2) ~ 901(',13),70 (w) for i = 1,2. See Figure 12.20. Note that —6 in the figure is Argz
and ' in the figure is Argw.
(2) If b € Nodefs, z,w € D>\ D’ ([tp]), i = 1,2, with 2w = 1, then {2 (2) ~ {2 (w).

i,int? b,o
y b

See Figure 12.21.

We put ¥(o,r) = $(0,r)/ ~ and decompose X(c,r) = £y (0, r) U (o, 1).

¢

[2|w] =

ey

Figure 12.20. Gluing at boundary node.

°

Figure 12.21. Gluing at interior node.

:
.

B X0
&
‘._

The marked points of £ determine marked points on ¥;(o,r) in an obvious way. We denote

them by Z;(o,r), Z/™(0,r), @™ (o,r). We put &(o,r) = (Zi(o, 1), Zi(0, 1), Z™ (0, r), W™ (0, 1)).

Definition 12.29. We define Glue;(o,r) = &;(o,r). We call Glue; and Glue := (Gluey, Glues)
the source gluing maps.
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For a € comp{ = compg, we put

EL 0 =L@\ U U 2205\ U U o™ @ (w)),

7=1,2beNode} J=12 beNode],

int

and

KL=zt U 2200\ U U ™D (12.12)

Jj=12 bENode J=1,2beNode;

1,int

For a € comp? we define K;°(0%) and K3, (03) with K7, (03) C K+S( a) C X7 ,(03) in the same
way. We call K7, (03) and Kd a(0d) the core. See Flgures 12.22 and 12.23.

Kia(o3)

K. (09)

Figure 12.22. Core.

Kot (od)

)

K§.(o3)

Figure 12.23. K, (07) and Kfy’: (o).

Definition 12.30. By definition, we have holomorphic embeddings
I et KRN 08 = Sioyr), 300,00 KfP(0%) = Si(o,r).

2,8,0,r 2,a,0,I °

We call its restriction

d
jzaar

: Kga (0’3) - Ei(a’ I‘), j?,a,a,r: Kis,a(o-ei) — 21’(0'7 r)7
the canonical holomorphic embedding.

Lemma 12.31. All the weak isomorphisms 1 = (1,12): & — £ canonically induce biholomor-

phic maps '(pi,a,r: Zi(aa I') — El((d)l)*(o-? I‘))

Proof. The map v; permutes the interior nodes. We permute the components of the gluing
parameter r in the same way. The map v; also permutes the sphere components. We permute
the components of ¢ in the same way. This is the definition of (¢;)s. The lemma is then an
immediate consequence of Definition 12.25 (4) and the construction. [
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Our next task is to define a biholomorphic map ., ,: 3{(o,r) — ¥3(0,r). Here X0(o, 1) is
the union of disk components of 3;(o, r).

Such an isomorphism is not canonically induced from .#, since 2(1)(0, r) may contain a part
of the sphere components Kf}a(az), on which .# is not defined.

We take a certain special choice of the coordinates around the nodes which we use to glue,
so that we can define .7, ;.

Definition 12.32.

(1) A holomorphic embedding D? — S? is said to be extendable if it is a restriction of a bi-
holomorphic map S? — S2.

(2) A holomorphic embedding D? — D? is said to be extendable if it is a restriction of biholo-
morphic map D?(R) — D? for some R > 1.

(3) A holomorphic embedding (D;O, D2ﬂR) — (DQ, 8D2) is said to be extendable if its double
is extendable in the sense of (1).

(4) An analytic family of coordinates is said to be extendable if its members are extendable in
the sense of (1), (2) or (3).

We recall that we assumed that all the analytic families of coordinates appearing as a part
of gluing data are extendable. (See Definition 12.25 (8).)

Lemma 12.33. We can canonically define a biholomorphic map Iy ,: X9(0,r) — X9(0, ) with
the following properties:

(1) The next diagram commutes:

K (o) —— K (0d)

iflio,rl ﬁi’ia,r (12.13)
Iox
(o,r) — Xi(o,1),

where the first horizontal arrow is the isomorphism induced by .#. The vertical arrows are
~td ~td
: and 3,

maps induced by J| . A

(2) If Y = (¢1,12) is a weak isomorphism: & — &, then we have Fy (5r) 01,00 = V2,000 o -

(3) Sor (zilrjjt-(a, r)) = Ziﬁ.(a, r). It also preserves boundary marked points.

Proof. We put (o) := X;(0,0), where the gluing parameter 0 is by definition r, = 0, t, = 0
for all b. Since we deform the disk components of ¥; and of s in exactly the same way by
definition, we have a biholomorphic maps %, 0: X{(0) — X9(c). Therefore, to construct %, , it
suffices to find biholomorphic maps _Z,;: ¥9(o,r) — X9(0) such that #,; o j;’rfg’r = 32,_&;(,10,0‘

We describe the construction of #;; in the following case. 3;(o) is a union of D? and S?
where we glue them at 0 € D? and 0 € S2 = CU{oo}. By the definition of extendable coordinate,
we take our coordinate ¢4 and ¢° by ¢4(2) = cz € D?, ¢*(2) = ¢z € CU {00}, where ¢ € R,
is a small positive number and ¢’ € C is a nonzero complex number with small absolute value.
We denote the gluing parameter by v € D?.

By definition, ¥?(¢) = D? C ;(0). Let v # 0. Then %(o,r) is obtained by gluing
D*\ D*(clt) (12.14)
and

CU {oo} \ D*(|c'x|) (12.15)
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by the equivalence relation ~. The equivalence relation ~ is defined in Definition 12.28. In
our case, it is described as follows. Let z € (12.14) and w € (12.15). Then z ~ w if and
only if z/c x w/¢ = v. Namely, z = cc/v/w. Therefore, we define #,; such that 7, ;(z) = z
if z € (12.14) and _#Z,;(w) = ccv/w if w € (12.15). See Figure 12.24.

390, 1) ¥9(o,1)
—
54
70 Il
S —
id
20 (o) 23(0)

Figure 12.24. Definition of .#.

We thus defined #,; in the above cases. Its definition in the general case is similar. See
Figure 12.25 below.

O

1) @

3
©) )

(5)

(6)

“)
“)

Figure 12.25. Definition of .#,; in the general case.

The properties (1), (2), (3) can be easily proved from the construction. [

Remark 12.34. We remark that in our situation XY(o,r) is a tree of disks without sphere
bubbles. This is because of Definition 12.25 (5), that is, all the marked points on the sphere
components are of second kind. Note that we forget all the marked points of second kind to
obtain X9(o, r). By this reason, we consider only core of disk components K izd (od) in (12.13).
Since we are studying M67070 (L12; d; F') as we mentioned at the beginning of the proof, we can as-
sume Definition 12.25 (5). When we generalize the construction to the case of My, ,,(L12;@; E)
then we need to study the case when there is a marked point of the first kind on the sphere
components. So there may exist a core K ;L (0%) in the sphere components contained in XY (c, r).
In such cases, to define %, ,, on such parts, we need to modify (12.8). Namely, for example, in
place of [[,_; 5 Haewmpf V(&; ) we need to consider its subset such that V(&3 ,) factor and V(&5 /)

factor are the same for certain a, a’. We do not discuss this point since we do not use it.

We thus described the way to glue source curves. To discuss the way to glue maps (that is the
part where nonlinear functional analysis enters), we first describe the way to define obstruction
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spaces. This part is mostly the same as the construction of the Kuranishi structure on the
moduli space of pseudo-holomorphic disks. (See [38, Sections 17 and 18], [44, 47].) We include
its discussion here for completeness.

Let £ = (((El,Zl,Zf“t,IUilm),ul), ((Eg,z"g,z_gnt,u'fiznt),ug),ﬂ,'y) be an element of the mod-
uli space lel’@ (L12;@; F). Using the above notations, we consider the source deformation
parameter ¢ which corresponds to the source curve of £ itself. We denote this o as 0. We
put K7, = K, (0) C ¥y, KJl, = K¢, (0) C &

Definition 12.35. An obstruction bundle data 0% centered at £ is the following objects:

(1) We take a stabilization data at §.
(2) We take a finite-dimensional linear subspace &7, C C'*° (K5 ,, ufTX;®A%) for each sphere

i,a’

component of ¥; and £4 ¢ O (Kﬂa, (u1, u2)* (T(X1%x X2)@A%)) for each disk component
of Ez

Note that we regard Kia = Kg{a by .Z.

We call them the obstruction spaces. We assume that the supports of the elements of
obstruction spaces are away from nodes and marked points. We also assume that the
supports of the elements of £ is away from boundary. Furthermore, we assume the
supports of the elements of £ (resp. £3) are in a compact subset contained in the interior
of Kﬁa (resp. K7 ,).

(3) We assume that the obstruction spaces satisfy the transversality conditions (see Condi-
tions 12.37 and 12.38 below).

(4) We assume that {£7,} and {5;3} are invariant of the weak isomorphism & — £, where &’
is the source stabilization of £ which is a part of the stabilization data given in (1).

(5) We require that &, = 0 if u; is constant on 33 and & = 0 if u is constant on X¢.

(6) We require Diam(ui o (p](oj;()j’int) (DZ) < ¢gjforeach b € Node;;m and Diam (ul o 905]83) (D%O)
< g1 for each b € Node:r;. Here €1 is a sufficiently small number. (It is smaller than the
injectivity radius of X; x Xs. It is the constant appearing [48, Condition 3.1].)

(7) We require all the marked points are in the core, K7, K Sa'

B,a?

Below we describe the transversality condition mentioned in item (3). We review the lin-
earization of the nonlinear Cauchy—Riemann equation for this purpose. For each sphere compo-
nent, the linearization of the nonlinear Cauchy—Riemann equation induces a linear differential
operator of first order

(Du,0); 0 C®(BF 0 u;TX;) = CF (33 i TX; @ A™). (12.16)
The definition of the function spaces appearing in (12.16) is obvious from notation. Let us
discuss the case of disk component E‘E’a. We remark that Zia = Z%a, which we write 4. The
pair of maps u = (u1, us) define a map u: ¢ — —X; x X. Let 2, = (Za,1,- -, Zak,) be the set

of all marked or nodal points on Efa. u(za,j) lies on the image of L2 X x,xx, L12 = UL12(a).
We define a, ; such that u(z, ;) lies in the image of Lia(aa ;).

Definition 12.36. We define the function space
C™® (28,05, 2.); (W'TX,v* Lia, L12(@a)))
as the set of the pairs (V,v) such that

(1) V is a section of w*T(X1 x X3) defined on X¢.
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(2) v is a section of y*T'L1o defined on 9%\ 2.

z € Za, then V(z) := (dir,,)(v(z)). Here iy, : ~12—> 12 1s the immersion.
3) If 2 € 9%3\ 7, then V dir,, Here if,,: L L h
(4) Let z,; € Z,. We then require

lim  v(z), lim w(2)) € TLis(aa;).
zeangza’j ( ) zeazgl/Za’j ( )) 12( aJ)

The operator
(D) (24,058, 2); (W*TX,~* Lig, L12(@a))) — O (S0 T(X) x Xo) @ A%)

is defined by (D,d)(V.v) := (D) (V).

Condition 12.37. We say that obstruction spaces &°

T ar ES satisfy mapping transversality con-
dition if the following holds:

(1) For each sphere component X7 ,, we assume
(D), + € = O (S X, @ A%,

(2) For each disk component ¥4, we assume
Im(D,d)¢ + €3 = C®(SLu* T(X1 x X2) @ A%1).

To describe another transversality condition, we define a linearized version £V of the evalu-
ation map. The domain of this evaluation map is the direct sum

P P == s uTXs) & @ C((S4, 058, Z); (wTX, 7" Liz, L12(da))).- (12.17)

=12 a

Here the first direct sum is taken over all the sphere components 3%, and the second direct sum
is taken over all the disk components Zd ’

We next describe the target of V. Let 3, be a boundary node. There exists a compo-
nent Lis(ay,) of Lo X X x X L5 such that it is mapped to u(3p) = (u1(3p), u2(3b)) by ir,,. The
target space of £V is the direct sum

D D TuinXi® @ y(sn) L1z (an)- (12.18)

=12 b

Here the first direct sum is one over interior nodes 3,. The second direct sum is one over
boundary nodes 3,. The point v(31,) € Li2(ap) is by definition

=( lim z), lim € Lia(aaj)-
o) = (_lm 9(2)._lim 9(2) € Lis(a)

(See Definition 3.17 (5).)
Now we define

EV: (12.17) — (12.18). (12.19)

Let V = ((Va1, (Vaz2)), (Va)) be an element of domain (12.17). Let 3, be an interior node.
There are two components Ez(al(?b Zf(j(’;)b) containing it. Here ¢(1,b), ¢(2,b) are either s or d.
Suppose ¢(1,b) = d, ¢(2,b) =s. Then we define

T,y: (50X component of EV(V) = IL (Va1 ) (5b)) — Vaz),i(3b)s (12.20)
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where II;: T'(X; x X3) — T'(X;) is the projection. The definitions in the other cases of ¢(1,b),

¢(2,b) are similar.

| ﬁLet 35 be a boundary node. There are two disk components ¥4 a(1,b) Eg(z,b) containing it. We
efine

T, () L12(a5) component of EV(V) = (Va1 ), Va(1.5)) (3b) — (Va(2)s Va(z)) (3b)- (12.21)

Here

Vatib)s Vali = lim v(z), lim v(2)) € Ty yLi2.
( a(i,b) a(z,b))(ﬁb) (Zeazg(i’b)sz (2) Zeazg(i’b)%b (2)) v(3b) 12

(12.20) and (12.21) define a map (12.19).

Condition 12.38. We say that obstruction spaces Ef’a,
condition if the restriction of £V to the direct sum

P P((D..9);, @EB ((DuB)D) (£

i=1,2 a

&Y satisfy evaluation transversality

is surjective.

We thus defined the notion of obstruction bundle data. Our next task is to send obstruction
spaces to a nearby object. We make precise the meaning of ‘nearby object’ below.

Definition 12.39. A candidate of an element of the extended moduli space M;Z,fl 0, (L12; @ E)
is, by definition, an object

n= (((E?,Zl ’Z?mt’u—}? mt),uQ?) ((22@’ ?,ngt,’lﬁgmt) u;?)’ﬂ@,,y@%

which satisfies the same conditions as Condition 12.7 except we do not assume u EO — X is
pseudo-holomorphic as in Condition 12.7 (2) but only assume that it is of C*° class

Definition 12.40. Let & = (((X1, 21, Zint ity ug ), ((22, 2, Zint, i), uz),.#,v) be an ele-
ment of M27£17€2 (L12;@; E). We assume that & is source stable and fix a source gluing data ¢.%Z
on it.

Let 7 be a candidate of an element of the extended moduli space of M}, o, 0, (L12; @ E).

We say that 7 is € close to (§,9.2), if the following holds:

(1) There exists o, r as in (12.10) and (12.11) such that

(o) = (27,27, 27 @™, (12.22)

z’z’z 7

Moreover, via this isomorphism the biholomorphic map .#;, in Lemma 12.33 is coincides
with .79,

(2) The object (o,r) is in the £ neighborhood of (0, 0).

(3) The restriction of u; to each Kf d ( d) is € close to the restriction of u(-? to it in C2 norm.

3.
Here we use Jfaor and the 1somorphlsm (12.22) to regard the restrictions of wu;, uQQ as

a map defined on K d ( )

(4) The restriction of u; to each K7 ,(0}) is € close to the restriction of u? to it in C? norm.

i aor and the isomorphism (12.22) to regard the restrictions of w;, u? as
maps defined on K7, (7).

Here we use 7%
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(5) For any connected component S of
Si(o, )\ |J KL (e \ | J K]

we require Diam u? (8) < e. (In other words, we require the diameter of the images by u?
of the neck regions are smaller than ¢.)

Let 1’ be a candidate of an element of the extended moduli space of M/Z,h,ﬁg (Lyg;a; E). We
forget all the interior marked points of 77’ and shrink the components which become unstable. We
then obtain a candidate of an element of the extended moduli space of M'(L12; @; F). We denote
it by n = i*(n’). Note this definition is a version of (12.6). Here i is (12.6) with ¢/ = ¢} = ¢, = 0.

Definition 12.41. Let £ be an element of M’(L19;d; E). We fix its stabilization data .7 .
Let 1 be a candidate of an element of the extended moduli space of M'(L19;a; E).
We say that 7 is e-close to (£, .7) if the following holds:

(1) There exists a candidate of an element of the extended moduli space of M}, ,, (L12;d; E),
which we denote by 1’ such that i*(n") = 7.

(2) Let & be the source stabilization of ¢ which is a part of .#.7. (See Definition 12.26 (1).)
Let 4.% be the gluing data at ¢’ which is a part of .¥.7. (See Definition 12.26 (3).)

Then 7' is € close to (¢/,..7) in the sense of Definition 12.40.

(3) Let th be an interior marked point of first kind of . Let 2,’; Vint be the corresponding in-
terior marked point of first kind of n’. (See (12.22).) Let N be the codimension 2
submanifold of —X; x Xy which is a part of .¥.7. (See Deﬁmtlon 12.26 (5).) We require

u@( Q?lnt) N(l) (12.23)
Here uQ(z) = (u?( ), Us (j/< )))

(4) Let wmt be an interior marked point of second kind of &', and let wvjmt be the corresponding
mterlor marked point of first kind of 1’ (see (12.22)). Let N be the codimension 2 sub-
manifold of X; which is a part of ..7. (See Definition 12. 26( ).) We require

uf (wim) e NP (12.24)

(2

Let £ be an element of M'(L12;d; E). We fix an obstruction bundle data &2 of it. It includes
a source stabilization data ..7. Let n be a candidate of an element of extended moduli space
of M'(L12;d; E) which is € close to (£, 7).

Our next task is to send obstruction spaces (which is a part of 0%) to a subspace of sections
on the source curve Z? of 7.

Let K Sa (resp. K7 ,) be a core of disk (resp. sphere) component of §. We consider

I, K, = Kl (o)) = Si(o,r) =57 (12.25)

Here the first map is a diffeomorphism which is induced by the trivialization given in Defini-
tion 12.25(2). The second map is the map Jlaar in Definition 12.30. The third map is a bi-
holomorphic map (12 22). Actually, the image of (12.25) lies in a certain disk component of ZO
which we denote Ed’ By # and .9, we can identify I{l with Iga We write the composi-
tion (12.25) as 73 Kd — Zd Y . It defines a complex linear map (O (Kd A% — C’OO( »dY ;AL
(Note that Id may not be holomorphic.) Here C§° denotes the set of smooth sections which
have compact support in the interior. We compose it with the projection to obtain

O (K& A1) — 0 (855 A%, (12.26)

This map is complex linear.
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On the other hand, for each z € K¢ we take the minimal geodesic joining u(z) € X1 x Xo
and u¥ (Ig(z)). Then taking a complex linear part of the parallel transport (with respect to
a certain connection for which Lo is parallel), we obtain a complex linear map

Tu(z)(—Xl X XQ) — Tuo (Ig(z)) (—Xl X XQ).

It induces
O (K& ut(T(—X1 % Xa))) = C=(2%7; (u¥) ' T(—X1 x Xa)). (12.27)

(12.26) and (12.27) are induced by pointwise complex linear maps. So we take pointwise tensor
product over C of (12.26) and (12.27) and obtain

U o0 O (K ur(T(—X1 % X2)) @ APY) — 0°(2%7; (u¥) " T(—X1 x X2) @ AO1).

a,u® "

We consider the direct sum

@Co o P (uY) T(—X1 x X2) @ A%Y)

o P P e (=)0 (uf) T(X) @A) (12.28)

i=1,2 2@

Here the first direct sum is taken over disk components of ¥% and the second direct sum is taken
over sphere components of Z?. The symbol 0 in C§° means sections with compact support away
from nodal or marked points and from boundary.

Taking direct sum of the maps \I/ 4@+ We obtain

@ ol (T(—X1 x X)) @ A™) — (12.28).

Here direct sum of the domain is taken over disk components. In case we specify & and 0%, we
write \Ifd 4o Or \I’§ OBuO"
We can perform a similar construction for sphere components to obtain

zuo OBiu® " @CO za; z) X Ao’l) — (1228)

Definition 12.42. We denote

£ 0%) =P Pe.oPed

=12 a

We define the subspace £(&, 0B;n) C (12.28) to be the image of £(§, 0 %) by the map \I/fp @
\Ili,uo @ \I’;,u@‘
We write £(&;n) in place of £(&, 0A;n) in case the choice of 0'Z is obvious from the context.

We remark that the choice of o,r and the third isomorphism in (12.25) is not unique. The
maps \Ifd@ O] o® \112 o depend on this choice. However, two different choices are trans-
formed each other by the weak isomorphism of €. Therefore, by Definitions 12.26 (7) and 12.35 (4)
the image £(&, 0A) is independent of such choices.

Roughly speaking, the underlying orbifold of Kuranishi chart consists of  such that du" €
E(&;m). To obtain Kuranishi chart so that we can define coordinate transformation among them,
we need one more steps to work out.
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We remark that for each (£, 0 %) there exists (£, 0 %) such that the construction of £(&, 0 %;
1) works for n which is (&, 09A) close to (§,. 7).

For each £ € M'(L12;a; E), we choose and fix an obstruction bundle data ¢%. We also take
a closed neighborhood M(€) of € in M’(Lq9;@; E) such that each element of 91(¢) is (&, OHB) /2
close to (¢, .77).

We take a finite subset

{& i€} c M'(L12;a; E) (12.29)
such that

Jmt N(&) = M'(L12: 6 B). (12.30)

iel

Using the data we fixed above, we will construct a Kuranishi neighborhood of an arbitrary
element & of M'(L12;d; E). We put

1(6) = {i e I] € € N(&)}- (12.31)

By perturbing obstruction spaces of (&, 0%) we may assume that the sum @iel({) E(&, OF;¢)
is a direct sum. See [38, Lemma 18.8], which is proved in [38, Section 27] and more detailed
in [44, Section 11.4].

We take stabilization data .#.7 at {. We assume that Definition 12.35 (5) is satisfied. (7
may or may not coincide with one included in &% taken above.) We take £2(§) enough small so
that if 7 is a candidate of an element of extended moduli space of M’(Lj2;d; E) which is e5(€)
close to (§,..7) then n is e(&, ORB) close to (&, 0A) for each i € I(€).

Definition 12.43. For ¢ < £3(&), we define U(;¢) to be the isomorphism classes of n with the
following properties.

(1) n= (((E?,Z?),u?), ((Eg,ég),ug),fo,vv) is a candidate of an element of extended
moduli space of M'(L19;a; E).

(2) nis e close to (§,.7.7).
(3)

oy € P £&, 0%;n) (12.32)
ie1(¢)

on the image of Zd: K¢ — Egg? and
o) € P E&, 0B;n) (12.33)
i€I(§)
on the image of Z7 . Moreover, u? is pseudo-holomorphic outside the images of Ig and If,a-

Let I'¢ be the set of all automorphisms of . We denote £(§) = @icye) E(&i O%).

The next proposition claims that we can construct a Kuranishi neighborhood of £ using the
above data.

Proposition 12.44. For sufficiently small € > 0, the following holds:

(1) There exists a smooth manifold V (§;€) of finite dimension on which I'¢ acts smoothly such
that the quotient space V(&;¢)/T¢ is homeomorphic to U(&;¢).
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(2) We can define a smooth T'¢ equivalent map s¢: V(§;6) — E(€) as follows. For i) € V(&;¢)
whose equivalence class is mapped to n € U(&;¢) by the homeomorphism in item (1), we
can take its representative and a choice of the map (12.25) (among finitely many 1pos—
sible choz’cesf such that the components of s¢()) is obtained by applying (\If‘é’u,)_ or
(\I/gﬁ%u,)_ to Ou, Ou;.

(3) We define 1e: 55_1(0) — M/(L1g;a@; E) by regarding an element 1) € 55_1(0) as an element
of M'(L12;d; E). Then v¢ induces a homeomorphism from 551(0)/F5 to a neighborhood
of €.

(4) U e) = (V(&e),Te, E(E), 8¢, v¢) is a Kuranishi neighborhood of & in the sense of [35,
Definition Al.1].

Proof. Below we provide the construction of (V(&;¢),I'¢, £(§), s¢,Y¢) leaving the gluing analysis
and smoothness proof to the next subsection.

The construction of the manifold V'(£;¢) and a homeomorphism V(&;¢)/I'¢ = U(;€) is the
gluing construction of the solution space of the equation (12.32) and (12.33).

The stabilization data of ¢ we take include a source stabilization £ and gluing data at it. It
induces a source gluing map whose domain is

T vl < II II v x I vewx [ [ Die). (12.34)

a€comp 1=1,2 a€comp; beNodeg =12 ,eNode;

1,int

(We restrict the gluing parameter so that the domain is smaller than (12.8).) We denote (12.34)
by V(¢',9.7).
V(&;¢) is a submanifold of the product of this space and the other space which parametrizes
the map. We define the latter space below.
For each disk component §é’d and sphere component f;z, we consider the set of maps
ugd: (24,088, 2) = (X1 x Xo, 7" Li2, L1a(@n)),  upp: X3, — X;

2,8

(here the notation in the first line is as in Definition 12.36), such that dug € £(¢'), guga’s e &(¢)

and that the C? distance between ug’d (resp. uf;s) and u;’d (resp. uii) is smaller than e.

Here u}?, u;® are parts of ¢'.
We denote the set of such maps ug " (resp. u?j) by W(¢;€) (resp. W; L (€5 e)) and put

WH(se) =T wWi€se) x T [IWa¢59).
a =12 a

Here the first product is taken over disk components and the second product is taken over sphere
components.
We consider the direct product

II II &*x ] (Zaz(a) (12.35)
i=1,2 bEnodeiint bEnOdea+

Here Lia(ap) is as in (12.18).
Note each node is contained in exactly two irreducible components. So using the evaluation
maps on those components, we define evyoge: WT(;¢) — (12.35).

Lemma 12.45. Let

A= H H Xz X H ng(ab)

i=1,2 benodejirlt bEnodeg

be the diagonal in (12.35). Then the map evyode 1S transversal to A if € is sufficiently small.
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Proof. This is a consequence of Condition 12.37, which implies that ev,ge is transversal to A
at ((ug),(ufa)) [ ]

Definition 12.46. We put W(¢;e) = ev_ L (A) c WH(¢/;e).

node

Note that I'¢ the group of automorphisms of £ acts £ as a group of weak automorphisms.
Then it acts on V(¢,9.%) and W (€';¢) by exchanging the factors. It then acts on W(¢';€).
The gluing construction proves the next proposition.

Proposition 12.47. For each p = ((p3), (6},)) € W(s¢) and (o,r) € V(¢/,9.Z), we obtain
an object n(p, o,r) satisfying conditions in Definition 12.43 except (12.23) and (12.24) and whose
source object is (Glue(o,r), Z5y).

On the contrary, any object satisfying conditions in Definition 12.43 except equation (12.23)
and (12.24) with sufficiently small € is equivalent to some n(p,o,r).

The isomorphism class of n(p,o,r) is the same as the isomorphism class of n(vy(p,o,r))
for vy eTe.

The proof is given in the next subsection.

We next cut down the space V(£',9.%) x W(E'; €) by conditions (12.23) and (12.24). We com-
pose the map (p,o,r) — n(p,o,r) and the evaluation maps at the interior marked points (12.7)
to obtain

evine: V(E,9.L) x W(€;e) = (X1 x Xo)' x X1t x X2, (12.36)

The next proposition claims its smoothness. We need carefully choose the smooth structure
of V(¢',9.%) so that eviy, becomes a smooth map.
Let r € [0,)p and v € DZ(e) (see (12.34)). We define T', 6 by

p = ¢ 1077 ¢ = o~ 10mT42my/=T0 (12.37)

and put s = 1/T, § = 2™ ~19/T. We use s and S as coordinates in place of r and t to define
a smooth structure of V(¢',9.%).

Proposition 12.48. When we put the above smooth structure on V(¢',9.L), the map evint
in (12.36) is smooth.

We will prove this proposition in the next subsection.

Definition 12.49. Let V(&;¢) be the subset of V(&',9.%Z) x W(£';¢) consisting of elements
(p,o,r) such that

evint(p, o, 1) € H/\fj(l) X H/\/'j@).
J J

Here ./\/'j(l) and ./\/'j(2) are as in (12.23) and (12.24). The direct product in the first factor of
the right-hand side is taken over interior marked points on disk components and the direct
product of the second factor of the right-hand side is taken over interior marked points on
sphere components.

Corollary 12.50. Ife is sufficiently small, then V (&;€) is a smooth submanifold of V(§',9.%) x
W(E;e).

Proof. In view of Proposition 12.48, it suffices to show that eviy is transversal to [] j ./\/'j(l) X
[ J\fj@) at ((ud), (uf,)). This is a consequence of Definition 12.26 (5b) and (6b). |

a
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From Corollary 12.50 and Proposition 12.47, it is easy to see that there is a canonical iso-
morphism between V' (§;¢)/I'e and U(&;e). We thus have proved Proposition 12.44 (1).

We next prove Proposition 12.44 (2). Let i € I(§). We take a source stabilization & of & and
a source stabilization & of £ such that &' is € close to (§,94.Z). (Note £ may depend on i.) We
then fix a map

77,(0): K. (&) = K, (03(0)) — 2i(a(0),1(0)) = 5, (12.38)

where Y; is an irreducible component of £ (which is also an irreducible component of ')
and (¢(0),r(0)) so that the source gluing map at & sends (c(0),r(0)) to &' Kga(fi’) is a core
of a disk component of the source curve of £.

Note that the image of (12.38) is in a disk component Ega of the source curve of ¢'.

Now let (o,r) € V(¢,9.%). The source curve of n(p,o,r) depends only on (o,r) and
is e(&, OA) close to (&,.7 7). We write ¥;(o,r) it. Then we can uniquely choose

Iga(gv I‘) : Kz(fa(ftl) — % (07 I‘)

as (12.25) which depends continuously on (o,r) and becomes (12.38) when (o,r) = (0,0). We
can choose a similar map for the sphere component in the same way.

Using this choice, the map s¢: V(& ¢) = £(§) in Proposition 12.44 (2) is continuous.

The I'¢ equivalence of this map is proved by I'c C I'¢, and I, invariance of various objects in
the obstruction bundle data.

The smoothness of s¢ follows from the exponential decay estimate in the next subsection (see
Proposition 12.56).

The proof of Proposition 12.44 (3), (4) is now an immediate consequence of the construc-
tion. The proof of Proposition 12.44 is complete modulo the points postponed to the next
subsection. |

We thus constructed a Kuranishi chart at each point of M'(L19;d; E). Let & € M'(L12;a; E)
and & € M'(L12;@; E) is in the image of 1¢,. Using the closedness of 9M(&;), we may as-
sume I(&2) C I(&1), by shrinking our Kuranishi neighborhood of &; if necessary. Then by defini-
tion U(&2,e2) C U(&1,¢€1) if we choose g9 sufficiently small. We can use this fact and exponential
decay estimate in the next subsection to construct a smooth coordinate change from the Ku-
ranishi neighborhood of & to one of &;. Thus we obtain the required Kuranishi structure.

12.4 Gluing analysis for the construction of a Kuranishi chart

In this subsection, we prove Propositions 12.47 and 12.48. The proof is by gluing analysis
similar to [35, 38, 48]. Since our compactification is slightly different from the stable map
compactification used in those references, we explain the way we modify the method of previous
literatures so that it works in our situation. In [35, 38, 48], a combination of the alternative
method and the Newton’s iteration was used. We follow this method in this subsection. We
follow [48] since the description is the most detailed in this reference. Below we provide the
detail of the formulation and the inductive scheme of the proof. Once they are clarified the
estimate, we need on each step of the induction is entirely similar to [48].

For the sake of simplicity of notation, we write the detail of our proof in the following special
case. This case contains all the points we need to work out the general case.

We take E? = D? with one boundary marked point 1 € 9D? and two interior marked
points 0,3; € Int D2, 0 # 3;.

We take 3f = $? = C U {oco} and consider three marked points 0, 1, co on it.

We put ¥4 = ¥¢ = 34, We regard 31,32 € 9. We glue E? and X7 at 3; € E? and 0 € X5.
The points 31, 32 may or may not coincide. In case we use stable map compactification, a sphere
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component bubbles off when 3; = 32. However, in our compactification, the locus where 31 = 32
does not play a special role. We assume Lo C —X7 X X5 is an embedded Lagrangian submanifold.

N

Figure 12.26. The source domain we study. (We do not draw interior marked points in the figure.)

The immersed case can be worked out in a similar way, given the formulation we have provided
in the last subsection. We assume Lo is embedded for the sake of simplicity of notation only.
We also remark that throughout this section, we use almost complex structure —Jx, on X;
and Jyx, on Xy, unless otherwise mentioned explicitly.
We consider families of pseudoholomophic maps
ub = (W ) (29059 5 (=X x Xp, L), w N5 X,

7
parametrized by pd € V4, p; € V5.

Remark 12.51. In the case we are studying here, there are two marked points and one nodal
point on the sphere bubble. We identify them as 0, 1, co. Therefore, the domain coordinate
is canonically determined. In particular, the maps ud’pd, uf’p " are determined by pd and 05
uniquely. See Remark 12.57, for an explanation of the case when the domain of the map is not
stable.

Let 0 € Int D?\ 0 and O a small open neighborhood of it. Let 0 € V! and 0 € V. We
d,0 s,0 .
assume u; " (0) = u;" (0), for i =1, 2.
We consider the following element &; of M’1,272(L12; (diag); E). Here diag denotes the diagonal
component of Lis X x,xx, L12 (which is actually the only component of it) and

2
E = Z(l)z/ (u?’o)*wi + Z(fl)i /ES (UZS»’O)*Wi.
=1 i

i=1 i
The source curve of & is a pair of E? and X glued at o € E? and 0 € X%. The point 1 € ¥4 is
its boundary marked point, the point 0 € X9 is an interior marked point of first kind, and the
points 1, oo € X? are interior marked points of second kind. .# is the identity map yd =xd = Eg.

d,0 0
The maps u; are u;'~, u;" on each of the components.

We study a neighborhood of &y in M/ 5 5(L12; (diag); E).
Definition 12.52. We consider the set V consisting of (pd, o1, p§,31,32) such that
(1) pte Vi, preVy.
(2) 31,32 € O.
3) uM (3) = w7 (0) for i = 1,2.
We may regard V as a fiber product
V=(Vx O x90) xx,xx, (V§ xV3). (12.39)

We work under the following assumptions.
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Assumption 12.53.

(1) V4, V§ and V§ are smooth manifolds. Moreover, the linearizations of the nonlinear Cauchy—
Riemann equations

D, ,a0: C=((405d); (ub" ) T(X1 x Xa), (u") " TLys))
— (29, (ub) T(X1 x Xa) @ A™)
and

D .0 C®(S% (1) TX,) — C=(29, (u¥) T X; © A%)

1
are surjective.

(2) The fiber product (12.39) is transversal.
Note that Assumption 12.53 implies that V is a smooth manifold.

Remark 12.54. In the general situation, we introduce obstruction bundles and use the extended
moduli space in place of V9, V7, so that a similar condition as Assumption 12.53 holds. The
way to introduce obstruction bundles is explained in detail in the last subsection. Then the way
to include the obstruction bundle in the gluing analysis is the same as [48] etc. So, for the sake
of simplicity of notation, we restrict ourselves to the case when Assumption 12.53 is satisfied in
this subsection.

We next recall the source gluing map in our situation.

Let ¢ be a small positive number. We define a map gogli : D?> - Y4 by goi_ (2) = cz+3;. We also
define $: D? — ¥ by ¢$(2) = cz. They are analytic families of coordinates and are extendable.
We use them to define the source gluing map (12.9). Using also Lemma 12.33, we obtain

(21(31,‘&),22(52,@),%1,32;1;2), (12'40)

for t1,vo € D2. Here ¥;(3;,1;) is obtained by gluing ¥¢ and ¥¥ by the gluing parameter t; using
coordinates Lp;ii and ¢, Iy 5010t 20(31,11) — £9(32,t2) is a biholomorphic map obtained in
Lemma 12.33 by extending identity map.

Proposition 12.55. We assume Assumption 12.53. Then for sufficiently small € there exists
a map

G: V x D*(e) x D*() = M/ 55(L12; (diag); E)
with the following properties:
(1) The source object ofg((pd,pﬁ,pg,g,l,gﬂ), (t1,t2)) is (12.40).

(2) & is a homeomorphism onto a neighborhood of &.

Proposition 12.55 is a special case of Proposition 12.44 (1). To prove Propositions 12.44 (2),
(3), (4), 12.47, 12.48 and the smoothness of coordinate change, we use the next Proposition 12.56.
To state it we need notations.

We take a small open set O C X4 which contains the closure of c-neighborhood of . We
put Kfﬁ = Kg, = K4 =%\ Ot and KF = 25\ Im ¢§. We may regard Kg_,Kis C %;i(x) for
all t.

Let ul(-pd’phl’pz’al’az)’(tl’m): Yi(r) — X; be the map part of %((pd,pﬁ,pg,gl,gg),(tl,tg)). We
denote its restriction to Kg_, K? by

(ReS?’i © g) ((pd7p?l7 p3731752)7 (tlth)) S Coo(sz777X’L)7
(Res; 0 9) (%P3, P5.31,32) (t1,12)) € CF(K5, X;)
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and

(Res® 0 9) ((p%, %, 5,31, 32), (t1,72))
— ((Res‘l{_ °0¥), (Res‘i_ °9)) ((pd,pi,pa,jl,jg), (v1,v2)) € C®(K9, X1 x X5).

We define T; € Ry, 6; € [0, 1], by
t; = exp(—107T; — 27/ —16;). (12.41)

Proposition 12.56. For m > 10, there exists ey > 0 and Cynycmpn > 0 such that the
following holds if € < ey, , (note € is the number in Proposition 12.55):

(1)

o' 94 02 9%
H n d Scm,neicm’nTl

V(pdm?,p%m,zz) aTlél o904 6T2£2 00 (Res Og)
1 2

2
Lm—l

if =10+ 0 +la+ 0 <m—2,01,0,,0s,04 € Z>o and {1 + ¢} > 0. Here v?pd o5 o 3112) is
n-th derivative with respect to (pd,pﬁ, p%,gl,jg). s

(2)

V7 (Resi o %)

<C e_cm,nT2
(p4,03:0%:31:32) bt onlh ATl Aol = ¥mn
Ty 99, 915 90,

H ol 9l 9l b

2
meé

if £ =1 —|—£,1 + 4o —}—5/2 <m-—2, fl,fll,fg,éé € Z>o and £y —|—€,2 > 0.
(3) The same inequality as (1), (2) holds for Res; 0¥, i =1,2.

