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Abstract. In this paper, we ‘construct’ a 2-functor from the unobstructed immersed Wein-
stein category to the category of all filtered A∞ categories. We consider arbitrary (compact)
symplectic manifolds and its arbitrary (relatively spin) immersed Lagrangian submanifolds.
The filtered A∞ category associated to (X,ω) is defined by using Lagrangian Floer theory in
such generality, see Akaho–Joyce (2010) and Fukaya–Oh–Ohta–Ono (2009). The morphism
of unobstructed immersed Weinstein category (from (X1, ω1) to (X2, ω2)) is by definition
a pair of an immersed Lagrangian submanifold of the direct product and its bounding cochain
(in the sense of Akaho–Joyce (2010) and Fukaya–Oh–Ohta–Ono (2009)). Such a morphism
transforms an (immersed) Lagrangian submanifold of (X1, ω1) to one of (X2, ω2). The key
new result proved in this paper shows that this geometric transformation preserves unob-
structedness of the Lagrangian Floer theory. Thus, this paper generalizes earlier results by
Wehrheim–Woodward and Mau’s–Wehrheim–Woodward so that it works in complete gen-
erality in the compact case. The main idea of the proofs are based on Lekili–Lipyanskiy’s Y
diagram and a lemma from homological algebra, together with systematic use of Yoneda
functor. In other words, the proofs are based on a different idea from those which are stud-
ied by Bottmann–Mau’s–Wehrheim–Woodward, where strip shrinking and figure 8 bubble
plays the central role.
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16.3 The Künneth functor and the correspondence tri-module . . . . . . . . . . . . . . 248

16.4 Proof of Lemmas 16.6, 16.7 and 16.16 . . . . . . . . . . . . . . . . . . . . . . . . 248

17 Orientation and sign 251

17.1 Koszul rule in A∞ structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

17.2 Orientation of the moduli space of the simplest quilt . . . . . . . . . . . . . . . . 254

17.3 Orientation of the moduli space of pseudo-holomorphic drums . . . . . . . . . . . 261

17.4 Orientation of the moduli space of Y -diagrams . . . . . . . . . . . . . . . . . . . 263

17.5 Orientation of the moduli space of double pants diagrams . . . . . . . . . . . . . 267

17.6 Orientation and sign for A∞-structure in the Morse–Bott case . . . . . . . . . . . 268

18 Concluding remarks 271

18.1 What we need to convert informal Definition 1.1 / Informal Summary 1.2 into
formal ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

18.2 Relations to the works by Bottman–Wehrheim . . . . . . . . . . . . . . . . . . . 272

18.3 Relation to the works by Ma’u–Wehrheim–Woodward . . . . . . . . . . . . . . . 274

References 281

1 Introduction

The purpose of this paper is to ‘construct’ a 2-functor from the ‘unobstructed immersed Wein-
stein category’ to the ‘category of all filtered A∞ categories’. The next definition is a variation
of one proposed by Weinstein [82].

Definition 1.1 (informal definition). The unobstructed immersed Weinstein category is a cate-
gory whose object is a compact symplectic manifold and a morphism from (X1, ω1) to (X2, ω2)
is a pair of an immersed Lagrangian submanifold L12 of (X1 × X2,−π∗1(ω1) + π∗2(ω2)) and
a bounding cochain b12 on it.
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The notion of a bounding cochain is introduced in [34] and its generalization to the immersed
case is by [4]. We emphasis that Definition 1.1 is an informal definition. Various issues which
will appear when one tries to define such a 2-category literary are discussed in Section 18.1.

We consider a 2-category whose objects are (strict and unital) filtered A∞ categories (see
[27, 36] and Section 3 for its definition) and morphisms are (strict and unital) filtered A∞
functors. See Section 10, Theorem 10.1 and Section 10.6 for a version of the construction of
such a 2-category.

The main result of this paper could be summarized as follows.

Informal Summary 1.2. There exists a 2-functor from the unobstructed immersed Weinstein
category to the 2-category of all filtered A∞ categories.

This statement is informal and the author does not claim that its proof is in this paper. The
precise statements which we prove in this paper will be given in this introduction and the main
body of the paper. The relation between those results (proved in this paper) and the results
which would literary prove Informal Summary 1.2 is discussed in Section 18.1.

The idea to associate an A∞ category (whose object is a Lagrangian submanifold and whose
morphisms are Floer cohomology) is started by the author’s paper [22] (inspired by a S. Don-
aldson’s talk at University of Warwick 1992). The most essential step to make this construction
rigorous was carried out in [34], based on the virtual fundamental chain technique (see [49]).
The work [34] contains the detailed proof of the cases of a single Lagrangian submanifold and
a pair of Lagrangian submanifolds. The construction of a (unital and strict) filtered A∞ cat-
egory based on the Lagrangian Floer theory in [34] along the same line as [34] was written in
[2, 27, 36]. Akaho and Joyce [4] generalized this story and include Lagrangian submanifolds
which are not necessary embedded but are immersed. Thus we obtain the next theorem.

Theorem 1.3. Let (X,ω) be a compact symplectic manifold and L a finite set of its spin
immersed Lagrangian submanifolds.1.1 We assume that the self intersection of elements of L
and intersection between two elements of L are transversal. Then there exists a (strict and
unital) filtered A∞ category, Fukst((X,ω),L), such that

(1) An object of Fukst((X,ω),L) is a pair (L, b) where L is an element of L and b is a bounding
cochain of L in the sense of [4, 34].

(2) The module of morphisms CF ((L1, b1), (L2, b2)) from (L1, b1) to (L2, b2) is given as follows:

(a) If L1 ̸= L2, then CF ((L1, b1), (L2, b2)) is the free Λ0 module whose basis is identi-
fied with the intersection L1 ∩ L2. Here the universal Novikov ring Λ0 is defined in
Definition 2.1.

(b) If L1 = L2 = L, then CF ((L1, b1), (L2, b2)) is the completion of the tensor prod-
uct Ω

(
L̃×X L̃

)
⊗ Λ0 of the de Rham complex Ω

(
L̃×X L̃

)
and Λ0. Here our immersed

Lagrangian submanifold L is given by an immersion L̃→ X and L̃×X L̃ is the fiber
product of L̃ with itself.

(3) The cohomology group of CF ((L1, b1), (L2, b2)) is the Floer cohomology HF ((L1, b1), (L2,
b2)) defined in [4, 34].

Theorem 1.3 is Theorem 3.14 in Section 3, which is slightly more general.

Remark 1.4. In item (2b), we may also take H
(
L̃×X L̃; Λ0

)
(the cohomology group with Λ0

coefficient) instead of Ω
(
L̃×X L̃

)“⊗Λ0. The process to produce a structure on H
(
L̃×X L̃; Λ0

)
from one on Ω

(
L̃×X L̃

)
⊗ Λ0 is purely algebraic and automatic. See [34, Theorem 5.4.2’] for

example.

1.1In the introduction, we assume spinness of Lagrangian submanifolds rather than relatively-spinness, for sim-
plicity. The statement in the relatively spin case will be given in the main body of the paper.
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Theorem 1.3 is not new and the most essential part of its proof had been given in [4, 34].
(We use the de Rham version, while [4, 34] uses the singular homology version. This difference
however is not important but is rather of technical nature.) In the de Rham version, it is also
written and proved in [2].

Theorem 1.3 is the object part of ‘2-functor’ mentioned in Informal Summary 1.2. The
main new point of this paper is the morphism part of the ‘2 functor’ mentioned in Informal
Summary 1.2. The next theorem is the key new result. Let (Xi, ωi) be a compact symplectic
manifold for i = 1, 2. We assume they are spin.1.2 Let L1, L12 be spin immersed Lagrangian
submanifolds of (X1, ω1) and (X1 ×X2,−π∗1(ω1) + π∗2(ω2)), respectively. We say that they are
transversal if the fiber product L̃1×X1 L̃12 is transversal. In that case, the map L̃1×X1 L̃12 → X2

defines an immersed Lagrangian submanifold which we write L1 ×X1 L12.

Theorem 1.5. If L1 and L12 are unobstructed1.3 and the immersion L̃1 ×X1 L̃12 → X2 is self-
clean, then L1 ×X1 L12 is also unobstructed. There exists a way to obtain a bounding cochain
of L1 ×X1 L12 from bounding cochains of L1 and of L12, which is independent of the choices up
to gauge equivalence.

Theorem 1.5 is Theorems 6.3 and 7.3, which are proved in Sections 6 and 7. Note that
for generic (embedded) Lagrangian submanifolds L1, L12 of (X1, ω1) and (X1 ×X2,−π∗1(ω1) +
π∗2(ω2)), the fiber product L1 ×X1 L12 is an immersed Lagrangian submanifold of X2. How-
ever, it is not necessary embedded. Therefore, including immersed Lagrangian submanifolds is
inevitable.

Remark 1.6.

(1) The relation between a Lagrangian correspondence and an A∞ functor was studied in the
earlier works by Wehrheim–Woodward, Ma’u–Wehrheim–Woodward (see [63, 78] etc.).
Note that, in their situation where all the Lagrangian submanifolds involved are embedded
and monotone, the statement corresponding to Theorem 1.5 is classical (due to Oh), since
we can take 0 as the bounding cochain.

(2) To include more general objects than embedded and monotone Lagrangian submanifolds,
Wehrheim–Woodward proceeds as follows. They first consider embedded and monotone
Lagrangian submanifolds (with bounding cochain 0). They then enhance the set of such
Lagrangian submanifolds so that a sequence of Lagrangian correspondences

L1 ×X1 L12 ×X2 L23 ×X3 · · · ×Xk−1
L(k−1)k

is regarded as an object of Fuk#(Xk, ωk), the extended version of Fuk(Xk, ωk). Theorem 1.5
enables us to work with genuine geometric Lagrangian submanifolds rather than extended
objects. We will discuss the relation between our results and one by [63, 78] more in
Section 18.3

(3) The statement of Theorem 1.5 was known as a conjecture for a while. For example, the
author discussed this conjecture with several mathematicians during the years 2008–2015.
It was also mentioned by K. Wehrheim’s talk in 2012 [76] and is written as a ‘conjecture’
in [13]. More precisely, it had been conjectured that the virtual fundamental chain of an
appropriate moduli space of Figure 8 bubbles gives the bounding cochain in Theorem 1.5.
The conjecture of this form is still open. It is the opinion of the author that to prove
this version of the conjecture is a very interesting analytic problem. If this conjecture is
proved and a bounding cochain is obtained as the virtual fundamental chain of the moduli

1.2The case when X1 or X2 is not spin is included in the main body of the paper.
1.3A Lagrangian submanifold is said to be unobstructed if there exists a bounding cochain of it.
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space of Figure 8 bubbles, the author has no doubt that such a bounding cochain is gauge
equivalent to the bounding cochain we obtained in Theorem 1.5. We will discuss this point
more in Section 18.2.

(4) Until 2015, the author did not have an idea to prove Theorem 1.5 other than those by using
‘strip shrinking’ and ‘Figure 8 bubble’, which are emphasized in [13].1.4 By this reason the
author did not have a plan to study this conjecture until 2015. In May 2015, the author
realized that using the method of Lekili–Lipyanskiy [59] and homological algebra we can
prove Theorem 1.5 much easier than the idea using ‘strip shrinking’ or ‘Figure 8 bubble’.
He then started working on Lagrangian correspondence and its relation to Lagrangian
Floer theory. (The main motivation of the author’s study is its application to the gauge
theory (see [17, 30, 31])). This paper is an outcome of that study.

We also remark that to define Floer cohomology of a Lagrangian submanifold (beyond the
monotone or exact cases) we need a bounding cochain. So proving the existence of a bounding
cochain is the key step for applications of Lagrangian Floer theory. In general, proving the
existence of a bounding cochain is not easy. Theorem 1.5 provides a useful tool to prove it.

The next theorem is a more functorial version of Theorem 1.5. Let L1, L2 and L12 be finite sets
of spin immersed Lagrangian submanifolds of (X1, ω1), (X2, ω2) and (X1×X2,−π∗1(ω1)+π

∗
2(ω2)),

respectively. We assume each of them satisfies the transversality conditions in Theorem 1.3.
Moreover, we assume that for each L1 ∈ L1 and L12 ∈ L12 the fiber product L1 ×X1 L12 is
transversal and is an element of L2.

Theorem 1.7. In the situation of Theorem 1.5, there exists a filtered A∞ bi-functor

Fukst((X1, ω1),L1)× Fukst((X1 ×X2,−π∗1(ω1) + π∗2(ω2)),L12)→ Fukst((X2, ω2),L2)

such that it sends the pair of objects (L1, b1), (L12, b12) to L1×X1 L12 equipped with the bounding
cochain given in Theorem 1.5.

See Definition 5.1 for the definition of a filtered A∞ bi-functor. Theorem 1.7 provides the
morphism part of the ‘2-functor’ mentioned in Informal Summary 1.2. Theorem 1.7 is Corol-
lary 7.4 and is proved in Section 7. We call the bi-functor in Theorem 1.7 the correspondence
bi-functor. We like to mention that in the situation when all the Lagrangian submanifolds in-
volved are embedded and monotone, Theorem 1.7 was proved by Ma’u–Wehrheim–Woodward
in [63]. See Section 18.3 for more explanation on the relation of Theorem 1.7 to [63].

The next theorem gives a definition of the composition of morphisms in unobstructed im-
mersed Weinstein category. In other words, Theorem 1.8 could be used to give a definition of
unobstructed immersed Weinstein category as a (topological) 2-category.1.5

Let (Xi, ωi), i = 1, 2, 3, be compact symplectic manifolds which are spin. Let Lij , (ij) = (12),
(23) or (13), be finite sets of spin Lagrangian submanifolds of (Xi ×Xj ,−π∗1(ωi) + π∗2(ωj)). We
assume that for any L12 ∈ L12, L23 ∈ L23 the fiber product L12 ×X2 L23 is transversal and
becomes an element of L13.

Theorem 1.8. There exists a filtered A∞ bi-functor

comp : Fukst((X1×X2,−π∗1(ω1) + π∗2ω2),L12)× Fukst((X2×X3,−π∗1(ω2) + π∗2(ω3)),L23)

→ Fukst((X1 ×X3,−π∗1(ω1) + π∗2(ω3)),L13)

1.4See [13] or Sections 18.2 and 18.3 for ‘strip shrinking’ and ‘Figure 8 bubble’. Studying them certainly are
interesting in its own and potentially can be applied to various geometric problems.

1.5We say ‘topological’ 2-category since to compose two (unobstructed immersed) Lagrangian correspondences
we need to assume transversality. Therefore, morphisms can be composed only generically.
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such that it sends a pair of objects (L12, b12), (L23, b23) to (L13, b13), where L13 = L12 ×X2 L23

and b13 is a bounding cochain of L13 which is determined from b12 and b23 in a way independent
of the choices up to gauge equivalence. We call this functor the composition functor.

The composition functor is associative, in the sense that the next diagram commutes up to
homotopy equivalence, as A∞ tri-functors

Fukst(X1 ×X2)× Fukst(X2 ×X3)

×Fukst(X3 ×X4)
−−−−→ Fukst(X1 ×X3)

×Fukst(X3 ×X4)y y
Fukst(X1 ×X2)× Fukst(X2 ×X4) −−−−→ Fukst(X1 ×X4).

(1.1)

The first half of Theorem 1.8 is Theorems 8.2 and 8.5 which are proved in Section 8. The
second half of Theorem 1.8 is Theorem 11.2 proved in Section 11.

Remark 1.9. Actually Theorem 1.7 follows from Theorem 1.8 by putting X1 to be a point.

In the situation when all the Lagrangian submanifolds involved are embedded and mono-
tone, Theorem 1.8 (and Theorem 1.10 below) were also proved by Ma’u–Wehrheim–Woodward
in [63]. We also remark that Wehrheim–Woodward and Ma’u–Wehrheim–Woodward studied
a fiber product of Lagrangian correspondences (under the assumption that it becomes embedded
Lagrangian correspondence) in their study of the composition of Lagrangian correspondences.
See Section 18.3 for more explanation on the relation of Theorems 1.7, 1.8 and 1.10 to [63].

The next theorem says that the correspondence bi-functor in Theorem 1.7 is compatible
with the composition functor in Theorem 1.8. To state it, we need some digression. Let Ci
be a strict and unital filtered A∞ category for i = 1, 2. Then we can define a filtered A∞
category FUNC(C1,C2) whose object is a strict and unital filtered A∞ functor. (This is the
unital and strict version of Theorem 2.19 whose proof is the same as Theorem 2.19.) For three
strict and unital filtered A∞ categories Ci, i = 1, 2, 3, we can define a filtered A∞ bi-functor

FUNC(C1,C2)×FUNC(C2,C3)→ FUNC(C1,C3), (1.2)

which gives a composition of filtered A∞ functors among objects. (See Theorem 10.1.) The
bi-functor (1.2) is associative. Roughly speaking, (1.2) is defined as follows. We first define
a homotopy equivalence from functor category FUNC(C1,C2) to a full subcategory of the DG-
category of left C1 and right C2 bi-modules. (This is a version of Yoneda’s lemma.) We also
prove that the composition of A∞ functors corresponds to the tensor product of the bi-modules.
Then using the fact that tensor product of bi-modules is an object part of the DG-bi-functor,
we obtain (1.2). (See Section 10.6.)

On the other hand, the correspondence bi-functor in Theorem 1.7 can be reinterpreted as
a filtered A∞ functor

Fukst((X1 ×X2,−π∗1(ω1) + π∗2(ω2)),L12)

→ FUNC(Fukst((X1, ω1),L1),Fukst((X2, ω2),L2)) (1.3)

to the functor category.

Theorem 1.10. The next diagram commutes up to homotopy equivalence

Fukst(X1 ×X2)× Fukst(X2 ×X3) −−−−→ Fukst(X1 ×X3)y y
FUNC(Fukst(X1),Fukst(X2))

×FUNC(Fukst(X2),Fukst(X3))
−−−−→ FUNC(Fukst(X1),Fukst(X3)).

(1.4)
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Here the vertical arrows are functors (1.3), the upper horizontal arrow is the composition functor
in Theorem 1.8 and lower horizontal arrow is the functor (1.2).1.6

Theorem 1.10 is Theorems 9.1 and 10.16 which are proved in Sections 9 and 10.

Remark 1.11. The object part of Theorem 1.10, that is, the commutativity of the diagram (1.4)
as the maps between the sets of objects, implies Theorem 1.7 by putting X1 to be a point. The
(homotopy) commutativity of diagram (1.4) as A∞ bi-functors is more involved.

All the constructions of this paper are based on a study of moduli spaces of pseudo-holomor-
phic curves. Even though we use the moduli space of pseudo-holomorphic quilts in the sense
of [81] we do not use the most difficult part of the analytic study of the moduli space of pseudo-
holomorphic quilts. Especially we do not study ‘strip shrinking’ and ‘Figure 8 bubble’. Our proof
relies much on the cobordism argument which was initiated by Y. Lekili and M. Lipyanskiy [59]
and various technique from homological algebra. By this reason, we do not need new analytic
detail to carry out in this paper, except we need to take a slightly different compactification of
the moduli space of pseudo-holomorphic disks bounding a Lagrangian submanifold L12 of the
product. This is because otherwise the moduli space of pseudo-holomorphic quilts would not
carry a Kuranishi structure. We will explain this point in Section 12 and also provide the detail
of this different compactification.

In Sections 13–15, we show that various filtered A∞ (bi)-functors we construct in this paper
are independent of the choices involved and also of the Hamiltonian isotopies of the Lagrangian
submanifolds involved.

In Section 16, we show that by a similar method used in the other part of this paper, we
can show Künneth theorem in Lagrangian Floer theory. (We remark that Künneth theorem in
Lagrangian Floer theory is also proved by [6, 7].)

Section 17 is devoted to the discussion of sign and orientation. More arguments on sign and
orientation are given in the paper [68] written by K. Ono.

Section 18 is a brief discussion on two points. One is the relation of this paper to the works by
Wehrheim–Woodwards–Ma’u–Bottman. The other is an issue which will appear to define/prove
‘Definition 1.1’/‘Informal Summary 1.2’ literary.

We expect that there are various applications of the whole construction (especially the part
to construct a filtered A∞ functor from a Lagrangian correspondence and several compatibility
statements about it, which is new in this paper). Some of the applications are now on the way
being worked out and being written or already available as a preprint. (See [17, 20, 30, 31]
and etc.) In this paper, we concentrate in defining the basic objects in as much general form
as possible, leaving applications to other papers. A generalization of the story to the case of
non-compact Lagrangian submanifolds is now studied by Yuan–Gao [50].

The construction of this paper is based on various earlier works. The author tried to make
this paper independent from various earlier papers, except the detail of the proofs, as much as
possible. By this reason, this paper contains several review sections. Another reason why the
review sections are included is that we need to rewrite some of the earlier results to those based
on the de Rham version of virtual fundamental chain technique, which we use systematically
in this paper. We refer [40, 43, 46] for the most detailed exposition of the de Rham version of
virtual fundamental chain technique (Kuranishi structures and CF-perturbations). If the reader
wants to know definitions and statements of the theory in [40, 43, 46] only (and not its proof),
there is a summary in [45, Part 7].

The construction of Kuranishi structures on the moduli spaces of pseudo-holomorphic curves
are written in detail in [38, Part 4], [44, 47, 48]. It is written also in Section 12 of this paper

1.6We take appropriate finite sets Lij of Lagrangian submanifolds of Xi ×Xj .
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emphasizing the part where the construction we need in this paper is (slightly) different from
the other papers.

The results of this paper were announced in [30, 31] together with the main idea of its proof.

2 Filtered A∞ category: Review

This section is a review of the homological algebra of filtered A∞ categories. There is nothing
really new in this section. Our purpose here is to provide the precise definitions of the various
notions we use in this paper. We give proofs only in the case when the author is unable to find
an appropriate reference in the literature. Our main reference in this section is [27]. There are
other references such as [8, 19, 25, 54, 55, 57, 58, 71]. In this section, we will discuss the algebraic
side of the story only. In the case when the reader has certain knowledge of A∞ categories, the
reader can skip this section and comes back when it is used in later sections.

2.1 A∞ category

We first recall certain notations.

Definition 2.1.

(1) Let R be a commutative ring with unit. We denote by ΛR0 the set of all the formal sums

∞∑
i=0

aiT
λi , (2.1)

where ai ∈ R, λi ∈ R and 0 = λ0 < λ1 < · · · < λi < λi+1 < · · · with limi→∞ λi = +∞.
We can define a ring structure on ΛR0 in an obvious way.

We call ΛR0 the universal Novikov ring. In the case when R is a field, its maximal ideal
is the set of formal sums (2.1) with a0 = 0. We write it as ΛR+. In the case when R is
a field, the field of fractions of ΛR0 is the set of the formal sums of the form (2.1) such
that λ0 < λ1 < · · · < λi < λi+1 < · · · with λi ∈ R and limi→∞ λi = +∞. We denote it
by ΛR and call it the universal Novikov field. We use the same notation ΛR+

(
resp. ΛR

)
for this ideal (resp. ring) in case R is a ring but is not a field. We call R the ground
ring. Sometimes we omit R from the notation and write Λ0 etc. in place of ΛR0 etc. In the
geometric applications in this paper, we use R = R, since we use the de Rham model for
homology theory of spaces.

(2) We define a filtration
{
FλΛ0 | λ ≥ 0

}
as follows. The subset FλΛ0 of Λ0 consists of

elements (2.1) such that λi < λ implies ai = 0. We call it the energy filtration. It induces
a filtration on Λ and Λ+ in an obvious way. The energy filtration defines a metric on Λ0, Λ,
Λ+ such that FλΛ0 is the e−λ-neighborhood of 0. The rings Λ0, Λ, Λ+ are complete with
respect to this metric. We call this metric the T -adic metric. We use also the name energy
filtration for the filtration of various Λ0 (or Λ) modules induced by this filtration of Λ0.

(3) A discrete monoid G is a discrete subset of R≥0 such that 0 ∈ G and g1, g2 ∈ G⇒ g1 + g2
∈ G.

(4) For a discrete monoid G, we define a subring ΛG of Λ0, where a formal sum (2.1) is an
element of ΛG if and only if λi ∈ G for all i with ai ̸= 0. The T -adic metric of Λ0 induces
one on ΛG.

(5) Let C be a free R module. We denote by C the completion of C ⊗R ΛR0 . Here the T
adic metric on C ⊗R ΛR0 is induced from one on ΛR0 in an obvious way and the completion
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is taken with respect to this metric. We call such C a completed free Λ0 module. We
write FλC =

{
x ∈ C | x ≡ 0 mod T λ

}
. An element of C is identified with an (infinite)

sum
∑∞

i=0 T
λixi such that xi ∈ C and λi ∈ R≥0 with limi→∞ λi = +∞.

(6) For two completed free Λ0 modules C1, C2, we denote by C1“⊗C2 the T -adic comple-
tion of the algebraic tensor product over Λ0. When Ci is the completion of Ci ⊗R Λ0,
for i = 1, 2, C1“⊗C2 is the completion of C1 ⊗R C2 ⊗R Λ0. An element of C1“⊗Λ0 C2 is
identified with an (infinite) sum

∑∞
i=0 xi ⊗ yi such that xi ∈ Fλi,1C1, yi ∈ Fλi,2C2 with

limi→∞ λi,1 + λi,2 = +∞.

(7) If C is graded, then C is graded. (Here we consider either Z grading or Z2N grading. In
our geometric application, we mostly use Z2 grading, for the sake of simplicity.) Suppose C
is graded. We define its degree shift C[1] as follows. C[1]m = Cm+1. Here Cm is degree m
part.

(8) An element x of a completed free Λ0 module C is said to be G-gapped if x =
∑

g∈G T
gxg

where xg ∈ C.
(9) A Λ0 module homomorphism φ between completed free Λ0 modules C1, C2 are said to be

G-gapped if it sends an arbitrary G-gapped element to a G-gapped element. This condition
is equivalent to the condition that

φ =
∑
g∈G

T gφg, (2.2)

where φg : C1 → C2 are R module homomorphisms.

(10) For a G-gapped homomorphism φ as in (2.2), we write φ = φ0 : C1 → C2 and call it the
R-reduction of φ.

Definition 2.2. A non-unital curved filtered A∞ category C is a collection of the set Ob(C ),
the set of objects, a graded completed free Λ0 module C (c1, c2) for each c1, c2 ∈ Ob(C ), and the
operations

mk : C [1](c0, c1)“⊗ · · ·“⊗C [1](ck−1, ck)→ C [1](c0, ck),

of degree +1 for k = 0, 1, 2, . . . and ci ∈ Ob(C ). (Note that in the case when k = 0 the domain
is 0 if c0 ̸= c1 and is Λ0 if c0 = c1.)

We call C [1](c0, c1) the module of morphisms and mk the structure operations.
We assume the following three conditions:

(1) We require mk to satisfy the A∞ formula (2.6) described below.

(2) The operations mk preserves the filtration.2.1 Namely,

mk

(
Fλ
(
C [1](c0, c1)“⊗ · · ·“⊗C [1](ck−1, ck)

))
⊆ Fλ(C [1](c0, ck)).

(3) We have m0(1) ≡ 0 mod T ε, for some ε > 0.

To describe the A∞ formula, we introduce notations. Let a, b ∈ Ob(C ). We put

BkC [1](a, b) :=
⊕̂

a=c0,c1,...,ck−1,ck=b

C [1](c0, c1)“⊗ · · ·“⊗C [1](ck−1, ck). (2.3)

(Here and hereafter “⊕ denotes the T -adic completion of the direct sum.)

2.1Actually this condition follows automatically from Λ0 linearity.
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Note that in the case when k = 0

B0C [1](c0, c1) :=

®
0 if c0 ̸= c1,

Λ0 if c0 = c1.
(2.4)

We denote

BC [1](a, b) =
⊕̂

k=0,1,2,...

BkC [1](a, b), BC [1] :=
⊕̂
a,b

BC [1](a, b).

We define a homomorphism

∆: BkC [1](a, b)→
⊕̂

k1+k2=k

⊕̂
c

Bk1C [1](a, c)“⊗Bk2C [1](c, b)

by

∆(x1 ⊗ · · · ⊗ xk) :=
k∑

k1=0

(x1 ⊗ · · · ⊗ xk1)⊗ (xk1+1 ⊗ · · · ⊗ xk).

It induces maps

∆: BkC [1]→
⊕̂

k1+k2=k,
k1=0,...,k

Bk1C [1]“⊗Bk2C [1], k = 0, 1, 2, . . . ,

and ∆: BC [1] → BC [1]“⊗BC [1]. Then (BC [1](a, a),∆) and (BC [1],∆) are graded formal
coalgebras.2.2

Operations mk define homomorphisms: BkC [1](a, b) → C [1](a, b). It can be extended
uniquely to coderivations d̂k : BC [1]→ BC [1], d̂k : BC [1](a, b)→ BC [1](a, b) by

d̂k(x1 ⊗ · · · ⊗ xn) :=
∑
ℓ

(−1)∗x1 ⊗ · · · ⊗mk(xℓ, . . . , xℓ+k−1)⊗ · · · ⊗ xn,

where ∗ = (deg x1 + 1) + · · ·+ (deg xℓ−1 + 1). We put

d̂ :=
∑
k

d̂k. (2.5)

Now the A∞ formula is

d̂ ◦ d̂ = 0. (2.6)

Note that (2.6) is equivalent to the equality

0 =
∑

k1+k2=k+1

k1−1∑
i=0

(−1)∗mk1(x1, . . . , xi,mk2(xi+1, . . . , xk2), . . . , xk), (2.7)

where ∗ = i+
∑i

j=1 deg xj .

We use the notation deg′ x := deg x− 1 then ∗ =∑i
j=1 deg

′ xj .

2.2The coalgebra structure is defined by a map ∆: C → C ⊗ C. Here the target of our ∆ is the completion
C “⊗C. In such a case it is called a formal coalgebra. Such a notion appears in the theory of formal groups.



12 K. Fukaya

Remark 2.3. The sign convention in (2.7) is the same as [34] but is different from [71]. It
seems that two different conventions are related to each other by the process to take opposite
category (see Definition 2.30).

Remark 2.4. We can define the notion of a non-unital A∞ category over a ring R (which is
not filtered) in the same way except the following:

(1) We do not require the structure operations mk to preserve the filtration.

(2) We require m0 = 0. In other words, we require strictness, in the sense of Definition 2.5 (2).

Note that item (2) is our convention. At this stage this is only a matter of convention. Namely,
we may include the curved case over (unfiltered) ring. It may be natural to do so in the case
when we study the situation where structure operations are converging (in the Lagrangian Floer
theory) and the version over C. Also in the case of monotone Lagrangian submanifolds with
minimal Maslov number 2 such a situation appears naturally.

Since we required m0 ≡ 0 mod T ε, we include this condition.
There will appear more serious reasons related to item (2), as the story goes on. See Re-

marks 2.6 and 2.12.

Definition 2.5. Let C be a non-unital curved filtered A∞ category.

(1) We say C is G-gapped if all the operations mk are G-gapped.

(2) We say C is a non-unital filtered A∞ category if m0 = 0. We also say that C is strict
instead.

(3) If C is G-gapped, we define R-reduction C of our filtered A∞ category as follows. It is
an A∞ category over R in the sense of Remark 2.4.

(a) OB(C ) = OB(C ).

(b) For c, c′ ∈ OB(C ), there is a free R module C (c, c′) such that C (c, c′) is a completion
of C (c, c′) ⊗R Λ0, by the definition of a completed free Λ0 module. We take this R
module C (c, c′) as the module of morphisms of C .

(c) The structure morphisms mk are the R-reductions of mk.

Note that m0 = 0 by Definition 2.2 (3). Other conditions for C to be an A∞ category
follow from the corresponding properties of C .

(4) We say C is unital (or C is a curved filtered A∞ category) if there exists ec ∈ C 0(c, c) for
each c ∈ Ob(C ) such that the following holds:

(a) If x1 ∈ C (c, c′), x2 ∈ C (c′, c) then m2(ec, x1) = x1, m2(x2, ec) = (−1)deg x2x2.
(b) If k + ℓ ̸= 1, x1 ⊗ · · · ⊗ xℓ ∈ BℓC [1](a, c), y1 ⊗ · · · ⊗ yk ∈ BkC [1](c, b) then

mk+ℓ+1(x1, . . . , xℓ, ec, y1, . . . , yk) = 0. (2.8)

(5) A filtered A∞ algebra is a non-unital curved filtered A∞ category with one object. Its
unitality and strictness is defined as its unitality and strictness as a non-unital curved
filtered A∞ category.

(6) Let C = (C, {mk}) be an A∞ algebra. We define M̃(C; Λ+), the Maurer–Cartan solution
space of C, as the set of all elements b ∈ C1 such that

(a) b ≡ 0 mod Λ+.
2.3

2.3We study the case when this condition is not satisfied sometimes and define M̃(C; Λ0). In such a case, the
equation (2.9) is more delicate to define since the left-hand side may not converge in T -adic topology. We do not
discuss this generalization in this paper. See, for example, [41].
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(b)

∞∑
k=0

mk(b, . . . , b) = 0. (2.9)

We remark that the left-hand side is an infinite sum, which converges in T -adic
topology.2.4 2.5 An element of M̃(C; Λ+) is called a bounding cochain.

(7) Let C be a non-unital curved filtered A∞ category. We define a non-unital filtered A∞
category C s as follows:

(a) An object of C s is a pair (c, b), where c ∈ OB(C ) and b ∈ M̃(C (c, c); Λ+).

(b) If (c, b), (c′, b′) are objects of C s, then C s((c, b), (c′, b′)) = C (c, c′) by definition.

(c) If (ci, bi) ∈ OB(C ′) for i = 0, . . . , k and xi ∈ C s((ci−1, bi−1), (ci, bi)) = C (ci−1, ci)
for i = 1, . . . , k. Then we define the structure operations m

(b0,...,bk)
k of C s as follows:

m
(b0,...,bk)
k (x1, . . . , xk) =

∑
ℓ0,...,ℓk

mk+ℓ0+···+ℓk
(
bℓ00 , x1, b

ℓ1
1 , . . . , b

ℓk−1

k−1 , xk, b
ℓk
k

)
.

The proof of the fact that this formula defines a non-unital filtered A∞ category is similar
to the corresponding result in the case of an A∞ algebra, which is proved as [34, Proposi-
tion 3.6.10]. We call C s the associated strict category to C . If C is unital, then C s is also
unital.

Remark 2.6. Note that (2.9) does not make sense in the case of an (unfiltered) A∞ category.
In fact, the left-hand side is an infinite sum. (This is one reason why we assume strictness for
(unfiltered) A∞ category.)

There are several ways to go around this point. We will not discuss it here.

Remark 2.7. In Definition 2.5 (4), we required strict unitality. In [34, Definition 3.3.2], we
defined the notion of a homotopy unit of a filtered A∞ algebra. We can define the notion of
a homotopy unit of a filtered A∞ category in the same way. We do not discuss it in this paper,
since in our geometric application we can construct a strict unit by using the de Rham model.

Definition 2.8 (Bondal and Kapranov [10]). An A∞ category is said to be a differential graded
category or a DG-category if mk = 0 for k ̸= 1, 2.

Remark 2.9. In the usual definition of a DG-category, the space of morphisms C (c1, c2) is
a chain complex with boundary operator d and the composition map

◦ : C (c1, c2)⊗ C (c2, c3)→ C (c1, c3)

is assumed to be a chain map and the compositions are assumed to be associative (strictly).
We change the sign and define m1(x) := (−1)deg x+1d(x), m2(x, y) := (−1)deg x(deg y+1)y ◦ x.
Then it satisfies A∞ relation (2.7). (See [27, Example–Lemma 1.7].) There is an alternative
choice of the sign, that is, m1(x) := d(x), m2(x, y) := (−1)deg xx ◦ y. This is the choice in [46,
Definition 21.21 (2)(3)].

2.4In case C is unital, we sometimes study the weaker equation which replaces the right-hand side by Ce for
some C ∈ Λ+. See [34, Section 4.3].

2.5We can define an equivalence relation called gauge equivalence so that the A∞ structure defined by the
deformed operators mb

k depends only on the gauge equivalence class of b. See [34, Section 3.6.3].
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2.2 A∞ functor

Definition 2.10. Let Ci, i = 1, 2, be non-unital curved filtered A∞ categories. A filtered A∞
functor F : C1 → C2 is a collection of Fob, Fk, k = 0, 1, 2, . . . , such that

(1) We are given a set theoretical map Fob : Ob(C1)→ Ob(C2), which we call the object part
of F .

(2) For c1, c2 ∈ Ob(C1), Fk(c1, c2) : BkC1[1](c1, c2)→ C2[1](Fob(c1),Fob(c2)) is a Λ0 module
homomorphism of degree 0. It preserves filtration in a similar sense as Definition 2.2 (2).
We write Fk in place of Fk(c1, c2) sometimes.

(3) We require that F0 ≡ 0 mod T ε, ε > 0. Note that F0 consists of maps F0(c) : Λ0 →
C2[1](Fob(c),Fob(c)) for each c ∈ OB(C1).

(4) We extend Fk(c1, c2) to a formal coalgebra homomorphism

F̂ (c1, c2) : BC1[1](c1, c2)→ BC2[1](Fob(c1),Fob(c2)).

Then F̂ (c1, c2) is a chain map with respect to the boundary operator d̂ in (2.5).

Remark 2.11. In Definition 2.10, we include the case F0 ̸= 0, that is, a ‘curved’ filtered A∞
functor. (In [27], we did not include it. However, the definition of filtered A∞ algebra homo-
morphism in [34, Definition 3.2.29] includes the case f0 ̸= 0.)

The map F̂ on BkC1[1](c1, c2) is defined by

F̂ (x1, . . . , xk) :=
∞∑
ℓ=1

∑
k1,...,kℓ

k1+···+kℓ=k

Fk1(x1, . . . , xk1)⊗ · · · ⊗Fkℓ(xk−kℓ+1, . . . , xk), (2.10)

for k ≥ 1. For k = 0, it is

F̂ (1) := 1 +
∞∑
ℓ=1

F0(1)
⊗ℓ,

F̂ is a formal coalgebra homomorphism.

Remark 2.12. We define an A∞ functor between (unfiltered) A∞ categories in the same way.
We require F0 = 0 in the unfiltered situation. There is more serious reason to require it
compared to Remark 2.4 (2). We remark that in our situation where F0 ̸= 0, the right-hand
side of (2.10) is an infinite sum. It converges in T -adic topology thanks to Definition 2.10 (3).
In the case when we work over the ground ring, the unfiltered case, the right-hand side of (2.10)
should be a finite sum.

Definition 2.13. Let F : C1 → C2 be a filtered A∞ functor between non-unital curved fil-
tered A∞ categories.

(1) We say F is strict if F0 = 0.

(2) Suppose C1, C2 are G-gapped. We say F is G-gapped if all the maps Fk are G-gapped
for k = 0, 1, 2, . . . .

(3) A G-gapped filtered A∞ functor between non-unital curved filtered A∞ categories induce
an A∞ functor between their R-reductions.

(4) Suppose C1 and C2 are unital in addition. We say F is (strictly) unital if the following
two conditions are satisfied:
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(a) F1(ec) = eFob(c).

(b) Fk+ℓ+1(x1, . . . , xℓ, ec, y1, . . . , yℓ) = 0 for k + ℓ > 0.

(5) If F : C1 → C2 is a filtered A∞ functor between non-unital curved filtered A∞ categories,
then we obtain a strict filtered A∞ functor F s : C s

1 → C s
2 between their associated strict

categories as follows.

(a) Let c ∈ OB(C1) and b ∈ M̃(C (c, c); Λ+). We put

F∗(b) :=
∞∑
k=0

Fk(b, . . . , b).

We can prove F∗(b) ∈ M̃(C (Fob(c),Fob(c)); Λ+). We define

F s
ob(c, b) := (Fob(c),F∗(b)).

(b) Let (ci, bi) ∈ OB(C ′1), i = 0, . . . , k, and xi ∈ C s
1 ((ci−1, bi−1), (ci, bi)) = C1(ci−1, ci),

i = 1, . . . , k. We put

F s
k (x1, . . . , xk) :=

∑
ℓ0,...,ℓk

Fk+ℓ0+···+ℓk
(
bℓ00 , x1, b

ℓ1
1 , . . . , b

ℓk−1

k−1 , xk, b
ℓk
k

)
.

We also put F s
0 = 0. We can show that F s

ob and F s
k define a strict filtered A∞ func-

tor F s : C s
1 → C s

2 , in the same way as [34, Lemma 3.6.36, Definition–Lemma 5.2.15,
Lemma 5.2.16]. (They discuss the case of A∞ algebra.) We say F s is the associated strict
functor to F . If F is unital (resp. G-gapped), then so is F s.

(6) The identity functor I D : C → C is defined by

(a) I Dob = the identity map: OB(C )→ OB(C ).

(b) I D1(c1, c2) : C (c1, c2)→ C (c1, c2) is the identity map.

(c) I Dk = 0 for k ̸= ob, 1.

I D is unital (resp. G-gapped) if so is C .

Definition–Lemma 2.14. Let F 1 : C1 → C2, F 2 : C2 → C3 be filtered A∞ functors.

(1) We define their composition F = F 2 ◦F 1 : C1 → C3 as follows:

Fob = F 2
ob ◦F 1

ob,

F̂ (c1, c2) = F̂ 2
(
F 1

ob(c1),F
1
ob(c2)

)
◦ F̂ 1(c1, c2) :

BC1(c1, c2)→ BC3(Fob(c1),Fob(c2)).

(2) If F 1, F 2 are strict (resp. unital, G-gapped), then F = F 2 ◦F 1 is strict (resp. unital,
G-gapped).

(3) If F 1s, F 2s are strict functors associated to F 1, F 2, respectively, then F 1s ◦F 2s is the
strict functor associated to F 1 ◦F 2.

(4) F ◦I D = I D ◦F = F .

The proof is easy and is omitted.
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2.3 Functor category

Definition 2.15 ([27, Definition 7.49]). Let F ,G : C1 → C2 be two curved filtered A∞ functors
between non-unital curved filtered A∞ categories.

A pre-natural transformation from F to G of degree d is a family of operators T = {Tk(a, b)}

Tk(a, b) : BkC1[1](a, b)→ C2[1](Fob(a),Gob(b))

of degree d for k = 0, 1, 2, . . . and a, b ∈ OB(C1), which preserves filtration in the same sense as
Definition 2.2 (2).2.6 We require that the image of T0 has strictly positive energy.

We write deg T := d + 1 and deg′ := deg − 1 = d.2.7 We say that T is G-gapped if each
of Tk(a, b) is G-gapped. We denote by FUNC(F ,G ) the set of all pre-natural transformations
from F to G . It is a completed free Λ0 module and is graded. We denote by FUNCd(F ,G )
the degree d part. In other words, if T ∈ FUNCd(F ,G ), then deg T = d+ 1 and deg′T = d.

Remark 2.16. We remark that T0(a, b) = 0 if a ̸= b and T0(a, a) is a Λ0 module homomorphism

T0(a, a) : B0C1[1](a, a) = Λ0 → C2[1](Fob(a),Gob(a)).

We denote by T0(a) ∈ C2[1](Fob(a),Gob(a)) the element T0(a, a)(1).

For a′, b′ ∈ Ob(C2), let πa′,b′ : BC2[1](a
′, b′)→ C2[1](a

′, b′) be the projection.

Lemma–Definition 2.17.

(1) For each T = {Tk(a, b)} ∈ FUNCd(F ,G ), there exists uniquely a family“T (a, b) : BC1[1](a, b)→ BC2[1](Fob(a),Gob(b)),

of Λ0 module homomorphisms with the following properties:

πFob(a),Gob(b) ◦ “T (a, b) = Tk(a, b) on BkC1[1](a, b),

∆ ◦ “T (a, b) =∑
c

(
F̂ ⊗s “T (c, b) + “T (a, c)⊗s “G ) ◦∆. (2.11)

Here ⊗s is defined by (A⊗s B)(x,y) = (−1)degB deg′ xA(x)⊗B(y).

(2) There exists δT = {(δT )k(a, b)} ∈ FUNCdeg T +1(F ,G ) uniquely such that”δT = d̂ ◦ “T + (−1)deg T +1“T ◦ d̂.
(3) δ(δT ) = 0.

(4) A pre-natural transformation T is said to be a natural transformation if δT = 0.

(1) is [27, Lemma 7.45]. (2) is [27, Lemma 7.48]. (3) is [27, Corollary 7.50].

Definition 2.18. Let F (i) : C1 → C2, i = 0, . . . , k, be curved filtered A∞ functors between
non-unital curved A∞ categories and T (i) ∈ FUNCdi

(
F (i−1),F (i)

)
for i = 1, . . . , k (here k =

1, 2, . . . ). We define mk

(
T (1), . . . , T (k)

)
= T ∈ FUNCd

(
F (0),F (k)

)
as follows (d = d1 + · · · +

dk + 1).

2.6It means that deg′ Tk(a, b)(x) = deg′ x+ d, where deg′ x1 ⊗ · · · ⊗ xk =
∑

deg′ xi.
2.7This convention is different from [27, two lines below equation (7.44)]. Actually in [27, equation (7.12.2)] deg′

is defined as deg+1, which is different from our convention here. The convention of this paper coincides with
[34, equation (3.2.2)], which seems better than one in [27]. (See a line after Definition 2.22, for example.) This
inconsistency does not affect to the calculation of the sign in [27] which we use much in this paper.
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If k = 1, then m1

(
T (1)

)
= −δ

(
T (1)

)
, where δ is as in Definition 2.17 (2).

Suppose k ≥ 2. Let x ∈ B(C1[1]). We consider

∆2kx =
∑
a

x(1)
a ⊗ · · · ⊗ x(2k+1)

a .

Here ∆m : B(C1[1])→ B(C1[1])⊗ · · · ⊗B(C1[1])︸ ︷︷ ︸
m+1

is defined inductively by ∆m := (∆⊗id)◦∆m−1,
∆1 = ∆. We put

T (x) := −
∑
a

(−1)∗am
(‘F (0)

(
x(1)
a

)
, T (1)

(
x(2)
a

)
, . . . , T (k)

(
x(2k)
a

)
, ‘F (k)

(
x(2k+1)
a

))
,

where ∗a =
∑k

j=1

∑2j−1
i=1 dj deg

′ x
(i)
a . Note that

deg′ T (x) =
k+1∑
i=1

deg′ x(i)
a +

k∑
i=1

deg′T (i) + 1.

Therefore, deg′T =
∑k

i=1 deg
′T (i) + 1. This is consistent with Definition 2.2.

We consider the case when k = 0. We will define mF
0 (1) ∈ FUNC(F ,F ) (the m0 operator

of the functor category). For c ∈ OB(C2), the m0 operator of C2 determine an element m0(1)c ∈
C [1](Fob(c),Fob(c)). We put mF

0 (1)c := −m0(1)c.

Theorem 2.19. Let C1, C2 be curved filtered A∞ categories. Then, there exists a non-unital
curved filtered A∞ category FUNCC(C1,C2) such that

(1) The set of its objects OB(FUNCC(C1,C2)) consists of filtered A∞ functors F : C1 → C2.

(2) For F ,G ∈ OB(FUNCC(C1,C2)), FUNCC(F ,G ) is the module of morphisms from F
to G .

(3) The structure operations

mk : BkFUNCC(F ,G )→ FUNCC(F ,G )

are as in Definition 2.18.

We denote by FUNC(C1,C2) the full subcategory of FUNCC(C1,C2) the set of whose objects
are strict filtered A∞ functors.

If C2 is strict, then FUNCC(C1,C2) and FUNC(C1,C2) are strict.

In case C1, C2 are unital and/or strict, we consider only unital and/or strict filtered A∞
functors as objects of FUNC(C1,C2). In that way, we obtain strict and unital filtered A∞
category.

This is [27, Theorem–Definition 7.55]. (Note that only the strict case is proved in [27,
Theorem–Definition 7.55]. However, the proof there can be applied without change in our
case. The functor category in the curved case is also studied in [19, Section 3.4].) We call
FUNCC(C1,C2), FUNC(C1,C2) the functor category.

Proposition 2.20. A strict A∞ functor F : C1 → C2 induces strict A∞ functors F∗ : FUNC(C ,
C1) → FUNC(C ,C2), F ∗ : FUNC(C2,C ) → FUNC(C1,C ) such that (F∗)ob(G ) = F ◦ G ,
(F ∗)ob(G ) = G ◦F . The same is true if we replace FUNC by FUNCC. (In that case, we do
not need to assume F to be strict.)

This is [27, Proposition–Definition 8.41].



18 K. Fukaya

Definition 2.21. In the situation of Theorem 2.19, we assume that C1, C2 are G-gapped. We
define a G-gapped filtered A∞ category FUNCG(C1,C2) as follows. Its object is a G-gapped
filtered A∞ functors F : C1 → C2. The morphisms and the structure maps are the same as
Theorem 2.19 (2)(3). It is easy to see that the structure maps are G-gapped. The G-gapped
version of Proposition 2.20 holds. We may replace FUNC by FUNCC.

Hereafter, in the case of G-gapped category, we omit G and write FUNC(C1,C2) in place
of FUNCG(C1,C2).

Definition 2.22 ([27, Definition 8.2]). Let F : C1 → C2 be a curved filtered A∞ functors
between non-unital curved filtered A∞ categories. We assume C2 is unital in addition. We
define the identity natural transformation IdF as follows. Let ec ∈ C 0

2 (c, c) be the unit in C2.
We put

IdF
ob(a) = −eFob(a) ∈ C pb

2 (F0(a),F0(a)), IdF
k = 0 for k ≥ 1.

Note that deg′ eFob(a) = deg eFob(a) − 1 = −1. Therefore, deg IdF = 0.

It is easy to see from definition that IdF satisfies (2.8) for the structure operations mk

of FUNCC(C1,C2). Therefore, we have the following.

Lemma 2.23. If C2 is unital, then FUNCC(C1,C2) is unital.

2.4 A∞-Whitehead theorem

In this subsection, all filtered A∞ categories are assumed to be strict (except in Remark 2.29).

Definition 2.24. Let C be a strict filtered A∞ category and c, c′ ∈ Ob(C ). Let x ∈ C 0(c, c′).
We say that x is a homotopy equivalence if there exists y ∈ C 0(c′, c) such that

(1) m1(x) = m1(y) = 0,

(2) m2(y, x)− ec ∈ Imm1, m2(x, y)− ec′ ∈ Imm1.

Two objects c, c′ ∈ Ob(C ) are said to be homotopy equivalent to each other if there exists
a homotopy equivalence between them.

Homotopy equivalence is an equivalence relation by [27, Lemma 6.24].