We can use the exponential decay estimate such as Proposition 12.56 in the same way as [48,
Chapter 8] to prove Propositions 12.47, 12.44 (2), (3), (4), Proposition 12.48 and the smooth-
ness of coordinate changes. So to complete the proof of Theorem 12.24, it remains to prove
Propositions 12.55 and 12.56. The rest of this subsection is occupied by their proofs. |

Remark 12.57. As we mentioned in Remark 12.51, we study the case when there are marked
points on the sphere bubbles so that the domain is stable in Propositions 12.55 and 12.56. In the
general case, we follow the method of [49, Appendix] and proceed as follows. (This is a special
case of the method we explained in the last subsection.) Suppose we consider an element &
of M/ ¢ ¢(L12; (diag); ) which is similar to the element &, except we forget the 4 marked points
on the sphere bubbles. We consider the case when the maps uf;o on the sphere bubbles which are
parts of the data consisting &) is non-constant. We fix two points on each of the sphere bubbles
such that uf;o is an immersion at those points. We change the objects by automorphisms so that
the marked points we add are 1,00 € S2. We denote by 1;, oo; (i = 1,2) those added marked
points (of second kind) on the sphere bubbles SZ-Q. The nodal points on the sphere bubbles are
identified with 0. We take codimension 2 submanifolds N; 1, N, of X; which intersects with
the image of the map uf;o transversally at 1; and oo;.

We consider £, with those extra four marked points added as an element & of the space
M 95(L12; (diag); £). We can then apply Propositions 12.55 and 12.56 to obtain a map

G: V x D*(e) x D*(g) = M 55(L1z; (diag); E).

Then the Kuranishi neighborhood of &, of M} ,(L12; (diag); £) is the smooth submanifold
of V x D?(g) x D*(e) which is cut out by the conditions

(eviio¥)(z) € Nin,  (evimo 09)(7) € Njoo. (12.42)
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Here ev; 1, ev; o are the evaluation maps: M’17272(L12; (diag); E) — X; at the marked points
corresponding to 1; and oo;.

We remark that the Kuranishi neighborhood of & obtained in this way depends on the
choice of additional 4 marked points on the sphere bubbles and also to the choice of transver-
sals N1, N . However, using Proposition 12.56 we can show the Kuranishi neighborhood
obtained is independent of such choices in a neighborhood of & up to diffeomorphism. This
independence is a special case of the smoothness of the coordinate change, which is proved by
using Proposition 12.56. See [48, Chapter 8].

We will discuss this example more in Remark 12.76.

Proof of Propositions 12.55 and 12.56. Proposition 12.55 is similar to [48, Theorem 3.13]
and Proposition 12.56 is similar to [48, Theorem 6.4]. Their proofs are also similar.

We first modify the way to describe the disk component of the source curve in a way convenient
for our gluing analysis.

Definition 12.58. We take a 3 € O parametrized smooth family of diffeomorphisms h;: D? -
D? with the following properties:

(1) hy = the identity map outside OT. Here O is an open subset of D? which contains the
closure of O and is disjoint from {0} U dD?.

(2) hyopd= %d‘ In particular, hy(0) = 3.
We pull back the standard complex structure j of D? by h; to obtain j; = hjj.

We remark ((D?,j),(1,0,3)) is isomorphic to ((D?,;),(1,0,0)). In other words, we move

a complex structure j in place of moving a, marked point 3. In thls 1dent1ﬁcat1on the map &
d p T d pd ,P by — d,P ’31 d pd732

becomes .7}, 5, = hy, o (hy;)~t. We put u; =u;"” ohy, and u (uy )- The

map ud’p %% is holomorphic with respect to the complex structure j;, of the source.

Hereafter to simplify the notation we write p = (p o, 31,32) and write u?’p etc. in place
of u; s ot

We remark V 2 {p | udp( ) = u;?(0) for i = 1,2}.

We use the cylindrical coordinate on neighborhoods of o € ¥4 and of 0 € >3, which we
describe below.

Hereafter, we write ¢ in place of pd. Let z € D? and p = ¢%(2) € £4. We then define
7' (p) € [0,00) and t'(p) € [0,1) by 27 (7' (p) + vV—1t'(p )) —logz. Let ¢ = ¢f(w;) € X We
then define 7/'(¢;) € (—o0, 0] and #/(¢;) € [0,1) by 27 (7/ (qz) +v=1t!(¢;)) = log w;. We glue x4
with 3¢ by the gluing parameter t; as follows. If p = ¢4(2) and ¢; = ¢§(w;), we identify p and
q if and only if

ZW; = ;. (12.43)
See Definition 12.28. In view of (12.41), the condition (12.43) is equivalent to
' — 7 = 10T;, t! —t' =0; mod Z. (12.44)

Compare [48, equations (6.2) and (6.3)] and see Figure 12.27. We use Riemannian metric on
¥4\ {o} (resp. X5\ {0}) such that on the image of ¢¢ (resp. ¢f) it is isometric to [0, 00) x S!
(resp. (—00,0] x S1) with (7/,') (resp. (7, t])) as coordinates.

We introduce the weighted Sobolev spaces which we use for our gluing analysis. We follow [48,
Section 3] here. For p € V, we put u?(0) = p?. We take sufficiently small positive number &
and fix it. (0 is taken to be small compared to the decay rate of the pseudo-holomorphic curve

at the neck. For example, 6 < 1/100. See, for example, [48, Section 2].)
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Figure 12.27. Gluing disk and 2 spheres.

We take and fix connections of X7 and of X5 and then direct product connection of X7 x Xs.
Let Pal, be the parallel transport of the tangent bundle of X7 x X5 with respect to this con-
nection. We denote by the same symbol the parallel transport of the tangent bundle of X;. We
denote by Pal;,] the complex linear part of it. (We remark that the almost complex structure we
use is —Jx, ® Jx,.)

Definition 12.59. We denote by W2 el s ((29;059), (udJ’)*T(Xl x Xo); (ud”’)*T(ng)) the set
of all pairs (s,v) such that

(1) s is a section of (u ”’) T(X1 x X3) on 4\ {0} which is locally of L2, class.
(2) ve Tpp( 1 X X9).

(3) s(2) € Tyap(s)Liz if z € O,

(4)

m+1
Z / dr’ / 207! |Vk vpal)\th < 0. (12.45)
S1
Here vP(7/,¢') = (Pal,)q ’p(Tl’t/)(fu).
The W2 1.6 orm of (s,v) is by definition

m+1

— Z / IV(s)[2 + (12.45) + [of>.
m19 £\ @d(D?)

15, 0) 7y

We define the L? inner product between two elements (s1,v1) and (s2,v2) of the function
space W2 1 5((2%059), (u?) " T(X1 x Xp); (ub*) T (L12)) by

((s1,v1), (52,v2) ) 2 = / (51— o™, 80 — vy™) —|—/ (51, 52) + (v1,v2).
Sd\pg(D?)

[0,00)x St
We denote by W?2 o, 5((3%), (uj”p)*TXZ-) the set of all pairs (s,v) such that

(1) s is a section of (u*?)*T'X; on X% \ {0} which is locally of L2, class.
(2) NS TprZ‘.
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m+1

0
Z / dT”/ e_2§T/|Vk (5 — vpal)|2dt" < o0.
) t"est

S,P (11 411
Here vPa (7" ") = (Palo):i (7"t )(U)-

The Wan 41,6 norm and the L? inner product is defined in a similar way.

Definition 12.60. We denote by L?n 5(2?, (u?’p)*TXi ® Ag’l) the set of all s such that

(1) s is a section of (u?’p)*TXZ- ® A% (29, 5;,) on X4\ {0} which is locally of L2, class. Note
that we use the complex structure j;, to define the notion of (0,1) forms on 4.

(2)

Z/Oo dT’/ eQdT,’Vkstt' < 0. (12.46)
k=0"0 S1

The square of the L2, norm of s is by definition the sum of (12.46) and the square of L2, norm
of the restriction of s to £4\ ¢4 (D?).

The weighted Sobolev space L72n,(5 (=5, (u?’p)*TXi(X)AO’l) of sections of (uzs.’p)*TXi@)AO’l(Es,j)
and its LG, s norm is defined in a similar way.

The direct sum

@ L2, 5 (24, (uf?) TX; @ AST)
i=1,2

is denoted by Lgn,é (4, (ud’p)*T(Xl ®Xo2)® AS’l), by a slight abuse of notation. (Note that the
complex structure we use for Y4 is different between X7 factor and X, factor.)

We next define the linearization operator of the nonlinear Cauchy—Riemann equation.
We use the parallel transport and the exponential map for this purpose.

Definition 12.61. We take a z € X9 depending family of connections VZ of the tangent bundle
of X7 x X5 such that

(1) If z € O, then V* coincides with direct product connection mentioned right above Defi-
nition 12.59.
(2) There exists a neighborhood of 9%4 such that if z is in this neighborhood then VZ coincides
with a connection V° for which L5 is totally geodesic.
Let
Exp”: T(X; x Xa) = (X; x X3)? (12.47)

be the exponential map defined by V?=.

If 2 € OF, item (1) implies that (12.47) becomes a direct product of two exponential maps
Exp,: TX; — (X;)%. The restriction of the exponential maps are diffeomorphisms onto a neigh-
borhood of the diagonal, which contain U(Ax,) etc. We denote their inverses by

E*: U(AX1XX2)) — T(X1 X XQ), El U(AXZ)) — TXz
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Let z,y € X7 x X9 which is sufficiently close each other. Then we can use the V*-parallel
transport with respect to the V* geodesic to define (Pal.)%: T,(X1 X Xa) — T, (X1 x X2). We
denote by (Pal‘] ) its complex linear part.

(1) implies that it splits into direct product if z € OF. (2) implies that if x,y € Lqo
and z € 0%, then

(Pal.)!(TyL1a) C TyLyo.
Remark 12.62. Note that there may not exist a connection satisfying both of Definition 12.61
(1), (2). This is the reason why we use z dependent family of connections.

Definition 12.63. We define an operator
D’ 0= (Dpdpa Dpdﬁ); W21 5((2%059), (ub) ' T(X1 x X2); (u™?) T (L12))

udsp
= L}, 5(29, (u)'T(X1 © Xo) @ A)) (12.48)

as follows. Let (s,v) € W2 +15((Zd;02d), (ud?) " T(X; x XQ);SUd’p)*T(le)).
Let z € OF. We put s = (s1, 52), where s; is a section of (uZ ’p)*TXi. Then we define

= d
(D2,,8)(s.v) := 4P~ (B, Boxpy (u” 1)), (12.49)
in a neighborhood of z. Here Exp;(u; dp Jtsi) s a map z»—>EXpZ( ?(2),tsi(z)). Then
835 (Expl( ” tsi)) at z is an element of T y)Xi ® A% ( 4 jsi), where

y(t) = Exp, (ug”(2), tsi(2)).

P is induced by (Palz)g(t) where xz = u?’p (z). (We remark that Pal, = Pal, in our case.)
Let z ¢ OF. Then the complex structure j;, is the standard complex structure j in a neigh-

borhood of z. We define
_ d _
(D50,,0)(s,v) = P (OExp, (u?, 1)) )t:O (12.50)

in a neighborhood of z. The notation in (12.50) is similar to (12.49). We however remark that
in (12.50) we work on the product space X; x Xy and use z parametrized family of connections
to define the exponential map and the parallel transport.

By Definition 12.61 (1), it is easy to see that (12.50) coincides with (12.49) on the overlapped
part and define (12.48).

The definition of the linearization map

Dosd: Wiy (55 (u77) TX) = Lo 5 (55, (u”) TX; @ A™) (12.51)
is similar to and easier than (12.48).

Definition 12.64. We denote by W (m;u®*, usl’p, us’p) the subspace of direct sum

W15 ((E5059), (u) ' T(X1 x Xo); (u) " T(L12)) @ € Wii15(55, (1) TX)
i=1,2

consisting ((s,v), (s1,v1), (s2,v2)) with v = (v1,v2). We consider the direct sum

L2, 5(2%, (u) T (X1 & X2) @ AYY) & @D L2, (55, (u)?) " TX; @ A™). (12.52)
i=1,2
We define
Dzd,mui,p’u;pg: W(m; ud”, ul?, u;’p) — (12.52) (12.53)

as the restriction of the direct sum of (12.48) and (12.51).
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Lemma 12.65. The map D,Zd,p Y us,pg in (12.53) is surjective if 0 is sufficiently small.
U Uy

Proof. Since we assumed Conditions 12.37 and 12.38 with trivial obstruction bundle (that
is, Assumption 12.53) this is a consequence of the standard exponential decay estimate and
regularity of linear operators. |

Definition 12.66. We denote by ﬁ(m;ud’p,ui’p ,us” ) the L? orthonormal complement of the
kernel of Dzd,mui,p’ug,ﬂf) in W(m; udp, u”, u;,p).
We next introduce bump functions we use in our gluing analysis. (This part is similar to [48,

Section 3.1].)

Notation 12.67. Hereafter, we use [a,b],, [a,b],y, [a,b]y for the interval [a,b] to specify the
coordinates 7/, 71 or 74 we use.

Definition 12.68. We define .AZ;FI,, Xr}i, B%ri for i = 1,2 as follows:
Alp, = [AT; = 1,4T; 4+ 1] x 8 = [=6T; — 1, —6T; + 1], x S,
Xp, = [5T; = 1,5T; + 1] x ' = [=5T; — 1, =5T; + 1],» x S,
B, = [6T; — 1,6T; + 1] x 8 = [=4T; — 1, —=4T; + 1],» x S*.

They may be regarded as subsets of ¢ or of ¥ or of ¥;(r). (Here r = (t1,t2) and T; is related
to v; by (12.41).)

61,

am———

Az, | AT, B,

—6T; —5T; —4T; /' =

Figure 12.28. AiTi, X}i, B%

Let x: R — [0, 1] be a nondecreasing smooth function such that

(7) 0 ifr<1,
T) =
X 1 ifr>1.

We use it to define functions on [0, 107;]» x S* = [~10T;, 0] x St as follows:

X;{i (7-” t/) = (7—’ — 4Ti), XXZT (Tiﬁv t//) = X(Ti/, + 61—%),

and X;iT- =1- XZiT,’ X;}' =1- X;%-., XE;_ =1- XE;‘ We can extend them outside of

[0,10T;)7+ x S* = [~10T;, 0} x S
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1 Xt \ 0
XE;L )

0 1

0 Xac,

1 X ’

\ [

Figure 12.29. Bump functions.

as locally constant functions and regard them as functions on ¢ or on % or on ¥;(r). See
Figure 12.29.

Now we are ready to start our inductive construction of gluing. We discuss the case when the
gluing parameters t; and vy are both nonzero. (In the case when t; = t9 = 0, there is nothing
to do. The discussion when one of t1, to is zero is similar and is omitted.

Pregluing. We put u”(0) = p” = (pff ,pg). We recall r = (vq,t2). A pair of complex
numbers r corresponds to 11, 01, Ty, 62 by (12.37). We define uﬁ(O)J: ¥2(r;) — X; as follows.
We put K = 38\ ¢4 (D?). Then Xf(v;) = K U K U [0,107;] .

On [0,107;],s x S* = [~10T},0],» x S* we put

Wl )78 = Bxpy (00 Xy, (7 VB (00w (7 ) 4 X, (ol 6B (o w2 () ).

177

d,p d p o SP s P s . . } .
u®f on K and Ujy (o) F= W on K?. Uy, (o) 18 an approximate solution of our pseudo-holomorphic

Here (7], t}) is related to (7/,t') by (12.44). We also put v 0= (uf | (()),ug]r (0)) With ul 0 =

curve equation.
Step 0-(3+4) (Separating error terms into two parts).

Definition 12.69. We define

oy = (@07 0 o) (505%) = (=X1 x Xo, Lg)

r,(0)
as follows:
Expi (pf, Xg% (7'/ —1T;, t/)
Wl () =4~ Ei(pf, u), (7)) if z=(r',t') € [0,10T;]» x S,
i,r,

uﬁn(o)(z) if 2 € K¢,

P if 2 € [10T;,00), x St.
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We also define u (0) 1 X% — X as follows:

Exp; (pf, x}- (r!' + T, t))

@ @) =g (Pl o) (71 10))if 2 = (70, 8) € [~10T3, 0], x S,
- ufr(o)( z) if z € K7,
P; if 2 € (00, ~10T),» x S,

Definition 12.70. We put
d ) — .
E“"f,r,( 1) = XXZ 3]’51“?,(0),17 Errf:u) = X 8]“?,(0),1'-
We regard them as elements of the weighted Sobolev spaces
d (gd 0,1 . 0,1
L% (E (.p())TX®A ) and L% (ES(S())TX@)A )
by extending them to be 0 outside the support of X;i and X;i , respectively. Note that

L2 (S, (050 o)) TX; @ ADY) and L7, (28 (Af’f(o))*TXi ® A%)
are defined in the same way as Definition 12.60.

Step 1-1 (approximate solution for linearization). We define

~d, As As
W (m; i ,fo) lr(O)’ p(o))

~d,p
in the same way as Definition 12.64. Using (Pali )ZS z we obtain a linear

(=) and (PalJ) (@
#(2) ugP(z
map

)

)’
S, ) d, S A~ S,

©, 00 W(msut? i’ uz”) — W(msa f)o)v p(o)’uz,i,(o))-

(See [48, Definition 5.10 and Lemma 5.11].) We consider the direct sum

L2 (29, (ify)) " T(X1 & Xo) @ AY') & @D L7, 5(%5, (650) " TX; @ A1), (12.54)
1=1,2
We define
Dhy, . 9 W (msigfy 472 o, 5% o)) = (12.54)

r (0)’ 1 r(O)’ 2r(0)
in the same way as (12.53).

Lemma 12.71. There exists a unique element
d S S
Vo) = (Vo) A1)y (Ve (1) AP1o 1))y (Vo 1y A2, 1))

which is contained in the image of the restriction of ®, ) to the L? orthogonal complement of
the kernel

Ker D” i ase s,

Up (0)'%1,r,(0) 7“2,5,(0)

P mn W( 50) Aii (0)’ﬁ;7,ﬁ7(0))

such that

(Dha 9)(V ) = (Enrly

r(O)’ 11‘(0)’ 2r(0)

Err?®

Err}] 2r (1))

(1) r, (1)
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This is a consequence of Lemma 12.65 and can be proved in the same way as [48, Lem-
ma 5.13].
Step 1-2 (gluing solutions).

Definition 12.72. We define v/ (1) = = (u” ub (1)) as follows:

1r(1)’ 2,r

(1) If z € K9, we put un(l)( z) = Exp®(a (0),Vd( )(z))
(2) If z € K3, we put “Zr,(l)( z) = Exp®(a? oy Vi ()( z)).
(3) If z = (7', ') € [0,10T;]» x St, we put

uﬁn(l)(v",t’) = Exp”® (uf’(o)(rl,t'), X;; (T,t)(%?p,(l)(T’,t’) — (Api7p7(1))Pa1)
+ XZ% (7_/’ t/) (V; ’ (1)( " 7fll) (Api,p,(l))Pal) + (Api,p,(l))Pal) .

We also define pfl) = (pzi’;,p?i'i) by Pﬁ(l) = EXPi(pfa Api,p,(l))‘

u? () is an improved approximate solution. Note that by Definition 12.61 (1), u”

satisfies the boundary condition at 9%(t).
Step 1-4 (separating error terms into two parts).

)

)

Definition 12.73. We define

7jLf:(pl) = (u ?5(1)7 Agf(l)): (Edvazd) — (—=X1 x Xo, L12)

as follows:
Exp: (0] 1) s, (7 = Tost)
PR (2) == x E; (pw ir(O)(T’,t/))) if 2 = (7',t') € 0,107 x S,
i,r,(1) ufr (1)(2’) if 2 € sz7
Py if 2 € 1073, 00),s x S

We also define u . (1) 1 X% — X, as follows:

Bxp; (0 1) X, (71 + T )

/ . (gl : 1
Uiz ) (=) = <Epf ()i 2= (518 € [F10T3,0) xS
w ufr(l)(z) if z € K3,
i if 2 € (—o0, =10T;] . x S™.

Definition 12.74. We put
p,d _ =) P 0,8
Erri,r,(2) = X;}iajaiuT,(l),i’ Erri,r,(Q) X)c% aJ“Ta),

We regard them as elements of the weighted Sobolev spaces L (Ed ( dp 1 )) TX; ®AO 1)
and L2 (3%, (Asf(l))*TX ® A%1), respectively, by extending them to be 0 outside the support
of x%, X, and X5 x5, respectively.

We now come back to Step 2-1 and continue. We thus obtain a sequence of maps uf: (n) =

(uin(n),ug’r’(m)) for k =0,1,2,... inductively on .
In the same way as [48, Section 5], we can show that it converges to uy = (uf ., u5 ) in L2,

norm as k goes to infinity.
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Together with source object (12.40), uy defines an element of M ,,(L12; (diag); ). This
element is by definition g((pd, o1, 5, 31,52), (1, tz)). The proof that it is injective and its image
is an open neighborhood of § is the same as [48, Section 7].

Let us elaborate on the latter proof now. Below we discuss the case when the source ob-
ject is unstable. (So it is slightly more involved than the case of Proposition 12.55.) We
consider the situation at the beginning of Section 12.4, depicted in Figure 12.26. We write
the element of M ,,(L12; (diag); E) described there as x*. Denote the four interior marked
points of x* by w;;, i = 1,2, j = 1,2, where w;; is on 5. Note that 0 on the disk is
an interior marked point of first kind. This element x™ comes with one boundary marked
point 1 (the symbol (diag) shows existence of one boundary marked point). We forget the
four interior marked points of second kind and one interior marked point of first kind to ob-
tain x € Mg g o(L12; (diag); E).

We add 4 codimension two transversals ./\/},j C X; which intersect with the image of u?’o
transversally at w; j. We also add 1 codimension two transversal N C X; x X5 which intersect
with (u?’o,ug’o) transversally at 0. We will prove that the set of the image of ¥ satisfy-
ing the transversal constraint contains a neighborhood of x in M67070 (L12; (diag); E). Suppose
that y, is a sequence of elements M, o(L12; (diag); E') converging to x. By the definition of
topology and Lemma 12.17, there exists y;” such that i*(y;}) = y, and lims, .oy, = x.
Here i* is the forgetful map of the marked points. In particular, the source curves of y;"
converge to the source curve of x*. Let w;'; be the four interior marked points of second
kind of y;7 and 2" be the interior marked points of first kind of y;}. Then, the source curve
of y;© is a pair (27, (1; 21, wi 5 wts)), (B8, (1525, wh 4, ;wh5))) together with an isomorphism
of the disk part of X7 to the disk part of X%, which sends 1 and z{" to 1 and 27, respectively.
(We denote the boundary marked point by 1.) Therefore, (X7, (1; 27, wjy,;wyy)) converges to
(2, (1;0,w; 1, w;2)) in the moduli space of marked stable bordered curves. Here ¥ is a disk with
one sphere bubble on it. We change the representative and assume that 27 is 0.

So we obtain a gluing parameter v} and the parameter of the position of the node 37 uniquely
such that (X7, (1;0;w],;wiy)) is conformal to (31(37,t7), (1,0,w1,1,w12)). We obtain 3
and 33 in a similar way. We remark that lim,, .t} = 0.

We can identify ¥ 2 3;(3%,t7) and 3;(37, 0) outside the neck region'*! using the local triv-
ialization of the universal family (outside the node). Via this identification, the map u]" which
is a part of y;7 converges to u; which is a part of x* outside the neck region in the compact
C™ topology as n goes to infinity. On the neck region, we can use the exponential decay esti-
mate such as [48, Proposition 7.1]. Therefore, we can take p™ = (p"’d, P17, pg’s) such that the
difference of two elements y;} and ¥ (p", 37,35, ¢}, t5) goes to zero.

Hence we can interpolate u? which is a part of y;, and u?’l which is a map part of 4(p", 37, 3%,
], t}) to obtain a one parameter family of maps u,;”*: X% — X; for s € [0, 1] such that it be-
comes u;’ and u?" at s = 0,1. (Note that the domain curves of them are isomorphic each other.)
We may also assume that the transversality constraints are satisfied.

For a sufficiently large n, this path s — u?’ﬁ can be arbitrary short. (The shortness is taken
in the sense of the weighted Sobolev norm we used in the gluing analysis.)

Now we run the Newton’s iteration in the one parameter family and modify u?’ﬁ so that it is
pseudo-holomorphic. Since u]" and u?” are both pseudo-holomorphic, Newton’s iteration does
not change them. Hence the path s — u?’s still joins them. We may still assume that the
transversality constraint are satisfied by using implicit function theorem.

By index calculation, the image of the map ¢ has the same dimension as the moduli space
for each fixed domain. Therefore, we can lift our path to the domain of ¢ for sufficiently large n.
This is the proof of openness of the image.

121 There exists a one neck for each i € {1,2}.
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We thus proved Proposition 12.55.
Then the proof of Proposition 12.56 is entirely the same as [48, Section 6].
The proof of Theorem 12.24 is now complete. |

Example 12.75. We consider the sequence p(n) = (p3,05), (31(n),32(n)) and a sequence
r(n) = ((t1(n),r2(n)), (31(n),32(n))) which converges to (0, 30,30) and to (0,0) as n goes to
infinity. The limit of ¢(p(n),r(n)) in our compactification M} 55(L12; (diag); E) is the ob-
ject & = 4((0,(0,0)),r(n)) and is independent of the choice of such sequences p(n), r(n).

On the other hand, the limit of the sequence ¥ (p(n),r(n)) in the stable map compactifica-
tion My 22(L12; (diag); E') depend on the choice of p(n), r(n) as follows.

We put d(n) = [31(n) — 32(n).

Case 1: If d(n)/|t1(n)| — 0, d(n)/|ta(n)| — 0. Then the source curve of the limit 4 (p(n),r(n))
in the stable map compactification is as in Figure 12.18.

Case 2: d(n)/|ti(n)| > ¢ > 0, |va(n)|/|t1(n)] — 0. Then the source curve of the limit
4(p(n),r(n)) in the stable map compactification is as in Figure 12.17.

Case 3: d(n)/|ta(n)] > ¢ > 0, |t1(n)|/|t2(n)|] — 0. Then the source curve of the limit
4(p(n),r(n)) in the stable map compactification is as in Figure 12.16.

Case 4: d(n)/|ta(n)] > ¢ > 0, ca > [t1(n)|/[ta(n)| > c1. Then the source curve of the limit
4 (p(n),r(n)) in the stable map compactification is as in Figure 12.19.

We can prove these facts by looking the proof of Lemma 12.33.

Thus the stable map compactification M 22(L12; (diag); E) is a kind of blow up of the
space M 5,(L12; (diag); ). Note that the fact that the blow up of a variety Z is smooth
does not imply the smoothness of Z in algebraic geometry. By the same reason, the fact
that My 22(L12; (diag); E) has Kuranishi structure, which was proved in previous literatures,
does not imply M’1’272(L12; (diag); F') has Kuranishi structure. This is the reason why we provide
the detail of the proof of Theorem 12.24 in this subsection.

Remark 12.76. We discuss the example in Remark 12.57 and how the gluing analysis works
in that case. Moreover, we will compare it to the gluing analysis in the case of stable map
compactification.

In the situation of Remark 12.57, we consider the case when the configuration & which is
defined by (u‘f, ug, uf, ug) is isolated among the objects in this combinatorial type,'>? up to an
automorphism on the sphere bubbles which preserves the point DZ-2 N Sl-2 that is 0; € SiQ . Here

ul: D? - —X, ul: D? = X, ui: 8% = —X, uy: S? — Xo.

with the constraint uf(o) = u{(0), i = 1,2 and (uf(2),u(z)) € L1z for z € OD?. Since we
assume this configuration is isolated, uz‘-l is uniquely determined by these conditions.!?3 The
automorphisms on the sphere bubbles which preserves 0 consist a complex two-dimensional
group G;. So u; has a freedom u; — uj o g;, g; € G;. The space V has complex dimension 6,
parametrized ¢, g2 and 31, 32. Here 3; € DZ-2 which parametrizes the ‘root’ of the sphere
bubble. Note that we assumed that & is isolated among the object in this combinatorial type.
Therefore, such element is unique if 33 = 32. So there is one constraint and the dimension
is dim@G1+dimCG2+2— 1=5.

Together with two gluing parameters p1, p2 the domain of the map ¢ has 7 complex dimen-
sion.

12-2Here ‘this combinatorial type’ contains the condition 31 = 32, that is, the roots 31,32 € D? of the two sphere
bubbles coincide.

12:3This follows from the fact that the group of automorphisms of the source curve acts as an identity map on
the disk component. This is because the disk component has one boundary marked point and one interior node.
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The Kuranishi neighborhood of &) in M} ( 5(L12; (diag); ) is a submanifold of this real 14-
dimensional manifold cutting out by the constraint (12.42). The constraint is by codimension 2
submanifolds at 4 added marked points. Therefore, it decreases dimension by 8.

Thus Kuranishi neighborhood of & in M/ ( o(L12; (diag); E) is a real 6-dimensional manifold.
It can be depicted schematically in the Figure 12.30 (a).

Figure 12.30. Schematic pictures of Kuranishi neighborhoods.

D D D

31 = 32 f(l) !
31 7 32 2

Figure 12.31. Source curves of objects in Figure 12.30 (a).

SR G S

0 x Y 2
Figure 12.32. Source curves of objects in Figure 12.30 (b).

We next compare it with the Kuranishi neighborhood of the corresponding object in the
stable map compactification. The element 7 € My (L12; (diag); E) corresponding to & in the
stable map compactification,'?* has a source curve consisting of D? and one sphere bubble. The
map on the disk is (u{,ud) and the map on the sphere is (@], u3). Note that the element 7], is not
isolated in this combinatorial type. Namely, if we change (uf, u3) to (uf, us o g2) with g2 € G it
represents a different element in M o(L12; (diag); E'). Thus this stratum is a real 4-dimensional
manifold. (This family is depicted in Figure 12.30 (b) by a thick line containing n).) Together
with real 2-dimensional gluing parameter it gives 6-dimensional family of objects. The dimen-
sion coincides to the dimension of the Kuranishi neighborhood of & in M g ,(L12; (diag); ).

12-4Note that there is no prime in Mai,0,0(L12; (diag); E).
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DD
N

54

Figure 12.33. Source curves of objects mentioned in the footnote.

Those two moduli spaces are identical before compactification and so the dimension must co-
incide.!>® The Kuranishi neighborhood of 7 in Mjig0(L12; E) can be depicted schematically
as in Figure 12.30 (b).!2® The points = and 2 in Figure 12.30 (b) are objects whose domain are
depicted in Figure 12.32.

One can observe that Figure 12.30 (b) is a kind of blow up of Figure 12.30 (a) at the stratum
containing &.

Remark 12.77. Note that we did not care about the compatibility of the Kuranishi structure
with the forgetful map of the boundary marked points in this section. We actually use such
a compatibility to prove that the operations we obtain from our moduli spaces is unital. We can
prove the compatibility with the forgetful map in the same way as, for example, [28, Sections 3
and 5]. Note that we only need to consider the forgetful map at the diagonal component to
study unitality. Let @ be as in Theorem 12.24. We remove all the diagonal components from it
except possibly ag. We denote it by @’. We use Theorem 12.24 to obtain a Kuranishi structure
on M'(Li9;d’; E). Now for each element of M’(L12;d; E) we use the obstruction space used
in the construction of M’(L19;d’; E). We then perform the gluing analysis in the same way to
obtain a Kuranishi structure on M’(L19; @; E). This Kuranishi structure is obviously compatible
with the forgetful map.

We omit the detail since there is nothing new in this construction compared to those which
have already appeared in the literature.

13 Homotopy equivalence and homotopy between
filtered A, functors

In Section 2.1 (see Definition 2.25), we defined the notion of two filtered A, functors being
homotopy equivalent and built homotopy theory of filtered A, categories based on this notion.
This is the way taken in [27]. The way taken in [34] (in the case of filtered Ay, algebras) is
slightly different. We describe the method of [34] in the filtered A, category case and discuss
its relation to the method of Section 2.1.

There are certain issues to state it correctly because the category of categories is rather a 2-
category than a 1-category and so claiming two morphisms of the category of categories to be
‘the same’ is a nontrivial issue. A certain part of the discussion of this section is related to this
point.

We say a filtered A functor .7 : €1 — 62 is linear if Fj,: By61[1] — ¢2[1] is 0 for k # 1.

Definition 13.1 (compare [34, Definition 4.2.1]). Let € be a non-unital curved filtered A
category. A model of € x [0, 1] consists of (€, Incl, Evalyp, Eval;) with the following properties:

12:5%When we work out the gluing process starting from 79, we proceed as follows. We take two marked points,
say 1, oo, on the sphere bubble and take N1, N codimension 2 submanifold of X; x X2 which intersects
with v® := (@], u3) transversally at u°(1) and u°(c0). We thus obtain 79. Note that the neighborhood of 7 has 4
extra (real) parameter corresponding to the group G of automorphisms of S? preserving 0. After gluing we cutout
by using the constraint defined by N1, Ns. Which decrease the dimension by 4.

12.6This is an oversimplified picture. In fact, there are other kinds of strata such as those depicted in Figure 12.33.
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(1) €is a curved non-unital filtered A, category..

(2) Incl: € — €, Evaly: € — ¥, Eval;: € — % are linear filtered A, functors, such that
Inclyp: OB(E) — OB(C), (Evaly)op: OB(C) — OB(F), (Evaly)gn: OB(C) — OB(%)
are bijections.

(3) Evalp o Incl = Eval; o Incl = the identity functor: € — €.

(4) For ¢, c € 6,p, the map Incly(c,c’): €(c, ) — €(Inclyy(c), Inclop(c')) is a chain homotopy
equivalence of the chain complexes, where m; is the boundary operators. (Her«i Incl etc.
denotes the R-reduction.) For ¢, € €y, and j = 0,1, the map (Evalj)l(c, d): €le,d) —

% ((Evalj)on(c), (Evalj)on(¢’)) is a chain homotopy equivalence of the chain complexes,
where m; is the boundary operators.

(5) For ¢, € €, the Ag module homomorphism

(Evalg)i(c, ) @ (Evaly)1(c, )
¢(c,d) — E((Evaly)op(c), (Evaly)on(c)) @ € ((Evala)on(c), (Evaly)on (<))

is split surjective.

In the case when % is strict (resp. unital, G-gapped), the model of € x [0, 1] is said strict (resp.
unital, G-gapped) if €, Incl, Evaly, Eval; are all strict (resp. unital, G-gapped).

Sometimes, we say € is a model of € x [0, 1] (and do not specify Eval; and Incl) by an abuse
of notation.

By (2) and (3), we can identify OB(%) and OB(€). So we identify these two sets from now
on.

Proposition 13.2. For any curved non-unital filtered A, category €, a model of € x [0,1]
exists. If € is strict (resp. unital, G-gapped), then we take the model so that it is strict (resp.
unital, G-gapped).

The proof is the same as the proof of [34, Lemma 4.2.13] (if R contains Q) [34, Lemma 4.2.25]
(in general). Those are the cases of a filtered A, algebra but the proof of the category case is
the same.

Proposition 13.3. Let €; (j = 1,2) be non-unital curved filtered A categories and F : €, —
©> a filtered Ass functor. Let €; be a model of €; x [0,1] for j = 1,2. Then there exists
a filtered As functor §: €1 — €y such that Eval; o § = % oEval; for j =0,1. If €; and & are
strict (resp. unital, G-gapped), we may choose § to be strict (resp. unital, G-gapped).

The proof is the same as the proof of [34, Theorem 4.2.34] and so is omitted. Note that in
Proposition 13.3 the case €1 = %2> = € and .% is the identity functor is included. In that case
Proposition 13.3 implies the following.

Corollary 13.4. Let €; be a model of € x [0,1] for j = 1,2. Then there exists a filtered A
functor §: €& — & such that Eval; o § = Eval; for j = 0,1. If € is strict (resp. unital,
G-gapped), we may choose § to be strict (resp. unital, G-gapped).

Definition 13.5. Let 4 be a non-unital curved filtered A category for j = 1,2 and .#,9: ¢
— @ filtered A functors. Let €5 be a model of % x [0, 1].

We say % is homotopic to 4 and write % ~ ¥ if there exists a filtered A, functor J: 61 —
¢y such that Evaly o 7 = %, Eval; o 5 = ¥. We call 5 the homotopy functor.

We can define a strict (resp. unital, G-gapped) version in an obvious way.
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Remark 13.6. If % is homotopic to ¢, then %, = %,,. This is a consequence of Defini-
tion 13.1(2)(3).

Lemma 13.7.

(1) The notion ‘homotopic’ is independent of the choice of the model of €2 x [0, 1].
(2) ‘homotopic’ is an equivalence relation.

3) If F=F' then Fobd~F 04, GoF ~GoF.
The strict (resp. unital, G-gapped) version of these statements also hold.

Proof. (1) follows from Corollary 13.4 (see [34, Lemma 4.2.36]). (2) can be proved in the same
way as [34, Proposition 4.2.37]. The proof of (3) is the same as [34, Lemma 4.2.43]. [ |

Definition 13.8. Let .%: ¥1 — %5 be a filtered A, functor between non-unital curved fil-
tered Ay categories. We say that Z is a strong homotopy equivalence if there exists a filtered Ao,
functor ¥: %5 — %) such that F 0 ¥: €, — % and 4 o ¥ : 61 — %1 are homotopic to the
identity functor.

We call ¢4 the strong homotopy inverse to .%. We say two non-unital curved filtered A
categories are strongly homotopy equivalent to each other if there exists a strong homotopy
equivalence between them.

We can define a strict (resp. unital, G-gapped) version in an obvious way.

Remark 13.9. If #: 4 — % is a strong homotopy equivalence, then it induces a bijec-
tion OB(€1) — OB(%2). This is a consequence of Definition 13.6.

This is a rather restrictive requirement. To define an appropriate notion of equivalence
between (A ) categories, it is not a correct idea to require that the set of objects are equal.
This point is related to the basic concept of category, where an equality should be replaced by
an equivalence. This is a point where the notion of a homotopy equivalence which we introduced
in Definition 2.27 is more natural from the point of view of category theory than the notion of
a strong homotopy equivalence we defined above.