Definition 2.25. Suppose that we are in the situation of Lemma 2.23 and we assume that C2

is strict. Two strict filtered A∞ functors F ,G : C1 → C2 are said to be homotopy equivalent
to each other if they are homotopy equivalent as objects of FUNC(C1,C2) in the sense of
Definition 2.24. (Note that FUNC(C1,C2) is strict if C2 is strict.) The homotopy equivalence
among strict filtered A∞ functors is an equivalence relation. We can define the notion two G-
gapped strict filtered A∞ functors to be homotopy equivalent (as G-gapped strict filtered A∞
functors) in a similar way.

Remark 2.26. We consider the case when C1, C2 have only one object. In this case, curved
filtered A∞ functors F ,G : C1 → C2 are nothing but filtered A∞ homomorphisms. The notion
two (curved) filtered A∞ homomorphisms to be homotopic is defined in [34, Definition 4.2.35].
We will define its category version in Definition 13.5. To distinguish one, we defined here from
one in Definition 13.5 we will use the terminology ‘homotopy equivalent’ in place of ‘homotopic’
in Definition 2.25.2.8 We will prove in Section 13 that ‘homotopic’ implies ’homotopy equivalent’
(see Proposition 13.13). The converse is not correct (see Example 13.15).

2.8This notation is different from [27] at this point.
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Definition 2.27. Let C1, C2 be strict filtered A∞ categories. We assume that they are unital.
A strict A∞ functor F : C1 → C2 is said to be a homotopy equivalence if there exists a strict A∞
functor G : C2 → C1 such that the composition F ◦ G is homotopy equivalent to the identity
functor I DC2 and that G ◦F is homotopy equivalent to the identity functor I DC1 . We say G
a homotopy inverse to F . Two strict A∞ categories are said to be homotopy equivalent to each
other if there exists a homotopy equivalence between them.

We assume that the ground ring R is a field in the next theorem.

Theorem 2.28. Let C1, C2 be filtered A∞ categories. We assume they are unital, strict and
gapped. Let F : C1 → C2 be a strict and gapped A∞ functor such that

(1) F1 : C1(c1, c
′
1)→ C2(Fob(c1),Fob(c

′
1)) induces an isomorphism on m1 homology.

(2) For any c2 ∈ Ob(C ′2), there exists c1 ∈ Ob(C ′1) such that Fob(c1) is homotopy equivalent
to c2.

Then F is a homotopy equivalence.

If C1, C2, F are G-gapped, we may take homotopy inverse which is G-gapped also. Moreover,
homotopy equivalence in (2) is taken to be G-gapped.

The non-filtered version of this theorem is [27, Theorem 8.6]. We can prove Theorem 2.28 in
the same way.

Remark 2.29. Note that we assumed strictness of C here. Actually Theorem 2.28 (1) does
not make sense in case m0 ̸= 0. In a slightly different way, we can define homotopy equivalence
of filtered A∞ categories in the curved case and Theorem 2.28 holds in that generality. See
Section 13 Theorem 13.11. (We remark that the assumption (1) of Theorem 13.11 does make
sense in the curved case since C is strict. In the curved case, we replace (2) by the condition
that Fob is a bijection.)

2.5 A∞-Yoneda embedding

Definition 2.30 ([27, Definition 7.8]). Let C be a non-unital curved filtered A∞ category. We
define its opposite A∞ category C op as follows:

(1) Ob(C op) = Ob(C ).

(2) Let c, c′ ∈ Ob(C op) = Ob(C ). We put C op(c, c′) = C (c′, c).

(3) We define structure operations mop
k of C op by mop

k (x1, . . . , xk) = (−1)∗mk(xk, . . . , x1),
where ∗ =∑1≤i<j≤k(deg xi + 1)(deg xj + 1) + 1.

Lemma 2.31.

(1) C op is a non-unital curved filtered A∞ category.

(2) If C is unital (resp. strict, G-gapped), then so is C op.

(1) is [27, Lemma 7.10]. (2) is immediate from the definition. (Definition 2.5 (3) (a).)

Definition 2.32. Let C1, C2 be non-unital curved filtered A∞ categories. For a filtered A∞
functor F : C1 → C2, we can construct its opposite A∞ functor F op : C op

1 → C op
2 as follows.

(1) F op
ob := Fob.



20 K. Fukaya

(2) F op
k (x) := (−1)ε(x)Fk(x

op). Here we put

xop := xk ⊗ · · · ⊗ x1, (2.12)

and

ε(x) :=
∑

1≤i<j≤k
(deg xi + 1)(deg xj + 1). (2.13)

It is checked in [27, Definition–Lemma 7.23] that F op is a filtered A∞ functor.
It is easy to see that if F is unital (resp. G-gapped), then the functor F op is also unital

(resp. G-gapped).

The next lemma is easy to show.

Lemma 2.33. If C1, C2 are non-unital strict filtered A∞ categories, then the set theoretical
map F 7→ F op is the object part of the isomorphism FUNC(C1,C2)

op ∼= FUNC
(
C op
1 ,C op

2

)
.

The same holds in the curved case.

The proof is easy and is omitted.

Definition 2.34. We define a filtered A∞ category CH as follows. Ob(CH) is the set of (all)
chain complexes of completed free Λ0 modules.2.9 Let (C, d), (C ′, d) ∈ Ob(CH). Then

CHk((C, d), (C ′, d)) =
⊕
ℓ

HomR

(
Cℓ, C ′ℓ+k

)
.

We define

m1(x) := d ◦ x+ (−1)deg x+1x ◦ d, m2(x, y) := (−1)deg x(deg y+1)y ◦ x, (2.14)

where ◦ is the composition. We put mk = 0 for k ≥ 3 and k = 0. It is checked in [27,
Proposition 7.7] that CH is a filtered A∞ category. It is strict and unital.

Suppose C is a non-unital strict filtered A∞ category. We will define the following four
functors

Yon : C → FUNC(C op, CH), OpYon : C op → FUNC(C , CH),
Yonop : C op → FUNC(C , CHop), OpYonop : C → FUNC(C op, CHop).

The object parts of them are defined by

(Yonob(c)ob)(b) := C (b, c), (OpYonob(c))ob(b) := C (c, b),

(Yonopob(c))ob(b) := C (b, c), (OpYonopob(c))ob(b) := C (c, b).

Definition 2.35. Let C be a strict filtered A∞ category. We define a filtered A∞ func-
tor Yonob(c) : C op → CH as follows. Yonob(c)ob(b0) := C (b0, c). Let x ∈ BkC

op(b0, bk) =
BkC (bk, b0), y ∈ Yon0(c)ob(b0) = C (c, b0), k = 1, 2, . . . . Then

Yonob(c)k(x)(y) := (−1)ε(x)m(xop, y).

See [27, Definitions 7.28], where Rep is used instead of YON. We apply the construction
of Yonob(c) to the opposite filtered A∞ category C op and define OpYonob(c) as follows.

2.9To avoid Russell paradox in set theory, we fix a sufficiently large set (a universe) and consider only completed
free Λ0 modules contained in this set.
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Definition 2.36. OpYonob(c) : C op → CH is defined by

(1) OpYonob(c)(b0) := C (c, b0),

(2) OpYonk(x)(y) := −(−1)deg
′ y deg′ xmk+1(y,x).

2.10

Lemma 2.37. There exist a filtered A∞ functors Yon : C → FUNC(C op, CH) and OpYon :
C → FUNC(C op, CHop) such that its object part is given by Definitions 2.35 and 2.36.

The case of Yon is [27, Definitions 9.6 and Lemma 9.8]. The case of OpYon is obtained by
applying the case of Yon to the opposite category C op.

Definition 2.38. We define Yonop : C op→FUNC(C , CHop) and OpYonop : C op→FUNC(C op,
CHop) to be the opposite functors of Yon and OpYon, respectively.

Remark 2.39. The functors Yonopob(c) and OpYonopob(c) are written as F c, cF respectively
in [27, Section 7].

Definition 2.40. We say strict filtered A∞ functors: C → CHop, C → CH, C op → CH,
C op → CHop are representable if they are homotopy equivalent to Yonob(c), OpYonob(c) and
Yonopob(c), OpYonopob(c), for some c ∈ Ob(C ) = Ob(C op), respectively.

The next lemma is easy to show.

Lemma 2.41. The unitality and G-gappedness are preserved by Definitions 2.35, 2.36, 2.40.

Definition 2.42. We denote by Rep(C op, CH) the full subcategory of FUNC(C op, CH) such
that Ob(Rep(C op, CH)) is the set of all filtered representable A∞ functors.

We denote by RepG(C op, CH) the full subcategory of FUNC(C op, CH) whose objects consist
of the G-gapped filtered representable A∞ functors. The filtered A∞ category RepG(C op, CH)
is G-gapped.

We next define a filtered A∞ functor Yon : C ∼= RepG(C op, CH).
Definition 2.43. For an object c of C , the object Yonob(c) of RepG(C op, CH) is defined by
Definition 2.35.

Theorem 2.44 (Yoneda’s lemma). Let C be a G-gapped strict and unital filtered A∞ cate-
gory. Then, there exists a homotopy equivalences of G-gapped filtered A∞ categories Yon : C ∼=
RepG(C op, CH), such that Yonob(c) is as in Definition 2.35.

This is a filtered version of [27, Theorem 9.1]. Using Theorem 2.28 instead of [27, Theo-
rem 8.6], the proof of Theorem 2.44 is the same as the proof of [27, Theorem 9.1].

Definition 2.45. We call Yon : C ∼= RepG(C op, CH) the A∞ Yoneda functor.

Remark 2.46. In Section 2, we describe the result over Λ0 coefficient. In most of the places
we can use Λ coefficient and forget the filtration. However, we then need to assume that our
filtered A∞ category is strict. So to work over Λ coefficient in our geometric application, a natural
way is to proceed as follows. We first define a curved filtered A∞ category over Λ0. Take its
associated strict category. Change the coefficient ring from Λ0 to Λ. This is the way taken in [2].

We call a filtered A∞ category, Λ0 linear if its module of morphisms are Λ0 module and its
structure equations are Λ0 linear. An A∞ category over Λ (resp. R) is called also to be Λ linear
(resp. R linear).

There are certain cases where it is better to work over Λ0. For example, reduction to R works
only for Λ0 linear category.

Yoneda’s lemma in the case of curved filtered A∞ category is discussed in [19, Section 4].

2.10There are errors in [27] on the corresponding statements. It is corrected here. It does not affect other parts
of [27] since the functor OpYon is not used in [27]. It will be used in this paper.
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3 Floer theory of immersed Lagrangian submanifolds: Review

This section is a review of Floer theory of immersed Lagrangian submanifolds. Our main purpose
here is to provide the precise definitions of various notions we use in this paper. We also include
certain discussions on orientation in the Morse–Bott case, which we use in later sections. If the
reader has certain knowledge on Lagrangian Floer theory and its immersed version, the reader
may skip this section and comes back when it is quoted in later sections.

The Floer theory of immersed Lagrangian submanifolds is developed by Akaho–Joyce in [4],
generalizing the case of embedded Lagrangian submanifolds in [34, 35]. Here we rewrite the
story by using the de Rham model. The main reference we use on the virtual fundamental chain
technique in the de Rham model is [40, 43, 46]. Note that [34, 35, 40, 43, 46] do not discuss the
construction of filtered A∞-categories but focus on filtered A∞ algebras. The references on the
category case are [2, 27, 36].

3.1 Immersed Lagrangian submanifold

Let (X,ω) be a symplectic manifold of real dimension 2n. We assume it is either compact or
tame. We sometimes say that X is a symplectic manifold for simplicity.

Notation 3.1. For a symplectic manifolds (X,ωX), (Y, ωY ), we denote (X×Y, π∗1(ωX)+π∗2(ωY ))
by (X,ωX) × (Y, ωY ). Sometimes we denote (X,−ωX) by −X by an abuse of notation. We
also denote (X,ωX) × (Y, ωY ) by X × Y sometimes. Moreover, we write −X × Y instead of
(X,−ωX)× (Y, ωY ) sometimes.

Definition 3.2.

(1) An immersed Lagrangian submanifold L of (X,ω) is a pair
(
L̃, iL

)
where L̃ is a smooth

manifold of dimension n and iL is a smooth map iL : L̃→ X such that its derivative dpiL :
TpL̃→ TiL(p)X is injective and that i∗Lω = 0.

(2) Sometimes we denote by L the image of iL : L̃→ X by an abuse of notation.

(3) In this paper, all immersed Lagrangian submanifolds are assumed to be compact and
oriented unless otherwise mentioned.

(4) We say L =
(
L̃, iL

)
has clean self-intersection if the following holds.

(a) The fiber product

L̃×X L̃ :=
{
(p, q) ∈ L̃× L̃ | iL(p) = iL(q)

}
is a smooth submanifold of L̃× L̃.

(b) For (p, q) ∈ L̃×X L̃, we have

T(p,q)(L̃×X L̃) =
{
(V,W ) ∈ TpL̃× TqL̃ | (dpiL)(V ) = (dqiL)(W )

}
.

We remark that the left-hand side is automatically contained in the right-hand side.
The condition is that the right-hand side is contained in the left-hand side. Hereafter,
we put L(+) = L̃×X L̃.

(5) We decompose L(+) into the disjoint union of finitely many connected components as

L(+) = L̃ ⊔
∐
a∈AL

L(a), (3.1)

where L̃ is identified with the intersection of L(+) and the diagonal. We say L̃ the diagonal
component of L(+) and other L(a)’s the switching components. We put A+

L = {o} ∪ AL,
and L(o) = L̃.
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(6) We say that L has transversal self-intersection when it has clean self-intersection and all
the switching components are zero-dimensional.

Remark 3.3. We consider sometimes the case when L̃ is not connected. In such a case, the
diagonal component is not actually a connected component. We however call it the diagonal
component by an abuse of notation.

We next define the notion of a relative spin structure of an immersed Lagrangian submanifold,
following [35, Definition 8.1.2].

Definition 3.4. Let L be an immersed Lagrangian submanifold which has clean self-intersection.
We fix a triangulation of X such that L is a subcomplex. It induces a triangulation of L̃ such
that iL sends each simplex of L̃ to a simplex of X by a diffeomorphism.

A relative spin structure of L is the following objects.

(1) A real and oriented vector bundle V on the 3 skeleton X[3] of X.

(2) A spin structure σ of the bundle i∗L(V )⊕ T L̃ on the 3 skeleton L̃[3] of L̃.

We call V the background datum of our relative spin structure. We say also σ is a V -relative
spin structure.

Remark 3.5. Let us put [st] = w2(V ) ∈ H2(X;Z2). Then a spin structure σ of the bun-
dle i∗L(V )⊕ T L̃ on the 3 skeleton L̃[3] of L̃ exists if and only if w2(L) = i∗L([st]). Sometimes [st]
is called the background class. We use V rather than [st] since to define the notion of a rel-
ative spin structure it is more precise when we use it. (We may say L is [st]-relatively spin
if w2(L) = i∗L([st]). We need to be more precise to define the notion of a relative spin structure
of L.)

Note that the notion of a relative spin structure in Definition 3.4 depends on the choice of
a triangulation of X. We can however show that this notion is independent of such a choice in
a similar way as [35, Proposition 8.1.6].

The immersed Lagrangian Floer theory associates a filtered A∞ algebra to an immersed
Lagrangian submanifold (which is relatively spin and has clean self-intersection). The underlying
vector space of filtered A∞ algebra is the vector space of differential forms on L̃ ×X L̃. (More
precisely, the completion of its tensor product with Λ0.) By the same reason as the Floer
cohomology of a pair of Lagrangian submanifolds (with clean intersection), we need to use
a certain principal O(1) bundle, which is equivalent to a Z2-local system, on the switching
components. (It is unnecessary in the self-transversal case which was the case of [4].) We next
discuss this point following [34, Section 3.7.5], [35, Section 8.8] and will define Θ−a .

Definition 3.6.

(1) Let L(a) be one of the switching components of L(+). L(a) is a submanifold of
(
L̃× L̃

)
\

diagonal. We compose L(a)→ L̃× L̃ with the projection to the first factor to obtain
ia,l : L(a) → L̃. This is a smooth immersion. Using the projection to the second factor,
we obtain ia,r : L(a)→ L̃.

(2) For x ∈ X, we denote by LGRx the set of all the oriented n-dimensional subspaces V
of TxX such that ω = 0 on V .

⋃
x∈X LGRx is a fiber bundle over X which we write LGR.

Below we assume

dimL− dimL(a) ≥ 2 (3.2)
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for switching components L(a). The orientation problem of the general case can be reduced to
this case by the following trick. Let u : (Σ, ∂Σ) → (X,L) be a pseudo-holomorphic map (see
Definition 3.17). For the orientation problem, it suffices to consider the case Σ ⊂ C. When we
replace X, L, u by X ×C, L× ∂Σ, u× identity, the moduli spaces of pseudo-holomorphic maps
(together with their Kuranishi structures), do not change by this process. Therefore, we may
assume (3.2) without loss of generality.

We take and fix a Riemannian metric on L̃. This is nothing but the reduction of the structure
group of its tangent bundle to SO(n).

Definition 3.7 (see [35, p. 687 and p. 721]). Let x ∈ L(a).

(1) We denote by Pax the set of all smooth maps λx : [0, 1]→ LGRx such that

(a) λx(0) = (dxia,l)
(
Tia,l(x)L̃

)
,

(b) λx(1) = (dxia,r)
(
Tia,r(x)L̃

)
,

(c) λx(t) ⊇ (dxia,l)
(
Tia,l(x)L̃

)
∩ (dxia,r)

(
Tia,r(x)L̃

)
.

(2) For λx ∈ Pax , we define the space Iλx as the set of all smooth maps σ : [0, 1] × Rn → TX
such that σ(t; ·) : Rn → TxX is a linear isometry between Rn and the linear subspace λx(t)
of TxX.

(3) Let PSOL be the principal SO(n) bundle associated to the tangent bundle. We may
identify its fiber at p ∈ L̃ with the set of all orientation preserving isometries Rn → TpL̃.
For x = (p, q) ∈ L(a), we consider

Px =
(PSpinL)p × (PSpinL)q

{−1,+1} .

Here (PSpinL)p is the double cover of the fiber of PSOL at p and can be identified with
Spin(n). The denominator {−1,+1} is the group O(1) consisting of (1, 1) ∈ Spin(n) ×
Spin(n) and (−1,−1) ∈ Spin(n)× Spin(n).

(4) For x = (p, q) ∈ L(a), we define a map Iλx → (PSOL)p × (PSOL)q by restricting σ ∈ Iλx
to t = 0, 1. We also have a double cover Px → (PSOL)p×(PSOL)q. We define the space Ĩλx
by the fiber product Ĩλx = Iλx ×(PSOL)p×(PSOL)q Px.

(5) We put

Ix =
⋃

λx∈Pa
x

Iλx , Ĩx =
⋃

λx∈Pa
x

Ĩλx .

The projection Ix → Pax is a fiber bundle.

We next want to regard
⋃
x∈L(a) Ĩx as a fiber bundle over L(a)[3]. We use a relative spin

structure for this purpose. Let V be a real and oriented vector bundle on the 3 skeleton X[3].
We fix a metric on it. We may assume that L(a)[3] is contained in X[3]. Let x = (p, q) ∈ L(a)[3].
We denote by PSO(TL⊕ V ) the principal SO bundle on L̃[3] whose fiber at p is the set of linear
isometries Rn+m → TpL⊕Vy. (Here y = iL(p).) The spin structure of TL⊕V defines a fiber-wise
double cover PSpin(TL ⊕ V ) of PSO(TL ⊕ V ) on L(a)[3]. (Note that such a double cover may
not exist for PSOL.)

We choose an orientation preserving isometry Iy : Vy ∼= Rm. It induces an embedding
(PSOL)p → (PSO(TL⊕ V ))p. By taking a double cover, we have

(PSpinL)p → (PSpin(TL⊕ V ))p. (3.3)
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We put

Px(V ) :=
(PSpin(TL⊕ V ))p × (PSpin(TL⊕ V ))q

{−1,+1} .

Then it is a double cover of (PSO(TL⊕ V ))p × (PSO(TL⊕ V ))q. By using (3.3),

Ĩx ∼= Ix ×(PSO(TL⊕V ))p×(PSO(TL⊕V ))q Px(V )

for (p, q) ∈ L(a)[3]. Note that this identification is independent of the choice of Iy : Vy ∼= Rm.
This is because we use the same identification for the first factor and the second factor of the
numerator.

We remark again that we are given a spin structure of the vector bundle T L̃⊕i∗LV . Therefore,
the unions of (PSpinTL⊕ V )p (resp. (PSpinTL⊕ V )q) for p (resp. q) becomes a principal bundle
over L(a)[3]. We thus obtain a fiber bundle Ĩ → L(a)[3] whose fiber at x is Ĩx.

We remark that Pax is homotopy equivalent to the loop space of the oriented Lagrangian
Grassmannian, ΩLGR(n− d), where d = dimL(a). It is well know that

LGR(n− d) = U(n− d)/SO(n− d).

In fact, U(n − d) acts transitively to the set of all the oriented Lagrangian linear subspaces
of Cn−d and the isotropy group of this action at Rn−d is SO(n−d). Therefore, we have an exact
sequence

1 = π2(U(n− d))→ π2(LGR(n− d))→ π1(SO(n− d))
→ π1(U(n− d))→ π1(LGR(n− d))→ 1.

We assumed (3.2), that is, n − d ≥ 2. Therefore, π1(SO(n − d)) = Z2 and π1(U(n − d)) = Z.
Therefore, π0(ΩLGR(n − d)) = Z, π1(ΩLGR(n − d)) = Z2. Moreover, the map π1(ΩLGR(n −
d))→ π1(SO(n− d)) is an isomorphism. It implies the next lemma.

Lemma 3.8. The double cover Ĩx → Ix is nontrivial.

Using λx as in Definition 3.7, we define a Fredholm operator as follows. (We follow [35,
Section 8.1.3] here.) We put

Z− = {z ∈ C | |z| ≤ 1} ∪ {z ∈ C | Re z ≥ 0, | Im z| ≤ 1},
Z+ = {−x+

√
−1y | x, y ∈ R, x+

√
−1y ∈ Z−}.

Let k be a sufficiently large integer. (For example we may take k = 100.) We consider the
set of locally L2

k maps u : Z− → TxX (resp. u : Z+ → TxX) with the following properties:

(1) u
(
t+
√
−1
)
∈ (diL)

(
Tia,r(x)L̃

)
for t ∈ R≥0 (resp. u

(
t+
√
−1
)
∈ (diL)

(
Tia,r(x)L̃

)
for t ∈ R≤0),

(2) u
(
t−
√
−1
)
∈ (diL)

(
Tia,l(x)L̃

)
for t ∈ R≥0 (resp. u

(
t−
√
−1
)
∈ (diL)

(
Tia,l(x)L̃

)
for t ∈ R≤0),

(3) u
(
exp
(
π
√
−1(3/2− t)

))
∈ λa(x, t) (resp. u

(
exp
(
π
√
−1(t− 1/2)

))
∈ λa(x, t)),

(4)

k∑
ℓ=0

∫
W
eδ|Re z|∥∇ℓu∥2dzdz <∞. (3.4)

Here δ > 0 is a fixed small number. See Figure 3.1.
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Tia,r(x)L̃

Tia,l(x)L̃

λa(x, t)

Z+

Z−

Tia,r(x)L̃

Tia,l(x)L̃

Figure 3.1. Domains Z+, Z−.

We consider the totality of such maps u and use the left-hand side of (3.4) as its norm. We
denote it by L2

k(Z−;TxX;λa; δ) (resp. L
2
k(Z+;TxX;λa; δ)). This is a Hilbert space. We consider

the set of all the locally L2
k−1 maps u : Z− → TxX (resp. u : Z+ → TxX) which satisfies (3.4)

with k replaced by k− 1 and denote it by L2
k−1(Z−;TxX; δ) (resp. L2

k−1(Z+;TxX; δ)). (In other
words, we do not require (1), (2), (3) for this function space.)

We use the Cauchy–Riemann operator to define the operators ∂Z−,λx , ∂Z+,λx

∂Z−,λx : L2
k(Z−;TxX;λa; δ)→ L2

k−1(Z−;TxX; δ),

∂Z+,λx : L2
k(Z+;TxX;λa; δ)→ L2

k−1(Z+;TxX; δ). (3.5)

The next lemma is now standard.

Lemma 3.9. The operators ∂Z−,λx, ∂Z+,λx are Fredholm.

By moving x and λx, we obtain the family index bundles Ind
(
∂Z−,λx

)
, Ind

(
∂Z+,λx

)
and their

determinant real line bundles Det Ind
(
∂Z−,λx

)
, Det Ind

(
∂Z+,λx

)
. They are bundles over I.

Lemma–Definition 3.10.

(1) The restriction of the pullback of Det Ind
(
∂Z−,λx

)
, Det Ind

(
∂Z+,λx

)
to Ĩx is trivial.

(2) Moreover, we can define a real line bundles on L(a) in a canonical way, which pulls back
to Det Ind

(
∂Z−,λx

)
, Det Ind

(
∂Z+,λx

)
.

(3) We denote by Θ−a , Θ
+
a , the principal O(1) bundles which correspond to the real line bundles

on L(a) in item (2).

(4) There exists an isomorphism Θ−a ⊗Θ+
a
∼= DetTL(a).

Proof. This is [35, Proposition 8.8.1]. We refer to [35, pp. 721–722] for the proof of item (1).
We provide a bit more detail of the proof of item (2) than [35] here, since we use a certain

part of the construction in the proof of Lemma 3.11. Recall π0(Ix) corresponds one to one to
integers k. Let Ix,k be the corresponding connected component. Its union for x ∈ L(a)[3] is
denoted by Ik. Its pullback to Ĩ is denoted by Ĩk.

The double cover Ĩx,k → Ix,k is nontrivial by Lemma 3.8. Therefore, π0
(
Ĩx,k

)
= π0(Ix,k) is

trivial. We then have an exact sequence

π1
(
Ĩx,k

)
→ π1

(
Ĩk
)
→ π1(L(a)[3])→ 1.

Therefore, π1
(
Ĩk
)
→ π1(L(a)[3]) is surjective. Thus item (1) implies that we can define

a group homomorphisms π1(L(a)[3])→ Z2 which pulls back to the homomorphism π1
(
Ĩk
)
→ Z2
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given by Det Ind
(
∂Z−,λx

)
, Det Ind

(
∂Z+,λx

)
. Thus we obtain real vector bundles on L(a)[3] which

pull back to Det Ind
(
∂Z−,λx

)
and Det Ind

(
∂Z+,λx

)
on Ĩk, respectively.

See the proof of [35, Proposition 8.8.1] for the proof of the fact that this line bundle is
independent of k. Since any real line bundles on the 3-skeleton uniquely extend to the whole
space, we obtain a real line bundles on L(a).

We next discuss item (4). This is proved in [35, Section 8.8]. We sketch its proof below since
we use a similar argument in the proof of Lemma 3.11. It suffices to show that the isomorphism
for an arbitrary loop γ in L(a)[3]. We choose a loop γ and fix a trivialization of V on γ.

We will prove the isomorphism of family indices

Ind
(
∂Z−,λx

)
⊕ Ind

(
∂Z+,λx

)
⊕ TxL(a) ∼= Ind

(
∂Z,λ2x

)
, (3.6)

where the right-hand side is defined as follows. We put

Z(R) = {z ∈ C | |z −R| ≤ 1} ∪ {z ∈ C | |z +R| ≤ 1} ∪ {z ∈ C | | Im z| ≤ 1, |Re z| ≤ R}.

See Figure 3.2. We use λx on ∂Z(R) ∩ ∂{z ∈ C | |z − R| ≤ 1} and on ∂Z(R) ∩ ∂{z ∈ C |
|z + R| ≤ 1} and dxia,L

(
Tia,l(x)L̃

) (
resp. dxia,r

(
Tia,r(x)L̃

))
on ∂Z(R) ∩ {z | Im z = −1} (resp.

∂Z(R) ∩ {z | Im z = 1}) to define the boundary condition λ2x on ∂Z(R). We then obtain

∂Z(R),λ2x
: L2

k

(
Z(R);TxX;λ2x

)
→ L2

k−1(Z(R);TxX)

in the same way as ∂Z−,λx . (Since Z(R) is compact we do not use weighted Sobolev space but
use usual Sobolev space.)

R +R

0

Figure 3.2. Domains Z(R).

We glue two index problems ∂Z−,λx and ∂Z+,λx at their ends and the result is ∂Z(R),λ2x
. Note

that, however, there is a degeneration of the operators ∂Z−,λx and ∂Z+,λx at the end. The
eigenspace of 0 of this degeneration is exactly TxL(a). (See Definition 3.6 (1c).) Therefore, the
standard family index sum formula (see, for example, [21, Theorem 4.9]) gives (3.6).

Now we consider the family of indices of ∂Z(R),λ2x
, where we move x and λ2x, and regard it as

a bundle on Ĩk. Then since we are working on Ĩk, the boundary has a canonical spin structure
as family on the boundary condition λ2x. In fact, we fixed a trivialization of V . So the spin
structure of λ2x(t) ⊕ V corresponds one to one to the spin structure of λ2x(t). Therefore, the
determinant line bundle of the family ∂Z(R),λ2x

on Ĩk is trivial. We thus proved item (4). ■

We use the next lemma in the later sections. We consider two V -relative spin structures σ1
and σ2 of L. Then the difference σ1−σ2 is regarded as an element of H1

(
L̃;Z2

)
. Using Lemma–

Definition 3.10, we obtain a line bundle Θ−a for each of the V -relative spin structures σ1 and σ2.
In the next lemma, we write them as Θ−a,σ1 and Θ−a,σ2 , respectively.

Lemma 3.11. The tensor product3.1 Θ−a,σ1⊗Θ−a,σ2 is the principal O(1) bundle corresponding to

i∗a,l(σ1 − σ2)− i∗a,r(σ1 − σ2) ∈ H1(L(a);Z2),

where σ1 − σ2 ∈ H1
(
L̃;Z2

)
is as above.

3.1See also [42, Proposition 3.10].
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Proof. We consider a loop γ : S1 → L(a)[3] and fix a trivialization of V on γ. In the case when

(i∗a,l(σ1 − σ2)− i∗a,r(σ1 − σ2)) ∩ [γ] = 0, (3.7)

we will prove that Θ−a,σ1 ⊗Θ−a,σ2 is trivial on γ. In the case when

(i∗a,l(σ1 − σ2)− i∗a,r(σ1 − σ2)) ∩ [γ] ̸= 0, (3.8)

we will prove that Θ−a,σ1 ⊗Θ−a,σ2 is nontrivial on γ.

Let Ĩσ1k
(
resp. Ĩσ2k

)
be the space Ĩk we obtain as in the proof of Lemma–Definition 3.10 using

relative spin structure σ1 (resp. σ2). As we proved during the proof of Lemma–Definition 3.10 (2),
the loop γ lifts to Ĩσ1k

(
resp. Ĩσ2k

)
.

We take the lift γ̃σ1 : S1 → Ĩσ1k
(
resp. γ̃σ2 : S1 → Ĩσ2k

)
. We compose it with the projection

to obtain γσ1 : S1 → Iσ1k
(
resp. γσ2 : S1 → Iσ2k

)
. (As we can show from the discussion below,

γσ1 is not homotopic to γσ2 if (3.8) holds.)
For each s ∈ S1, the element γσ1(s) defines a path λσ1s (·) : [0, 1] → LGRγ(s) satisfying Defi-

nition 3.7 (1) (a) (b) (c) for x = γ(s). We obtain λσ2s (·) in the same way. We use them to obtain
Fredholm operators ∂Z−,λ

σ1
s
, ∂Z+,λ

σ1
s
, ∂Z−,λ

σ2
s
, ∂Z+,λ

σ2
s
. by (3.5). It suffices to show that

Det Index
(
∂Z−,λ

σ1
s

)
⊗Det Index

(
∂Z−,λ

σ2
s

)
(3.9)

is a nontrivial real line bundle as a family index bundles over S1 = γ, if and only if (3.8) holds.
By Lemma–Definition 3.10,

Det Index
(
∂Z−,λ

σ1
s

)
⊗Det Index

(
∂Z+,λ

σ1
s

) ∼= DetTL(a)

∼= Det Index
(
∂Z−,λ

σ2
s

)
⊗Det Index

(
∂Z+,λ

σ2
s

)
.

Therefore, (3.9) is isomorphic to

Det Index
(
∂Z−,λ

σ1
s

)
⊗Det Index

(
∂Z+,λ

σ2
s

)
⊗DetTL(a).

We define λσ1,σ2s (x) ⊂ TxX for z ∈ ∂Z(R) as follows.
We use λσ1s on ∂Z(R) ∩ ∂{z ∈ C | |z +R| ≤ 1}, λσ2s on ∂Z(R) ∩ ∂{z ∈ C | |z −R| ≤ 1}, and

diL
(
Tia,l(γ(s))L̃

) (
resp. dir

(
Tia,l(γ(s))L̃

))
on ∂Z(R) ∩ {z | Im z = −1} (resp. ∂Z(R) ∩ {z | Im z =

1}). We then obtain ∂Z(R),λ
σ1,σ2
s

in the same way as λσ1,σ2s . See Figure 3.3.

R +R

d
iL
(T

ia ,L ( (s ))
L)

d
ir
(T

ia ,r ( (s ))
L)

s

1
s

2

Figure 3.3. Domains Z(R).

In the same way as the proof of Lemma–Definition 3.10 (4), the bundle (3.9) is isomorphic to

Det Index
(
∂Z(R),λ

σ1,σ2
s

)
. (3.10)

Note that we consider the family of n-dimensional real vector spaces λσ1,σ2s (z) parametrized
by (s, z) ∈ S1 × ∂Z(R) ∼= S1 × S1. (3.8) implies that this bundle has nontrivial second Stiefel–
Whitney class. Therefore, the example given in the proof of [35, Proposition 8.1.7] implies that
the family index bundle (3.10) is nontrivial on S1.

(3.7) implies that the boundary condition corresponds to a trivial bundle. Therefore, we can
show that the family of index bundle (3.10) is trivial in this case.

The proof of Lemma 3.11 is complete. ■
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Example 3.12. Let L0 be an embedded and spin Lagrangian submanifold of X, L̃ a disjoint
union of two copies of L0, and iL : L̃ → X the identity maps on each components. The fiber
product L̃×X L̃ is disjoint union of 4 copies of L0, where two are diagonal components and two
are switching components. We take two different spin structures σ1 and σ2 on L0 and use them
for the two connected components of L̃ and obtain a relative spin structure.

Then Θ− is the trivial bundle on the diagonal components and is the line bundle corresponding
to σ1 − σ2 ∈ H1(L0;Z2) on the switching components.

Let Θ be a principal O(1) bundle on a manifold M . We denote by Ω(M ; Θ) the R vector
space of smooth differential forms on M with coefficient Θ, that is, the set of smooth sections
of ΩM ⊗Θ. Here ΩM is the real vector bundle of differential forms on M and Θ is the real line
bundle corresponding to the principal O(1) bundle Θ.

Definition 3.13. Suppose R = R or C. We put

CF
(
L; ΛR0

)
= Ω(L(+),Θ−)“⊗R ΛR0

=
(
Ω
(
L̃
)“⊗R ΛR0

)
⊕
⊕
a∈AL

(
Ω(L(a),Θ−a )“⊗R ΛR0

)
. (3.11)

Here “⊗R is the T -adic completion of the algebraic tensor product.
We remark that CF

(
L; ΛR0

)
is a completed free ΛR0 module.

We also denote

CF (L;R) = Ω(L(+),Θ−) = Ω
(
L̃
)
⊕
⊕
a∈AL

Ω(L(a),Θ−a ).

3.2 Moduli space of pseudo-holomorphic polygons

The purpose of this subsection is to prove the next theorem.

Theorem 3.14. Let L be a relatively spin immersed Lagrangian submanifold of (X,ω). We
assume that L has clean self-intersection. Then we can define a structure of filtered A∞ algebra
on the completed free graded ΛR0 module CF

(
L; ΛR0

)
. It is unital and is G-gapped for some

discrete submonoid G.

Remark 3.15. Theorem 3.14 is proved by Akaho–Joyce in [4] except the following points.
Those points are of technical nature.

(1) We include the case of clean self-intersection. Akaho–Joyce [4] restrict themselves to the
case of transversal self-intersection. This difference is not essential. In fact, Lagrangian
Floer theory in the Morse–Bott situation is fully worked out in [34]. I think [4] restricted
themselves to the transversal case only for the sake of simplicity of notations. We include
it, since we need to use the clean self-intersection case in Section 6.

(2) We use the de Rham model to work out the transversality issue, while [4] used the singular
homology. The author of this paper together with joint authors has completed detailed
account explaining the way to use the de Rham model in the virtual fundamental chain
technique after [4] was published (see [38, 40, 43, 46]). In his opinion using the de Rham
model is the shortest way to work out the virtual fundamental chain technique in the chain
level in detail and rigorously when we include Morse–Bott situation.

(3) We prove (exact) unitality of the algebra. In fact, using the de Rham model we can obtain
an exact unit (see [28]). When using singular homology, we obtain a homotopy unit but
it is hard to obtain an exact unit (see [34, Section 3.3] and [35, Section 7.3].)
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Remark 3.16. The filtered A∞ algebra
(
CF
(
L; ΛR0

)
, {mk}

)
in Theorem 3.14 depends on various

choices but is independent of the choices up to homotopy equivalence. See Remark 3.43 and
Section 14. (In Section 14, we will prove the case of filtered A∞ category, which implies the case
of filtered A∞ algebra.)

The proof of Theorem 3.14 will be completed in Section 3.3. In this subsection, we de-
scribe the moduli spaces of pseudo-holomorphic polygons, which are used to define the structure
operations mk of our filtered A∞ algebra.

Let L be as in Theorem 3.14 and a⃗ = (a0, . . . , ak), ai ∈ A+
L . (Here A+

L is as in Defini-
tion 3.2 (5).) We fix a compatible almost complex structure JX on X.

Definition 3.17. Let E ∈ R≥0. We define the set
˚̃M(L; a⃗;E) as the totality of all the ob-

jects (Σ;u; z⃗; γ) with the following properties.

(1) The space Σ is a union of a disk plus a finite number of trees of sphere components attached
to the interior of the disk. Σ is connected, simply connected and has at worst double points
as singularities.

(
In particular, ∂Σ = S1.

)
(See Figure 3.4.)

X

X

X

X

X
z
0

z
3

z
2

z
4

z
1

Figure 3.4. Domain Σ.

(2) The map u : Σ→ X is JX -holomorphic.

(3) We put z⃗ = (z0, . . . , zk). Then, the points zi ∈ ∂Σ = S1 are mutually distinct. The k + 1
tuple of points (z0, . . . , zk) respects the counter clockwise cyclic order of S1.

(4) The map γ : S1 \ {z0, . . . , zk} → L̃ is smooth and satisfies iL(γ(z)) = u(z) for z ∈ S1 \
{z0, . . . , zk}.

(5) For i = 0, . . . , k, we have (limz↑zi γ(z), limz↓zi γ(z)) ∈ L(ai). Here L(ai) is as in (3.1). The
limit in the left-hand side is defined as follows. Let xm = etm

√
−1 ∈ S1, where tm is an in-

creasing sequence of real numbers converging to t with et
√
−1 = zi. We say limz↑zi γ(z) = y

if limm→∞ γ(xm) = y for any such sequence xm. The definition of limz↓zi γ(z) is similar.
(See Figure 3.5.)

(6)
∫
D2 u

∗ω = E.

(7) (Stability) The set of the maps v : Σ→ Σ with the following properties is a finite set:

(a) u ◦ v = u,

(b) v is biholomorphic,

(c) v(zi) = zi,

(d) γ ◦ v = γ.3.2

3.2Actually this condition follows from (a).
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We write Aut(Σ;u; z⃗; γ) the finite group consisting of the maps v satisfying (a), (b), (c), (d)
above. We call it the group of automorphisms of (Σ;u; z⃗; γ).

X

X

X

X

X X

iL

u

zi z
z

pi

qi

(pi ,qi ) L(ai )

Figure 3.5. limz↑zi γ(z).

Remark 3.18. Item (4) implies that γ extends continuously to zi if L(ai) is the diagonal
component and that γ does not extend continuously to zi if L(ai) is a switching component.

Definition 3.19. Let (Σ;u; z⃗; γ), (Σ′;u′; z⃗ ′; γ′) ∈ ˚̃M(L; a⃗;E). We say that they are equivalent
and write (Σ;u; z⃗; γ) ∼ (Σ′;u′; z⃗ ′; γ′) if there exists a map v : D2 → D2 such that

(1) the map v is biholomorphic,

(2) u = u′ ◦ v,
(3) z′i = v(zi),

(4) γ = γ′ ◦ v on ∂D2 \ {z0, . . . , zk}.

We denote by M̊(L; a⃗;E) the set of all the equivalence classes of this equivalence relation ∼.
We define evaluation maps

ev = (ev0, . . . , evk) : M̊(L; a⃗;E)→
k∏
i=0

L(ai) (3.12)

by

evi(u; z⃗; γ) := (lim
z↑zi

γ(z), lim
z↓zi

γ(z)). (3.13)

Here the right-hand side is as in Definition 3.17 (4).

Gromov compactness implies that the set

G0(L) =
{
E ∈ R≥0 | ∃a⃗M̊(L; a⃗;E) ̸= ∅

}
(3.14)

is discrete. We define G(L) to be the monoid generated by G0(L). In other words, G(L) is
the set of all nonnegative numbers which are sums of finitely many elements in G0(L). The
subset G(L) ⊂ R is discrete since G0(L) is discrete.
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We next define a compactification of M̊(L; a⃗;E). We first describe a combinatorial or a topo-
logical structure of an element in the compactification by a tree with additional data. (This is
a standard method used by various people in various related situations.)

Definition 3.20. A stable decorated ribbon tree with k + 1 exterior vertices and energy E,
which we denote by (Γ, E(), a(), v0), is a connected tree Γ with additional data described below.
Let C0(Γ) be the set of vertices and C1(Γ) the set of edges.

(1) The set C0(Γ) is decomposed as C0(Γ) = C int
0 (Γ)⊔Cext

0 (Γ). We call an element of C int
0 (Γ)(

resp. Cext
0 (Γ)

)
an interior vertex (resp. an exterior vertex).

(2) All the vertices in Cext
0 (Γ) have exactly one edge containing it.

(3) A ribbon structure of our tree Γ is given. In other words, an embedding Γ→ R2 is given
up to isotopy.

(4) The set Cext
0 (Γ) contains exactly k+1 elements. The choice of 0-th vertex v0 ∈ Cext

0 (Γ) is
given.

(5) A map E(·) : C int
0 (Γ)→ R≥0 is given and

E =
∑

v∈Cint
0 (Γ)

E(v).

(6) A map a(·) : C1(Γ)→ AL is given.

(7) (Stability) For each v ∈ C int
0 (Γ), one of the following holds:

(a) E(v) > 0.

(b) The number of edges containing v is not smaller than 3.

(8) E(v) ∈ G(L) for any v ∈ C int
0 (Γ).

We denote by T Rk+1,E the set of all such (Γ, E(), a(), v0). We remark that we do not include
the data (1), (3) in the notation (Γ, E(·), a(·), v0). However, they are included as a part of the
data which an element of T Rk+1,E comprises.

We remark that T Rk+1,E = ∅ unless E ∈ G(L).
Note that Cext

0 (Γ) consists of k+1 elements. We enumerate them as v0, v1, . . . , vk so that v0
is one determined by item (4), and the order respects the counter clockwise orientation of R2

(into which Γ is embedded by using ribbon structure). We call vi the i-th exterior vertex. (See
Figure 3.6.)

Note that we have a decomposition C1(Γ) = C int
1 (Γ) ⊔ Cext

1 (Γ), where Cext
1 (Γ) is the set

of k + 1 edges which contain one of the exterior vertices. We call an element of Cext
1 (Γ) an

exterior edge and an element of C int
1 (Γ) an interior edge.

We next associate a fiber product of the spaces M̊(L; a⃗;E) to each element of T Rk+1,E .

Definition 3.21. Let Γ̂ = (Γ, E(·), a(·), v0) ∈ T Rk+1,E . Suppose v ∈ C int
0 (Γ). There exists

a unique edge e0(v) such that e0(v) lies in the same connected component as v0 in Γ \ v. Thus,
using the ribbon structure we enumerate the edges containing v as

e0(v), e1(v), . . . , ekv(v), (3.15)

so they respect the counter clockwise cyclic ordering. (See Figure 3.7.) We put

a⃗(v) = (a(e0(v)), . . . , a(ekv(v))). (3.16)
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Figure 3.6. Tree Γ.

v
0

e
0
(v

v

)

e
1
(v)

e
2
(v)

e
3
(v)

k
v
= 3

Figure 3.7. ei(v).

We take the direct product∏
v∈Cint

0 (Γ)

M̊(L; a⃗(v);E(v)). (3.17)

We will define a map

E V :
∏

v∈Cint
0 (Γ)

M̊(L; a⃗(v);E(v))→
∏

e∈Cint
1 (Γ)

L(a(e))× L(a(e)) (3.18)

as follows. Let e ∈ C int
1 (Γ). Suppose ∂(e) = {v, v′}. If v lies in the same connected component

as v0 in Γ \ Inte, then we put vt(e) = v. Otherwise, v′ lies in the same connected component
as v0 in Γ \ Inte. We put vt(e) = v′ in the latter case.

We define vs(e) such that ∂(e) = {vs(e), vt(e)}. (See Figure 3.8.)

Now let x⃗ =
(
xv : v ∈ C int

0 (Γ)
)
be an element of (3.17). We will define

E V (x⃗) = (E V e(x⃗) : e ∈ C int
1 (Γ)).

Here E V e(x⃗) ∈ L(a(e))× L(a(e)). Let e ∈ C1(Γ). Then there exists ks and kt such that

e = eks(vs(e)) = ekt(vt(e)).

(Actually ks = 0.) We define E V e(x⃗) := (evks(xvs), evkt(xvt)), where evks , evkt are the evalua-
tion maps (3.12).
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v
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Figure 3.8. vs(e), vt(e).

Now we define

M̊
(
L; Γ̂

)
:=

∏
v∈Cint

0 (Γ)

M̊(L; a⃗(v);E(v))E V ×
∏

e∈Cint
1 (Γ)

∆L(a(e)).

Here ∆L(a(e))
∼= L(a(e)) ⊂ L(a(e)) × L(a(e)) is the diagonal and the fiber product is taken

over
∏

e∈C1(Γ)
L(a(e))× L(a(e)). See Figures 3.9 and 3.10.

Let ei be the unique edge containing vi. We then put

ai
(
Γ̂
)
:= a(ei), a⃗

(
Γ̂
)
:=
(
a0
(
Γ̂
)
, a1
(
Γ̂
)
, . . . , ak

(
Γ̂
))
.

We put T RE,⃗a =
{
Γ̂ ∈ T Rk+1,E | a⃗

(
Γ̂
)
= a⃗

}
and denote

M(L; a⃗;E) :=
∐

Γ̂∈T RE,⃗a

M̊
(
L; Γ̂

)
. (3.19)

Moreover, we put

Mk+1(L;E) :=
∐

a⃗∈(AL)k+1

M(L; a⃗;E). (3.20)

v
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v
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v
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v
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v
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3
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Figure 3.9. The graph Γ.

Definition 3.22. Let a⃗ = (a0, . . . , ak) ∈ (AL)k+1. We put L(⃗a) = L(a0) × · · · × L(ak). We
define an evaluation map

ev = (ev0, . . . , evk) : M(L; a⃗;E)→ L(⃗a) (3.21)

as follows. Let Γ̂ ∈ T RE,⃗a, vi its i-th exterior vertex and ei the edge containing vi. In other
words, ei is the i-th exterior edge. Let v′i be the other vertex of ei. There exists ji such that ei is
the ji-th edge of v′i. (Here we enumerate the edges of v′i as in (3.15).) For x⃗ =

(
xv : v ∈ C int

0 (Γ)
)
,

we put evi(x⃗) := evji(xv′i
).
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Figure 3.10. An element of M̊
(
L; Γ̂

)
.

Using (3.21), we define

E V :
∏

v∈Cint
0 (Γ)

M(L; a⃗(v);E(v))→
∏

e∈Cint
1 (Γ)

L(a(e))× L(a(e))

in the same way as (3.18). We put

M
(
L; Γ̂

)
:=

∏
v∈Cint

0 (Γ)

M(L; a⃗(v);E(v))E V ×
∏

e∈Cint
1 (Γ)

∆L(a(e)). (3.22)

This is a compactification of M̊
(
L; Γ̂

)
.

We remark that we can also define Mk+1(L;E) or M(L; a⃗;E) as the set of the stable
maps (Σ, u, z⃗, γ) with certain properties similar to Definition 3.17, which we omit. (See [4,
Definition 4.2].) Then we can define a stable map topology on it in the same way as [35,
Definitions 7.1.39 and 7.1.42] and [49, Definition 10.3]. (See also Section 12.2.)

Theorem 3.23. The spacesMk+1(L;E) andM(L; a⃗;E) are compact and Hausdorff.

The proof is the same as the proof of [49, Lemma 10.4 and Theorem 11.1], [35, Theorem 7.1.43]
and is now standard.

Theorem 3.24. The spacesM(L; a⃗;E) for various a⃗, E have Kuranishi structures with corners,
which enjoy the following properties:

(1) The codimension m normalized corner, which we denote by SmM(L; a⃗;E), ofM(L; a⃗;E)
is identified with the disjoint union of M

(
L; Γ̂

)
, where Γ̂ is an element of T RE,⃗a such

that #C int
0 (Γ) = m+ 1.

(2) The map (3.21) is the underlying continuous map of a strongly smooth map.3.3 Moreover,
ev0 is weakly submersive.3.4

(3) The induced Kuranishi structure onM
(
L; Γ̂

)
⊆ SmM(L; a⃗;E)3.5 is isomorphic to the fiber

product Kuranishi structure (3.22).

(4) The isomorphism in item (3) satisfies the corner compatibility conditions, Condition 3.27,
below.

(5) The Kuranishi structures are compatible with the forgetful maps of marked points corre-
sponding to the diagonal component, in the sense of [28, Definition 3.1].

Remark 3.25. The notion of a normalized corner is defined in [43, 46]. See also [53]. For
example, the normalized boundary of [0,∞)2 is the disjoint union of two copies of [0,∞). Note
that the two elements 0 of the two copies of [0,∞) correspond to the same point (0, 0) in [0,∞)2

but are different in the normalized corner (boundary). This is the point where the notion
of a normalized corner (boundary) is different from the notion of a corner (boundary). See
Figure 3.11.