We will further discuss the relation between these two notions later in this section.

Lemma 13.10. Let % : € — %5 be a strong homotopy equivalence.
(1) Let 9,9 € — 61 be filtered A functors. Then 9 is homotopic to 4" if and only if Fo¥
is homotopic to F o ¥4'.

(2) Let9,9": € — € be filtered Aoy functors. Then 4 is homotopic to 9’ if and only if 4o F
is homotopic to ¢' o F.

(3) Composition of strong homotopy equivalences is a strong homotopy equivalence.
The strict (resp. unital, G-gapped) version of these statements also hold.

The proof is easy and is omitted.
Now a strong homotopy equivalence version of Theorem 2.28 is the following. We assume
that the ground ring R is a field.

Theorem 13.11. Let 61, %2 be G-gapped filtered Ao categories and F: €1 — G2 a G-gapped
filtered Ao functor such that

(1) For any c,d € OB(€1), the map F1: €1(c1,c) — Co Fop(c1), Fob(c))) induces an
isomorphism on my homology.

(2) The map Fon: OB(61) = OB(62) is a bijection.
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Then F is a strong homotopy equivalence. The strong homotopy inverse can be taken to be
G-gapped. If €1, G2, F are strict (resp. unital), then we may take the strong homotopy inverse
to be strict (resp. unital).

The proof is the same as the proof of [34, Theorem 4.2.45].
We next discuss a relation between strong homotopy equivalence and homotopy equivalence.

Lemma 13.12. Suppose € is a model of € x [0,1] and assume that € is G-gapped. Then Incl
1 a strong homotopy inverse of Evaly. It is a strong homotopy inverse of Eval; also.

Proof. By Theorem 13.11, Incl is strong homotopy equivalence. The lemma then follows from
Eval; o Incl = identity and Lemma 13.10. |

Proposition 13.13. In the situation of Definition 13.5 we assume that €1, G2, F and 4 are
strict and G-gapped. We also assume that €5 is unital. Then the following holds. If F is

homotopic to 4G in the sense of Definition 13.5, then F is homotopy equivalent to 4 in the sense
of Definition 2.25.

Proof. We first prove the following analogue of Lemma 13.12.

Lemma 13.14. Suppose € is a model of € x [0,1] and assume that € is strict unital and
G-gapped. Then Incl is a homotopy inverse of Evaly. It is a homotopy inverse of Evaly also.

Proof. Using Theorem 2.28 in place of Theorem 13.11, the proof is the same as the proof of
Lemma 13.12. |

We also remark that Lemma 13.10 still holds when we replace strong homotopy equivalence
by homotopy equivalence.

Now we prove Proposition 13.13. We assume that .%# is homotopic to ¢ in the sense of Defi-
nition 13.5 and let 7 : €1 — €5 be the homotopy. Since Evaly o 5 = .%, Lemma 13.14 implies
that Incl o % is homotopy equivalent to 7. In the same way, we can show that Inclo ¥ to 7.
Therefore, Incl o % is homotopy equivalent to Incl o ¢4. Since Incl is a homotopy equivalence,
the analogue of Lemma 13.10 we mentioned above implies .# is homotopy equivalent to 4. W

We remark that the converse to Lemma 13.14 is false. Namely, there is a pair of strict, unital
and G-gapped filtered A, functors . %, ¢4 such that they are homotopy equivalent, .#., = Y,
but % is not homotopic to 4. A counterexample is the following.

Example 13.15. Let C be an associative ring with unit. We regard it as a differential graded
algebra with trivial boundary operator and grading. We then regard it as a (filtered) A
category ¢ (with trivial filtration) as in Definition 2.8, Remark 2.9. Let fi, fo: C' — C be ring
homomorphisms. We regard them as (filtered) Ay, functors ¥ — ¢. We remark that f; is
homotopic to fy in the sense of Definition 13.8 if and only if f; = fo. On the other hand, f; is
homotopy equivalent to fs in the sense of Definition 2.25 if and only if there exists an invertible
element g € C (that is, an element such that there exists ¢! € C with g- g ' =g~ !.¢g = 1)
such that fi(z) = g~!fa(2)g. Thus they are different notion in this case.

Corollary 13.16. Let %; be a G-gapped filtered Ao, category for i = 1,2. We assume that
they are strict and 65 is unital. Let % : €1 — %5 be a filtered Ao functor, which is strict and
G-gapped. Assume Fon: OB(61) = OB(62) is a bijection. Then the next two conditions are
equivalent:

(1) F is a strong homotopy equivalence in the sense of Definition 13.8.

(2) Z is a homotopy equivalence in the sense of Definition 2.27.
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Proof. This is immediate from Theorems 2.28 and 13.11. [ |

Remark 13.17. Let #,9: 41 — %> be two strict filtered A, functors between strict fil-
tered Ao categories. We assume % is homotopy equivalent to &. It means that there exists

natural transformations 7: % — ¥4, §: 9 — % of degree 0 and pre-natural transformations
U: 7 —7,V: 9 — 4 such that

mg(S,T) =7ID+ U, mg(T,S) =71ID+6V. (13.1)

Let us elaborate on these equalities. For c1,co € O%B(%)), the functors .# and ¢4 induce homo-
morphisms

(F1)x: H(C1(c1,c2)) = H(C2(Fob(c1), Zob(c2)),
(%)« H(1(c1,c2)) = H(C2(Gon(c1), Yob(c2)).- (13.2)

Here H in the right and left-hand sides are mj-homologies. We show that the two maps in (13.2)
coincide as follows. We observe that 7 and S induce

T(ci) € H(62(Fon(ci); Gon(ci)),  S(ci) € H(Ga(Yon(ci), Ton(ci)))-
We define

@ H(G2(Fob(c1), Fob(c2)) = H(C2(Yob(c1), Yob(c2)),
Y H(2(Yob(c1), Yob(c2)) = H(62(Fob(c1), Fob(c2))

by ¢([z]) = [ma(ma(S(c1),2), T(c2))], ¥([y]) = [ma(ma(T(c1),y),S(c2))]. Using (13.1) and
definitions, we can show that p o) =1id, o ¢ = id, p o (F1)x = (% )«. In other words, two
maps (%1)« and (%), are identified by the isomorphism ¢, 1.

We also can show the proposition on a relation between associated strict functors and homo-
topies.

Proposition 13.18. Let %,9: 61 — 5 be two filtered G-gapped Ao functors between G-gapped
non-unital curved filtered A categories. We assume 63 is unital. Let F#°,9°: € — €5 be
associated strict functors between associated strict categories. If F is homotopic to 4, then F*°
18 homotopy equivalent to 4°.

Proof. Let € be a model of %3 x [0,1] and H: 41 — €3 a homotopy between F and G. It
induces a strict filtered A functor H*: €7 — €5. The linear filtered A, functors Incl, Evaly,
Eval; induce Incl®: €7 — €5, Evalj, Eval]: €5 — @, respectively. We obtain equalities

Evalj o Incl® = Evalj o Incl® = . 2, Evalj o H® = F* Eval] o H® = G° (13.3)

from the corresponding equalities between F, G and etc.

Moreover, by Theorem 2.28, the first line of (13.3) and Definition 13.1 (4) imply that Incl®,
Evalj and Eval] are homotopy equivalences and Incl® is a homotopy inverse to Evalj, i = 0, 1.
The second line of (13.3) then implies

Incl® o F* = Incl® o Evalj o H* =~ H® ~ Incl® o Eval] o H® ~ Incl® o G*.
Then using Proposition 2.18, we conclude F* ~ G°. |

Remark 13.19. In the situation of Proposition 13.18, we can not expect .%° is homotopic to ¥*.
In fact, the object %2 (¢, b) is (Fob(c), F«(b)) and the object 45 (¢, b) is (Gob(c),G«(b)). They
are in general different objects. Note that Fop(c) = Gop(c) but Fi(b) # Gi(b) in general. We
can show that F,.(b) is gauge equivalent to G.(b), in the sense of [34, Definition 4.3.1]. So they
are not so far away from being ‘equal’. However, because of well-known problem to distinguish
saying equal and equivalent this small difference should be taken seriously.
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We remark that a filtered Ao, bi-functor % : €1 x € — %3 is identified with a filtered A,
functor €1 — FUNC(6>,%€3) by Definition 5.14. We can use this fact to define the notion
that two filtered A, bi-functors to be homotopic each other, in an obvious way. The case of
a tri-functor etc. is similar.

14 Independence of the filtered A, functors of the choices

14.1 Statement

In this section, we prove that the correspondence functor and correspondence bi-functor are
independent of the choices involved in the construction. In this subsection, we state the main
result of this section.

Choice 14.1. Suppose we are in Situation 6.1. We choose a compatible almost complex struc-
ture Jx, on X;. We also choose Kuranishi structures and a system of their CF-perturbations on
the moduli spaces of the pseudo-holomorphic disks which appear in the definition of Fut(X;;L;).
(See Theorem 3.24 and Proposition 3.30.)

Choice 14.2. Suppose (X;,w;), L;, L2 etc. are as in Situation 6.1. We take —Jx, x Jx, as the
compatible almost complex structure of —X; x Xo.

(1) We choose Kuranishi structures and their CF-perturbations of the moduli spaces used
to define filtered Ay, category Fut(—X; x Xy,L12). This construction is the same as
Theorem 3.24 and Proposition 3.30, except we use the compactification M’(L12;@; E) etc.
which we discussed in Section 12 instead of M(Li2;a; E).

(2) Suppose we made Choices 14.1 and 14.2 (1). Finally, we take Kuranishi structures and
their CF-perturbations of the moduli spaces of pseudo-holomorphic quilts appearing in the
construction of the filtered Ay, tri-functor in Theorem 5.25. See Theorem 5.43 and Propo-
sition 5.48. These Kuranishi structures and their CF-perturbations should be compatible
with those we took already in Choice 14.1 and item (1).

Remark 14.3. In Choice 14.2, we take the compactification M’(L12;d; E) in Section 12 to
define a filtered A, category §ut(—X; x Xo,1L12). We can use the stable map compactifica-
tion M(L12; d@; E) also to define a filtered A, category whose objects are identified with elements
of L12. We will show in Section 14.4 that those two categories are homotopy equivalent.

Theorem 14.4. Suppose we take two different ways of Choice 14.1, which we denote by =Z; 1
and E; 2, respectively. We denote by Fub(X;;Li; Zi1), Fub(Xi;Li; Zi2), the filtered A categories
obtained by these two different choices, respectively.
(1) The filtered Ao category Sut(X;;Li;=i1) is strongly homotopy equivalent to Fut(X;;Li;
E@Q).
(2) There is a choice of the strong homotopy equivalence in item (1) which is canonical up to
homotopy.

When we take two different ways of Choice 14.2 (1), Z12.1 and Z12.2, then for two filtered A
categories Fub(—Xq, xXo,L12;E121), Sub(—X1, xXo,L12;E122) the same conclusion as above
(1), (2) holds.

The proof is given in Section 14.3.
We denote by

G Fub(X;Lis i) — Sue(Xy;Lis Ei0),
G2 Fub(—X1, x X2, L19;Z121) — Jub(—X1, x X2, L12; E122),

the strong homotopy equivalences given in Theorem 14.4.
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Situation 14.5. Suppose we are in the situation of Theorem 14.4. In particular, we made
a choice of Z; j for i = 1,2, j = 1,2 and of Z; for j = 1,2.

For each j = 1,2, we make Choice 14.2(2) so that this choice is compatible with =y j,
E2,j, Z12,; at the boundaries. We denote this choice by E?;“;t By Corollary 7.4, those choices

determine a filtered A, functor
Suést(—Xl, ><)(27 ]ng; ElQ,j) — FUNC(SuPst(Xl, Ll; El,j); gukst(Xg; ]Lg; E.Q}j)).

—quilt
(Here we put st to denote the associated strict category.) We denote by MWW=i2i this
filtered A, functor.

Theorem 14.6. In Situation 14.5, the next diagram commutes up to homotopy equivalence:
—quilt
SuEst(Xl; Ly; 5171) MWW:?Q,I P
XFub(—X1 x Xo;L12;Z12,1) Jubst(Xo;Lo; Z01)

glxgul €¢2l

—=quilt
Subst(X ;L1351 2) MWWI22 P
xFub(—X1 x Xo;L12;E12.2) Subst(Xy; Lo; Ea.2)-

The proof is in Section 14.4.

14.2 Higher pseudo-isotopy

We will prove Theorem 14.4 (1) by constructing pseudo-isotopy between two filtered A, algebras.
As we will see in the next subsection, pseudo-isotopy induces a homotopy equivalence. To prove
Theorem 14.4 (2), we need to show that the homotopy equivalence is independent of the choice
of pseudo-isotopy up to homotopy. To prove it, we use pseudo-isotopy of pseudo-isotopies.

As we explained in [35, Section 7.2.3] and Section 3.3, during the construction of various
structures, to obtain structure operations directly from geometry (moduli spaces), we need to
fix an arbitrary but finite Fy and define structure operations up to energy level Eg only. We then
take homotopy inductive limit as Fy — co. To work out homotopy inductive limit argument, we
need one extra parameter. Namely, to obtain a pseudo-isotopy of pseudo-isotopies we need to
define a pseudo-isotopy of pseudo-isotopies up to energy level Ey and a pseudo-isotopy between
two pseudo-isotopies of pseudo-isotopies, one up to energy level Ey and the other up to energy
level F7. In other words, we need pseudo-isotopy of pseudo-isotopies of pseudo-isotopies. To
define such objects, it seems simpler to define a family of filtered A, structures parametrized
by a cornered manifold. Such a construction is worked out in detail in [43, Section 21], [46,
Chapter 22] and [2]. In this subsection, we provide its summary.

Let P be an n-dimensional manifold with corners. We consider only the case when P C R".
We consider L x x L, where L = (I~/, i L) is an immersed Lagrangian submanifold of a symplectic
manifold X, which has clean self intersection.

Let © is a principal O(1) bundle on L x x L and we put

CF(P x L;0;Ag) = Q(P x (L xx L);0) ® Ay,
CF(P x L;O;R) = Q(P x (L xx L);©).
(Compare (3.11).)

Definition 14.7 (|46, Definition 21.27]). A multilinear map F': Bi(CF(P x L;©;R)[1]) —
CF(P x L;©;R)[1] is said to be pointwise in P direction if the following holds. For each
I, Jy,....,Jx C{1,...,d} and t € P, there exists a continuous map

Fig. .5 Be(CF(L;;R)[1]) = CF(L; ©;R)[1]



202 K. Fukaya

such that

F(dty, Nha,... dty, ANy = Y dtr Adty, A+ Ndtg NFfg o (RS, bE),
1

where |}, means the restriction to {t} x (IZJ X X Ii) Moreover, F? .7y, depends smoothly
on t with respect to the operator topology. Here h! is the restriction of h to {t} x (L X x L)
and tr =ty i, if I = {ig,.. Z\II} with i1 < - <ijp).

Here the continuity of F}. Jr.....J, mentioned above is one in C® topology.

Definition 14.8. A P-parametrized family of G-gapped filtered Ao structures on CF(P X
L;©;Ap) is {miﬁ} for € Gand kK =0,1,2,..., that satisfies the following:

k—ko+1

> D> (rmp gy mp, gy (s higkg—1)s - he) = 0,(14.1)

k1+ko=k+1 B1+B82=03 i=1

where * = deg’ hy + -+ - +deg’ hi_1.

We put ml = > sec Tﬁmiﬁ. (14.1) the implies Ao relation for mf.

Remark 14.9. We may choose mQPﬁO such that mQPﬁO (h1 Ahg) = (—1)*hy Ahg holds if hy or hg are
supported on the diagonal component. Here A is the wedge product and * = deg hy(deg ho +1).
See Remark 3.44.

Definition 14.10. A partial P-parametrized family of G-gapped filtered A algebra structures
on CF(P x L;0;\g) of energy cut level E and of minimal energy ey is {mkp’ﬂ} that satisfies
the same properties as above except the following points:

(a) mllzﬁ is defined only for § € G,k =0,1,2,... with 8+ keg < E.

(b) We require the A, relation (14.1) only for 3, k with 8 + keg < E.

(c) mp s =0if0< g <ep.

We can restrict a P-parametrized family of G-gapped filtered A, algebra structures to the
normalized boundary of P and corners of P in an obvious way.

Example 14.11. The [0, 1]-parametrized family of G-gapped filtered A, algebra structures of
energy cut level E is nothing but a pseudo-isotopy modulo T¥ of G-gapped filtered A, algebra
as in Definition 3.36.

We next define the notion of collared structure. We define the case P = [0, 1]", only. See [43,
46] for the general case.
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Definition 14.12. Let {m,f: B} be a P-parametrized family of G-gapped partial A,.-structure
of energy cut level Fy and minimal energy eg. We say it is 7-collared if the following holds
for (t1,...,tn) € [0,1]™.

We consider the case t1 <ty < --- <t, 1 <ty,, only. The general case is similar.

Let t; € [0,7’], tjt1 € [1 -, 1] and tj41,...,t; € (1,1 —7). Let (317--~73i+n—j) = (tl,...,ti,
tit1s.-- tn) and (sy,...,85_ ;) = (tit1,...,t;). A differential form of P in a neighborhood is
written as Y frrdsy A ds’,, where ds; are wedge products of ds;’s and ds), are wedge products
of ds’s.

By definition, mi 3 is written on this neighborhood as the form

mpg(ha, .o h) = dsp Adsy Amp (b ),
NG

where h; are smooth differential forms P x L twisted by © which does not have dt; components.
We now require:

(1) w5 (k... hi) = 0 unless [ = @
(2) If I =2, mZ";,I 5(h1,..., hy) is independent of s € [0,7]" x [1 —7,1]"~

We say {mkp ,8} is collared if it is 7-collared for some 7 > 0.
The main lemma we will use to prove Theorems 14.4 and 14.6 is Proposition 14.14 below.

Situation 14.13. Let P be a manifold with corner and E; > Ey > 0, ¢g > 0. We assume that
we are given the following objects:

(1) A P x [0, 1]-parametrized collared partial Ay structure {mPX[O ]}

and of minimal energy eg on CF (P x L;0;A).

(2) A collared partial A, structure {m {1}} on CF(P x {1} x L;0; AO) of energy cut
level F; is given. We require that it commdes with the restriction of {my ﬁ[ } to P x {1}
as the partial A, structures of energy cut level Ejy.

(3) Assume OP = []0;P is the decomposition of the normalized boundary of P into the
connected components. Then for each i, we are given a collared filtered A, structure
(ZPX o, 1]} of energy cut level Fi. We require that it coincides with the restriction of

structure {mPX [0.1] } to 0;P x [0, 1] as the partial A, structures of energy cut level Ej.

of energy cut level Ey

(4) We assume that the restriction of the structure {m, ﬂ{ }} in item (2) coincides with the
9 Px[0,1]y . . :
structure {m } in item (3) on ;P x {1}.

(5) Suppose that the images of 0; P and 0; P intersect each other in P at the component 0;; P
of the codimension 2 corner of P. (Note that the case i = j is included. In this case,
0;; P is the ‘self intersection’ of 9; P.) We then assume that the restriction of {ma PxI0, 1]}
to 9;;P x [0,1] coincides with the restriction of {m 5 05 P[0, 1]}.

See Figure 14.1.

Proposition 14.14. In Situation 14.13, there exists a collared partial P-parametrized family
of G-gapped filtered A algebra structures on CF(P x L;0;Ag) of energy cut level Ey and of

minimal energy ey, which we denote by {mixk[% 1]} It has the following properties:

(1) If we regard {mJr k[%’l]} as a partial structure of energy cut level Ey, then it coincides

with {mk x[0 1]}
Px0,1]

(2) If we restrict {m+ Y } to P x {1}, then it coincides with the structure {m {1 }} in
Situation 14.13 (2).
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Px{1}
energy cut level F Mk,6

P % [0,1]
\ w0 Px101]

k.8

energy cut level Ey

P

Figure 14.1. P x [0, 1]-parametrized family.

(3) If we restrict {miﬁ%’l]} to 0; P x [0,1], then it coincides with the structure {mzfgx[o’l]}

in Situation 14.13 (3).

In the case when P is a one point, this is nothing but Lemma 3.42. The proposition in this
generality is proved in [43], [46, Proposition 22.13]. See also [28, Section 14].141

14.3 Well definedness of a filtered A, category
up to strong homotopy equivalence

Proof of Theorem 14.4 (1). We prove the case of (X1, w;,L1). The other cases are the same.
By the trick we used in Section 3.4, it suffices to consider the case when L; consists of a single
immersed Lagrangian submanifold Li. Let Ji; (j = 1,2) be the almost complex structure
on X chosen as a part of Choice Z1 ;. We take one parameter family of compatible almost
complex structures J; ¢ parametrized by s € [0,1] such that J; ¢ = J; for s € [0, 7] and J; s = Jo
for s € [1 — 7,1]. We use the notations of Section 3.3. The moduli space My,1(L1; FE) is as
in (3.20). We write Mg1((L1,J); E) to specify the almost complex structure J we use.

Hereafter, in this subsection we omit the suffix 1 and write L, X, J;, E; etc. in place of Ly,
Xl, Jl,j; El,j etc.

Definition 14.15. We define
My (L E;0,1]) = | Maga((L, J); B) x {s}.

s€[0,1]s
The evaluation map
ev = (evo,...,evgy): My (L; E;[0,1]g) — LA (14.2)
is defined by Definition 3.22. The other evaluation map
eviol, s Mpey1(L; E5[0,1]5) — [0,1]5 (14.3)
is defined by sending My, 1((L, Js); E) x {s} to s.142

Proposition 14.16. We can define a topology on My1(L; E;[0,1]s), the stable map topology,
which is Hausdorff and compact. There exists a system of Kuranishi structures with a boundary
and corners on My.1(L; E;[0,1]s) for various k and E with the following properties:

141The singular homology version (of the case P = [0,1]) is [35, Theorem 7.2.212]. Actually singular homology
version is harder to state and prove.
14-2YWe use the notation [0,1]s here to distinguish it from the interval which we use for different parameter.
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(1) The evaluation maps (14.2) and (14.3) extend to strongly smooth maps. The map (evo,

eV[OJ]S) is weakly submersive.'*3

(2) The normalized boundary of My41(L; E;[0,1]s) is a disjoint union of the following two
types of spaces:

(I) The fiber product
Mk1+1(L; Ey; [07 1]8)(evi,eV[0,1]S) X(evo,eV[Oyl]S) Mk2+1 (L5 Ey; [0? 1]5)7

over L x [0,1]s. Here k1 + ko =k, i = 1,..., ko, E1 + E2 = E. The fiber product
carries a Kuranishi structure because of the weak submersivity of (evo,ev[o,l]). See
[40, Definition 4.9], [46, Chapter 26].

(IT) The inverse image evy, 1](6[ 1]s) € My, 11(L; E; [0, 1]5).

(3) For sufficiently small T, the following holds. The restriction of the Kuranishi structure to

evy, 1]([O 7]) coincides with the direct product of the trivial Kuranishi structure on [0, 7]

and the Kuranishi structure of Miy.1((L, Jl) E), which is a part of the data Z1. The

restriction of the Kuranishi structure to evy ([L = 7,1]) coincides with the direct product

of the trivial Kuranishi structure on [1 — T, 1]} and the Kuranishi structure of My11((L,
J2); E) which is a part of the data Es.

(4) The orientation bundles are compatible with the description of the boundary in item (2).

The proof is a one parameter version of the proof of Theorem 3.24. Note that the fact that our
Kuranishi structure (and the moduli space) is of product type near the boundary of Type (II),
which is stated as item (3), is a consequence of our choice of family of almost complex structures.

Let G(L;E;) be the discrete submonoid defined in Definition 3.19. Note that it depends on
the almost complex structure and so on =;. However, we may choose a discrete submonoid G(L)
with the following properties:

(Mo.1) The submonoid G(L) contains both G(L;E;) and G(L; Zg).
(Mo.2) If My41(L; E;[0,1]) is nonempty then E € G(L).

We put G(L) = {E1,Es,...,E,,...}, where Ey < Ey < ---. Let E; € G(L). Proposition 3.30
assigns a CF-perturbation of My1((L, J;); E) with E < E; (j = 1,2). These CF-perturbations
and the Kuranishi structures on which they are defined are parts of the data =;. We denote this
CF-perturbation by 6(_], i)

Proposition 14.17. There exists a system of CF-perturbations @([0, 1]s; E;) on outer collarings
of thickenings of Myy1(L; E;[0,1]s) with E < E; with the following properties:

(1) The CF-perturbation @([O, 1]s; E) is transversal to 0.

(2) The map (evo,evio),) is strongly submersive with respect to @([0, 1] E).

(3) The restriction of /6\([0, 1]s; E) to the boundary in Proposition 14.16 (2), (I) coincides with
the fiber product CE-perturbation (see [43, Definition 10.13]), which is well-defined by
item (2).

(4) For sufficiently small T, the following holds. The restriction o ([0 1]s; E) to e [0 ] ([0,7])
coincides with the pullback of &(Z1; E). The restriction ofG([ 1]s; F) to eV[O 1. (1—71))
coincides with the pullback of S(Eg; E).

1-3GQince [0,1]s has boundary, we need to define weakly submersivity a bit carefully. See [43, Section 25], [46,
Chapter 26].
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Proof. We define the CF-perturbation on the neighborhood of the boundary component in
Proposition 14.16 (2), (IT) by item (4). Then we can extend it using the (relative version) of the
existence of CF-perturbation. (See [43, 46, Chapter 17].) |

Remark 14.18. During the proof of Proposition 14.17, we construct Kuranishi structures on
which our CF-perturbations are defined at the same time. See [43, 46] for this point.

Now for f = E € G(L) with E < E;, we define

mpd*e s CF(0,1], x Li©;R)™ — CF(0,1], x L; ©;R)

mkEZE7[O l]s(hl, oo hy) = (evo, evio,1], )! ((evl, ev(o,1], ) (hl)/\

S A (evis evio ) () 8((0, 153 Ey))- (14.4)

Here the integration by parts is taken on the space My41(L; E; [0, 1]5) using the CF-perturba-
tion 6([0 1]; E;). See [46, Section 2.2.4] and [72, Section 4.1] for the sign.

Lemma 14.19. The operations {mkE“[O s, B < B } define a collared partial [0, 1]s-parametrized
family of G(L)-gapped filtered Ao algebm structures on CF([0,1]s x L;0;Ao) of energy cut
level E; and of minimal energy eg.'**

This is a consequence of Proposition 14.17. Point-wiseness in [0, 1] direction follows from [46,
Proposition 22.17]. Moreover, the restrictions of the structure operations {mk (0.1]s. B < F; }
to {0} € [0,1]s (resp. {1} € [0, 1]5) coincide with the partial [0, 1|s-parametrized farmly of G(L)-
gapped filtered Ay algebra structures on CF(L;0;Ag) of energy cut level E;, which we used
during the construction of Fut(X;L;Z;) (resp. Fut(X;L;=Zs)).

We remark however that mkElE " jtself is not the structure operation of the pseudo-isotopy
between Fut(X;L;=;) and Fuk(X;L; =), which we look for. This is because this structure is
yet a partial structure where m; EO * is defined for £ < FE; only. We will combine the process
of taking homotopy limit with the construction of pseudo-isotopy as follows.

During the construction of the structure operations of Fut(X;L;Z;), we used a Kuranishi
structure on My 1((L, J;); E) x [0,1]; and its CF-perturbation such that the restriction of
this CF-perturbation to My1((L, J5); ) x {0} is &(Z;; E;) and that the restriction of this
CF-perturbation to My11((L, J;); E) x {1} is &(Ej; Eit1) (see Lemma 3.38). We denote this
CF-perturbation by &([0, 1)+, Z;; E;, Ei+1). Note that we can take this CF-perturbation so that
it is constant in ¢ direction for t € [0, u] U [1 — p, 1].

During the proof of Proposition 3.37, we used 6([0, )¢, Z5; B, Fiy1) in the same way as (14.4)
to define a collared partial [0, 1];-parametrized family of G(L)-gapped filtered A, algebra struc-
tures on C'F([0,1]; x L;0;Ag) of energy cut level F;1; and of minimal energy e (see (3.40)).
We denote the structure operation of this structure by {mE”El“’[O A, B < E;}.

We then construct a pseudo-isotopy of pseudo-isotopies using the next proposition.

Proposition 14.20. There exists a system of CF-perturbations, which we denote by @([O, 1] x
[0,1];; Ei, Eiv1), on outer collarings of thickenings of Myy1(L; E;[0,1]5) x [0,1]; for E < E;q;
with the following properties:

(1) The CF-perturbation @([O, 1]s x [0, 1]¢; Es, Eiv1) is transversal to 0.

14-4The minimal energy is always eg in this section. So we omit it from now on.
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(2) The map
(evo,evi1).,evo1],): Mus1(L; E;[0,1]5) x [0,1]; = (L xx L) x [0,1], x [0, 1];

is strongly submersive with respect to @([O, 1]s x [0,1]¢, Ej; B, Eigr).

(3) We consider the restriction of @([O, 1]s x [0,1]4; By, Eigr1) to the boundary component,
which is a product of [0,1]; and the boundary component of My.1(L; E;[0,1]5) in Propo-
sition 14.16 (2) (I). It then coincides with the fiber product CF-perturbation, which is well-
defined by item (2).

(4) For suﬁ‘iciently small 7, the following holds. The restriction of @([0 1]s x [0, 1]¢; E;, Eiy1)
to ev[O 0. ([0,7]) coincides with the pullback of 6([0 1]t, Z1; B, Ei1).  The restriction of
6([0 1s x [0,1]; Ei, Eiy1) to ev[0 1 ([1 — 7,1]) coincides with the pullback of 6([0 1]¢, Eo;
Ei, Eit1).

(5) For suﬁiciently small 7, the following holds. The restriction of &([0,1]s x [0, 1]¢; Fi, Eit1)
to ev[ } ([0,7]) coz’ncides with the pullback of &([0, 1]s; E;). The restriction of &([0, 1] x
[0,1)¢; Ei, Eir) to ev[0 1 (1 — 7,1]) coincides with the pullback of S(]0,1]s; Eit1).

&([0,1)¢, Z1.9; By, Eiy1)

|
I

/

Q)
5 @
- =
N &
S 6([0’1]6 X [071}t;Ei7Ei+1) E

&([0,1)¢,E1,1; Ei, Eis1)

—> 1
Figure 14.2. &([0,1], x [0, 1]s; E;, Eip1).

The proof of Proposition 14.20 is by induction on E. On each step of the induction, the
CF-perturbation on the boundary is determined by the statement we are proving. So we can

extend it. (See [43, 46, Chapter 17].)

We now recall the construction at the end of Section 3.3. We consider the restriction
to s =0. We use Z; to obtain a system of partial filtered A, structures {m‘lﬁ’l BB } and

pseudo-isotopies {m [01]¢.Z1.4, E<Es } among them. Then we used Lemma 3.42, which is nothing
but the case of P = [0,1] of Proposition 14.14. We then obtain a sequence of filtered A,

structures {m“l’ } on CF(L;0;A) such that it coincides with {m“l’Z’E<E } as partial struc-
tures with energy cut level E;, for each i. Moreover, there exists a pseudo isotopy {m [0 Bl]t’“l’ }

S ,4,E< 2, i+1,E<E; [0,1]5,21,i, E<E;
between {m =16, BBy '} and {m Lt 11 which coincides with {m Ja B¢ } as a pseudo-

isotopy with energy cut level E See Figure 14.3.

We can perform the same construction for s = 1 using =; and obtain operations {m
Z9,i+1,E<FE;+1 }

k?ﬁ
Now we apply Proposition 14.14 inductively and obtain the following.

[0,1]¢,22,i }

)
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[0,1]¢,E1,2,%
M8
. . E;i+1;00,1]s
Ei;[0,1]5 [0,1] % [0,1]¢ i +1519,
My B M8 kB
S
[0,1]¢,Z1,1,1
my s
—> 1

Figure 14.3. Pseudo-isotopy of pseudo-isotopies.

Lemma 14.21. There exists a sequence of P = [0,1]s x [0, 1]; parametrized family of filtered A
algebra {m[o s x[0,1]e.¢ } on CF([0,1]s x [0,1] x L; ©;R) with the following properties.

(1) It coincides with one obtained by the CF-perturbation /6\([0, 1]s x [0, 1]¢; By, Eit1) as partial
structures with energy cut level E;.

(2) Its restriction to s = 0 coincides with {mo 16,510 }

(3) Its restriction to s = 1 coincides with {mo 1]““2’ 1
(4) Its restriction to t = 1 coincides with {mk B0, B < E,'H} i Lemma 14.19 as partial
structures with energy cut level Fiy1.

(5) Its restriction to t = 0 coincides with {m Eil0.1]s, B < Ez} in Lemma 14.19 as partial
structures with energy cut level E;.

See Figure 14.4.

&([0.1)¢,E1.0 Fo. Br) &([0, 1], Ev.2; B, En) &((0,1]¢,E1.2; Ea, F3)
&([0, 105 Eo) | S(0,1)s % [0,1]s3 Bo, B1) | &((0, 115 x [0,1]u: By, Bo) | &([0,1]s x [0, 1)1 Bg, By) | = = = = = = = = )
&([0,1)4,E11: Eo, Er) &([0,1)4,E11; Ev, Es) &([0,1);,E11; Ea, Es)
&((0,1].; B1) &((0,1).; B») S([0.1)5: Ey)

Figure 14.4. Inductive limit construction of pseudo-isotopy.

1]4%[0,1]4,0

We restrict {m[o } to t = 0 and obtain the following.

Corollary 14.22. There exists a pseudo-isotopy of filtered A structures {mk 1]5} on CF([0,1]s
x L; ©;R) with the following properties:

(1) The structure {m[o 115} coincides with {mEO’[O Al B < Eo} in Lemma 14.19 as partial
structures of energy cut level Ey.

(2) The restriction of {m[o 115} to s =0 and s = 1 coincide with {mglE} and {meE}, respec-
tively.

Corollary 14.22 implies that {mglE} is pseudo-isotopic to {m%E} It particular they are
strongly homotopy equivalent. The proof of Theorem 14.4 (1) is complete. |
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Proof of Theorem 14.4 (2). The proof of Theorem 14.4 (2) is similar to the proof of (1) but
we need to iterate once more the process to take higher homotopy as the following.

During the construction of pseudo-isotopy in Corollary 14.22 we made various choices. Espe-
cially we made a choice of CF-perturbations &([0, 1]s x [0, 1];; F4, E;+1) in Proposition 14.20. We
will prove the homotopy equivalence we obtained in the proof of Theorem 14.4 (1) is independent
of such choices up to homotopy.

H)pose 6 [0,1]s x [0,1]¢;7; B4, Eit1), 7 = 1,2, are two choices. We denote by {m[o A= 1},
} the pseudo isotopies obtained by these two choices, respectively.

Lemma 14.23. There exists a system of CF-perturbations, which we denote by /6\([0, 1]s x
[0,1]; x [0, 1]4; Ey, Eiv1), on outer collarings of thickenings of My11(L1; E;[0,1]s) x [0, 1]¢x [0, 1],
for E < E;1 with the following properties.

(1) The CF-perturbation @([O, 1]s x [0,1]¢ x [0,1]y; E;i, Eit1) is transversal to 0.
(2) The map

(evo, eV[o,usaeV[o,1]taeV[0,1}u) :
My11(L1; E;[0,1]5) x [0,1] x [0,1],, = R x [0,1]s x [0,1]; x [0, 1],

is strongly submersive with respect to /6\([0, Js % [0,1]; x [0, 1]y; Ei, Eit1).

1

(3) We consider the restriction of @([O, 1]s x [0,1]; x [0,1]y; E;i, Eir1) to the boundary com-
ponents, which are products of [0,1]; x [0, 1], and the boundary components of the space
Mi1(Ly; E;[0,1]5) in Proposition 14.16 (2), (I). It then coincides with the fiber product
CF-perturbation, which is well-defined by item (2).

(4) For sufficiently small T, the following holds. The restriction of the CF-perturbation @([0, 1s
x[0,1]¢x[0,1]y; E;, Eit1) to eyj)ll]u([o, 7]) coincides with the pullback 0f6([0, 1]s %[0, 1]¢; 1;
E;,Ei11). The restriction of &([0,1]s x [0,1]¢ x [0, 1]y; Es,y Eit1) to ev[0 1. ([L = 7,1]) coin-
cides with the pullback of &(]0,1]s x [0, 1]¢,2; Ei, Eit1).

(5) For suﬂiciently small T, the following holds. The restriction of/é([O, 1] %[0, 1] x [0, 1]4; Ej,
Eit1) to ev[o 1, ([0,7]) coincides with the pullback of &(|0, 1]t7El;Ei7/-\Ei+1)- (In partic-
ular, this restriction z's constant in w direction.) The restriction of &([0,1]s x [0,1]; x
[0,1]y; Eiy Eir1) to ev[O 1. (1 — 7,1]) coincides with the pullback of S([0, 1]¢, Zg; Ei, Eit1).

(6) For sufficiently small T, the following holds. The restriction of /6\([0, 1]s x [0,1]¢ x [0, 1]y;
Ei,f)iﬂ) to ev[ 1, ([0,7]) coincides with the pullback of @([0, 1]s; E;).  The restriction
of &([0,1]s x [0, 1],5 x [0, 1]y; Ei, Ei1) to ev[O 1. ([1 —7,1]) coincides with the pullback of
S([0,1]s; Eiya)-

See Figure 14.5. The proof of Lemma 14.23 is the same as other similar results such as
Proposition 14.20.

Now we discuss in the same way as Lemma 14.21 and Corollary 14.22 using Proposition 14.14
and obtain:

Lemma 14.24. There ezists a P = [0,1]s x [0, 1], parametrized family of filtered A struc-
tures {m[o’l]sx[o’l]“} on CF([0,1]s x [0,1], x L; ©;R) with the following properties:

(1) The restriction of the structure {m[o A0, 1]“} tou =0 (resp. u = 1) coincides with the

pseudo homotopy of Corollary 14.22 obtained by using 6([0 1]s x [0,1)¢;1; By, Eiy1) (resp.
&([0, 15 x [0,1]4:2; E;, Eig)).