3.3See [46, Definition 3.35 (4)].
3.4See [46, Definition 3.35 (5)].
3.5See [46, Proposition 24.16].
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normalized boundary
boundary

Figure 3.11. Normalized boundary.

We describe the corner compatibility conditions. We need some digression and discuss graph
insertion.

Definition 3.26. Let Γ̂ = (Γ, E(·), a(·), v0) ∈ T RE,⃗a. We assume that for each v ∈ C int
0 (Γ) we

have an element Γ̂v = (Γv, Ev(·), av(·), (vv)0) ∈ T RE(v),⃗a(v). Here a⃗(v) is as in (3.16).
We define

Γ̂• = Γ̂#
(
Γ̂v : v ∈ C int

0 (Γ)
)
= (Γ•, E•(·), a•(·), v•0) ∈ T RE,⃗a

as follows:

(1) We put the tree Γv at the position of the vertex v of Γ. We join i-th exterior edge of Γv

with the i-th edge of Γ containing v. We perform this construction to all the interior
vertices v of Γ. We thus obtain Γ•. (See Figure 3.12.)

v(1)

v(2)

v
0

v
0

v
0

ˆ

ˆ

v(1)

v(2)

v
0

Figure 3.12. Γ̂•.
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(2) The decomposition C0(Γ) = C int
0 (Γ) ⊔ Cext

0 (Γ) induces C0(Γ
•) = C int

0 (Γ•) ⊔ Cext
0 (Γ•) by

C int
0 (Γ•) =

∐
v∈Cint

0 (Γ)

C int
0 (Γv). (3.23)

(3) In view of (3.23), Ev(·) and av(·) induce E•(·) and a•(·), respectively.
(4) Let e0 be the 0-th exterior edge and v′0 the vertex of e0 such that v′0 ̸= v0. The 0-th

exterior vertex v•0 of Γ̂• is by definition the 0-th exterior vertex (vv′0)0 of Γ̂v′0

Let x⃗ =
(
xv : v ∈ C int

0 (Γ•)
)
be an element of M

(
L; Γ̂•

)
. (Here xv ∈ M(L; a⃗•(v);E•(v)).)

For v ∈ C int
0 (Γ), we use (3.23) to obtain x⃗(v) from x⃗. It is easy to see that x⃗(v) ∈M

(
L; Γ̂v

)
.

Furthermore, (x(v) : v ∈ C int
0 (Γ)) is an element ofM

(
L; Γ̂

)
.

Suppose #C int
0 (Γ) = m+ 1, #C int

0 (Γv) = ℓv + 1 and ℓ =
∑

v∈Cint
0 (Γ) ℓv. Then

ℓ+m+ 1 = #C int
0 (Γ•).

Theorem 3.24 (1) then claims

x⃗ ∈M
(
L; Γ̂•

)
⊆ Sℓ+m(M(L; a⃗, E)), (3.24)

x⃗(v) ∈M
(
L; Γ̂v

)
⊆ Sℓv(M(L; a⃗v, E(v))). (3.25)

Note thatM
(
L; Γ̂

)
is obtained as the fiber product ofM(L; a⃗v, E(v)). Therefore, (3.25) implies

x⃗ = (x(v) : v ∈ C int
0 (Γ)) ∈ Sℓ

(
M
(
L; Γ̂

))
. (3.26)

On the other hand, Theorem 3.24 (1) claims

M
(
L; Γ̂

)
⊆ Sm(M(L; a⃗, E)). (3.27)

Combining (3.26) and (3.27), we obtain

M
(
L; Γ̂•

)
⊆ Sℓ(Sm(M(L; a⃗, E))). (3.28)

We have an (ℓ+m)!/ℓ!m! fold covering map of spaces with Kuranishi structures,

Sℓ(Sm(M(L; a⃗, E)))→ Sℓ+m(M(L; a⃗, E))). (3.29)

(See [43], [46, Proposition 24.16].) By restricting to M
(
L; Γ̂•

)
⊆ Sℓ(Sm(M(L; a⃗, E))) (see

equation (3.28)), this map is a homeomorphism to its image. Now the corner compatibility
condition is stated as follows.

Condition 3.27 (corner compatibility condition). We consider two Kuranishi structures on
M
(
L; Γ̂•

)
. One (which we call the fiber product Kuranishi structure) is obtained as the fiber

product (3.22). The other (which we call the induced Kuranishi structure) is induced from the
Kuranishi structure onM(L; a⃗, E) by the open inclusion (3.24). We consider two isomorphisms
between them:

(1) The isomorphism required in Theorem 3.24 (3).

(2) Applying Theorem 3.24 (3) to each of Γ̂v, the inclusion in (3.25) is extended to an isomor-
phism between the induced Kuranishi structure and the fiber product Kuranishi structure.
It then induces an isomorphism between the induced Kuranishi structure and the fiber
product Kuranishi structure on the space (3.28). By (3.29)

(
which is an isomorphism

on M
(
L; Γ̂•

))
, it induces an isomorphism between the induced Kuranishi structure and

the fiber product Kuranishi structure onM
(
L; Γ̂•

)
.
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We require that the two isomorphisms (1), (2) above coincide with each other.

Remark 3.28. Condition 3.27 looks rather complicated. Actually, in our geometric situation,
it is rather trivial that Condition 3.27 is satisfied. Corner compatibility conditions such as
Condition 3.27 are spelled out in [43], [46, Chapters 16 and 21] for the purpose of axiomatizing
the construction of a compatible system of perturbations of the compatible system of Kuranishi
structures. In other words, we spelled out the properties we need to construct a compatible
system of perturbations in a way independent of the geometric origin of the system of Kuranishi
structures.

In the case when L is an embedded Lagrangian submanifold, Theorem 3.24 is [35, Propo-
sitions 7.1.1 and 7.1.2].3.6 Its generalization is in [4] in the case when L has transversal self-
intersection. In the general case, we can use Morse–Bott gluing which can be worked out in
the same way as [35, Section 7.1.3]. (See also [24, 49].) In fact, the analytic detail of [35, Sec-
tion 7.1.3] is designed so that it works also in the Morse–Bott case in general. The detail of the
analysis to prove Theorem 3.24 is given also in [38, Parts 2 and 3] and in [44, 47, 48].

We next discuss the orientation. We first recall the definition of orientation local systems of
spaces with Kuranishi structure. Let Û = {(Up, Ep, sp, ψp) | p ∈ X} be a Kuranishi structure
of X. (We use the definition of [40, Definition 3.8]. So it has a tangent bundle in the sense of [35,
Definition A1.4].) We obtain a principal O(1) bundle Op = DetTUp ⊗ DetTEp on Up. By the
condition of the coordinate change in [40, Definition 3.2 (8)], Oq ∼= φ∗pqOp and this isomorphism
is compatible in the sense that the map Or ∼= φ∗qrOq

∼= φ∗qrφ
∗
pqOp coinsides with Or ∼= φ∗prOp.

We call such collection of {Op | p ∈ X} together with isomorphisms Oq ∼= φ∗pqOp satisfying
the above explained compatibility conditions, the orientation local system of our space with
Kuranishi structure

(
X, Û

)
and write it as O

(X,Û). We write it also as OX by an abuse of
notation.

If we construct a compatible good coordinate system {(Up, Ep, sp, ψp) | p ∈ P} then {Op |
p ∈ X} induces a system of principal O(1) bundles {Op | p ∈ P} which is compatible with
the coordinate change in a similar sense as above. (Here Op is a principal O(1) bundle on Up.)
We can use it to define and study integration along the fiber in a similar way as the case of
manifolds. (See [40, Chapter 27] and [46].)

Suppose that f = {fp | p ∈ X} is a weakly submersive strongly smooth map
(
X, Û

)
→ N

to a smooth manifold N . If Θ is a principal O(1) bundle on N , we pull it back to each Up to
obtain f∗pΘ. They are compatible with the coordinate change in a similar sense as above. We
denote the system {f∗pΘ | p ∈ X} by f∗Θ. We can define a tensor product of several systems in
an obvious way.

An isomorphism between f∗Θ and O is a system of isomorphisms of real line bundles f∗pΘ
∼= Op

which commute with coordinate changes.
Let a⃗ = (a0, . . . , ak), ai ∈ A+

L . We use the principal O(1) bundles Θ−ai and Θ+
ai , which are

defined in Lemma–Definition 3.10.

Proposition 3.29. The V -relative spin structure of L canonically induces an isomorphism of
principal O(1) bundles

OM(L;⃗a;E)
∼=

k⊗
i=0

ev∗iΘ
−
ai . (3.30)

Proof. This is a straightforward generalization of [35, Proposition 8.8.6]. We provide the proof
below for completeness.

3.6Note that item (4) is not stated in [35, Propositions 7.1.1 and 7.1.2]. However, this compatibility is fairly
obvious from the construction.
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Let x = (Σ;u; z⃗; γ) be an element of
˚̃M(L; a⃗;E). If suffices to consider the case when Σ = D2.

We may also assume that the image of γ lies in L[3].

We put evi(x) = (pi, qi) ∈ L(ai) and iL(pi) = iL(qi) = xi. We write xi = (pi, qi) ∈ L(ai) by
an abuse of notation. We fix a trivialization Vxi

∼= Rm and take an element λxi ∈ Paixi for each i.
(See Definition 3.7.)

We show that those choices together with the V -relative spin structure of L determine an
isomorphism of the principal O(1) bundles of the left and right-hand sides of (3.30) at x.

For each i, we use λxi to define an elliptic operator

∂Z−,λxi
: L2

k(Z−;TxiX;λai ; δ)→ L2
k−1(Z−;TxiX; δ)

as in (3.5). We can glue it with the linearized operator of the defining equation of
˚̃M(L; a⃗;E)

at x to obtain an elliptic operator P on Σ = D2 whose symbol is the same as one of the Cauchy–
Riemann operator with u∗TX coefficient. Its boundary condition is given by concatenating
the family z ∈ ∂Σ 7→ (diL)(Tγ(z)L̃) with λxi ’s. (See Figure 3.13.) We denote this family of
Lagrangian subspaces (the boundary condition) by λ.

x
0

x
1

x
2

u

Z

Z

Z

Figure 3.13. Family of Lagrangian subspaces λ.

We claim there is a canonical orientation of the determinant line bundle of the index of P .
We prove it below. Using the isomorphism u∗TX ∼= Cn × Σ

(
note that Σ = D2

)
, we may

regard λ as an S1 parametrized family of Lagrangian subspaces of Cn. The trivialization of V
and relative spin structure determine a trivialization of this family of subspaces as an abstract
vector bundle. We thus have a trivial complex vector bundle ξ0 = Cn × Σ on Σ = D2.

On the other hand, by an identification ξ0,R|∂Σ = Rn × ∂Σ with λ, (which may not be
consistent with the trivialization ξ0 = Cn × Σ). This identification induces ξ0|∂Σ ∼= u∗TX|∂Σ.
In the same way as the proof of [35, Theorem 8.1.1], we can show that the difference of the
index of P and the Cauchy–Riemann operator of the bundle E with ξ0,R boundary condition
has a canonical orientation. (This is based on the fact that this difference can be identified with
an index of a certain family of operators on CP 1 with complex linear symbols.)

The index of the Cauchy–Riemann operator of the bundle E with ER as a boundary condition
is canonically identified with Rn. Therefore, the determinant bundle of the index bundle of P
is canonically trivialized.
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On the other hand, we find that

TUx ⊖ Ex ⊕
k⊕
i=0

Index ∂Z−,λxi
∼= IndexP (3.31)

as a virtual vector space. (Here Uξ is a Kuranishi neighborhood of ξ and Eξ is an obstruction
bundle.)

We remark (3.31) induces an isomorphism (3.30) at a point x. In fact, Det IndexP is trivial.
Therefore, we obtain an isomorphism Det Index ∂Z−,λxi

∼= Θ−xi by Lemma–Definition 3.10 (3),
and an isomorphism DetTUx ⊗DetE∗x

∼= OM(L;⃗a;E) by definition. Thus we obtain (3.30).

We next explain the way to obtain a family of isomorphisms Vxi
∼= Rm and of λxi and so that

the above isomorphisms induce a global isomorphism (3.30).

In fact, the independence of the choice of λxi is the consequence of Lemma–Definition 3.10 (2).

Let us discuss the dependence of the identification Vxi
∼= Rm. We first remark that to

prove Proposition 3.29 it suffices to prove this isomorphism on each loop of the domain, since
both sides are principal O(1) bundles. Let S1 → C∞

((
D2, ∂D2

)
, (X,L)

)
be a smooth map.

It induces a map
(
S1 × D2, S1 × ∂D2

)
→ (X,L). The pullback of V by this map is a trivial

bundle since it is an oriented real bundle on S1 ×D2. Therefore, we have a continuous family
of isomorphisms Vxi

∼= Rm on this S1 parametrized family.

The proof of Proposition 3.29 is complete. ■

3.3 The filtered A∞ algebra associated
to an immersed Lagrangian submanifold

We now use Theorem 3.24 to prove Theorem 3.14. We refer [40, Definition 9.1] and [46] for the
definition of CF-perturbations on Kuranishi structures.

Proposition 3.30. Let E0 > 0. Then there exists a system of CF-perturbations “S on the
moduli spacesM(L; a⃗;E) with Kuranishi structures which are outer collarings3.7 of thickenings
of the structures given in Theorem 3.24, for various a⃗, E with E < E0. It enjoys the following
properties (see [40, Definition 5.3] and [46] for the definition of a thickening):

(1) Each of “S is transversal to zero.

(2) The evaluation map ev0 is strongly submersive with respect to this CF-perturbation (see
[40, Definition 9.2] and [46] for the definition of strong submersivity).

(3) They are compatible at the corners in the following sense. We consider the left-hand
sideM

(
L; Γ̂

)
of (3.22) and require that the following two CF-perturbations on it coincide

each other.

(a) The space M
(
L; Γ̂

)
is a stratum of M(L; a⃗;E) with respect to its corner structure

stratification (see [40, Definition 4.15] and [46] for the definition of the corner struc-
ture stratification). We restrict CF-perturbation “S on M(L; a⃗;E) to M

(
L; Γ̂

)
and

obtain a CF-perturbation on it.

(b) The right-hand side of (3.22) is a fiber product of various connected components
of M(L; a⃗;E). We take the restriction of “S to the moduli spaces appearing as the
fiber product factors of the right-hand side of (3.22) and take the fiber product CF-
perturbation, in the sense of [40, Definition 10.13] and [46]. Since ev0 is strongly sub-
mersive, we can take the fiber product CF-perturbation ([40, Lemma–Definition 10.12]
and [46]).

3.7See [46, Chapter 17] for the definition of an outer collaring (it was called τ -collaring in [43]).
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(4) They are compatible with the forgetful map of the marked points which correspond to the
diagonal component other than 0-th one. The precise definition of compatibility is written
in [28, Definition 5.1].

Proof. The proof is mostly the same as the proof of [28, Section 5], [40], [46, Chapter 12]
and [43], [46, Chapter 17]. We explain only the points where the discussion is slightly different.

We first observe that it suffices to define a CF-perturbation of the space M(L; a⃗;E) such
that ai is not the diagonal component for i ̸= 0. In fact, then the CF-perturbation in the
general case is automatically determined by item (4).

We then remark the following.

Lemma 3.31. There exits k0 (depending on E0) such that the following holds. Let a⃗ =
(a0, . . . , ak). SupposeM(L; a⃗;E) ̸= ∅, ai is not the diagonal component for i ̸= 0, and E < E0

then k ≤ k0.

Proof. This is a direct consequence of Gromov compactness. ■

Thus we need to construct CF-perturbations on only finitely many spaces with Kuranishi
structures.

The rest of the proof is the same as [28, Section 5], [40, 43, 46]. The construction is by
induction on E. Suppose we have constructed CF-perturbations with the required properties
for M(L; a⃗;E) with E < E1 < E0. We will construct one for M(L; a⃗;E1). By the induction
hypothesis Proposition 3.30 (3), the boundary and corners ofM(L; a⃗;E1) are fiber products of
the moduli spaces for which CF-perturbations are already defined by the induction hypothesis.
We take the fiber product of those CF-perturbations to obtain CF-perturbations of the boundary
and corners ofM(L; a⃗;E1) that are compatible with each other. Therefore, by using the relative
version of the existence theorem of CF-perturbations (see [43, Proposition 17.65 or 15.7] or [46,
Proposition 17.81 or 15.7]), we can extend it to M(L; a⃗;E1). The proof is now complete by
induction. ■

We use the CF-perturbations obtained in Proposition 3.30 to define the structure operations
of our filtered A∞ structure.

Definition 3.32.

(1) Let E < E0, E ∈ G(L). For (E, k) ̸= (0, 1), we define multi-linear maps

mE,ε
k : CF (L;R)⊗k → CF (L;R)

by

mE,ε
k (h1, . . . , hk) := (−1)∗ev0!

(
ev∗1h1 × · · · × ev∗khk;

”Sε
)
. (3.32)

Here CF (L;R) = Ω(L; Θ−) (see Definition 3.13 and (3.11)). Note that h1, . . . , hk ∈
CF (L;R) and ev∗ihi are the pullbacks of differential forms with respect to the strongly
smooth map evi (see [40, Definition 7.70] and [46]). ev0!

(
∗;”Sε

)
is the integration along the

fiber of the differential form with respect to the CF-perturbation (see [40, Definition 9.13]
and [46]). It depends on a positive number ε (see Remark 3.33 below). Here we consider
the moduli spaces M(L; a⃗;E) and their Kuranishi structures and the CF-perturbations
obtained in Theorem 3.24 and Proposition 3.30 to define them.

The sign ∗ in (3.32) is ∗ =∑k
i=1 i(deg hi + 1) + 1 when we take the convention of [46,

p. 552]. (The same correction term also appears in [72, Section 2.2.2].) (However, in this
paper we do not use this particular formula of ∗ as we will mention in Remark 17.2.)
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We remark that by Lemma 3.34 below the right-hand side of equation (3.32) is an element
of CF (L;R).

We also define

m0
1(h) := dh. (3.33)

There is no sign when we use the convention of [46, Definition 21.29 (4)].

(2) We define m<E0,ε
k : CF (L; Λ0)

⊗k → CF (L; Λ0) by

m<E0,ε
k :=

∑
E<E0,E∈G(L)

TEmE,ε
k .

Remark 3.33. Here ε is a sufficiently small positive number. It is proved in [40], [46, Theo-
rem 9.15] that the integration along the fiber ev0!

(
· · · ;”Sε

)
is independent of various choices

such as partition of unity, if ε is sufficiently small. (The integration along the fiber depends
on ε and the CF-perturbation.) How much ε should be small for this well-definedness to hold
is also CF-perturbation dependent. Note that, however, for a fixed E0, we have only finitely
many moduli spaces to perturb. Therefore, we can take ε0, which is E0 dependent, so that the
integration along the fiber is well-defined if ε < ε0 for those finitely many moduli spaces and
their CF-perturbations.

Lemma 3.34. The right-hand side of (3.32) is an element of CF (L;R).

Proof. Note that we may decompose mE,ε
k to the sum mE,ε

k =
∑

a⃗m
E,ε
a⃗ where mE,ε

a⃗ is defined
byM(L; a⃗;E).

We may assume hi ∈ Ω(L(ai); Θ
−
ai). Then mE,ε

a⃗ (h1, . . . , hk) is nonzero for a⃗ = (a0, a1, . . . , ak)
with a0 ∈ A(L). We consider the following two cases separately.

Case 1: L(a0) is a switching component.

We define an involution τ : L̃ ×X L̃ → L̃ ×X L̃ by τ(p, q) = (q, p). We take a′0 ∈ A(L)
such that τ(L(a0)) = L(a′0). By definition it is easy to see that τ∗(Θ−

a′0
) = Θ+

a0 . Therefore, by
Lemma–Definition 3.10 we have

τ∗(Θ−
a′0
) = Θ−a0 ⊗DetTL(a0). (3.34)

Proposition 3.29 implies that for h0 ∈ Ω(L(a0); Θ
−
a0) we can define the integration∫

(M(L;⃗a;E),”Sε)
ev∗1h1 × · · · × ev∗khk × ev∗0h0 ∈ R.

In other words, we may regard

mE,ε
a⃗ (h1, . . . , hk) ∈ Ω(L(a0); Θ

−
a0 ⊗DetTL(a0)).

Therefore, by (3.34) we may regard

mE,ε
a⃗ (h1, . . . , hk) ∈ Ω(L(a′0); Θ

−
a′0
), (3.35)

as required.

Case 2: L(a0) is the diagonal component.

In this case, L(a0) ∼= L̃ is oriented. By definition a′0 = a0. Moreover, Θ−a0 and Θ+
a0 are both

trivial bundles. We can prove (3.35) easily in this case, by using Proposition 3.29. ■
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Proposition 3.35. m<E0,ε
k , k = 0, 1, . . . , defines a filtered A∞ structure modulo TE0. Namely,

we have

0 ≡
∑

k1+k2=k+1

k1−1∑
i=0

(−1)∗im<E0,ε
k1

(x1, . . . , xi,m
<E0,ε
k2

(xi+1, . . . , xi+k2), . . . , xk) mod TE0

for sufficiently small ε > 0. Here ∗i = deg′ x1 + · · · + deg′ xi. Moreover, 1 = [L(a0)] ∈
CF (L(a0),R) (the differential form (function) 1 on the diagonal component) is a unit.

Proof. The proof is now a routine using Proposition 3.30, Stokes’ formula [40, Proposition 9.26],
[46] and the composition formula [40, Theorem 10.20], [46] and proceed as follows.

It suffices to show∑
E1+E2=E

∑
k1+k2=k+1

∑
i=1,...,k1

(−1)∗mE1,ε
k1

(
h1, . . . ,m

E2,ε
k2

(hi+1, . . . , hi+k2), . . . , hk
)
= 0, (3.36)

with ∗ = deg′ h1+ · · ·+deg′ hi. We denote by ev0!
(
∗;
(
M,”Sε

))
the integration along the fiber of

the differential form defined by a CF-perturbation”Sε of the spaceM with Kuranishi structure.
Now by Stokes’ theorem (see [40, Proposition 9.26] and [46]) and the definition, we have

(
d ◦mE,ε

a⃗

)
(h1, . . . , hk) +

k∑
i=1

(−1)∗mE,ε
a⃗ (h1, . . . , dhi, . . . , hk)

= ev0!
(
ev∗1h1 × · · · × ev∗khk;

(
∂M(L; a⃗;E),”Sε

))
. (3.37)

Here ∗ = deg′ h1 + · · ·+ deg′ hi−1 + 1. Let b ∈ A(L) and 1 ≤ i ≤ j ≤ k. We define

a⃗(b, i, j, 1) := (a0, . . . , ai, b, aj+1, . . . , ak), a⃗(b, i, j, 2) := (b, ai+1, . . . , aj).

Then by Theorem 3.24 (3), we have

∂M(L; a⃗;E) =
∐
b,i,j

E1+E2=E,(∗)

M(L; a⃗(b, i, j, 2);E2)ev0 ×evi+1M(L; a⃗(b, i, j, 1);E1). (3.38)

Here the condition (∗) in the notation of direct sum is

(*.1) E1 = 0 and (a0, . . . , ai, b, aj+1, . . . , ak) = (b, b) does not hold.

(*.2) E2 = 0 and (b, ai+1, . . . , aj) = (b, b) does not hold.

See Figure 3.14.
By Proposition 3.30 (3), our CF-perturbations are compatible with the isomorphism (3.38).

Therefore, by the composition formula (see [40, Theorem 10.20] and [46]), the right-hand side
of (3.37) is equal to the sum∑

b,i,j
E1+E2=E,E1,E2>0

ev0!
(
ev∗1h1 × · · · × ev∗i+1ev0!(ev

∗
1hi+1

× · · · ev∗j−ihj);
(
M(L; a⃗(b, i, j, 2);E2),”Sε

)
× ev∗i+2hj+1

× · · · ev∗j−ihk;
(
M(L; a⃗(b, i, j, 1);E1),”Sε

))
.

By definition, this sum is (3.36) minus left-hand side of (3.37) up to sign. This proves (3.36)
up to sign. See [34, Chapter 8] and [46] for the sign in the case of an embedded Lagrangian
submanifold L. In the case L is immersed and has transversal self-intersection see [4]. The
way to generalize them to the case of an immersed Lagrangian submanifold which has clean
self-intersection is explained in Section 17.6 and in the paper [68] by Kaoru Ono.

The unitality is a consequence of Proposition 3.30 (4). ■
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L(a
0
)

L(b)

L(ai )

L(ai+1)

L(a j+1)

L(a j )

Figure 3.14. Boundary ofM(L; a⃗;E).

Note that one of the reasons why we stop our construction at E = E0 is the running out
problem, which is explained in detail in [35, Section 7.2.3]. (See also [28, Section 14], [43, 46].)

The other reason why we need to fix E0 and stop the construction at E = E0 appears in
Remark 3.33. The well-definedness of the integration along the fiber (as well as Stokes’ theorem
and the composition formula) holds only for ε < ε0, where ε is the parameter of our CF-
perturbation, and ε0 is dependent on moduli spaces (spaces with Kuranishi structures) which
we work with.3.8 As far as we consider the construction up to energy E0 and k < k0 (k is the
number of input), we need to use only a finite number of moduli spaces so we can take the
same ε0 for all of them.

On the other hand, the CF-perturbation we obtain this way is actually E0 dependent.
Note that we require the compatibility of CF-perturbations with forgetful maps of the marked

points corresponding to the diagonal component. Therefore, we only need finiteness of the
number of input which does not correspond to the diagonal component. The number of such
inputs can be estimated by the energy because of Lemma 3.31.

Even though we need to stop at E = E0 and so can define only a filtered A∞ structure
modulo TE0 , we can still use it to define a filtered A∞ structure as follows. The method is the
same as [35, Section 7.2], [28, Section 14] and [43, 46]. (Our discussion here is slightly sketchy
since it is the same as the papers quoted above. More detail is given in [2].)

Definition 3.36 ([28, Definition 8.5]). We consider t ∈ [0, 1] dependent families of operations

mt
k : CF (L; Λ0)

⊗k → CF (L; Λ0), ctk : CF (L; Λ0)
⊗k → CF (L; Λ0)

which are G(L)-gapped. We say
({

mt
k

}
,
{
ctk
})

is a pseudo-isotopy modulo TE of G-gapped
filtered A∞ algebra structures modulo TE on CF (L) between

{
m0
k

}
and

{
m1
k

}
if the following

holds:

(1) The operations mt
k and ctk are continuous in C∞ topology. The map which sends t to mt

k

or ctk is smooth. Here we use operator topology with respect to the C∞ topology for mt
k

or ctk to define this smoothness.

(2) For each (but fixed) t, the set of operators
{
mt
k

}
defines a G-gapped filtered A∞ algebra

structures modulo TE on CF (L; Λ0).

3.8It might be possible to see carefully the moduli space itself and obtain a certain estimate of this number. How-
ever, to include such explicit estimate to the whole story of virtual fundamental chain (such as CF-perturbation
and de Rham theory) is rather cumbersome and so to use only the fact that there exists such ε0 for each individual
moduli space seems to be a better choice.
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(3) For each hi ∈ CF (L; Λ0),

d

dt
mt
k(h1, . . . , hk) +

∑
k1+k2=k+1

k−k2+1∑
i=1

(−1)∗ctk1
(
h1, . . . ,m

t
k2(hi, . . .), . . . , hk

)
−

∑
k1+k2=k+1

k−k2+1∑
i=1

mt
k1

(
h1, . . . , c

t
k2(hi, . . .), . . . , hk

)
≡ 0 mod TE . (3.39)

Here ∗ = deg′ h1 + · · ·+ deg′ hi−1.

(4) ctk ≡ 0 mod Λ+.

We put G(L) = {E0, E1, . . . , Ek, . . . } with 0 = E0 < E1 < E2 < · · · . By Proposi-
tion 3.35, we obtain

{
m<Ei,ε
k

}
which defines a G(L)-gapped filtered A∞ algebra modulo Ei

for each i = 1, 2, . . ..
We may regard

{
m
<Ei+1,ε
k

}
as a G(L) gapped filtered A∞ algebra modulo Ei by forgetting

the terms involving TEi+1 . We write it
{
m
<Ei+1,ε
k |Ei

}
.

Proposition 3.37. There exits εi such that if ε < εi then there exists
({

mt,i,ε
k

}
,
{
ct,i,εk

})
which

is a pseudo-isotopy modulo TEi of G(L)-gapped filtered A∞ algebra structures modulo TEi

on CF (L) between
{
m<Ei,ε
k

}
and

{
m
<Ei+1,ε
k |Ei

}
.

Proof. We remark that both
{
m<Ei,ε
k

}
and

{
m
<Ei+1,ε
k |Ei

}
are defined as in Definition 3.32. The

only difference is we use different CF-perturbations to define them. We use homotopy between
those two different CF-perturbations. We consider Kuranishi structures on M(L; a⃗;E) × [0, 1]
which is a direct product with one onM(L; a⃗;E) given in Theorem 3.24 and the trivial Kuranishi
structure on [0, 1].

Lemma 3.38. There exists a system of CF-perturbations “Spara of outer collarings of thickenings
ofM(L; a⃗;E)× [0, 1] for various a⃗ and E < E1 with the following properties:

(1) Each of “Spara is transversal to zero.

(2) ev0 × π :M(L; a⃗;E) × [0, 1] → L × [0, 1] is strongly submersive with respect to this CF-
perturbation.

(3) They are compatible in a similar sense as Proposition 3.30 (3).

(4) Its restriction to M(L; a⃗;E) × {0} coincides with the CF-perturbation we used to de-
fine

{
m<Ei,ε
k

}
. Its restriction to M(L; a⃗;E) × {1} coincides with the CF-perturbation we

used to define
{
m
<Ei+1,ε
k |Ei

}
.

(5) They are compatible with the forgetful maps of the marked points which corresponds to the
diagonal component other than 0-th one. The precise definition of compatibility is written
in [28, Definition 5.1].

See [43, Section 21], [46, Chapter 21] for the precise meaning of the compatibility in item (3).
The proof of Lemma 3.38 is mostly the same as Proposition 3.30 and is omitted. See [43,
Section 21], [46, Chapter 21].

Remark 3.39. Note that m<Ei,ε
k is different from m

<Ei+1,ε
k |Ei even for sufficiently small ε. One

of the reasons why it is difficult to take them to be the same is explained in [34, Section 7.2.3].
Another reason appears in Remark 3.33. It is an opinion of the author that it is safer (if not
inevitable) to use “homotopy inductive limit” than working out infinitely many moduli spaces
simultaneously and check that we can take the same ε independent of them.
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Remark 3.40. We mention thickenings and outer collarings in Lemma 3.38. This is the way to
construct a CF-perturbation with appropriate properties taken in [43, 46]. As far as applications
concern, a CF-perturbation constructed on an outer collaring of a thickening of the original
Kuranishi structure can be used in the same way as a CF-perturbation constructed on the
original Kuranishi structure. (See [43, 46] for its reason.)

Now we put

mi,t,ε
E,k (h1, . . . , hk) + ci,t,εE,k (h1, . . . , hk) ∧ dt := (ev0 × π)!

(
ev∗1h1 × · · · × ev∗khk;

”Sε
para

)
. (3.40)

Here we use the spaceM(L; a⃗;E)× [0, 1] with a Kuranishi structure and its CF-perturbation to
define the right-hand side. The variable t is the coordinate of [0, 1]. Note that mi,t,ε

E,k (h1, . . . , hk)
and ci,t,εE,k (h1, . . . , hk) are t-parametrized families of elements of CF (L;R) which may be regarded
as smooth forms on L̃ ×X L̃ × [0, 1] that do not contain dt. (See [46, Section 22.4] and [72,
Section 4.1] for the sign.) We put

mi,t,ε
k :=

∑
E<Ei

TEmi,t,ε
E,k , ci,t,εk :=

∑
E<Ei

TEci,t,εE,k .

Using Lemma 3.38 in place of Proposition 3.30, we can apply Stokes’ formula and the composition
formula in the same way as the proof of Proposition 3.35 and obtain (3.39). ■

Proposition 3.41. There exits a positive number εi such that if ε, ε′ < εi, then there exists({
m′,t,i,εk }, {c′,t,i,εk

})
which is a pseudo-isotopy modulo TEi of G(L)-gapped filtered A∞ algebra

structures modulo TEi on CF (L) between
{
m<Ei,ε
k

}
and

{
m<Ei,ε

′

k

}
.

The proof is the same as the proof of Proposition 3.37 and so is omitted.

We also use the next algebraic result.

Lemma 3.42. Let E < E′ and
{
m0
k

} (
resp.

{
m1
k

})
be G-gapped filtered A∞ algebra modulo TE(

resp. TE
′)

on C(L; Λ0). We regard
{
m1
k

}
as a G-gapped filtered A∞ algebra modulo TE and

denote it by
{
m1
k|TE

}
Let

{
ctk
}
be a pseudo-isotopy modulo TE of G-gapped filtered A∞ algebra

between
{
m0
k

}
and

{
m1
k|TE

}
. Then there exists

{
m0+
k

}
and

{
ct,+k
}
such that

(1)
{
m0+
k

}
is a G-gapped filtered A∞ algebra modulo TE

′
.

(2) If we regard
{
m0+
k

}
as a G-gapped filtered A∞ algebra modulo TE, then it coincides

with
{
m0
k

}
.

(3)
({

mt,+
k

}
,
{
ct,+k
})

is a pseudo-isotopy modulo TE
′
of G-gapped filtered A∞ algebras be-

tween
{
m0+
k

}
and

{
m1
k

}
.

(4) If we regard
{
ct,+k
}
as a pseudo-isotopy modulo TE of G-gapped filtered A∞ algebras, then

it coincides with
{
ctk
}
.

Proof. We may assume G(L) ∩ [E,E′] = {E′}. We put
{
ct,+k
}
:=
{
ctk
}
. They we can solve

differential equation (3.39) to obtain a coefficient of TE
′
of {m0+

k }. See [35, Section 7–1], [28,
Section 14] and [43, 46] for the proof of a similar but more difficult result. ■

We take εi which is smaller than the constants in Propositions 3.37 and 3.41. Then we use
Propositions 3.37 and 3.41 and Lemma 3.42 inductively to find systems of operations

{
m<Ei,j,εi
k

}
,{

m
<Ei,j,εi+1

k

}
,
({

mt,i,j,ε
k

}
,
{
ct,i,j,εk

}) ({
m′,t,i,j,εk

}
,
{
c′,t,i,j,εk

})
for j > i with the following properties:

(1) The operators
{
m<Ei,j,εi
k

}
,
{
m
<Ei,j,εi+1

k

}
define structures of G(L) gapped filtered A∞

algebras modulo TEj on CF (L; Λ0).
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(2) The pair
({

mt,i,j,ε
k

}
,
{
ct,i,j,εk

})
is a pseudo-isotopy modulo TEj of G-gapped filtered A∞

algebras between
{
m
<Ei,j,εi+1

k

}
and

{
m
<Ei+1,j,εi+1

k

}
.

(3) The pair
({

m′,t,i,j,εk

}
,
{
c′,t,i,j,εk

})
is a pseudo-isotopy modulo TEj of G-gapped filtered A∞

algebras between
{
m<Ei,j,εi
k

}
and

{
m
<Ei,j,εi+1

k

}
.

(4) If j′ < j, then the system of structures
{
m<Ei,j,εi
k

}
,
{
m
<Ei,j,εi+1

k

}
,
({

mt,i,j,ε
k

}
,
{
ct,i,j,εk

})
,({

m′,t,i,j,εk

}
,
{
c′,t,i,j,εk

})
coincide with the system of structures

{
m<Ei,j

′,εi
k

}
,
{
m
<Ei,j

′,εi+1

k

}
,({

mt,i,j′,ε
k

}
,
{
ct,i,j

′,ε
k

})
,
({

m′,t,i,j
′,ε

k

}
,
{
c′,t,i,j

′,ε
k

})
as filtered A∞ structures modulo TEj′ or as

pseudo-isotopies modulo TEj′ .

(5) If j = i, then
{
m<Ei,i,εi
k

}
,
{
m
<Ei,i,εi+1

k

}
,
({

mt,i,i,ε
k

}
,
{
ct,i,i,εk

})
,
({

m′,t,i,i,εk

}
,
{
c′,t,i,j,εk

})
co-

incide with
{
m<Ei,εi
k

}
,
{
m
<Ei,εi+1

k

}
,
({

mt,i,ε
k

}
,
{
ct,i,εk

})
,
({

m′,t,i,εk

}
,
{
c′,t,i,j,εk

})
, respectively.

Note that
({

mt,i,ε
k

}
,
{
ct,i,εk

})
is obtained by Proposition 3.37 and

({
m′,t,i,εk

}
,
{
c′,t,i,j,εk

})
is

obtained by Proposition 3.41.

Now we put mk = limj→∞m<Ei,j,εi
k . Note that the right-hand side converges in T adic topology

by item (4). This is the required filtered A∞ structure. The proof of Theorem 3.14 is now
complete.

Remark 3.43. The filtered A∞ structure obtained by Theorem 3.14 is independent of the
choices up to pseudo-isotopy. We can prove it as follows. We can prove that for each Ei the
structure

{
m<Ei,j,εi
k

}
is independent of the choices up to pseudo-isotopy modulo TEi in the same

way as Proposition 3.37. We can next show that this pseudo-isotopy modulo TEi is independent
of the choices up to pseudo-isotopy of pseudo-isotopies modulo TEi . We can use it in the same
way as above to show the required independence of the filtered A∞ structure up to pseudo-
isotopy. See [43, 46, Section 21.3]. We will discuss this point more in Section 14.

Remark 3.44. Let h1, h2 be differential forms on a connected component L(a) of L̃×X L̃. We
can choose m2,β0 so that m2,β0(h1, h2) = (−1)deg h1h1 ∧ h2. (Here we use the sign convention
of [46, Definition 21.29 (5)].) In fact, the right-hand side is induced by the moduli space of
constant maps to L(a) with three marked points. This moduli space is transversal and we do
not perturb it.

To define mk,β0(h1, h2) for k ≥ 3, we use the moduli space of constant maps to L(a) with more
than three marked points, which may be obstructed. Such a moduli space may be nonempty
after perturbation. In the situation when L(a) is zero-dimensional (which was the situation
of [4]), except the case of dimL = 1 this moduli space has negative dimension and so we may
assume mk,β0 for k ≥ 3 to be zero.

3.4 Filtered A∞ categories of immersed Lagrangian Floer theory

Situation 3.45. Let (X,ω) be a symplectic manifold which is compact or convex at infinity.
We take V a real oriented vector bundle on the 3-skeleton X[3]. We consider a finite set

L = {(Lc, σc) | c ∈ O}

of pairs Lc = (Lc, σc) of immersed Lagrangian submanifolds Lc and their V -relatively spin
structure σc. We assume the next two conditions:

(1) The self-intersection of each Lc is clean.

(2) The submanifold Lc has clean intersection with Lc′ for any c, c
′ ∈ O.

We call such L a clean collection of V -relatively spin immersed Lagrangian submanifolds.
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The purpose of this subsection is to associate a filtered A∞ category Fuk((X,ω);V ;L) to
a clean collection L of V -relatively spin immersed Lagrangian submanifolds. The actual work
to carry out for this purpose is in fact completed in the last subsection and we only need to
rephrase the outcome of the last subsection.

Let Lc =
(
L̃c, iLc

)
, where iLc : L̃c → X is a Lagrangian immersion. We consider the

disjoint union L̃ =
⋃
c∈O L̃c, and use iLa to obtain a Lagrangian immersion iL : L̃→ X. We

put L =
(
L̃, iL

)
and apply Theorem 3.14. For c, c′ ∈ O, we decompose L̃c ×X L̃c′ to connected

components as

L̃c ×X L̃c′ =


⋃

a∈Ac,c′

Lc,c′(a) if c ̸= c′,

L̃c ∪
⋃

a∈Ac,c′

L̃c,c′(a) if c = c′.

We then put

L(+) = L̃×X L̃ =
⋃
c∈O

L̃c ∪
⋃

c,c′∈O
a∈Ac,c′

Lc,c′(a).

By Lemma–Definition 3.10, we obtain a principal O(1) bundle (Z2 local system) Θ− on L̃×X L̃.
We denote its restriction to Lc,c′(a) by Θ−c,c′;a. We also remark that Θ− is a trivial bundle on
the diagonal component.

According to Definition 3.13, we have

CF (L) =
⊕
c∈O

Ω
(
L̃c
)“⊗Λ0 ⊕

⊕
c,c′∈O
a∈Ac,c′

Ω(Lc,c′(a); Θ
−
c,c′;a)“⊗Λ0.

Definition 3.46.

(1) The set of objects OB(Fuk((X,ω);V ;L)) consists of the pairs (Lc, σc) for c ∈ O.

(2) If c, c′ ∈ O with c ̸= c′, then the module of morphisms from (Lc, σc) to (Lc′ , σc′), which we
denote by Fuk((X,ω);V ;L)((Lc, σc), (Lc′ , σc′)), is⊕

a∈Ac,c′

Ω(Lc,c′(a); Θ
−
c,c′;a)“⊗Λ0.

(3) In case c = c′, the module of morphisms from (Lc, σc) to (Lc, σc), which we denote by
Fuk((X,ω);V ;L)((Lc, σc), (Lc, σc)) is

Ω
(
L̃c
)“⊗Λ0 ⊕

⊕
a∈Ac,c

Ω(Lc,c(a); Θ
−
c,c;a)“⊗Λ0.

Hereafter, we write CF ((Lc, σc), (Lc′ , σc′)) in place of Fuk((X,ω);V ;L)((Lc, σc), (Lc′ , σc′)).

In Theorem 3.14, we obtained the structure operation of our filtered A∞ algebra
(
Ω
(
L̃c
)
,

{mk}
)
where

mk : CF (L)⊗k → CF (L). (3.41)
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Definition 3.47. Let c0, . . . , ck ∈ O and (Lci , σci), i = 0, . . . , k, be corresponding objects. We
define the structure operations

mk :

k⊗
i=1

CF ((Lci−1 , σci−1), (Lci , σci))→ CF ((Lc0 , σc0), (Lck , σck)) (3.42)

as the corresponding component of (3.41).

Remark 3.48.

(1) In Definition 2.2 (see (2.4)), we required that the map m0 of filtered A∞ category is

m0 : Λ0 → CF ((Lc, σc), (Lc′ , σc′))

and is nonzero only when c = c′. We can check that our structure morphism is zero in
case k = 0 and c0 ̸= c1 as follows.

By definition, m0 is defined by using the moduli space of pseudo-holomorphic disks with
one boundary marked point. It consists of (Σ, z0, u, γ) where Σ is bordered Riemann
surface with one boundary component and of genus 0, z0 ∈ ∂Σ, u : (Σ, ∂Σ) → (X,L)
and γ : ∂Σ \ {z0} → L̃. We require u = i: ◦ γ on ∂Σ \ {z0}. (See Definition 3.17 (4).)
Since ∂Σ \ {z0} is connected, the image of γ is contained in one of the connected compo-
nents of L̃, say L̃c. In that case ev of this element goes to L̃c×X L̃c. So m0(1) is contained
in the subspace mentioned above.

(2) It is also clear from the definition that the structure operation mk of L is decomposed
as (3.42). Namely, the CF ((Lc0 , σc0), (Lck , σck)) component of mk(x1, . . . , xk) depends only
on the component (x1, . . . , xk) of CF (L)

⊗k such that x1 ∈ CF ((Lc0 , σc0), (Lc1 , σc1)), xi ∈
CF ((Lci−1 , σci−1), (Lci , σci)) and xk ∈ CF ((Lck−1

, σck−1
), (Lck , σck)) for some c1, . . . , ck−1.

Theorem 3.49. Definitions 3.46 and 3.47 define a curved filtered A∞ category. 1 ∈ Ω
(
L̃c
)

becomes its unity.

Proof. This is immediate from Theorem 3.14 and Definition 2.2. ■

Definition 3.50. Let C be a filtered A∞ category and c its object. Then C (c, c) together with
restrictions of structure operations define a structure of a filtered A∞ algebra. Let c, c′ be two
objects. The restriction of structure operations define a map

n : BC (c, c)[1]⊗ C (c, c′)⊗BC (c′, c′)[1]→ C (c, c′),

where C (c, c′) is the space of morphisms and is a completed free Λ0 module. We denote the
restriction of n to BkC (c, c)[1] ⊗ C (c, c′) ⊗ BℓC (c′, c′)[1] by nk,ℓ, k, ℓ = 0, 1, 2, . . . . They de-
fine a structure of filtered A∞ bi-module on C (c, c′) over C (c, c)–C (c′, c′) in the sense of [34,
Definition 3.75]. (See also Section 5.1.)

In the case of a filtered A∞ category, C (c, c) is nothing but the filtered A∞ algebra associated
to a single (immersed) Lagrangian submanifold (Lc, σc). Moreover, C (c, c′) is nothing but the
filtered A∞ bi-module associated to a pair of (immersed) Lagrangian submanifolds (Lc, σc),
(Lc′ , σc′). Thus Theorem 3.49 reproduces many of the constructions in [34]. However, by this
trick to include the immersed case to reduce the construction of a filtered A∞ category to
one of a filtered A∞ algebra, one aspect which we mention below is lost. Let φ : X → X be
a Hamiltonian diffeomorphism. As we is proved in [34, Theorem 4.1.5], we have an homotopy
equivalence

CF ((Lc, σc), (Lc′ , σc′))⊗Λ0 Λ
∼= CF ((Lc, σc), (φ(Lc′), φ(σc′)))⊗Λ0 Λ (3.43)
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of filtered A∞ bi-module, in the case when Lc and Lc′ are embedded. See Section 15 and
Theorem 15.5 for the immersed case. (The proof of Theorem 15.5 is actually the same as the
embedded case.) Note that here we move Lc′ by φ but do not move Lc. It is difficult to see what
is the corresponding construction in the case of a single immersed Lagrangian submanifold other
than the obvious one. Namely, we move various connected components by different Hamiltonian
diffeomorphisms. However, it is rather hard to see in which sense filtered A∞ algebra CF (L) of
an immersed Lagrangian submanifold (with many components) is invariant.3.9 One big reason
for it is in (3.43) we have to use Λ coefficient rather than Λ0 coefficient. We will discuss related
issue in Section 15 more. Note that (3.43) is the most important property of Lagrangian Floer
homology for applications. In fact, the motivation of Floer to define Lagrangian Floer homology
is to study intersection of a pair of Lagrangian submanifolds and the most important property
of Floer homology for that purpose is (3.43).

The invariance of Floer homology (of Λ coefficient) of a pair under the Hamiltonian diffeo-
morphisms in the sense of [34, Theorem 4.1.5] will be discussed in Section 15.2 in a slightly more
sophisticated form.

Remark 3.51. In this subsection and in this paper, we take and fix a finite set of Lagrangian
submanifolds and define our category by using those finitely many Lagrangian submanifolds
only. It is more canonical to use all the Lagrangian submanifolds and construct a single big
filtered A∞ category. We do not try to do so in this paper since for the purpose of most of the
applications choosing an appropriate finite set of Lagrangian submanifolds and using only those
Lagrangian submanifolds are good enough and since it is simpler to write the detail in the case
when we work on a finite set of Lagrangian submanifolds. See Section 18.1 for more discussion
on this point.

3.5 Opposite A∞ category and ω 7→ −ω

In this subsection, we explain how the A∞ category Fuk((X,ω);V ;L) behaves when we replace
the symplectic form ω by −ω. We use this relationship when we study Lagrangian correspon-
dences.

Let L = {(Lc, σc) | c ∈ O} be a clean collection of V -relatively spin immersed Lagrangian
submanifolds as in Situation 3.45.

Lemma 3.52. We can regard L as a clean collection of V -relatively spin immersed Lagrangian
submanifolds of (X,−ω).

The proof is obvious.

Lemma 3.53. There exists V ⊕ TX-relatively spin structure σ′c of Lc such that L′ = {(Lc, σ′c) |
c ∈ O} is a clean collection of V ⊕ TX-relatively spin immersed Lagrangian submanifolds
of (X,ω).

Proof. We remark that TX|L = TL⊕ TL. Therefore, the lemma follows from the well known
fact that for any oriented real vector bundle W there exists a canonical spin structure on the
bundle W ⊕W . ■

From now on, we frequently identify the set L and L′. Now the main result of this subsection
is the following.

Theorem 3.54. We may take the various choices made in the definitions so that we have the
next isomorphism of filtered A∞ categories

Fuk((X,ω);V ;L) ∼= Fuk((X,−ω);V ⊕ TX;L′)op.
3.9Provably the unobstructed (immersed) Lagrangian cobordism is the correct formulation to work with, see [9].
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Remark 3.55. See also [77, Remark 5.3.3].

Proof. The proof is similar to the proof of [42, Theorem 1.3]. It is obvious that the set of
objects and the modules of morphisms are the same. We can show that the local system Θ−
we use to define module of morphisms does not change when we replace background datum V
by V ⊕ TX. This is because TX|L is spin and its spin structure is canonical. We need to study
a certain sign issue which will be discussed during the proof of Lemma 3.56 below.

Thus it remains to check that the structure operations coincide with each other. By the
argument of Section 3.4, it suffices to consider the case when L consists of a single V -relatively
spin immersed Lagrangian submanifold (L, σ).

We consider the moduli space ˚̃M(L; a⃗;E) in Definition 3.17. To specify the almost com-
plex structure and the symplectic form, we denote this moduli space as ˚̃M((X,ω, JX);L; a⃗;E).
For a⃗ = (a0, . . . , ak), we put a⃗op = (ak, . . . , a0) and define a map

I :
˚̃M((X,ω, JX);L; a⃗;E)→ ˚̃M((X,−ω,−JX);L; a⃗op;E)

as follows. Let (Σ;u; z⃗; γ) ∈ ˚̃M((X,ω, JX);L; a⃗;E). For simplicity, we assume Σ = D2. Then
we put z⃗ ′ := (z0, zk, . . . , z1), where z⃗ = (z0, . . . , xk), and u

′(z) := u(z), γ′(z) := γ(z). It is easy
to see that

I
(
D2;u; z⃗; γ

)
:=
(
D2;u′; z⃗ ′; γ′

)
∈ ˚̃M((X,−ω,−JX);L; a⃗op;E).

It is easy to see that we can extend I to a homeomorphism

I : M((X,ω, JX);L; a⃗;E)→M((X,−ω,−JX);L; a⃗op;E). (3.44)

Lemma 3.56. The map (3.44) is a underlying continuous map of an isomorphism of Kuranishi
structures. The next diagram commutes:

M((X,ω, JX);L; a⃗;E)
I−−−−→ M((X,−ω,−JX);L; a⃗op;E)

ev

y yev

L(+)k+1 −−−−→ L(+)k+1,

where the map in the second horizontal arrow is (x0, x1, . . . , xk) 7→ (x0, xk, . . . , x1).

Proof. The commutativity of the diagram is obvious from the definition. The proof of the first
half is the same as the proof of [42, Proposition 4.5]. ■

We need to study the orientation carefully to complete the proof of Theorem 3.54. We
decompose

M((X,ω, JX);L; a⃗;E) =
⋃
d

M((X,ω, JX);L; a⃗;E; d),

where M((X,ω, JX);L; a⃗;E; d) is the compactification of the moduli space which consists of
the elements

(
D2; z⃗;u, γ

)
with virtual dimension d +

∑k
i=1 dimL(ai). We define the moduli

spaceM((X,−ω,−JX);L; a⃗op;E; d) in the same way.
Let h0 ∈ Ωd0(L(a0); Θ

−
a0), . . . , hk ∈ Ωdk(L(ak); Θ

−
ak
). We take a CF-perturbation to inte-

grate differential forms on the spaceM((X,ω, JX);L; a⃗;E; d) with Kuranishi structure (see [40,
Definition 10.22]). By Lemma 3.56, it induces a CF-perturbation onM((X,ω, JX);L; a⃗;E; d).

We compare the integrations∫
M((X,ω,JX);L;⃗a;E;d)

ev∗(h0 × h1 × · · · × hk) (3.45)
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and ∫
M((X,−ω,−JX);L;⃗aop;E;d)

ev∗(h0 × hk × · · · × h1). (3.46)

Here integrations are defined by using CF-perturbations (see [40, Definition 10.22]).
We consider the case

d =
∑

deg hi. (3.47)

Lemma 3.57. We use the V -relative spin structure to define the orientation of the moduli space
which we use for integration. Then (3.45) = (−1)∗ × (3.46), where

∗ = 1 +
∑

1≤i<j≤k
deg′ hi deg

′ hj + ε.

Here ε = 0 if and only if d− (k − 2) is divisible by 4. Otherwise, ε = 1.

Proof. The proof is mostly the same as [42, Proposition 4.9].
The sign

∑
1≤i<j≤k deg

′ hi deg
′ hj is induced by the fact that we exchange the order of i-th and

j-th marked points. Here deg′ rather than deg appears since the moduli parameter which moves
those marked points are exchanged also. The first term 1 appears since the moduli parameter
to move 0-th marked point is reversed. See the proof of [42, Proposition 4.9] for the detail of
the argument on those points. We finally explain the reason why ε appears. During the proof
of Proposition 3.29, we use the fact that the index IndexP appearing (3.31) is isomorphic to
a complex vector space. This is because P is an operator on S2 whose symbol is the same as
the Cauchy–Riemann operator. It implies that its (real) determinant bundle is trivial.

Since our isomorphism I in Lemma 3.56 sends a JX -holomorphic map u to a−JX -holomorphic
map u, the map which is induced to IndexP by I is not complex linear. It is actually anti
complex linear. Therefore, it induces an orientation preserving map on DetP if and only if the
numerical index (the complex dimension) of P is even. Note that P is homotopic to the Cauchy–
Riemann operator on S2 of a bundle with Chern number m, where m is the half of the Maslov
index. Therefore, this map is orientation preserving if and only if the Maslov index d− (k − 2)
is divisible by 4. This is the reason why ε appears. (This point is also similar to the proof of [42,
Theorem 4.6].)

The rest of the proof is entirely similar to the proof of [42, Proposition 4.9]. ■

We next show the following lemma.

Lemma 3.58. Suppose (3.47) holds. The orientation which we obtain when using V ⊕ TX-
relative spin structure is different from one we obtain when using V -relative spin structure if
and only if (−1)ε = −1.

Proof. We consider a map u :
(
D2, ∂D2

)
→ (X,L). It induces a trivialization of u|∗∂D2(TX)

since D2 is contractible. On the other hand since TX|L = TL⊕TL, we have another trivializa-
tion of u|∗∂D2(TX).

It is easy to see that these two trivializations are homotopic each other if and only if (−1)ε = 1.
We can use this fact to prove the lemma as follows. Let λ : S1 → SO(n) be a loop representing

the generator of π1(SO(n)) = Z2. Since the map π1(SO(n)) → π1(U(n)) = Z induced by the
inclusion is trivial, we have a map λ+ : D2 → U(n) which coincides with λ on the boundary. We
identify {0} × D2 × Cn with {1} × D2 × Cn by using λ+ and obtain a rank n complex vector
bundle E on D2 × S1. By construction, E|∂D2×S1 has a real n-dimensional subbundle which is
obtained by gluing {0}×∂D2×Rn with {1}×∂D2×Rn using λ. We denote it by F . Note that
the 2nd Stiefel–Whitney class of F is nonzero by the choice of λ.
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Using the pair (E,F ), we obtain an S1-parametrized family of Cauchy–Riemann operators
with boundary condition. Namely, for t ∈ S1 we consider

∂ : L2
1

(
D2;E|{t}×D2 , F |{t}×S1

)
→ L2

(
D2;E|{t}×D2

)
on E|{t}×D2 with boundary condition determined by F and obtain family of index bundle that is
a real vector bundle over S1. Using the fact that the 2nd Stiefel–Whitney class of F is nonzero,
the calculation in the proof of [35, Proposition 8.1.7] shows that this bundle is unoriented.

This implies that the two orientations obtained by different trivializations of u|∗∂D2(TX) are
different. This implies Lemma 3.58. ■

Theorem 3.54 follows from Lemmas 3.57 and 3.58 and the definition of opposite category (see
Definition 2.30 especially its item (3)). ■

4 Preliminary on Lagrangian correspondence

The review of the theory of filtered A∞ categories and the construction of the filtered A∞
category associated to a symplectic manifold is completed in the previous sections. In this
section, we start studying the relationship between Lagrangian correspondences and filtered A∞
functors, which is the main subject of this paper. This section is rather formal. We introduce
certain notations which we will use in later sections.

Definition–Lemma 4.1. Let L1 (resp. L12) be an immersed Lagrangian submanifold of (X1,
ω1) (resp. (X1 ×X2,−π∗1(ω1) + π∗2(ω2))).

(1) We say L1 is transversal to L12 if the fiber product L̃1 ×X1 L̃12 is transversal.

(2) Assume L1 is transversal to L12. We put L̃2 = L̃1 ×X1 L̃12. The composition iL2 : L̃2 →
X1 ×X2 → X2 is a Lagrangian immersion.

(3) We call L2 =
(
L̃2, iL2

)
the geometric transformation of L1 by L12.

Proof. We prove item (2). Let x = (y, (p, q)) ∈ L̃2 and V ∈ Ker(dxiL2). Then V = (w, v)
where w ∈ TyL̃1, v ∈ TpL̃12. (dyiL1)(w) = (dpiL12)(v) and (dpiL12)(v) ∈ TX1 ⊕ 0. Since
L̃1 ×X1 L̃12 is transversal, there exists v′ ∈ TpL̃12 such that ω1((dpiL12)(v), (dpiL12)(v

′)) ̸= 0.
Since (dpiL12)(v) ∈ TX1 ⊕ 0 this implies ω((dpiL12)(v), (dpiL12)(v

′)) ̸= 0. This contradicts the
assumption that L12 is an immersed Lagrangian submanifold. We have proved that L2 is an
immersed submanifold.

Let (v1, w1), (v2, w2) ∈ TxL̃2 where vi ∈ TyL̃1, wi ∈ T(p,q)L̃12. Then we have (dxiL1)(vi) =
(π1(d(p,q)iL12))(wi). Hence ω1(w1, w2) = 0. Since ω(w1, w2) = 0, it follows that ω2(w1, w2) = 0.
We proved that L2 is an immersed Lagrangian submanifold. ■

It is not in general correct that the geometric transformation of an embedded Lagrangian
submanifold by an embedded Lagrangian correspondence has clean self-intersection.

Example 4.2. Let X = (−1, 1)× S1, L1 = {0} × S1. We take a symplectic diffeomorphism φ
which is a composition of (s, t) → (s, t + 1/2) and a C1 small Hamiltonian diffeomorphism.(
Here we identify [0, 1]/0 ∼ 1 = S1.

)
We can choose φ such that L1 ∩ φ(L1) is not clean.

Let L12 ⊂ −X1 ×X1 be the disjoint union of the diagonal and the graph of φ. The geometric
transformation of L1 by L12 is not clean.

Definition 4.3. Let L1 ⊂ X1 and L12 ⊂ X12 be immersed Lagrangian submanifolds. We say L1

has clean transformation by L12 if

(1) The fiber product L̃1 ×X1 L̃12 is transversal.

(2) The geometric transformation L2 has clean self-intersection.
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Lemma 4.4. Suppose L1 has clean transformation by L12 and let L2 be its geometric transfor-
mation.

(1) If L1 and L12 are oriented so is L2.

(2) If L1 (resp. L12) has V1-relative spin structure (resp. π∗1(TX1 ⊕ V1)⊕ π∗2(V2)-relative spin
structure), then L2 has V2-relative spin structure.

Proof. Let x = (y, z) ∈ L̃2. Then there exists a canonical isomorphism of vector spaces

TxL2 ⊕ TyX1
∼= TyL1 ⊕ TzL12. (4.1)

This implies (1).

To prove (2), we first remark the following. Suppose we have a transversal fiber product
X ×Y Z. Then we can choose smooth triangulations of X , Y, Z, X ×Y Z such that

(1) The maps X → Y and Z → Y send 2 skeletons X[2], Z[2] to the 2-skeleton.

(2) The 2-skeleton of X ×Y Z is contained in X[2] ×Y[2] Z[2].

To find such a triangulation, we first take a triangulation of X ×Y Z. We then can take enough
many vertices of X , Y, Z such that X[0] ×Y[0] Z[0] contains the 0 skeleton of X ×Y Z. We can
then take X[1], Y[1], Z[1] (subdividing 0 skeleton if necessary), such that X[1] ×Y[1] Z[1] contains
the 1 skeleton of the fiber product. We then can find a required triangulation.

On the other hand, the trivialization on 2 skeleton (L12)[2] of π
∗
1(TX1 ⊕ V1)⊕ π∗2(V2)⊕ TL12

(that is nothing but the π∗1(TX1 ⊕ V1) ⊕ π∗2(V2)-relative spin structure) and the trivialization
on 2 skeleton (L1)[2] of TL1 ⊕ i∗L1

V1 induce a trivialization of

TyX1 ⊕ (V1)y ⊕ (V2)z ⊕ TzL12 ⊕ TyL1 ⊕ (V1)y

on the fiber product (L1)[2] ×(X1)[2] (L1)[2]. In view of (4.1), it induces a trivialization of

TxL2 ⊕ TyX1 ⊕ TyX1 ⊕ (V1)y ⊕ (V1)y ⊕ (V2)z (4.2)

on (L2)[2]. (Note that we use our choice of triangulation and item (2) here.)

We remark that if E is an oriented vector bundle then E ⊕ E is spin. In fact,

∑
k

wk(E ⊕ E) =

Å∑
k

wk(E ⊕ E)

ã2

.

Hence w2(E ⊕ E) = w1(E) ∪ w1(E) = 0 since E is oriented.

Therefore, the existence of a trivialization of (4.2) on 2 skeleton (L2)[2] implies the existence
of a trivialization of TL2 ⊕ V2 on (L2)[2]. (Note that the trivialization and the spin structure
are identical notions on the 2 skeleton.) Therefore, L2 is V2-relatively spin as required. ■

Remark 4.5. The proof of Lemma 4.4 gives some particular relative spin structure of L2.
However, in this paper we use the existence of relative spin structure of L2 only. We make the
choice of its relative spin structure later during the proof of Theorem 5.25 (see Lemma 6.7).
This relative spin structure seems to be related to one obtained from the proof of Lemma 4.4.
We however do not try to clarify the relationship between those two relative spin structures in
this paper.

The next lemma will be used in later sections.
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Lemma 4.6. Let L1, L12 be immersed submanifolds of X1 and −X1 × X2 respectively.4.1

We assume that L1 =
(
L̃1, iL1

)
has clean transformation by L12 =

(
L̃12, iL12

)
and denote by

L2 =
(
L̃2, iL2

)
the geometric transformation. Then(

L̃1 × L̃2

)
×X1×X2

(
L̃12

)
(4.3)

is diffeomorphic to

L̃2 ×X2 L̃2. (4.4)

Proof. (4.3) is the left-hand side of(
L̃1 ×

(
L̃1 ×X1 L̃12

))
×X1×X2 L̃12 =

(
L̃1 ×X1 L̃12

)
×X2

(
L̃1 ×X1 L̃12

)
. (4.5)

On the other hand, (4.4) is the right-hand side of (4.5). Note that the equality (4.5) is given by

((x1, (x2, y1)), y2) 7→ ((x2, y1), (x1, y2)). ■

We can generalize the definitions and lemmas of this section to the case when we have three
symplectic manifolds, as follows.

Definition–Lemma 4.7. Let (Xi, ωi) be a compact symplectic manifolds and Vi its background
datum, for i = 1, 2, 3. Let L12, L23 be Lagrangian submanifolds of −X1 × X2, −X2 × X3,
respectively.

(1) If the fiber product L̃13 = L̃12 ×X2 L̃23 is transversal, then the map L̃13 → −X1 × X3

induced by L̃13 → −X1 ×X2 × −X2 ×X3 → −X1 ×X3 is a Lagrangian immersion. We
assume that L13 is self clean. In such situation, we call L13 the geometric composition
of L12 and L23.

(2) If L12 and L23 are oriented, then so is the geometric composition L13.

(3) If L12 has π
∗
1(TX1⊕V1)⊕π∗2(V2)-relative spin structure and L23 has π

∗
1(TX2⊕V2)⊕π∗2(V3)-

relative spin structure, then the geometric composition L13 has π∗1(TX1 ⊕ V1) ⊕ π∗2(V3)-
relative spin structure.

Proof. The case when X1 is a point is proved already. The proof of the general case is the
same and so is omitted. ■

5 The Künneth bi-functor in Lagrangian Floer theory

5.1 Algebraic framework of A∞ bi-functors and tri-functors

To define the notion of filtered A∞ bi-functor, we recall the following. Let (B1,∆1), (B1,∆2)
be graded coalgebras. We define graded coalgebra structure

∆: B1 ⊗B2 → (B1 ⊗B2)⊗ (B1 ⊗B2)

of B1 ⊗B2 by the next formula

∆(x⊗ y) = S(∆1(x)⊗∆2(y)), (5.1)

where

S((x1 ⊗ x2)⊗ (y1 ⊗ y2)) = (−1)deg′ y1 deg′ x2((x1 ⊗ y1)⊗ (x2 ⊗ y2)).

The case of completed tensor product of formal coalgebra is the same. Note that in Definition 5.1
etc. we use the shifted degree. So we used deg′ in the above formula instead of deg.

4.1See Notation 3.1 for −X1 ×X2.
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Definition 5.1. Let C1, C2, C3 be non-unital curved filtered A∞ categories. A filtered A∞
bi-functor F : C1 × C2 → C3 consists of Fob and Fk1,k2 , k1, k2 = 0, 1, 2, 3, . . . , of degree 0 with
the following properties (1), (2),(3), (4):

(1) Fob : OB(C1)×OB(C2)→ OB(C3) is a map between sets of objects.

(2) For each c1,1, c1,2 ∈ OB(C1) and c2,1, c2,2 ∈ OB(C2), the bi-functor Fk1,k2 associates a Λ0

linear map

Fk1,k2(c1,1, c1,2; c2,1, c2,2) : Bk1C1[1](c1,1, c1,2)“⊗Bk2C2[1](c2,1, c2,2)

→ C3[1](Fob(c1,1, c2,1),Fob(c1,2, c2,2)).

(3) We require Fk1,k2(c1,1, c1,2; c2,1, c2,2) to preserve the filtration in a similar sense as Defini-
tion 2.2 (2).

Note that the symbol C1 × C2 is used here. However, we do not define the product C1 × C2 of
two A∞ categories in this paper. In other words, C1 × C2 is simply a notation.

To describe the most important condition, we introduce certain notations.
Let ∆i : BCi[1]((ci,1, ci,2)→ BCi[1](ci,1, ci,2)“⊗BCi[1](ci,1, ci,2) be the formal coalgebra struc-

ture for i = 1, 2, 3. We define the formal coalgebra structure ∆ on the completed tensor prod-
uct BC1[1](c1,1, c1,2)“⊗BC2[1](c2,1, c2,2) by (5.1).

The system of maps {Fk1,k2} induces uniquely a formal coalgebra homomorphism

F̂ (c1,1, c1,2; c2,1, c2,2) : BC1[1](c1,1, c1,2)“⊗BC2[1](c2,1, c2,2)

→ BC3[1](Fob(c1,1, c2,1),Fob(c1,2, c2,2)).

Note that the structure operations of Ci induce a coderivation

d̂i : BCi[1](ci,1, ci,2)→ BCi[1](ci,1, ci,2).

(4) We regard F̂ (c1,1, c1,2; c2,1, c2,2) as a chain map. Namely, we require

d̂3 ◦ F̂ (c1,1, c1,2; c2,1, c2,2) = F̂ (c1,1, c1,2; c2,1, c2,2) ◦
(
d̂1“⊗ id + id“⊗ d̂2),

where “⊗ is as in Definition 2.1 (6).

Definition 5.2. Let C1, C2, C3 be non-unital curved filtered A∞ categories and F : C1 × C2

→ C3 a filtered A∞ bi-functor.

(1) We say F is strict if F0,0 = 0.

(2) Suppose C1, C2, C3 are G-gapped. We say F is G-gapped if Fk1,k2 are all G-gapped.

(3) Suppose C1, C2, C3 are unital. We say F is unital if the following holds:

(a) F1,0(ec1 ⊗ 1) = F0,1(1⊗ ec2) = eFob(c1,c2),

(b) Fk1+ℓ1+1,k2

(
x11, . . . , x

1
k1
, ec1 , y

1
1, . . . , y

1
ℓ1
;x21, . . . , x

2
k2

)
= 0 for k1 + k2 + ℓ1 > 0,

(c) Fk1,k2+ℓ2+1

(
x11, . . . , x

1
k1
;x21, . . . , x

2
k2
, ec2 , y

1
1, . . . , y

1
ℓ2

)
= 0 for k1 + k2 + ℓ2 > 0.

Example 5.3. Suppose C1, C2 have only one object. We also assume that they are strict. Then
we may regard them as filtered A∞ algebras, which we denote by (C1, {mk}), (C2, {mk}). We
call a strict filtered A∞ bi-functor

F :
(
Cop
1 , {mk}

)
× (C2, {mk})→ CH
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a filtered A∞ bi-module over (C1, {mk})-(C2, {mk}). We also say left C1 and right C2 filtered A∞
bi-module.

The notion of filtered A∞ bi-module is introduced in [34, Definition 3.7.5]. Below we will
check that Definition 5.1 coincides with the definition in [34] in this case.

Since C1, C2 have unique objects, Fob determines a chain complex, which we write (D, d).
(Here d is the boundary operator of this chain complex.) Fk1,k2 becomes a map

Fk1,k2 : Bk1C1[1]⊗Bk2C2[1]→ Hom(D,D)[1].

of degree one. We will define

nk1,k2 : Bk1C1[1]⊗D ⊗Bk2C2[1]→ D.

We first define OP: BkC1[1]→ BkC1[1] by OP(x) = (−1)ε(x)xop, where ε(x) and xop are (2.12),
(2.13), respectively. We remark

mop
k (x) = −mk(OP(x)). (5.2)

We now put

nk1,k2(x; y; z) := (−1)deg′ y deg′ z(Fk1,k2(OP(x); z))(y)

for (k1, k2) ̸= (0, 0) (note that deg′(x1 ⊗ · · · ⊗ xk) = k +
∑

deg xi) and

n0,0(y) := (−1)deg ydy. (5.3)

We call nk1,k2 the structure operations of filtered A∞ bi-module (compare Definition 3.50).
We will prove that Definition 5.1 (4) becomes the following equality:

0 =
∑

(−1)deg′ x
(2;1)
cx n

(
x(2;1)
cx ; n(x(2;2)

cx ; y; z(2;1)cz ); z(2;2)cz

)
+ n
(
d̂1(x); y; z

)
+ (−1)deg′ x+deg yn

(
x; y; d̂2(z)

)
. (5.4)

The notation is as follows. The symbol d̂1
(
resp. d̂2

)
is the coderivation induced by the A∞

operations on C1 (resp. C2). We put

∆1(x) =
∑
cx

x(2;1)
cx ⊗ x(2;2)

cx , ∆2(z) =
∑
cz

z(2;1)cz ⊗ z(2;2)cz .

The formula (5.4) is the defining relation of a filtered A∞ bi-module in [34, Definition 3.7.5].
We also call it the A∞ relation.

Remark 5.4. In [34, Definition 3.7.5], the sign in the third term of right-hand side is

(−1)deg′ z+deg′ y.

So it is slightly different. In [34], the bi-module is written D(1). Here we use the notation D
for a bi-module. So the definitions of this paper and of [34] are consistent. We discuss this point
more in Remarks 5.5 and 5.7.

Let us prove that Definition 5.1 (4) implies (5.4). (The main part of the proof is the check of
the sign.) Definition 5.1 (4) becomes the following identity in Hom(D,D)[1]:∑

(−1)deg′ x
(2;2)
cx deg′ z

(2;1)
cz m2

(
F
(
x(2;1)
cx , z(2;1)cz

)
,F
(
x(2;2)
cx , z(2;2)cz

))
+m1(F (x, z))

= F
(
d̂1(x), z

)
+ (−1)deg′ xF

(
x, d̂2(z)

)
. (5.5)
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Here m1, m2 in the left-hand side are the structure operations of CH[1]. They are related to the
composition and the differential by (2.14).

We plug in y ∈ D in the first term of the left-hand side and obtain∑
(−1)∗1F

(
x(2;2)
cx , z(2;2)cz

)(
F
(
x(2;1)
cx , z(2;1)cz

)
(y)
)

=
∑

(−1)∗2n
(
OP
(
x(2;2)
cx

)
; n
(
OP(x(2;1)

cx ); y; z(2;1)cz

)
; z(2;2)cz

)
. (5.6)

Here

∗1 =
(
deg′ x(2;2)

cx + deg′ z(2;2)cz

)(
deg′ x(2;1)

cx + deg′ z(2;1)cz + 1
)
+ deg′ x(2;2)

cx deg′ z(2;1)cz ,

∗2 = ∗1 + deg′ z(2;1)cz deg′ y + deg′ z(2;2)cz

(
deg′ x(2;1)

cx + deg′ y + deg′ z(2;1)cz + 1
)

= deg′ x(2;1)
cx deg′ x(2;2)

cx + deg′ x(2;2)
cx + deg′ y

(
deg′ z(2;1)cz + deg′ z(2;2)cz

)
.

Note that in the sum (5.6) the case(
x(2;1)
cx , z(2;1)cz

)
= 1⊗ 1 ∈ B0C1[1]⊗B0C2[1] or(

x(2;2)
cx , z(2;2)cz

)
= 1⊗ 1 ∈ B0C1[1]⊗B0C2[1]

are included only for the first term of (5.3). The contribution of the second term of (5.3) in
those cases actually coincide with the second term of the left-hand side of (5.5). Therefore, the
left-hand side of (5.5) coincides with (5.6) including those cases.

We replace x by OP(x) in (5.5). We remark that

OP(∆1(x)) =
∑

(−1)deg′ x
(2;1)
cx deg′ x

(2;2)
cx OP

(
x(2;2)
cx

)
⊗OP

(
x(2;1)
cx

)
.

Therefore, (5.5) and (5.6) becomes∑
(−1)∗3n

(
x(2;1)
cx ; n

(
x(2;2)
cx ; y; z(2;1)cz

)
; z(2;2)cz

)
=
(
F
(
d̂1(OP(x)), z

))
(y) + (−1)deg′ x

(
F
(
OP(x), d̂2(z)

))
(y), (5.7)

where

∗3 = deg′ x(2;1)
cx + deg′ y

(
deg′ z(2;1)cz + deg′ z(2;2)cz

)
= deg′ x(2;1)

cx + deg′ y deg′ z.

Using (5.2), we can calculate the right-hand side of (5.7) to obtain

−(−1)∗4n
(
d̂1(x); y; z

)
+ (−1)∗5n

(
x; y; d̂2(z)

)
,

where ∗4 = deg′ zdeg′ y and ∗5 = deg′ x+ (deg′ z+ 1) deg′ y = deg′ x+ deg′ z deg′ y + deg y + 1.
Therefore, (5.7) becomes (5.4), as required.

Note that the order of F
(
x
(2;1)
cx , z

(2;1)
cz

)
and F

(
x
(2;2)
cx , z

(2;2)
cz

)
appearing in (5.5) is reversed

in (5.6). This is because it is defined so in (2.14). The sign

(−1)deg x(deg y+1) = (−1)deg′ xdeg′ y+deg′ y

there is actually the Koszul sign, that is, associated to the exchange of the symbols m2, x, y 7→ y,
◦, x. This is an intuitive reason why rather complicate sign calculation in Example 5.3 works.

Remark 5.5. If D(1) has a structure of A∞ bi-module n, then its degree shift D has a A∞
bi-module n′ defined by

n′(x, ys, z) = (−1)deg′ zn′(x, y, z)s. (5.8)

Here ys is an element y ∈ D(1) regarded as an element of D.
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Example 5.6. To any filtered A∞ category C , we can associate a filtered A∞ bi-module C (1)
as follows. We put C (1)d(c1, c2) = C d+1(c1, c2). We define structure operation n by n(x, y, z) =
m(x, y, z). It is easy to see that this satisfies the A∞ relation.

In view of Remark 5.5, it induces a structure of filtered A∞ bi-module on C (without degree
shift) by

n′(x, y, z) = (−1)deg′ zm(x, y, z).

In case C is strict, the operator n′ induces a strict filtered A∞-bi-functor F : C op×C → CH as
follows. We put Fob(c1, c2) = C (c1, c2). We define a map

F ′k1,k2 : Bk1C [1](c0, c1)“⊗Bk2C [1](c2, c3)→ Hom(C (c1, c2),C (c0, c3))[1]

by

(Fk1,k2(x; z))(y) = (−1)∗mk1+k2+1(x, y, z),

where ∗ = deg y deg′ z. (Here deg y appears instead of deg′ y because of the sign in (5.8).) We
then compose it with OP, and obtain the required map

Fk1,k2 : Bk1C
op[1](c1, c0)“⊗Bk2C [1](c2, c3)→ Hom(C (c1, c2),C (c0, c3)).

This construction is an analogue of the fact that an arbitrary algebra is a bi-module over
itself.

Remark 5.7. A reason why we shifted the degree in [34] is Example 5.6. Namely, we can
put m = n if we shift the degree. The reason why we do not shift the degree of bi-module will
be clear in Section 10. There we will regard a left-C1 and right-C2 bi-module as a ‘morphism’
from C1 to C2. In that case, the bi-module in Example 5.6 plays the role of the identity
morphism. However, if we shift the degree then it will not behave as the identity morphism.
Until Section 10, we will use the convention of [34], that is, we shift the degree of bi-module. In
the way explained in (5.8), we can go from one to the other.

We next generalize the story of [34, Section 5.2.2.1] to our category case.

Lemma 5.8. Let C1, C2, C3 be non-unital curved filtered A∞ categories and C s
1 , C s

2 , C s
3 their

associated strict categories. Then any filtered A∞ bi-functor F : C1 × C2 → C3 induces a strict
filtered A∞ bi-functor F s : C s

1 × C s
2 → C s

3 . If F is unital or G-gapped, then so is F s.

Proof. Let ci ∈ OB(Ci), (ci, bi) ∈ OB(C ′i ) for i = 1, 2. We put

b3 =
∞∑
k1=0

∞∑
k2=0

Fk1,k2

(
bk11 , b

k2
2

)
.

We put eb =
∑∞

k=0 b
k then eb3 = F̂

(
eb1 , eb2

)
. Since bi are bounding cochains for i = 1, 2,

we have d̂1
(
eb1
)
= d̂2

(
eb2
)
= 0. (See [34, Lemma 3.6.36].) Therefore, Definition 5.1 (4) im-

plies d̂1
(
eb3
)
= 0. In other words, b3 is a bounding cochain. We define

F s
ob((c1, b1), (c2, b2)) = (c3, b3).

Let xi ∈ BkiCi[1]
(
c1i , c

2
i

) ∼= BkiC
′
i [1]
((
c1i , b

1
i

)
,
(
c2i , b

2
i

))
, i = 1, 2. We will define F s

k1,k2
(x1,x2).

For this purpose, we define tbi : BCi[1]
(
c1i , c

2
i

)
→ BCi[1]

(
c1i , c

2
i

)
for i = 1, 2, 3 as follows. Let

xi = xi,1⊗ · · · ⊗ xi,ki , where xi,j ∈ Ci[1](ci,j−1, ci,j), ci,j ∈ OB(Ci), with ci,0 = c1i , ci,ki = c2i . We
define

tbi(xi) = ebi,0 ⊗ xi,1 ⊗ ebi,1 ⊗ · · · ⊗ ebi,ki−1 ⊗ xi,ki ⊗ ebi,ki . (5.9)
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Sublemma 5.9.

(1) tbi is a Λ0 module isomorphism.

(2) ∆i ◦ tbi =
(
tb1 ⊗ tb2

)
◦∆i.

(3) d̂bii ◦ tbi = tbi ◦ d̂i. Here d̂bii is a coderivation induced from mbi.

The proof is the same as the proof of [34, Lemma 5.2.12] and so is omitted. By Sub-
lemma 5.9 (1) there exists uniquely a Λ0 module homomorphism”F s

((
c11, b

1
1

)
,
(
c12, b

1
2

)
;
(
c21, b

2
1

)
,
(
c22, b

2
2

))
: BC1[1]

(
c11, c

1
2

)“⊗BC2[1]
(
c21, c

2
2

)
→ BC3[1]

((
c31, b

3
1

)
,
(
c32, b

3
2

))(
where

(
c3i , b

3
i

)
= F s

ob

((
c1i , b

1
i

)
,
(
c2i , b

2
i

)))
such that tb3 ◦”F s = F̂ ◦

(
tb1 ⊗ tb2

)
. Here and here-

after, we write ”F s in place of ”F s
((
c11, b

1
1

)
,
(
c12, b

1
2

)
;
(
c21, b

2
1

)
,
(
c22, b

2
2

))
, for simplicity. Sublem-

ma 5.9 (3) implies

d̂b3 ◦”F s = ”F s ◦
(
d̂b1 “⊗ id + id“⊗ d̂b2). (5.10)

Sublemma 5.9 (2) implies

∆3 ◦”F s = ”F s ◦
(
∆1“⊗ id + id“⊗∆2

)
. (5.11)

(5.11) implies that ”F s is induced by F s
k1,k2

. In fact, F s
k1,k2

is a composition of the restric-
tion of ”F s to Bk1C1[1]

(
c11, c

1
2

)“⊗Bk2C2[1]
(
c21, c

2
2

)
and the projection BC3[1]

((
c31, b

3
1

)
,
(
c32, b

3
2

))
→

C3[1]
((
c31, b

3
1

)
,
(
c32, b

3
2

))
.

Then (5.10) implies that it satisfies the required property, Definition 5.1 (4).
To show that F s is strict, we observe

F̂ ◦
(
tb1(1)⊗ tb2(1)

)
= F̂

(
eb1 , eb2

)
= eb3 = tb3(1).

Namely, F̂ s(1) = 1. This implies F s
0,0(1) = 0. ■

In the case when C is curved, we can not define the filtered A∞ bi-functor in Example 5.6.
However, we can still use the language of filtered A∞ bi-module to define a similar object.

Let C1, C2 be non-unital curved filtered A∞ categories. We define the notion of a left-C1 and
right-C2 bi-module as follows.

Definition 5.10. A left-C1 and right-C2 filtered A∞ bi-module, is D = ({Dc1,c2}, {nc′1,c1,c2,c′2}),
where

(1) The object {Dc1,c2} assigns a completed free graded Λ0 moduleDc1,c2 to each c1 ∈ OB(C1),
c2 ∈ OB(C2).

(2) To each c1, c
′
1 ∈ OB(C1), c2, c

′
2 ∈ OB(C2), we are given a Λ0 module homomorphism

nc′1,c1,c2,c′2 : BC1[1](c
′
1, c1)“⊗Dc1,c2

“⊗BC2[1](c2, c
′
2)→ Dc′1,c

′
2

of degree +1 which preserves the energy filtration.

(3) The following A∞ relation is satisfied:

0 =
∑
a1

∑
a2

(−1)∗1n(x1:a1 , n(x2:a1 , z,y1:a2),y2:a2)

+ n
(
d̂1(x), z,y

)
+ (−1)∗2n

(
x, z, d̂2(y)

)
. (5.12)

Here ∗1 = deg′ x1:a1 , ∗2 = deg′ x+deg′ z. The notations are as follows: x ∈ BC1[1](c
′
1, c1),

y ∈ Dc1,c2 , z ∈ BC2[1](c2, c
′
2). ∆x =

∑
a1

x1:a1 ⊗ x2:a1 . ∆y =
∑

a2
y1:a2 ⊗ y2:a2 . The

symbol d̂i denotes the coderivation induced by the structure operations of Ci and is defined
in (2.5).
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A filtered A∞ bi-module over G-gapped unital curved filtered A∞ category is said to be G-
gapped if all the structure operations are G-gapped. It is said to be unital if the following
holds:

(1) The equality n1,0(e1, y) = (−1)deg yn1,0(y, e2) = y. Here ei is the unit of Ci.

(2) If x or z contains the unit, then n(x; y; z) = 0 except the cases appearing in item (1).

We define

n̂c′1,c′2 :
⊕
c1,c2

BC1[1](c
′
1, c1)“⊗Dc1,c2

“⊗BC2[1](c2, c
′
2)

→
⊕
c1,c2

BC1[1](c
′
1, c1)“⊗Dc′1,c

′
2
“⊗BC2[1](c2, c

′
2),

by

n̂c′1,c′2(x, z,y) =
∑
a1

∑
a2

(−1)∗1x1:a1 ⊗ n(x2:a1z,y1:a2)⊗ y2:a2

+ d̂1(x)⊗ z ⊗ y+ (−1)∗2x⊗ z ⊗ d̂2(y),

where the notations are as in (5.12). Then the formula (5.12) is equivalent to n̂c′1,c′2 ◦ n̂c′1,c′2 = 0.

Definition 5.11. Let D (i) =
({
D

(i)
c1,c2

}
,
{
n
(i)
c′1,c1,c2,c

′
2

})
be a left-C1 and right-C2 filtered A∞ bi-

module, for i = 1, 2. A pre-bi-module homomorphism of degree d from D (1) to D (2) is f =
{fc′1,c1,c2,c′2}, where

(∗) To each c1, c
′
1 ∈ OB(C1), c2, c

′
2 ∈ OB(C2), we are given a Λ0 module homomorphism

fc′1,c1,c2,c′2 : BC1[1](c
′
1, c1)“⊗D(1)

c1,c2
“⊗BC2[1](c2, c

′
2)→ D

(2)
c′1,c

′
2
,

of degree d which preserves the energy filtration.

Let

f̂c′1,c′2 :
⊕
c1,c2

BC1[1](c
′
1, c1)“⊗D(1)

c1,c2
“⊗BC2[1](c2, c

′
2)

→
⊕
c1,c2

BC1[1](c
′
1, c1)“⊗D(2)

c1,c2
“⊗BC2[1](c2, c

′
2), (5.13)

be the formal bi-comodule homomorphism induced from fc′1,c1,c2,c′2 . More explicitly, the map
(5.13) is defined by

f̂c′1,c′2(x, z,y) :=
∑
a1

∑
a2

(−1)∗x1:a1 ⊗ f(x2:a1z,y1:a2)⊗ y2:a2 ,

where ∗ = deg f deg′ x1:a1 = deg′fdeg′ x1:a1 . (Note that deg′f = deg f, see Definition 2.15.)
We define a pre-bi-module homomorphism d(f) of degree deg f+ 1, so that

d̂(f) := n̂ ◦ f̂− (−1)deg f̂f ◦ n̂

holds.
We say a pre-bi-module homomorphism f is a bi-module homomorphism if its degree is 0 and

if d(f) = 0. When g = {gc′1,c1,c2,c′2} is another pre-bimodule homomorphism, we define g ◦ f so
that ‘g ◦ f = ĝ ◦ f̂.
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Note that d(f) = 0 is equivalent to∑
a1

∑
a2

n(x1:a1 , f(x2:a1 , z,y1:a2),y2:a2)

= f
(
d̂1(x), z,y

)
+ (−1)deg′ x+deg zf

(
x, z, d̂2(y)

)
+
∑
a1

∑
a2

(−1)deg′ x1:a1 f(x1:a1 , n(x2:a1 , z,y1:a2),y2:a2).

Definition 5.12. We define a DG-category BIMOD(C1,C2) as follows:

(1) Its object is a left-C1, right-C2 filtered bi-module.

(2) For two objects D1 and D2, a morphism from D1 to D2 is a pre-filtered A∞-bimodule
homomorphism. We write it as BIMOD(D1,D2).

(3) The composition and the differential of BIMOD(C1,C2) are defined as in Definition 5.11.

It is obvious from definition that BIMOD(C1,C2) is a DG-category.

Definition 5.13. In Definitions 5.10 and 5.11, we can define G-gappedness and/or unitality of
bi-module and/or bi-module homomorphism in an obvious way if Ci is G-gapped and/or unital
for i = 1, 2.

We next explain the relation between a filtered A∞ bi-module and a bi-functor. We need
a digression for this purpose.

Definition 5.14. Let C1, C2, C3 be strict non-unital curved filtered A∞ categories. We will
define bijections between the following three objects:

(1) A filtered A∞ bi-functor F : C1 × C2 → C3.

(2) A filtered A∞ bi-functor F : C2 × C1 → C3.

(3) A filtered A∞ functor: G : C1 → FUNC(C2,C3).

The bijection between (1) and (2) is constructed by using the isomorphism

S : Bk1C1[1]((c1,1, c1,2)“⊗Bk2C2[1]((c2,1, c2,2)→ Bk2C2[1]((c2,1, c2,2)“⊗Bk1C1[1]((c1,1, c1,2),

which is S(x⊗ y) = (−1)deg′ x deg′ yy ⊗ x.

We next construct bijection between (1) and (3).

Suppose F is given as in (1). Let c1 ∈ OB(C1). We first construct Gob(c1) which is a fil-
tered A∞ functor: C2 → C3. Let c2 ∈ OB(C2). Then we put (Gob(c1))ob(c2) = Fob(c1, c2) ∈
OB(C3). Let c2,1, c2,2 ∈ OB(C2). We define

(Gob(c1))k2(c2,1, c2,2) : Bk2C2[1](c2,1, c2,2)→ C3[1](Fob(c1, c2,1),Fob(c1, c2,2))

by (Gob(c1))k2(c2,1, c2,2)(y) = F (c1, c1; c2,1, c2,2)0,k2(1,y), where 1 ∈ B0C1[1](c1, c1) = Λ0, y ∈
Bk2C2[1](c2,1, c2,2). We thus defined Gob(c1), which is a filtered A∞ functor: C2 → C3.

Let c1,1, c1,2 ∈ OB(C1) and x ∈ Bk1C1[1](c1,1, c1,2).

We will construct Gk1(c1,1, c1,2)(x), which is a pre-natural transformation from Gob(c1,1)
to Gob(c1,2).

Let c2,1, c2,2 ∈ OB(C2) and y ∈ Bk2C2[1](c2,1, c2,2). Then

(Gk1(c1,1, c1,2)(x))k2(c2,1, c2,2) : Bk2C2[1](c2,1, c2,2)→ C3[1](Fob(c1,1, c2,1),Fob(c1,2, c2,2))
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is defined by

(Gk1(c1,1, c1,2)(x))k2(c2,1, c2,2)(y) = Fk1,k2(c1,1, c1,2; c2,1, c2,2)(x,y).

It is straightforward to check that G is a filtered A∞ functor.
The construction from (3) to (1) can be done by doing the same construction in the opposite

direction.

Example 5.15. Let F : C op × C → CH be the filtered A∞ bi-functor in Example 5.6. Then
by Definition 5.14, we obtain a filtered A∞ functor C → FUNC(C op, CH). This is nothing but
the A∞ Yoneda functor.

Lemma 5.16. In the situation of Definition 5.14, there exists an equivalence of A∞ categories

FUNC(C1,FUNC(C2,C3))→ FUNC(C2,FUNC(C1,C3)).

Proof. The proof is similar to the above construction and is a straightforward calculation. ■

Using Lemma 5.16 and Definition 5.14, we obtain a filtered A∞ category so that its ob-
ject is a filtered A∞ bi-functor: C1 × C2 → C3. This filtered A∞ category is equivalent to
FUNC(C1,FUNC(C2,C3)) by definition. We denote this filtered A∞ category by BIFUNC(C1

×C2,C3). Amorphism between two filtered A∞ bi-functors in this category is called a pre-natural
transformation. It is called a natural transformation if its m1 derivative is zero.

Note that during the discussion of Definition 5.14 and Lemma 5.16, we required the fil-
tered A∞ categories to be strict.

Lemma 5.17. In the situation of Definitions 5.10 and 5.11, we assume Ci is strict for i = 1, 2.
Then there exists an equivalence of DG-categories

BIFUNC(C op
1 × C2, CH) ∼= BIMOD(C1,C2).

Proof. In the same way as Example 5.3, we can find a bijection between the sets of bi-modules
and of bi-functors appearing as objects of the above two categories. The fact that morphisms
and structure operations coincide can be proved by a similar straightforward calculations. ■

Remark 5.18. Note that in the case when C1, C2 are curved the author does not know the
way to define a filtered A∞ category BIFUNC(C1 × C2,C3). Only in the case when C3 = CH,
we can use the notion of bi-module to define DG-category equivalent to BIFUNC(C1×C2, CH)
for curved categories C1, C2. The functor category in the curved case is defined in [19], which
may be adapted to the bi-functor case.

The next lemma is an analogue of Lemma 5.8.

Lemma 5.19. Let C1, C2 be non-unital curved filtered A∞ categories and C s
1 , C s

2 their associated
strict categories. Then a left-C1 and right-C2 filtered A∞ bi-module D = ({Dc1,c2}, {nc′1,c1,c2,c′2})
induces a left-C s

1 and right-C s
2 filtered A∞ bi-functor Ds. If D is unital or G-gapped, then so

is Ds.
If D1, D2 are left-C1 and right-C2 filtered A∞ bi-modules and f is a pre-filtered A∞ bi-module

homomorphism from D1 to D2. Then we can associate a pre-filtered bi-module homomorphism fs

from Ds
1 to Ds

2 . It induces a DG-functor from BIMOD(C1,C2) to BIMOD(C s
1 ,C

s
2 ).

Proof. The proof is the same as the proof of Lemma 5.8. In fact, we can take Ds
(c1,b1),(c2,b2)

:=
Dc1,c2 , and

ns(x1, . . . , xk; z; y1, . . . , yℓ) := n
(
eb, x1, e

b, . . . , eb, xk, e
b; z; eb, y1, e

b, . . . , eb, yℓ, e
b
)
.

The proof of the statement on pre-filtered A∞ bi-module homomorphism can be proved in the
same way as [34, Section 5.2.2.3]. ■
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We next discuss a composition of A∞ (bi)-functors and pullback of bi-module by A∞ (bi)-
functors. To discuss them systematically we introduce the notion of a multi-A∞ functor.

Definition 5.20. Let m be a positive integer and let Ci, i = 1, . . . ,m, and C ′ be non-unital
curved filtered A∞ categories. A filtered A∞ multi-functor F : C1 × · · · × Cm → C ′ consists
of Fob and Fk1,...,km , ki = 0, 1, 2, 3, . . . , of degree 0 such that

(1) A map: Fob :
∏m
i=1OB(Cj)→ OB(C ′) is given.

(2) Let ci,1, ci,2 ∈ OB(Ci), i = 1, . . . ,m. We put c⃗j = (c1,j , . . . , cm,j), for j = 1, 2. Fk1,...,km

associates a Λ0 linear map

Fk1,...,km(c⃗1; c⃗2) :
m⊗
i=1

BkiCi[1](ci,1, ci,2)→ C ′[1](Fob(c⃗1),Fob(c⃗2))

of degree 0.

(3) We require that Fk1,...,km(c⃗1; c⃗2) preserves the filtration in a similar sense as Defini-
tion 2.2 (2).

{Fk1,...,km} induces uniquely a formal coalgebra homomorphism

F̂ (c⃗1; c⃗2) :

3⊗
i=1

BCi[1](ci,1, ci,2)→ BC ′[1](Fob(c⃗1),Fob(c⃗2)).

Note that the structure operations of Ci induce coderivations

d̂i : BCi[1](ci,1, ci,2)→ BCi[1](ci,1, ci,2).

(4) The homomorphism F̂ (c⃗1; c⃗2) is a cochain map.

The unitality, strictness, G-gappedness of multi-functor are defined in the same way.

In the case when m = 3, the multi-functor is called the tri-functor.

Lemma 5.21. A filtered A∞ multi-functor F induces a strict filtered A∞ multi-functor F s

among the associated strict categories. The unitality and/or G-gappedness is preserved.

The proof is the same as Lemma 5.8 and is omitted.

Let C1, . . . ,Cm and C ′1, . . . ,C
′
m′ be non-unial filtered A∞ categories and F : C1×· · ·×Cm →

C ′k and G : C ′1 × · · · × C ′ℓ → C ′′ be A∞ multi-functors. We define its composition

G ◦F : C ′1 × · · · × C ′k−1 × C1 × · · · × Cm × C ′k+1 × · · · × C ′ℓ → C ′′

by

(G ◦F )(x1 ⊗ · · · ⊗ xk−1 ⊗ y1 ⊗ · · · ⊗ ym ⊗ xk+1 ⊗ · · · ⊗ xℓ)

= G (x1 ⊗ · · · ⊗ xk−1 ⊗F (y1 ⊗ · · · ⊗ ym)⊗ xk+1 ⊗ · · · ⊗ xℓ). (5.14)

It is easy to check that (5.14) defines a multi-functor.

Lemma 5.22. Suppose C1, . . . ,Cm and C ′ are strict. Then, we can define a filtered A∞ cate-
goriesMULFUNC(C1 × · · · × Cm,C ′) such that

(1) Its object is a filtered A∞ multi-functor F : C1 × · · · × Cm → C ′.
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(2) There exists a filtered A∞ bi-functor

MULFUNC(C1 × · · · × Cm,C
′′)×MULFUNC(C ′1 × · · · × C ′m′ ,Ck)

→MULFUNC(C1 × · · · × Ck−1 × C ′1 × · · · × C ′m′ × Ck+1 × · · · × Cm,C
′′)

such that (F ,G ) 7→ G ◦F is its object part.

The proof of (1) is straightforward. (2) is a straightforward generalization of Theorem 10.1.
Now it is rather obvious how to define the notion of multi-module over (curved) filtered A∞

categories and define the notion of a pullback of a multi-module structure by multi-functor. We
explain it below since we will use it.

Definition 5.23. Let Cl,1, . . . ,Cl,m and Cr,1, . . . ,Cr,m′ be non-unial filtered A∞ categories A
left-Cl,1, . . . ,Cl,m and right-Cr,1, . . . ,Cr,m′ filtered A∞ multi-module, is ({Dc⃗l ,⃗cr}, {nc⃗l ,⃗c′l ,⃗cr ,⃗c′r}),
where

(1) To each c⃗l ∈
∏ml
i=1OB(Cj,l), c⃗r ∈

∏mr
i=1OB(Cj,r), a graded completed free Λ0 moduleDc⃗l ,⃗cr

is assigned.

(2) To each c⃗l, c⃗
′
l ∈
∏ml
i=1OB(Cj,l), c⃗r, c⃗

′
r ∈

∏mr
i=1OB(Cj,r), we are given a Λ0 module homo-

morphism

nc⃗l ,⃗c′l ,⃗cr ,⃗c′r :

ml⊗
j=1

BC1(c
′
j,l, cj,l)“⊗Dc⃗l ,⃗cr

“⊗ mr⊗
j=1

BCr(cj,r, c
′
j,r)→ Dc⃗′l ,⃗c

′
r
,

of degree +1 which preserves the energy filtration.

In case m+m′ = 3, we call it a tri-module.
The unitality and/or gappedness of multi-module over unital and/or gapped categories are

defined in an obvious way.
When Dℓ =

({
Dℓ
c⃗l ,⃗cr

}
, {nc⃗l ,⃗c′l ,⃗cr ,⃗c′r}

)
is a left-Cl,1, . . . ,Cl,m and right-Cr,1, . . . ,Cr,m′ filtered

A∞ multi-module for ℓ = 1, 2, a multi-module pre-homomorphism from D1 to D2 of degree
d is f = {fc⃗l ,⃗cr} where the map fc⃗l ,⃗cr ,

fc⃗l ,⃗c′l ,⃗cr ,⃗c′r :

ml⊗
j=1

BC1(c
′
j,l, cj,l)“⊗D1

c⃗l ,⃗cr
“⊗ mr⊗

j=1

BCr(cj,r, c
′
j,r)→ D2

c⃗′l ,⃗c
′
r
,

is a degree dΛ0 module homomorphism which preserves filtration.
The maps f induces a formal bi-comodule homomorphism

f̂c⃗l ,⃗cr :
⊕
c′j,l,c

′
j,r

ml⊗
j=1

BC1(c
′
j,l, cj,l)“⊗D1

c⃗l ,⃗cr

mr⊗
j=1

BCr(c
′
j,r, cj,r)

→
ml⊗
j=1

BC1(c
′
j,l, cj,l)“⊗D2

c⃗l ,⃗cr

mr⊗
j=1

BCr(c
′
j,r, cj,r),

in the same way as Definition 5.20 (1).
We define df = {(df)c⃗l ,⃗cr} by

(df)c⃗l ,⃗cr = n̂2c⃗l ,⃗cr ◦ f̂c⃗l ,⃗cr − (−1)deg f̂fc⃗l ,⃗cr ◦ n̂1c⃗l ,⃗cr .

Here n̂ℓc⃗l ,⃗cr is the boundary operator induced from the structure operations of Dℓ as in item (3)
above.
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When f (resp. g) is a multi-module pre-homomorphism from D1 to D2
(
resp. D2 to D3

)
, we

define a multi-module pre-homomorphism f ◦ g from D1 to D3 by ‘f ◦ g = f̂ ◦ ĝ.
Thus we obtain the following filtered DG-category:

(1) Its object is a left-Cl,1, . . . ,Cl,m and right-Cr,1, . . . ,Cr,m′ filtered A∞ multi-module.