(2) The restriction of {mk s } to s =0 and s =1 coincide with the pullback of {mkE} and
{mk E} respectively. In particular, they are trivial in [0, 1], factor.
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&([0, 1)+, Zs; Ei, Eiv1)

/

&([0,1]5 x [0,1)4:2; By, Eiy1) (back) &((0,1),; Es)
(Top)
&([, i By) |
(right)|
(left) 6([0, 1}3 X [0, 1]t X [0, 1]u; E,j, EH—l)
u s
(front)
&([0, 15 % [0, 15 1 By, Bir)
(Bottom)
—>

é([oﬁ 16,213 Eiy Eiyr)

Figure 14.5. pseudo-isotopy of pseudo-isotopies of pseudo-isotopies.

In other words, we have the following commutative diagram:
(CF(L), {m%}) CF([0,1], x L) (CF(L), {m32%})

Evals:1T TEvalszl TEvalszl

(CF([Ov 1]8 X L)a Eval,—o (CF([Oa 1]8 X [07 1]u X L)v Eval,—1 (CF([Oa 1]8 X L)a

Evalu:() Evalu:1

- — - EE— i—
wfi 1) wf ) (mi2f57%))
Evals—g l lEvalszo lEvalS:()
(CF(L), {mEh,}) =0 CF([0,1]; x L) Bl (CF(L), {mEh,)).

All the arrows in the diagram are strong homotopy equivalences. By Lemma 14.24 (2), we find
that Eval,—; in the first horizontal line is homotopic to Eval,—¢ in the first horizontal line. The
same holds for the third horizontal line. The composition

Eval,—; o (Evale—g)™': (CF(L),{m{%}) = (CF(L), {m7%})

of maps in the first vertical line is the strong homotopy equivalence obtained from the choice
&([0,1]5 x [0, 1]¢; 1; B, Eiq1). In the same way, the third vertical line gives the strong homotopy
equivalence obtained from the choice &([0,1]s x [0, 1]¢;2; E;, Ei+1). Thus those two homotopy

equivalences are homotopic each other. The proof of Theorem 14.4 is complete. |
Remark 14.25. The above diagram is similar to [4, Figure 10.1], which is used for a similar
purpose.

14.4 Proof of Theorem 14.6

14.4.1 Pseudo-isotopy of tri-modules

Situation 14.26. Let R,,, m = 1,2,3, be a compact smooth manifold without boundary
and ©,, a principal O(1) bundles on it. Let R be a compact smooth manifold without boundary
and © a principal O(1) bundle on it.
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Let P be a manifold with corners and C(P x R,,; R) = C®(Q(P X Ryy,)) (resp. C(P x R;R) =
C>®(Q(P x R))) the set of smooth forms on P x R, (resp. R) twisted by O,, (resp. ©).

We define C(P x Rp,; Ag) (resp. C(P x R; Ag)) as a completion of the tensor product C(P x
R;R) ® Ag (resp. C(P x R;R) ® Ay).

Suppose that, for each m, we are given a P-parametrized family of G-gapped filtered A
structures on C'(P x R; Ap), which we denote by {mi’gn}. We put €2 = (C(Px R; Ay), {mi’gb}).

Definition 14.27. A P-parametrized family of G-gapped filtered Ao tri-module structures on
CF(P x R;0;Aq) over C(P x Rpi Ao, {m5'}), m = 1,2,3, is {nf , .} for B € G and
ki =0,1,2,..., that satisfies the following:

(1)
3
ket @) B (P x Ri)[1]) @ QP x R)[1] — Q(P x R)[1]

is a multilinear map of degree 1.
(2) The maps n£7k27k3;6 is pointwise in P direction if 8 # By or ki + ko + kg > 1.
(3) “(1)3,0,0;50(]1) = (—1)*dh. Here d is the de Rham differential and x is as in (3.33).
(4) The operations {ni,kz,ks;ﬂ} define a filtered Ao, tri-module over %,,(P) (m =1,2,3).

In the case when P = [0,1] we call CF(]0,1] x R;0;Aq) together with its P-parametrized
family of G-gapped filtered A, tri-module structures, a pseudo-isotopy of G-gapped filtered Ao
tri-modules over the pseudo-isotopies %[,? ’1}, m = 1,2, 3, of filtered A, categories.

14.4.2 Existence of a pseudo-isotopy of tri-modules

We go back to our geometric situation of Theorem 14.6. We consider the case when the sets L1,
Lo and L1 consist of single immersed Lagrangian submanifolds.

We put R1 L1 X X, Ll, RQ = L2 X X, LQ, R3 = L12 X X1 xXo L12 The pseudo ISOtOpy ‘5
are given by Corollary 14.22. In particular, we make Choices =1 ;, 22 j, Z12,; in Situation 14.5.
They give filtered Ay, structures of €59 and of €5=1. We also take

[0,1]

R = [~/1 X Xy EIQ X X, EQ. (145)

We make a choice of :(1“2“lt in Situation 14.5. It determines a filtered Ao, tri-module structure
on CF(R;0;A) over%s Yor 5=t for j = 1,2.

Proposition 14. 28 There exists a pseudo-isotopy of filtered A tri-module on C'F([0,1]
R;0;Ag) over Cg[ for m = 1,2,3. We may choose it so that the restriction to s = 0

coincides with the tri-module structure induced by Choices Hq llt forj=1,2.

X
1

)

Proof. The proof of this proposition is mostly the same as the proof of Lemma 14.21 in Sec-
tion 14.3. We first define the notion of a partial pseudo-isotopy of tri-module structures with
energy cut level E. We then can show the existence of a partial pseudo-isotopy of tri-module
structures with energy cut level FE for any F. Then we proceed in the same way to define the
notion of a partial pseudo-isotopy of pseudo-isotopies of tri-module structures and use it to work
out the homotopy inductive limit construction. The way to modify the proof of Lemma 14.21
is thus a routine, which we omit. |

Situation 14.29. Let L1, 12, Lo be as in Situation 6.1. We consider the (disjoint) union of all
the elements of Ly (resp. Li2, L) and denote them by L;, L1, Ly. We consider R as in (14.5).
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We remark that since we are in Situation 6.1 the fiber product i)g =L x X, Elg is an open
subset of Ly. We put Ry = I:l XX, I~412 X X, ig C R. We remark also Ry = ig X X, ig C Ry. We
remark that the tri-module structure we used in Theorem 6.3 satisfies the following properties.
If ho,h € C%(R, Q(R) ® ©), then ngg1.5,(1,1,ho;h) = (—1)48"2hy A h. This fact is used
during the proof of Proposition 6.12.

Lemma 14.30. We can take the pseudo-isotopy in Proposition 14.28 such that the following
holds in addition. If ha,h € C*°(]0,1] X Ro, 2(R) ® ©), then

0, (1 1 has ) = (—1)%% %2Ry A B

Using the fact that the moduli space defining n([)obl]l, 5, 0N [0,1] X Ry consists of constant maps,
and has the required transversality and submersivity properties without perturbation, the proof
of the lemma is similar to an argument during the proof of Proposition 6.12 and so is omitted.

14.4.3 Completion of the proof of Theorem 14.6

Now we are in the position to complete the proof of Theorem 14.6.

Suppose we are in Situation 14.29. We use the same trick as Section 3.4 to obtain a fil-
tered A, category from a filtered A., algebra ‘5,[7?’1], m = 1,2,3. Here %[,?’1] is obtained
in Proposition 14.28. We denote them by Fubst(X1;L;)0U, Fubst(—X; x Xo;L15)0Y and
Jubst(Xy;Lo) 1. The sets of their objects are the same as the sets of objects of Fubst(X1;1L;),
Subst(— X x Xo;LL;19) and Futst(Xo;Lo), respectively.

Hereafter, we omit Ly, L2, Ly from the notation for simplicity. The pseudo-isotopy of
tri-modules we produced in Proposition 14.28 induces a tri-module structure over the strict
categories Su?st(Xl)[O’”, Fubst(— X X XQ)[O’” and .FUNC(%’uEst(Xg)[O’”). It induces a strict
filtered A, bi-functor

Fuest(X1) O x Fubst(— X1 x X2)01 - FUNC((Fukst(X2) )P CcH). (14.6)
We denote by REP (SuEst(Xg)[O’”) the full subcategory of the filtered A, category
FUNC((Futst(X2) 1) c1)
whose object is homotopy equivalent to the image of the Yoneda-functor
Fubst(Xo) O — FUNC((Futst(X2) )P CH).

We define REP(Futst(X2)) in the same way.
Lemma 14.30 implies that the image of the functor (14.6) lies in REP (Suést(Xg)[O’l]). Thus
we obtain the next diagram, which commutes up to homotopy equivalence:

FJulst(X1;=1 ) 7 - _
XSuEﬁt(—Xl X X2; 512’2) Rgtp(gukﬁt(XQ’ ‘—‘272)) — S’UEEt(X% \—'2,2)

Eval.g=1T lEvalzzl TEvalS=1

Futst(X,) 0 7
e ol —2 REP(ES(X)O) ——  Futsi ()0

Evals:OJ/ TEV&I::O lEvalS:O

Fubst(X1;511) 7 = _
XSu?ﬁt(—Xl X XQ; 312,1) REP(SuEst(XQ, ‘—‘2,1)) — gUEEt(XQ, ~—42,1)-
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All arrows in the diagram are homotopy equivalences except the three horizontal arrows in the
left-hand side, which are written as %#. B deﬁnltlon the composition of the arrows of the
first line is the filtered A func‘cor_{]\lfllVVVV‘12 B The composition of the arrows of the third line
is the filtered A, functor MWW=12.1

The composition of two arrows in the first column is the functor ' x 2. The composition
of the two arrows in the third column is the functor ¢2. Thus Theorem 14.6 follows from the
commutativity of the diagram.

Note that we can prove the next theorem in the same way.

Theorem 14.31. The composition functor Comp in Theorem 8.5 is independent of the choices
up to homotopy equivalence.

We omit the proof.

14.5 Coincidence of A, structures defined by the two compactifications

Let Li2 be a clean collection of 7} (T X & Vi) @ m3(V2) relatively spin immersed Lagrangian
submanifolds of — X7 x X5s.

In Section 3, we used the stable map compactification M(L12;d@; F) of the moduli space
of pseudo-holomorphic disks to define a filtered A, category the set of whose objects is LLis.
We denote it by Fut(—X; x X5,L12). In Section 12, we introduced a different compactifica-
tion M'(L12;d; E). We use it also to define a filtered Ao, category the set of whose objects
is L12. We denote it by Fut'(—X; x Xo,LL12). In this subsection, we prove the following.

Proposition 14.32. Fut(—X; x Xo,L1s) is pseudo-isotopic to Fut'(—X; x Xo,L12).

Proof. By the same trick as Section 3.4, it suffices to consider the case when L1 consists of
a single immersed Lagrangian submanifold Lis and construct a pseudo-isotopy of filtered Ao,
algebras.

Lemma—Definition 14.33. We can define the forgetful map
fg: Mo(Lia; @ E) = My o(Li2; @; E),
which is continuous.

Proof. Let ((E, 7, th) U 'y) be an element of M(Li2;a; E,~). Here (E,Z, Zint) is a bordered
nodal marked curve of genus zero with one boundary component. (Z are boundary marked
points and z™™ are interior marked points.) The map u: (2,9%) — (—X; x Xa, L12) is pseudo-
holomorphic and the map v: 0¥\ 2 — L1 is a lift of the restriction of w.

We put (ug,u2) := u, where u; is a map to X; from ¥. We consider ((E, Z, Zint),ui) fori =1,2
and shrink unstable sphere components. Here an unstable sphere component of ((E, Z,Z int) , ul)
is an unstable sphere component of the source curve (E, zZ,Z int) on which wu; is constant. We
denote by ((EZ, Zi, _;mt) ul) the pair of a bordered marked curve and a map obtained by this
shrinking.

Let (EO Zi, _;mt) be the bordered marked curve obtained from (Ez, 7, _’mt) by shrinking all
the unstable sphere components.

We remark that (2(1), 21, zlmt) is canonically isomorphic to (22, 2o, Hmt) In fact, they both are

obtained by shrinking all the unstable sphere components of ( 2, Z ‘nt). Therefore, we obtain

a biholomorphic map .#: (X9, 21, Z™) — (29, 2, Z3™). We define

fg((2357 Zint)>u7’7) = (((Elyzlvglint)vul)v ((225525 —»mt) j ’Y))

Note that we regard the interior marked points Z™™ as interior marked points of first kind in the
sense of Definition 12.7.
The continuity of the map fg is easy to show from the definition. |
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We consider the case when ¢ = 0 to obtain a map fg: M(Lio;@; E) — M'(L12;a; E). We
start with a Kuranishi structure which we defined on M'(L12;d; E) and will pull it back to one
on M(Ljg;a; E). We describe the detail of this pullback construction now.

Let £ € M(L12;a@; E). We take £ = ((2,2,2),u,v) € My(L12;@ E) such that £ =
(%, 2),u,7] and (%, Z, Znt) s stable. We use it to define a notion that ((¥',2),u/,7/) is e-
close to £ in a similar way as Definition 12.40 as follows.

Definition 14.34. Let ((EQ,Z@),UO,VQ) be an object which has the same properties as an
element of M(L19;@; E) except we do not require " to be pseudo-holomorphic. We call such
an object a candidate of an element of the extended moduli space.

Definition 14.35. We say ((EO, z‘o),u(?,’y@) is e-close to (é, f) if there exists ™Y with the
following properties:

(1) (EQ?, ), ?ntp) is e-close to (E, Z, Zint) in the moduli space of marked stable disks.!*

(2) We define the core K3 and K2 in the same way as (12.12). Here a is an index of the
irreducible component of ¥. K lies in a sphere component and K, 3 lies in a disk compo-
nent. Then we obtain smooth embeddings I%: Kd - %9, 75 Ki — ¥, in the same
way as (12.25) and Definition 12.30. (We use analytic family of coordinates at the nodal
points of ¥ and also a trivialization of the universal family of marked stable disks on the
e neighborhood of (X, Z, ™) to define them. See [38, Section 18], [40, Section 3] etc.)

‘We now require

(a) The restriction of u to each K¢, is € close to u" o I% in C% norm.

(b) The restriction of u to each K is ¢ close to u® o 75 in C? norm.

We remark that these conditions are similar to Definition 12.40 (3), (4), respectively.

(3) For any connected component S of
=AUz (B \ U (52),

we require Diam u" (S) < e. (In other words, we require the diameters of the images by u?
of the neck regions are smaller than £.) We remark that these conditions are similar to
Definition 12.40 (6).

Lemma 14.36. Let & = ((%,2,7"),u,7) € My (L12;a@; E) such that £ =(22),u,7] and
(2,2, 210%) s stable. Then for each € there exists & with the following properties. If ((EO, Z@),
uo,fy@) is §-close to (é’,é), then ((EQ,EO),UO,VO) is e-close to (é, 5)

The proof of Lemma 14.36 and the next Lemma 14.37 are similar, for example, to the proof
of [33, Lemma 7.26]. So we omit it.

Let 1 = ((ZQ,Z@),UO,’y@) be a candidate of an element of M(Lq9;d; FE). We define
n = fg(n), which is a candidate of an element of M’(L12;a; E) in the sense of Definition 12.39
in the same way as Lemma-Definition 14.33.
Lemma 14.37. Let £ € M(L12;a@; E) and £ € My(L12;a@; E) as in Definition 14.35. We fiz

a stabilization data T (see Definition 12.26) for £ = fg(f) € M(Lig;a; E). Then for each

€ > 0 there exists § > 0 with the following properties. If n is d-close to (é, é’) in the sense of
Definition 14.35, then n = fg(7) is e-close to (§,..7) in the sense of Definition 12.41.

14-5We take and fix a metric of the moduli space of marked stable disks to define this e-closeness.
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Now we will describe the process to pullback Kuranishi structure on M’(L12;a; E) to one on
M(Lqo;a; E). Let &€ = fg( ) € M'(Li12;d; E). We take an obstruction bundle data 6% at £ in
the sense of Definition 12.35.

Let 77 be a candidate of an element of M(L19;d; ) which is e-close to (5, é) (Here we fix é.
Lemma 14.36 shows that the Kuranishi chart we obtain below is independent of this choice in
a neighborhood of the origin.)

We put 77 = ((EQ,EO),UQ?,VQ?) and

n=fg(n) = (((Z?,i?),u?), ((Eg,ig),ug),jo,yo),

By Definition 12.40, we have a finite-dimensional linear subspace (&, 0.%;n) of

@CO (3087; (u7,u3) "T(=X1 x Xo) @A) & €D €D CF° (25703 () T(Xi) @ A%).

1=1,2 ¥

We observe that there exists a map J ~© DIt EQ? which is either bi-holomorphic or a constant
map, on each irreducible component. We can pull back the subspace £(§, 0%;n) by Jl ) J2 and
obtain a finite-dimensional linear subspace of

P 5 (57; (u) T(=X1 x Xa) @ AO1).

Here the index a runs in the set of irreducible components of X% and %Y is the irreducible
component corresponding to a. We denote this subset by £(§, 0%;1n). (Note that this subspace
depends only on &, 77 but is independent of the lift €. This is because £ (&, OAB;n) is zero on the
part where we shrink ¥ to define fg.)

While we defined a Kuranishi structure on M’(L19;d; E) we made choices of a finite set
{& |1 eI} € M/(Li2;a; E) (12.29) and a closed set M(&) € M'(Li2;d; E) satisfying (12.30).
We defined a subset I(€) in (12.31). We use them to define a Kuranishi chart at € € M(L1g; @; E)
in the same way as Definition 12.43 as follows.

Definition 14.38. We fix é and take a sufficiently small positive number ¢ and define U (é ; 5)
to be the isomorphism classes of 7] = ((E@, ﬁ),uo, 7@) with the following properties:

(1) 77 is a candidate of an element of extended moduli space M(Li9;d; E).
(2) nis e close to (é, é)
(3) Iu” € Bicre) E(& OB 7).

Let F be the set of all automorphisms of § It acts on U (5 ; ) and the quotient space is an
orbifold V(ﬁ, )

We can define 8(5) (an orbibundle on V(é; E)), its section 8¢5 and a map ¢g¢ sgl(O) —
M(Lq2;d; E) which is a homeomorphism onto an open neighborhood of {. We can show
that (V(g; 5),8(5),35,1#5) is a Kuranishi chart at §~ of M(L12;d@; E) in the same way as the
proof of Proposition 12.44. We thus defined a Kuranishi structure on M(Li9;a; E). We call it
the induced Kuranishi structure.

Lemma 14.39. For a given system of CF-perturbations on M'(Li9;d; E), which induces a fil-
tered Ao algebra structure m) on CF(L12, o), we can define a system of CF-perturbations on
the induced Kuranishi structures of M(Li2;@; E), so that the filtered Ao algebra structure mj
induced by it on CF (L2, Ao) is exactly the same as mj,.
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Proof. There exists a group homomorphism I'; = I'c and an equivariant map U (é ; 5) —
U(&;€). Moreover, there exists & (f) — &(&) which can be identified with an equivariant bundle
map which covers U(f; E) — U(&;e). Thus the given CF-perturbation on M’(L12;d@; E) can be
lifted to a CF-perturbation on the induced Kuranishi structure. Since evaluation maps are com-
patible with U(§~ ; E) — U(&;¢€), and this map is an isomorphism outside a set of codimension 2,
the operations m) obtained by the CF-perturbation is the same as the operations m) obtained

by the pull-backed CF-perturbation. The lemma follows. |

Now we have two systems of Kuranishi structures and its CF-perturbations. One (the induced
Kuranishi structures and its induced CF-perturbations) gives m) = mj. The other gives m. In
other words, my, is obtained from the Kuranishi structures and the CF-perturbations, which we
described in Section 3. We can find a system of Kuranishi structures of M(Lya;a; E) x [0, 1]
and their CF-perturbations which interpolates the two systems of Kuranishi structures and CF-
perturbations, in the same way as Propositions 14.16 and 14.17. We use it in the same way
as Lemma 14.19 to obtain the required pseudo-isotopy. (We need to use a pseudo-isotopy of
pseudo-isotopies to take homotopy inductive limit. This step again is the same as Section 14.2
and so is omitted.) The proof of Proposition 14.32 is complete. |

15 Independence of the filtered A, functors
of the Hamiltonian isotopy

15.1 Algebraic preliminary

In this section, we prove that if (L, b;) is Hamiltonian equivalent to (L}, b)) and (Li2,bi2) is
Hamiltonian equivalent to (L}, b},) then the functor Wiz, 4,,)(L1,b1) is homotopy equivalent
to the functor Wz, y 1(L],b7) in the category Fukst(X2) over A coefficient.

To state and prove this result, we start with an algebraic preliminary. Let € be a filtered A
category. We consider its associated strict category %~.

Definition 15.1. We define an A, category € as follows:
(1) OB(¢1) = OB(%?).
(2) For (c1,b1), (c2,b2) € OB(F) = OB(6*), we put

%A((Ch bl)? (027 bQ)) = Cgs((ch b1)7 (627 b2)) ®Ao A.

(3) The structure operations of € is obtained by extending the structure operations of ¢*
by A linearity.!%!

Definition 15.2. In the situation of Definition 15.1, let (c1,b1), (c2,b2) € OB (1) = OB(¢*).
We assume % is unital. We say (c1,b1) is homotopy equivalent to (cg,bs) over A and write
(c1,b1) ~a (c2,be) if they are homotopy equivalent as objects of €*. Suppose (c1,b1) ~a (c2,b2).
We define the Hofer distance dyos((c1,b1), (c2,b2)) between them as the infimum of the positive
numbers ¢ such that the following holds:

)
)
(a) ma(z21,212) = €c, + mi(y2).
(b) ma(x12,221) = €¢, +my(y1).
(c) my(z21) =0. my(z12) = 0.

15-1WWe remark that structure operations of €° are Ag linear.
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(2) We require T x9; € €°((c1,b1), (c2,b2)), T%2x19 € €*((c2,b2), (c1,b1)), where €1, 2 are
positive numbers with g1 + e < . We also require T¢y; € €°((¢1,b1), (¢1,b1)), TCy2 €
¢°((c2,b2), (c2, b2)).

It is easy to see that ~, is an equivalence relation. It is also easy to see that

duot((c1,01), (c2,b2)) + duot((c2, b2), (¢3,b3)) > duor((c1,b1), (c3,03)). (15.1)

We also remark that if (c1,b1) is homotopy equivalent to (cg,b2) as objects of €*, then

drot((c1,b1), (c2,b2)) = 0.

The next lemma is also easy to show.

Lemma 15.3. Let .F: %1 — % be a strict and unital homotopy equivalence of filtered Ao
categories. Then the following holds for ¢q1,co € OB(61):

(1) c1 ~a c2 if and only if F(c1) ~a F (c2).

(2) duot(c1, c2) = duot(F (1), F (c2)).

15.2 Homotopy equivalence over A in the geometric situation

Situation 15.4. Let (X,w) be a symplectic manifold which is compact or tame and V' a back-
ground datum. Suppose that a map ®: X — X is a Hamiltonian diffeomorphism generated by
a compactly supported time dependent Hamiltonian H: X x [0,1] — R. We take a finite set
L of V-relatively spin compact Lagrangian submanifolds of X. We assume that it is a clean
collection. We assume L € L and (L) € L.

Theorem 15.5. In Situation 15.4, let b € CF(L) be a bounding cochain.

(1) There exists a bounding cochain ®.(b) € CF(®(L)).

(2) (L,b) is equivalent to (P(L), P.(b)) over A. (Note that they are objects of Futst(X,L).)

(3) The Hofer distance between (L,b) and (®(L),®.(b)) is not greater than the Hofer dis-
tance [52] between ® and the identity map.

Theorem 15.5 (1) is a slightly stronger version of [34, Theorem G (G4)]. Theorem 15.5 (2) is
a slightly stronger version of [34, Theorem 6.1.25] (see also [39]). We explain how Theorem 15.5
follows from the argument of the above quoted papers [34, 39] in Section 15.2.

We also remark the following.

Proposition 15.6. If (L,b), (L', V') € OB(Futst(X;1L)) and L # L', then
duot((L, 1), (L', 1)) > 0.

Proof. Let L be a relatively spin (immersed) Lagrangian submanifold of (X,w). In [34,
Definition 6.5.42], we defined the notion of a bounding cochain modulo T* as an element b
of CF(L;Ay) such that

ka =0 modTF.

When (L1, by), (Lo, by) are pairs of Lagrangian submanifolds with bounding cochains modulo T,
we can define Floer homology over Ag/TF as follows (see [34, Definition 6.5.45]). Let CF(L1, Lo)
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be the left CF(L1; Ap) and right CF'(Lg; Ag) bi-module, which is nothing but the morphism space
from (L1,b1) to (Lg,be) in the curved A category of X. Let

Nk ko BkICF(Ll)[l] & CF(Ll, Lg) & BkZCF(LQ)[l] — CF(LQ; A())

be the structure operations. We put

o0

6b1,b2(x>: Z nk17k2(b’1€17x7b12€2)'

k1,k2=0

The Ay relations imply 0y, 3, © 0p, p, =0 mod TE. Therefore, b, b, becomes a boundary oper-
ator on CF(Ly, La) ®p, Ao/TF. Tts cohomology is by definition HF((Ll, b1), (L2, b2); AO/TE).
It is independent of the choices of perturbations and almost complex structures.

Lemma 15.7. Let (L1,b1), (La,b2) be objects of Futst(X,L) and (L,b) a pair of an element
of L and its bounding cochain modulo TY. Suppose dyot((L1,b1), (L2,b2)) = 0. Then

HF((L1,b1), (L, b); Ao/T") = HF ((Lz,ba), (L, b); Ao/T").

Proof. By perturbing a bit and using [34, Theorem 6.5.47] we may assume that L; and Lo
are transversal to L. Then, for an arbitrary small e, there exist 19 € CF(Li, L2;A) and
291 € CF (L2, L1;A) as in Definition 15.2. Multiplications with T¢x12 and with T¢x9; define
chain maps

Y12 CF(LI,L) QAo Ao/TE, — CF(LQ,L) XA Ao/TE/,
@1: CF(Ly, L) ®p, Ao/TF — CF(L1,L) ®a, Ao/T"

for any E' < E. Moreover, using Definition 15.2 (2) we can show that

p120@a: CF(L1,L) ®p, Ao/TE — CF(Ly,L) ®p, Ao/TE
p21 0 121 CF(La, L) ®p, Ao/TH — CF(Ly, L) ®p, Ao/TE

are chain homotopic to T2¢ times the identity map. We write
HF((Li, bi), (L, b); Ao/ TF) ZAO/T“”

where a; ; < E and a;; > a; 1. Then using @12, p21 and their properties explained above, we
have the following: if a;; > 4e, we have |a1j — ag ;| < 2e. (See [34, pp 391-392].) Since ¢ is
arbitrary small, we obtain the lemma by taking the limit ¢ — 0. |

Now we are in the position to prove Proposition 15.6. Suppose L # L’. We may assume that
there exists p € L\ L. Let d = d(p, L'). Let p be a positive number sufficiently small compared
to d. We can take a small Clifford type torus T}, such that T,N L' = @, T,N L # @ and T,
intersects transversally with L. We may also assume that T, admits a bounding cochain b,
modulo T*. Since T, N L' = &, HF((L',V'), (T,,b,); Ao/T?) = 0. On the other hand, using
the fact T, N L # & and all the non-constant holomorphic strips have positive energy we can
show HF ((L,b), (T),b,); Ao/T?) # 0. (This is a classical fact going back to Chekanov [14].) This
contradicts Lemma 15.7. |
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15.3 The main theorem

Situation 15.8. Let X3, Vi, L1, ®1, L1 be as in Situation 15.4. Let (X2, w2) be a compact sym-
plectic manifold and V5 a background datum. Let —X; x Xo, 77 (Vi®T X1) @75 (Va), Li2, L1, P12
be also as in Situation 15.4. Let Ly be a finite set of Va-relatively spin compact Lagrangian sub-
manifolds of Xo. We assume that it is a clean collection. We assume also that for any L} € L,
and L}, € Lo the geometric transformation of L} by L), is contained in L.

Theorem 15.9. In Situation 15.8, let by be a bounding cochain of L1 and bio a bounding cochain
Of L12. Then

(1) W(L19,10) (L1, b1) is equivalent t0 W, 110, (@12).b12) (P1(L1), (P1)4(b1)) over A.
(2) The Hofer distance

dtot W (L12,b19) (L1501); W15 L1, (B12)wb12) (P1(L1), (P1)4b1))

is not greater than the sum of the Hofer distance [52] between ®1 and the identity map and
the Hofer distance between ®19 and the identity map.

The proof is given in the next subsection.
The next result is a more functorial version of Theorem 15.9.

Situation 15.10. Let (X;,w;) be a compact symplectic manifold, V; a background datum of X,
and LL; a finite set of V; relatively spin immersed Lagrangian submanifolds, for i = 1,2. We
assume L; are clean collections. Let L1z be a 7} (V1 & T'X;) @ 75 (V2) relatively spin Lagrangian
submanifold of —X; x Xg and ®: — X7 x Xo — — X7 X Xy a Hamiltonian diffeomorphism. We
assume that for each L; € L; the geometric transformations L; X x, Li2, L1 xx, ®(L12) are
both elements of Ls. We assume that Lio is unobstructed and b is its bounding cochain. By
Theorem 15.5, we obtain a bounding cochain ®.(b12) of ®(Li2).

Theorem 15.11. In Situation 15.10, we consider two filtered Ay, functors
W(Lm,bm) : 3uEst(X1; Ll) — C‘{u?ﬁt(XQ; ]LQ),
W(CI)(L12),<I>*(I;12)) : SuEﬁt(Xl; ]L1) — Su?ﬁf(Xg; ]LQ).
They induce the following filtered Ao functors of A linear categories in an obvious way:

W(Ang,blz)i Fubst(X1; L) — Fubst(Xo;Lo)A,
W(/zp(Lm)@*(bm)) : Suéﬁt()(l; Ll)A — Su?st(Xg; ]LQ)A.

A : ; A
(1) WLz 1) 8 homotopy equivalent to Wig 1 ) o (1))

(2) The Hofer distance between Wr, , b10) @nd Wa(L10),@.(b12)) 0 the filtered As category
FUNC (Fubst(X1;Ly), Fubst(Xo; o)) is not greater than the Hofer distance between ® and
the identity map.

The proof is given in the next subsection.
Remark 15.12.

(1) The two immersed Lagrangian submanifolds L; X x, Lo and L; xx, ®(L12) may not be
isotopic each other in general. So Theorem 15.11 provides a lot of examples of a pair of
Lagrangian submanifolds which are not isotopic but are Floer theoretically equivalent.



220 K. Fukaya

(2) K. Ono [67] studied a Lagrangian intersection between L and L’ where the lifts of L and L’
to the prequantum bundle are Hamiltonian isotopic each other. Theorem 15.11 is related
to his study.

(3) We recall that two Lagrangian submanifolds L, L' € X are said to be Lagrangian cobordant
if there exists a Lagrangian submanifold L in C x X and a sufficiently large ball D(R) of C
centered at 0 such that

LA ((C\ D(R)) x X) = (((—00,0) x L) U ((0,00) x L')) N ((C\ D(R)) x X).

We can show L; X x, L12 is Lagrangian cobordant to L xx, ®(Lj2) in this sense.

(4) In the situation of item (3), assuming L, L', . are monotone and L” C X is also monotone
Biran—Cornea [9] proved HF (L, L") = HF (L', L"). Tt seems likely that we can generalize
it as follows. Suppose L, L’ have bounding cochains b, i/, respectively. Moreover, we
assume that there exists a bounding cochain b of L such that on ((C\ D(R)) x X) it
coincides with the pullbacks of b and ¥'. Then

HFE((L,b), (L",b"); A) 2 HF((L', ), (L",b"); A).

We say (L,b) is unobstructed-Lagrangian cobordant to (L/,’) in this situation. We
can then try to use the argument of the proof of Theorem 6.3 to prove the following.
Let (Ll,bl), (L12,b12) be ObjeCtS of SuEst(Xl;Ll), {?ufst(Xl;]Ll), Suéﬁt((Xl,wl),}Ll) X
Subst((X1 x X, =] (w1) + 75 (w2)), L12), respectively. Let ®: — X1 x Xo — =X x X»
be a Hamiltonian diffeomorphism and (®(L12), ®«(b12)) be also an object of Fubst((X; x
XQ,—ﬂ'T(wﬂ + 71’;((,02)),1[412). We put Ly = Ly X X, L1 and L/2 = I X x, (I)(le). We
obtain their bounding cochains by Theorem 6.3, which we denote by by, b,. Then (Lg, ba)
is unobstructed-Lagrangian cobordant to (L}, b}).

This argument can be an alternative proof of Theorem 15.11 (1).

(5) Cornea—Shelukhin [16] study the area of the image ﬂ(f}) of the Lagrangian cobordism L
by the projection m: C x X — C. Including the bounding cochain, their argument may
imply that if (L,b) is unobstructed-Lagrangian cobordant to (L',’) by a pair (L, b), then

the Hofer distance (in the sense of Definition 15.2) is not greater than the area of 7T(L).
This statement is related to Theorem 15.11 (2).

15.4 Proof of the main theorem

Theorem 15.9 is an immediate consequence of Theorem 15.5 and the following purely algebraic
result.

Proposition 15.13. Let 61, G2, €3 be strict and unital filtered A categories and % : €1 X €
— @3 a strict and unital filtered Ao bi-functor. Suppose c1,cy € OB(61), ca,cy € OB(62).

(1) If ¢y ~n €y, ca ~p ¢, then F(cy1,ca) ~p F (), ).
(2) diot(F (c1,¢2), F(c], ch)) < duot(ci, ) + drot(c2, ¢5).

Proof. By (15.1), it suffices to show the case ¢; = ¢| and the case co = ¢,. By symmetry,
it suffices to prove the case ca = ¢,. Let € > dpo(ci,¢)) and we take z1 € ‘Kf\(cl,c’l), Ty €
(e, e1), y1 € EMer, 1), ya € € (), ) such that

my(21,22) = €c; +mai(y1),  ma(w2,21) =ey +mi(y2),  mi(z1) =m(22) =0.

We also assume that Tz € Ci(c1,¢)), T%2x9 € Ci(c),c1) with 1 + 62 < ¢ and T°y; €
Cl(cl,cl), TsyQ S Cl(cll,cll).
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We put

1= F11(r1,eq,), r2 = F11(z2,ec,), D1 = F11(y1, ec,),
2 = F11(Y2, €c,)-

(Note that we extend .#; 1 by A linearity to define the right-hand sides.) Since .Z is strict, we
have

mo(r1,x2) = F11(ma(z1,22),€c,) = Fr1(€c; +mi(Y1), €c,)

= €7 (c1,00) T M(F11(Y1,€05)) = €7 (c) ) +M1(D1).

Similarly, we have my(r2,11) = €7 (¢ c2) +my(n2), and my(r1) = my(r2) = 0. Therefore, .Z (¢, c2)
~p F (). (1) follows. (2) follows from

Ty € C3(F (1, c2), F(c), ¢2)), T2y € C3(F (), e2), F(c1, 2)),
T%y1 € C3(F (c1, ), F (c1,¢2)), Ty € C3(F (¢, c2), F (¢}, c2)). L

Theorem 15.11 is an immediate consequence of Theorem 15.5 and the following purely alge-
braic result.

Lemma 15.14. Let 61, s, 63 be strict and unital filtered Ao, categories and % : €1 X €2 — €3
a strict and unital filtered Ao bi-functor. It induces a strict and unital filtered Ao func-
tor Fy: €2 — FUNC(61,63) by Lemma 5.14 (and its unital and strict analogue). Suppose
o, ¢y € OB(63).

(1) If ca ~n c, then the two (A linear) filtered Ao functors Fu(co)™, Fu(ch)N: €1 — €5 are
homotopy equivalent.

e 1nequality dgof(F«(c2), F«(cy)) < dpof(ca, € olds.
2) Th lity d Z, F(ch d %) hold

The proof is easy and so is omitted.

15.5 Proof of Theorem 15.5

In this subsection, we explain how Theorem 15.5 follows from (the proof of) [34, Theorem G (G4)
and Theorem 6.1.25] and [39]. Suppose we are in Situation 15.4.

We put ®(L) = L'. We take a compatible almost complex structure J and consider fil-
tered Ao, structures

mil QLxx D) 5 QL xx D) ®Ag,  mi: QL xx L) = QI xx L) ® Ao

L 7
Note that we can decompose mg’ , mg’ to a sum
JL _ E._JL JL E._ JL
my —E:T RUWOE my —E:T LUNOR

E E

J,L JL .
where LA and mpp are R linear.

Remark 15.15. The right-hand side is an infinite sum. However, for each Fy the set of £ < Ej

JL _JL . . . ..
such that m;’, m;’; is nonzero is a finite set. This is a consequence of Gromov compactness.

We denote CF(L) = Q(I: X x I:) ®Ag and CF(L') = Q(f/ X x I:') ® Ag. The next theorem
is the de Rham version of [34, Corollary 4.6.3].
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Theorem 15.16. There ezists a (curved) filtered As, homomorphism

F={h k=012, }:
(CF(L), {mPYk=0,1,2,...}) = (CP(L), {m}" k=0,1,2,...}),

fr: CF(L)®* — CF(L') such that fi(h) = (®71)"(h) mod A.

Proof. Let J' = (@_1)*J . The moduli space of J' holomorphic disks with the boundary
conditions given by L is canonically identified with the moduli space of J holomorphic disks
with the boundary condition given by L’. Therefore, the following diagram commutes:

J,L'

BrCF)(L') —— CF(L)

@] [@

J'L

B.CF(L) s CF(L).

Therefore, it suffices to construct a filtered Aso homomorphism g = {gx} from (CF (L), {mg’L )
o (CF(L), {mg L}) such that g; =id mod A,.
We take a one parameter family of compatible almost complex structures J = {J (p)} such
that
(1) JO =,
2) JO =1
For the proof of Theorem 15.16, we can take any such J. We will specify J later during the
proof of Proposition 15.22.
We use the ‘time ordered product’ moduli spaces My11(L; J; E;top(p)) introduced in [34,
Section 4.6.1], which have the properties spelled out in Proposition 15.17 below. We use the
following notation in Proposition 15.17.

The moduli space My 1(L; F) is defined in (3.20). To specify the almost complex structure
we use, we write My1(L; E; J). It comes with evaluation maps

ev = (evg,evy,...,evg): My (L E;J) — (f) X x ~)kﬂ,

which is strongly smooth and such that evg is weakly submersive. (See [40, 46] and [45, Part 7]
for the definition of strong smoothness and weak submersivity.)

Proposition 15.17. There exists a compact Hausdorff space My1(L; J; E;top(p)) equipped
with a Kuranishi structure with corners, which enjoys the following properties:

(1) There exists an evaluation map
ev = (evo,evy,...,evy): My (L; J; Estop(p)) — (L xx E)kﬂ

which is strongly smooth. Moreover, evy is weakly submersive.