(2) The module of morphisms is the set of multi-module pre-homomorphisms.

(3) The differential d and composition ◦ is defined as above.

The unitality and/or gappedness of a multi-module homomorphism is defined in an obvious
way.

To a left-Cl,1, . . . ,Cl,m and right-Cr,1, . . . ,Cr,m′ filtered A∞ multi-module D we can associate
a left-C s

l,1, . . . ,C
s
l,m and right-C s

r,1, . . . ,C
s
r,m′ filtered A∞ multi-module Ds in the same way as

Lemma 5.21.
If Cl,1, . . . ,Cl,m and Cr,1, . . . ,Cr,m′ are strict then there exists a bijection between the set of

all the left-Cl,1, . . . ,Cl,m and right-Cr,1, . . . ,Cr,m′ filtered A∞ multi-modules D and the set of all
the filtered A∞ multi-functors F : C op

l,1 × · · · × C op
l,m × Cr,1 × · · · × Cr,m′ → CH. Moreover, the

set of multi-module homomorphisms can be identified with the set of natural transformations
in the category defined in Lemma 5.22.

Let Cl,1, . . . ,Cl,m, Cr,1, . . . ,Cr,mr and C ′1,l, . . . ,C
′
1,m′ be non-unial curved filtered A∞ cat-

egories and F : C1 × · · · × Cm → C ′k be a multi-functor. Let D be a left C ′1,l, . . . ,C
′
1,m′

and right Cr,1, . . . ,Cr,mr multi-module. Then we can pull back D by F and obtain a left
C ′1,l, . . . ,C

′
1,k−1, Cl,1, . . . ,Cl,mC ′1,k+1, . . . ,C

′
1,m′ and right Cr,1, . . . ,Cr,mr bi-module, which we de-

note F ∗D . We can perform a similar construction for A∞ categories which act from right. This
construction commutes with the process to associate Ds to D .

In the strict case, the above construction coincides with the composition of multi-functors
via the identification between a multi-functor to CH and a multi-module.

5.2 A geometric realization of an A∞ tri-module 1

Situation 5.24. Let (X1, ω1), (X2, ω2) be symplectic manifolds and Vi an oriented real vector
bundle on the 3-skeleton (Xi)[3] of Xi, for i = 1, 2. (Namely, Vi is a background datum in the
sense of Definition 3.4.)

We consider a clean collection L1 (resp. L2) of V1 (resp. V2) relatively spin oriented and
immersed Lagrangian submanifolds of Xi. (See Situation 3.45.) We also take a finite set L12 of
π∗1(V1⊕TX1)⊕π∗2V2 relatively spin oriented and immersed Lagrangian submanifolds of −X1×X2

that have clean intersection. We also assume that L1×L2 has clean intersection with L12 when
Li ∈ Li, L12 ∈ L12.

In this subsection and the next, we will prove the following theorem.

Theorem 5.25. There exists a left-Fuk(X1, V1,L1), Fuk(−X1 ×X2, π
∗
1(V1 ⊕ TX1)⊕ π∗2V2,L12)

and right-Fuk(X2, V2,L2) filtered A∞ tri-module C F (L1,L12;L2). It is unital and gapped.
We call it the correspondence tri-module.

Remark 5.26. We consider associated tri-module5.1 (see Lemma 5.19) over strict categories
Fukst(X1, V1,L1), Fukst(−X1×X2, π

∗
1(V1⊕TX1)⊕π∗2V2,L12), Fukst(X1, V1,L1). Then for objects

(L1, b1), (L12, b12), (L2, b2) of those categories, the tri-module of Theorem 5.25 induces a chain
complex CF ((L1, b1), (L12, b12); (L2, b2)). Its cohomology is isomorphic to the Floer cohomology
of HF ((L12, b12); (L1×L2, b1× b2)). This fact will be proved in Section 16 (see Theorem 16.17).
The product b1 × b2 of bounding cochains is defined in Proposition 16.11.

5.1An A∞ tri-module is a special case of a multi-module (see Definition 5.23), that is a multi-module over
three A∞ categories.
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Proof. The proof of Theorem 5.25 occupies this and the next subsections. In the same way
as Section 3.5, it suffices to consider the case when L1, L2, L12 consist of single immersed
Lagrangian submanifolds L1, L2 and L12, respectively, and construct structure operations

n : BCF [1](L1)⊗Λ0 BCF [1](L12)⊗D[1]⊗Λ0 BCF [1](L2)→ D[1]

for a certain graded completed free Λ0 module D, such that they satisfy A∞ relation.5.2

The construction of n uses certain compactified moduli spacesMQT(⃗a1, a⃗12, a⃗2; a−, a+;E) of
pseudo-holomorphic quilts, which will be defined in Definition 5.40. We will define it in three
steps.

We first define
◦◦
MQT(⃗a1, a⃗12, a⃗2; a−, a+;E) in Definition 5.27. This moduli space is the set

of pseudo-holomorphic quilts which do not contain disk bubbles and are not split into several
quilts (see Figure 5.1). It contains objects with sphere bubbles.

We then include objects with disk bubbles and define M̊QT(⃗a1, a⃗12, a⃗2; a−, a+;E) in Defini-
tion 5.37.

Finally, we include the process where a sequence of a pseudo-holomorphic quilts splits into
several pseudo-holomorphic quilts in the limit and defineMQT(⃗a1, a⃗12, a⃗2; a−, a+;E) in Defini-
tion 5.40. The detail will follow.

We decompose the fiber products into connected components

Li(+) = L̃i ×Xi L̃i = L̃i ⊔
∐

a∈ALi

Li(a)

for i = 1, 2, and

L12(+) = L̃12 ×X1×X2 L̃12 = L̃12 ⊔
∐

a∈AL12

L12(a).

See Definition 3.2 (5). We also decompose

R =
(
L̃1 × L̃2

)
×X1×X2 L̃12 =

∐
a∈AR

R(a).

Let a⃗j = (aj,1, . . . , aj,kj ) ∈
(
A+
Lj

)kj , a⃗12 = (a12,1, . . . , a12,k) ∈
(
A+
L12

)k
, a+, a− ∈ AR and E ∈

R≥0. (Here A+
L12

:= AL12 ∪ {o} and o is the index of the diagonal component.) Below, we
identify R× R ∼= C by (s, t) 7→ s+

√
−1t.

Definition 5.27. We consider (Σ; z⃗1, z⃗12, z⃗2;u1, u2; γ1, γ12, γ2) with the following properties (see
Figure 5.1):

(1) The space Σ is a bordered Riemann surface with Σ ⊇ ([−1, 1] × R). The closure of
Σ \ ([−1, 1] × R) is a finite union of (maximal) trees of spheres. We call its connected
component a tree of sphere components. We require that a tree of sphere components
intersects with [−1, 1] × R at one point, which we call its root. All the roots are points
of ((−1, 0) ∪ (0, 1))× R.5.3

(2) Let Ω1 (resp. Ω2) be the union of [−1, 0] × R (resp. [0,+1] × R)) and the trees of sphere
components rooted on it. We require the maps u1 : Ω1 → (X1, J1) and u2 : Ω2 → (X2, J2)
to be pseudo-holomorphic.

5.2Here we shifted the degree of elements of D. This is because it is more consistent with the discussion of sign
in Section 17.

5.3We require that the root is not on {0,±1} × R.
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(3) We put z⃗i = (zi,1, . . . , zi,ki), i = 1, 2. Then z1,j ∈ {−1} × R, z2,j ∈ {1} × R. z⃗12 =
(z12,1, . . . , z12,k), z12,j ∈ {0}×R. If j1 < j2 then Im z1,j1 > Im z1,j2 , Im z12,j1 > Im z12,j2 and
Im z2,j1 < Im z2,j2 . See Remark 5.30 for this enumeration. We put |z⃗i| = {zi,1, . . . , zi,ki}.
|z⃗12| is defined in the same way.

(4) The maps γ1 : ({−1}×R)\|z⃗1| → L̃1, γ2 : ({1}×R)\|z⃗2| → L̃2, γ12 : ({0}×R)\|z⃗12| → L̃12

are smooth and satisfy

iL1(γ1(z)) = u1(z) if z ∈ ({−1} × R) \ |z⃗1|,
iL2(γ2(z)) = u2(z) if z ∈ ({1} × R) \ |z⃗2|,
iL12(γ12(z)) = (u1(z), u2(z)) if z ∈ ({0} × R) \ |z⃗12|.

(5) At z⃗1, z⃗2, z⃗12, the maps γ1, γ2, γ12 satisfy the switching condition, Condition 5.28 below.

(6) When z ∈ [−1, 1] × R, Im z → ±∞, the maps u1(z) and u2(z) satisfy the asymptotic
boundary condition, Condition 5.29 below.

(7) The stability condition, Condition 5.31 below, is satisfied.

(8)
∫
Ω1
u∗1ω1 +

∫
Ω2
u∗1ω2 = E.

We will define an equivalence relation ∼ among the objects (Σ; z⃗1, z⃗12, z⃗;u1, u2; γ1, γ12, γ2)
satisfying (1)–(8), in Definition 5.32. We denote by

◦◦
MQT(⃗a1, a⃗12, a⃗2; a−, a+;E) the set of all the

equivalence classes of this equivalence relation. We call its element a pseudo-holomorphic quilt.
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Figure 5.1. An element
◦◦
MQT(⃗a1, a⃗12, a⃗2; a−, a+;E).

We next describe three of the conditions in Definition 5.27. We put

∂1Σ = {−1} × R, ∂2Σ = {1} × R, ∂12Σ = {0} × R.

We call the line {0} × R the seam. We define the limit p = limz∈∂1Σ,z↓z1,j γ1(z) as follows. If
zn, z ∈ ({−1} × R) \ |z⃗1|, Im zn > Im z1,j and limn→∞ zn = z1,j , then p = limn→∞ γ1(zn). The
notations limz∈∂1Σ,z↑z1,j etc. are defined in the same way.
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The two switching conditions below are analogues of the switching conditions which appeared
in the immersed Lagrangian Floer theory. See Definition 3.17 (5) and Figure 3.5.

Condition 5.28 (switching condition 1).

(1) For each j, (limz∈∂1Σ,z↓z1,j γ1(z), limz∈∂1Σ,z↑z1,j γ1(z)) ∈ L1(a1,j).

(2) For each j, (limz∈∂2Σ,z↑z2,j γ2(z), limz∈∂2Σ,z↓z2,j γ2(z)) ∈ L2(a2,j).

(3) For each j, (limz∈∂12Σ,z↓z12,j γ12(z), limz∈∂12Σ,z↑z12,j γ12(z)) ∈ L12(a12,j).

Condition 5.29 (switching condition 2).

(1) There exists (p+∞,1, p+∞,2) ∈ R(a+) such that

lim
τ→+∞

(
γ1
(
−1 + τ

√
−1
)
, γ2
(
+1 + τ

√
−1
))

= p+∞,1, lim
τ→+∞

γ12
(
τ
√
−1
)
= p+∞,2.

(2) There exists (p−∞,1, p−∞,2) ∈ R(a−) such that

lim
τ→−∞

(
γ1
(
−1− τ

√
−1
)
, γ2
(
+1 + τ

√
−1
))

= p−∞,1, lim
τ→−∞

γ12
(
τ
√
−1
)
= p−∞,2.

See Figure 5.2.
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Figure 5.2. Switching condition 2.

Remark 5.30. Note that we enumerate the marked points on γ1, γ12 downward and the marked
points on γ2 upward. This is related to the fact that we are constructing left Fuk(X1, V1,L1),
Fuk(−X1×X2, π

∗
1(V1⊕TX1)⊕π∗2V2,L12) and right Fuk(X2, V2,L2) filtered A∞ tri-module. (We

also remark the input D corresponds to the end τ → −∞.)
In fact, we write the structure operation of this filtered A∞ tri-module as

n(x1, . . . , xk1 ; y1, . . . , yk12 ; z;w1, . . . , wk2).

Here xi corresponds to the evaluation map at the i-th marked point of γ1, yi corresponds to the
evaluation map at the i-th marked point of γ12, wi corresponds to the evaluation map at the
i-th marked point of γ2. Thus the way we enumerate the marked points is consistent with the
way we write the structure operation.
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Condition 5.31 (stability condition). The set of all the maps v : Σ → Σ satisfying the next
conditions is finite.

(1) The map v is a homeomorphism and is biholomorphic on each of the irreducible compo-
nents.

(2) u1 ◦ v = u1, u2 ◦ v = u2.

Definition 5.32. We define evaluation maps

ev =
(
ev1, ev12, ev2

)
=
((
ev11, . . . , ev

1
k1

)
,
(
ev121 , . . . , ev

12
k12

)
,
(
ev21, . . . , ev

2
k2

))
:

◦◦
MQT(⃗a1, a⃗12, a⃗2; a−, a+;E)→

k1∏
j=1

L1(a1,j)×
k12∏
j=1

L12(a12,j)×
k2∏
j=1

L2(a2,j)

and

ev∞ = (ev∞,−, ev∞,+) :
◦◦
MQT(⃗a1, a⃗12, a⃗2; a−, a+;E)→ R(a−)×R(a+)

as follows.

(1) We use Condition 5.28 (1) to define

ev1j (Σ; z⃗1, z⃗12, z⃗2;u1, u2; γ1, γ12, γ2) =
(

lim
z∈∂1Σ,z↓z1,j

γ1(z), lim
z∈∂1Σ,z↑z1,j

γ1(z)
)
∈ L1(a1,j).

(2) We use Condition 5.28 (3) to define

ev12j (Σ; z⃗1, z⃗12, z⃗2;u1, u2; γ1, γ12, γ2)

=
(

lim
z∈∂12Σ,z↓z12,j

γ12(z), lim
z∈∂12Σ,z↑z12,j

γ12(z)
)
∈ L12(a12,j).

(3) The evaluation map ev2j is defined in the same way by using Condition 5.28 (2).

(4) We use Condition 5.29 (1) to define

ev∞,+(Σ; z⃗1, z⃗12, z⃗2;u1, u2; γ1, γ12, γ2)

= lim
τ→+∞

((
γ1
(
−1 + τ

√
−1
)
, γ2
(
+1 + τ

√
−1
))
, γ12

(
τ
√
−1
))
.

The definition of ev∞,− is similar. We call them evaluation maps at infinity.

Definition 5.33. We say (Σ; z⃗1, z⃗12, z⃗2;u1, u2; γ1, γ12, γ2) as in Definition 5.27 is equivalent
to (Σ′; z⃗ ′1, z⃗

′
12, z⃗

′
2;u
′
1, u
′
2; γ
′
1, γ
′
12, γ

′
2) if there exist v : Σ→ Σ′ satisfying the next conditions.

(1) The map v is a homeomorphism and is biholomorphic on each connected component.

(2) We require v(Ω1) = Ω′1, v(Ω2) = Ω′2. Here Ω′1 is the union of [−1, 0] × R ⊂ Σ′ and the
trees of sphere components rooted on it. Ω′2 is defined in the same way.

(3) u′1 ◦ v = u1, u
′
2 ◦ v = u2.

(4) v(zi,j) = z′i,j , v(z12,j) = z′12,j , where i = 1, 2.

(5) γ′1 ◦ v = γ1, γ
′
2 ◦ v = γ2, γ

′
12 ◦ v = γ12.
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Remark 5.34. In Floer theory, the moduli space which is used to define the boundary operator
is the quotient space by R action. (This R action is induced by the translation of the R direction,
which is the second factor of [−1, 1] × R in our situation.) The process to take the set of
equivalence classes of the equivalence relation in Definition 5.33 includes the process to take
the quotient by this R action. In other words, the object x = (Σ; z⃗1, z⃗12, z⃗2;u1, u2; γ1, γ12, γ2)
and τx which is obtained from x by shifting everything by τ ∈ R are equivalent in the sense of
Definition 5.33.

There is no mathematical difference between the way we take here and the usual way to
take quotient by R action. They are slightly different ways to describe the same mathematical
contents.

In our situation, Condition 5.29 is a consequence of the other conditions. More precisely, we
have the following.

Lemma 5.35. Let (Σ; z⃗1, z⃗12, z⃗2;u1, u2; γ1, γ2, γ12) be an object which satisfies conditions of Def-
inition 5.27 except possibly (6), for some a⃗1, a⃗2, a⃗, E. (Note that a± appears only in (6).) Then
there exists a−, a+ such that (6) =Condition 5.29 is satisfied.

Moreover, there exists Ck, ck > 0 such that∥∥∇ku1(z)∥∥ ≤ Cke−ck| Im z|,
∥∥∇ku1(z)∥∥ ≤ Cke−ck| Im z|.

Proof. We use (t, τ) as a coordinate of [0, 1] × [τ0,∞) and the point (t, τ) ∈ [0, 1] × [τ0,∞) is
identified with z = t+

√
−1τ ∈ C.

We may assume that there is no tree of sphere components whose root is a point z with τ > τ0.
We may also assume that Im zi,j , Im z12,j < −τ0. We define u : [0, 1] × [τ0,∞) → (X1,−J1) ×
(X2, J2) by u(z) = (u1(z), u2(z)).

The map u is pseudo-holomorphic and u({+1}× [τ0,∞)) ⊂ L1 ×L2, u({0}× [τ0,∞)) ⊂ L12.
Moreover,∫

[0,1]×[τ0,∞)
u∗(−π∗1(ω1) + π∗2(ω2)) <∞.

Since L12 and L1 × L2 have clean intersection (see Situation 5.24), there exists an element
p+∞ = (p+∞,1, p+∞,2) ∈ L12 ∩ (L1 × L2) such that

d(u(z), p+∞) < Ce−C| Im z|,
∥∥∇ku(z)∥∥ ≤ C−ck| Im z|

k

on [0, 1]× (τ0,∞). (See [48, Lemmas 2.4 and 2.5] for example.) We can discuss in the same way
for τ < −τ0. ■

We will next discuss the compactification of
◦◦
MQT(⃗a1, a⃗12, a⃗2; a−, a+;E). Note that we already

included objects with sphere bubbles in
◦◦
MQT(⃗a1, a⃗12, a⃗2; a−, a+;E). We need to include disk

bubbles and the process where elements split into several pieces in the second factor of [−1, 1]×R.
Note that disk bubbles may occur at the boundaries ∂1Ω, ∂2Ω or the seam ∂12Ω, where pseudo-
holomorphic disks in X1, X2, −X1×X2 with boundary in L1, L2, L12 can bubble, respectively.
The moduli spaces of such pseudo-holomorphic disks are described by the moduli spaces we
introduced in Section 3.2 and hence the moduli space of objects with disk bubbles is obtained
by an appropriate fiber product. We will describe it below.

Definition 5.36. Let M(L; a⃗;E) be the moduli space introduced in (3.19). For the sake of
simplicity of notations, we use the next (slight abuse of) notations. Let a⃗ = (a, a) (a ∈ AL). We
include M(L; a⃗; 0) =M(L; (a, a); 0) and define it to be a single point consisting of a constant
map to L(a). In fact, this element is unstable. However, we include it as an exception here. See
Remark 5.39.
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Let

a⃗i,(j) =
(
a
i,(j)
0 , . . . , ai,(j)mi,(j)

)
∈
(
A+
Li

)mi,(j)+1
for i = 1, 2, j = 1, . . . , ki

and

a⃗12,(j) =
(
a
12,(j)
0 , . . . , a12,(j)m12,(j)

)
∈
(
A+
Li

)m12,(j)+1
for j = 1, . . . , k12.

Here mi,(j) and m12,(j) are nonnegative integers.

We put

a⃗′i = (a′i,1, . . . , a
′
i,ki

) =
(
a
i,(1)
0 , . . . , a

i,(ki)
0

)
∈
(
A+
Li

)ki , i = 1, 2,

a⃗′12 = (a′12,1, . . . , a
′
12,k12) =

(
a
12,(1)
0 , . . . , a

12,(k12)
0

)
∈
(
A+
L12

)k12 .
We define

#j a⃗
i,(j) :=

(
a
i,(1)
1 , . . . , ai,(j)mi,(1)

, a
i,(2)
1 , . . . , ai,(j)mi,(2)

, . . . , a
i,(ki)
1 , . . . , ai,(ki)mi,(ki)

)
∈
(
A+
Li

)mi ,

where i = 1, 2 and mi =
∑

jmi,(j). We moreover put

#j a⃗
12,(j) :=

(
a
12,(1)
1 , . . . , a12,(j)m12,(1)

, . . . , a
12,(k12)
1 , . . . , a12,(k12)m12,(k12)

)
∈
(
A+
L12

)m12 ,

where m12 =
∑

jm12,(j). (See Figure 5.3.)
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Figure 5.3. Domain of an element of M̊QT(⃗a1, a⃗12, a⃗2; a−, a+;E).

Definition 5.37. We define the set M̊QT(⃗a1, a⃗12, a⃗2; a−, a+;E) as the union of the fiber products

◦◦
MQT(⃗a

′
1, a⃗
′
12, a⃗

′
2; a−, a+;E

′)×ev0,...,ev0

k1∏
j=1

M
(
L1; a⃗

1,(j);E1,j

)
×ev0,...,ev0

k12∏
j=1

M′
(
L12; a⃗

12,(j);E12,j

)
×ev0,...,ev0

k2∏
j=1

M
(
L2; a⃗

2,(j);E2,j

)
, (5.15)

where #j a⃗
1,(j) = a⃗1, #j a⃗

12,(j) = a⃗12, #j a⃗
2,(j) = a⃗2, E

′ +
∑

j E1,j +
∑

j E12,j +
∑

j E2,j = E.
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We remark that in the first line of (5.15) the fiber product is taken over
∏k1
j=1 L1

(
a
1,(j)
0

)
by

the evaluation maps

ev1j :
◦◦
MQT(⃗a

′
1, a⃗
′
12, a⃗

′
2; a−, a+;E

′)→ L1

(
a
1,(j)
0

)
,

ev0 : M
(
L1; a⃗

1,(j);E1,j

)
→ L1

(
a
1,(j)
0

)
.

The fiber product in the second line is taken over
∏k12
j=1 L12

(
a
12,(j)
0

)
by the evaluation maps

ev12j :
◦◦
M(⃗a′1, a⃗

′
12, a⃗

′
2; a−, a+;E

′)→ L12

(
a
12,(j)
0

)
,

ev0 : M′
(
L12; a⃗

12,(j);E12,j

)
→ L12

(
a
12,(j)
0

)
.

The fiber product in the third line is taken in a similar way.

Remark 5.38. In the formula (5.15), we used a compactification M′
(
L12; a⃗

12,(j);E12,j

)
of

the space
◦◦◦
M
(
L12; a⃗

12,(j);E12,j

)
. Here

◦◦◦
M
(
L12; a⃗

12,(j);E12,j

)
is the moduli space of pseudo-

holomorphic disks whose source curve is D2 without any disk or sphere bubbles. This compact-
ification is similar to the stable map compactificationM

(
L12; a⃗

12,(j);E12,j

)
which we defined in

Section 3.2 but is slightly different from it. It is necessary to use different compactification for
our spaceMQT(⃗a1, a⃗12, a⃗2; a−, a+;E) to carry a Kuranishi structure. We will explain this point
in detail in Section 12.

Remark 5.39. As we mentioned before, we include the case when a factorM
(
L1; a⃗

1,(j);E1,j

)
is M(L1; (a, a); 0). This moduli space consists of one point and is a constant map to a point
in L1(a). Note that this element actually is not a stable map since its automorphism group is R.
This case corresponds to the case when the corresponding marked point is on the line {−1} × R
(and not on the disk bubble) and is mapped to an element of L1(a). We include this case in (5.15)
and etc. for the sake of simplicity of notation. When we regard this element as a ‘stable map’ we
shrink this disk and regard the ‘root’ as a marked point. (See Figure 5.4.) We consider the case
whenM′(L12; (a, a); 0) (resp. M(L2; (a, a); 0)) appears in the second (resp. third) line of (5.15)
in the same way.

constant map

marked point

Figure 5.4. Shrink an element ofM(L2; (a, a); 0).

We have thus included the objects with disk bubbles. We finally define our compactification
as follows.

Definition 5.40. We define the setMQT(⃗a1, a⃗12, a⃗2; a−, a+;E) as the union of the fiber products

M̊QT(⃗a1,0, a⃗12,0, a⃗2,0; a0, a1;E1)×R(a1) M̊QT(⃗a1,1, a⃗12,1, a⃗2,1; a1, a2;E2)×R(a2) · · ·
×R(aℓ−1) M̊QT(⃗a1,ℓ, a⃗12,ℓ, a⃗2,ℓ; aℓ−1, aℓ;Eℓ). (5.16)

Here a⃗1 = a⃗1,0, a⃗1,1, . . . , a⃗1,ℓ, a⃗12 = a⃗12,0, a⃗12,1, . . . , a⃗12,ℓ, a⃗2 = a⃗2,ℓ, a⃗2,ℓ−1, . . . , a⃗2,0, E1+· · ·+Eℓ =
E and a− = a0, a1, . . . , aℓ−1, aℓ = a+ ∈ AR. We use the maps ev∞ = (ev∞,−, ev∞,+) to define
the fiber product.
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Figure 5.5. Fiber product (5.16).

Definition 5.41. We define the evaluation maps

ev =
(
ev1, ev12, ev2

)
=
((
ev11, . . . , ev

1
k1

)
,
(
ev121 , . . . , ev

12
k12

)
,
(
ev21, . . . , ev

2
k2

))
:

MQT(⃗a1, a⃗12, a⃗2; a−, a+;E)→
k1∏
j=1

L1(a1,j)×
k12∏
j=1

L12(a12,j)×
k2∏
j=1

L2(a2,j)

and

ev∞ = (ev∞,−, ev∞,+) : MQT(⃗a1, a⃗12, a⃗2; a−, a+;E)→ R(a−)×R(a+)

in the same way as Definition 5.32.

Proposition 5.42. We can define a topology onMQT(⃗a1, a⃗12, a⃗2; a−, a+;E) by which this space
is compact and Hausdorff.

The topology we use is the stable map topology which is similar to [35, Definitions 7.1.39
and 7.1.42] and [49, Definition 10.3]. The proof of the proposition is similar to one in [49,
Definition 10.3]. The only new point is the way how we handle disk bubbles on the seam {0}×R
and more importantly the sphere bubbles on such disk bubbles. This is the point related to
Remark 5.38. We will discuss this point in detail in Section 12.

Theorem 5.43. The space MQT(⃗a1, a⃗12, a⃗2; a−, a+;E) has a Kuranishi structure with corners
with the following properties:

(1) We denote the codimension d normalized corner of the space with Kuranishi structure,
MQT(⃗a1, a⃗12, a⃗2; a−, a+;E), by SdMQT(⃗a1, a⃗12, a⃗2; a−, a+;E). Then it is a union of the
fiber products

Sd1M̊QT(⃗a1,0, a⃗12,0, a⃗2,0; a0, a1;E1)

×R(a1)Sd2M̊QT(⃗a1,1, a⃗12,1, a⃗2,1; a1, a2;E2)×R(a2) · · ·
×R(aℓ−1)SdℓM̊QT(⃗a1,ℓ, a⃗12,ℓ, a⃗2,ℓ; aℓ−1, aℓ;Eℓ)

of the form (5.16), where d1 + · · ·+ dℓ + ℓ− 1 ≥ d
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(2) The codimension dj normalized corner SdjMQT(⃗a1,j , a⃗12,j , a⃗2,j ; aj , aj+1;E) is the union of
the closure of subsets

◦◦
MQT(⃗a

′
1, a⃗
′
12, a⃗

′
2; a−, a+;E

′)×ev0,...,ev0

k1∏
j=1

Sd′1,ℓj
M(L1; a⃗1,j ;E1,j)

×ev0,...,ev0

k12∏
j=1

Sd′12,ℓj
M′(L12; a⃗12,j ;E12,j)

×ev0,...,ev0

k2∏
j=1

Sd′2,ℓj
M(L2; a⃗2,j ;E2,j)

of (5.15) such that there are k′1 + k′2 + k′3 + 1 factors other than those of the form of one
ofM(L1; (a, a); 0),M(L12; (a, a); 0),M(L2; (a, a); 0) and

dj = k′1 + k′2 + k′3 +

k1∑
j=1

d′1,ℓj +

k12∑
j=1

d′12,ℓj +

k2∑
j=1

d′2,ℓj .

(3) The evaluation maps defined in (5.32) are the underlying continuous maps of strongly
smooth maps.

(4) The evaluation maps defined in (5.41) are the underlying continuous maps of strongly
smooth maps. ev∞,+ is weakly submersive also.

(5) The fiber product description (5.15) and (5.16) are compatible with the Kuranishi struc-
tures. Namely, there exists an isomorphism between Kuranishi structures on the moduli
spaceMQT(⃗a1, a⃗12, a⃗2; a−, a+;E) with ones obtained as the fiber product Kuranishi struc-
tures of (5.15) or (5.16). Here on the spaces appearing in the second, third and fourth
factors of (5.15) we take the Kuranishi structures given in Theorem 3.24.

(6) The isomorphisms of the Kuranishi structures in item (5) satisfies corner compatibility
conditions which are similar to Condition 3.27.

(7) Given relative spin structures of L1, L12, L2 (with background data V1, π
∗
1(V1 ⊕ TX1) ⊕

π∗2(V2), V2, respectively) we can define a principal O(1) bundle Θ−12,a on R(a) such that the
orientation bundle of MQT(⃗a1, a⃗12, a⃗2; a−, a+;E) is canonically isomorphic to the tensor
product of the pullbacks of Θ−a1,i, Θ

−
12,ai

Θ−a2,i, Θ
−
a±. The isomorphism is compatible with

the description of the boundary which is a part of item (1).5.4

Most of the proof of Theorem 5.43 is the same as the proof of Theorem 3.24 and is now becom-
ing a routine, in the study of pseudo-holomorphic curves based on the virtual fundamental chain
technique. (See [47].) The only point we need a discussion other than those in Theorem 5.43 is
the way how we handle the point mentioned in Remark 5.38. We will discuss it in Section 12.

See Sections 17.2, 17.6 and [68] for item (7).
We finally mention the gappedness, which is related to Gromov-compactness. We define

G0(L1, L12, L2) :=
{
E ∈ R≤0 |

◦◦
MQT(⃗a1, a⃗12, a⃗2; a−, a+;E)

is nonempty for some a⃗1, a⃗12, a⃗2; a−, a+
}
.

5.4In the case of moduli space of holomorphic disks, a precise meaning of compatibility at boundary with
orientation is written as [46, Condition 21.6 (IX)], when L is embedded. There is an explicit correction term
of sign in [46, Condition 21.6 (IX)] which coincides with one in [35] and [72]. However, the discussion of this
paper is not affected by the explicit form of correction terms. See Remark 17.2. In the case L is immersed with
self-transversal intersection, it is given in [4, equation (73)]. The way to generalize it to the self-clean case is in
Section 17.6 and in the paper [68] by Kaoru Ono. In the way we explain in Section 17, the case of the moduli
space of quilt etc. can be reduced to the case of disks.
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Gromov compactness implies that G0(L1, L12, L2) is a discrete subset of R≥0. Let G0(L1),
G0(L12), G0(L2) be as in (3.14).

Definition 5.44. We define G(L1, L12, L2) to be the discrete submonoid generated by the union
of G0(L1, L12, L2), G0(L1), G0(L12), G0(L2).

The next lemma is obvious.

Lemma 5.45. The set G(L1, L12, L2) is a discrete submonoid. If the moduli spaceM(⃗a1, a⃗12, a⃗2;
a−, a+;E) is non-empty, then E ∈ G(L1, L12, L2).

The filtered A∞ tri-module in Theorem 5.25 will be G(L1, L12, L2)-gapped.

5.3 A geometric realization of an A∞ tri-module 2

Using the system of Kuranishi structures given in Theorem 5.43, we can define a system of
CF-perturbations. We will state it as Proposition 5.48 below. We first describe the situation
we work with precisely.

Lemma 5.46. The conclusions of Theorem 3.24 and Proposition 3.30 still hold when we replace
the compactificationM(L12; a⃗12;E12) by the other compactificationM′(L12; a⃗12;E12).

The proof is the same as the proof of Theorem 3.24 and Proposition 3.30 once the definition
ofM′(L12; a⃗12;E12) is understood. See Theorem 12.24.

Situation 5.47. Let E0 > 0. We are given a system of CF-perturbations of M(L1; a⃗1;E1),
M(L2; a⃗2;E2), M′(L12; a⃗12;E12) for E1, E2, E12 < E0, so that they satisfy the conclusions of
Theorem 3.24 and Proposition 3.30.

Proposition 5.48. Let E0 > 0. There exists a system of CF-perturbations “S on the moduli
spacesM(⃗a1, a⃗12, a⃗2; a−, a+;E) with Kuranishi structures which are outer collarings of thicken-
ings of those given in Theorem 5.43. It enjoys the following properties:

(1) The CF-perturbations “S are transversal to zero.

(2) The evaluation map ev0 is strongly submersive with respect to this CF-perturbation (see
[40, Definition 9.2] for the definition of strong submersivity).

(3) They are compatible with the fiber product description of their corners given in Theo-
rem 5.43. Here we use CF-perturbations in Situation 5.47 on those factors in the same
sense as Proposition 3.30.

(4) They are compatible with the forgetful maps of the marked points which corresponds to the
diagonal component other than 0-th one. The precise definition of compatibility is written
in [28, Definition 5.1].

Proof. The proof is by the general theory of Kuranishi structures, such as those developed
in [40, 43, 46]. See [28] for item (4). ■

Definition 5.49.

(1) We put

D = CF (L1, L12, L2;R) ∼= Ω
((
L̃1 × L̃2

)
×X1×X2 L̃12; Θ

−), (5.17)

where Θ− is a Z2 local system defined on the fiber product
(
L̃1 × L̃2

)
×X1×X2 L̃12 by

Theorem 5.43 (7), and D = CF (L1, L12, L2; Λ0) = D“⊗R Λ0. Then D is a cochain complex
with differential δ = d.
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(2) We will define the structure operations

nE,εk1,k12,k2
: Bk1CF (L1;R)[1]⊗Bk12CF (L12;R)[1]⊗D[1]⊗Bk2CF (L2;R)[1]→ D[1]

as follows. Let

x = x1 ⊗ · · · ⊗ xk1 ∈ Bk1CF (L1;R)[1],
y = y12 ⊗ · · · ⊗ yk12 ∈ Bk12CF (L12;R)[1],
z = z1 ⊗ · · · ⊗ zk2 ∈ Bk2CF (L2;R)[1],

and w ∈ D. Then

nE,εk1,k12,k2
(x,y, w, z) := ev∞,+!

(
ev∗1,1x1 ∧ · · · ∧ ev∗1,k1xk1 ∧ ev∗12,1y1 ∧ · · · ∧ ev∗12,k12yk12

∧ w ∧ ev∗2,1z1 ∧ · · · ∧ ev∗2,k2zk2 ;
”Sε
)
. (5.18)

Here we use the integration along the fiber on the moduli spacesM(⃗a1, a⃗12, a⃗2; a−, a+;E)
with Kuranishi structures and its CF-perturbations “S in Proposition 5.48 to define the
right-hand side (see [46, Definition 7.79]).5.5

(3) We finally put

n<E0,ε
k1,k12,k2

=
∑

E<E0, E∈G(L1,L12,L2)

TEnE,εk1,k12,k2
.

This is a map

n<E0,ε
k1,k12,k2

: Bk1CF (L1)[1]⊗Bk12CF (L12)[1]⊗D[1]⊗Bk2CF (L2)[1]→ D[1].

Remark 5.50. We remark that we need a certain sign (−1)∗ in (5.18). We will prove in Sec-
tion 17 that there exists a choice of the sign so that A∞ relation (5.19) holds with sign. The
sign ∗ is in principle calculable from the discussion of Section 17 and the sign given in [4, 35, 46],
Section 17.6 and [68]. Since all we need to prove the main results of this paper are existence of
sign ∗ and not its explicit formula we do not try to calculate it. We do not repeat this remark
in several other places.

Proposition 5.51. n<E0,ε
k1,k12,k2

defines a filtered A∞ tri-module modulo TE0. Namely, it satisfies
the congruence

0 ≡
∑

c1,c12,c2

(−1)∗1n<E0,ε
(
xc1;1,yc12;1, n

<E0,ε(xc1;2,yc12;2, w, zc2;1), zc2;2
)

+ (−1)∗2n<E0,ε
(
d̂x,y, w, z

)
+ (−1)∗3n<E0,ε

(
x, d̂y, w, z

)
+ (−1)∗4n<E0,ε

(
x,y, w, d̂z

)
+ (−1)∗5δn<E0,ε(x,y, w, z)

+ (−1)∗6n<E0,ε(x,y, δw, z) mod TE0 . (5.19)

This filtered A∞ tri-module modulo TE0 is unital.

The notations in (5.19) is as follows. We define xc1;1, xc1;2 by ∆(x) =
∑

c1
xc1;1 ⊗ xc1;2.

Here c1 runs over a certain index set depending on x. The definitions of yc12;1, yc12;1, zc2;1, zc2;2
are similar. The symbol d̂ in the second (resp. third, fourth) term of (5.19) is the derivation

5.5We remark that δ is the boundary operator of D. The case k1, k2, k12 = 0, E ̸= 0, the map nE,ε
0,0,0

may be nonzero and is a deformation of the boundary operator of D obtained by using moduli spaces
M(∅,∅,∅; a−, a+;E).
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induced on BCF [1](L1) (resp. BCF [1](L12), BCF [1](L2)) by its filtered A∞ structure mod-
ulo TE0 . δ is the operator induced from the de Rham differential in the same way as (3.33).
We omit the indices ki etc. of the operator n since they are automatically determined by the
variables plugged in. The signs ∗i, i = 1, . . . , 6, are determined by Koszul rule. We explain
Koszul rule in detail in Section 17.1

Proof. The proof is a routine using Theorem 5.43, Proposition 5.48, Stokes’ formula and the
composition formula and proceeds as follows.

By Stokes’ formula (see [46, Theorem 8.11]), we have

(−1)∗5δn<E,ε(x,y, w, z) + (−1)∗7n<E,ε(δ(x,y, w, z))
=
∑
E<E0

TEev∞,+!
(
ev∗1,1x1 ∧ · · · ∧ ev∗1,k1xk1 ∧ ev∗12,1y1 ∧ · · · ∧ ev∗12,k12yk12 ∧ w

∧ ev∗2,1z1 ∧ · · · ∧ ev∗2,k2zk2 :
(
∂MQT(⃗a1, a⃗12, a⃗2; a−, a+;E),”Sε

))
. (5.20)

We include the symbol ∂MQT(⃗a1, a⃗12, a⃗2; a−, a+;E) in the right-hand side to clarify the fact that
we use this space to define the integration along the fiber. (We usedMQT(⃗a1, a⃗12, a⃗2; a−, a+;E)
in (5.18).) There is actually a sign in the right-hand side of (5.20). We will explain it in
Section 17.2.

By Theorem 5.43 and (5.15), the normalized boundary ∂MQT(⃗a1, a⃗12, a⃗2; a−, a+;E) is the
union of the following four types of fiber products.

The first type is

MQT(⃗a1,0, a⃗12,0, a⃗2,0; a−, a;E1)×R(a)MQT(⃗a1,1, a⃗12,1, a⃗2,1; a, a+;E2), (5.21)

where a⃗1,0 ⊔ a⃗1,1 = a⃗1, a⃗12,0 ⊔ a⃗12,1 = a⃗12, a⃗2,0 ⊔ a⃗2,1 = a⃗2, E1 + E2 = E. See Figure 5.6.

R(a)

Figure 5.6. Fiber product (5.21). Figure 5.7. Fiber product (5.22).

The second type is

M(L1; a⃗
′′
1;E2)×ev0MQT(⃗a

′
1, a⃗12, a⃗2; a−, a+;E1). (5.22)

Here a⃗′1 = (a1,1, . . . , a1,i−1, b, a1,j+1, . . . , a1,k1), a⃗
′′
1 = (b, a1,i, . . . , a1,j) for some 1 ≤ i ≤ j ≤ k1

and b ∈ AL1 . See Figure 5.7.
The third type is

M′(L12; a⃗
′′
12;E2)×ev0MQT(⃗a1, a⃗

′
12, a⃗2; a−, a+;E1). (5.23)

Here a⃗′12 = (a12,1, . . . , a12,i−1, b, a12,j+1, . . . , ak12), a⃗
′′
12 = (b, a12,i, . . . , a12,j) for some 1 ≤ i ≤ j ≤

k12 and b ∈ AL12 . See Figure 5.8.
The fourth type is

M(L1; a⃗
′′
2;E2)×ev0MQT(⃗a1, a⃗12, a⃗

′
2; a−, a+;E1). (5.24)
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Figure 5.8. Fiber product (5.23). Figure 5.9. Fiber product (5.24).

Here a⃗′2 = (a2,1, . . . , a2,i−1, b, a2,j+1, . . . , a2,k2), a⃗
′′
2 = (b, a2,i, . . . , a2,j) for some 1 ≤ i ≤ j ≤ k2

and b ∈ AL2 . See Figure 5.9.

By the composition formula [46, Theorem 10.21], the integration along the fiber appearing
in (5.20) on the spaces (5.21) (resp. (5.22), (5.23), (5.24)) becomes the formula∑

c1,c12,c2

(−1)∗1n<E0,ε(xc1;1,yc12;1, n
<E0,ε(xc1;2,yc12;2, w, zc2;1), zc2;2),

(
resp. the formula (−1)∗2n<E0,ε

(
d̂x,y, w, z

)
, the formula (−1)∗3n<E0,ε

(
x, d̂y, w, z

)
, and the for-

mula (−1)∗4n<E0,ε
(
x,y, w, d̂z

))
. This implies (5.19). ■

Thus we defined a filtered A∞ tri-module modulo TE0 . The rest of the proof of Theorem 5.25
is the same as the last step of the proof of Theorem 3.14. We first define the notion of a pseudo-
isotopy of A∞ tri-modules modulo TE0 in a similar way as Definition 3.36 (see Section 14.4.1).
We next show that for E < E′ the A∞ tri-modulo modulo TE

′
we constructed in Proposition 5.51

regarded as A∞ tri-module modulo TE is pseudo-isotopic to the A∞ tri-module modulo TE we
constructed in Proposition 5.51. We then prove a similar algebraic lemma as Lemma 3.57. Us-
ing it, we complete the proof of Theorem 5.25 in the same way as the last step of the proof of
Theorem 3.14. Since this argument is now a routine, we omit the detail. ■

6 Unobstructedness is preserved by an unobstructed
Lagrangian correspondence

In this section, we prove Theorem 1.5.

Situation 6.1. Suppose we are in Situation 5.24. Moreover, we assume that, for L1 ∈ L1 and
L12 ∈ L12, L1 has clean transformation by L12. Let (L1, σ1) ∈ L1 and (L12, σ12) ∈ L12. We
consider the geometric transformation (L2, σ2) = L1 ×X1 L12 as in Definition 4.3, where the
relative spin structure σ2 is given later in Definition 6.8. We assume (L2, σ2) is contained in L2.

Situation 6.2. In Situation 6.1, we consider the filtered A∞ tri-module C F (L1,L12;L2) in
Theorem 5.25. We assume that (L1, σ1) ∈ L1 and (L12, σ12) ∈ L12 are unobstructed and take
their bounding cochains b1 ∈ CF (L1), b12 ∈ CF (L12).

The main result of this section is as follows.

Theorem 6.3. In Situation 6.2, we can choose a relative spin structure σ2 such that (L2, σ2)
is unobstructed. Moreover, there exists a canonical choice of the gauge equivalence class of the
bounding cochain b2. The gauge equivalence class of b2 depends only on those of b1 and b12.

As we mentioned in Remark 1.6 (3), the bounding cochain b2 had been conjectured to be
defined as the virtual fundamental chain of a certain moduli space (the moduli space of Figure 8
bubbles). The author was trying to understand how we can use such a bounding cochain to
generalize the argument by Lekili–Lipyanskiy beyond the monotone case using the Y -diagram.
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Then he found that for this purpose we need an equality that a certain element of the de
Rham complex of a Lagrangian submanifold becomes a cycle with respect to the deformed Floer
boundary operator via b1, b12, b2. The equality needed is (6.2). In fact, the homomorphism (7.7)
becomes a cochain map because of (6.2). As we will explain in Section 18.2, the heuristic
argument shows that the bounding cochain obtained as the virtual fundamental chain of the
moduli space of Figure 8 bubbles, after an appropriate gauge transformation, satisfies (6.2). The
author then found that the equality (6.2) is strong enough to characterize b2 (for given b1, b12)
and also (6.2) implies that b2 is actually a bounding cochain. Moreover, as we will see in
Proposition 6.6, we can solve (6.2) uniquely. Thus we can use the algebraic equation (6.2) in
place of studying the moduli spaces, to obtain the required bounding cochain.

Thus replacing the study of difficult moduli spaces by a simple algebraic lemma (see Propo-
sition 6.6) is the key new idea of this paper.

6.1 Right filtered A∞ modules and cyclic elements

The main idea of the proof of Theorem 6.3 is the same as [30, Section 3] and is based on [30,
Proposition 3.5]. We repeat the argument here for the completeness sake and also here we work
over R, while in [30] we worked over Z2.

Definition 6.4. Let (C, {mk}) be a non-unital curved and filtered A∞ algebra.

(1) A filtered right A∞ module over (C, {mk}) is a left Λ0 and right (C, {mk}) filtered A∞
bi-module in the sense of Definition 5.10.

(2) We say a filtered right A∞ module is G-gapped if its structure operations are all G-gapped.

More explicitly, a right filtered A∞ module over (C, {mk}) is (D, {nk | k = 0, 1, 2, . . . }), where
(1) D is a completed free Λ0 module.

(2) The operation nk is a Λ0 moduli homomorphism

nk : D[1]“⊗Λ0 C[1]
⊗k → D[1]

of degree 1 which preserves filtration in the same sense as Definition 2.2 (2).6.1

(3) The following holds for any k, y ∈ D, x1, . . . , xk ∈ C:

0 =
∑

k1+k2=k

nk1(nk2(y;x1, . . . , xk2);xk2+1, . . . , xk)

+
∑

k1+k2=k+1

k2∑
i=0

(−1)∗nk1(y; . . . ,mk1(xi+1, . . . , xi+k1), . . . , xk), (6.1)

where ∗ = deg′ y +
∑i−1

j=1 deg
′ xj .

Definition 6.5. Let (C, {mk}) be a G-gapped filtered A∞ algebra and (D, {nk}) a G-gapped
right filtered A∞ module over (C, {mk}). We say an element 1 ∈ D of degree 0 a cyclic element6.2

if the following holds:

(1) The map C → D which sends x to n1(1;x) is a ΛR0 module isomorphism C → D.6.3

(2) n0(1) ≡ 0 mod ΛR+.
6.1Here we shift the degree of elements of bi-module.
6.2The word cyclic element seems to be a standard one for an object satisfying a condition such as (1). We remark

that the notion of cyclic element has no relation to the cyclic symmetry of the filtered A∞ algebra associated to
a Lagrangian submanifold.

6.3Since deg′ 1 = −1, deg′ x = deg′ n1(1;x).
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Proposition 6.6. Let (C, {mk}) be a G-gapped filtered A∞ algebra and (D, {nk}) a G-gapped
right filtered A∞ module over (C, {mk}). Suppose 1 ∈ D is a cyclic element, which is G-gapped.
Then there exists a unique G-gapped bounding cochain b of (C, {mk}) such that

nb0(1) = 0, (6.2)

where we defined nb0 by

nb0(y) =
∞∑
k=0

nk(y; b, . . . , b). (6.3)

Proof. We first prove the uniqueness. Let G = {λi | i = 0, 1, 2, . . . }, where 0 = λ0 < λ1 <
λ2 < · · · . We put

1 =
∞∑
i=0

T λi1i, b =
∞∑
i=1

T λibi, mk =
∞∑
i=0

T λimk,i, nk =
∞∑
i=0

T λink,i

according to the definition of G-gappedness. (Note that the coefficient of T λ0 (λ0 = 0) of b is 0
since b ∈ C ⊗ Λ+,G.)

We calculate the coefficient of T λn of the equation (6.2) and obtain

n1,0(10; bn) +
∑

nk,m(1n0 ; bn1 , . . . , bnk
) = 0. (6.4)

Here the second term is the sum over all k, m, n0, n1, . . . , nk such that

λn = λm + λn0 +
k∑
i=1

λni (6.5)

except the case k = 1, m = 0, n0 = 0, n1 = n. (The case which we exclude here corresponds
to the first term.) Note that if k, m, n0, n1, . . . , nk satisfy (6.5) then ni ≤ n for i = 0, . . . , k.
Moreover, ni < n unless k = 1, m = 0, n0 = 0, n1 = n. Therefore, we can solve (6.4) and
obtain bn uniquely by induction on n. (Here we use Definition 6.5 (1).) Thus we proved that
there exists a unique G-gapped element b ∈ C ⊗ΛR

0
ΛR+ satisfying (6.2). It remains to prove that

this element b satisfies the Maurer–Cartan equation (2.9). We will prove

∞∑
k=0

mk(b, . . . , b) ≡ 0 mod T λc (6.6)

by induction on c ∈ Z+. We assume (6.6) for c ≤ n− 1 and will prove the case c = n below.
We remark that the assumption implies that we have n0,0 ◦ n0,0 = 0. Using (6.1) and Defini-

tion 6.5 (2), we have n0(n1,0(10;x))− n1,0(10;m1,0(x)) = 0 for x ∈ C.
We next consider n0(n1,0(10; bn)). Using (6.4), we find

n0(n1,0(10; bn)) = −
∑

n0(nk,m(1n0 ; bn1 , . . . , bnk
)).

We calculate the right-hand side using (6.1) to obtain∑
nk1,m1(nk2,m2(1n0 ; bn1 , . . . , bnk2

), . . . , bnk
)

−
∑

nk1,m1(1n0 ; bn1 , . . . ,mk2,m2(bni+1 , . . . , bni+k2
), . . . , bnk

)

−
∑

nk,m(1n0 ; bn1 , . . . ,m1,0(bnj ), . . . , bnk
). (6.7)
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Here the sum in the first line is taken over k1, k2, m1, m2, n0, . . . , nk such that k1 + k2 = k and
λn = λm1 + λm2 + λn0 +

∑k
i=1 λni , except k1 = 0, m1 = 0.

The sum in the second line is taken over k1, k2, m1, m2, n0, . . . , nk such that k1 + k2 = k+1
and λn = λm1 + λm2 + λn0 +

∑k
i=1 λni , except m2 = 0, k2 = 1. (The excluded case corresponds

to the third line.)
The sum in the third line is taken over k, m, j, n0, . . . , nk such that j = 1, . . . , k and

λn = λm + λn0 +
∑k

i=1 λni , except n0 = 0, k = 1, m = 0. We exclude this case since it is
excluded in the second term of (6.4).

Note that the first line of (6.7) vanishes because of the equality (6.2).
By using the induction hypothesis (6.6) for c ≤ n− 1, the sum of the second and third lines

cancel each other except the sum

−
∑

n0,1(10;mk,m(bn1 , . . . , bnk
)),

which is taken over k,m, n1, . . . , nk such that λn = λm +
∑k

i=1 λni . (In fact, this sum could be
canceled with n0,1(10;m0,1(bn)). However, this is the case excluded in the third line.)

Thus we have

n1,0(10;m1,0(bn)) = n1,0(n1,0(10; bn)) = −
∑

n0,1(10;mk,m(bn1 , . . . , bnk
)).

Using Definition 6.5 (1), it implies

m1,0(bn) +
∑

mk,m(bn1 , . . . , bnk
) = 0.

It implies (6.6) for c = n. The proof of Proposition 6.6 is now complete. ■

6.2 A geometric realization of a cyclic element

In this section, we use Proposition 6.6 to prove the existence part of Theorem 6.3.
Suppose we are in Situation 6.1. By definition (see (5.17)),

CF ((L1, σ1), (L12, σ12), (L2, σ2)) ∼= Ω
((
L̃1 × L̃2

)
×X1×X2 L̃12; Θ

−)“⊗Λ0. (6.8)

Lemma 6.7. There exists a unique relative spin structure σ2 such that principal O(1) bundle Θ−

in (6.8) is trivial on L̃2.

Proof. We have(
L̃1 × L̃2

)
×X1×X2 L̃12

∼=
(
L̃1 ×X1 L̃12

)
×X2 L̃2 = L̃2 ×X2 L̃2

(see Lemma 4.6). Therefore, the lemma follows from Lemmas 3.11 and 4.4. ■

Definition 6.8. Let σ2 be as in Lemma 6.7. We call (L2, σ2) the geometric transformation
of (L1, σ1) by (L12, σ12).

Definition 6.9. In the situation of Definition 6.8, let b1 (resp. b12) be a bounding cochain
of CF (L1, σ1) (resp. CF (L12, σ12)). We define

nb1,b12k : CF [1](L1;L12;L2)⊗ CF [1](L2, σ2)
⊗k → CF [1](L1;L12;L2)

by

nb1,b12k (y;x1, . . . , xk) =

∞∑
k1=0

∞∑
k12=0

nk1,k12,k(b1, . . . , b1; b12, . . . , b12; y;x1, . . . , xk).

The operation n in the right-hand is defined by Theorem 5.25.
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Now we have the following.

Lemma 6.10. In the situation of Definition 6.9, the operations nb1,b12k , k = 0, 1, 2, . . . , define
a structure of right filtered A∞ module on CF (L1;L12;L2) over CF (L2, σ2).

The proof is a straightforward calculation and so is omitted.
In the simplest case k = 0, Lemma 6.10 becomes

nb1,b120

(
nb1,b120 (h)

)
+ nb1,b121 (h;m0(1)) = 0. (6.9)

In a geometric language, its proof is roughly as follows. We assume for simplicity that all the
switching components of L2 are zero-dimensional. Let (pi, qi, ri) ∈ L1 ×X1 L12 ×L2 L2 be in the
switching component R(ai) for i = 1, 2. We consider the case h = [p1, q1, r1] and study〈

nb1,b120

(
nb1,b120 ([p1, q1, r1])

)
, [p2, q2, r2]⟩.

〉
As usual in various Floer theories, we consider the one-dimensional moduli spaceM(a1, a2;E).
Its boundary contains the union of M(a1, a;E1) × M(a, a2;E2) for various a and E1, E2

with E1+E2 = E. The count of such boundary becomes ⟨n0(n0([p1, q1, r1])), [p2, q2, r2]⟩. (Here n0
is the boundary operator and we do not include bounding cochains b1, b12.) As usual in the
Lagrangian Floer theory, the one-dimensional moduli spaceM(a1, a2;E) has other boundaries,
which corresponds to various disk bubbles. There are three kinds of disk bubbles, that are those
on L1, L12, L2. By including bounding cochains b1 and b12, the effect of disk bubbles on L1, L12

are cancelled. Therefore, only the disk bubble at L2 remains. It gives the term nb1,b121 (h;m0(1)).
Thus (6.9) follows. Using the algebraic formalism, we have developed so far we can convert this
geometric argument to algebraic ones, which is the calculation to prove Lemma 6.10.

Remark 6.11. In Lemma 6.10, we do not need to assume that (L2, σ2) is a geometric transform
of (L1, σ1) by (L12, σ12).

Proposition 6.12. Let (L2, σ2) be the geometric transformation of (L1, σ1) by (L12, σ12). Then
we can choose our tri-module structure so that

1 ∈ Ω0
((
L̃1 × L̃2

)
×X1×X2 L̃12;R

)
⊂ CF ((L1, σ), (L12, σ12), (L2, σ2))

is a cyclic element of
(
CF ((L1, σ), (L12, σ12), (L2, σ2)),

{
nb1,b12k

})
.

Here 1 is the zero form (function) 1 on the diagonal component L̃2 ⊂
(
L̃1 ×X1 L̃12

)
×X2 L̃2.

Proof. Definition 6.5 (2) is the consequence of the fact that d1 = 0 and nb1,b120 ≡ ±d mod T ε.
We remark that nb1,b121 ≡ n0,0,1 mod T ε. We also remark that modulo T ε, n0,0,1 is defined as

the smooth correspondence via the moduli spaceM(∅,∅, a; o, b; 0) of energy zero. Namely,

n0,0,1(h) ≡ ev∞,+!
(
ev∗∞,−(h);

”Sε;M(∅,∅, a; o, b; 0)
)

mod T ε. (6.10)

The notations are as follows. In the notationM(∅,∅, a; o, b; 0), the symbol ∅ in the first compo-
nent (resp. second component) indicates that we do not put marked points on the line Re z = −1
(resp. Re z = 0). The symbol a in the third component means that we put one marked point
on Re z = 1 and require that this point goes to L(a) in the sense of Condition 5.28. The sym-
bol o in the fourth component means that we use the diagonal component L̃2 for the boundary
condition (switching condition 2, Condition 5.29) when Im z → −∞. The symbol b in the fourth
component means that we use the component L2(b) for the boundary condition (switching con-
dition 2, Condition 5.29) when Im z → +∞. The symbol 0 in the fifth component means that
we consider the pseudo-holomorphic curve with 0 energy. (It is nothing but a constant map.)
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In (6.10), the maps ev∞,+ and ev∞,− are evaluation maps defined onM(∅,∅, a; o, b; 0) as in
Definition 5.41. We pull back the differential form h on L̃2 by ev∞,− and obtain a differential
form on M(∅,∅, a; o, b; 0), a space with Kuranishi structure (see [46, Definition 7.7.1]). The

symbol ”Sε denotes the CF-perturbation defined onM(∅,∅, a; o, b; 0) by Proposition 5.48. We
use it to define the integration along the fiber ev∞,+! via the strongly submersive map ev∞,+.
See Figure 6.1.

x

L
2
= L

2
(o)

L
2
(b)

L
2
(a)

constant maps

Figure 6.1. An element ofM(∅,∅, a; o, b; 0).
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Figure 6.2. An element ofM(∅,∅, a; o, a; 0), a ̸= o.

Lemma 6.13. M(∅,∅, a; o, b; 0) is an empty set if a ̸= b. If a = b the spaceM(∅,∅, a; o, b; 0)
is diffeomorphic to L2(a) and evaluation map ev2 is a diffeomorphism. Moreover, the moduli
spaceM(∅,∅, a; o, b; 0) is transversal.

Proof. Since M(∅,∅, a; o, b; 0) consists of constant maps, the lemma is obvious except the
statement about transversality. See Figure 6.2 in the case when a = b is not diagonal component.

We show thatM(∅,∅, a; o, a; 0) is transversal. We remark that this moduli space is identified
with a connected component of the moduli space of pseudo-holomorphic strip between L̃1 × L̃2

and L̃12. Using the assumption that L̃1× L̃2 is of clean intersection with L̃12, it is standard that
this moduli space is transversal. (In fact, the moduli space of pseudo-holomorphic strips with 0
energy which bounds L and L′ is transversal if L and L′ are of clean intersection.) ■

Definition 6.5 (1) is an immediate consequence of Lemma 6.13. The proof of Proposition 6.12
is complete. ■

Theorem 6.3 follows immediately from Propositions 6.13 and 6.6.

Definition 6.14. In the situation of Theorem 6.3, we call (L2, σ2, b2) the geometric transfor-
mation of (L1, σ1, b1) by (L12, σ12, b12).

6.3 Well-definedness of bounding cochains up to gauge equivalence

In this subsection, we prove that when we change the bounding cochains b1, b12 by gauge equiv-
alences the bounding cochain b2 in Definition 6.14 changes by a gauge equivalence. Here we
discuss only an algebraic part. Namely, we fix the tri-module in Theorem 5.25. The indepen-
dence of b2 of the construction of the tri-module in Theorem 5.25 will be proved in Section 14,
Theorem 14.6. The statement we prove is the next proposition.

Situation 6.15. Let C1, C12, C2 be curved filtered A∞ algebras and Let (D, n) be a left C1,
C12 and right C2 tri-module. Let 1 ∈ D be an element such that
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(1) The map C2 → D which sends x to n1(1;x) is an ΛR0 module isomorphism C2 → D.

(2) n0(1) ≡ 0 mod ΛR+.

A pair of bounding cochains b1 and b12 of C1, C12 defines a right filtered A∞ module structure
on D over C2 by the next formula:

nb1,b12(y;x1, . . . , xk) =
∑
k1,k12

nk1,k12,k
(
bk11 , b

k12
12 ; y;x1, . . . , xk

)
. (6.11)

1 is its cyclic element. Therefore, by Proposition 6.6 there exists a unique bounding cochain b2
such that∑

k

nb1,b12
(
1; bk2

)
= 0.

We write b2 = B(b1, b12).

Proposition 6.16. If b1, b12 are gauge equivalent to b′1, b
′
12, then B(b1, b12) is gauge equivalent

to B(b′1, b
′
12).

Proof. We recall the definition of gauge equivalence in [34, Section 4.3]. For a completed free Λ0

module C, we define Poly([0, 1], C) to be the set of all formal sums

∞∑
i=1

xi(s)T
λi +

( ∞∑
i=1

yi(s)T
λi

)
ds, (6.12)

where xi, yi are polynomials (with variable s) with coefficients in C and λi ∈ R≥0 with
limi→∞ λi = +∞. s and ds are formal variables.

For s0 ∈ R, we define Ev(s0 : Poly([0, 1], C)→ C by sending the element (6.12) to∑
i

xi(s0)T
λi ∈ C.

In [34, Definition 4.2.9], we defined filtered A∞ structures on the modules Poly([0, 1], C1),
Poly([0, 1], C12), Poly([0, 1], C2).

During the proof of [34, Theorem 5.2.3], it is proved that if D is a filtered A∞ bi-module
over C1, C2 then Poly([0, 1], D) is a filtered A∞ bi-module over Poly([0, 1], C1), Poly([0, 1], C2).
We can prove the same statement for tri-module in the same way. Thus in our situation,
Poly([0, 1], D) is a filtered A∞ tri-module over Poly([0, 1], C1), Poly([0, 1], C12), Poly([0, 1], C2).

Moreover, Evs0 defines a filtered A∞ algebra homomorphism or a filtered A∞ tri-module
homomorphism.

The cyclic element 1 ∈ D may be regarded as an element of Poly([0, 1], D).
By assumption that b1 (resp. b12) is gauge equivalent to b

′
1 (resp. b

′
12), there exists a bounding

cochain b1 (resp. b12) of Poly([0, 1], C1) (resp. Poly([0, 1], C12)) such that

Ev0(b1) = b1, Ev1(b1) = b′1, Ev0(b12) = b12, Ev1(b12) = b′12.

Using b1 and b12 in the same way as (6.11), we can define a structure of right filtered A∞
module

{
nb1,b12k

}
on Poly([0, 1], D) over Poly([0, 1], C2).

It is easy to see that 1 ∈ Poly([0, 1], D) is a cyclic element of
{
nb1,b12k

}
. Therefore, by

Proposition 6.6 there exists a bounding cochain b2 of Poly([0, 1], C2) such that∑
k

nb1,b12k

(
1; bk2

)
= 0.
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It follows that∑
k

nb1,b12k

(
1; Ev0(b2)

k
)
= 0.

Therefore, the uniqueness part of Proposition 6.6 implies Ev0(b2) = b2. In the same way, we
can show Ev1(b2) = b′2. Thus b2 is gauge equivalent to b′2 as required. ■

7 Representability of correspondence functor

7.1 Statement

Suppose we are in Situation 6.1. We consider the correspondence tri-module C F (L1,L12;L2)
which is a left Fuk(X1, V1,L1)×Fuk(−X1×X2, π

∗
1(V1⊕TX1)⊕π∗2V2,L12) and right Fuk(X2, V2,L2)

tri-module and which we obtained in Theorem 5.25.

Notation 7.1. Here and hereafter, we denote

Fuk(−X1 ×X2) = Fuk((X1,−ω1)× (X2, ω2), π
∗
1(V1 ⊕ TX1)⊕ π∗2(V2),L12)

and Fuk(X1) = Fuk((X1, ω1), V1,L1), Fuk(X2) = Fuk((X2, ω2), V2,L2), for simplicity of nota-
tions. We also denote by Fukst(−X1 ×X2), Fukst(X1), Fukst(X2), their associated strict cate-
gories (see Definition 2.5 (8)).

By the tri-module analogue of Lemma 5.19, the tri-module C F (L1,L12;L2) induces a left-
Fukst(X1), Fukst(−X1 ×X2) and right-Fukst(X2) filtered A∞ tri-module C F s(L1,L12;L2).

It can be regarded as a tri-functor

Fukst(X1)
op × Fukst(−X1 ×X2)

op × Fukst(X2)→ CH.

By taking opposite functor and using Definition 5.14 and Lemma 5.22, we obtain7.1◊�MWW : Fukst(−X1 ×X2)→ FUNC(Fukst(X1),FUNC(Fukst(X2)
op, CHop)). (7.1)

Definition 7.2. Let

(L12, b12, σ12) = L12 ∈ OB(Fukst(X12)), (L1, b1, σ1) = L1 ∈ OB(Fukst(X1)).

By (7.1), we obtain a strict and unital filtered A∞ functor: Fukst(X2)
op → CHop. We de-

note this functor by ŴL12(L1), where W stands for Wehrheim–Woodward. We call ŴL12 the
correspondence functor associated to L12.

Let L2 = (L2, σ2, b2) ∈ OB(Fukst(X2)) be the geometric transformation of L1 by L12 in the
sense of Definition 6.14.

We defined

OpYonop : Fukst(X2)→ FUNC(Fukst(X2)
op, CHop) (7.2)

in Section 2.5. The main result of this section is the following.

Theorem 7.3. L2 represents ŴL12(L1) up to homotopy equivalence.

7.1MWW stands for Ma’u–Wehrheim–Woodward. As we mentioned in the introduction, Ma’u–Wehrheim–
Woodward proved Corollary 7.4 in the case all the Lagrangian submanifolds involved are embedded and monotone.
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We will prove Theorem 7.3 in the next subsection. Corollary 7.4 below says that for each
pair (L12, b12) of a Lagrangian submanifold of −X1 × X2 and its bounding cochain, we can
associate a filtered A∞ functor Fukst(X1)→ Fukst(X2) in a canonical way.

Corollary 7.4. There exists a strict and unital filtered A∞ functor

MWW : Fukst(−X1 ×X2)→ FUNC(Fukst(X1),Fukst(X2)) (7.3)

such that its composition with

OpYonop∗ : FUNC(Fukst(X1),Fukst(X2))

→ FUNC(Fukst(X1),FUNC(Fukst(X2)
op, CHop))

is homotopy equivalent to the functor ◊�MWW in (7.1). Here OpYonop∗ is induced by the functor
OpYonop in ((7.2)).

Proof. A∞-Yoneda lemma (see Theorem 2.44) implies that there exists a homotopy inverse

(OpYonop)−1 : Rep(Fukst(X2)
op, CHop)→ Fukst(X2)

to the Yoneda functor Yon. (Here Rep denotes the full subcategory consisting of objects which
are homotopy equivalent to one in the image of Yoneda functor. See Definition 2.42.)7.2 It
induces((

OpYonop
)−1)

∗ : FUNC(Fukst(X1),Rep(Fukst(X2)
op, CHop))

→ FUNC(Fukst(X1),Fukst(X2)).

On the other hand, Theorem 7.3 implies that the filtered A∞ functors ◊�MWW factor through

Fukst(−X1 ×X2)→ Rep(Fukst(X1),Fukst(X2))). (7.4)

We compose (7.4) with
(
(OpYonop)−1

)
∗ to obtain required filtered A∞ functorMWW. ■

Definition 7.5. We call the filtered A∞ functor MWW in Corollary 7.4 the correspondence
bi-functor, when we regard it as a bi-functor

Fukst(−X1 ×X2)× Fukst(X1)→ Fukst(X2).

For a given unobstructed Lagrangian correspondence L12, the correspondence bi-functor in-
duces a filtered A∞ functorWL12 : Fukst(X1)→ Fukst(X2). We call it the correspondence functor
associated to the unobstructed immersed Lagrangian correspondence L12.

7.2 Proof

In this subsection, we prove Theorem 7.3.

Proof. To prove Theorem 7.3, it suffices to show the next proposition.

Proposition 7.6. There exists a natural transformation T from OpYonopob(L2) to ŴL12(L1)
which has a homotopy inverse.

7.2The filtered A∞ category, functor, tri-module etc. which are defined by using the moduli space of pseudo-
holomorphic curves are always gapped because of Gromov compactness.
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Proof. We remark

FUNC(Fukst(X2)
op, CHop) ∼= FUNC(Fukst(X2), CH)op.

We regard OpYonopob(L2) and ŴL12(L1) the objects of the right-hand side.
Let c, c0, . . . , ck be objects of Fukst(X2). We recall that the functor OpYonob(L2) for objects

is defined by c 7→ CF (L2, c). The morphisms part of OpYonopob(L2) is a map

CF (L2, c0)⊗BkFukst(X2)[1](c0, ck)→ CF (L2, ck)

defined by

z ⊗ (y1, . . . , yk) 7→ m(z, y1, . . . , yk) ∈ CF (L2, ck).

Here z ∈ CF (L2, c0), yi ∈ CF (ci−1, ci), and m is the structure operation of the filtered A∞
category Fukst(X2). (We remark that m already includes the deformation by the bounding
cochain.) The Bar complex Bk . . . of an A∞ category is defined in (2.3).

On the other hand, the object part of ŴL12(L1) is c 7→ CF (L1, L12; c). Here, when the
Lagrangian submanifold which is a part of the data in c is L′2, then we put

CF (L1, L12; c) := CF (L1, L12;L
′
2),

where the right-hand side is defined in Definition 5.49 (1).
The morphism part of ŴL12(L1) is a map

CF (L1, L12; c0)⊗BkFukst(X2)[1](c0, ck)→ CF (L1, L12; ck)

and is defined by

w ⊗ (y1, . . . , yk) 7→ n(w; y1, . . . , yk) ∈ CF (L1, L12; ck). (7.5)

Here w ∈ CF (L1, L12; c0), yi ∈ CF (ci−1, ci), and n is a filtered A∞ right module structure
on CF (L1, L2; ck).

7.3 Note that using the notation nb1,b12 appearing in Lemma 6.10, n is de-
fined by

n(w; y1, . . . , yk) = nb1,b12
(
w; eb2,0y1e

b2,1 · · · eb2,k−1yke
b2,k
)
, (7.6)

where b2,i are bounding cochains for i = 1, 2. Here we denote an object ci as a pair (L2,i, b2,i)
of L2,i ∈ L2 and its bounding cochain and b2,i. Thus b2,i is a bounding cochain which is a part
of data consisting ci. The symbol eb is defined by

eb =

∞∑
k=0

b⊗ · · · ⊗ b︸ ︷︷ ︸
k times

.

The operation (7.5) is a map

CF (L1, L12; c0)⊗BkFukst(X2)[1](c0, ck)→ CF (L1, L12; ck).

See Figure 7.1.
Now the object part Tob(c) : CF (L1, L12; c)→ CF (L2, c) of T is defined by

Tob(c)(z) = n(1; z), (7.7)

where n is as in (7.6) and 1 ∈ CF (L1, L12;L2) is the cyclic element in Proposition 6.12.
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Figure 7.1. n(w; y1, . . . , yk).
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Figure 7.2. Tk(c0, ck)(z; y1, . . . , yk).

The morphism part

Tk(c0, ck) : CF (L1, L12; c0)⊗BkFukst[1](X2)(c0, ck)→ CF (L2, ck)

is defined by

Tk(c)(z; y1, . . . , yk) = n(1; z, y1, . . . , yk). (7.8)

See Figure 7.2.

Lemma 7.7. The maps T is a natural transformation. (Namely, its boundary in the functor
category is 0.) In other words, it is a filtered right A∞ module homomorphism.

Proof. (6.2) implies that (7.8) is a chain map. Then the lemma follows from A∞ formula of n.
(See (5.4). The element x there is empty here (that is, 1 ∈ B0CF (L1, L1)).) ■

Lemma 7.8. Tob(c) : CF (L1, L12; c)→ CF (L2, c) is an isomorphism of Λ0 modules.

Proof. Since 1 is cyclic, the definition implies that Tob(c) mod Λ+ is an isomorphism. The
lemma then follows easily. ■

Now Proposition 7.2 follows from the next Lemma 7.9. ■

Lemma 7.9. Let C1, C2 be unital and strict filtered A∞ categories and F , G unital and strict
filtered A∞ functors from C1 to C2. Let T be a natural transformation from F to G . We
assume that, for each object c of C1, Tc ∈ C2(F (c),G (c)) is a homotopy equivalence. Then T is
a homotopy equivalence in the functor category. (See Definition 2.24.)

This lemma seems to be well-known. For the sake of completeness, we will prove it below.

Proof. For simplicity of sign, we consider the case when the degree of T is 0. (We use only
such cases.) We use the notation of Proposition 7.9. We will construct natural transformations
S : G → F of degree 0 and H : F → F of degree −1 such that M1(H) = M2(S, T ) − IDF ,

7.3We remark that we take an opposite functor while defining ◊�MWW.
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where IDF : F → F is the identity natural transformation. (HereMk is the structure operation
of the functor category.)

We use the induction on the number filtration and will construct

Sk : BkC1[1](c, c
′)→ C2(G0(c),F (c′)), Hk : BkC1[1](c, c

′)→ C2(F0(c),F (c′))

by induction on k so that they satisfy the following conditions (7.9), (7.10) and (7.11). Suppose Si
is defined for i ≤ k and Hi is defined for i ≤ k. We define

Ŝ(k) : BC1[1](c, c
′)→ BC2[1](G0(c),F (c′)),“H(k) : BC1[1](c, c
′)→ BC2[1](F0(c),F (c′))

by

Ŝ(k)(x) =
∑
c

“G (xc;1)⊗ S≤k(xc;2)⊗ F̂ (xc;3),“H(k)(x) =
∑
c

(−1)deg′ xc;1F̂ (xc;1)⊗H≤k(xc;2)⊗ F̂ (xc;3),

where ((∆⊗id)◦∆)(x) =
∑

c xc;1⊗xc;2⊗xc;3. Here we define S≤k such that it is Si on BiC1(c, c
′)

with i ≤ k and is zero otherwise. H≤k is defined in a similar way.
We require

m
(
Ŝ≤k(x)

)
− Ŝ≤k

(
d̂x
)
= 0 for x ∈ BiC1[1](c, c

′) with i ≤ k. (7.9)

We also require∑
c

m
(
F̂ (xc;1)⊗ T≤k(xc;2)⊗ “G (xc;3)⊗ S≤k(xc;4)⊗ F̂ (xc;5)

)
= m

(“H≤k(x))+ “H≤k(d̂x) (7.10)

for x ∈ BiC1(c, c
′) with 0 < i ≤ k. Here

((∆⊗ id⊗ id⊗ id) ◦ (∆⊗ id⊗ id) ◦ (∆⊗ id) ◦∆)(x)

=
∑
c

xc;1 ⊗ xc;2 ⊗ xc;3 ⊗ xc;4 ⊗ xc;5.

Moreover, we require

m2(T0(c)⊗ S≤0(c)) = eFob(c),Fob(c) +m1(H0(c)). (7.11)

Let us start the construction of Sk and Hk by induction. We first consider the case k = 0.
By assumption, T0(c) ∈ C2(F (c),G (c)) is a homotopy equivalence. Therefore, there exists
S0(c) ∈ C2(G (c),F (c)) and H0(c) ∈ C2(F (c),F (c)) such that

m1(S0(c)) = 0, m2(T0(c),S0(c)) = eFob(c),Fob(c) +m1(H0(c))

We thus obtain required S0(c) and H0(c).
Suppose we have obtained Si and Hi for i ≤ k such that (7.9) and (7.10) are satisfied. We

will construct Sk+1 and Hk+1.
Let x ∈ Bk+1C1(c, c

′). We put

O(x) = m
(
Ŝ(k)(x)

)
− Ŝ(k)

(
d̂x
)
∈ C2(G (c),F (c′)).
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Using (7.9), we can easily check that

m1

(
O(x)

)
+O

(
d̂1(x)

)
= 0. (7.12)

Here d̂1 is the coderivation induced by m1. In fact, (7.12) follows from M1(M1(S(k))) = 0
and (7.9).

On the other hand, we use M1(M2(T ,S(k))) = M2(T ,M1(S(k))) together with (7.10), (7.11),
and obtain

m2(T0(c), O(x)) = m1(B(x)) +B
(
d̂1x
)
, (7.13)

where

B(x) = −
∑
c

m
(
F̂ (xc;1)⊗ T (xc;2)⊗ “G (xc;3)⊗ S≤k(xc;4)⊗ F̂ (xc;5)

)
.

(7.12), (7.13) together with the fact that x 7→ m2(T0(c), x) is a chain homotopy equivalence:
C2(c, c

′)→ C2(c, c) imply that there exists

S ′k+1 : Bk+1C1[1](c, c
′)→ C2(G0(c),F (c′))

such that when we use this S ′k+1 for Sk+1 to define S ′≤k+1, then (7.9) for k + 1 replaced by k
holds. We also use 0 for Hk+1 to define H′(k+1). We then consider

E(k+1)(x) =
∑
c

m
(
F̂ (xc;1)⊗ T≤k+1(xc;2)⊗ “G (xc;3)⊗ S ′≤k+1(xc;4)⊗ F̂ (xc;5)

)
−m

(“H′≤k+1(x)
)
− “H′≤k+1

(
d̂x
)

By induction hypothesis, E(k+1)(x) = 0 for x ∈ BiC1(c, c
′) with 0 < i ≤ k. We use it

and (7.11) to obtain m1(E(k+1)(x))− E(k+1)

(
d̂(x)

)
= 0 by an easy calculation. Then we again

use the fact x 7→ m2(T0(c), x) is a chain homotopy equivalence: C2(c, c
′) → C2(c, c) to obtain

Corr : Bk+1C1(c, c
′)→ C2(G0(c),F (c′)) and Hk+1 : Bk+1C1(c, c

′)→ C2(F0(c),F (c′)) such that

E(k+1)(x) +m2(T0(c),Corr(x)) = m(Hk+1(x)) +Hk+1

(
d̂1x
)
,

m1(Corr(x))− Corr
(
d̂1x
)
= 0.

Then Sk+1 = S ′k+1+E(k+1) and the above Hk+1 satisfy (7.9) and (7.10) with k replaced by k + 1.

We thus obtained a natural transformation S : G → F such that M2(T ,S) is homotopic to
the identity natural transformation F → F .

In the same way, we can find S ′ : G → F such that M2(S ′, T ) is homotopic to the identity
natural transformation G → G . Using associativity of M2 up to homotopy, it implies that S ′
is homotopic to S. Therefore, S ′ is a homotopy inverse to T . The proof of Lemma 7.9 is now
complete. ■

The proof of Theorem 7.3 is complete. ■

8 Compositions of Lagrangian correspondences

8.1 Unobstructedness of composed correspondences

The main result of this subsection is Theorem 8.2 below.
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Situation 8.1. Suppose that L1, L2 and L12 are as in Situation 6.1. We also assume that L2,
L3 and L23 are as in Situation 6.1.

For (L12, σ12) ∈ L12 and (L23, σ23) ∈ L23, we assume that πX2 ◦ iL12 : L̃12 → X2 is transversal
to πX2 ◦ iL23 : L̃23 → X2 and put

L̃13 = L̃12 ×X2 L̃23. (8.1)

Together with L̃13 → −X1 × X3 it becomes an immersed Lagrangian submanifold L13

of −X1 ×X3. We assume that L13 has clean self-intersection. We remark that L13 is (π∗1(V1 ⊕
TX1)× π∗3(V3))-relatively spin by Definition–Lemma 4.7.

Theorem 8.2. There exists a (π∗1(V1 ⊕ TX1) × π∗3(V3))-relatively spin structure σ13 of L13

with the following properties. Suppose that b12 and b23 are bounding cochains of (L12, σ12)
and (L23, σ23), respectively. Then there exists a bounding cochain b13 of (L13, σ13). Moreover,
there is a canonical way to determine b13 from b12 and b23 up to gauge equivalence.

We can enhance the map (L12, b12), (L23, b23) 7→ (L13, b13) to an A∞ functor as in Theorem 8.5
below.

Situation 8.3.

(1) Suppose that L1, L2, L3 and L12, L23 are as in Situation 8.1. We also assume L1, L3 and
L13 are as in Situation 6.1.

(2) Moreover, we assume the following. Let (L12, σ12) ∈ L12, (L23, σ23, b23) ∈ L23. The fiber
product L13 as in (8.1) together with σ13 in Theorem 8.2 gives a pair (L13, σ13). We require
that (L13, σ13) is an element of L13.

Notation 8.4.

(1) In Situation 8.3, we write (L13, σ13) = (L23, σ23)◦(L12, σ12) and call (L13, σ13) the geometric
composition of (L23, σ23) and (L12, σ12).

(2) Suppose that b12 and b23 are bounding cochains of (L12, σ12) and (L23, σ23), respectively.
Then by Theorem 8.2, we obtain a bounding cochain b13 of (L13, σ13). We put

(L13, σ13, b13) = (L23, σ23, b23) ◦ (L12, σ12, b12). (8.2)

(3) Let Fuk(−X1×X2), Fuk(−X2×X3), Fuk(−X1×X3) be the filtered A∞ categories obtained
in Theorem 3.14, the set of whose objects are L12, L23, L13, respectively. We denote by
Fukst(−X1 ×X2), Fukst(−X2 ×X3), Fukst(−X1 ×X3) the associated strict categories.

Theorem 8.5. In Situation 8.3, there exists a strict, unital and gapped filtered A∞ bi-functor

Comp : Fukst(−X1 ×X2)× Fukst(−X2 ×X3)→ Fukst(−X1 ×X3) (8.3)

such that its object part Compob is the map given by (8.2).

Remark 8.6. In the case when all the Lagrangian submanifolds involved are embedded and
monotone, Theorem 8.5 was proved by Ma’u–Wehrheim–Woodwards in [63].

Proof. The proofs of both Theorems 8.2 and 8.5 are similar to the proof of Theorem 6.3,
Corollary 7.4 and use tri-module and Proposition 6.6. Namely, we use the next result.

Proposition 8.7. In Situation 8.3, there exists a left-Fuk(−X1×X3) and right-Fuk(−X1×X2),
Fuk(−X2 ×X3) filtered A∞ tri-module C F (L13;L12,L23).



Unobstructed Immersed Lagrangian Correspondence and Filtered A∞ Functor 93

The proof is similar to the proof of Theorem 5.25 and is given in the next subsection. We
remark however that ‘left’ and ‘right’ appear in the opposite way in Proposition 8.7 compared
to Theorem 5.25. The reason will become clear when we discuss the Y -diagram in Section 9.

We now prove Theorem 8.2 assuming Proposition 8.7. Suppose we are in the situation
of Theorem 8.2. We define L13 as in (8.1). For each relative spin structure σ13 of L13, the
tri-module in Proposition 8.7 associates a Λ0 module CF ((L13, σ13); (L12, σ12), (L23, σ23)). We
denote it by CF (L13;L12, L23) for simplicity.

Lemma 8.8. There exists a unique choice of σ13 such that CF (L13;L12, L23) is isomorphic
to Ω

(
L̃13 ×X1×X3 L̃13;R

)“⊗R Λ0 on the diagonal component L̃13.

The proof is given at the end of Section 8.2.
We define

nk : CF (L13)
⊗k ⊗ CF (L13;L12, L23)→ CF (L13;L12, L23)

by

nk(x1, . . . , xk; y) =
∞∑

k12=0

∞∑
k23=0

nk;k12,k23(x1, . . . , xk; y; b12, . . . , b12; b23, . . . , b23),

where nk,k12,k23 is a structure operation of the tri-module of Proposition 8.7.

Lemma 8.9. {nk | k = 0, 1, 2, . . . } defines a structure of left filtered A∞ module on CF (L13;L12,
L23) over the filtered A∞ algebra CF (L13).

The proof is a straightforward calculation using Proposition 8.7.
We remark that we can define the notion of a cyclic element for a left filtered A∞ module

and Proposition 6.6 holds in the case of left filtered A∞ modules. In fact, a left C module D
becomes a right C op module, and the Maurer–Cartan equation of C op is the same as that of C .

Lemma 8.10. We may take our tri-module structure so that the element

1 ∈ Ω0
(
L̃13

)
⊂ Ω

(
L̃13 ×X1×X3 L̃13;R

)“⊗R Λ0
∼= CF (L13;L12, L23)

is a cyclic element of the left filtered A∞ module CF (L13;L12, L23) in Lemma 8.9.

The proof is given at the end of Section 8.2.
Now we use Proposition 6.6 to find uniquely a bounding cochain b13 of L13 such that

nb13(1) = 0. (8.4)

By using Proposition 6.16, we can show that gauge equivalence class of the bounding cochain b13
depends only on those of b12 and b23, when the filtered A∞ tri-module C F (L13;L12,L23) is given.
The independence of the choices to define C F (L13;L12,L23) is Theorem 14.31 in Section 14.

We have proved Theorem 8.2 assuming several results postponed to later subsections.
We turn to the proof of Theorem 8.5. The proof is similar to Section 7. By Proposition 8.7,

we obtain a strict and unital filtered A∞ bi-functor

F bi : Fukst(−X1 ×X2)× Fukst(−X2 ×X3)→ FUNC(Fukst(−X1 ×X3)
op, CH).

Let L12 = (L12, σ12, b12), L23 = (L23, σ23, b23) be objects of Fukst(−X1×X2) and Fukst(−X2×
X3), respectively. By Lemma 8.8 and (8.4), we obtain L13 = (L12, σ13, b13) which is an object
of Fukst(−X1 ×X3).

Let C be a strict filtered A∞ category. Then there exists a filtered A∞ functor Yon : C →
FUNC(C op, CH) ∼= BIMOD(C ,Λ0), from C to the category of left-C modules such that its
object part is c 7→ (b 7→ C (b, c)).
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Proposition 8.11. F bi
ob(L12,L23) is homotopy equivalent to (Yon)ob(L13) as filtered A∞ func-

tors: Fukst(−X1 ×X3)→ CH.

Proof. The proof is similar to the proof of Theorem 7.3. We repeat the proof for completeness.
We denote by

F tri : Fukst(−X1 ×X3)
op × Fukst(−X1 ×X2)× Fukst(−X2 ×X3)→ CH

the strict tri-functor associated to F bi.
Let L(i)13 , i = 0, . . . ,m, be objects of Fukst(−X1 ×X3). We define

Tm :

m⊗
i=1

CF
(
L(i−1)13 ,L(i)13

)
⊗ CF

(
L(m)
13 ,L13

)
→ CF

(
L(0)13 ;L12,L23

)
by the next formula

Tm(x1, . . . , xm; y) = F tri
0,0,m+1(x1, . . . , xm; y;∅,∅;1). (8.5)

Note that

x1 ⊗ · · · ⊗ xm ⊗ y ∈ Bm+1Fukst(−X1 ×X3)
(
L13,L(m)

13

)
and 1 ∈ CF (L13;L12, L23). So the right-hand side of (8.5) is defined by Proposition 8.7.

Lemma 8.12. (8.5) defines a natural transformation T = {Tm | m = 0, 1, 2, . . . } from
F bi

ob(L12,L23) to Yon(L13).

Proof. Using the fact that 1 is a cycle in CF (L13;L12,L23), the lemma is an immediate con-
sequence of Proposition 8.7. ■

Lemma 8.13. T0 : CF
(
L(0)13 ,L13

)
→ CF

(
L(0)13 ;L12,L23

)
is an isomorphism of Λ0 module.

Proof. Using the fact that 1 is a cyclic element, we can easily show that T0 becomes an
isomorphism modulo Λ+. Therefore, T0 itself is also an isomorphism. (We used G-gappedness
here. In fact, we construct the inverse by induction on energy filtration. This induction works
when the set of exponents of T appearing in the operations is discrete.) ■

By Lemmas 8.12 and 8.13, we can use Lemma 7.9 to show that T is a homotopy equivalence.
The proof of Proposition 8.11 is complete.

Using Proposition 8.11 and A∞ Yoneda lemma, we can prove Theorem 8.5 in the same way
as Corollary 7.4. ■

8.2 Construction of a tri-module

In this subsection, we prove Proposition 8.7 and complete the proof of Theorems 8.2 and 8.5.
The proof of Proposition 8.7 is based on a moduli space of pseudo-holomorphic maps from a
cylinder, which we describe below.

By the same trick as Section 3.4, it suffices to consider the case when L12, L23, L13 consist
of single elements L12 = (L12, σ12), L23 = (L23, σ23), L13 = (L13, σ13), respectively. We consider
the cylinder

W = S1 × R = [0, 3]/∼× R. (8.6)

Here ∼ identifies 0 ∈ [0, 3] with 3 ∈ [0, 3]. We define W1, W2, W3 by

W1 = [0, 1]× R ⊂W, W2 = [1, 2]× R ⊂W, W3 = [2, 3]× R ⊂W (8.7)
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W
1

W
2

W
3

S
12

S
23

S
13

Figure 8.1. Quilted drum W .

and also put S(i−1)i = {i} × R = Wi−1 ∩ Wi, i = 1, 2, 3. (Here S01 = S31, W0 = W3 by
convention.) Note that ∂W1 = S31 ∪ S12 etc. See Figure 8.1. We call S12, S23, S31 the seams.
We decompose

L̃12 ×X1×X2 L̃12 =
⋃

a∈A12

L12(a), L̃23 ×X2×X3 L̃23 =
⋃

a∈A23

L23(a),

L̃13 ×X1×X3 L̃13 =
⋃

a∈A13

L13(a),

(
L̃12 × L̃23 × L̃13

)
×X2

1×X2
2×X2

3
∆ =

⋃
a∈A123

R123(a), (8.8)

where ∆ in the fourth line is the diagonalX1×X2×X3 ⊂ X2
1×X2

2×X2
3 (see Definition 3.2 (5)).8.1

Let a⃗ii′ = (aii′,1, . . . , aii′,kii′ ) ∈ (Aii′)kii′ for ii′ = 12, 23, 13. We call W the quilted drum.

We define the moduli space
◦◦
MDR(⃗a12, a⃗23, a⃗13; a−, a+;E) for a−, a+ ∈ A123, E ∈ [0,∞) as

follows.

Remark 8.14. In the case when X1 is a point, this moduli space is mostly the same as the
one we used in Section 5.2. In this paper, the role of Lagrangian submanifolds of Xi and of
−Xi×Xj are much different. The former gives an object of a filtered A∞ category Fuk(Xi), the
latter gives a filtered A∞ functor Fuk(Xi) → Fuk(Xj). By this reason, we use different names
and notations to those moduli spaces.

Definition 8.15. We consider (Σ; z⃗12, z⃗23, z⃗13;u1, u2, u3; γ1, γ2, γ3) with the following properties
(see Figure 8.2):

(1) The space Σ is a bordered Riemann surface which is a union of W and trees of sphere
components attached to W . The roots of the trees of sphere components are not on the
seams S12, S23, S13.

(2) We denote by Σ1 the union of W1 together with trees of sphere components rooted on W1.
We define Σ2, Σ3 in the same way. The map ui : Σi → Xi is −JXi holomorphic for
i = 1, 2, 3.8.2

(3) z⃗ii′ = (zii′,1, . . . , zii′,kii′ ), ii
′ = 12, 23, 13, and zii′,j ∈ Sii′ . We put |z⃗ii′ | = {zii′,1, . . . ,

zii′,kii′}.
8.1In (8.8), A12 etc. contains the index of the diagonal component. So it corresponds to A+

L in Definition 3.2 (5).
8.2The reason we consider −JXi holomorphic maps and not JXi holomorphic maps will be explained in Re-

mark 9.4.
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(4) The maps γii′ : Sii′ \ |z⃗ii′ | → L̃ii′ are smooth and satisfies iLii′ (γii′(z)) = (ui(z), ui′(z)).
When we identify Sii′ ∼= R we require zi,i′;j < zi,i′;j′ for j < j′ and (i, i′) = (1, 2) or (2, 3)
and z13;j > z13;j′ for j < j′.8.3

(5) At z⃗ii′ , the map γii′ satisfies the switching condition(
lim

z∈Sii′↑zii′,j
γii′(z), lim

z∈Sii′↓zii′,j
γii′(z)

)
∈ Lii′(aii′,j) (8.9)

for (i, i′) = (1, 2), (2, 3) and(
lim

z∈Sii′↓zii′,j
γii′(z), lim

z∈Sii′↑zii′,j
γii′(z)

)
∈ Lii′(aii′,j)

for (i, i′) = (1, 3). Here we identify Sii′ ∼= R and then ↑, ↓ have obvious meaning.

(6) When z ∈ S1 × R with π2(z)→ ±∞, the maps u1(z), u2(z), u3(z) satisfy the asymptotic
boundary condition Condition 8.17 below. (Here π2 : S

1 ×R→ R is the projection to the
second factor.)

(7) The stability condition, Definition 8.18 (2) below, is satisfied.

(8)
∫
Ω1
u∗1ω1 +

∫
Ω2
u∗1ω2 +

∫
Ω3
u∗3ω3 = −E. We remark that the left-hand side is non-positive

since ui is −JXi holomorphic.

We will define an equivalence relation ∼ between objects (Σ; z⃗12, z⃗23, z⃗13;u1, u2, u3; γ1, γ2, γ3)
which satisfy Conditions (1)–(8), in Definition 8.18 (3). We denote the set of all the equivalence
classes of this equivalence relation by

◦◦
MDR(⃗a12, a⃗23, a⃗13; a−, a+;E). We call its element (or an

element of its compactification) a pseudo-holomorphic drum.

X
X

X
X
X

XX

X

z
12

z
13,1

z
13,2

u
1

u
2

u
3

12

23

13

z23,1

z23,2

R123(a−)

R123(a+)

Figure 8.2. An element of
◦◦
MDR(⃗a12, a⃗23, a⃗13; a−, a+;E).

Remark 8.16. We enumerate z12,j and z23,j upward and z13,j downward. Therefore, we obtain
a left-Fuk(−X1 ×X3) and right-Fuk(−X1 ×X2), Fuk(−X2 ×X3) filtered A∞ tri-module by the
same reason as explained in Remark 5.30.

Condition 8.17. The asymptotic boundary condition for π2(z)→ −∞ is as follows.

8.3See Remark 8.16 for this enumeration.
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(1) We require the limit limτ→−∞ u1(t, τ) exists and is independent of t ∈ [0, 1]. We write
this limit limπ2(z)→−∞ u1(z). We require limπ2(z)→−∞ u2(z), limπ2(z)→−∞ u3(z) exist in
a similar sense.

(2) (
lim

π2(z)→−∞
u1(z), lim

π2(z)→−∞
u2(z), lim

π2(z)→−∞
u3(z)

)
∈ R123(a−).

The asymptotic boundary condition for π2(z)→ +∞ is defined in the same way using R123(a+).

Definition 8.18. Let

x = (Σ; z⃗12, z⃗23, z⃗13;u1, u2, u3; γ1, γ2, γ3), x′ = (Σ′; z⃗ ′12, z⃗
′
23, z⃗

′
13;u

′
1, u
′
2, u
′
3; γ
′
1, γ
′
2, γ
′
3)

be objects satisfying Definition 8.15 (1)–(6).

(1) An isomorphism from x to x′ is a map v : Σ→ Σ′ such that

(a) It is biholomorphic.

(b) It sends Σi to Σ′i.

(c) It sends z⃗ii′ to z⃗
′
ii′ .

(d) u′i ◦ v = ui, γ
′
ii′ ◦ v = γii.

(2) x is said to be stable if the set of all isomorphisms from x to x is finite.

(3) We say x is equivalent to x′ if there exists an isomorphism from x to x′.

We define evaluation maps

evii′ = (evii′,1, . . . , evii′,kii′ ) :
◦◦
MDR(⃗a12, a⃗23, a⃗13; a−, a+;E)→

kii′∏
j=1

Lii′(aii′,k) (8.10)

by the left-hand side of (8.9).
We also define

ev∞ = (ev∞,+, ev∞,−) :
◦◦
MDR(⃗a12, a⃗23, a⃗13; a−, a+;E)→ R123(a+)×R123(a−) (8.11)

by the left-hand side of Condition 8.17 (2).

Proposition 8.19. We can define a topology on
◦◦
MDR(⃗a12, a⃗23, a⃗13; a−, a+;E) such that it has

a compactification MDR(⃗a12, a⃗23, a⃗13; a−, a+;E), which is a compact metrizable space. They
have Kuranishi structures with corners and enjoy the following properties:

(1) The normalized boundary ofMDR(⃗a12, a⃗23, a⃗13; a−, a+;E) is a disjoint union of 2 types of
fiber products which we describe below.

(2) The evaluation maps (8.10) and (8.11) extend to strongly smooth maps with respect to this
Kuranishi structure. ev∞,+ is weakly submersive. The extension is compatible with the
description of the boundary in item (1).

(3) The orientation bundle of MDR(⃗a12, a⃗23, a⃗13; a−, a+;E) is isomorphic to the tensor prod-
uct of the pullbacks of Θ− by the evaluation maps (8.10) and (8.11). For the compo-
nent R123(a+), we take Θ+ in place of Θ−.

(4) It is compatible with the forgetful map of the marked points corresponding to the diagonal
components in the sense of [28, Definition 3.1].
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We describe the boundary components:

(I) The first type of boundary corresponds to the bubble at one of the Lagrangian boundary
conditions L12, L23, L13. We describe the case of L12. Let b ∈ AL12 and i ≤ j. We
put a⃗112 = (a12,0, . . . , a12,i, a12,j+1, . . . , a12,k12), a⃗

2
12 = (b, a12,i+1, . . . , a12,j). This boundary

corresponds to the fiber product

MDR

(
a⃗112, a⃗23, a⃗13; a−, a+;E1

)
×L12(b)M′

(
L12; a⃗

2
12;E2

)
. (8.12)

Here E1 +E2 = E. We remark that we use the compactificationM′ in the second factor.
(See Remark 5.38 and Section 12 for this compactification.) The bubble at L23 and L13

are described by the following fiber products:

MDR

(
a⃗12, a⃗

1
23, a⃗13; a−, a+;E1

)
×L12(b)M′

(
L23; a⃗

2
23;E2

)
, (8.13)

MDR

(
a⃗12, a⃗23, a⃗

1
13; a−, a+;E1

)
×L12(b)M′

(
L13; a⃗

2
13;E2

)
. (8.14)

Here a⃗123, a⃗
2
23 and a⃗113, a⃗

2
13 are defined in the same way as a⃗112, a⃗

2
12.

L
12
(b)

Figure 8.3. An element of (8.12).

R123(a)

Figure 8.4. An element of (8.15).

(II) The second type of boundary corresponds to the limit where the domain will split into
two parts along the second factor of S1 × R. It is described by the fiber product below.
Let jii′ ∈ {0, . . . , kii′}. We put a⃗1ii′ = (aii′,1, . . . , aii′,jii′ ), a⃗

2
ii′ = (aii′,jii′+1, . . . , aii′,kii′ ) if

ii′ = 12 or 23 and a⃗2ii′ = (aii′,1, . . . , aii′,jii′ ), a⃗
1
ii′ = (aii′,jii′+1, . . . , aii′,kii′ ) if ii

′ = 13.

Note in case jii′ = 0 (resp. jii′ = kii′), a⃗
1
ii′ = ∅

(
resp. a⃗2ii′ = ∅

)
,

MDR

(
a⃗112, a⃗

1
23, a⃗

1
13; a−, a;E1

)
×L123(a)MDR

(
a⃗212, a⃗

2
23, a⃗

2
13; a, a+;E2

)
, (8.15)

where E1 + E2 = E and a ∈ A123.

We will discuss the orientation in Section 17.3. The proof of the other parts of Proposition 8.19
is similar to the proof of Theorem 5.43 and is now a routine. So we only explain (8.12)–(8.14).

We required that ui is −JXi holomorphic. Therefore, we may regard (u1, u2) in a neigh-
borhood of γ12 as a pseudo-holomorphic map from (−ε, 0] × R to −X1 × X2, by (t, τ) 7→
(u1(t, τ), u2(−t, τ)) where t = 0 is S12. See Figure 8.5. Therefore, when a bubble on γ12
occurs it corresponds to a disk bubble as in Figure 8.6. Note that the marked points on γ12 is
enumerated upward. Therefore, the marked points on the boundary of the bubble is enumer-
ated according to the counter clockwise orientation (see Figure 8.6). This implies that we can
describe such a bubble as in (8.12). The explanation of (8.13) is similar.
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Let us discuss (8.14). Note that the domain Ω1 (resp. Ω3) lies right-hand side (resp. left-hand
side) of the seam γ13. Therefore, (u1, u3) in a neighborhood of γ13 can be regarded as a pseudo-
holomorphic map from [0, ε)×R to −X1×X3 by (t, τ) 7→ (u1(−t, τ), u3(t, τ)) where t = 0 is S13.
See Figure 8.7. Note that the marked points on γ13 are enumerated downward. Therefore, the
marked points on the boundary of the bubble are enumerated according to the counter clockwise
orientation (see Figure 8.8). This implies that we can describe such a bubble as in (8.14).