(2) The normalized boundary of My1(L; J; E;top(p)) is the union of two types of the fiber
products:

(I) The fiber product
Mk‘1+1(L§ Ey; J)eVo Xev; Mk:g—l-l(L; J; Ea;top(p)), (15.2)

where k1 + ko =k, E1+ FEo=F andi=1,..., k.
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(II) The fiber product

H Mki-i-l (L7 j; Ei; top(p))(evo,...,evo) X(evl,...,evm) Mm—l-l(L; EO; J/)a (153)

i=1
where k1 +---+kpn=kand E1+---+ E,, + Ey = E.

(3) In the case when E =0 and k =0, M1(L; 7;0;top(p)) = L xx L, and evq is the identity
map.

(4) The set of E such that My.1(L; J; E;top(p)) # < is discrete.

A sketch of the proof. The construction of the moduli spaces M1 (L;7;E;top(p)) is worked
out in detail in [34, Definition 4.6.1].152 Tts element is an object ((, 2),u, 7, {pa, } ) as depicted in
Figure 15.1. Here (3, 2) is a bordered marked curve of genus zero with one boundary component
and k + 1 boundary marked points, and u: (3,0%) — (X, L) is a smooth map. The restriction
of u to 8%\ (ZU {boundary node}) is lifted to a map v: 9% \ (£U {boundary node}) — L. The
map «; — pq, assigns a number p,, € [0, 1] to each irreducible component ¥, of 3. We require
the next Condition 15.18 for p,,. We also require that the restriction of u to X, is J¥ai)-
holomorphic. At boundary marked points and boundary nodes, we require switching conditions
similar to those appeared in Section 3. (See Definition 3.17 (5).)

Figure 15.1. Time ordered product moduli space.

Condition 15.18. Let p € X be a boundary node and p € X,,N%q, Yo, # Ya;. We suppose L,
is contained in the connected component of ¥\ {p} which contains the zero-th marked point z.
Then we require pa; > pa,-

The definition of the topology of this moduli space and proof of its compactness and Haus-
dorflness are similar to those of Theorem 3.24. The construction of the Kuranishi structure is
similar to the proof of Theorem 3.24.

15-2 A ctually, we need a slight modification since our Lagrangian submanifolds are immersed. This modification
is the same as the argument of Section 3.
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We next describe the boundary. We observe that (15.2) corresponds to the case when one
of pa, becomes 0 and that (15.3) corresponds to the case when one of p,, becomes 1. Actually,
such X, is necessary the irreducible component containing 2o, the zero-th marked point. (This
is a consequence of Condition 15.18.)

The other possible boundary components of My 1(L; J; E;top(p)) cancel out each other as is
explained in [34, p. 246]. The key observation is the cancellation between two types of potential
boundaries. One is depicted in Figure 15.2 below and the other is depicted in Figure 15.3 below.
(Those two figures are [34, Figure 4.6.2] and [34, Figure 4.6.3], respectively.)

eV i — 00 ey

Figure 15.2. Cancellation in [34, Section 4.6] : 1.

. h
W 0 g

pa’ = Poi
Figure 15.3. Cancellation in [34, Section 4.6] : 2.

Item (3) of Proposition 15.17 is a consequence of the fact that left-hand side is the moduli
space of constant maps, which is transversal. Item (4) follows from Gromov compactness. N

For later use, we define pg: My41(L; J; Ea;top(p)) — [0, 1] as follows:

IOU((Zv 5)7 u,7, {pai}) = Pag> (15.4)

where X, is the irreducible component which contains the 0-th marked point.
Now using Proposition 15.17, we define g; r by the next formula

gre(hi, ... hi) = evol(evihl A= Nevihg; (M1 (L; T;5 E;top(p)); /6\5)) (15.5)

Here we take a system of CF-perturbations &, on My1(L; T; E;top(p))o-3 such that

(1) evy is strongly submersive with respect to this CF-perturbation.

15-3\More precisely, the outer collaring of its thickening.
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(2) Those CF-perturbations are compatible with the identification of the boundary as (15.2),
(15.3).

We use this system of CF-perturbations to define the integration along the fiber evg! in (15.5).
We now define

gk(hh ey hk) = ZTEgk,E(hla ey hk)
E

This is well-defined by Proposition 15.17 (4).

Stokes’ formula (see [40, Proposition 9.26] and [46]) and the composition formula (see [40,
Theorem 10.20] and [46]) imply that gj defines a filtered Ao, homomorphism. In fact, (15.2)
corresponds to

J,L
le,El (hl, . ’mkhEg(hH‘l’ .. ~7hi+k1)a .. ,hk)

—

and (15.3) corresponds to mi;’éo (g;ﬂ,E1 (hl),...,gk.m,Em (ﬁm)) Here hy = (hiy... hiy), hy =

(hk1+1, ey hk1+k2), etc.
The congruence g; = id mod Ay follows from Proposition 15.17(3). The proof of Theo-

rem 15.16 is complete. n

Remark 15.19. We omit the argument needed to take the homotopy inductive limit £ — oo,
since it is similar to the other cases. (This process is necessary since we work with only finitely
many moduli spaces consisting of moduli spaces of objects with energy < FEj, to construct
a system of Kuranishi structures and its CF-perturbations.)

Theorem 15.5 (1) follows from Theorem 15.16. We turn to the proof of Theorem 15.5 (2), (3).

We use Yoneda embedding for the proof. The objects (L,b) and (®(L), P.(b)) define fil-
tered Ao right modules Yon(L,b) and Yon(P(L), P.(b)) over Fubst(L), respectively. By Lem-
ma 15.3 and A, Yoneda lemma (see Theorem 2.44), it suffices to prove the following.

(2)" The equivalence Yon(L,b) ~p Yon(P(L),P.(b)) holds as objects of the functor cate-
gory FUNC(Fukst(IL)°P,CH).

(3)" The Hofer distance dyof(Yon(L,b), Pon(P(L), P.(b))) is not greater than the Hofer dis-
tance between ® and the identity map.

The proof of (2)', (3)" occupies the rest of this subsection. We put L' = ®(L) and M =
the disjoint union of elements of .. Note that M = (M , 4 M) is an immersed Lagrangian sub-
manifold of X. We put

R:=LxxM R :=L xxM. (15.6)
They are submanifolds of L x M, L' x M, respectively. We define
CF(L,M)=QR)®Ay, CFL,M)=QR)®A, CFM)=Q(M xxM)® A,.

We take a bounding cochain by; of M. Then together with the bounding cochain b of L and @, (b)
of L' we obtain a right (CF(M), {sz ) module structures

nk: CF(L,M)® ByCF(M) — CF(L, M),
nt': CF(L',M)® B,CF(M)— CF(L',M). (15.7)
They are nothing but Qon(L,b) and Yon(P(L), P.(b)). We set

CF(L,M)* = CF(L, M) ®,, A,  CF(L',M)* = CF(L', M) ®x, A.
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We first review the moduli spaces we use to define the filtered bi-module structure (15.7)
on CF(L,M) (resp. CF(L',M)) over CF(L)-CF(M) (resp. CF(L")-CF(M)). See [34, Sec-
tions 3.7.4 and 3.7.5] for detail. We consider the equation

ou ou
- 7 15.
87+J8t 0 (15.8)

for a map u: R x [0,1] — X with boundary conditions:

(a) u(r,0) € M.
(b) u(r,1) € L (resp. u(r,1) € L').

We consider 2y, 71 such that Zo = (20,1, - - -, 20,k ), Where 29; = (704,0) with 791 < -+ < 79 1, and
21 = (211, -, 21k ), Wwhere z1; = (114,0) with 711 > --- > 717k1.15'4 We also consider 7p: R X
{0}\Zo — M, v1: Rx{1}\# — L, lifts of the restriction of u. We assume an appropriate switch-
ing condition similar to those appeared in Section 3. (See Definition 3.17 (5).) We finally require

(¢) lim; 5 100(70(7),71(7)) € R (resp. lim; 400 (70(7),71(7)) € R').
(d) fo[o,l} uww=FE.

We consider such (Zp, 21; u; 70, 71) satisfying the above conditions and the moduli space of such
objects. We then take its quotient by the R action induced by the translation of the first factor
of the source R x [0, 1]. We denote this space by My, k. (L, M; E; J) (resp. My, (L', M; E; J)).

Remark 15.20. In equation (15.8) (and in other places of this subsection), we take R x [0, 1]
as a strip, while in Section 5 (and in other places of this paper) we took [0,1] x R. In this
subsection, we use R x [0, 1] for the sake of consistency with [34, Sections 3.7.4 and 3.7.5]. In
Section 5, we identified (¢,7) € [0,1] x R with ¢ + /=17 € C to define complex structure. (See
the proof of Lemma 5.35.) Here we identify (7,t) with 7 + /=1t € C. (Note that in Section 5
the equation corresponding to (15.8) is % = J%.)

In both cases, if we regard the first coordinate (¢ in case of Section 5 and 7 in case of this
subsection) as the z-axis and the second coordinate as the y-axis, then the above choice is
consistent with the standard conformal structure of the xy-plane.

We also remark that in Section 5 we construct right CF(L;) module and L, is assigned at the
right, that is, ¢ = 1. In this subsection, we construct right CF(M) module and M is assigned
at the bottom, that is, ¢ = 0. This is consistent with our choice of orientation and conformal
structure of the domain.

21,4 21,3 Y1
i A Sy
R u R
Yo 0,4
o
20,1 = (70,1,0) T

Figure 15.4. Elements of My, x, (L', M; E; J).

15-4Note that we use the counter clock-wise ordering to enumerate the marked points.
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Proposition 15.21. The space /\O/lkl,kO(L,M;E; J) (resp. ./\;lkhkO(L’,M;E; J)) has a compact-
ification My, ro (L, M; E; J) (resp. Mp, 1o (L', M; E; J)) which is compact and Hausdorff, with
respect to the stable map topology. They have Kuranishi structures with corners, and enjoy the

follo
(1)

wing properties:
There exist evaluation maps

ev=(ev,ev®@) = ((evi", ... evi)), (evi”, ... vl

My o (L, M Bi T) — (Loxx L) s (M xx )™

(resp.

ev=(ev,ev®@) = ((eviV,... evi)), (ev]”, ... eviD)):

My ko (L', M E; J) — (I % x E’)'“ x (M xx M)k‘)-)

These maps are evaluation maps at the marked points 7y, zZy and are underlying continuous
maps of strongly smooth maps.

There ezists also evaluation maps at infinity (ev_oo, €Vins): My, ko (L, M; E;J) - RX R,
(resp. (eV_oo,€Ving): My, ko (L', M; E; J) — R' x R'.) These maps are defined by the limit
in item (c) above and are underlying continuous maps of strongly smooth maps. The
map evyo 15 weakly submersive.

The normalized boundary of My, k. (L, M; E; J) (resp. My, 1o (L', M; E; J)) is the disjoint
union of the following three types of fiber products:

(I) The fiber product

Mk1,1+l (L7 E17 J)evo Xev(_l) MkLQ,ko (L7 M7 E27 ‘])7

where k11 + k1o = k1, E1 + Ey = E and i = 1,...,k1 2 (resp. the same except we
replace L by L"). (See Figure 15.5.)
(II) The fiber product

Mg +1(M5 Ers S )evy X ©0) My ko, (Ly M Ea; ),

where ko1 + ko2 = ko, E1 + E2 = E and i = 1,..., ko2 (resp. the same except we
replace L by L"). (See Figure 15.6.)
(IIT) The fiber product

Mkl,l,koJ (L7 M7 E17 J)ev+oo XeV,oo Mk‘l’Q,k)O72 (L7 M7 E27 J)v

where ko1 + koo = ko, k11 + k12 = ki1, E1+ Ey = E (resp. the same except we
replace L by L'). (See Figure 15.7.)

The evaluation maps are compatible with these identifications of the boundary with fiber
product.

There exists a principal O(1) bundle on Lx x L, Lxx L, L' xx L', R and R’ and the trivial-
ization of the orientation bundle of My, k,(L, M; E; J) tensored with the pullbacks of those
principal O(1) bundles. These trivializations are compatible with the above identification
of the boundary.

The set of E for which My, x,(L, M;E;J) (resp. Mp, io(L', M; E;J)) is nonempty is
discrete.
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21 idkyp1—1

20,1 20.i—1 20,i+ko,1 20,ko

21,k Z1,i4ky 1 Z14-1"""""7" 21,1 ZOV,Z. 20,i4-ko. 1 —1
L 4 @
Figure 15.5. Boundary of type I. Figure 15.6. Boundary of type II.
ki1 k12
R R R
—_— ——
k'O,l koyg

Figure 15.7. Boundary of type III.

The proof is now a routine. (See also [34, Sections 3.7.4 and 3.7.5], [47] and Section 3.2 of
this paper.) We now define

nﬁl’ko . B, CF(L)[1] ® CF(L, M) ® By, CF(M)[1] — CF(L, M),
nf o0 Br,CF(L)[1] ® CF(L', M) ® By, CF(M)[1] — CF(L', M),

by

1 1 0 0
nkl’ko(h() h,ﬁ’;h-h&’,...,h,go))

= ZTEeV (evi) h A (eviD) B Aevt oh
A (ev§°>)*h§> A (VD) B Mi, 1o (L, M3 B3 J); 6.). (15.9)

Here we take a system of CF-perturbations /ég on My, o (L, M; B J ) such that ev o is strongly
submersive with respect to &, and that the CF-perturbations &, are compatible with the fiber
product description of the boundaries in Proposition 15.21(3). We use the CF-perturbation
to define the integration along the fiber evis! in (15.9). (See [40, Definitions 7.78 and 9.13]
and [46].) The definition of nﬁm is similar. We can show that these maps define structures
of filtered A bi-module by using Stokes’ formula (see [40, Proposition 9.26] and [46]) and the
composition formula (see [40, Theorem 10.20] and [46]) together with Proposition 15.21 (3).
We now define the map (15.7) by

MY TL k) = Z né:,kJeri (beé% DRz bt - by b ).

£,mo,...,mg

Here and hereafter, for example, b Mﬂ:bM means by ® bys ® T ® bys. The Ay relation of nk ko
and the fact that b, bps are bounding cochains imply that nZ defines a (strict and unital) filtered
right A (CF {mbM ) module structure on CF (L, M).

We can deﬁne nk, in the same way.

We next describe the moduli spaces which we use to define a filtered right A, module
homomorphism CF(L, M)* — CF(L', M)*. We follow [34, Section 5.3.1] with modification
given in [39]. We will use a two parameter family of almost complex structures 7.7, which is
defined in Definition 15.23, to define the moduli space appearing in Proposition 15.22.
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Proposition 15.22. There exists a system of compact Hausdorff spaces

My ko (L, L'y M3 B3 J 5 top(p))

with the following properties. The spaces My, (L, L'; M; E; J J; top(p)) carry Kuranishi struc-
tures with corners.

(1) There exist evaluation maps

ev=(evW,ev®) = ((evi?, ... evi)), (ev]”, .. evi))):

My o (Ly L' M3 E; T T 5 t0p(p)) — (L xx L)™ x (M xx M)™.

These maps are underlying continuous maps of strongly smooth maps.

(2) There exist also evaluation maps at infinity

(eV_oo,€Vioo): My ko(L, L's M; E; 7T t0p(p)) = R x R

These maps are underlying continuous maps of strongly smooth maps. evieo is weakly
submersive. R and R' are defined in (15.6).

(3) The normalized boundary of My, 1, (L,L"; M; E; JJ;top(p)) is the disjoint union of the
following four types of fiber products:

(1)

(I1)

(I11)

The fiber product
Mk1,1+1 (L; Ev; J)evo X oy Mlﬂ,z,ko (L, L/; M; Ey; T J5top(p)), (15.10)

where k11 +kig =k, E1+Ea=FE andi=1,..., k12 (see Figure 15.8).
The fiber product

Mg 1 +1(M5 Ev; J )ev, X o0 Mgy ko 2 (L,L'; M; Eo; T J;top(p)),

where ko1 + ko2 =ko, E1+Ea=E andi=1,... koo (see Figure 15.9).
The fiber product

Mk0,17k1,1 (L7 M; Ev; J)8V+oo Xev_oo Mk1,2,/€0,2 (L, L/; M; Ey JT; tOp(p)), (15'11>

where ko1 + ko2 = ko, k1,1 + k12 = k1, E1 + E2 = E (see Figure 15.10).
The fiber product of

My 1 ko (L, L' M3 B3 T T 5 top(p)) (15.12)

and

y4
M, +1(L; T B2 j; top(p))
=1

J
Mk0,27k1,2 (L,7M;E2,0§ J)7 (15.13)

(ev0ev0) X ey evil))

where kl,l + Z§:1 m; = k‘l, kO,l -+ k072 = k’o, E1 + E?;é E2,j = F. We wuse
eVico: (15.12) = R’ and ev_n: (15.13) — R’ to take fiber product between (15.12)
and (15.13) (see Figure 15.11).

The evaluation maps are compatible with this identifications.
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(4) There exists a principal O(1) bundle on L xx L, L xx L, L' xx L', R and R and the
trivializations of the orientation bundle of My, k,(L,L"; M; E; J J;top(p)) tensored with
the pullbacks of those principal O(1) bundles. These trivializations are compatible with the
above identification of the boundary.

(5) The set of E for which My, x,(L,L'; M; E; J T ;top(p)) is nonempty is discrete.
The elements of the moduli spaces corresponding to the boundaries of types (I)(II)(ILI)(IV)

are depicted in the Figures 15.8-15.11 below. The explanation of the figures will be given during
the proof of Proposition 15.22.

Pa = 0
0(po) < 11
PO = Payg
L L O
(116, 1)
M M Q
Figure 15.8. Boundary of type I. Figure 15.9. Boundary of type II.

. On O
R Ou + JDU —0. R d—i +Jre (0—: - X(T)Xm) =0. R/

o o

Figure 15.10. Boundary of type III.

0 ()

ou du N o / Ou -1 _ _ /
R ot e (m X(T)XHt,) 0. R s4@)(F-xm)=0 R

Figure 15.11. Boundary of type IV.

Proof. We take one parameter family of Hamiltonian diffeomorphisms ®° such that ®° = id
and ®' = ®. When H: X x[0, 1] — R is the time dependent family of Hamiltonians generating ®,

we take ®° so that
— =Xp, 00", @' =id, (15.14)

where H,(x) = H(z,p) and Xy, is the Hamiltonian vector field associated to H.
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We replace H by cH and obtain one parameter family of Hamiltonian diffeomorphisms, which
we denote by ®7,.
We take a non-decreasing function x: R — [0, 1] such that
(1) x(7) = 0 for sufficiently small .
(2) x(7) =1 for sufficiently large 7.

Definition 15.23. We take a two parameter family of complex structures JJ = {J;;} with
the following properties:

(1) There exists A > 0 such that J.;, = J if 7 < —A.
(2) Jrp = (@) Tif 7> +A.

(3) We denote by ®7,, the one parameter family of Hamilton diffeomorphisms generated by
the time dependent Hamiltonian cH: X x [0,1] — R. Then J,; = (@;(T)H)*_lJ it 7> 0.

(4) Jro = J for any 7.
We take the one parameter family of almost complex structures J = {J (p)} which we used

to prove Proposition 15.17 as follows. We take and fix an order preserving diffeomorphism
6:(0,1) - R. We then put

-1

g — (q))l((e(p))H)* J. (15.15)
We consider maps
u: Rx[0,1] - X, (15.16)

which satisfy the following conditions.

Condition 15.24.

(1) u satisfies the equation

ou (6u )
— +Jre | = — X =0. 15.17
o7 I g — X7 X (15.17)
Here H is the time dependent Hamiltonian as in (15.14).

(2) u(r,0) € M.

(3) u(r,1) € L.
Remark 15.25. In [34, Section 5.3.1], we used pseudo-holomorphic curve equation (without
Hamiltonian term) with a moving boundary condition, (which becomes the condition u(r,1) €
®, (- (L) in our situation). (See [34, equations (5.3.18.1) and (5.3.18.2)].) Here we use the
equation (15.17) (which has a Hamiltonian term) and the boundary conditions are given by
fixed Lagrangian submanifolds M and L. The way taken here is the same as [39]. (See [39,
equations (3.3) and (3.4)].) The relation between these two formulations are explained in [39,

Section 4]. We use the current formulation since then we can obtain energy estimate (see
Lemma 15.29) easier.

Definition 15.26. We define /{)jlkhko (L,L'; M; E; JTJ;top(p)) as the set of objects
(R x [0, 1]; 20, 21); u; 7; P)

such that
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The map w is as in (15.16) and satisfying Conditions 15.24.

Zp (resp. Z1) is a ko (resp. k1) tuple of points, that is, 2o = (20,1, .., 20,k ), Where zp; =
(7’071',0) with 70,1 < -0 < T,k (resp. 71 = (21,17---721,k1)7 where 215 = (Tl,i,O) with
T, > > Tl,kl)-

The maps 70: (R x {0})\ Zo — M, v1: (R x {1})\ 2, — L are lifts of the restrictions of u.
Namely, u(7,1) = ir(71(7))), u(r,0) = ip(70(7)). We assume an appropriate switching
condition similar to those appeared in Section 3. (See Definition 3.17 (5).)

p=(p1,--.,pr, ), where p; are real numbers. We require
9(,01) S T1,i- (15.18)
We require
Jop / Wt lim [ H(Eu(r )t
Rx([0,1] Tt Jo)
0(p3) < 113 O(p2) <112 B(p1) <71
(11,3, 1) (11,2,1) (t1,1,1)
L o
ou ou
E + Jr (E — 'X(T)Xn') =0.
M —— .

(70,1,0)  (70.2,0)  (70.3,0) (70,4,0)

Figure 15.12. An element of My, (L, L'; M; E; JJ;top(p)).

We define evaluation maps

(resp.

EVii 'A(j/()lkhko(L?L,;M;E;jj; tOp(p)) — L X x x L

evo,: MkhkO(L,L';M;E;jJ; top(p)) — M X x XM),

as the evaluation maps at the marked points zg; (resp. 21,;) using the switching condition in the

same way as (3.13). Namely,

evii(R x [0,1]; 20, 21);u;v; p) = (lim 1 (7), lim (7)),

74714 T4
and
evoi (R x [0,1]; 20, 21);u;v; p) = (lim 4o(7), lim ~o(7)),
T170,i TI70,:
respectively.

We also define the evaluation maps at infinity

(resp.

eV_oo: My ko (L, L' M; E; T T top(p)) — R

Vioo: My ko(L, L's M; E; T T;t0p(p)) = R).
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Here we define ev o, by

eVioo((R X [0,1]; Z15u;v; 0) = lim (vo(7), @(71(7))). (15.19)

T—+00

Note that the limit £(t) = lim,_, o u(, t) satisfies dt = Xy, of. This is a consequence of (15.24)

and lim; 4o % = 0. Therefore, lim; 4o ®(u(7,0)) = lim; 4o u(7,1). Hence the right-hand
side of (15.19) is an element of R'.
Finally, we define

evi®: My, 1o (L, L's M; E; J T top(p)) — [0,1]

by ev{eti((R x [0, 1]; 2o, 21); u; 7; p) = pi- (Here deti stands for ‘time with delay’.)
Definition 15.27. /\;lkl,kO(L, L'; M; E; JJ;top(p)) is a union of fiber products of

ki
[T M, +1(L; T En s top(p)) (15.20)
j=1
and
My ko (L L' M5 Bo; T T 5 top(p)), (15.21)

where the union is taken over ki, {m]} {E1,;}, B> with 37, 1_1 mj = ki, Z 1B+ Ey=E.
The fiber product is taken over H 1 ((L X x L) x R). We use the map (15.20) — H ((

XXL) xR) which is ((evo, po), - (evo po)) and the map (15.21) — H ((L X X L) X ]R) which

is ((evi,evigh),. .., (evlykll,evlel;“})) to define the fiber product. (Note po is defined by (15.4).)

Figure 15.13 below depicts an element of Mkhko(La L'; M; E; JJ;top(p)). It is a map to X
from the domain which is a union of a strip R x [0, 1] and trees of disks attached at ¢t = 1. Tt is
pseudo-holomorphic with respect to the almost complex structure of X which depends on the
components of the domain. The almost complex structure we use is J#) on the disk components
depicted in Figure 15.13. Note that J() is defined in (15.15).

n
P2
pa _IN
P5 Ny

P3

S @)
P6 0(ps) < T1,2
0(ps) <13 Q

(T1,3,1) (T1,2,1) (11,1,1)
Ju ou
5 + J. (E ( )XHt> =0
M (70;0) (70;0) (70,3, 0) (TU:;, 0)

Figure 15.13. An element of My, 4, (L, L'; M; E; 77 top(p)).

We remark that all the fiber products of (15.20) and (15.21) have the same virtual dimension
that is independent of k7, {m;}, {E1 ;}, E2 but depends only on the total homology class of the
map, and ki, ko.
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We also remark that the union includes the case when m; =1 and FEj ; = 0 for all j. In this
case, the fiber product of (15.20) and (15.21) is nothing but My, », (L, L'; M; E; J J; top(p)).

Remark 15.28. We remark that the space ./\O/lkhko (L,L’;(}]{!/[;E;jj;top(p)) contains several
components with the same virtual dimension as the space My, ,(L, L'; M; E; 7 J;top(p)). So,
even in the case when all the elements are Fredholm regular, the subset Mkl ko (L, L's M E;
JJ;top(p)) may not be a dense subset of the moduli space Mk1 ko (L, L'; M E; T T top( ))

The moduli space My, x,(L,L"; M; E; JJ;top(p)) is the stable map compactification of
/\/lk1 ko(L, L'; M; E; J J;top(p)). The compactification is obtained by adding the following:

(Bub.1) We include the case when the source curve has a sphere bubble.

(Bub.2) We include the case when the source curve has a disk bubble at ¢t = 0. (The disk bubble
at t = 1 is already included when we take the fiber product in Definition 15.27.)

(Bub.3) We include the case when the source curve splits into several pieces in the 7-direction.
The cases when it splits into two pieces are depicted in Figures 15.10, 15.11.

The detail of this stable map compactification is written in [34, Section 5.3.1] and is now a rou-
tine. So we omit it here. (We remark that all the components corresponding to one of (Bub.1),
(Bub.2), (Bub.3) have codimension > 1.)

We now study the boundary of the moduli space My, (L, L"; M; E; T J; top(p)).

Case (I) in Proposition 15.22 (3) occurs at the point ((§;),&0) where one of the factors ¢;
of (15.20) lies in the boundary point of that factor. This corresponds to the case when some p,,
is 0, where &; = ((3, 2),u, 7, {pa, }). This boundary corresponds to Proposition 15.17 (2), (15.2).
Therefore, this case is described by the fiber product (15.10). See Figure 15.8.

Note that the boundary which corresponds to Proposition 15.17 (2), (15.3) does not appear
here. In fact, (15.18) implies §(p;) < 71 ;. Here p;, 71 ; are parts of the data of {,. Moreover, by
the definition of the fiber product appearing in Definition 15.27, we find po(&;) = p;. Therefore,
since 6 is a diffeomorphism pg(&;) = 1 occurs only in the limit which we discuss in Case (IV).

Case (II) in Proposition 15.22 (3) occurs when a disk bubble occurs at ¢t = 0, that is, (Bub.2).
See Figure 15.9.

We remark that the situations of the bubbles at ¢ = 0 and ¢ = 1 are different. This is because
the boundary conditions are different.

Case (III) in Proposition 15.22 (3) occurs when the domain splits into two pieces one of which
moves to the direction 7 — —oo.

Note that in this limit some of the trees of disk bubbles at t = 1 may be attached to the piece
which moves to the direction 7 — —oo. If such a tree of disk bubbles corresponds to &; (that is,
one of the factors of the fiber product (15.20) and the root of such piece is (7;,1), then 7 — —oc.
Therefore, po(&;) = 0. (In fact, po(&) < evdetl(g), where ¢ is an element of the factor (15.21).)

Therefore, by definition this case is described by the fiber product (15.11). See Figure 15.10.

Case (IV) in Proposition 15.22 (3) occurs when the domain splits into two pieces one of which
moves to the direction 7 — +o0.

Note that the piece which moves to the direction 7 — 400 consists of a map from a strip
R x [0, 1] plus a union of trees of disk bubbles. The map u: R x [0,1] — X, which is a part of
this map, satisfies the equation

0o -1 (8%0 ) B

together with the boundary condition us(7,0) € M and us(7,1) € L. We put v(7,t) =
D! (uno(7,t)). Then (15.22) is equivalent to g—i—i—J % = 0. The corresponding boundary condition
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for v is v(7,0) € M and v(7,1) € L’. This is the equation and the boundary condition which we
used in the definition of My, , (L', M; E; J).

The trees of disk bubbles at ¢ = 1 may be attached to the piece which moves to the direc-
tion 7 — 4-00. Such a tree of disk bubbles corresponds to &;, that is, one of the factors of the
fiber product (15.20). Since evdetl can take any value between 0 and 1, there is no constraint
on py for &;.

Therefore, by definition this case is described by the fiber product of (15.12) and (15.13).
See Figure 15.11.

We have thus checked that all the fiber products described by (I), (II), (III), (IV) in Propo-
sition 15.22 (3) appear as boundary components of My, x, (L, L’; M; E; 7 J;top(p)). To show
that all other potential boundary components cancel out each other, the most important point
to observe is the following. We_consider the case when a disk bubble occurs at ¢t = 1 for a limit
of a sequence of elements of Mg, (L, L'; M; E; JJ;top(p)). Let Ey be the energy of the disk
bubble. The set of elements of the compactification Mgk, (L, L'; M; E; J J; top(p)) correspond-
ing to such a disk bubble is described by the pair (§,t, p1), where

(DB.1) € € M0+1(L Ey; Jev).

(DB.2) r e ./\/l1 Jo(Ly L' My Eg; T J 5 top(p))-

(DB.3) (8(p1),1) is the (unique) boundary marked point of the element r.
(DB.4) po(&) = p1. Here pg: Moy1(L; Er; J®V)) — [0,1] is as in (15.4).
(DB.5) evg(€) = evyi(x).

See Figure 15.14 below. We remark that the disk bubble at (7,1) is identified with an element
of MO—H (L; El; J(p(T)))

Figure 15.14. An element (§,z, p1).

We next consider the fiber product

Mog1(L; T; Er; top(p))
ey Mgy (L, I's M; By T T t0p(p)). (15.23)

(evo,po) ><(evl 1,ev’
This is a part of /\o/lé)dko (L,L'; M; E; 7 J;top(p)) defined in Definition 15.27. We consider a part of
the boundary of Mlka(L,L’;M; E»; JJ;top(p)) which consists of (R x [0, 1]; 20,1, 21); u; 7v; p)
such that zp; = p;. This is the case when the equality holds in the inequality (15.18). (See
Figure 15.15.)

Now it is easy to see that the part of the boundary of (15.23) which we describe above cancels
with the part of the boundary corresponding to the disk bubble at ¢ = 1, which we describe by
(DB.1), (DB.2), (DB.3), (DB.4), (DB.5).

In a similar way as above, we can show that all the potential boundaries of the moduli
space Mk, (L, L'; M; E2; J J;top(p)) other than those spelled out in Proposition 15.22(3),
(I)~(IV) cancel each other. The proof of Proposition 15.22 is complete. [
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(0(p1), 1)

2

0(p1) <7

Figure 15.15. Cancellation at (§,z, p1).

We use the next energy estimate which is due to Chekanov [14]. (See also [39, Section 5].)
From now on, we will assume fX Hw™ =0 and fX w" =1. We put

1 1
| H ||+ :/ sup(H,)dt, |H|- = —/ inf(Hy)dt.
0 0

They are non-negative numbers. We remark that the Hofer distance [52] from ® to identity is
the infimum of |H||- + ||H||+ for all H with ®}, = .

Lemma 15.29. If My, ., (L, L'; M; E; T J;top(p)) is nonempty, then E > —| H||_.

Proof. We remark u*w = w(g—ﬁ, %)dT A dt. By equation (15.17), we have

Ou Ou\ ou 8u> B <8u 8u) B O(H ou)
o (G ) = (e (5r) #xoxis 57) =a (5 57) -2

Therefore,

/ wrw > —/ X(T)Mdnit
Rx[0,1] Rx[0,1] or

Rx[0,1] or T—+400 [0,1]
> —|H|- — lim H{(t, u(r,t))dt.

T—+00 [071}

Here the first inequality is a consequence of positivity of the Riemannian metric g, the second
equality is proved by integration by parts, and the third inequality follows from the definition
of |[H]|-.

We remark that the energy F is defined in Definition 15.26 (5).

The lemma follows. |

Remark 15.30. When we identified the solution space of the equation (15.22) with the mod-
uli space My, x, (L', M; E;J), we identify u: R x [0,1] — X with v: R x [0,1] — X by
v(7,t) = ®(uoo(7,t)). The term lim, 4o f[o 1 H(t,u(r,t))dt which appear in the definition
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of the energy E and the above calculation is related to this point. In fact, for a solution u of
equation (15.22) we define its energy by

/ Wt lim [ H@um)d— Tim [ H(E u(rt)dt.
Rx[0,1]

Tt Ji0] == J0,1]

The third term is 0 in our case.

Note that equation (15.22) is regarded as a gradient flow equation of certain action func-
tional and the above energy is the difference between values of action functional at 7 = +oco
and 7 = —o0.

We define

Ok ko Br, CF[1](L) @ CF(L; M) ® By, CF[1](M) — CF(L'; M) ®a, A

Pk, ko (hl,lv ) hl,kl; ha hO,la FRR) hU,ko)
= ZTEQV+OO!(QV>{’1]7JL1 Ao Aevy g hig Nevigh
E

Aevpihor A+ Aevy g hi ke Mi i (L, L' M E; T T3 top(p)), 6°).

Lemma 15.31. {y, i} s a filtered Ao CF(L)-CF(M) bi-module homomorphism over the
filtered Aoe homomorphisms g: CF(L) — CF(L') and id: CF(M) — CF(M).*%

Proof. Thisis a consequence of Proposition 15.22 together with Stokes’ formula (see [40, Propo-
sition 9.26] and [46]) and the composition formula (see [40, Theorem 10.20] and [46]). In fact,
the boundaries of type (I), (II), (III), (IV) corresponds to (15.24), (15.25), (15.26) and (15.27)
below, respectively,

Phrkos (P15 hini B hots - Mg (B0 - Bk 1) -+ Boko)s (15.24)
Phroko (P15 Wy s (B oy itk s 1)1 - Pk B3 ot - B ko), (15.25)
Pky.2,ko.2 (hi1,... vnk’1,1,ko,1(hl,k1,zfl7 cooshigshiho, ..y hO,ko,1)7 s hoky), (15.26)

W o k00 (@ma (P15 - Pmy )y - @y (P p—mgt 15 -+ o5 Py ).
Pky 2.ko 1 (hl,lﬁ,z—s—l coshiks hihot, oo hokgs)s ey POy )- (15.27)
Here in (15.27) we put k12 = 22:1 mj. (Note k11 + k12 =ki.) [ |

Note that the filtered Ay, bi-module structure etc. appearing in Lemma 15.31 are curved.
We define

VYm: CF(L; M) ® B, CF[1)(M) — CF(L'; M) ®p, A

I S SRt SR R R O )
k0=0k170=0 kl,m:O

Lemma 15.31 now implies the following. We use by; and by to define a strict and unital fil-
tered Ao (CF(M), {mZM ) right module structure on CF(L; M). We use by and by to define
a strict and unital filtered Ao (CF(M), {mZM ) right module structure on CF(L'; M).

15-5Gee [34, Definition 3.7.7] for the definition of Ao bi-module homomorphism over a pair of A, homomorphisms.
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Lemma 15.32. {¢,,, | m = 0,1,2,...} define a strict and unital right filtered Aoo module
homomorphism: CF(L; M) @y, A — CF(L'; M) @4, A.

Lemma 15.29 implies the next lemma.

Lemma 15.33. {T||H||+1/Jm |lm=0,1,2,... } define a strict and unital right filtered A module
homomorphism: CF(L; M) — CF(L'; M).

By exchanging the role of L' and L, we obtain the following.

Lemma 15.34. There exists {1}, | m = 0,1,2,...} which define a strict and unital left fil-
tered Aoo module homomorphism: CF(L'; M)®@p,A — CF(L; M)®p,A. Moreover, {T”q)”*wq’n \
m=20,1,2,... } define a strict and unital left filtered Ao, module homomorphism: CF(L'; M) —
CF(L; M).

We put ¢ = {tp, | m =0,1,2,...} and ¢/ = {¢, | m = 0,1,2,...}. We can use a similar
argument (one parameter version) to show that there exists a strict and unital filtered A
pre-natural transformations ¢ and ¢’ such that

Y o1 —my(¢) = identity, o1 —my(¢') = identity.

Moreover, TIHI++IH]-¢ determines pre-natural transformation CF(L; M) — CF(L; M) and
TIHI++IHI- ¢ determines pre-natural transformation CF(L'; M) — CF(L'; M). We omit the
detail of the proof of this statement. See [34, Sections 5.3.3 and 5.3.4] and [39, Lemma 6.4] for
the proof of this part. (The way to adapt the argument there to the current situation is the
same as the way we do so for ) which we explained in detail above.)

We thus proved that CF(L’; M) is equivalent to CF(L; M) over A in the category of right
CF (M) module. This proves Theorem 15.5 (2).

To prove Theorem 15.5 (3), it suffices to recall that the infimum of ||H||+ + ||H||— over all H
which generates the Hamiltonian diffeomorphism ® is nothing but the Hofer distance between ®
and the identity map.

The proof of Theorem 15.5 is now complete.

15.6 Completion by Hofer distance

In [34, Section 6.5.4], we proved that if ¢;, ¢y are Cauchy sequences of objects of a strict fil-
tered A, category ¥ with respect to the Hofer distance dg, then we can define an inductive
limit

lim HF(Ci, Ci/) (15.28)

1—00

as Ag modules. Namely, we consider the m; cohomology HF(¢;, ¢;/) and write it as

HE (e, c) =M @@ TAngo

Here \; j are positive numbers such that A; ; > /\¢7j+1.15‘6 In fact, dg (¢, ¢j) < oo the rank n is
independent of i. The torsion exponent \;; is one Lipschitz by [34, Theorem 6.1.25] and [39,
Theorem 6.2]. We use it to define the inductive limit (15.28). The inductive limit (15.28) has
a form

lim HF(c;,cr) = Al @ EB

1—00

15.29

15-68ee [34, Theorem 6.1.20).
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Here the direct sum in the second factor may be infinite sum with lim; o A; — 0. See [34,
Proposition 6.5.38] and [34, Example 6.5.40]. It seems likely that we can prove the next conjec-
ture purely algebraically.

Conjecture 15.35. The A operations my, extend ‘continuously’ to the limit (15.29) and define
a ‘filtered Aso category’ whose object is a Cauchy sequence of OB(F).

Remark 15.36. Conjecture 15.35 appeared in the preprint version of this paper in 2017. A ver-
sion of its positive answer is now given in [32].

One reason why proving Conjecture 15.35, taking completion of D9B(%’) and trying to find
a filtered A., category whose object is an element of such a completion, could be interesting
is as follows. In this paper, we consider only a set of Lagrangian submanifolds Li, Lio etc.
which satisfy certain ‘clean intersection’ properties. If Ly and Lis do not necessary have clean
intersection, the geometric transformation of L by Lio may not exist. However, Theorem 15.5
implies that it exists as an object of a certain completion of Fubst(Xs). So by taking the
completion with respect to the Hofer distance, we may take the geometric transformation and
the composition of Lagrangian correspondences without assuming any kinds of transversality or
cleanness of the Lagrangian submanifolds involved.

16 Kiunneth bi-functor revisited

16.1 Tensor product of filtered A, categories

We begin with defining the tensor product of filtered A, categories. There are various works
such as [6, 57, 62, 69] etc. on this subject. We describe it using the notion of filtered A
bi-functor. We remark that in this section, we use the sign convention of the filtered A,, multi-
module so that its element v contributes deg’ v to the sign. This convention is different from
one we used in Section 10, where the contribution is degv.

Remark 16.1. In this section, we always assume the ground ring R is a field. We also assume
that filtered A, categories are always gapped. Moreover, for two objects ¢, ¢’ of € we assume
that the m; cohomology H (% (c,c');my) is finitely generated. (It is then a finite direct sum
of Ao)

Under this assumption, the cohomology H (% (c,c’);my) is isomorphic to a direct sum of
finitely many copies of Ag or Ag/T%Ag (see [34, Proposition 6.3.14]). Using this fact, cohomology
of completed tensor product behaves in the same way as the case of usual tensor product over
Dedekind ring. In fact,

Mo = Ao _ Ag Tor( Ao A0>_ Ao
TeAq TbAO B TaAy’ TaAy’ TbA() a TaAy’

if a <b.

It seems that the construction of the tensor product below is a category version of one
suggested by Kontsevich and Soibelman [57, p. 174, line 6].

Let ; be a unital filtered A, category for i = 1,2. There are 2 versions of the story of tensor
products of filtered A, categories, that are, strict and G-gapped versions. Let

BIFUNC(E x €5°;CH)

be the filtered Ay category whose objects are filtered Ao, bi-functors 6P x €, — CH. We
require objects of BZFUNC to be strict (resp. G-gapped). In other words, it is a category of
left €, %> bimodules.'6!

16-11 the gapped case, we use the language of left filtered Ao, modules.
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Lemma 16.2. There exists a strict (resp. G-gapped) and unital filtered Ao bi-functor
BIPON: €1 x G2 — BIFUNC(E® x €,°;CH).
Definition 16.3. We call BIYOMN the A, bi-Yoneda functor.

Proof. We discuss the strict case. The construction of G-gapped case is similar. Let ¢ = (¢1, ¢2)
be an objects of €1 x €, (namely, ¢; € OB(%;)). We construct Bion(c): €,F x €57 — CH.
Let b = (b1, b2) be an object of €, x €,".

We define BiQon,, (¢)(b) = €1 (b1, c1) ® Ga(ba, c2) which is a chain complex. This is the object
part. We next define

BiYony, 1, (c): Br, €y [1](b1,1,b1.2) ® Byr6a[1)(bo,1, b,2)
— Hom(%1(b1,1,¢1) ® Ga(br2, c2), €1 (ba1, c1) @ Ga(ba 1, c2)).

If k1 # 0 and k2 # 0, we put BiYony, ¢, (c) = 0. Otherwise, we define

BiYony, o(c)(x1 @ 1)(21 ® 22) = (=) m(x{P, 21) ® 29,

BiYong p, (0)(1 @ x2)(21 ® 22) = (—1)"221 @ (x5, 22).
Here x; = e(x1), %3 = e(x2) + (1 + deg’' x2)deg’ y1 are Koszul sign. (The symbol e(x) is
defined in (2.13).) It is easy to check that BiQon(c) = (BiYon,y(c), {BiYony, 1, (c)}) becomes
a filtered Ao bi-functor. (The calculation is similar to [27, p. 93], which is the case of usual
Yoneda functor.)

We thus constructed the object part of bi-Yoneda functor. We next construct its morphism
part. Let ¢; = (¢j1,¢2) be an element of OB(€1) x OB(%) for i = 1,2. We denote by
(C(c1,¢2),d) the complex of all pre-natural transformations from BiQ)on (1) to BiYon,y, (c2).
We define the product o: C(cy,c2) ® C(cz,c3) — C(c1,¢3) by the composition of pre-natural
transformations. We thus obtain a DG-category (C,d, o). (We use the fact CH is not only an
A category but also DG-category to obtain this DG category.) We regard it as an A, category.

We now define a filtered map

BiYony, 4, By, 61[1](c1,1,¢1,2) @ Be,62[1](c2,1,c2.2) — C(e1, 2).
Let b; = (bi1,bi2), ¢; = (¢i1,c¢i2) an element of OB(€)) x OB(%62) i = 1,2. Let

(x1 ® X2) € B, 677 [1)(b1,1, b2,1) ® B, 65" [1)(b1,2, ba,2),

(y1®@y2) € By, G1[1)(c11,c21) @ Bp,%a[1](c1.2, c2.2) (16.1)
and (21, 22) € Z(¢1)ob(b2). We define

((BiYony, 4, (Y1 @ ¥2)ky ko) (X1 @ X2)) (21, 22) = 0
if (k1,¢1) # (0,0) and (k2, 2) # (0,0). In case either (k1,41) = (0,0) or (k2,¢2) = (0,0), we define

((BiYony, o(y1 @ Dy 0)(x1 @ 1)) (21, 22)

= (—1)"'m(xP, 21,¥1) @ 22 € Gi(b1.1,¢21) @ Ca(b12,c29) (16.2)

(note that bi2 = by o, c12 = 22 in this case) and

((BiYong 4, (1 ® y2)o.k,) (1 @ x2)) (21, 22)
= (-1)"z @m(x5’, 22,y2) € G1(b1,1,c21) ® Ca(b12, C2.2).- (16.3)

(Note that b1 = ba1, 1,1 = ¢2,1 in this case.) Here %; is the Koszul sign, that is,

*1 = £(x1) + (deg’ 21 + deg’ x1) deg’ y1,
*9 = £(x2) + deg’ ya(deg’ x5 + deg’ 21 + deg z2) + deg’ 21 (deg’ x2 + 1).
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Sublemma 16.4. (16.2) and (16.3) define filtered A bi-functor.

The proof is a straightforward calculation similar to the proof of [27, Lemma 9.8] and so is
omitted. The proof of Lemma 16.2 is complete. |

Definition 16.5. Let %7 and %5 be unital filtered Ao, categories. We define the full subcategory
of BIFUNC(€,? x€y"; CH) whose objects are image of the bi-Yoneda functor the tensor product
of ¥, and %5 and write 61 ® %>. By definition, there exists a strict and unital filtered A, bi-
functor €1 X 62 — €1 R 6.

It is easy to show that €} ® €» is homotopy equivalent to ¢ ® €, if €; is homotopy equivalent
to €.

Lemma 16.6. Suppose 61, > are DG-categories. Then the tensor product as filtered Ay, cate-
gory €1 ® €, is homotopy equivalent to the (DG-category) tensor product €1 ® 62 as filtered A
categories.

We prove Lemma 16.6 in Section 16.4. Lemma 16.6 implies that the tensor product defined
in [6, 19] etc. is the tensor product in the sense of Definition 16.5.

We put C = % ® %. Note that by construction there exists a left %1, %2 and right C,
filtered Ao tri-module M (%}, %2; C), and left C right 61, %2 tri-module M(C; €7, %2), as follows.
Let ¢ = (¢1,c2) € OB(6)) x OB(62), b = (b1,b2) € OB(C) = OB(%61) x OB(%2). Then we put

M(Cgl, (52; C)(Cl, C2; b) = %ﬂl](cl, bl) X %2[1](62, bg),
M(C; %1, 62)(b; c1, c2) = G1[1](b1, 1) ® G2[1](b2, c2). (16.4)

This is the object part of our tri-module. The morphism part is defined as follows. Let T €
C(bl,bg) and T € BkC(bl,bg). Let x1 ® xo be as in (16.1). Let (21,22) S Cl[l](CQJ,bLl) X
Ca[1](c2,2,b1,2) = M(%1,%62; C)(c2,1,¢2,2;b1). Now we define the bi-module structure ny, ¢,.; as

Ny, 0y (X1 @ X25 (21, 22); T) € M(%1, 62; C)(c11,¢1,2; b2), (16.5)

where (16.5) = 0 unless (¢1,02;k) = (£1,0;0), (¢1,02;k) = (0,£2;0), or k = 1. In case k = 1, we
define

(16.5) _ (71)029’721722 (deg’ x1+deg’ xo+deg’ z1+deg’ zg)ﬁl to (Xl ® Xg)(Zl, 22). (16.6)

Here T = 7T is a pre-natural transformation. In case & = 0, the structure ng, 4., is nothing
but the left filtered A, module structure over %1, %>, which is nothing but the filtered Ao
bi-functor 6" x €,° — CH. More explicitly, it is

g 00(X1 ® 1; (21, 22); 1) = m(x1, 21) ® 29,
no’g%o(l & X9 (2’1, ZQ); 1) = (—1)*2’1 & m(xQ, 22), (167)

with * = (deg’ xo + 1) deg’ 2.

The definition of tri-module structure on M(C; %1, 62) is similar.

By the definition of a pre-natural transformation, the composition and the differential, it is
straightforward to check that (16.4)—(16.7) define filtered A, tri-module structure. (We remark
that C is a DG-category because CH is a DG-category.)

We next define a filtered Ao, bi-module M(C;C) over C x C as follows: M(C;C)(c,b) =
C(c,b), and the structure operations of the bi-moduli structure are given by the structure
operation of the filtered A, category C. (This is actually a DG bi-module.) Using Ao, bi-
functor ¢ x % — C, we regard M(C; C) as a left €, %, and right C A, tri-modules or left
C and right 41, %> As tri-module.



242 K. Fukaya

Lemma 16.7. There ezists a homotopy equivalence M(C; C) ~ M(%1,%2;C) as left €1, 62
and right C tri-modules. There exists also a homotopy equivalence M(C; C) ~ M(C; %61, %2) as
left C and right €1, 6> tri-modules.

The proof is given in Section 16.4.

16.2 Kiinneth functor in Lagrangian Floer theory

Situation 16.8. Let (X;,w;) be a compact symplectic manifold, V; a background datum of X,
and L; a finite set of Vj-relatively spin immersed Lagrangian submanifolds for ¢ = 1,2. We
assume L; is a clean collections for i = 1, 2.

We obtain a curved filtered A, category Fut(X;;1L;) for i = 1,2. We denote by Futst(X;;1L;)
the strict category associated to Fut(X;;L;).

We consider the direct product (X; x X2, w; @ wz) and the background datum 7V @ 7V
on it. We put Ly xLg :={Ly x Lo | L1 € Ly, Ly € Ly}. This is a clean collection of 7fV; & 7w} V5
relatively spin immersed Lagrangian submanifolds. We then obtain a curved filtered Ao, category
Sub( Xy x Xo;L; x Ly). We denote by Futst(X; x Xo; L1 x Lg) the strict category associated to
311?()(1 X XQ;Ll X ]LQ)

The next theorem is the main result of this section.

Theorem 16.9. There exists a strict and unital filtered Aso functor
Su?st(Xl; Ll) X 311?5’(()(2; 1[42) — 3u€5t(X1 X Xo;Lq X ]LQ),
which is a homotopy equivalence to the image.

Theorem 16.9 was obtained previously by L. Amorin [7] by a different method.
We call the functor in Theorem 16.9 the Kiinneth bi-functor and denote it by 7 .

Corollary 16.10. Let L; C X; be a V;-relatively spin immersed Lagrangian submanifold for
i =1,2. Suppose L1, Lo are unobstructed. Then L1 X Lo is also unobstructed. Moreover,
bounding cochains by and by of L1 and Lo determine a bounding cochain by X by of L1 x Lo
canonically up to gauge equivalence and we have an exact sequence

0— Tor(HF((thl)a (Lllvb/1)>7HF((L27b2)a ( /27b/2))
— HF((L1 X LQ,bl X bz), (Lll X L/Q,bll X bé))
— HF((Llabl)v( llabll)) @ Ao HF((L27b2)7( /2>b/2)) — 0.

Proof. Let €1, ¢> be strict and unital filtered A categories and ¢;, ¢, € OB(%;). It suffices
to show the existence of the next exact sequence

0 — Tor(H (%1(c1,c)), m1), H(%a(co, cy), my))
— H((61 @ 6»)((c1,ca), (), ¢5)),m1) — H(%1(c1,c)),my) @p, H(6(ca, ), my) — 0.

This is immediate in case 41, 62 are DG-categories by Lemma 16.6. The corollary then follows
from the fact that any filtered Ao category is homotopy equivalent to a DG-category. |

Proof of Theorem 16.9. We apply Theorems 5.25 and 3.54. We then obtain a left Fut((X; x
Xo, (V1) @ w5 (Va); Ly x Lg), right Fut((Xy, V1);L1),5ut((X2, V2);La) filtered Ao tri-module

¢ .7 (Li2; L1, o) (16.8)
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as follows. We replace (X1,w1), Vi in Theorems 5.25 by (X1, —w1), Vi @ T X;. Since
Sub((—X1, Vi & TX1); L) = Fue((Xy, V1);L1)P

by Theorem 3.54, we obtain (16.8).
The tri-module (16.8) induces a filtered A, bi-functor

F: Suést(Xl;IL,l) X 3u€5t(X2;IL,2) — fUNC(Suﬁst(Xl X XQ;Ll X LQ)OP,CH).
Proposition 16.11. Let (L;,b;) € OB (Futst(X;;1L;)).

(1) L1 x Ly is unobstructed. Moreover, by, by determine a bounding cochain by X by of L1 X Lo
up to gauge equivalence canonically.

(2) The object (L1 x La, by X ba) of the category Futst(Xy x Xo;1Lq x L) represents the func-
tor F((L1,b1), (L2, b2)): Fust(Xy x Xo;L1 x Lo)°P — CH.

Proof. The proof of (1) is similar to the proof of Theorem 6.3 and the proof of (2) is similar
to the proof of Theorem 7.3.

We start with (1). The tri-module applied to L, Ly and Ly X Lo induces a left CF (L x Lo),
right CF(Ly), CF(Lg) tri-module D. Its structure operations are

Nhio k1 ko BkIQCF<L1 X Lg)[l] QRD® Bk1 CF(Ll)[l] & Bk2CF(L2)[1] — D.

We use bounding cochains by, by to deform it to obtain nzll’;”: By,,CF (L1 x Ly) @ D — D.
Namely, we put

b1,b2 ) — E o pk1 pke
le (3317---,5%73/)— nk,kl,kg(xla"wwk‘vyabl 7b2 )
k1,k2

The maps {nbl’bQ | k=0,1,2,...} define a structure of left CF(L; x L) module over D.

By definition, there exists an isomorphism D = Q((il X X, (il X 1~L2) X X, Eg)) ® AO as Ag
modules. So D is actually isomorphic to CF(L; x La), as a Ag module. The differential 0-form
(function) 1 on the diagonal component L1 x Ly C Ly xx, (L1 X Lg) X X, LQ is a cyclic element
of the left CF(Ly x Ly) module D. (We can prove it in the same way as Proposition 6.12.)

Proposition 16.11 (1) now follows from (the left module analogue of) Proposition 6.6. We
remark that the bounding cochain by x by is characterized by the formula

ST Mk (01 % b2) 3 15050, 552).
k1,k2,k12

We turn to the proof of (2). Let Ki,..., Kj be elements of Lj x Ly and bg, a bounding cochain
of K;. We consider D(K;) = % (L1, L2)(K;). It is a left CF(K;), right CF(L1), CF(Lg) tri-
module. Note that we use by, ba, bk, to obtain a left CF(K;, bk, ), right CF(L1,b1), CF(La,b2)
tri-module structure on D(K;), which we write

by, ,b1,b
N ekt Br,CF(Ki)[1] © D(K;) © By, CF(L1) © By,,CF(Ly) = D(K;).

We also have

®0F i1, Ki) ® D(Kpn) — D(Ko). (16.9)

n (16.9), we include corrections by bounding cochains of L; and K;.
We consider two left Fust(X; x Xo;L; X L) modules ©1 and D4 as follows. We write
K= (K,bk),Ki = (K;,bg,). They are elements of OB (Futst(X; x Xo;L; x La)).
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(M1-1) As a Ap module ©(K) is D(K).
(M1-2) The structure operations of the left Futst(X; x Xo;1L; x Ly) module structure are (16.9).

(M2-1) ©5(K) := CF((K,bk), (L1 x Lo,b; x bg)). Here the right-hand side is the module of
morphisms in Fukst(X; x Xo;1L; x Lo).

(M2-2) The structure operations of the left Fubst(X; x Xo;1L; X Lg) module structure are the
structure operations of the filtered Ay, structure of Fukst(X; x Xo;L; x Ly).

Note that @1 is nothing but the left filtered Ay, module .% ((L1,b1), (L2,b2)) and D3 is nothing
but the left filtered Ao module YPon(X; x Xo;L; x Lg). Therefore, the next lemma completes
the proof of Proposition 16.11.

Lemma 16.12. ©,(K) is homotopy equivalent to D2(K) as left Fubst(X; x Xo;Lq xLo) modules.
Proof. Let 1 € D(Ly x La,b; X by) be the cyclic element. We define
T()(IC): @2( ) — @1(IC s

Tn1(K1,...,K ® CF(Ki, Kiy1)®D2(Kpy) — D1(K1)
=1

as follows. We put Ko = IC, K1 = (L1 X L2,b1 x b2) in (16.9) and define Tp(K)(z) = ni1(z;1).
Here z € CF(K, Ly x Ly) and 1 € CF(Ly X Lo; L1, Lo) is the cyclic element.
We put K, = (L1 X Lo, by X be) and take K; for i = 1,...,m — 1 in (16.9) and define
Tn—1(K) (@1, s 2m—1)(2) = tp—1(z1, ..., Tm—1; 23 1)

for z € Dy(Kp,) € CF(Kp, L1 X Lo), x; € CF(K;, K;y1). See Figure 16.1.

(1, .y 1, 2;1)

— 1
<
k I"L
r/ V4

Ly Ly x Loy L2

1

Figure 16.1. T,,_;.

The A relations for {n,,} imply that {T; | i = 0,1,...} is a left Fubst(X; x Xo;L; x La)
module homomorphism.

To show that it is a homotopy equivalence, we first observe that D1(K), ©2(K) both are
isomorphic to Q(K X X1 %X (L1 X Lg)) ® Ag as Ag modules. (Here K — X1 x X9 is the immersed
Lagrangian submanifold which is a part of IC.)
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We next observe that T((K) is congruent to the identity map (via the above identifica-
tion D1(K) =D9(K)). In fact, Ty = ny is defined by using the moduli space of pseudo-
holomorphic disks and we put TF as a part of the weight when we use the moduli space of
pseudo-holomorphic disks with symplectic area E. The disk with symplectic area 0 is nothing
but a constant map, whose contribution to Ty is the identity map.

The proof of Lemma 16.12 is complete. |

The proof of Proposition 16.11 is complete. |

We consider the full subcategory of Fubst(X; x Xo;1L1 x Lo) the set of whose objects consists
of (L1 X La,by X by) where L; € L; and b; X bg is a bounding cochain of L; X Ly obtained by
Lemma 16.11 from bounding cochains by and by of L and Ls. We denote it by .Z.

We put €; = Futst(X;,1L;) and C = 41 ® 6. The formulas (16.4) and (16.6) define a left %7,
%> and right C filtered Ay, tri-module M(%1,%2; C). (See also (16.10).)

By (16.8), we obtain a left £ right 47, %, tri-module, which we denote by M(.Z; 61, %62).

Note that the set of objects of C is canonically identified with the set of objects of .Z.
(In fact, they both are ObFutst(X;,Li) x ObFukst(Xs,L2).) For any objects ¢ of C, the
tri-module M(C; %7, %2) determines a right %1, %, filtered Ao bi-module, which we write
M(C; 61, %62)(c; %,%). We define a right 41, @ filtered Ao bi-module M(.Z; 6, 62)(c; *, )

in the same way.

Lemma 16.13. For any object ¢ of C, the module M(C; %}, %65)(c; *,%) is isomorphic'®? to
M(Z;61,%62)(c; *, %) as right €1, €a filtered Aoy bi-modules.
Remark 16.14. Let ¢; = (L;,b;),¢; = (L}, b)) € L; and we put ¢ = (¢, ¢2), ¢ = (¢}, c)). The

chain complex M(.%; 61, %2)(¢; ¢}, ¢5) is chain homotopy equivalent to
CF((Ll X Lg,bl X bg),( /1 X L/,bll X blz))

by Proposition 16.11 (2).
On the other hand, the chain complex M(C; %}, %2)(c; ¢}, ¢}) is chain homotopy equivalent
to CF((L1,b1), (L],b))) @ CF((La,b2), (L}, b)), by definition. Therefore, Lemma 16.13 implies

CF((Ll X Lo, by x b2)7 (Lll X L/27bll X bl2)) ~ CF((L17b1)7( Ilvbll)) ® CF((L27b2)7( /27bl2))7

where ~ means chain homotopy equivalence. This is Kiinneth formula. The proof of Theo-
rem 16.9 shows that this chain homotopy equivalence is functorial.

Proof of Lemma 16.13. We put ¢ = (¢1,¢2) and ¢ = (¢j;,¢},) for j = 1,2. The structure
operations of the right bi-module structure on M(C; %}, %2)(c; *, x), which we denote by m’ is
defined by

0 ifx#1lory#1,
m/(((zl, 2’2)7X,y) = (_1)deg'xdeg/ Z2(m(21,x), 22) if y = 1’ (1610)
(—1)de8" 21 (21, m(22,y)) ifx=1.

Here m is the structure operations of %;, which is obtained by ‘counting’ pseudo-holomorphic
polygons, x € BE1[1](c} 1, ¢h 1), ¥ € BG[1](c] 9, ¢55) and 2z € G[1](c;, ¢} ;) for i = 1,2.

On the other hand, the structure operations of the bi-module structure on M(.Z; 61, 62)(c;
%, %) is the operations {n} which are structure operations of the tri-module (16.8) and obtained
by ‘counting’ pseudo-holomorphic quilts.

16-2Here two right filtered Ao bi-modules are said to be isomorphic each other if there exist a bi-module homo-
morphism between them which has an inverse.
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For b;, b, € ObFubst(X;,L;), we define

T kys M(C; 61, 62)(c; b1, b2) @ By, 61[1](b1, b7) @ By, 6[1](by, b))
— M(Z; %61, 6)(c; b), b))

T (21, 22), (%)) ==Y (1) n(n(1;1® (22 @ ye)); (21 @ ) ®y}), (16.11)

C

where * = deg’ 21 (deg’ 29 +deg’ y.) +deg’ x deg y. is the Koszul sign. Here x € By, ¢1[1](b1, b)),
y € By, %62[1](b2, b5), and z; € €;[1](¢;, b;). The symbol 1 is the fundamental class of M(.Z; 4,
%2)(c; (c1,¢2)), that is, the cyclic element and A(y) = Y. y.®y.. The idea behind this definition
can been seen from Figure 16.2 below.

n(L1® (22 @ye))

le L2
®
Ye

®

22 21 ,
y[:

L Ly T ‘

n(11® (22 ®y.))

Figure 16.2. %, 1,((21,22),(X,¥)).

__ We will prove that {F, ,} is a right filtered Ao, bi-module homomorphism. We denote by
m’ the maps

P M(C; 61, 2)(c; b1, ba) ® BG1[1](b1, ¢)) ® B%,[1](ba, ch)
by,bo

— P M(C; 61, 62)(c; by, by) @ BG1[1](b1, ¢;) @ B%([1](b2, ch)
by,b2

induced by m’ (see (16.10)) and denote by m the structure operations of é;. We also denote by

7. @ M(C; 61, %) (c; b1, b2) @ BEI[1](b1, ¢}) © BE[1] (b2, ch)
by,bo
— P M(Z;%1,6,)(c; b1, b2) @ BE[1)(by, ¢}) @ B%[1](b, ¢5)
by,bo

the map induced by Z, 1,.
We will check

—~

(no F)((z1,2), (%,¥)) = (F ow!)((21,22), (X, ¥))- (16.12)
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Remark 16.15. Intuitively (16.12) can be proved easily by studying the boundary of the moduli
space depicted by Figure 16.2. The proof below is an algebraic analogue of such a geometric
argument.

Let m;: B%, — B%, is the map induced by the structure operations of %;. We denote
m=m; ®id + id @ my. Let m be the €| ® %> component of m.

We put A(x) = 3, % © %) , (A 9id) 0 A)(y) = ¥, yor @ yh O ¥

Now the right-hand side of (16.12) is

S (=D)"n(n(110 (2 ®ye)); (21 @ W(x)) L)

[

+Z 1) 2n(n(1;1 @ (22 @ ye)); (21 ® %) @ W(yh))
+ Z(—l)*3n(n(1; 1® (22 @M(ye))); (21 ©%) @ ye)
+Z(—1)*4n( (L1®M(2@yr)®@yy); (21 ©x) Qye)

+ Z 1*n(1;n(l1® (22 Qye)); (m(z1 @ %) @%3) R YyL), (16.13)

where the signs #*; are by Koszul rule. Note that the sign here is always by Koszul rule and
so it is actually not necessary to calculate the sign as we will explain at the end of the proof
of (16.12).

On the other hand, the left-hand side of (16.12) is

Zn(n(n(l; 1@ (22Qy¢)); (21 Q%) QYo ); Xp, @ Your) (16.14)
b,c!

up to sign. We put z. := n(1;1® (22 ® y.)), where A(y) = .y Qy..
(16.14) plus the next formula (16.15) is obtained by applying n twice to the element ) 2. ®
((z1 ®x) ®yL.)) up to sign,

D (1510 (22 @ye); 1 @yl); (21 ® %) @ yh). (16.15)

c//

Therefore, applying A, formula for n, the formula (16.14) is equal to

+Z 2o (21 ® X) ® yL) +Z n(ze; (z1 @ x) @ M(yl)) + (16.15) (16.16)

up so sign. This cancels with (16.13) up to sign. In fact, the first term of (16.16) cancel with
the first and fifth terms of (16.13), the second term of (16.16) cancel with the second term
of (16.13), and (16.15) cancel with the third and fourth terms of (16.13), using A relation (of
left bi-module structure) applied to 1 ® (1 ® (22 ® y¢))-

The calculation of sign looks complicated. However, we actually do not need to check the
sign by calculation to see the corresponding terms cancel out with sign. In fact, all the signs
are caused by changing the order of operators or elements (which are graded), that is by Koszul
rule. So except the minus sing which comes from exchanging the order of m and n (both of
which have degree +1) the sign of the corresponding terms coincide. Therefore, the cancellation
occurs with signs.'6-3

Thus {Z, k, } defines a filtered bi-module homomorphism.

16-3This is the standard magic of Koszul sign.
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We remark that M(C; %1, %2)(c; ¢') as Ag module is a T-adic completion of the tensor prod-
uct of de Rham complexNQ(qu X X, I:’l)@/\p and Q(f@ X X, I:’Q)@AO. On the other hand,
M(Z;61, %) (c;¢') is Q((L1 x La) X x,xx, (L} x L)) ® Ag. Therefore, their reductions to the
ground ring is isomorphic each other. It is easy to see that R reduction of % is this isomor-
phism. Therefore, .%( ¢ is an isomorphism. Hence .# is an isomorphism. |

We recall that C = 6] ® %2 can be regarded as the category of right bi-module homo-
morphisms M(C; %1, %) — M(C; %1, %2) in the following sense. An object of C is identified
with a pair of objects (c1,¢2) of €1 and of %». For a fix (¢1,¢2), by moving (c/,¢)) this de-
fines a right 41, % module, which is nothing but M(C; %1, 62)(*, *, (¢1,¢2)). The morphisms
and operations in C are defined to be the right %1, %2 bi-module homomorphisms and their
compositions. 6

By Lemma 16.13, M(C; %1, %2) is isomorphic to M(Z;%1,%2). Now using the fact that
M(Z;61,%2) is a left £, right €1, % tri-module, we obtain a filtered A functor ¥: ¥ —
%1 ® -. Note that the object part of ¢ is the identity map.

Lemma 16.16. The linear part % of 4 is a chain homotopy equivalence from £ ((c}, ¢5), (c1,¢2))
to C((c}, ¢5), (c1,¢2)).

We prove Lemma 16.16 at the end of Section 16.3. Lemma 16.16 implies ¢4 is a homotopy
equivalence. The proof of Theorem 16.9 is complete. |

16.3 The Kiinneth functor and the correspondence tri-module

Suppose that we are in Situation 5.24. We consider the set LL; x Lo of Lagrangian submanifolds
of — X7 x X9 which consists of direct products Ly x Lo of elements L1 € Ly and Lo € ILs. The
Kiinneth functor defines

A Fukst((— X1, V1 @ TX1);1L1) x Futst((Xo, V2);1Le)
— 311?5{((—)(1 X XQ,ﬂ'T(Vl D TXl) D W;(‘/Q)),Ll X Lg) (1617)

Note that we replace X, Vi by — X3, V) @ T'X; when we apply Theorem 16.9 to obtain (16.17).

Theorem 16.17. Let L € Ly, Lis € 1o and by, bio their bounding cochains. We put L1 =
(L1,b1), L12 = (L12,b12). Using correspondence bi-functor, we obtain (L2,b2) = We,,(L1).
Then we have the following isomorphism for any L, € Ly and its bounding cochain bl:

HF((Lg,ba); (Ly, by); Ao) = HF((L12,b12); (L1 X L, by x by); Ag).
Here (Ll X Lé,bl X bIQ) = ‘%b((L17b1)7 (Lé,bé))

Proof. In our situation, where X, V; are replaced by —X;, Vi @ TX;, the tri-module (16.8)
is the correspondence tri-module. Therefore, the theorem is an immediate consequence of The-
orems 7.3 and 16.9. |

16.4 Proof of Lemmas 16.6, 16.7 and 16.16

In this subsection, we prove Lemmas 16.6, 16.7 and 16.16. It suffices to consider the case when
©1, €5 are DG-categories.

16-Here we use the operation taking opposite module (see Definition 11.3) to go from left module to right module
and vice versa.
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Proof of Lemma 16.7. We prove the first half. The proof of the second half is similar. We
define a tri-module homomorphism J: M(%7, %2; C) — M(C; C) as follows.
We first define

n: (B€1[1](b1,1,b2,1) @ B62[1](b1,2,b22)) @ €1[1](b2,1,c1,1) ® €2[1](b2,2,c1,2) ® C(cy, ¢2)
— ¢1[1](c1,1,c2,1) ® Ga[1](c1,2, ¢2,2),

as follows. Note an element 7 € C(cy, c2) is a pre-natural transformation from C(cy) to C(co).
Such pre-natural transformation assigns to each by = (b1,1,b1,2), b2 = (b2,1,b2,2) a map

(B€1[1](b1,1,b2,1) ® B2[1](b1,2,b2,2)) @ G1[1](b2,1,¢1,1) ® €2[1](b2,2,C1,2)
— G1[1](c1,1, c21) ® Ga[1](c1,2, C2,2).

For x @ y ® z € (B€1[1](b1,1,b2,1) ® B€2[1](b1,2,b2,2)) ® €1[1](b2,1,¢1,1) @ €2[1](b22,c1,2), We
denote by n(x ® y, z, T) the image of x ® y ® z by this map.
We next define Jg 0,0(c1,¢2): G1[1](c1,1,¢1,2) ® €2[1](c2,1, c2,2) — C(c1, ¢2) by the formula

n(x®y,z Jo00(c1,c2)(a1,a2))

— {(—1)deg’a1 deg’ 22 (mZ(zlv a'l)amQ(z?a a2)) fxepy=1®1,

. (16.18)
0 otherwise.

Here n is defined as above!®® and 2z = (21,22) € 61[1](b21,c11) ® Ga[l](b22,c12), X R Y €
B%1[1](b1,1,b2,1) ® B62[1](b1,2,b22), (a1,a2) € €1[1](c1,1,c1,2) ® Ga[1](ca1, c2,2)-
Hereafter, we write Jo,0,0 in place of Jg0,0(c1,¢2). We define all other Jy, 4,0 to be 0.

Sublemma 16.18. J: M(%1, %2; C) — M(C; C) is a tri-module homomorphism.

Proof. Since %; and C are DG categories, (16.18) implies that n(x ® y; z;d(Jo,0,0(a1,a2))) =0
unless x ® y € By, 61[1] ® By, %2[1] with (k1, k) = (0,0),(1,0),(1,1). Here § is the boundary
operator of C. In case (k1,k2) = (1,0), we calculate!®6

n(z®1,2,983000(a1,a2)) = (ma(ma(z, 21),a1), ma(22,a2))
+ (ma(z, ma(21,a1)), ma(22,a2))
=0=n(z®1,2Tp00(mi(a1,a2))).

Note that the second equality follows from the fact that the product structures on %; are strictly
associative.
The case (k1,k2) = (0, 1) is similar. In case (k1,k2) = (0,0), we calculate

n(1®1,203000(a1,a2))) =m(n(l®1,2, Jo00(ar,a2))) —n(l®1,m(z),Too0(a1,a)))
= (my(ma(z1,a1)), ma(2z2,a2)) + (ma(z1,a1), mi(ma(22,a2)))
— (mg(m1(21), a1), ma(22, a2)) — (M2(z1, a1), ma(mi(22), az))
=n(1® 152;Jo,0,0(m1(a1,az))).

We thus proved that Jg o is a chain map. Note that the fact the equality holds with the sign
since we always use Koszul sign here, as we mentioned during the proof of (16.12).
The calculation to show that J is a tri-module homomorphism is similar. We omit it. |

16-5\We remark that the pre-natural transformation 7 is determined if n(x ® y, 2, T) are given for all x, y, 2.
16-61p the calculation below, we omit the Koszul sign unless otherwise mentioned.
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We remark that J is a bijection on objects. So to prove Lemma 16.7, it suffices to show
that Jg 0,0 is a chain homotopy equivalence. We will prove it below.'%7 We write J in place of
J0,0,0, for simplicity.

We define a map J: M(C; C)(c,b) — M(%},%2; C)(c,b) by

I(T) =n(l;(e,e); 7). (16.19)
Here e is the unit of %, and . ¢ C.

Sublemma 16.19. J is a chain map.

Proof. m(J(7)) = mi(n(1;mi(e,e); 7)) +n(l;(e,e);6(T)) =n(1;(e,e);5(T)). [ |

We calculate J(J(a1,a2)) =n(1; (e, e); I(a1,a2)) = (a1, az). Therefore, JoJ = id. We finally
prove JoJ is chain homotopic to the identity map. We define the maps #H;: C(c1,¢c2) — C(c1, ¢2)
by the next formula

n((x®@y);zHi(T)) = (=1)"'n((x @ 21) @ y); (e ® 22); T),
n((x®@y);zHa(T)) = (1) n((x @ (y @ 22)); (21 ® €); T), (16.20)

where *; = deg’ 29 + deg’ xdeg’ 21, %9 = deg’ z; deg’ zo. We will calculate § o H; + H; o §, where
J is the boundary operator of C. We define maps ®;: C(cy,c2) — C(c1,c2) by the next formula

(—D)"n(z1 0 Ln(ly;(e®2);T)) ifx=1,
0 otherwise,
(—D*mleznxel(a®e);T)) ify=1,
0 otherwise,

((x®y);z®(T)) = {
n((x®y); 2 (7)) = {

where *3 = deg’ 21 deg’ y + (deg’'y + deg’ 25) + deg’ 29, x4 = deg’ 25 deg’ x + deg’ x deg’ 21.
Sublemma 16.20. o H; + H; 06 = id + ;.

Proof. We write x = 2y @ xp = X, ® ;. andy = yyf Q yr = yr @ ;. We first calculate
omitting all the signs

n(x®y;2'(7-l105)( 7))
=n((x®21) ®y;(e®22);6(T)) =m(n((x®21) ®y; (e ® 22); T))
+0l(z; @ Lin((xp®21) ®y; (€@ 22); T)) + n((x @ y); 2 ®1(T))
nC(leynn((x®2) @ yr; (e®2);T)) +n((fi(x) ® 21) ®y; (e ® 2); T)
+n((x@m(z1))Qy;(e®29); T) +n((xp @ma(x;,21)) Ry; (e ® 22); T)
+n((x®21) @M(y); (e®22); T) + n((x @ 21) ®y; (e @my(22)); T)
+u(x@y; (21 ®22); T).

Here n? is the structure operation of left 471, %2 bimodule structure on ¢} ® %,. (n is defined
at the beginning of the proof of Lemma 16.7.)

16.7The proof below is similar to a proof of As Yoneda’s lemma. The key idea of the proof of Yoneda’s lemma
is plugging in the identity morphisms to obtain an inverse to the Yoneda embedding. We follow this idea. In
fact (16.19) is nothing but plugging in the identity morphism. In the case of usual Yoneda’s lemma then it defines
an inverse. In the Ao case, it is only a chain homotopy inverse. So we need to find a chain homotopy. The chain
homotopy (16.20) is similar to one given in [27] for the A Yoneda’s lemma.
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We also calculate

n(x ®y;z; (60 Hi)(T))
= m(n((x® 22) @y; (e®21);T)) + 0 (z7 © Ln((x® 21) @ y; (€ ® 22); T))
+n7(1® ypn((x®21) @yp;(e®2);T)) +n(M(x®y) ® (21 ®1); (e ® 22); T)
Fr((x@m(z21)) @y;(e®22);T) +n((x® 21) @ y; (e @ my(22)); T)
+n((xr @ma(z),21)) @y; (€@ 22); T) +n((x® 21) @ yri (€ ®@ma(y @ 22)); T).