γ12

−X1 −X1 ×X2−X2

Figure 8.5. Folding the pseudo-holomorphic map near the seam 1.

−X1 ×X2

z12;1

x

x

x

x

x

z12;2

z12;3

z12;4

z12;5

Figure 8.6. Bubble on the seam 1.

−X1−X3
−X1 ×X3

γ13

Figure 8.7. Folding the pseudo-holomorphic map near the seam 2.

Proposition 8.20. For each E0, there exists a system of CF-perturbations “S on the spaces
M(⃗a12, a⃗23, a⃗13; a−, a+;E) with Kuranishi structures, which are outer collarings of thickenings
of those in Proposition 8.19, for E < E0 and such that the following holds:

(1) The CF-perturbations “S are transversal to 0.

(2) The evaluation maps ev∞,+, ev∞,− are strongly submersive with respect to these CF-
perturbations.8.4

(3) The CF-perturbations are compatible with the description of the boundary. Namely, the
restrictions of the CF-perturbations on the boundaries coincide with the fiber product CF-
perturbations in the sense of [40, 46, Lemma–Definition 10.6].

(4) The CF-perturbations are compatible with the forgetful maps of the boundary marked points
corresponding to the diagonal component in the same sense as [28, Definition 5.1].

The proof is the same as Proposition 5.48 and is now a routine. We omit it.

8.4We do not require that the map (ev∞,+, ev∞,−) is strongly submersive.
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x

x

x

x

x

−X1 ×X3

z13,1

z13,2

z13,3

z13,4
z13,5

Figure 8.8. Bubble on the seam 2.

We now use Propositions 8.19 and 8.20 to define a filtered A∞ tri-module modulo TE0 as
follows. We put

CF (L13;L12, L23) =
⊕

a∈A123

Ω(R(a))“⊗Λ0.

We next define structure operations

n<E0,ε
k12,k23,k13

: CF (L13)
⊗k13 ⊗ CF (L13;L12, L23)

⊗ CF (L12)
⊗k12 ⊗ CF (L23)

⊗k23 → CF (L12, L23, L13).

Let hii′ = (hii′,1⊗ · · · ⊗hii′,kii′ ) ∈ CF (Lii′)⊗kii′ . We consider the case hii′,j is a differential form
and is in Ω(Lii′(aii′,j)). (See Definition 3.46.) Let h−∞ ∈ Ω(R(a−)).

We define Ω(R(a+)) component of ntri,E,εk12,k23,k13
by

ev∞,+!
(
ev∗13h13 ∧ ev∗∞,−h−∞ ∧ ev∗12h12 ∧ ev∗23h23;”Sε

)
. (8.16)

Here we use the spaceM(⃗a12, a⃗23, a⃗13; a−, a+;E) and its CF perturbation “S to define the inte-
gration along the fiber in (8.16). We now put n<E0,ε

k13,k12,k23
:=
∑

E<E0
TEnE,εk13,k12,k23

.

Lemma 8.21. n<E0,ε
k13,k12,k23

defines a filtered A∞ tri-module modulo TE0. Namely, it satisfies

0 ≡
∑

c13,c12,c23

(−1)∗1n<E0,ε
kc12;1,kc23;1,kc13;1

(zc13;1;

n<E0,ε
kc12,2;kc23;2,kc13;2

(zc13;2;w;xc12;1,yc23;1);xc12;2,yc23;2)

+ (−1)∗2n<E0,ε
∗,∗,∗

(
z;w; d̂x,y

)
+ (−1)∗3n<E0,ε

∗,∗,∗
(
z;w;x, d̂y

)
+ (−1)∗4n<E0,ε

∗,∗,∗
(
d̂z;w;x,y

)
+ (−1)∗5δ

(
n<E0,ε
k12,k23,k13

(z;w;x,y)
)

+ (−1)∗6n<E0,ε
k12,k23,k13

(z; δw;x,y) mod TE0 . (8.17)

Here ∆x =
∑

c12
xc12;1⊗xc12;2. We define yc23;1, yc23;2, zc13;1, zc13;2 in the same way. The signs

are by Koszul rule. δ is the operator induced from the de Rham differential in the same way
as (3.32), (3.33).

Proof. The proof is similar to the proof of Proposition 5.48 and is now a routine. By Stokes’
theorem (see [40, Proposition 9.26] and [46]), the sum of fifth and six terms is obtained by a simi-
lar formula as (8.16) but using the integration along the fiber on the boundary ∂M(⃗a12, a⃗23, a⃗13;
a−, a+;E). This boundary is described by (8.12)–(8.15). By using the composition formula
[40, 46, Theorem 10.20], we find that (8.12), (8.13), (8.14) and (8.15) correspond to 2nd, 3rd,
4th and first term of (8.17), respectively. ■

The rest of the proof of Proposition 8.7 is the same as the last step of the proof of The-
orem 5.25. Namely, we show that n<E

′,ε is homotopic to n<E,ε modulo TE if E < E′ and
also n<E,ε is homotopic to n<E,ε

′
. We use this fact and homological algebra to find required

filtered A∞ tri-module. ■
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Proof of Lemma 8.8. The proof is the same as the proof of Lemma 6.7. We first observe(
L̃12 × L̃23 × L̃13

)
×X2

1×X2
2×X2

3
∆ ∼= L̃13 ×X1×X3 L̃13. (8.18)

Therefore, CF (L12,L23,L13) is Ω
(
L̃13×X1×X3 L̃13,Θ

)“⊗Λ0 with some local system Θ. By using
Lemma 3.11, we can uniquely choose relative spin structure σ13 so that Θ is trivial. ■

Proof of Proposition 8.10. The proof is the same as Proposition 6.12. It suffices to show
that n0 is congruent to the identity map modulo Λ+. By definition, n0 is congruent to the map
determined by the moduli spaceM(∅,∅, a13; o, a13; 0). Here o denotes the diagonal component
and we use the diffeomorphism (8.18) to identify A123 with AL13 . (Here A123 (resp. AL13) is the
set of connected components of the left-hand side (resp. right-hand side) of (8.18).) Using the
fact that M(∅,∅, a13; o, a13; 0) consists of constant maps, we can easily show that it induces
the identity map. ■

9 Compatibility of compositions

9.1 Statement

Theorem 9.1. Suppose we are in Situation 8.3. Let L12 ∈ OB(Fukst(−X1 × X2)), L23 ∈
OB(Fukst(−X2 ×X3)). We put L13 = L23 ◦ L12 = Compob(L12,L23). Then the correspondence
functor WL13 associated to L13 is homotopy equivalent to the composition WL23 ◦ WL12 of the
correspondence functors associated to L12 and L23 respectively. Namely,

WL23◦L12 ∼ WL23 ◦WL12 . (9.1)

Note that

WL12 : Fukst(X1;L1)→ Fukst(X2;L2), WL23 : Fukst(X2;L2)→ Fukst(X3;L3),

WL13 : Fukst(X1;L1)→ Fukst(X3;L3).

(9.1) is a homotopy equivalence as strict, unital and gapped filtered A∞ functors from Fukst(X1;
L1) to Fukst(X3;L3).

In this section, we prove the following weaker version of Theorem 9.1.

Proposition 9.2. Suppose we are in the situation of Theorem 9.1. Let L1 = (L1, σ1, b1) be an
object of Fukst(X1;L1). We put

(WL23◦L12)ob(L1) = L
(1)
3 =

(
L
(1)
3 , σ

(1)
3 , b

(1)
3

)
, (WL13)ob(L1) = L

(2)
3 =

(
L
(2)
3 , σ

(2)
3 , b

(2)
3

)
.

Then we have the following:

(1)
(
L
(1)
3 , σ

(1)
3

)
=
(
L
(2)
3 , σ

(2)
3

)
. Here the equality is as submanifolds equipped with relative spin

structures.

(2) b
(1)
3 is gauge equivalent to b

(2)
3 in the sense of [34, Definition 4.3.1].

Proposition 9.2 is the object part of Theorem 9.1. The morphism part will be proved in the
next section. Proposition 9.2 (1) is proved in Section 17.4.
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Y
2

Y
3
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S
12

S
23

S
13

Figure 9.1. Domain Y.

9.2 Lekili–Lipyanskiy’s Y-diagram

The proofs of Theorem 9.1 and Proposition 9.2 are based on moduli spaces of configurations
introduced by Lekili–Lipyanskiy in [59], which they called a Y -diagram. In this subsection, we
define and study the moduli space of Y -diagrams.

We consider the domain Y = Y1 ∪Y2 ∪Y3 ⊂ C as in Figure 9.1. The boundary ∂Y has three
connected components ∂iY = ∂Y ∩ ∂Yi (i = 1, 2, 3), which are diffeomorphic to R. We choose
the diffeomorphism so that the direction of the arrow in Figure 9.1 coincides with the positive
direction of R.

The closure of the domain Y minus a point S12 ∩ S23 ∩ S13 has 4 ends. We identify the
end which is the neighborhood of the white circle in Figure 9.1 with S1 × (−∞, 0]. We take
a diffeomorphism ϕ123 : S

1 × (−∞, 0]→ Y to an open subset such that

Condition 9.3.

(1) ϕ123 is an anti-biholomorphic diffeomorphism to its image, which is a neighborhood of the
point S12 ∩ S23 ∩ S13 minus S12 ∩ S23 ∩ S13.

(2) We identify S1 × (−∞, 0] ⊂ S1 × (−∞,∞) =W , where W is as in (8.6). Then we require

Wi ∩
(
S1 × (−∞, 0]

)
= ϕ−1123(Yi)

for i = 1, 2, 3.

Remark 9.4. We emphasis that ϕ123 is an anti-biholomorphic map. In fact, ϕ123(t, τ) =
e2π(τ+it) and the complex structure of the domain is j(∂/∂t) = ∂/∂τ . We will identify the image
of ϕ123 as a part of the domain of the pseudo-holomorphic drum appearing in Section 8. Then
a JXi holomorphic map on Wi will become −JXi holomorphic from an open set of the drum.
This is the reason why we required that the map ui is −JXi holomorphic in Definition 8.15 (2).

The other three ends intersect with Y1 and Y2 (resp. Y2 and Y3, Y1 and Y3). We take
a diffeomorphism ϕii′ : [−1, 1] × (−∞, 0] → Y to an open subset for (ii′) = (12), (23), or (13)
such that the following conditions hold.

Condition 9.5.

(1) The map ϕii′ is biholomorphic.

(2) We require [−1, 0]× (−∞, 0] = ϕ−1ii′ (Yi), [0, 1]× (−∞, 0] = ϕ−1ii′ (Yi′) for (ii′) = (12) or (23).
We also require [−1, 0]× [0,+∞) = ϕ−113 (Yi), [0, 1]× [0,+∞) = ϕ−113 (Yi) for i = 1, 3.
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123

12

23

13

Figure 9.2. ϕ123, ϕii′ .

We next put Sii′ = Yi ∩ Yi′ for (ii′) = (12), (23), or (13). Sii′ is diffeomorphic to R. We
call Sii′ a seam and the point S12 ∩ S23 ∩ S13 the hole. We take a diffeomorphism between the
seams and R as follows:

(so1) Suppose that (ii′) = (12), (23). Then for −τ which is sufficiently negative the point of Sii′

corresponding to −τ lies in the image of ϕii′ .

(so2) Suppose that (ii′) = (13). Then for τ which is sufficiently positive the point of S13
corresponding to τ lies in the image of ϕ13.

See the arrows in Figure 9.1 which show the orientation of the seams. Note that this orientation
coincides with the way we enumerate the marked points on the seams in the case of pseudo-
holomorphic drums.

We orient the boundary of Y by the usual counter clock-wise orientation of a boundary of
a domain of C (see the arrows in Figure 9.1). Then on the images of ϕii′ , the orientation
of the boundary and the seams coincide with the way we enumerate the marked points in
Definition 5.27 (3).

We decompose fiber products to connected components

L̃ii′ ×Xi×Xi′ L̃ii′ =
⋃

a∈ALii′

Lii′(a), L̃i ×Xi L̃i =
⋃

a∈ALi

Li(a),

L̃i ×Xi L̃ii′ ×Xi′ L̃i′ =
⋃

a∈ARii′

Rii′(a), (9.2)

(L12 × L23 × L13)×(X1×X2×X3)2 ∆ =
⋃

a∈A123

R123(a), (9.3)

where ∆ is the diagonal in (X1 ×X2 ×X3)
2. See Definition 3.2 (5).

Let a⃗ii′ = (aii′,1, . . . , aii′,kii′ ) ∈ (ALii′ )
kii′ , a⃗i = (ai,1, . . . , ai,ki) ∈ (ALi)

ki , a∞,123 ∈ A123. Let
a⃗∞ = (a∞,12, a∞,23, a∞,13) with a∞,ii′ ∈ ARii′ .

We next define the set
◦◦
MY (⃗a12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3; a∞,123, a⃗∞;E).

Definition 9.6. We consider

(Σ; z⃗1, z⃗2, z⃗3; z⃗12, z⃗23, z⃗13;u1, u2, u3; γ1, γ2, γ3; γ12, γ23, γ13)

with the following properties (see Figure 9.3):

(1) The space Σ is a bordered Riemann surface which is a union of Y and trees of sphere
components attached to Y. The roots of the trees of sphere components are neither on
S12, S23, S13 nor on ∂Y.
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(2) We denote by Σ1 the union of Y1 and the trees of sphere components rooted on Y1. We
define Σ2, Σ3 in the same way. The map ui : Σi → Xi is JXi holomorphic for i = 1, 2, 3.

(3) z⃗i = (zi,1, . . . , zi,ki), i = 1, 2, 3, and zi,j ∈ ∂iY. We require zi,j < zi,j′ for j < j′, where we
identify ∂iY ∼= R using the counter clockwise orientation.

(4) z⃗ii′ = (zii′,1, . . . , zii′,kii′ ), ii
′ = 12, 23, 13, and zii′,j ∈ Sii′ . We require zii′,j < zii′,j′ for

j < j′, where we identify Sii′ ∼= R as in (so1),(so2). We put |z⃗ii′ | = {zii′,1, . . . , zii′,kii′}.
(5) The maps γi : ∂Σ ∩ Yi \ |z⃗i| → L̃i are smooth and satisfy iLi(γi(z)) = ui(z).

(6) The maps γii′ : Sii′ \ |z⃗ii′ | → L̃ii′ , (ii
′) = (12), (23), (13), are smooth and satisfy

iLii′ (γii′(z)) = (ui(z), ui′(z)).

(7) On z⃗i, the map γi satisfies the switching condition(
lim

z∈Si↑zi,j
γi(z), lim

z∈∂Σ∩Yi↓zi,j
γi(z)

)
∈ Li(ai,j). (9.4)

Here we identify ∂Σ ∩ Yi ∼= R by the counter clockwise orientation and then ↑, ↓ have
obvious meaning similar to Definition 3.17 (5).

(8) On z⃗ii′ , the map γii′ satisfies the switching condition(
lim

z∈Sii′↑zii′,j
γii′(z), lim

z∈Sii′↓zii′,j
γii′(z)

)
∈ Lii′(aii′,j). (9.5)

Here we identify Sii′ ∼= R by (so1), (so2) and then ↑, ↓ have obvious meaning similar to
Definition 3.17 (5).

(9) On the image of ϕii′ , the map γii′ satisfies the asymptotic boundary condition

lim
τ→+∞

((γi(−τ), γi′(τ)), γii′(−τ)) ∈ Rii′(a∞,ii′) if (ii′) = (12) or (23),

lim
τ→+∞

((γ1(τ), γ3(−τ)), γ13(τ)) ∈ R13(a∞,13). (9.6)

(10) On the image of ϕ123, the map γii′ satisfies the asymptotic boundary condition

lim
τ→+∞

(γ12(−τ), γ23(−τ), γ13(τ)) ∈ R123(a∞,123). (9.7)

(11) The stability condition, Definition 9.7 (2) below, is satisfied.

(12)
∫
Σ1
u∗1(ω1) +

∫
Σ2
u∗1(ω2) +

∫
Σ3
u∗3(ω3) = E.

In Definition 9.7 (3), we will define an equivalence relation ∼ among the objects

(Σ; z⃗12, z⃗23, z⃗13;u1, u2, u3; γ1, γ2, γ3; γ12, γ23, γ13)

satisfying (1)–(12). We denote by
◦◦
MY (⃗a12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3; a∞,−, a⃗∞,+;E) the set of all the

equivalence classes of this equivalence relation.

Definition 9.7. Let

x = (Σ; z⃗1, z⃗2, z⃗3; z⃗12, z⃗23, z⃗13;u1, u2, u3; γ1, γ2, γ3; γ12, γ23, γ13),

x′ = (Σ′; z⃗ ′1, z⃗
′
2, z⃗
′
3; z⃗
′
12, z⃗

′
23, z⃗

′
13;u

′
1, u
′
2, u
′
3; γ
′
1, γ
′
2, γ
′
3; γ
′
12, γ

′
23, γ

′
13)

be objects satisfying Definition 9.6 (1)–(10) and (12).
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Figure 9.3. An element of
◦◦
MY (⃗a12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3, a∞,−, a⃗∞,+;E).

(1) An isomorphism from x to x′ is a map v : Σ→ Σ′ such that

(a) It is biholomorphic.

(b) It sends Σi to Σ′i.

(c) It sends z⃗i to z⃗
′
i and z⃗ii′ to z⃗

′
ii′ .

(d) u′i ◦ v = ui, γ
′
i ◦ v = γi, γ

′
ii′ ◦ v = γii′ .

(2) x is said to be stable if the set of all isomorphisms from x to x is finite.

(3) We say x is equivalent to x′ if there exists an isomorphism from x to x′.

We define the evaluation maps

evi = (evi,1, . . . , evi,ki) :
◦◦
MY (⃗a12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3, a∞,123, a⃗∞;E)→

ki∏
j=1

Li(ai,k) (9.8)

and

evii′ = (evii′,1, . . . , evii′,kii′ ) :

◦◦
MY (⃗a12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3, a∞,123, a⃗∞;E)→

kii′∏
j=1

Lii′(aii′,k) (9.9)

by the left-hand sides of (9.4) and (9.5), respectively.
We also define“ev∞ = (ev∞,123, ev∞) = (ev∞,123, (ev∞,12, ev∞,23, ev∞,13)) :

◦◦
MY (⃗a12, a⃗23, a⃗31; a⃗1, a⃗2, a⃗3, a∞,123, a⃗∞;E)

→ R(a∞,123)× L12(a∞,12)× L23(a∞,23)× L13(a∞,13) (9.10)

by using the left-hand side of (9.6) and (9.7).

Proposition 9.8. We can define a topology, stable map topology, on the moduli space

◦◦
MY (⃗a12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3, a∞,123, a⃗∞;E)

such that it has a compactification MY (⃗a12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3, a∞,123, a⃗∞;E), which is a com-
pact metrizable space. They have Kuranishi structures with corners which enjoy the following
properties:
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(1) The normalized boundary of MY (⃗a12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3, a∞,123, a⃗∞;E) is a disjoint union
of 4 types of fiber products which we describe below.

(2) The evaluation maps (9.8), (9.9) and (9.10) extend to strongly smooth maps with respect
to this Kuranishi structure. The map ev∞ in (9.10) is weakly submersive. The extension
is compatible with the description of the boundary in item (1).

(3) The orientation local system ofMY (⃗a12, a⃗23, a⃗31; a⃗1, a⃗2, a⃗3, a∞,123, a⃗∞;E) is isomorphic to
the tensor product of the pullbacks of Θ− by the evaluation maps (9.8), (9.9) and (9.10).
For the component L13(a13) we take Θ+ in place of Θ−.

(4) The Kuranishi structures are compatible with the forgetful maps of the marked points cor-
responding to the diagonal components.

We now describe the boundary components:

(I) The first type of boundary corresponds to a bubble at one of the Lagrangian boundary
conditions L12, L23, L13. We describe the case of L12. Let b ∈ AL12 and i ≤ j. We put
a⃗112 = (a12,0, . . . , a12,i, b, a12,j+1, . . . , a12,k12), a⃗

2
12 = (b, a12,i+1, . . . , a12,j). This boundary

corresponds to the fiber product

MY

(
a⃗112, a⃗23, a⃗31; a⃗1, a⃗2, a⃗3; a∞,123, a⃗∞;E1

)
×L12(b)M′

(
L12; a⃗

2
12;E2

)
. (9.11)

Here E1 +E2 = E. We remark that we use the compactificationM′ in the second factor.
The compactificationM′ is discussed in Remark 5.38 and Section 12. See Figure 9.4. The
bubble at L23 and L13 are described by the following fiber products:

MY

(
a⃗12, a⃗

1
23, a⃗31; a⃗1, a⃗2, a⃗3; a∞,123, a⃗∞;E1

)
×L23(b)M′

(
L23; a⃗

2
23;E2

)
, (9.12)

MY

(
a⃗12, a⃗23, a⃗

1
13; a⃗1, a⃗2, a⃗3; a∞,123, a⃗∞;E1

)
×L13(b)M′

(
L13; a⃗

2
13;E2

)
. (9.13)

Here a⃗123, a⃗
2
23 and a⃗113, a⃗

2
13 are defined in the same way as a⃗112, a⃗

2
12.

L
12
(b)

Figure 9.4. Boundary of type (I).

(II) The second type of boundary corresponds to a bubble at one of the Lagrangian boundary
conditions L1, L2, L3. We describe the case of L1. Let b ∈ AL1 and i ≤ j. We put a⃗11 =
(a1,0, . . . , a1,i, b, a1,j+1, . . . , a1,k1), a⃗

2
1 = (b, a1,i+1, . . . , a1,j). This boundary corresponds to

the fiber product

MY

(
a⃗12, a⃗23, a⃗13; a⃗

1
1, a⃗2, a⃗3; a∞,123, a⃗∞;E1

)
×L1(b)M

(
L1; a⃗

2
1;E2

)
. (9.14)

Here E1 + E2 = E. See Figure 9.5.
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The bubble at L2 and L3 are described by the following fiber products:

MY

(
a⃗12, a⃗23, a⃗13; a⃗1, a⃗

1
2, a⃗3; a∞,123, a⃗∞;E1

)
×L2(b)M

(
L2; a⃗

2
2;E2

)
, (9.15)

MY

(
a⃗12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗

1
3; a∞,123, a⃗∞;E1

)
×L3(b)M

(
L3; a⃗

2
3;E2

)
. (9.16)

Here a⃗12, a⃗
2
2 and a⃗13, a⃗

2
3 are defined in the same way as a⃗11, a⃗

2
1.

L
1
(b)

Figure 9.5. Boundary of type (II).

(III) The third type of boundary corresponds to the limit where the domain will split into
two parts on the image of ϕ123. It is described by the fiber product below. Let jii′ ∈
{0, . . . , kii′}. We put a⃗1ii′ = (aii′,1, . . . , aii′,jii′ ), a⃗

2
ii′ = (aii′,jii′+1, . . . , aii′,kii′ ) for (ii

′) = (12)
or (12). We also put a⃗213 = (a13,1, . . . , a13,j13), a⃗

1
13 = (a13,j13+1, . . . , a13,k13). Note that in

case jii′ = 0 (resp. jii′ = kii′), a⃗
1
ii′ = ∅

(
resp. a⃗2ii′ = ∅

)
for (ii′) = (12) or (13) (the case of

(ii′) = (13) is similar):

MY

(
a⃗212, a⃗

2
23, a⃗

2
13; a⃗1, a⃗2, a⃗3; a, a⃗∞;E2

)
×R123(a)MDR

(
a⃗112, a⃗

1
23, a⃗

1
13; a∞,123, a;E1

)
,

where E1 + E2 = E and a ∈ A123. See Figure 9.6.

R123(a)

Figure 9.6. Boundary of type (III).

(IV) The fourth type of boundary corresponds to the limit where the domain will split into
two parts on the image of ϕii′ . It is described by the fiber product below. We con-
sider the case of ϕ12. Let j ∈ {0, . . . , k12}, j1 ∈ {0, . . . , k1}, j2 ∈ {0, . . . , k2}. We
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put a⃗112 = (a12,1, . . . , a12,j12), a⃗
2
12 = (a12,j12+1, . . . , a12,k12). a⃗1i = (ai,1, . . . , ai,ji), a⃗

2
i =

(ai,ji+1, . . . , ai,ki) for i = 1, 2:

MQT

(
a⃗112, a⃗

1
1, a⃗

1
2; a∞,12, a;E1

)
×L12(a)MY

(
a⃗212, a⃗23, a⃗13; a⃗

2
1, a⃗

2
2, a⃗3; (a, a∞,13, a∞,31), a∞,123;E2

)
, (9.17)

where E1 +E2 = E and a ∈ AL12 . See Figure 9.7. The cases of ϕ23 and ϕ13 are described
by the next fiber products:

MQT

(
a⃗123, a⃗

1
2, a⃗

1
3; a∞,23, a;E1

)
×L12(a)MY

(
a⃗12, a⃗

2
23, a⃗13; a⃗1, a⃗

2
2, a⃗

2
3; a∞,123, (a∞,12, a, a∞,13);E2

)
, (9.18)

MY

(
a⃗12, a⃗23, a⃗

2
13; a⃗

2
1, a⃗2, a⃗

2
3; a∞,123, (a∞,12, a∞,23, a);E2

)
×L13(a)MQT

(
a⃗113, a⃗

1
1, a⃗

1
3; a∞,23, a;E1

)
. (9.19)

Note that a⃗123 and a⃗223 is defined in the same way as a⃗112 and a⃗212. We define a⃗213 =
(a13,1, . . . , a13,j13), a⃗

1
13 = (a13,j13+1, . . . , a13,k13).

L
12
(a)

Figure 9.7. Boundary of type (IV).

We will show item (3) of Proposition 9.8 in Section 17.4. We observe that the four types of the
boundaries are described by the fiber products explained above. In the case of boundaries of
types (I), (II), (IV), we only need to check that the order of the marked points in the moduli
space of Y-diagrams coincides with those of previously defined moduli spaces. We remark
that the boundary of types (IV) with (ii′) = (13) the map ϕ13 identifies the domain of Y -
diagram with [−1, 1]× [0,∞), and for other (ii′) the map ϕii′ identifies the domain of Y -diagram
with [−1, 1]× (−∞, 0] (see Condition 9.5 (2)). Taking this fact into account the above mentioned
coincidence of the order of marked points is correct in this case also.

In the case of boundaries of type (III), we also remark that the map ϕ123 is anti-holomorphic.
So the JXi holomorphic map on the intersection of Ωi with the image of ϕ123 will become a −JXi

holomorphic map on an open subset of the drum appearing in Section 8.

Once we observe these points, the proof of Proposition 9.8 is now a routine.

Proposition 9.9. For each E0, there exists a system of CF-perturbations “S on

MY (⃗a12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3, a∞,−, a⃗∞,+;E)

(with respect to Kuranishi structures which are outer collarings of thickenings of those in Propo-
sition 9.8) for E < E0 such that the following holds:
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(1) They are transversal to 0.

(2) The evaluation map ev∞ is strongly submersive with respect to this CF-perturbation.

(3) The CF-perturbations are compatible with the description of the boundary. Namely, the
restriction of the CF-perturbation on the boundary coincides with the fiber product CF-
perturbation in the sense of [40, Lemma–Definition 10.6] and [46].

(4) The CF-perturbations are compatible with the forgetful maps of the boundary marked points
corresponding to the diagonal component, in the sense of [28, Theorem 5.1].

The proof is the same as Proposition 5.48 and is now a routine. We omit it.

The next step is to rewrite a geometric result Proposition 9.8 to an algebraic one. This is
a process we have done in Sections 3.3, 5.2 and 7.2 as well as several other references especially
in [46, Part II] and proceed as follows. We regard the evaluation map ev13 as an ‘output’ and
other evaluation maps as ‘input’s. In other words, we take differential forms on the targets of the
evaluation maps other than ev13, we then pull them back to the moduli space in Proposition 9.8
and use the CF-perturbation of Proposition 9.9 to push it out to the target of the evaluation
map ev13. We thus obtain a map between de Rham complexes. It will be the Y-diagram
transformation below

Y T E,ε
k12,k23,k13;k1,k2,k3

: CF (L13;L12, L23)

⊗Bk12CF [1](L12)⊗Bk23CF [1](L23)⊗Bk13CF [1](L13)

⊗ CF (L1, L12;L2)⊗ CF (L2, L23;L3)

⊗Bk1CF [1](L1)⊗Bk2CF [1](L2)⊗Bk3CF [1](L3)→ CF (L1, L13;L3). (9.20)

See (9.22). Note that we can find the domain and codomain of the map (9.20) by inspecting the
targets of the evaluation maps of various kinds.

To obtain the basic property of the map (9.20) we use Stokes’ theorem and the composition
formula as follows. We consider the commutator of the map (9.20) and the de Rham differential.
Stokes’ theorem implies that the commutator is equal to the map obtained from the boundary
of the moduli spaces of Proposition 9.8 in the same way as we obtain the map (9.20). We have
described the boundary of the moduli space in Proposition 9.8 and found that the boundary
consists of four types of fiber products. Actually each of types (I), (II), (IV) is a union of three
kinds of boundaries. In the case of type (I) it is a union of components corresponding to three
kinds of disk bubbles, that are, those at L12, L23, and L13. In the case of type (II) it is a union
of components corresponding to three kinds of disk bubbles, that are those at L1, L2, and L3.
In the case of type (IV) it is a union three different ends, where strips escape at the image
of ϕ12, ϕ23, or ϕ13. Thus the formula (9.23) contains ten terms corresponding to those different
kinds of boundaries.

Note that each boundary component is described as the fiber product of a moduli space of
Proposition 9.8 (whose energy is not greater than E) and another moduli space. In the case of
type (I), the another moduli space is one we used to define the filtered A∞ category associated
to Lij . In the case of type (II), the another moduli space is one we used to define the filtered A∞
category associated to Li. In the case of type (III), the another moduli space is the moduli space
of pseudo-holomorphic drums. In the case of type (IV), the another moduli space is one we used
to define the filtered A∞ tri-module associated to Li, Lij , Lj .

Therefore, by the composition formula (see [46, Theorem 10.21]), the terms corresponding to
those 4 types of boundary components are obtained as compositions of the map (9.20) (whose
energy is smaller than E) and one of the following: a map induced from the structure operations
of the filtered A∞ category associated to Lij ; a map induced from the structure operations of
the filtered A∞ category associated to Li; a map induced from the structure operations of
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the filtered tri-module C F (L13;L12,L23); a map induced from the structure operations of the
filtered tri-module C F (Li,Lij ;Lj).

The formula we obtain in this way is (9.23) in Proposition 9.11.
This process to go from geometry to algebra is straightforward and is now becoming a routine.

Since the formula is long (contains many terms), let us first describe it in a simple case and
explain how it will be used in this simple case.

We assume that L1, L3, Lij are embedded and monotone. Suppose that L2 is a union of
embedded monotone Lagrangian submanifolds Li2, i = 0, . . . , k, which intersects transversally
each other. We consider the case when there is no marked points which maps to L1, L3 or Lij .
We use the cyclic element 1123 (that is the function 1 on the diagonal component) and insert it
at the hole in the middle of the Y-diagram. The map (9.20) in this case becomes

CF
(
L1, L12;L

0
2

)
⊗

k⊗
i=1

CF [1]
(
Li−12 , Li2

)
⊗ CF

(
Lk2, L23;L3

)
→ CF (L1, L13;L3). (9.21)

We recall that the tri-module CF (Li, Lij ;Lj) is used to define the filtered A∞ functor WLij via
Yoneda functor. In the simplified case we are discussing, we fix Lij and put no marked points
on the seam. So it is actually a bi-module. Thus the right-hand side of (9.21) corresponds to
the filtered A∞ functor WL13 .

The direct sum of the left-hand side of (9.21) for various L0
2, . . . , L

k
2 becomes the derived

tensor product ten(CF (L1, L12;L
∗
2), CF (L

∗
2, L23;L3)). See Lemma–Definition 10.6. As we will

discuss in Section 10.1 (see Proposition 10.10), the derived tensor product of filtered A∞ bi-
module corresponds to the composition of the corresponding filtered A∞ functors. Thus the
left-hand side of (9.21) corresponds to the composition WL23 ◦WL12 .

We will show that by taking the direct sum over various L0
2, . . . , L

k
2 the map (9.21) becomes

a chain homotopy equivalence and will use it to show (9.1).
Actually, we need to include bounding cochains. We also need to show that the map (9.21)

becomes a left-Fukst(X1) and right-Fukst(X3) bi-module homomorphism. Moreover, we need to
show the functoriality when we have several components of Lij and morphisms (an element of
Floer’s chain complex) from Lij to L

′
ij . To work these out, we need (9.20) and its basic property

Proposition 9.11 in its full generality. (This part of the proof is carried out in Section 10.4 after
preparing various algebraic results.)

We go back to the general case and explain the way to define operations (9.20) using Propo-
sitions 9.9 and 9.8.

Let h∞,123 ∈ Ω(R(a∞,123)), hii′,j ∈ Ω(Lii′(aii′,j), hii′ = (hii′,1, . . . , hii′,kii′ ) (ii
′ = 12, 23 or 13),

h∞,ii′ ∈ Ω(Lii′(a∞,ii′)) (ii′ = 12 or 23), hi,j ∈ Ω(Li(ai,j), hi = (hi,1, . . . , hi,ki) (i = 1, 2 or 3).
Then the Ω(a∞,13) component of

Y T E,ε
k12,k23,k13;k1,k2,k3

(h∞,123;h12,h23,h13;h∞,12, h∞,23;h1,h2,h3)

is by definition

ev∞,13!
(
ev∗∞,123h∞,123 ∧ ev∗12h12 ∧ ev∗23h23 ∧ ev∗13h13

∧ ev∗∞,12h∞,12 ∧ ev∗∞,23h∞,23 ∧ ev∗1h1 ∧ ev∗2h2 ∧ ev∗3h3;”Sε
)
. (9.22)

Here the integration along the fiber appearing in the formula (9.22) is taken on the moduli
spaceMY (⃗a12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3, a∞,123, a⃗∞;E) using the CF-perturbation”Sε. 9.1 We then put

Y T <E0,ε
k12,k23,k13;k1,k2,k3

:=
∑
E<E0

TEY T E,ε
k12,k23,k13;k1,k2,k3

.

We call Y T <E0,ε
k12,k23,k13;k1,k2,k3

the Y diagram transformation.

9.1The sign is discussed in Section 17.4.
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We usually omit the indices k12, k23, k13; k1, k2, k3 above since it is determined automatically
from the input.

Remark 9.10. The order how the variables appears in (9.22) does not coincide with the order
of the tensor factors in (9.20). The former coincides with

CF (L13;L12, L23)⊗BCF [1](L12)⊗BCF [1](L23)⊗BCF [1](L13)

⊗ CF (L1, L12;L2)⊗ CF (L2, L23;L3)⊗BCF [1](L1)⊗BCF [1](L2)⊗BCF [1](L3).

The formula looks easier to read when written in this order. The order of the tensor factors
of (9.22) is one the Y -diagram transformation will be applied in Section 10.4.

Proposition 9.11. The Y diagram transformation Y T <E0,ε
k12,k23,k13;k1,k2,k3

satisfies the following
congruence:

(−1)∗1Y T <E0,ε
(
h∞,123; d̂(h12),h23,h13;h∞,12, h∞,23;h1,h2,h3

)
+ (−1)∗2Y T <E0,ε

(
h∞,123;h12, d̂(h23),h13;h∞,12, h∞,23;h1,h2,h3

)
+ (−1)∗3Y T <E0,ε

(
h∞,123;h12,h23, d̂(h13);h∞,12, h∞,23;h1,h2,h3

)
+ (−1)∗4Y T <E0,ε

(
h∞,123;h12,h23,h13;h∞,12, h∞,23; d̂(h1),h2,h3

)
+ (−1)∗5Y T <E0,ε

(
h∞,123;h12,h23,h13;h∞,12, h∞,23;h1, d̂(h2),h3

)
+ (−1)∗6Y T <E0,ε

(
h∞,123;h12,h23,h13;h∞,12, h∞,23;h1,h2, d̂(h3)

)
+

∑
c12,c23,c13

(−1)∗7Y T <E0,ε
(
n<E0,ε

(
hc13;213 ;h∞,123;h

c12;1
12 ,hc23;123

)
;

hc12;212 ,hc23;223 ,hc13;113 ;h∞,12, h∞,23; ;h1,h2,h3

)
+

∑
c1,c2,c12

(−1)∗8Y T <E0,ε
(
h∞,123;h

c12;1
12 ,h23,h13;

n<E0,ε
(
hc1;11 ,hc12;212 ;h∞,12;h

c2;1
2

)
, h∞,23;h

c1;2
1 ,hc2;22 ,h3

)
+

∑
c2,c3,c23

(−1)∗9Y T <E0,ε
(
h∞,123;h12,h

c23;1
23 ,h13;h∞,12;

n<E0,ε
(
hc2;12 ,hc23;223 ;h∞,23;h

c3;1
3

)
;h1,h

c2;2
2 ,hc3;23

)
−

∑
c1,c3,c13

(−1)∗10n<E0,ε
(
hc1;11 ,hc13;113 ;Y T <E0,ε

(
h∞,123;h12,h23,h

c13;2
13 ;

h∞,12, h∞,23;h
c1;2
1 ,h2,h

c3;2
3

)
;hc3;13

)
≡ 0 mod TE0 . (9.23)

Here ∆(hi) =
∑

ci
hci,1i ⊗ hci,2i , ∆(hii′) =

∑
cii′

h
cii′ ,1
ii′ ⊗ h

cii′ ,2
ii′ and all the signs are by Koszul

rule.9.2

Proof. The proof uses Propositions 9.8 and 9.9 together with Stokes’ theorem (see [40, Propo-
sition 9.26] and [46]) and the composition formula (see [40, Theorem 10.20] and [46]). It goes
in the same way as the proofs of other similar statements we proved before. In fact, the first
three terms correspond to the boundary of type (I) and the fiber products (9.11), (9.12), (9.13),
respectively. The operator d̂ in the first three terms are induced by the structure operations of
Fuk(−Xi ×X ′i).

The 4-th, 5-th and 6-th terms correspond to the boundary of type (II) and the fiber prod-
ucts (9.14), (9.15) and (9.16), respectively. The operator d̂ in the 4-th, 5-th and 6-th terms are
induced by the structure operations of Fuk(Li).

9.2See Section 17.1 for the way the Koszul rule determines the sign.
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The 7-th term corresponds to the boundary of type (III) and the fiber product (9.17). Note
that the structure map n appearing in the 7-th term is one of the tri-module C F (L13;L12,L23).

The 8-th, 9-th and 10-th terms correspond to the boundary of type (IV) and the fiber products
(9.17), (9.18), and (9.19), respectively. The structure map n appearing in the 8-th, 9-th and
10-th terms is structure operation of the tri-module C F (Li,Lij ;Lj).

The sign will be discussed in Section 17.4. ■

In the same way as Definition 2.5 (8), we can modify our operations and change the congruence
in (9.23) to the equality. Namely, we have the following.

Proposition 9.12. There exists a map

Y T : CF (L12, L23, L13)⊗BCF [1](L12)⊗BCF [1](L23)⊗BCF [1](L13)

⊗ CF (L1, L12, L2)⊗ CF (L2, L23, L3)

⊗BCF [1](L1)⊗⊗BCF [1](L2)⊗BCF [1](L3)→ CF (L1, L13, L3) (9.24)

such that if we replace Y T <E0,ε by Y T the formula (9.23) holds as an exact equality. Namely,

(−1)∗1Y T
(
h∞,123; d̂(h12),h23,h13;h∞,12, h∞,23;h1,h2,h3

)
+ (−1)∗2Y T

(
h∞,123;h12, d̂(h23),h13;h∞,12, h∞,23;h1,h2,h3

)
+ (−1)∗3Y T

(
h∞,123;h12,h23, d̂(h13);h∞,12, h∞,23;h1,h2,h3

)
+ (−1)∗4Y T

(
h∞,123;h12,h23,h13;h∞,12, h∞,23; d̂(h1),h2,h3

)
+ (−1)∗5Y T

(
h∞,123;h12,h23,h13;h∞,12, h∞,23;h1, d̂(h2),h3

)
+ (−1)∗6Y T

(
h∞,123;h12,h23,h13;h∞,12, h∞,23;h1,h2, d̂(h3)

)
+

∑
c12,c23,c13

(−1)∗7Y T
(
n
(
hc13;213 ;h∞,123;h

c12;1
12 ,hc23;123

)
;

hc12;212 ,hc23;223 ,hc13;113 ;h∞,12, h∞,23; ;h1,h2,h3

)
+

∑
c1,c2,c12

(−1)∗8Y T
(
h∞,123;h

c12;1
12 ,h23,h13; n

(
hc1;11 ,hc12;212 ;h∞,12;h

c2;1
2

)
,

h∞,23;h
c1;2
1 ,hc2;22 ,h3

)
+

∑
c2,c3,c23

(−1)∗9Y T
(
h∞,123;h12,h

c23;1
23 ,h13;h∞,12;

n
(
hc2;12 ,hc23;223 ;h∞,23;h

c3;1
3

)
;h1,h

c2;2
2 ,hc3;23

)
−

∑
c1,c3,c13

(−1)∗10n
(
hc1;11 ,hc13;113 ;Y T

(
h∞,123;h12,h23,h

c13;2
13 ;

h∞,12, h∞,23;h
c1;2
1 ,h2,h

c3;2
3

)
;hc3;13

)
= 0. (9.25)

Moreover, Y T ≡ Y T <E0,ε mod TE0.

We call Y T , the Y diagram transformation also.

9.3 Proof of Proposition 9.2 (2)

In this subsection, we prove Proposition 9.2 (2).
Let L12 = (L12, σ12, b12) (resp. L23 = (L23, σ23, b23)) be an object of Fukst(−X1 × X2)

(resp. Fukst(−X2 ×X3)). Let L13 = (L13, σ13, b13) be the geometric composition L23 ◦ L12.
Let L1 = (L1, σ1, b1) and we put

L2 = (L2, σ2, b2) =WL12(L1), L(1)3 =
(
L3, σ3, b

(1)
3

)
=WL23(L2)
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and

L(2)3 =
(
L3, σ3, b

(2)
3

)
=WL13(L1).

We remark that the underlying Lagrangian submanifold of L(1)3 is equal to the underlying La-
grangian submanifold of L(2)3 . This is obvious since

L2 ×X2 L23 = L1 ×X1 L12 ×X2 L23 = L1 ×X1 L13.

The coincidence of the relative spin structure is the main part of Proposition 9.2 (1) which we
will prove in Section 17.4. We will prove in this subsection the next proposition.

Proposition 9.13. The bounding cochain b
(1)
3 is gauge equivalent to b

(2)
3 in the sense of [34,

Definition 4.3.1].

Proof. We use the next algebraic lemma to prove Proposition 9.13.

Lemma 9.14. Let (D, {nk}) be a G-gapped right filtered A∞ module over (C, {mk}). Let 1(1),
1(2) be cyclic elements of D and b(1), b(2) bounding cochains of C such that

∞∑
k=0

nk
(
1(i); b(i), . . . , b(i)

)
= 0.

We also assume

1(1) ≡ 1(2) mod Λ+. (9.26)

Then b(1) is gauge equivalent to b(2).

Proof. We use a certain result and notations of [34] in the proof. Let C be a model of [0, 1]×C
in the sense of [34, Definition 4.2.1]. Let D be a model of [0, 1] × D in the sense of [34,
Definition 5.2.21], which is a right C module. Such C and D exists by [34, Lemma 4.2.13 and
Theorem 5.2.23]. Since Eval0 ⊕ Eval1 : D → D ⊕ D is surjective (see [34, Definition 5.2.23]),
we have ∆1 ∈ D such that (Eval0)(∆1) = 0, (Eval1)(∆1) = 1(2) − 1(1). Using (9.26), we may
choose ∆1 such that

∆1 ≡ 0 mod Λ+. (9.27)

We put 1̂ = Incl(1(1)) + ∆1. (9.27) implies that 1̂ is a cyclic element of the right C module D.
Therefore, by Proposition 6.6 there exists a bounding cochain b̂ of c such that

∞∑
k=0

nk
(
1̂; b̂, . . . , b̂

)
= 0.

We remark that (Eval0)
(
1̂
)
= 1(1), (Eval1)

(
1̂
)
= 1(2). Therefore, using the uniqueness part of

Proposition 6.6 we find that (Eval0)
(
b̂
)
= b(1), (Eval1)

(
b̂
)
= b(2). Hence b(1) is gauge equivalent

to b(2), as required. ■

We go back to our geometric situation and use Y diagram transformation Y T to define
a map

MY : CF (L1;L12;L2)⊗ CF (L2;L23;L3)→ CF (L1;L13;L3) (9.28)

by

MY (h∞,+,12, h∞,+,23) = Y T
(
1123; e

b12 , eb23 , eb13 ;h∞,+,12, h∞,+,23; e
b1 , eb3 , eb

(1)
3
)
.
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(h∞,+,12, h∞,+,23)

h∞,+,12

h∞,+,23

b2

b2

b2

b12

b23

b23

b1
b1

b1

b3

b13b13

L13

L12

L23

L1

L2

L3

1123

Figure 9.8. The map MY .

Here 1123 ∈ CF (L12;L23;L13) is the cyclic element we used in Lemma 8.10. (See Figure 9.8.)
In other words, it is the function 1 on the diagonal component of(

L̃12 × L̃23 × L̃13

)
×(X1×X2×X3)2 ∆

∼= L̃13 ×X1×X3 L̃13.

Note that CF (Li, Lii′ ;Li′) for ii′ = 12, 23 or 13 is a filtered A∞ tri-module over CF (Li),
CF (Lii′), CF (Li′). Therefore, bounding cochains of CF (Li), CF (Lii′), CF (Li′) deform their
‘boundary operators’ to obtain a boundary operator. Namely, if bibii′ , bi′ are bounding cochains
of CF (Li), CF (Lii′), CF (Li′), we put dbi;bii′ ;bi′ (x) = n

(
ebi , ebii′ ;x; ebi′

)
, where n is the structure

operations of the tri-module in Theorem 5.25.

Lemma 9.15. The map MY in (9.28) is a chain map with respect to the boundary opera-
tors db1;b12;b2, db2;b23;b

(1)
3 , db1;b13;b

(1)
3 .

Proof. We put h∞,123 = 1123, h12 = eb12 , h23 = eb23 , h13 = eb13 , h1 = eb1 , h2 = eb2 , h3 = eb
(1)
3

and apply Proposition 9.12. The first 6 terms of (9.24) vanish because hii′ , hi are exponen-
tials of the bounding cochains. The 7th term vanishes because 1123 is a cycle with respect
to the differential of CF (L13;L12, L23) twisted by b12, b23, b13. In fact, this is the definition
of b13. (See (8.4).) The 8th, 9th, 10th terms give the elements Y T (db1;b12;b2(h∞,12), h∞,23),
Y T (h∞,12, d

b1;b23;b
(1)
3 (h∞,23)), and db1;b13;b

(1)
3 (Y T (h∞,12, h∞,23)) respectively. The lemma fol-

lows. ■

For ii′ = 12, 23 or 13, we denote by 1ii′ the function 1 on the diagonal component of L̃i×Xi×Xi′

Li′ .

Lemma 9.16. Y T (112,123) ≡ 113 mod Λ+.

Proof. The operation Y T are defined modulo Λ+ by the integration along the fiber of the mod-
uli spaceMY (⃗a12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3, a∞,123, a⃗∞; 0), which consists of constant maps. Using this
fact and the definitions, we can prove the lemma easily in the same way as Proposition 6.12. ■

We recall that on CF (L1, L13;L3) we have a structure of right CF (L3) module nk. In fact,
we put nk(y;x1, . . . , xk) = n

(
eb1 ; eb13 ; y;x1, . . . , xk

)
(see Lemma 6.10).
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By the definition of b
(2)
3 , we have

∞∑
k=0

nk
(
113; b

(2)
3 , . . . , b

(2)
3

)
= 0. (9.29)

We put 1′13 = Y T (112,123). Then by Lemma 9.15, we have

∞∑
k=0

nk
(
1′13; b

(1)
3 , . . . , b

(1)
3

)
= 0. (9.30)

By (9.29), (9.30) and Lemma 9.16, we can apply Lemma 9.14 to conclude that b
(1)
3 is gauge

equivalent to b
(2)
3 . The proof of Proposition 9.2 (2) is complete. ■

10 The compatibility as 2-functors

10.1 The composition of A∞ functors defines a bi-functor

To obtain a more functorial version of Theorem 9.1, we need the following algebraic result.

Theorem 10.1. Let Ci be a unital, strict and gapped filtered A∞ category for i = 1, 2, 3. Then,
there exists a filtered A∞ bi-functor

Comp : FUNC(C1,C2)×FUNC(C2,C3)→ FUNC(C1,C3) (10.1)

such that Compob(F12,F23) = F23 ◦F12.

We fix a discrete monoid G ⊂ R≥0. Here and hereafter the objects FUNC(C1,C2) are strict,
unital and G-gapped filtered A∞ functors.

Remark 10.2. Theorem 10.1 could be a part of the construction of an (A∞) 2-category whose
object is a filtered A∞ category. See Section 10.6.

The unfiltered version of this statement is in [61]. We prove it here since we need the
construction of the functor Comp for our application to geometry in Sections 10.2 and 10.5. Our
proof below is different from the proof in [61].

Proof. Let C1, C2 be unital, strict and gapped filtered A∞ categories.

Lemma–Definition 10.3. There exists a filtered A∞ functor

RYon : FUNC(C1,C2)→ BIMOD(C1,C2)
op,

which is a homotopy equivalence to its image. We call this functor the relative Yoneda functor.

Proof. The functor OpYon (for C2) and the isomorphism in Lemma 2.33 induces

FUNC(C1,C2) ∼= FUNC(C op
1 ,C op

2 )op → FUNC(C op
1 ,FUNC(C2, CH))op.

On the other hand, in Definition 5.14, we defined an isomorphism

FUNC(C op
1 ,FUNC(C2, CH)) ∼= BIMOD(C1;C2).