We remark that all the terms of the first formula except the 3rd and 10th ones appear in the
second formula. The formula for #; thus follows up to sign.

Remark again that all the signs are caused by changing the order of operators or elements
(which are graded), that is by Koszul rule. So except the minus sing which comes from exchang-
ing the order of 0 and H; (both of which are degree +1) the sign of the corresponding terms
coincide.

Therefore, the cancellation occurs with signs. Thus the formula for #; holds with sign.

The proof of the formula for H5 is similar. |

Sublemma 16.20 implies that ®; o ®5 is chain homotopic to the identity. It is easy to see
that &1 0 &3 = J o J. The proof of Lemma 16.7 is complete. |

Proof of Lemma 16.6. We define
H11: Gll)(e11,c12) @ G2l](c2,1, c2,2) — C(er, ¢2)

by (16.18) and define all the other .#;, to be zero. It is easy to see that it defines a DG-
functor. (We use the assumption that %1 and %, are DG-categories here.) We proved, during
the proof of Lemma 16.7, that .#1 ; is a chain homotopy equivalence. The lemma now follows
from Theorem 2.28. u

Proof of Lemma 16.16. Let ¢; = (L;, b;), ¢, = (L}, b;). Note that

L((¢},¢5), (c1,¢2)) = CF(L}, L) ® CF(L, Ly) = €1(c}, c1) ® Ga(ch, c2).

On the other hand, we use the fact that the filtered A, category obtained by Lagrangian Floer
theory becomes a DG-category, after reduction of coefficient to the ground ring, the reduction
of the map %1 is given by formula (16.18). Here we use the fact that %}, x, in (16.11) is 0
for (ki1,k2) # (0,0) and is an isomorphism for (ki, ks) = (0,0).

It is easy to see that the reduction of ¥4 is the same map. Therefore, the reduction of ¥
to the ground ring is a chain homotopy equivalence. It implies that ¢ is a chain homotopy
equivalence. |

17 Orientation and sign

In this section, we discuss the orientation and the sign. The orientation of the moduli spaces of
pseudo-holomorphic quilts is studied by [80]. The orientation of the moduli spaces of pseudo-
holomorphic disks (polygons) and its relation to A, structures is studied in detail in [34, Chap-
ter 8]. In this section, we will prove that orientation and sign appearing in various moduli spaces
and operations in this paper can be reduced to ones of the moduli spaces of pseudo-holomorphic
disks and operations defined by it.
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17.1 Koszul rule in A, structures

As we mentioned several times, the sign in various formulas in this paper is by Koszul rule (except
a few cases which appear in purely algebraic situations, see the beginning of Section 10.5). By
this reason, we do not write the explicit sign in many of those formulas. In principle, it is
possible (and not so difficult) to calculate and put the explicit sign to those formulas. However,
actually it is unnecessary to calculate the sign for the purpose of this paper. This is because the
check of the signs in the equalities needed in this paper is carried out based on the fact that the
sign is always by Koszul rule and not by an explicit calculation of the signs. Since some of such
formulas are complicated, checking the signs by an explicit calculation could be cumbersome
and lengthy. Fortunately, we never need it in this paper.

In this subsection, we describe what we mean by Koszul rule precisely and demonstrate how
it works in certain examples.

We first consider the A, formula

ki1—1

0= > D (1) mpy (@1, @i My (Tigts - Ty )5 Th). (17.1)

ki1+ko=k+1 i=0

Here the sign is given by

i
* :i+Zdega:j. (17.2)
j=1

We explain how this sign is determined by the Koszul rule. We order variables and operations
appearing in the formula as follows!”-!

mm,ri,xr2,...,Tk (173)
In one of the terms of (17.1), it appears in the following order
m,x1,22,... , M, Tjqr1,...,Tk. (17.4)

The permutation of operators and variables we need to go from (17.3) to (17.4) is a composition
of permutations of m and z; for j = 1,...,7. We remark that the degree of m is 1 and the
(shifted) degree of x; is 1 + degx;. So the sign we pick up by exchanging them is 1 + degz;.
Summing them up for j = 1,...,7 we obtain the sign (17.2).172

In this way, we can obtain the signs appearing in various formulas systematically. The author
emphasis that this is not only an idea to define a sign but is also a logical and rigorous definition
of the sign.

To elaborate on this rule, let us describe one more example. We consider formula (9.23) in
Proposition 9.11. In a similar way to (17.3), we start with

YT, m, hoo 123, hi2, ha3, hi3, hoo 12, Moo 23, h1, ho, hg. (17.5)

171 The particular choice of orders in (17.3) is not important. If we take another choice, then the sign in the
formulas changes in exactly the same way for all the terms of (17.1).

172 There are several other sign conventions of A, structure in the literature. For example, Stasheff’s original
convention [73, 74] and Seidel’s convention [71] are different from our convention, which is introduced in [34]. An
advantage of our convention lies in the fact that it is exactly by Koszul rule. Therefore, we can automatically
determine all the signs appearing in various formulas by requiring them to be the Koszul convention. Since there
are many operators which are related to but are slightly different each other in this paper, putting the sign ‘by
hand’ and checking the consistency by a calculation becomes much cumbersome and lengthy. We can avoid it by
using Koszul convention in all the places.
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(Here the symbol m appears. It is identified with n while studying certain terms of (9.23).) In
the third term, where (—1)*3 appears, the operations and variables appear in the order

@y’ hoo,1237 h12> h23a hi’gla m, h(1:7327 h(1:§7 hoo,l?y h007237 h17 h27 h3' (176)
Here we put

(A @id)o A)(his) = Dby @ hi © b

and remark that

dyg) = 3(—1)% RS g m(hS2) @ b (17.7)

[

The sign we pick up to go from (17.5) to (17.6) is (—1)* with
* = deg’ hoo 123 + deg’ hig + deg’ has + deg’ higl

Since deg’ hf; cancels with the corresponding sign in (17.7), we have
3 = deg’ hoo 123 + deg’ hia + deg’ hos.

We next consider the 9th term where (—1)*° appears. The order of the operations and variables
appearing in this term is

YT ooz, Bz, 35 s, oz, 0, 5™ WG REE?, hoe o, By, g, g, (17.8)
The sign we pick up to go from (17.5) to (17.8) is

deg’ hoo 123 + deg’ hys + deg hg?,f;l + deg’ hy3 + deg’ hoo 12
+deg’ hg?;2 (deg' his + deg’ hoo 12 + deg’ h(2;2;1 + deg’ h?;l)
+deg’ hoo 23 (deg’ h3?" + deg' h§¥') + deg’ hy (deg’ h¥' + deg’ h§*)
+deg’ h;”z deg’ h§3;1.

This is by definition *9. The other *j is defined in the same way. Note that there is a minus sign
in front of the 10th term. This minus sign is caused by the fact that the order of n and # .7 is
exchanged (only) in this term.

The formula we gave for x9 above is rather complicated and actually it is not useful to write
it down explicitly. On the other hand, it is important that there is a well-defined and canonical
way to determine the signs.

The latter fact is used, for example, in the following way. During the proof of Theorem 10.16 in
Section 10.4, we claimed that the Y-diagram transformation is a quatro-module homomorphism.
In other words, the formula which implies that a pre-quatro-module homomorphism is a quatro-
module homomorphism coincides with formula (9.23) in Proposition 9.11. It is easy to see that
the terms appearing in those two formulas are the same except possibly the sign. We also need
to check the signs appearing in those two formulas coincide. Since there are many terms to be
checked and since the signs (such as %9 above) are rather complicated to write down explicitly,
verifying this coincidence by calculating the signs in those formulas could be cumbersome and
lengthy. Fortunately, we do not need to carry out any calculation to check the coincidence of
the signs, since this fact is an immediate consequence of the fact that both signs are by Koszul
rule.
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The author also remarks that the way we use Koszul rule here is equivalent to a certain point
in the study of A, Lo structures and their cousins by using the language of supermanifolds and
super-vector-fields on it. See, for example, [5] for such a method. In those methods, calculation
of the explicit sign is avoided by saying several objects are functions, vector fields, etc. in the
sense of supermanifolds.

Another point where we use the fact that all the signs are by Koszul rule is the proof of the
fact that after adding appropriate correction terms and putting appropriate orientations, the
operations obtained from moduli spaces satisfy the basic formulas with Koszul sign. The way
we will prove it in this section is as follows. We describe the way how various moduli spaces
such as those used to define tri-module structures, Y-diagram transformations, Double pants
transformations, and etc. can be identified to moduli spaces of holomorphic disks (polygons)
outside a certain subspace lying in strata of positive codimension. Then we use the conclusion
of the papers on the construction of A, operations in Lagrangian Floer theory with sign (such
as [35, 46, 72]) so that there exists a way to define orientations of those moduli spaces and
correction terms of the signs, by importing ones of the corresponding moduli space of pseudo-
holomorphic disks via the identification we will give in this section. Then the A, formula of
operations in Lagrangian Floer theory implies the basic formulas on tri-module structures, Y-
diagram transformations, Double pants transformations, and etc. with signs. This is because
they both are by Koszul rule. We will explain this process more in a concrete situation in
Example 17.3. We emphasis that this proof does not need to use the proof of the signs for
the Ay formula of Lagrangian Floer theory, in the literature. It uses only the conclusion of
those papers. In fact, there could be several different ways to put orientations and correction
terms of the signs so that the A, formula of Lagrangian Floer theory can be proved. The
argument of this section is independent on such choices. For each choice of system of orientations
and correction terms in Lagrangian Floer theory, we can expand it to the case of tri-module
structures, Y-diagram transformations, Double pants transformations, and etc. We also remark
that we will not provide explicit correction terms to define tri-module structures, Y-diagram
transformations, Double pants transformations, and etc. In principle it is possible to find it by
going back to the corresponding discussions in the case of Lagrangian Floer theory and modify
it by Koszul rule. See Section 17.2 and Example 17.3.173 However, doing so in many places are
rather cumbersome and lengthy process. Fortunately, we do not need to do so, since we only
claim the existence of the correction terms of the signs. Existence of such correction terms is
certainly enough to prove all the results in this paper.

17.2 Orientation of the moduli space of the simplest quilt

In this subsection, we consider the case of the moduli space X;IQT(EL], d12,d2;a—,a4; E) which is
defined in Definition 5.27. For simplicity we begin with the case when a1, d12, do are empty sets,
that is, the case we do not consider marked points. (We will discuss the case when there are
marked points later in this subsection.) We write this moduli space as Mqr(L1, L12, L2; a—, ay;
E), where ay are connected components of I~/1 X X, f)lg X X, f)g. When we are interested in
defining orientation only, it suffices to consider its subset consisting of a map from a strip
Y =[—1,1] x R. We write this subset as MS%(Ll, Li9, Lo;a_,a4; E). Tt is an equivalence class
of maps ((u1,u2), (71,712,72)), where uy: [-1,0] x R — X1, ug: [0,1] x R — Xy and v;: R — L;
(1 =1,2), 112: R = Ly2 and they have the following properties:

(A1) wi(=1,7) =i, (0(7)), u2(1,7) = iz, (72(7)) and (u1(0,7),u2(0,7)) = iL, (12(7))-

17-31f we want to do so, we would need to see the detail of the proof of the signs in Lagrangian Floer theory. For

example, it occupies more than 70 pages in [35]. So, it seems likely that many of the readers do not want to go
back and see the proof in the literature and try to understand how it is adapted to our situation. The way we
take in this section is written in such a way that it is unnecessary for the readers to do so.
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(A.2) We require asymptotic boundary condition Condition 5.29.
(A.3) uq, ug are assumed to be Ji, Jo holomorphic, respectively.
A1)

/ ujwy + / uswo = E.
[—1,0]xR [0,1]xR

We define Dub((u1,u2), (71,712,72)) as (u; 7, 7r) such that

(B.1) uw: [0,1] x R = —X; x X3 is defined by u(7,t) = (ui(—t,7),ua(t, 7)).
(B.2) 7 =y12: R = Lia. 7: R = Ly x Ly is defined by v(7) = (71(7),72(7)).

By definition, u is —J; X Jo holomorphic.

We consider the disjoint union L = (Lj X Lg) U L12. Then (u,~;,v+) becomes an element
of M(L,(a_,ay); E) which is defined in Definition 3.19. Here we write it as M(Lys, Ly X
Lo;(a—,a4); EY). This is the moduli space used in [34, Section 3.7.4] to define the boundary
operator on CF(L1a, L1 X Lo).

We thus obtain an open embedding

Dob: Mreg (Ll,ng,Lg,a_,a+, ) — M(ng,Ll X LQ; (a_,a+);E). (17.9)

We assumed that L2 is 7] (Vi @ TX;) @ 75 Vs relatively spin. We also assumed L; is Vi
relatively spin and so is V; & T'X; relatively spin. In fact, since TX1|r, = TL; ®g C and T'L;
is oriented. So TX1|r, has canonical spin structure. We assumed Lo is V5 relatively spin.
Therefore, L1 x Lg is also 7} (V1 & TX1) & w3 Vs relatively spin.

Thus by Proposition 3.29, we have an isomorphism of principal O(1) bundle

OMreg(ai’CH»;E) = O./\;I(L,(a_,cu_);E') SeviO, ® ev+@+ (17.10)

We can use the isomorphism (17.10) to define evyloevi: Q(R, ;0, ) — Q(R, ;0,,) b
smooth correspondence. This is (5.18) in case we do not have boundary marked points.
We next show the consistency of orientations at the boundary.

Remark 17.1. Before doing so, we explain what we mean by ‘consistency of orientations at the
boundary’ more precisely. We consider the ‘open inclusion’

(_1)*1Mk1+1 (L; ﬁl)evi Xevg Mkz-ﬁ-l(L; 52) c aMk:—‘rl(L; 5))

where ki + ky = k, 51 + B2 = B. Here %1 is a certain correction term of the sign.'”* This
is an example of consistency of orientations at the boundary. Namely, the orientations of the
moduli spaces appearing in the left and right-hand sides of the formula coincide. To give a
rigorous meaning to its coincidence, we also need to fix a convention of the orientation of the
fiber product (as well as the boundary).

The ‘consistency of orientations at the boundary’ are supposed to imply the fundamen-
tal equation (in this case the A, relation) with sign, which is the Koszul sign in this paper.
Let us elaborate on this point. Let C'(L) be a certain chain model of the cohomology of the
space L x x L. (In this paper we take de Rham model.) The moduli space My, (L; 8) regarded
as a correspondence from L* to L gives an operation, which is my, 5: C(L)®* — C(L). In the
case of de Rham model, it is (h1,..., ki) — (=1)"2evo(evihy A -+ Aevihg). (More precisely,
we need CF-perturbations.) To make sense of this formula, we need to fix a convention of sign

174 M k+1(L; B) is the compactified moduli space of pseudo-holomorphic disks with &+ 1 boundary marked points
and of homology class 8 € m2(X, L).
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for integration along fiber evg. (Provably, the sign convention for the pullback ev; is mostly
obvious.) Here %5 is a certain correction term of the sign. Thus we have to fix all the conventions
mentioned above together with correction terms *1, *3 so that the operator my, g satisfies the A
relation with Koszul sign.

In the case of this Ay relation, this is worked out in singular chain complex model in [35] and
in de Rham model in [46] and [72], in the case when our Lagrangian submanifold is embedded.
In the case of an immersed Lagrangian submanifold which has transversal self-intersection, it
is worked out in [4] in singular chain complex model. In the case of an immersed Lagrangian
submanifold which has self-clean intersection, it is written in Section 17.6 in singular chain
complex model and in the paper [68] by Kaoru Ono in de Rham model. We use the conclusion
of those results (but not the proof of them).

The sign convention of [35] and of [46] are different!”® but they both satisfy the same A,
formula with the same sign. (Note that if we regard smooth singular chains as currents and
approximate them by smooth differential forms, then we can ask whether various conventions
(the convention of the sign of pushout (= integration along the fiber) or pullback), together with
correction terms *5'7% gives the same operator my g with sign or not.)!”” The author did not
check whether the convention of [46] coincides with [72] or not. The convention of [4] is slightly
different from [35] at the point which we mention in Proposition 17.31.

The sign part of the works [4, 35, 46, 72], is computational.'”® The conventions and correction
terms are defined by ‘hand’ and the sign part of the A, formula is checked by computation.
It might be possible to give more conceptional proof. So far no such proof is written in the
literature. Since the check of sign in many cases are complicated and pains taking such a proof
would be desired. However, it is not a theme of this paper.

The discussion of this section, which reduces the sign issue of this paper to one of A relation
among m, is not computational.

Remark 17.2. In several places, we write explicit correction terms (written as (—1)*1, (—1)*2
in Remark 17.1), following the convention of [46, 72]. However, actually we never used these
particular choices or the choices of other conventions. We use only the fact that there exist such
choices which induce A, formula with Koszul sign.

We go back to the discussion of consistency of orientations at the boundary. We first obser-
ve that the boundary of the compactification Mqr (L1, L12, L2;a—, a4; E) of the moduli space
Mgrgr (L1, L12, Lo;a—,ay; E) consists of four kinds of components depicted in Figures 5.6-5.9.

On the other hand, the codimension one boundary component of the compactification M (L;a,
Ly x Lo;(a—,ay); E) of /\;l(Lu, Li x Ly;(a—,a4); E) is described by one of the configurations
(1), (2), (3) depicted in Figures 17.1 below.

We observe that Figure 17.1 (1) and (2) correspond to Figures 5.6 and 5.8, respectively. Since
the orientation is defined so that (17.9) lifts to the isomorphism of orientation bundles (princi-
pal O(1) bundles) the compatibility of the orientation of the moduli space, the compactification
of MS%(L;L, Lis,Loja_,a4; F), at the boundary described by Figures 5.6 and 5.8 follows from
the corresponding compatibility of M(Lja, L1 X Lo;(a—,ay); E) at the boundary described by
Figure 17.1 (1) and (2). The latter is established in [34, Chapter 8, Theorem 8.8.10 etc.].

We finally consider the boundary described by Figure 17.1(3). The homology class of the
bubbled disk is 5 € ma (X1 x Xo; Ly X Lo; Z) = mo(X1; L1;Z) X mo(Xo; Loy Z). We write it (81, B2).
We consider the following three cases separately.

1751 fact, the sign of m; is different.

17.6Which is not the same in two books.

17."The correction term #; coincide in those two books.

178 There are geometric ideas behind those computations in many cases. However, such ideas are not used during
the proof.
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R,

+ R, R,
L12 L1 X L2
L12 L]_ X L2
R,
L12 Ll X Lg
Ra‘ Ra— Ra,

M ) 3

Figure 17.1. Boundary components of M(L1, L12, Lo;a_,a1; E).

Case 1: 1 # 0 # (2. The configuration which corresponds to an element of the space
M*8(Ly, L19, Lo;a—_, a4 ; E) of this case is depicted in Figure 17.2 below. We remark that this
component has codimension greater than 1. Therefore, we do not need to study this case to
show the consistency of the orientation at the boundary.

Ly Lz Lo
Figure 17.2. Case 1.

Case 2: f1 = 0 # (B2. This case corresponds to Figure 5.9. Therefore, the consistency of
orientation at this boundary component follows from the corresponding discussion for Figure 5.9,
which is in [34, Chapter 8, Theorem 8.8.10 etc.].

Case 3: 1 # 0 = P5. This case corresponds to Figure 5.7. Therefore, the consistency
of orientation at this boundary component follows from [34, Chapter 8|, except the following
points.

For an element ((u1,u2), (v1,712,72)) of M™8(Ly, L12, La;a_,a4; E), we require u; to be —J;
holomorphic. Since in Case 3 bubble occurs at the line £ = —1, the map in the bubble is —.J;
holomorphic. We also consider the map (t,7) — ui(—t,7). Note we use Vi & TX; relative
spin structure of Ly for our orientation. As was shown as Theorem 3.54, the orientation of the
moduli space of —J; holomorphic map (t,7) + u1(—t,7) using V3 & T X relative spin structure,
coincides with one of u; using .J; holomorphic map moduli space using V; relative spin structure,
after reversing the enumeration of the boundary marked points. This is consistent with the fact
that we study opposite category for Li. Moreover, we use Vi @ T X7 relative spin structure in
place of Vj relative spin structure for orientation. As is shown in Section 3.5, this is equivalent
to use —Jy, instead of Jx,.

Note that the above discussion proves Theorem 5.43 (7).

We next include the case when there are marked points and explain the way to fix the sign
of the operations nkEl’fkka in (5.18). We use the notations in (5.18). We put m = ky + ko We
denote by Shuf(ki, k2) the set of pairs of maps (I1, I2), where I;: {1,...,k;} — {1,...,m} such
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that

(1) The image of I; and Iy are disjoint.
(2) I reverses the order.

(3) I, preserves the order.

For I = (I, I2) € Shuf(ky, k2), we write

r_ Jm i L) =7,
Y7 iRl =4

Let

ﬂE : BmCF(L1 X Lg) ® CF(Ll X LQ; L12) ® Bklch(ng) — CF(Ll X LQ; ng)

m,ki12

be the filtered A,, bimodule structure for the pair of Lagrangian submanifolds Ly x Lo, L1
of X; x Xo. (More precisely, its coefficient of T ) This is defined in [34, Definition 3.7.41] in
the singular homology version. The de Rham version is a part of the structure operation of
the filtered A, category associated to the symplectic manifold X; x X5, which we defined in
Theorem 3.49. See also [46, 72].

The discussion in the case without marked point, implies that in our case the moduli space
we use to define the filtered trl module structure nkE Fiasks coincides with the closure of union of
the moduli spaces defining n? ,  for various I = (I 1,12) € Shuf(ky, k2), outside codimension 1
set. Namely, we have

m,k12

E?
Mok oY, w,z) = 3 (1) g, (v w ). (17.11)
IEShuf(kl,kz)

Here the sign (—1)* is the Koszul sign, which is determined as follows. We remark that o w,y
coincide with x, y, z, w up to exchanging the order. So we shift the degree of them by one and
put the sign which arises when we exchange the order of those variables via Koszul rule.

For example, if k1 = 2, ko = 1 and k12 = 1 and Im(/;) = {1, 3}, then the corresponding term
is (—1)*ny 3(y1, w, x2, 21, 1), where

* = deg’ x1(deg’ y1 + degw' + deg’ w9 + deg’ 21) + deg’ xo(deg’ y1 + degw’) + deg’ w deg’

is the sign which we get to exchange yi,w,x2, 21,1 — X1, %2,y1,w, 21. See Figure 17.3 and
Example 17.3.

1@ Z1
‘yl )

@ <1 ' Z1

W) ([ ] To

L, L2 Lo Loy Ly x Ly

o O

Figure 17.3. Enumeration of marked points assigned to Ly X Ls.
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The bimodule structure n satisfies the relation

> =0y n(y@ w, ) +Z M em(y?)@y® wr)

ai,az

+Z n(y, w,r? @m(x?) @ 1Y). (17.12)

Here A(y) = Y, ¥4 @ ver, (A@ D(AY) = X, v8 0y @ y¢” ete

The sign * in (17.12) is the Koszul sign. The relation (17.12) is [34, Theorem 3.7.72] in
singular homology version and is a part of Theorem 3.49 in de Rham version. The Koszul sign
rule is a consequence of [34, Chapter 8, Theorem 8.8.10].

Since the sign is always by Koszul rule in this paper, the (tri-module analogue of) the for-
mula (5.12), where the sign is also by Koszul rule, is a consequence of (17.12), once we take the
next two points (dif.1) (dif.2) into account.

(dif.1) When we put r = ¢/ in formula (17.12), the third sum contains a term where m is
applied to both x;’s and z;’s. For example, if k1 = 2, ko = 1 and k12 = 1 and Im(1;) = {1, 3},
a term such as

11 2(y1, w, 12, Mo (21, 71)) (17.13)

appears. There is no corresponding term in (5.12). The reason is as follows. The compacti-
fication we take for the moduli space Mqr(L1, L12, L2; @1, d12, d2; a—, a4; E) which we used to
define (5.12) is different from the compactification of M(L1a, Ly X Ly; (a_,ay); E) which we use
to define n,, 1, More specifically, the configuration such as Figure 17.2 (with marked points
included) do not appear in the codimension one boundary of Mqr (L1, L12, Lo; a1, d12, d2; a—,
ay; F). As we observed before, this is a special case of the codimension one boundary described
in Figure 17.1(2), which gives a term such as (17.13).

Note that this fact does not affect the discussion of sign of the other components which both
appear in (5.12) and (17.12).

(def.2) We remark the following three points:

e For (I, I2) € Shuf(ky, k2), we require I; to be order reversing.

e When we consider the bubble which occurs at L; for the compactified moduli space
Maqr(L1, L2, La; @1, @12, d2; a—, a4 ; E), the map on this bubble is regarded as a J; holo-
morphic map. On the other hand, when we consider the corresponding object as a bubble
in an element of the compactification of M(ng,Ll X Lo;(a—,a4); E), the map on the
bubble is regarded as a —J; holomorphic map by using appropriate anti-holomorphic
map D? — D?,

e We regard L as V1 ®T X7 relatively spin when we consider the moduli space Maqr(L1, L2,
Lo;dy,di2,d2;a—,a4; F) but as V; relatively spin when we consider M(ng,Ll X Lo;

((l,, CL+); E)
By Theorem 3.54, these three points cancel out and we obtain the correct sign.

Example 17.3. Let us elaborate on this fact more by an explicit example. Let us consider
the moduli space depicted in Figure 17.3. We first study the boundary component depicted in
Figure 17.4 below.

The left figure corresponds to

(no 1.1 (21, 223 Y15 My (21)), ) (17.14)
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q q
T
1@ ’?/1 1
021 e Z1
T2 @ ~
2
p D
L1 L12 L2 L12 Ll X L2

Figure 17.4. A boundary component of Figure 17.3.

Here p and ¢ are chains of (L; X Lo) X x,xx, Li2 appearing at 7 — 4o00. The right figure
corresponds to

(n1,3(y1; p; 22, M1 (21), 71), Q). (17.15)

Note that in the A relation of tri-module (17.14) appears with sign (—1)*!, where *; = deg’ 21+
deg’ o + deg’y1 + deg’ p. In the A, relation of Lagrangian Floer theory (the A, bi-module
structure on CF (L2, Ly X L)), (17.15) appears with sign (—1)*2, where %3 = deg’ y; + deg’ p+
deg’ x5. We next study the boundary component depicted in Figure 17.5 below.

q q

1 @ ® T
n Y1

(] {

r r

o 21 Z1

To @ To
p p

Ly L1z Lo Ly L1 x Lo

Figure 17.5. Another boundary component of Figure 17.3.
The left figure corresponds to
(n1,1.0(71, Y1510 (22305 21)), @) (17.16)
and the right figure corresponds to

(n1,1(y1,n0,2(Ps 2, 21), 71), ). (17.17)
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(17.16) comes with sign (—1)*3 where *3 = deg’ z1 +deg’ y1 + deg’ zo deg’ 3. (17.17) comes with
sign (—1)* where %4 = deg’ y;. Thus the Ay, formula of the tri-module structure n which we
want to prove is of the form

0=+ (=D)"ngua(z1, x50 m1(21)) + -+
+ (=1 0(@1, yasn(zs ps 21)) + - (17.18)

and the Ay, formula for operations n, m which was proved in the literature is

0=+ (=1)ny3(y1,p, x2,m1(21), 21) + - -
+ (=)™ (y1,no2(p, @2, 21), 1) + - (17.19)

We claim that (17.18) is a consequence of (17.19). To see this, we calculate the difference of
signs between n’s and m’s.

We note that for v = my(z1) we have ng 1.1 (21, z2;y1;0;0) = (—=1)"n13(y1,p, x2,v,21),
where 5 is the Koszul sign induced by the change of the order of variables z1,z2,vy1,p,v —
Y1, P, Ta,v,x1. Therefore,

x5 = deg x1(deg’ o + deg’y1 + deg’ p + deg’ v) + deg’ zo(deg y1 + deg’ p)
= deg’ z1(deg' xp + deg’ y1 + deg’ p + deg’ 21 + 1) + deg x2(deg’ y1 + deg’ p).

We have also ny 1(x2;p; 21) = (—1)*ng2(p, 2, 21), where %¢ is the Koszul sign induced by the
change of the order of variables xo,p,21 — p,x2,21. Therefore, *¢ = deg’ zodeg’ p. For
w = £ng2(p, 2, 21), we have ny 1.0(z1,y1;w) = (—1)*"nq 1 (y1, w, z1), where 7 is the Koszul sign
induced by the change of the order of variables x1,y1, w — y1,w, x1. Therefore,

*7 = deg’ o1 (deg’ y1 + deg’ w) = deg’ x1(deg’ y1 + deg’ p + deg’ w2 + deg’ 21 + 1).
The claim that (17.18) is a consequence of (17.19) follows from the congruence
%1 + %o + %3 + x4 + x5 + xg +x7y =0 mod 2. (17.20)

One can check (17.20) by calculating the formula of *; given explicitly above. However, actually
we do not need any calculation to show (17.20), since (17.20) is an immediate consequence of
the fact that the map from permutation group to {£1} which associates the Koszul sign to each
permutation is a group homomorphism.

In fact, both *; + %9 + %5 and *3 + %4 + *¢ are the Koszul sign associated to the permuta-
tion n,n, x1, T2, Y1, P, 21 — N, N, Y1, D, T2, 21, T1-

By this reason, the discussion of this example can be easily generalized to other cases, as far
as the sign of the formulas we want to prove is by Koszul rule and we are given an identification
of the moduli spaces we use to moduli spaces of pseudo-holomorphic disks (polygons).

17.3 Orientation of the moduli space of pseudo-holomorphic drums

In this subsection, we study the orientation of the moduli space of pseudo-holomorphic drums,
Definition 8.15. The quilted domain W there is divided into three pieces W1, W5 and W3 and
ui: Wiy — X; is —Jx, holomorphic. We identify W; = [—1,1] x R and put W, = [-1,0] x R,
W™ =[0,1]xR. Let u;, u; be the restriction of u; to W;", W,”. We define @; = (@; ,a;): [0,1]x
R — X2 by 4; (t,7) = u; (t,7), 4] (t,7) = u; (—t,7). Then

(ﬁl,ﬁz,ﬂg): [—1,0] xR — (—Xl X Xl) X (—Xg X Xg) X (—Xg X X3)
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is pseudo-holomorphic. See Figures 17.6 and 17.7. In Figure 17.6, we add 3 extra seams that
are depicted by dotted lines in Figure 17.6. The boundary condition becomes the product of
diagonals [[>_, Ax, at the boundary {0} x R and is L3 x L1 X Ly3 at the boundary {1} x R.

Let L be the disjoint union of H§:1 Ax, and Li3 X Lig X Log. It is an immersed Lagrangian
submanifold of [T>_,(—X; x X;).

We decompose

3
HAXi anzl(—XiXXi) (2113 X Elg X I~123)

=1

into components Ryo3(a), a € A.

Figure 17.6. Adding diagonal to a drum.

=

Ax, x Ax, X Ax, Ly3 x Lyg x Log

[
Figure 17.7. Regard a drum as a strip.
Thus the above construction defines a map
Dob: MR (L3, L1z, Lassa—,ay; E)
— M(Axl X AXQ X AX3,L13 X L9 X ng;a_,a+;E). (17.21)

[e]e)
Here the moduli space Mpgr(L13,L12, Le3;a—,ay;E) is a special case of the moduli space
Mpr(@13, @12, @23; a—, ay; E) in Definition 8.15, where @13, @12, d23 are empty sets.!”? M(Ax, x

17-9Tn other words, we do not put marked points on the seams.



Unobstructed Immersed Lagrangian Correspondence and Filtered A., Functor 263

Ax, X Axy, L1a X Lag X L13;a—,a4; E) is the part of M(L,a_,a4; E) which is used to define
the boundary operator

nop,o: CF(AXl X AX2 X AX37L12 X L23 X ng)
— CF(AXl X AXQ X AX37L12 X Loz X ng).

(17.21) is an isomorphism of Kuranishi structure and so we can use orientation of the right-
hand side to define orientation of the left-hand side. This implies Proposition 8.19 (3). We
remark that once Proposition 8.19 (3) is proved then the choice of 013, the relative spin structure
of the geometric composition L13 = Lia X x, Log is obtained in the same way as the proof of
Lemma 6.7. Namely, we apply Proposition 8.19 in the case L1z = L1 X x, L23. Then the triple
fiber product

A X x2y x2x X2 (f/12 X Log % f/13) = U Ri23(a) (17.22)

a€A123

contains a ‘diagonal component’ which is diffeomorphic to L15. We can use Lemma 3.11 to prove
the unique existence of the relative spin structure o3 on I~/13 so that the orientation bundle ©_
induced on the diagonal component Lis is trivial.

Now we include boundary marked points. In other words, we use the structure operation of
the bimodule structure

Neom - BkCF[l](AXI X AXQ X AXg) &® CF(AXI X AX2 X AX37L12 X L23 X L13)
& BmCF[l](ng X L23 X L13) — C’F(AX1 X AX2 X AX37L12 X L23 X ng) (17.23)

to define the structure operations

ri,<Eg, . .
e, CF(Liz) ™8 @ CF(Lyg)®*2
® CF (L3, L1z, Laz) ® CF(La3)®* — CF(Ly3, L12, L23) (17.24)

of the tri-module structure. We use appropriate triples I3, I12, 23 which splits {1,...,m}
(m = k13 + k12 + ko3), in the same way as (17.11). We use again the Koszul sign rule. Namely,
(17.24) is a sum with Koszul sign of (17.23) over the choice of I13, I12, I23. (In (17.23), we put
k =0, see (def.3).)

Now taking into account similar points as (dif.1) (dif.2) and the next point (dif.3), the bi-
module property of (17.23) implies the tri-module property (8.17) of (17.24), with sign.

(def.3) The bubble at the Lagrangian submanifold Ax, x Ax, x Ax, appears in the com-
pactification M(Ax, X Ax, X Ax,, Li2 X Loz X Li3;a_,ay; F) but there is no corresponding
boundary component in the compactification of the moduli space ./\/l]r)efg{(ng, Lis, Los;a_,a4; E).

In fact, the disk bubble at Ax, x Ax, x Ax, corresponds to the sphere bubble of an element
of M{SE(L13, L12, Los; a—, at; E) at the seams depicted by the dotted lines in Figure 17.6. Since
they are sphere bubbles and occurs in codimension > 2, they do not contribute the formula. In
other words, we can consider only & = 0 case of (17.23) and obtain a left CF(Li3), CF(L12)
and right C'F'(Leg) tri-module structure.

17.4 Orientation of the moduli space of Y-diagrams

In this subsection, we study orientation of the moduli space of Y-diagrams. We consider Y-
diagram as in Figure 9.1 and Definition 9.6. We put 3 extra seams which are depicted by dotted
lines in Figure 17.8 below. The domain ) in Figure 9.1 is divided into three pieces ); (i = 1,2, 3).
The added seams divide each of ); into two pieces ); 4 and V; _ as depicted in Figure 17.8.
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Definition 9.6 defines a moduli space /{Djly(c_im, {23, d13; A1, G2, (3, Goo,— s Goo,+; £). We consider
the case when @9, das, d13; d1, d2, ds are all empty sets and write it as My (L1, Lo, Ls; L12, Los,
L13; oo, Ao, 13 E).

We consider an element (X; 21, 22, 23; 212, 223, 213; U1, U2, U3} V1, V2, ¥3; Y12, V23, 713) of the mod-
uli space My (L1, L2, L3; L12, La3, L13; oo — , Goo +; ). We restrict u; to ); + and ); — and ob-

tain u; and u; .
S23
9, S 2,

)
= Ax,

Ax,

Sl 3 N
Ay, &

V3, —

Figure 17.8. Split domains in the Y-diagram.

9,

4
Vst
Y-

J

“

We identify ); + and ); — with a triangle T in Figure 17.9. We use a holomorphic map to
identify V; + with T and an anti-holomorphic map to identify ); — with €. By this identification,
the point depicted by the white circle (resp. the gray circles) in Figure 17.8 is sent to the point
depicted by the white circle (resp. the gray circle) in Figure 17.9. Three ends of the domain )
in Figure 17.8 is sent to the black circle in Figure 17.9. Thus u:r and u; , i = 1,2, 3, altogether
induce a pseudo-holomorphic map 4: ¥ — Hle (—X; x X;). At the three boundary components,
the map @ satisfies the boundary condition given by the Lagrangian submanifolds H?:l Ax;,
Lia x Lag x Ly3, L3 x L3 x L3, respectively.

Ay (L x Ly x Lg)?

1 X AXz x AX:; ..°'..

Lyg x Lag x L3

Figure 17.9. Reglue maps from the Y-diagram.

The boundary conditions at the three vertices are obtained as follows. a., — assigns a compo-
nent Ri23(aso,—) of the fiber product (17.22) (see (9.3)). This boundary condition is used at the
vertex depicted by white circles in Figure 17.9. We next use Goo + = (Goo 4,125 Goo,+,23, Goo,+,13)-
Then determine components Riy(aoo yii7) of Li Xx, Ly X Xy Ly (see (9.2)). Here (i) =
(12),(23),(13). Then the boundary condition at the black circles is given by

R(Gso+) := R12(000 4,12) X R23(000 +23) X R13(00o0,+,13)-

We finally describe the boundary condition at the vertex drawn by gray circle in Figure 17.9.
It should be a component of the fiber product

3
(H AXt) Xng’:l(_XiXXi) L% X L% X L%
=1
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We take the diagonal component = L; x Ly x L3 and its fundamental class as the boundary
condition. We denote by

Mgeg <H Ax,, L1a x Loz x L3, L% X L% X Lg; A, R123(000,— ), R(Goo,+); E)

the moduli space of such holomorphic triangles.
Thus the above construction defines a map

Dob: My (L1, L2, L3; L2, L23, L13; Goo,—, Goo,+; E)
— Mgeg(H Ax,, L1z x Log x L3, LT x L3 x L3;

A, Rizs(ace ), R(d@so.s); E) . (17.25)

The orientation of the right-hand side of (17.25) is defined by Proposition 3.29. We thus define
the orientation of My (L1, Lo, L3; L12, L23, L13; Goo,—, oo +; E) so that (17.25) preserves orienta-
tion. This proves Proposition 9.8 (3).

We show the compatibility of the orientation at the boundary below. We consider the codi-
mension one boundary component of the target of (17.25). We divide it into various cases.

Case 1. Disk bubble at [[ Ax,. There is no corresponding codimension one boundary com-
ponent in the source of (17.25). In fact, this corresponds to the sphere bubble at the seams
depicted by the dotted lines in Figure 17.8. This occurs in codimension > 2.

Case 2. Disk bubble at Lis X Log x L13. This corresponds to the disk bubble in Figure 9.4.
The homotopy class 8 of such disk is determined by

3
T2 (H(X’ x X;), L1a X Log % L13> = H mo(Xi X Xiir; Lyt ).
i=1 (#1")=(12),(23),(13)

If B = (B2, a3, B13) and at least two of B2, a3, B13 are nonzero, then there is no corresponding
component in the source of (17.25). The reason is the same as the reason why Figure 17.2
appears in codimension > 2. Therefore, it suffices to consider the case when only one of (519,
(Bo3, P13 is nonzero. The boundary component corresponding to such cases corresponds to the
boundary component described by Figure 9.4. Therefore, the orientation is consistent at this
boundary component.

Case 3. Disk bubble at L? x L2 x Lg. The homotopy class of such bubble is given by
(IT(m2(X;, L;)))?. By the same reason as above it suffices to consider the case only one of those 6
factors is nonzero. Then it corresponds to the boundary component depicted by Figure 9.5 in
the right-hand side. Thus the orientation is consistent at this boundary.

We next consider the boundary component corresponding to the three vertices of ¥.

Case 4. The boundary component corresponding to the white vertex. This is described by
the fiber product of

M(H Ax;; Lia x Lag X Ls; R123(a)) (17.26)
with
Mgeg <H AXi, L12 X L23 X L13, L% X L% X Lg, A, R123(a), R(6w7+); E)

over Rys3(a). We apply the identification of (17.21) and (17.26). Then this boundary component
corresponds to one in Figure 9.6. Thus the orientation is consistent at this boundary.
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Case 5. The boundary component corresponding to the black vertex. This is described by
the fiber product of

M (T] Axio Lro X Loy x Lug, L3 x 13 x LA, (0o, ), R, 1) E)

with MLz x L3 x L3, L{ x L3 x L3; R(d@l, ), R(dso,+)) taken over R(dl, ;). We put @, , =
(Ao 4 12> Ao 4+ 235 @ 4 13)- In the case when two among the three inequalities al,, | 15 # Goo +,12,
Ao 123 7 Goo,+,23, Qi 4 13 7 Goo,+,13 hold, the corresponding component in the source of (17.25)
has codimension > 2. (The reason is the same as Case 2.) Therefore, it suffices to consider the
case when exactly one of the three inequalities al, | 15 # oo 1,12, @ 4 93 7 Goo,+,23) U 4 13 7
(oo,+,13 hold. This case corresponds to one depicted in Figure 9.7. Thus the orientation is
consistent at this boundary.

Case 6. The boundary component corresponding to the gray vertex. The corresponding
component in the source of (17.25) has codimension > 2. In fact, it corresponds to the case
when there is a disk bubble exactly at the gray vertex of Figure 17.8. This is a codimension 2
phenomenon.

We thus checked the consistency of the orientation at the codimension one component. We
proved Proposition 9.8 (3).

Proof of Proposition 9.2 (1)~. Given L1, La, L1z, Loz we consider the case when Ly =
L1 X x, Loz and L3 = Lo X x, Loz = L1 X x, Lo3.

We take the diagonal component as a for Ry23(a) and aeo +.12, Qoo 4,235 Goo,+,13 for R(Aso + ).

Given relative spin structure o1, o129 of l~L1, f)lg, we have chosen the relative spin structure oo
of Lo so that the local system associated to Ri2(too,+,12) = Lo is trivial. We also have chosen
the relative spin structure o3 of Elg so that the local system associated to Rjs3(a) = I~/13 is
trivial. -

We consider the moduli space M(Ly, La, L; L12, La3, L13; Goo,—, Goo,+; 0) consisting of con-
stant map. It corresponds to the moduli space of constant maps

M (T] Axis i X Loy x Lug, L3 x L3 x I A, (0o, ), Rl(@,4):0).

This space is diffeomorphic to L3 and is oriented.

Therefore, by Proposition 3.29, for any choice of relative spin structure og of L3, the local
system induced on Ri3(Goo +,13) = f)g is isomorphic to one on Ra3(deo,+ 23) = ig.

If 03 = oél , then it is trivial for Rog(aco +23) = Ls. It o3 = o5 then it is trivial for

R13(a0o,+,13) = L3. Therefore, Jél) = 0:()) . Proposition 9.2 (1) is proved. [

We next include marked points on the boundary of Y-diagram and will prove the equal-
ity (9.23) with sign.

Including marked points on the boundary the target of (17.25) becomes the moduli space
which is used to define structure operation

Moy tmgtmst3: BOFm, (H Axi) ® CF(A) ® BCFy, (L12 x Loz x L13) ® CF(R123(a))
® BCOFp, (L x L3 x L3) = CF(R(iso,1); E)), (17.27)

of a filtered Ao category assigned to [](—X;x X;) and its Lagrangian submanifolds {J] Ax,, LT x
L% X L%, L1y X Log X ng}. It satisfies the Ao relation. We convert first and second factor of
the output CF(R(Gso,+)) = CF(R(00,+,12)) ® CF(R(00,+23)) ® CF(R(a0o,+,13)) to the input
by duality.

Then the operation (17.4) with an appropriate sign becomes the operator %7 5125 s Jers kKo ks
in (9.20). Here m; = 0, ma = k1o + kos + k13, m3 = k1 + ko + k3. We use the Koszul rule
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in the same way as Sections 17.2, 17.3, to define the sign. Then taking into account (def.2),
the Ay relation for (17.4) becomes the equality (9.23) with sign. (We use the fact that some of
the terms of the A relation of (17.4) is absent in (9.23). The reason is explained in Cases 1-6
above.)

17.5 Orientation of the moduli space of double pants diagrams

In this subsection, we study orientation of the moduli space of double pants diagrams. We draw
double pants as in Figure 11.4 and put 12 seams as in Figure 17.10 below. In Figure 17.10, the
new seams are depicted by dotted lines. We have new vertices also. There are 4 black vertices
which are new. The circles of Figure 11.4 are now depicted by white vertices in Figure 17.10.
There are 4 white vertices in Figure 17.10. Here the outer circle in Figure 17.10 should be
regarded as a vertex. (In other words, the domain should be regarded as 5’2.)

Figure 17.10. Adding seams to double pants.

We cut the domain in Figure 17.10 and obtain the triangle ¥ in the Figure 17.11 below.
The maps u; (i = 1,2,3,4) in Definition 11.9 induces a map 4: T — H?:l(—Xi x X;). Its
boundary condition is given by Ay, x Ax, X Ax, x Ay, for the (two) dotted edges and
[65)=12),(13).14),(28).(24),(34) Lij for the other edge.

3 .l.
o .,
g N

X AX2 X AXg X AX4 ,.". ., Ax

g I .
o *,
R ~,
o (N

Lij
(i5)=(12),(13),(14),(23),(24),(34)

Axl , X AX2 X AXg X AX4

Figure 17.11. Regluing double pants.

We thus obtain an identification of the moduli space ./c/ol((d’,-i/; i,4"); (agrin;i,4',i"); E) of Defini-
tion 11.9 with the moduli space of pseudo-holomorphic triangles depicted in Figure 17.11. There-
fore, applying Proposition 3.29 to the moduli space of pseudo-holomorphic triangles depicted in
Figure 17.11, we obtain an orientation of the moduli space Mpp((@;;;1,1); (agr;i,i',i"); E).
The compatibility at the boundary can be proved in the same way as Section 17.4. It implies
Proposition 11.10 (3).

The proof of Proposition 11.16 (1) is the same as the proof of Proposition 9.2 (1) given in
Section 17.4.
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We consider marked points on the seam in Figure 17.10. Then the double pants transfor-
mation 22 .7¢ in Definition 11.12 is defined by using appropriate Ao, operation (which is
defined from (17.11) with marked points added). The sign is defined by Koszul rule. So again
taking into account (def.2), A formula implies formula (11.12) with Koszul sign.

17.6 Orientation and sign for A, -structure in the Morse-Bott case

The proof of As-formula with sign is written in detail in the case of a single embedded La-
grangian submanifold in [35, 46, 72] etc. For an immersed Lagrangian submanifold which has
transversal self-intersection, it is written in detail in [4]. The latter implies the A, formula
with sign in the case when we have finitely many immersed Lagrangian submanifolds which
have transversal self-intersection and are mutually transversal. We can prove it in the case of
immersed Lagrangian submanifold which has clean self-intersection (Morse-Bott type) in a sim-
ilar way. Since it is not easy to find a reference which describes Morse—Bott case in detail, we
below explain the way to obtain the orientation which gives As-formula with Koszul sign in
such a case.

In this subsection, we follow Akaho—-Joyce’s method in [4] and will explain how we modify
it to generalize to the Morse-Bott case. In the paper [68], written by Kaoru Ono, the way to
generalize [46] to the Morse-Bott situation will be written.

We consider the moduli space M(L; @; E') defined in equation (3.19). It comes with evaluation
maps (3.21)

ev = (evg,...,evg): M(L;a; E) — L(Q). (17.28)

Here L(d@) = L(ag) x --- x L(ay) is a direct products of connected components of Lxx L. In
[], L xx L minus dlagonal components is written as R. (In their case, R is a finite set. In
our case, it is a disjoint union of smooth compact manifolds.) In [4, p. 425, equation (50)],
Akaho and Joyce take a product of M(L;d; E) with vector spaces associated to each point R to
obtain /\/l( E). (They use the notation M. The author changes it to M since M is used in
Definition 3.19.)
Let x € L(a) which is not in a diagonal component. We consider operators
0z, LAZ_TuX;M\a;0) = L3 (Z_; T, X;6),

-

0z L2433 Te X Ma; 0) = Lip 1 (215 T2 X56)

as in (3.5). Here we fix a choice of A;. As is proved in [4, Proposition 5.15], the definition
of orientation and sign which we describe below is independent of such a choice. To study
orientation problem we can work locally on L(@). So when z is in a (small) neighborhood of
given xg we can and will take a choice of A\, depending continuously on x. We can also perturb
appropriately so that 0z, », are surjective. Then Kerdyz_, defines a vector bundle on L(a).
(More precisely, on a neighborhood of zo of L(a).) We denote its total space by L(a ). In
case L(a) is a diagonal component, we define L(a) = L(a). We put L(a@) = L(ag) x --- x L(ay).
Following [4, equation (59)] we put

M\(L; a; B) = M(L; @ E) X 13 L(a). (17.29)

Note that the line bundle ©, appearing in Proposition 3.29 is the determinant line bundle
of L(a;) = L(a;). Therefore, Proposition 3.29 implies that M (L;d@; F) has a canonical orienta-
tion.

For i = 0, the convention of €v( in [4, equation (62)] is slightly inconsistent with our conven-
tion of evg at the point which we explain below. Let ¢ be the involution L x Pe L — Lx X L

defined by o(z,y) = (y,z). We denote by L(c(a)) the component to which L(a) is sent by o.



Unobstructed Immersed Lagrangian Correspondence and Filtered A., Functor 269

(If L(a) is a diagonal component, then o(a) = a.) The 0-th evaluation map used by [4] is
the composition o o evy, where evq is the evaluation map (17.28). From now on, in this sub-
section we use [4]’s convention. Namely, we change the definition of evy to those by Akaho—
Joyce.! 710 This is only a matter of notation and there is no mathematical difference. Note that
then L(@) = L(o(ap)) x L(a1) x -+ x L(ag) in this convention.

We next describe the evaluation map following [4, equations (61) and (62)]. We first de-
fine L(a) by modifying a bit [4]’s R. (We need slight modification since our L(a) may not be
discrete.) Let x = (p,q) € L(a). We take \; € P2%. (See Definition 3.7.) Then as we proved
in (3.6), we have

T,L =~ Kerdy , @ KerEZJ”)\x @ T,L(a). (17.30)

We take a vector bundle on L(a) (more precisely on a neighborhood of g in L(a)) whose fiber
at x is Ker gzﬂ A, @ Kerdy 2, and define [:(a) to be the total space of this vector bundle. We
remark that L(a) may not be orientable. However, since we assume L to be oriented L(a) is
oriented.

We put L(@) = L(o(ag)) x L(a1) x --- x L(ag). For o(z) € L(c(a)), we take Ao(z) to be the
opposite path to A\;. Then we have canonical isomorphisms

Kergz_)\a(z) = Ker5Z+’)\z, Ker52+’>\a(z) = Kergzﬂ,\z.

In particular, the involution o: L(a) — L(o(a)) lifts to an involution o: L(a) — L(co(a)).

We remark that (17.30) implies that dim L(a) = n for any a. (Here n = dim L.) (The
right-hand side is independent of a. This is an advantage to replace L(a) by i(a))

Now we define ev = (evy,...,evg): M(L;a; F) — L(@) in a similar way as [4, equations (61)
and (62)] as follows. We remark that an element of M\(L; @G E) is (xr;(&)F,), where & €
Kerdy for i ## 0 and & € Kerdz_ ) We put

ev; () o(evg(x

&vi(r) = (evi(r), &) € L(ai), i#0,  evi(x) = (evo(r),0(&)) € L(o(ag)), i=0.

We remark that (&) € Kerdz, , We use this fact and Theorem 3.24 to prove the following:

Aevo (e

Proposition 17.4. /T/l\(L; d; E) has Kuranishi structure with corners whose normalized boundary
1s the disjoint union of the fiber products as follows

oM(Lia;B)= [ (~0)"M(L;a(b,i,5.2); Ba)ev,
By i Ba—r

Xevips M(L;d(b, 1,5, 1); Ev). (17.31)

(17.31) is mostly the same as (3.38),!"!! but we replace M by M and ev by ev. We also
remark that the order of first and second factors in the right-hand side of (17.31) is the same as
[4, equation (73)] but is opposite to [46, equation (20.11)]. (See [4, the last part of Section 4.2].)
In this subsection, we follow [4]. Note that in (17.31) €v;41 is used at the place where €v; is used
in [4]. This is because of the convention used in @(b,,7,2) and d@(b,i,7,1) and is not related to
the mathematical contents of the formula.

Now we state the compatibility of the orientations with the isomorphism (17.31), that is, the
sign * in (17.31). As we mentioned already, Proposition 3.29 can be restated that M\(L; a; F)
is oriented. Also in (17.31) we take the fiber product over L(a), which is always n-dimensional
and oriented.

1710The map evo used to define (17.29) is the one in (17.28). With this choice our M coincides with [4]’s M.
17:11(3.38) is the case of Theorem 3.24 (3) when the graph I' has one interior vertex.
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Therefore, the situation is the same as the case of A, algebra associated to a single embedded
Lagrangian submanifold. We require * = n + (¢ + 1) + (i + 1)ko. This is the same as [4,
equation (73)] except i is replaced by i + 1. (It is different from [46, equation (21.7)] by the
above mentioned reason.)

The rest of the argument is mostly the same as [4]. Let P; = (F;, f;) be a chain in L(a;). More
precisely, it is a smooth singular chain with an orientation of ©,, — ® Det Np,L(a;) given.!712
(Such a chain can be used to calculate the cohomology of L(a;) with ©,, — coefficient. Note
that in case O, _ is trivial, the chain is co-oriented and so is related to cohomology rather than
homology. We remark that L(a;) may not be orientable. Even in such a case the set of singular
chains with co-orientation is a model of its cohomology.) We put

Py =P, x Kerdz_ (17.32)

o(zg)”
Here we take A, (4, for zo € L(a;) and assume the image of f; is in a small neighborhood of zy.
Compare [4, equation (68)]. Note that

Kerng)\o(ze) = Ker52+7>\zo. (17.33)

Then by the definition of ©,,,— and (17.30) the chain P; is oriented.'™  Using (17.33), we
obtain f;: P; — L(a;) in an obvious way.
Now we define
/\//\I(L;c_i; E; P) := (—1)*M(L; @ B) x

) P x By (17.34)

a1)><-~-><i(ak

Here we use 6v; and f; to define the fiber product. The sign is

k
x=(n+1)Y (k—1{)degP,. (17.35)
(=1

Since deg in [4] is the shifted degree deg’ in FOOO’s notation (see [4, p. 418]), (17.35) exactly
coincides with the sign in [4, equation (79)]. (In (17.35), deg Py is one in FOOQO’s convention.)
Note that the degree of the chain in L(a;) as an element of CF(L(a;—1), L(a;)) is shifted from
its codimension in L(a;) by the dimension of Kerdy Aey- (It is the Morse index in the related
context of Morse—Bott theory.) Therefore, the degree of P; as an element of CF(L(a;—1), L(a;))
is equal to the codimension of P; in L(a;).

It is easy to see that M\(L; a; E; ﬁ) coincides with

M(L; @ E; P) = M(L; @ E) X (ay)xxL(ay) P % -+ X Py (17.36)

as spaces with Kuranishi structure (if we forget the orientation). The reason we rewrite (17.36)
to (17.34) is then the correction term to orientation is easier to write down. The map €vy: M (L;
@;E) — L(ag) induces 6vg: M\(L; @; E; P) — L(ag). If we triangulate the domain, it gives
singular chains of E(ao). It is easy to see that those singular chains are related to the singular
chains obtained from evo: M(L;a@; E; P) — L(ag) by the formula (17.32).

Now the rest of the construction is entirely the same as [4, pp. 434-444] and we obtain
operations which satisfy A, relations with Koszul sign, in the singular chain complex model.
As is explained in [29] (see the discussion around formula [29, pp. 190-191]), the sign and
orientation in the singular homology model induces one in the de Rham model.!”1

In the paper [68] by Kaoru Ono, the direct discussion based on de Rham model is given.

1712Here we denote by Np, L(a;) the normal bundle. The determinant line bundle of the normal bundle is defined
even in the case f;: P; — L(a;) is not an immersion.

17-131t might be more natural to say that it is co-oriented. However, in our situation the ambient manifold f/(ai)
is oriented. So ‘oriented’ and ‘co-oriented’ are equivalent.

17-14Gince we converted the situation to the case when all the fiber products involved are taken over n-dimensional
oriented manifolds, we can also import the method of [46].
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18

Concluding remarks

18.1 What we need to convert informal Definition 1.1 /

Informal Summary 1.2 into formal ones

In this subsection, we explain certain issues which will appear when one tries to give a rigorous
versions of Definition 1.1 or Informal Summary 1.2. We explain the following three points:

(A)

(B)

(©)

In Theorem 1.3, we take a finite set of Lagrangian submanifolds (not all the Lagrangian
submanifolds) and the object set of the curved filtered A, category is this finite set.

The geometric transformation of a Lagrangian submanifold L; by a Lagrangian corre-
spondence Lio is defined under certain transversality assumptions. The composition of
Lagrangian correspondences is defined under certain transversality assumptions.

The commutativity of several diagrams such as (1.1) or (1.10) is up to homotopy equiva-
lence and is not strict.

We elaborate on those points below.

(A)

In Theorem 1.3, we take a finite set of (immersed and spin) Lagrangian submanifolds L
of (X,w) and an object of our filtered A, category is a pair (L,b) of an element L of L
and its bounding cochain b. This category of course depends on the choice of I and so is
not canonically associated to (X,w). A natural way to make it more canonical is taking
all the Lagrangian submanifolds. There is an issue for such a construction.

First we use a trick in Section 3.4 to reduce the construction of a filtered A, category to
one of a filtered A, algebra, by taking disjoint union of all the elements of I and regarding
it as a single immersed Lagrangian submanifold. This trick does not work if I has infinite
order. However, this point itself does not seem to be so serious since we used this trick
mainly to shorten the paper.

The other and more essential issue is gappedness. Our construction in Section 3 is based
on the induction on energy filtration. We took and fix a discrete submonoid G = {0 =
Ey, Eq, ...} of R>g and construct an A, category modulo TFi by an induction on i. The
monoid G is generated by the set of symplectic areas of the all pseudo-holomorphic maps
(polygons, strips and etc.) which appear during the construction. Such G is discrete by
Gromov compactness when L is finite. In the case L is infinite we cannot take such a
discrete submonoid G.

In a certain situation, we can overcome this problem by using ‘homotopy inductive limit’
as follows. Suppose we have a countable set of spin immersed Lagrangian submanifolds IL
of (X,w). We take finite subsets LU) of L for each j = 1,2,3,... such that LU) ¢ LU+Y
and the union of all L) is L. For each j, we can take a discrete submonoid G such
that we can construct a Gj-gapped filtered A, category SuEst((X ,w), LU )) from the finite
set LU). We may assume G; C Gj11. We next regard SuEst((X,w),L(j)) as a Gjq1-
gapped filtered A, category. Then we can construct a Gji-gapped filtered A, functor
Futst((X,w), L(j)) — Futst((X,w), LOH)) which is a homotopy equivalence to the image.
In this way we can construct an inductive system of filtered A, categories.

In the case when the completion (with respect to the Hofer—Chekanov distance [15]) of
the set of Lagrangian submanifolds we study is separable, we can use the above sequence
and construct the inductive limit ligSuEst((X,w),]L(j)) = Futst((X,w),L), see [32]. The
author does not know how much the separability assumption is essential.

Let L1o C — X1 x X5 and Log C — X9 X X3 be immersed Lagrangian correspondences. If the
fiber product Lia X x, Log is transversal, then it becomes a Lagrangian correspondence C
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— X1 x X3. If those Lagrangian correspondences are self-clean, then assuming Lio, Log are
unobstructed, we proved that the composition of correspondence functors Wz, 4,,) and
W(Las,b25) are Tepresented by an unobstructed Lagrangian correspondence (Lis, b13). (We
need to restrict ourselves to a finite set of Lagrangian submanifolds because of point (A).)

However, if the fiber product L2 X x, La3 is not transversal, there is no good candidate of
a Lagrangian correspondence representing the composition of correspondence functors.

A possible way to resolve this issue is using the result of [32] as follows. We perturb Lo
to L5 by a small Hamiltonian isotopy. Then we obtain Li; = Li2 X x, L5; which is an
immersed Lagrangian correspondence. If bis and beg are bounding cochains of Lo and Log
respectively, then we obtain a bounding cochain 075 of L§;. We can show that for &, — 0,
the sequence (L73,b7%) becomes a Cauchy sequence with respect to the Hofer distance as
objects of Fust(—X; x X3) (see Definition 15.1).!%! Generalizing various constructions
of this paper to the completion of filtered A, category via Gromov—Hausdorff distance
(which is introduced in [32]), it seems likely that we can define the composed functor as
the limit of W(L‘i?:bié’)‘

We remark that if we change the coefficient from Novikov ring Ag to its field of fractions
A, then the problem becomes easier to handle. In fact, over A two objects (Las, bog) and
(L33, b55) are equivalent. So we do not need to take the limit as above. On the other hand,
the Lagrangian Floer theory over Ag is much richer and contains much more information
than the Lagrangian Floer theory over A.

By inspecting the proofs of the commutativity of diagrams (1.1) and (1.10) given in this
paper, we find that they actually do not strictly commute but commute only up to homo-
topy equivalence. It seems likely that there is a certain pseudo-isotopy which interpolates
two compositions appearing in the diagram. Those pseudo-isotopies are well-defined up
to pseudo-isotopy of pseudo-isotopies. For the composition, we can also try to understand
the ‘higher associativity’, as follows. In the case when we consider four unobstructed im-
mersed Lagrangian correspondences (L;(it1),bii+1)), @ = 1,2,3,4, from X; to X1, the
correspondence functors W(r,,, b15)s WiLos,b23)s W(L3a,b31)> YW(Las,bas) €an be composed in
various different orders. For example,

W(L45,b45) © (W(L34,b34) © (W(L23,b23) © W(L12,b12)))’
((W(L45,b45) © W(L34,b34)) ° W(L2371723)) o W(L12,b12)

and etc. There exist pseudo-isotopies between the compositions with different orders.
Moreover, it seems likely that one can construct a pseudo-isotopies of pseudo-isotopies
parametrized by the Stasheff 2-gon. It seems likely that one can continue and obtain a
certain infinite category type construction, if the issues (A), (B) are resolved.

The above discussions sketch a possible way to proceed to overcome (A), (B), (C) and actually
prove ‘Informal Summary 1.2°. However, the actual works needed to carry out those plans are
extremely heavy and likely become extremely lengthy. So I think taking a break at the point
where we proved the results in this paper before going further is a reasonable choice.

18.2 Relations to the works by Bottman—Wehrheim

In this subsection, we mention relations of this paper with several papers by Bottman [11, 12] and
Bottman—Wehrheim [13]. First we review briefly the method of a strip shrinking, introduced by
Wehrheim—Woodward, in the simplest case. In Section 5.2, we consider a moduli space consisting

181N foreover, it is a Cauchy sequence with respect to the Hofer infinite distance, which is introduced in [32].



Unobstructed Immersed Lagrangian Correspondence and Filtered A., Functor 273

of uy, ug where uy: [—1,0] x R — X; and us: [0,1] — X5 are pseudo-holomorphic maps, which
satisfy a certain matching (boundary) condition at {0} x R. One can generalize this moduli space
so that u is a map from [—S5,0] x R for a certain S > 0. We denote by Mqr(L1, L2, L2; S) the
moduli space obtained in this way.'®? We can then proceed in the same way to obtain a tri-
module, which we denote by €% (L1,LL12;Lo;S). We can use it instead of €. % (L1,L12;Lo) to
obtain a filtered A, functor, W}?m : Jutst(Xq; L) — Jukst(Xy; Lo) in the same way as Sections 6
and 7.

Wehrheim—Woodward-Ma’u-Bottman studied the limit when S goes to zero. It is believed
that the limit limg_,o Mqr(L1, L12, L2; S) becomes a moduli space M(L), Lo) together with
bubbles on the boundary {0} x R. Here M(L}, L) is a moduli space of pseudo-holomorphic
maps u: [0,1] = Xo such that u(0,7) € L}, and u(1,7) € Ly and L} is the geometric transfor-
mation L; X x, Li2. See Figure 18.1.

L12
L1 L2 _} L/ X2 L2
2

0 1
Figure 18.1. Strip shrinking 1.

The bubble on the line {0} x R is called a Figure 8 bubble and in this case it is expected to
be described by a moduli space of (u1,u2) which are pseudo-holomorphic maps

Ui : [—1,0]XR—)X1, ug: [0,00)XR—)XQ

with boundary conditions u1(—1,7) € Ly, (u1(0,7),u2(0,7)) € Liyg, limy,eou2(t,7) = p,
where p € L}, is independent of 7. See Figure 18.2.

L12

X | Xo

L
! — pelL

-1 0
Figure 18.2. Figure 8 bubble 1.

The conjecture mentioned in Remark 1.6 claims that the virtual fundamental chain of the
moduli space of Figure 8 bubbles becomes a bounding cochain b/, of L, and the homology of the
tri-module €.% ((L1,b1), (L12,b12); (L2, b2)) becomes isomorphic to HF((L},bh), (La, ba)).

We conjecture also that b, is gauge equivalent to the bounding cochain we obtained in The-
orem 1.5 as follows.

We consider the bounding cochains b5(S) such that (L}, 05(S)) = VV*Lg12 (L1,b1). Using the
fact that €. % (IL1, L12; Lo; S) is pseudo-isotopic to €% (L1, L12; Le; S’) for S, S’ > 0, we can show
that b5 (S) is independent of S up to gauge equivalence. Note that b, (S) is characterized by the
condition that

ng (6b1,6b12; 1; ebIQ(S)) =0, (18.1)

1821t is an analogue of the moduli space Mqr (@1, @12, d2; a—,a+; E) introduced in Section 5.2. Since the discus-
sion here is heuristic, I do not include the marked points or energy in the notation.
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where ng is the structure operation of the tri-module ¢.% (L1, L12; L%; S) and 1 is the cyclic
element, which is the 0-form 1 on the diagonal component of the fiber product L; xx, L2 X x,
Ly = L) xx, L),

The tri-module €.% (L1, L12; LY; S) is expected to ‘converge’ to the Floer chain complex
CF(L),, L}) with the boundary operator corrected by b, which is

d(z) = m(ebé,x). (18.2)
Here b}, is the conjectured bounding cochain obtained from Figure 8 bubbles.!®3 It is easy to
see that

m(e%2,1,e%) = 0. (18.3)

Here m is the structure operation of the A, algebra associated to L, and 1 is the fundamental
class, which is the 0 form 1 of L. Comparing (18.1) and (18.3), we expect limg_,o b5(S) = bj.
Namely, the bounding cochain obtained from the moduli space of Figure 8 bubbles is gauge
equivalent to one in Theorem 1.5.

We mention a reason'®4 why the virtual fundamental chain of the moduli space of Figure 8
bubbles is not yet rigorously constructed. We draw Figure 18.2 on the 2 sphere as in Figure 18.3
below.

{0} xR {1} xR

Figure 18.3. Figure 8 bubble 2.

Two lines (seams) {0} x R and {1} x R on which we require boundary conditions are tangent
at the point co (which is required to be sent to p). This is different from the situation of the Y-
diagram, where 3 seams intersect transversally at the hole. The existence of tangency between
seems is a new phenomenon and Fredholm theory for such boundary valued problem is not
yet established. We like to mention Bottman [11, 12] and Bottman—Wehrheim [13] established
compactness and removable singularity, which is a very important step toward constructing the
virtual fundamental chain of the moduli space of Figure 8 bubbles.

18.3 Relation to the works by Ma’'u—Wehrheim—Woodward

As we mentioned in the introduction, Weinstein [82] proposed to regard a Lagrangian sub-
manifold of the product —X X Y as a morphism X — Y between symplectic manifolds.
Since Weinstein’s proposal looks so natural, there had been attempts to associate a func-
tor §o: Futst(X) — Fubst(Y) to an unobstructed immersed Lagrangian correspondence £ =
(L,b). A possible naive idea to do so is the following. Let L; be a Lagrangian submanifold
of X. Instead of associating an object of Futst(Y') to Li, we try to define a right Futst(Y)

18-3Note that d o d = 0 may not hold for the operator (18.2). We need to add bounding cochain of CF (L%, L)
which acts from the right also to obtain d’ such that d’ od’ = 0.
18-4%Which was known to various researchers before the year 2010.
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module §£(L1). In the cohomology level, F,(L1) can be defined by associating the Floer ho-
mology HF(L; L1 X L) in the product —X x Y to a Lagrangian submanifold Ly of Y. Actually
we can construct an A., functor

3ot Fubst(X) — RMOD(Fubst(Y)) (18.4)

in this way, as we did in Section 5. Here RMOD(Futst(Y")) is the DG-category of right Futst(Y")
modules. Because of Yoneda’s lemma, an object of RMOD(Futst(Y)) can be regarded as an
‘extended object’ of Futst(Y'). Thus (18.4) could be regarded as a version of F,: Futst(X) —
Sutst(Y).

However, the problem is in this formulation it is difficult to compose §.,, and §.,, where
Liti+1) = (Li(i+1)s bi(i+1)) is an unobstructed immersed Lagrangian submanifold of —X; x X;41,
for ¢« = 1,2. This point is mentioned also in the first page of [63]. In the early 2000’s, the
author tried to resolve this problem by a purely algebraic method of homological algebra of A
categories, but he was not successful.'8

Remark 18.1. The above naive idea can be regarded as a ‘finite-dimensional analogue’ of the
proposal [25] to construct instanton Floer homology of 3-manifolds with boundary as an A
module. In the moduli space introduced in [26] during the attempt to realize the proposal, a line
in the domain of C where the equation changes from the ASD-equation (on a 4-manifold) to the
pseudo-holomorphic curve equation, appears. This line plays the same role as seams play in the
study of Lagrangian correspondences. The moduli space introduced by Lipyanskiy [60] is more
directly an infinite-dimensional analogue of the moduli space of pseudo-holomorphic quilts.

As mentioned in Remark 1.6, Wehrheim—Woodward-Ma’u used the following idea to go
around this problem. For a given symplectic manifold X, they consider a series of Lagrangian
correspondences L; C —X; X X;y1 such that Xy is a point and X,, = X. They regard such
a system (Lg,...,L,) as an object of expanded category Fut”(X). Then, if L’ ¢ —X x
Y is a Lagrangian correspondence, one can define (Wpg)on: OB (Fut? (X)) — OB (Fut# (Y)),
by (Lo,...,Ln) = (Loy...,Lyn,L").

To define the Ay, category Fut” (X), one needs to define the Floer homology between ex-
tended objects (Lo, ..., Ln), (Lg,...,L},), where L; C —X; x X;41 and L] C —X| x Xj , Xo,
X are points and X, = X/, = X. They denote this Floer homology by HF(Ly,...,L,,L,,...,
L{)). Wehrheim-Woodward-Ma'u used the notion of a pseudo-holomorphic quilt to define it. The
pseudo-holomorphic quilt used to define HF (Lo, ..., Ly, L!,,..., Ly) is as in Figure 18.4 below.
Here u; (resp. u}) is a pseudo-holomorphic map to X; (resp. X/) and u is a pseudo-holomorphic
map to X.

: i P ’ ’ /
L() UIE Uug -+ - un U Un/ u25u1 LO

Ly L

Figure 18.4. A pseudo-holomorphic quilt.

18-5Theorem 1.5 resolves this problem by using more geometric input.
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Wehrheim—Woodward-Ma’u went further to define a version of the correspondence bi-func-
tor MWW : Fut? (—X x Y) x Fut? (X) — Fut” (V). Their works are very important contribu-
tions to the study of Lagrangian correspondence and Lagrangian Floer homology.

We remark that in a way similar to Theorem 16.17 (and using reflection principle in a similar
way as we used in Section 17), we can show the next isomorphism.

HF (Lo, .. Ly, Ll ... LG) 2 HF (Lo X -+ X Ly X Ly x - -+ x L1, A). (18.5)
Here
n—1 n'—1
AC <H(_X’i X XZ)) X (H (— X} x X;)) X (=X x X) (18.6)
i=1 i=1

is the product of diagonals. The right-hand side of (18.5) is the Floer homology of two La-
grangian submanifolds in the symplectic manifold given in (18.6).

The advantage to use a pseudo-holomorphic quilt rather than Floer homology in the direct
product (as in (18.5)) lies in the fact that, then, one can use a strip shrinking to prove the next
important isomorphism

HF (Lo, ..., Ln, L., ..., L{) 2 HF (Lo, ..., Lyp—1,Ln xx LI, L, _1,..., Lp). (18.7)
As mentioned in the last subsection, a strip shrinking is a process to change the width between
two seams until it becomes 0 (see Figure 18.5). Note that the method of using reflection principle
to replace Wehrheim—Woodward’s definition by (18.5) works only in the case when all the strips
have the same width. Therefore, it is not consistent with strip shrinking.

Figure 18.5. Strip shrinking 2.

Wehrheim—Woodward proved the isomorphism (18.7) under the assumption that all the La-
grangian submanifolds involved (including the fiber product L, xx L!,) are embedded and
monotone. The isomorphism (18.7) is a version of composability of filtered A functors associ-
ated to the composition of Lagrangian correspondences.

The reason why one does not need to study Figure 8 bubbles in the case when all the
Lagrangian submanifolds involved are embedded and monotone is as follows. One can show
that if the Figure 8 bubble occurs then it carries a strictly positive energy and so the virtual
dimension of the moduli space of the configuration drops at least 2 in the monotone case. By
this dimension counting argument, one can avoid Figure 8 bubbles in the monotone situation.
Later Lekili and Lipyanskiy [59] gave an alternative proof of (18.7) using Y-diagram. (They
assume embeddedness and monotonicity.)

This is somewhat similar to the usual Floer theory or Gromov—Witten theory. In the semi-
positive case, one can avoid sphere bubbles by the dimension counting argument. Therefore, one
does not need to find a Kuranishi chart at such ‘infinity’. When we study a symplectic manifold
which is not semi-positive then we need an abstract perturbation and so we need a chart centered
at a point of infinity, which corresponds to a stable map with sphere bubbles.
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Hofer distance, 216

hole, 103

hom-module, 124

homotopic, 196

homotopy equivalence, 18, 19
homotopy equivalent, 18, 19
homotopy equivalent over A, 216
homotopy functor, 196
homotopy inverse, 19

identity functor, 15

identity natural transformation, 18
immersed Lagrangian submanifold, 22
integration along the fiber, 41

interior edge, 32

interior marked points of first kind, 154
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interior marked points of second kind, 154

interior vertex, 32
isomorphism, 154

Kinneth bi-functor, 242
Koszul rule, 252

linear, 195

mapping transversality condition, 173
Maurer—Cartan solution space, 12
minimal energy, 202

model of € x [0, 1], 195

module of morphisms, 10
multi-module pre-homomorphism, 65

natural transformation, 16
non-unital, 10

normalized boundary, 35
normalized corner, 35

obstruction bundle data, 172
obstruction spaces, 172
opposite A, category, 19
opposite A, functor, 19
opposite bi-module, 137

opposite pseudo-holomorphic drum, 137

orientation local system, 38
outer collaring, 40

parametrized family of G-gapped filtered Ao

algebra, 202

parametrized family of tri-module structures,

211

partial P-parametrized family of G-gapped fil-

tered Ao algebras, 202
pointwise in P direction, 201
pre-bi-module homomorphism, 61
pre-natural transformation, 16
pseudo-holomorphic double pants, 141
pseudo-holomorphic drum, 96
pseudo-holomorphic quilt, 68
pseudo-isotopy modulo T, 44
pseudo-isotopy of pseudo-isotopies, 201

quilted drum, 95

relative spin structure, 23
relative Yoneda functor, 115
representable, 21

root, 67

seam, 68, 95

source deformation parameter, 167
source gluing data, 165

source gluing map, 168

source stabilization, 156

source stable, 155

stabilization data, 166

stable, 97, 105, 155

stable decorated ribbon tree, 32
stable map topology, 156, 204
strict, 12, 14, 56

strong homotopy equivalence, 197
strong homotopy inverse, 197
strongly homotopy equivalent, 197
strongly smooth, 222

strongly submersive, 40

structure operations, 10

switching components, 22
switching condition, 69

tensor product of filtered A, category, 241

thickening, 40

time ordered product, 222
transversal self-intersection, 23
tree of sphere components, 67
tri-functor, 64

tri-module, 65

unital, 12, 14, 56
universal Novikov field, 9
universal Novikov ring, 9

Unobstructed immersed Weinstein category, 3

weak isomorphism, 154
weakly submersive, 222

Y diagram transformation, 110, 112
Yoneda’s lemma, 21
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