The lemma follows. ■
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Let us describe the functor RYon more explicitly below. Let F : C1 → C2 be an object
of FUNC(C1,C2). We first define left-C1 and right-C2 bi-module RYonob(F). Let ci be an
object of Ci for i = 1, 2. We put Dc1,c2 = C2(Fob(c1), c2). Let x ∈ BC1(c

′
1, c1), z ∈ Dc1,c2 ,

y ∈ BC2(c2, c
′
2). We define n(x, z,y) ∈ Dc′1,c

′
2
= C2(Fob(c

′
1), c

′
2) by

n(x, z,y) = (−1)deg′ ym
(
F̂(x), z,y

)
. (10.2)

Remark 10.4. In the definition of relative Yoneda functor, we use OpYon which is defined by
using opposite category C op. Moreover, we use the isomorphism FUNC(C1,C2) ∼= FUNC(C op

1 ,
C op
2 )op. Since we take the operation taking opposite twice x in the left-hand side becomes x in

the right hand side. The +1 in Definition 2.30 (3) cancels with the minus sign in Definition 2.18.
A rather complicated process to define OpYon becomes a simple and natural formula (10.2),

when we write it explicitly.
The languages of functors and of bi-modules are mostly equivalent when the target is CH.

However, the identification includes the process taking opposite.

We will check (5.12). Let ∆x =
∑

a1
xa1;1 ⊗ xa1;2, ∆y =

∑
a2

ya2;1 ⊗ ya2;2. By definition, we
have ∑

a1

∑
a2

(−1)∗2n(xa1;1, n(xa1;2, z,ya2;1),ya2;2)

=
∑
a1

∑
a2

(−1)∗3m
(
F̂(xa1;1),m(F̂(xa2;1), z,ya2;1),ya2;2

)
, (10.3)

where ∗2 = deg′ xa1;1 and ∗3 = deg′ xa2;1 + deg′ y.
Moreover,

n
(
d̂(x), z,y

)
= (−1)deg′ ym

(
F̂(d̂x), z,y

)
= (−1)deg′ ym

(
d̂(F̂(x)), z,y

)
. (10.4)

Here the second equality follows from the fact that F is a filtered A∞ functor. Furthermore,

(−1)deg′ x+deg zn
(
x, z, d̂(y)

)
=
∑
a1

(−1)∗4m
(
F̂(x), z, d̂(y)

)
, (10.5)

where ∗4 = deg′ x+ deg z + deg′ y.
Formulas (10.3), (10.4), (10.5) and the A∞ formula for m imply (5.12) with sign modified

(see Remark 10.5), using the fact that F̂ is a cohomomorphism. Thus Dc1,c2 equipped with this
bi-module structure is RYonob(F)(c1, c2).
Remark 10.5. In this and the next sections, we use the sign convention of filtered A∞ modules
(multi-modules) so that the degree of elements of modules are not shifted. In other words,
in (10.5), deg z appears in place of deg′ z. The sign (−1)deg′ y in (10.2) appears by this reason.
See Remark 5.5.

A natural transformation T from F to G gives T0(c1) ∈ C2(Fob(c1),Gob(c1)). It induces
a cochain map C2(Gob(c1), c2) → C2(Fob(c1), c2). This is a part of a bi-module homomorphism
from RYonob(G) to RYonob(F). The direction of the arrows are opposite. This is the reason
why the opposite category appears in Lemma–Definition 10.3.

The next lemma-definition, Propositions 10.10 and 10.23 are closely related to the work [75]
by Toën.

Lemma–Definition 10.6. Let C1, C2, C3 be filtered A∞ categories. There exists a filtered A∞
bi-functor

ten : BIMOD(C1,C2)× BIMOD(C2,C3)→ BIMOD(C1,C3).

We call it the derived tensor product functor.
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Proof. Let

D12 =
({
D12
c1,c2

}
,
{
n12c′1,c1,c2,c′2

})
be an object of BIMOD(C1,C2) and let

D23 =
({
D23
c2,c3

}
,
{
n23c′2,c2,c3,c′3

})
be an object of BIMOD(C1,C2). We will define an object

D13 =
({
D13
c1,c3

}
,
{
n13c′1,c1,c3,c′3

})
of BIMOD(C1,C3).

Let c1, c
′
1 ∈ OB(C1), c3, c

′
3 ∈ OB(C3). We put

D13
c1,c3 =

⊕̂
c2,c′2

D12
c1,c2

“⊗BC2[1](c2, c
′
2)“⊗D23

c′2,c3
. (10.6)

We remark that BC2[1](c2, c
′
2) contains 1 ∈ B0C2[1](c2, c2) ∼= Λ0 when c2 = c′2.

Let x ∈ BC1[1](c
′
1, c1), y ∈ BC3[1](c3, c

′
3) and

z = u⊗ v ⊗ w ∈ D12
c1,c2

“⊗BC2[1](c2, c
′
2)“⊗D23

c′2,c3
⊆ D13

c1,c3 .

We define n13c′1,c1,c3,c′3
: BC1[1](c

′
1, c1)“⊗D13

c1,c3 ⊗BC3[1](c3, c
′
3)→ D13

c′1,c
′
3
by

n13c′1,c1,c3,c′3
(x, z,y) :=



∑
a n

12(x, u,va;1)⊗ va;2 ⊗ w if y = 1 ∈ B0C3(c3, c
′
3),∑

a(−1)∗u⊗ v1:a ⊗ n23(va;2, w,y) if x = 1 ∈ B0C1(c1, c
′
1),∑

a n
12(u,va;1)⊗ va;2

+
∑

a(−1)∗u⊗ va;1 ⊗ n23(va;2, w)

+(−1)deg uu⊗ d̂(v)⊗ w if x = y = 1,

0 otherwise,

(10.7)

where ∗ = deg u+ deg′ va;1 and ∆v =
∑

a va;1 ⊗ va;2. It is straightforward to check (5.12) with
sign modified (see Remark 10.7). We thus defined tenob.

Remark 10.7. We remark that in the second, fourth and fifth lines of the right-hand side we
used deg u and not deg′ u.

Remark 10.8. Note that in the case of D13 = ten
(
D12,D23

)
, the ‘left multiplication’ and the

‘right multiplication’ exactly commute. This is the reason why we take 0 in the fourth case
of (10.7). In fact, n1,1 in the bi-module structure is a chain homotopy between n0,1(n1,0(x, z), y)
and (−1)deg′ xn1,0(x, n0,1(z, y)).

We next define the morphism part of the bi-functor ten. Let

D(j),12 =
({
D(j),12
c1,c2

}
,
{
n12c′1,c1,c2,c′2

})
be an object of BIMOD(C1,C2) for j = 1, 2 and

D(j),23 =
({
D(j),23
c2,c3

}
,
{
n23c′2,c2,c3,c′3

})
an object of BIMOD(C1,C2) for j = 1, 2. A pre-bi-module homomorphism f12 : D(1),12→ D(2),12

(resp. f23 : D(1),23 → D(2),23 ) consists of

f12k1,k2 : Bk1C1[1](c1, c
′
1)⊗D(1),12

c′1,c
′
2
⊗Bk2C2[1](c

′
2, c2)→ D(2),12

c1,c2 ,

(resp. f23k2,k3 : Bk2C2[1](c2, c
′
2)⊗D(1),23

c′2,c
′
3
⊗Bk3C3[1](c

′
3, c3)→ D(2),23

c2,c3 ).
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See Definition 5.11. We define its tensor product f12 ⊗ f23 = f13 as follows. We define D
(j),13
c1,c3 in

the same way as (10.6). f13 consists of the maps

f13k1,k3 : Bk1C1[1](c1, c
′
1)⊗D(1),13

c′1,c
′
3
⊗Bk3C3[1](c

′
3, c3)→ D(2),13

c2,c3 ,

which we define by the next formula. Let x ∈ BC1[1](c
′
1, c1), y ∈ BC3[1](c3, c

′
3) and

z = u⊗ v ⊗ w ∈ D(1),12
c1,c2

“⊗BC2[1](c2, c
′
2)“⊗D23

c′2,c3
⊂ D(1),13

c1,c3 .

We put

f13k1,k3(x, z,y)

=
∑
a

(−1)deg f
23
∗,k3

(deg′ x+deg u+deg′ va;1+deg′ va;2)f12k1,∗(x, u,va;1)⊗ va;2 ⊗ f23∗,k3(va;3, w,y).

Here (1⊗∆) ◦∆v =
∑

a va;1 ⊗ va;2 ⊗ va;3. We can easily show that f13 gives a chain map

BIMOD(C1,C2)
(
D(1),12,D(2),12

)
⊗ BIMOD(C2,C3)

(
D(1),23,D(2),23

)
→ BIMOD(C1,C3)

(
D(1),13,D(2),13

)
Moreover, this map

(
f12, f23

)
7→ f12 ⊗ f23 = f13 is compatible with composition. Namely,(

f(1),12 ◦ f(2),12
)
⊗s
(
f(1),23 ◦ f(2),23

)
= (−1)deg f(1),23 deg f(2),12

(
f(1),12 ⊗s f(1),23

)
◦
(
f(2),12 ⊗s f(2),23

)
.

See (2.11) for ⊗s.
Therefore, by putting other operations to be zero we obtain a required bi-functor. The proof

of Lemma–Definition 10.6 is complete. ■

The derived tensor product functor induces

BIMOD(C1,C2)
op × BIMOD(C2,C3)

op → BIMOD(C1,C3)
op,

which we denote also by ten.

Remark 10.9. The proof shows that ten is actually a bi-DG-functor between DG-categories.

The proof of the next proposition is the most nontrivial part of the proof of Theorem 10.1.

Proposition 10.10. Assume that C1, C2, C3 are unital, strict and gapped. Let F12 : C1 → C2

and F23 : C2 → C3 be filtered A∞ functors. Then the object tenob(RYonob(F12),RYonob(F23))
of BIMOD(C1,C3)

op is homotopy equivalent to RYonob(F23 ◦ F12).

The proof is given in Section 10.5.

Remark 10.11. Suppose that C1, C2 and C3 are associative rings with unity. They can be
regarded as unital A∞ categories. Let F12 : C1 → C2 and F23 : C2 → C3 be unital ring homo-
morphisms which are special cases of A∞ functors.

The bi-module associated to F12 is C2 which is regarded as a right C2 module by right
multiplication and a left C1 module by x · y = F12(x)y. We write this bi-module as C1(C2)C2 .
In the same way F23 corresponds to C2(C3)C3 . Their tensor product is C1(C2)C2 ⊗C2 C2(C3)C3 =

C1(C3)C3 . Here the left C1 module structure is induced by F23 ◦F12. This is Proposition 10.10
in this case.
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Now we are in the position to complete the proof of Theorem 10.1. We consider the bi-functor

ten ◦ (RYon×RYon) : FUNC(C1,C2)×FUNC(C2,C3)→ BIMOD(C1,C3)
op.

We consider the full subcategory Rep(C1,C3) of BIMOD(C1,C3)
op whose object is homotopy

equivalent to an image of RYon : FUNC(C1,C3) → BIMOD(C1,C3)
op. Proposition 10.10

implies that the image of ten ◦ (RYon×RYon) is contained in this full subcategory.
Moreover, by Lemma–Definition 10.3 and Theorem 2.28, there exists a filtered A∞ func-

tor Rep(C1,C3)→ FUNC(C1,C3) which is a homotopy inverse to RYon. Therefore, there exists
a filtered A∞ functor Comp : FUNC(C1,C2) × FUNC(C2,C3) → FUNC(C1,C3) such that the
next diagram commutes up to homotopy equivalence:

FUNC(C1,C2)×FUNC(C2,C3) −−−−→ FUNC(C1,C3)y y
BIMOD(C1,C2)

op × BIMOD(C2,C3)
op −−−−→ BIMOD(C1,C3)

op.

(10.8)

This is the required functor. ■

Remark 10.12. The construction of the composition functor we gave in this subsection is
rather indirect. In other words, we did not provide an explicit formula how the pre-natural
transformations are sent by this functor. This is because an explicit homotopy inverse to the
Yoneda functor is not given. We can certainly find some formula by following the proof. In
fact, the Yoneda functor is explicitly given in [27] and the proof of Theorem 2.28 in [27] is by
induction each of whose steps is in principle can be made explicit. However, the explicit formula
which we may obtain in that way seems to be very complicated and is not practical to use it.

10.2 Proof of Theorem 9.1

In this section, we prove Theorem 9.1. Before starting the proof, we twist the (category version
of the) map Y T in Proposition 9.12 by bounding cochains. We denote by Li, Lii′ or L(j)i , L(j)ii′
objects of Fukst(Xi), Fukst(−Xi ×Xi′). We recall

BkCF [1](Li,L′i) =
⊕

Li=L
(0)
i ,...,L(k)i =L′i

k⊗
j=1

CF
(
L(j−1)i ,L(j)i

)
[1]

and BCF [1](Li,L′i) is their completed direct sum over k. We define the modules BkCF [1](Lii′ ,
L′ii′), BCF [1](Lii′ ,L′ii′) in the same way.

We define a map t⃗
b
:
⊗k

j=1CF
(
L(j−1)i ,L(j)i

)
[1]→ BCF [1](Li,L′i) by

t⃗
b
(x1, . . . , xk) := eb0x1e

b1x2 · · ·xk−1ebk−1xke
bk

(see (5.9)). It induces t⃗
b
: BCF [1](Li,L′i)→ BCF [1](Li,L′i). We define t⃗

b
: BCF [1](Lii′ ,L′ii′)→

BCF [1](Lii′ ,L′ii′) in the same way.
We now define the map

Y T b⃗ : BCF [1](L1,L′1)⊗BCF [1](L12,L′12)⊗BCF [1](L23,L′23)
⊗ CF (L′1,L′12;L′2)⊗BCF [1](L′2,L2)⊗ CF (L2,L′23;L′3)⊗BCF [1](L′3,L3)
⊗BCF [1](L′13,L13)⊗ CF (L13;L12,L23)→ CF (L1,L13;L3) (10.9)

by composing t⃗
b
with Y T . (We do not apply t⃗

b
to the factors CF (L′1,L′12;L′2), CF (L2,L′23;L′3),

CF (L1,L13;L3).)
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Lemma 10.13. (9.25) holds when we replace Y T , d̂, n by Y T b⃗, d̂b, nb, respectively. Here
d̂b, nb are defined by t⃗

b
◦ d̂b = d̂ ◦ t⃗

b
, t⃗
b
◦ nb = n ◦ t⃗

b
.

This is immediate from Proposition 9.12.

Proof of Theorem 9.1. Let L12, L23 be as in Theorem 9.1 and L13 = L23 ◦ L12. We apply
the relative Yoneda functor RYonob to WL13 . By definition we obtain C F (L1,L13;L3). We
fixed L13 ∈ L13 so we regard C F (L1,L13;L3) as a left-Fukst(X1) and right-Fukst(X3) bi-module.
It assigns W(1)(L1,L3) = CF (L1,L13;L3) to Li ∈ Ob(Fukst(Xi)) for i = 1, 3.

We apply the relative Yoneda functor RYonob to WL12 and WL23 . We then obtain tri-
modules C F (L1,L12;L2) and C F (L2,L23;L3), respectively. We fix L12 and L23 and regard
them as left-Fukst(X1) and right-Fukst(X2) and left-Fukst(X2) and right-Fukst(X3) modules
respectively. We consider WL23 ◦ WL12 and apply the relative Yoneda functor RYonob to it.
Then, by Proposition 10.10, we obtain ten(C F (L1,L12;L2),C F (L2,L23;L3)). We regard it as
a left-Fukst(X1) and right-Fukst(X3) bi-module. To Li ∈ Ob(Fukst(Xi)) for i = 1, 3, it assigns

W(2)(L1,L3) =
⊕
L2,L′2

CF (L1,L12;L2)⊗BCF [1](L2,L′2)⊗ CF (L′2,L23;L3). (10.10)

The pre-bi-module homomorphism we look for is a system of maps

BCF [1](L1,L′1)⊗W(2)(L′1,L′3)⊗BCF [1](L′3,L3)→W(1)(L1,L3).

Namely,

T : BCF [1](L1,L′1)⊗ CF (L′1,L12;L2)⊗BCF [1](L2,L′2)
⊗ CF (L′2,L23;L′3)⊗BCF [1](L′3,L3)→ CF (L1,L13;L3).

We define

T (h1, h∞,+,12,h2, h∞,+,23,h3)

= (−1)∗Y T b⃗(1123;∅12,∅23,∅13;h∞,+,12, h∞,+,23;h1,h2,h3).

Here ∅ii′ = 1 ∈ B0CF (Lii′) and 1123 ∈ CF (L12,L23;L13) is the cyclic element. The sign (−1)∗
is determined by the Koszul rule. We count the way exchanging the order of the variables using
the shifted degree deg′ for elements of BCF [1](L′i,Li) (or BCF [1](Li,Li)) and deg for elements
of CF (L′1,L12;L2) etc. Then we put the sign according to whether the total count is even or
odd.

Remark 10.14. The sign in (10.13) is also by Koszul rule. However, it is different from the
one we describe above. Namely, deg′ is used also for elements of tri-modules, CF (L′1,L12;L2)
etc. We change the sign of the maps in the same way as (5.8) (see also (10.2)) to go from one to
the other.

The condition that T is a bi-module homomorphism is a consequence of Lemma 10.13 and the
fact that 1123 becomes a cycle (after twisting the boundary operator by the bounding cochains
b12, b23, b13).

We continue the proof of Theorem 9.1 and prove that T is a homotopy equivalence. In view
of Lemma 7.9, the next step is to prove that the chain map

T0,0;L1,L3 : W(2)(L1,L3)→W(1)(L1,L3) (10.11)

is a chain homotopy equivalence for arbitrary L1, L3. By Proposition 10.10, the derived tensor
product (10.10) is chain homotopy equivalent to

CF (WL23(WL12(L1)),L3) ∼= CF (WL12(L1),L23;L3). (10.12)
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In fact, the chain homotopy equivalence from (10.12) to (10.10) is given by

x 7→ 112 ⊗ x, (10.13)

for x ∈ CF (WL23(WL12(L1)),L3). Here 112 ∈ CF (L1,L12;WL12(L1)) is the cyclic element
which becomes the unity in CF (WL12(L1)) by the isomorphism

CF (L1,L12;WL12(L1)) ∼= CF (WL12(L1)).

Note that if we regard x as an element of the right-hand side of (10.12), then 112 ⊗ x is an
element of

CF (L1,L12;WL12(L1))⊗ CF (WL12(L1),L23;L3),

which is contained in (10.10) as the case L2 = L′2 =WL12(L1).
The map (10.13) is identified with the map I12;0,0 in (10.33), which we will use to prove

Proposition 10.10.
Thus to prove that (10.11) is a chain homotopy equivalence, it suffices to show that the

composition

CF (WL12(L1),L12;L3)→W(2)(L1,L3)→W(1)(L1,L3) (10.14)

is a chain homotopy equivalence. By definition, (10.14) is the map

h∞,+,23 7→ T (∅1,112,∅2, h∞,+,23,∅3)

= Y T b⃗(1123;∅12,∅23,∅13;112, h∞,+,23;∅1,∅2,∅3). (10.15)

Here ∅i = 1 ∈ B0CF (Li), for i = 1, 2, 3.

Lemma 10.15.

(1) CF (WL12(L1),L23;L3) ∼=W(1)(L1,L3) ∼= Ω(L1 ×X1 L12 ×X2 L23 ×X3 L3,Θ−)“⊗Λ0.

(2) The map (10.15) is congruent to the identity map modulo Λ+ via the isomorphism of
item (1).

Proof. (1) is immediate from the definition. (2) then follows from the fact that energy 0 part
of the map FY b⃗ is defined by the moduli space of constant maps. ■

To complete the proof of Theorem 9.1, we need to discuss the following point. Note that
while we proved Proposition 9.2 we showed that the two bounding cochains, written as b

(1)
3 and

b
(2)
3 there, are gauge equivalent. However, they are not necessary equal. In the above argument,
we used b

(2)
3 . In fact, CF (L2,L23;L3) using b(2)3 gives WL23 : Fukst(X2)→ Fukst(X3).

On the other hand, CF (L1,L13;L3) with b(1)3 givesWL13 : Fukst(X1)→ Fukst(X3). Therefore,
to complete the proof of Theorem 9.1, we need to compare CF (L1,L13;L3) with two different
choices of bounding cochains and show that they are homotopy equivalent as left-Fukst(X1) and
right-Fukst(X3) bi-modules. We can prove it in the same way as the proof of Proposition 9.2 as
follows.

We consider Poly(CF (L1,L13;L3)) which is a left-Fukst(X1) and right-Poly(Fuk(X3)) bi-
module. (See [34, Section 5.2.3] and the proof of Proposition 6.16.) Here Poly(Fuk(X3))
is an A∞ category obtained from Fuk(X3) replacing the morphism modules CF (L3,L′3) by
Poly(CF (L3,L′3)).

The A∞ category Poly(Fuk(X3)) is curved. Note that each objects of Fukst(X3) which
is in the image of the functors WL23 ◦ WL12 (resp. WL13) comes with a choice of bound-
ing cochains b

(2)
3

(
resp. b

(1)
3

)
. We can lift those choices to a bounding cochain b̂ such that
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Evals=0

(
b̂
)
= b

(1)
3 and Evals=1

(
b̂
)
= b

(2)
3 . (See the proof of Lemma 9.14.) We use b̂ to eliminate

curvature and obtain an object of associated strict category of Poly(Fuk(X3)), which we denote
by Polyst(Fuk(X3)).

By the proof of Proposition 9.2, there exists a commutative diagram of A∞ functors

Fukst(X1) −−−−→ FUNC(Fukst(X3)
op, CH)

=

y yEval∗s=0

Fukst(X1) −−−−→ FUNC(Polyst(Fuk(X3))
op, CH)

=

x xEval∗s=1

Fukst(X1) −−−−→ FUNC(Fukst(X3)
op, CH).

(10.16)

Here the first horizontal arrow is obtained by using b
(1)
3 and the third horizontal arrow is obtained

by using b
(2)
3 . Since the right vertical arrows are homotopy equivalences, we obtained the required

homotopy equivalence.
The proof of Theorem 9.1 is complete. ■

10.3 The compatibility as bi-functors

We can strengthen Theorem 9.1 as follows.

Theorem 10.16. The next diagram commutes up to homotopy equivalence of unital, strict and
gapped filtered A∞ bi-functors:

Fukst(−X1 ×X2)× Fukst(−X2 ×X3) −−−−→ Fukst(−X1 ×X3)y y
FUNC(Fukst(X1),Fukst(X2))

×FUNC(Fukst(X2),Fukst(X3))
−−−−→ FUNC(Fukst(X1),Fukst(X3)).

Here the first horizontal arrow is (8.3) and the second horizontal arrow is (10.1) in the case
of Ci = Fukst(Xi). The vertical arrows are correspondence bi-functors.

The proof will be given in Section 10.4.

Remark 10.17. Theorem 10.16 enhances Theorem 9.1, and Theorem 9.1 enhances Proposi-
tion 9.2. Below we explain the difference between those three statements. Theorem 10.16 is
a coincidence between two bi-functors

Fukst(−X1 ×X2)× Fukst(−X2 ×X3)→ FUNC(Fukst(X1),Fukst(X3)). (10.17)

We first fix an object L12 (resp. L23) of Fukst(−X1×X2) (resp. Fukst(−X2×X3)). Then the two
bi-functors (10.17) give two objects of FUNC(Fukst(X1),Fukst(X3)). The coincidence of those
two objects, which are the functors: Fukst(X1)→ Fukst(X3), is Theorem 9.1. Note that a func-
tor: Fukst(X1) → Fukst(X3) gives a set theoretical map: OB(Fukst(X1)) → OB(Fukst(X3)).
The coincidence of two such set theoretical maps is Proposition 9.2.

Theorem 9.1 contains the coincidence of the morphism parts of the functors: Fukst(X1) →
Fukst(X3). To prove Theorem 9.1, we proved that (10.11) is homotopy equivalence of left-
Fukst(X1) and right-Fukst(X3) bi-modules.

Theorem 10.16 includes statements on the coincidence of the way the morphisms of Fukst(−X1

× X2) and of Fukst(−X2 × X3) are mapped by (10.17). In the homology level, it implies the
following. Suppose L12, L′12 (resp. L23, L′23) are objects of Fukst(−X1×X2) (resp. Fukst(−X2×
X3)) and L1, L′1 are objects of Fukst(X1).
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(10.17) defines a homomorphism

HF (L12,L′12)⊗HF (L23,L′23)→ Hom(HF (L1,L′1), HF (L3,L′3)). (10.18)

Here L3 (resp. L′3) is obtained by transforming L1 (resp. L′1) via the composition of L12 and L23
(resp. L′12 and L′23). Theorem 10.16 implies that the homomorphisms (10.18) obtained by the
following two different ways coincide.

The first way to obtain (10.18) is the following. Let L13 (resp. L′13) be the composition of L12
(resp. L′12) and L23 (resp. L′23). Then the composition bi-functor induces a homomorphism

HF (L12,L′12)⊗HF (L23,L′23)→ HF (L13,L′13). (10.19)

On the other hand, by (7.3), we have

HF (L13,L′13)→ Hom(HF (L1,L′1), HF (L3,L′3)). (10.20)

The composition of (10.19) and (10.20) defines a homomorphism (10.18).

The second way to obtain (10.18) is the following. We have the following homomorphisms
from (7.3):

HF (L12,L′12)→ Hom(HF (L1,L′1), HF (L2,L′2)),
HF (L23,L′23)→ Hom(HF (L2,L′2), HF (L3,L′3)). (10.21)

Here L12 (resp. L′12) transforms L1 (resp. L′1) to L2 (resp. L′2). On the other hand, the compo-
sition of homomorphisms define a homomorphism

Hom(HF (L1,L′1), HF (L2,L′2))⊗Hom(HF (L2,L′2), HF (L3,L′3))
→ Hom(HF (L1,L′1), HF (L3,L′3)). (10.22)

The composition of (10.21) and (10.22) is the second way to obtain (10.18).

To prove Theorem 10.16, we need more homological algebra. In Section 10.1, we used the
derived tensor product to define the composition bi-functor of functor categories. In this sub-
section, we define the derived Hom functor.

Definition 10.18. Let C and C(i), i = 1, 2 be strict, unital and gapped filtered A∞ categories
and D1 a left-C ,C(1) right-C(2) tri-module. For c ∈ OB(C ), we define a left-C(1) right-C(2)

bi-module D|c as follows:

(1) If ci ∈ OB(C(i)), then D|c(c1, c2) = D(c, c1; c2).

(2) For x ∈ Bk1C(1)[1](c1; c
′
1), y ∈ Bk2C(2)[1](c

′
2, c2) and v ∈ D|c(c′1, c′2) = D(c, c′1; c

′
2), we

define nk1,k2(x; v;y) ∈ D|c(c1, c2) = D(c, c1; c2) by the tri-module structure on D. This is
the structure operation nk1,k2 of D|c.

Definition 10.19. Let C and C(i), i = 1, 2, 3, 4, be strict filtered A∞ categories and D1

(resp. D2) be a left-C ,C(1) right-C(2) (resp. left-C ,C(3) right-C(4)) filtered A∞ tri-module.

Let ci ∈ OB(C(i)). We define HomC (D1,D2)(c2, c3; c1, c4) as the set of objects

f = (fk2;c,c′)c,c′∈OB(C );k=0,1,2,...

such that fk;c,c′ : BkC [1](c, c′) ⊗ D1|c′(c1, c2) → D2|c(c3, c4) is a filtered Λ0 module homomor-
phism.
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Remark 10.20. We remark that HomC (D1,D2)(c2, c3; c1, c4) is the direct product∏
c,c′

Hom(BkC [1](c, c′)⊗D1|c′(c1, c2),D2|c′(c3, c4)).

In the definition of derived tensor product, we used direct sum, see (10.6).

Lemma–Definition 10.21. There exists a left-C(2),C(3) right-C(1),C(4) multi-module, denoted
by HomC (D1,D2), so that (c2, c3; c1, c4) 7→ HomC (D1,D2)(c2, c3; c1, c4) in Definition 10.19 is its
object part. (We define the boundary operator of the right-hand side during the proof.)

We write it HomC (D1,D2) and call it the left C hom-module.

Proof. Let x(1) ∈ Bk1C(1)[1](c1, c
′
1), y(2) ∈ Bk2C(2)[1](c

′
2, c2), x(3) ∈ Bk3C(3)[1](c3, c

′
3), y(4) ∈

Bk4C(4)[1](c4, c
′
4), and f ∈ HomC (D1,D2)(c2, c3; c1, c4).

We define nk1,k2,k3,k4(y(2),x(3), f,x(1),y(4)) = g ∈ HomC (D1,D2)(c
′
2, c3; c

′
1, c4), as follows. We

put g = 0 if k1 + k2 ̸= 0 and k3 + k4 ̸= 0.
If k3 + k4 = 0 and k1 + k2 ̸= 0, we define

nk1,k2,0,0(y(2), f,x(1))(z, v) = gk;c2,c′2(z, v)

:= −
∑
c

(−1)∗f(zc;1, n(zc;z,2,x(1), v,y(2))), (10.23)

with

∗ = deg′ zc;1 + deg f+ deg′ y(2)(deg f+ deg v + deg′ x+ deg′ z) + deg′ x(1) deg
′ z.

Here v ∈ D1(c
′, c′2, c3; c

′
1, c4), z ∈ BkC [1](c, c′), ∆z =

∑
c zc;1 ⊗ zc;2 and n is the structure

operation of D1.
If k3 + k4 ̸= 0 and k1 + k2 = 0, we define

n0,0,k3,k4(x(3), f,y(4))(z, v) = gk;c2,c′2(z; v) :=
∑
c

(−1)∗n′(zc;1,x(3), f(zc;2, v),y(4)), (10.24)

with ∗ = degy(4)(deg
′ z + deg v) + deg′ x(3) deg

′ zc;1 + deg fdeg′ zc;1. Here v, z, zc;1, zc;2 are as
above and n′ is the structure operation of D32.

If k1 = k2 = k3 = k4 = 0, we put

n0,0(1, f, 1)(z; v) = gk2;c2,c′2(z; v)

=
∑
c

n′(zc;1, f(zc;2, v))− (−1)deg f+deg′ zc;1
∑
c

f(zc;1, n(zc;2, v))

− (−1)deg ff
(
d̂z, v

)
. (10.25)

Note that all the signs in (10.23), (10.24) and (10.25) are by Koszul rule.
We can check A∞ relation as follows. (Since the signs are by Koszul rule, the fact that the

equality holds with signs is in fact automatic.) Let d̂ be a map from⊕
c′2,c

′
1,c,c

′

BC(2)[1](c2, c
′
2)

⊗Hom(BC [1](c, c′)⊗D1(c
′, c′2, c3; c1, c4),D2(c, c2, c3; c

′
1, c4))⊗BC(1)[1](c

′
1, c1)

to itself which is the coderivation induced by the structure operations. We will prove(
n ◦ d̂

)
(y, f,x)(z; v) = 0. (10.26)
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Suppose k1 = k2 = k3 = k4 = 0 for simplicity. We have(
n′ ◦ d̂

)
(f)(z, v =

∑
c

(−1)deg′ zc;1(deg f+1)n′(zc;1, n(f)(zc;2, v))

+
∑
c

(−1)deg′ zc;1+deg fn(f)(zc;1, n(zc;2, v))

+ (−1)deg f(n(f))
(
d̂z, v

)
=
∑
c

(−1)deg′ zc;1+deg f(deg′ zc;1+deg′ zc;2)n′(zc;1, n
′(zc;2, f(zc;3, v)))

+
∑
c

(−1)deg f+1+deg′ zc;2+deg′ zc;1(deg f+1)n′(zc;1, f(zc;2, n(zc;3, v)))

+
∑
c

(−1)deg′ zc;1(deg f+1)+(deg f+1)n′
(
zc;1, f

(
d̂zc;2, v

))
+
∑
c

(−1)deg′ zc;1+deg′ zc;2+deg f+deg′ zc;1 deg fn′(zc;1, f(zc;2, n(zc;3, v)))

+
∑
c

(−1)deg′ zc;2+1f(zc;1, n(zc;2, n(zc;3, v)))

+
∑
c

(−1)1+deg′ zc;1f
(
d̂zc;1, n(zc;2, v)

)
+
∑
c

(−1)deg f+deg fdeg′ zc;1+deg′ zc;1n′
(
zc;1, f

(
d̂zc;2, v

))
+
∑
c

(−1)deg f+deg f(deg′ zc;1+1)n′
(
d̂zc;1, f(zc;2, v)

)
+
∑
c

(−1)1f
(
zc;1, n

(
d̂zc;2, v

))
+
∑
c

(−1)1+deg′ zc;1+1f(d̂zc;1, n(zc;2, v)).

The 1st and 8th terms of the right-hand side cancel by the A∞ relation of n′. The 2nd and 4th
terms cancel. The 3rd and 7th terms cancel. The 5th and 9th terms cancel by the A∞ relation
of n. The 6th and 10th terms cancel. Thus we checked (10.26) in the case k1 = k2 = k3 = k4 = 0.
The other cases are similar. ■

Lemma–Definition 10.22. There exists a filtered A∞ bi-functor

MUMOD(C ,C(1);C(2))×MUMOD(C ,C(3);C(4))→MUMOD(C(2),C(3);C(1),C(4)),

which is given by Lemma–Definition 10.21 for the object part.

We call this bi-functor the derived hom-functor and write its as Hom.

Proof. Let C and C(i), i = 1, 2, 3, 4, be strict filtered A∞ categories and D1, D
′
1 (resp. D2, D

′
2)

be left-C ,C(1) right-C(2) (resp. left-C ,C(3) right-C(4)) filtered A∞ tri-module.

Suppose F1 : D
′
1 → D1 and F2 : D2 → D′2 are tri-module homomorphisms. We will define

(F∗1,F2∗) : HomC2(D1,D2)→ HomC2(D
′
1,D

′
2).

Let f̂ = (fc1,c2,c3,c4)ci∈Ob(C(i));HomC (D1,D2). Here fc1,c2,c3,c4 =
(
fc1,c2,c3,c4c,c′

)
c,c′∈Ob(C )

and

fc1,c2,c3,c4c,c′ : BC [1](c, c′)⊗D1|c′(c2, c3; c1, c4)→ D2|c′(c2, c3; c1, c4).
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We define ĝ = (F∗1,F2∗)
(̂
f
)
as follows. ĝ = (gc1,c2,c3,c4)ci∈Ob(C(i)), g

c1,c2,c3,c4 =
(
gc1,c2,c3,c4c,c′ ; c, c′ ∈

Ob(C )
)
, and gc1,c2,c3,c4c,c′ : BC (c, c′)⊗D′1|c′(c1, c2; c3, c4)→ D′2|c(c1, c2; c3, c4) is

gc1,c2,c3,c4c,c′ (z, v) :=
∑
c

(−1)deg fdeg′ zc:1F2(zc;1, f(z2;1,F1(zc;3, v))).

Here v ∈ D′1|c(c1, c2; c3, c4), z ∈ BC (c, c′) and ((∆⊗ 1) ◦∆)(y) =
∑

c zc;1 ⊗ zc;2 ⊗ zc;3.
It is straightforward to check that (F∗1,F2∗) is a chain map and multi-module homomorphism.

Moreover, if F1 ◦G1 = H1, G2 ◦ F2 = H2, then (H∗1,H2∗) = (G∗1,G2∗) ◦ (F∗1,F2∗). Thus we obtain
a required bi-functor. (It is actually a DG-functor.) ■

The next proposition is a Hom version of Proposition 10.10.

Proposition 10.23. Let C , C(i), i = 1, 2, 3, be strict unital and gapped filtered A∞ categories,
and F : C(1) → C and G : C × C(2) → C(3) strict, unital and gapped filtered A∞ (bi-) functors.
We consider Yon◦F : C(1) → FUNC(C op, CH) and regard it as a bi-functor C op×C(1) → CH. It
can be regarded as a left-C , right-C(1), bi-module, which we denote by D(1). We apply (bi-module
analogue of) the relative Yoneda functor to G to obtain RYonob(G), which becomes a left-C ,C(2)

right C(3) tri-module, which we denote by D(2).
We next consider the composition G◦F : C(1)×C(2) → C(3) and apply (the bi-module analogue

of) the relative Yoneda functor. We obtain a left-C(1), C(2) right-C(3) bi-module and denote it
by D(3). Now we claim that D(3) is homotopy equivalent to HomC (D(1),D(2)) as a left-C(1),C(2)

right-C(3) tri-module. Here the left C(1) module structure on HomC (D(1),D(2)) is induced from
the right C(1) module structure on D(1). (We do not use left C module structure on D(2) to
define this left C(1) module structure.)

We remark that by definition D(3) is induced from D(2) by F . The proof will be given in
Section 10.5.

Remark 10.24. We consider the case when C and C(1) are unital associative algebras, C(2) is
trivial, and F is a unital ring homomorphism. We use the notation of Remark 10.11. Then D(1)

is the bi-module C CC(1)
and D(2) is given by a left C right C(3) bimodule CDC(3)

.
Therefore, HomC (D(1),D(2)) is HomC (C CC(1)

, CDC(3)
). The map sending φ to φ(e) gives an

isomorphism between HomC (C CC(1)
, CDC(3)

) and C(1)
DC(3)

as left C(1) right C(3) modules. Note
that the left C(1) action on C(1)

DC(3)
is defined by F : C(1) → C and the left action of C .

The bi-module C(1)
DC(3)

corresponds to the composition G ◦ F . We thus checked Proposi-
tion 10.23 in this case.

10.4 Proof of Theorem 10.16

Proof of Theorem 10.16. We first consider the composition

Fukst(−X1 ×X2)× Fukst(−X2 ×X3)

→ FUNC(Fukst(X1),Fukst(X2))×FUNC(Fukst(X2),Fukst(X3))

→ FUNC(Fukst(X1),Fukst(X3)) (10.27)

and compose it with the relative Yoneda functor. By the commutativity of diagram (10.8) (see
Propositions 10.10), the composition (10.27) is homotopy equivalent to

Fukst(−X1 ×X2)× Fukst(−X2 ×X3)

→ BIMOD(Fukst(X1),Fukst(X2))
op × BIMOD(Fukst(X2),Fukst(X3))

op

→ BIMOD(Fukst(X1),Fukst(X3))
op, (10.28)
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where the first functor is the composition of the correspondence bi-functor and the relative
Yoneda functor and the second functor is the derived tensor product. Let L12 (resp. L23) be an
object of Fukst(−X1 × X2) (resp. Fukst(−X2 × X3)). By the definition of the correspondence
bi-functor the first functor is as follows.

Let Li be an object of Fukst(Xi) for i = 1, 2, 3. Then L12 (resp. L23) is sent to the
left-Fukst(X1) right-Fukst(X2) bi-module C F (L1,L12;L2) (resp. left-Fukst(X2) right-Fukst(X3)
bi-module C F (L2,L23;L3)), which sends L1 and L2 (resp. L2 and L3) to CF (L1,L12;L2)
(resp. CF (L2,L23;L3)). This is the object part of the functor. The morphism part is determined
by the left-Fukst(−X1×X2) module structure of C F (L1,L12;L2) (resp. the left-Fukst(−X2×X3)
module structure of C F (L2,L23;L3)).

Therefore, by the definition of the derived tensor product, the composition (10.28) sends the
pairs (L1,L3), (L12,L23) to

D1(L1,L12,L23;L3)
=
⊕
L2,L′2

CF (L1,L12;L2)⊗BCF [1](L2,L′2)⊗ CF (L′2,L23;L3). (10.29)

We consider (10.29) for various L1, L3, L12, L23 and obtain the object part of the composi-
tion (10.28). The morphism part is determined by the left Fukst(−X1×X2), Fukst(−X2×X3),
Fukst(X1), right Fukst(X3) quatro-module structure of (10.29).

We thus described the bi-functor (10.27) composed with the relative Yoneda functor.

We next study the composition

Fukst(−X1 ×X2)× Fukst(−X2 ×X3)→ Fukst(−X1 ×X3)

→ FUNC(Fukst(X1),Fukst(X3))

→ BIMOD(Fukst(X1);Fukst(X3))
op. (10.30)

By definition, the first functor composed with

Yon : Fukst(−X1 ×X3)→ FUNC(Fukst(−X1 ×X3)
op, CH)

∼= BIMOD(Fukst(−X1 ×X3), ∗)op

is given by C F (L13;L12,L23) which is a left-Fukst(−X1×X3) right-Fukst(−X1×X2), Fukst(−X2

×X3) tri-module. (See Proposition 8.11.)

We consider the composition of the second and third functors in (10.30) and apply (the
object part of) the relative Yoneda functor YonRob. We then obtain a left-Fukst(−X1 × X3),
Fukst(X1) right-Fukst(X3) tri-module C F (L1,L13;L3). (See Lemma–Definition 10.3.) Here
left Fukst(−X1 ×X2), Fukst(−X2×X3) module structure on C F (L1,L13;L3) is induced by its
left Fukst(−X1×X3) module structure via the bi-functor Fukst(−X1×X2)×Fukst(−X2×X3)→
Fukst(−X1 ×X3).

We next use Proposition 10.23. We put

C(1) = Fukst(−X1 ×X2)× Fukst(−X2 ×X3), C(2) = Fukst(X1),

C(3) = Fukst(X3), C = Fukst(−X1 ×X3).

Then

D(1) = C F (L13;L12,L23), D(2) = C F (L1,L13;L3).

D(3) is the pull-back of D(2) by comp : Fukst(−X1×X2)×Fukst(−X2×X3)→ Fukst(−X1×X3).
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Proposition 10.23 then implies that D(3) is homotopy equivalent to

HomFukst(−X1×X3)(C F (L13;L12,L23),C F (L1,L13;L3)) (10.31)

as left-Fukst(−X1 × X2),Fukst(−X2 × X3), Fukst(X1) and right-Fukst(X2) quatro-module.10.1

Note that the quatro-module (10.31) associates

D2(L1,L12,L23;L3)
=

∏
L13,L′13

Hom(BCF [1](L13,L′13)⊗ CF (L′13;L12,L23), CF (L1,L13;L3)) (10.32)

to L12, L23, L1, L3
We thus described two compositions

Fukst(−X1 ×X2)× Fukst(−X2 ×X3)→ BIMOD(Fukst(X1),Fukst(X3))
op,

which are (10.29) and (10.32) together with their quatro-module structures. Theorem 10.16
claims that they are homotopy equivalent as quatro-modules. To prove it, we will construct
a quatro-module homomorphism from (10.29) to (10.32).

By definition, such a quatro-module homomorphism is a map⊕
L′1,L′3,L′12,L′23

BCF [1](L1,L′1)⊗BCF [1](L12,L′12)⊗BCF [1](L23,L′23)

⊗D1(L′1,L′12,L′23;L′3)⊗BCF [1](L′3,L3)→ D2(L1,L12,L23;L3).

Therefore, it can be regarded as a homomorphism from

BCF [1](L1,L′1)⊗BCF [1](L12,L′12)⊗BCF [1](L23,L′23)
⊗ CF (L′1,L′12;L2)⊗BCF [1](L2,L′2)⊗ CF (L′2,L′23;L′3)⊗BCF [1](L′3,L3)
⊗BCF [1](L13,L′13)⊗ CF (L′13;L12,L23)

to CF (L1,L13;L3). The Y -diagram transformation Y T b⃗ in (10.9) is such a homomorphism and
therefore defines a pre-quatro-module homomorphism. The condition that it becomes a quatro-
module homomorphism is exactly the formula (9.24), which we proved in Lemma 10.13.

To prove that this quatro-module homomorphism is a homotopy equivalence, it suffices to
show that the chain maps, which are parts of this quatro-module homomorphism, are chain
homotopy equivalences (see Proposition 7.9). The chain map induced by Y T b⃗ is nothing but
the chain homotopy equivalence (10.14) which we produced during the proof of Theorem 9.1 in
Section 10.2.

We can study the difference between two bounding cochains b
(1)
3 and b

(2)
3 in the same way

as the last step of the proof of Theorem 9.1 by enhancing diagram (10.16), so that it includes
left-Fukst(−X1 ×X2), Fukst(−X2 ×X3) structure.

The proof of Theorem 10.16 is now complete. ■

Remark 10.25. To prove the commutativity of the diagram in Theorem 10.16 for the object
part, it suffices to show that D1 = CF (L1;L12;L2)⊗BCF [1](L2)⊗CF (L2;L23;L3) is homotopy
equivalent to D′2 := CF (L1,L13;L3) as left-Fukst(X1) right-Fukst(X3) bi-modules.

To prove the commutativity of the morphism part, we need to include the compatibility of the
homotopy equivalence with the left Fukst(−X1 ×X2)× Fukst(−X2 ×X3) bi-module structures,
as we have done above.
10.1Actually we use the variant of Proposition 10.23 where F : C(1) → C is replaced by a bi-functor. The proof of
the variant is the same as the proof of Proposition 10.23.
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10.5 Proof of Propositions 10.10 and 10.23

In this subsection, we prove Propositions 10.10 and 10.23. We need certain calculations of the
sign for the proof. Note that in this paper the sign is almost always by the Koszul rule and by
this reason the cancellation with the sign is mostly automatic. A certain nontrivial sign issue
appears in this subsection by the following reason. We need to regard a filtered A∞ category C
itself as a left-C right-C bi-module. In such a case an element v of C (c, c′) as an element of
bi-module appears with sign (−1)deg v in the A∞ formula. In the case v is regarded as an element
of a morphism complex of an A∞ category, it appears with sign (−1)deg v+1 in the A∞ formula.

By several maps, which we will define in this subsection, an element of C (c, c′) as an element
of a bi-module in the domain becomes an element of the morphism complex in the co-domain
or vice versa. This process shifts the degree. It is not obvious to understand the way how this
process affects the sign, since the Koszul rule does not tell it to us. By this reason, we need
to add a certain correction term to the usual Koszul sign. The author is unable to provide
the general principle on the way how the correction terms are determined. Instead, he puts
the correction terms ‘by hand’ (see, for example, (10.37)) and check that the sign works by
a calculation.10.2

Fortunately, this happens only in the purely algebraic situation so that we do not need to
understand the geometric origin of the correction terms. In fact, Propositions 10.10 and 10.23 are
algebraic statements and hold independent of the origin of A∞ categories and functors in their
statements. For the construction of various operations using moduli spaces, the fundamental
formulas among those operations are always with Koszul sign. We will use this fact in Section 17.

Proof of Proposition 10.10. Let Fi(i+1) : Ci → Ci+1 be a filtered A∞ functor for i = 1, 2.
Let c1 ∈ OB(C1), c3 ∈ OB(C3). We put

D1(c1, c3) := C3((F23)ob((F12)ob(c1)), c3),

D2(c1, c3) :=
⊕
c2,c′2

C2((F12)ob(c1), c2)“⊗BC2(c2, c
′
2)“⊗C3((F23)ob(c

′
2), c3).

Note that D1 is the object part of the bi-module RYonob(F23 ◦ F12) and D
2 is the object part

of the bi-module tenob(RYonob(F12),RYonob(F23)).

We define I12;0,0 : D
1(c1, c3)→ D2(c1, c3) by

I12;0,0(z) = e(F12)ob(c1) ⊗ 1⊗ z. (10.33)

Here the symbol e(F12)ob(c1) is the unity of the object (F12)ob(c1) and the symbol 1 is an element
of B0C2((F12)ob(c1), (F12)ob(c1)), which is isomorphic to Λ0. Hereafter, we omit 1 from the
notation. It is obvious that I12;0,0 is a chain map.

We also define I21 : D
2(c1, c3)→ D1(c1, c3) by I21(x,y, z) = (−1)deg xm∗

(
F̂23(x,y), z

)
. Here

m is the structure operation of C3.

Let n is the (0, 0) part of the left-C1 right-C3 bi-module structure of D2(c1, c3). Here we use
the sign convention so that degree of elements of bi-module is not shifted. Namely,

n(x⊗ y ⊗ z) =
∑
c

(−1)deg′ y1;cm(x,y1;c)⊗ y2;c ⊗ z

+
∑
c

(−1)deg x+deg′ y1;cx⊗ y1;c ⊗m
(
F̂23(y2;c), z

)
+ (−1)deg xx⊗ d̂(y)⊗ z. (10.34)

10.2Actually a similar problem occurs during the proof of Yoneda’s lemma.
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This is a special case of (10.7). We will check that I21;0,0 is a chain map. We calculate

(I21 ◦ n)(x,y, z)
=
∑
c

(−1)deg′ yc;1I21(m(x,yc;1),yc;2, z)

+ (−1)deg xI21

(
x, d̂y, z

)
+
∑
c

(−1)deg x+deg′ yc;1I21

(
x,yc;1,m

(
F̂23(yc;2), z

))
=
∑
c

(−1)deg x+1m
(
F̂23

(
m(x,yc;1),yc;2

)
, z
)

+m
(
F̂23

(
x, d̂y

)
, z
)
+ (−1)deg′ yc;1

∑
c

m
(
F̂23(x,yc;1),m

(
F̂23(yc;2), z

))
.

By A∞ relation, this coincides with (n ◦I21)(x,y, z) = (−1)deg xm
(
m
(
F̂23(x,y), z

))
.

Lemma 10.26. I12;0,0 becomes a (0, 0) part of a filtered bi-module homomorphism.

Proof. We first define

I12;k1,k3 : Bk1C1[1](c1, c
′
1)“⊗D1(c′1, c

′
3)“⊗Bk3C3[1](c

′
3, c
′
3)→ D2(c1, c3)

as follows. If k3 ̸= 0, then I12;k1,k3 = 0. If k3 = 0, we put I12;k1,0(x, z) = e(F12)ob(c1) ⊗ F̂12(x)
⊗ z. We will prove that they define an A∞ bi-module homomorphism. Let

Î12 :
⊕
c′1,c

′
3

BC1[1](c1, c
′
1)“⊗D1(c′1, c3)“⊗BC3[1](c

′
3, c3)

→
⊕
c′1,c

′
3

BC1[1](c1, c
′
1)“⊗D2(c′1, c3)“⊗BC3[1](c

′
3, c3)

be the formal bi-comodule homomorphism induced by I12;k1,0, k1 = 0, 1, 2, . . . . Let d̂ be
the boundary operator on

⊕
c′1,c

′
3
BC1[1](c1, c

′
1)“⊗Di(c′1, c

′
3)“⊗BC3[1](c

′
3, c3) induced by the bi-

module structure and

n : BC1[1](c1, c
′
1)“⊗Di(c′1, c

′
3)“⊗BC3[1](c

′
3, c3)→ Di(c′1, c3),

which is the structure operation of the bi-module structure as in (10.7). Let x ∈ BC1[1](c1, c
′
1),

z ∈ D1(c′1, c
′
3), w ∈ Bk3C3[1](c

′
3, c3). We calculate(

n ◦ Î12

)
(x, z,w)

=
∑
c

n
(
F̂12(xc;1)⊗

(
e⊗ F̂12(xc;2)⊗ z

)
⊗w

)

=


∑

c(−1)deg
′ xc;1e⊗ F̂12(xc;1)⊗m

((
F̂23 ◦ F̂12

)
(xc;2), z,w

)
if k3 ̸= 0,∑

c(−1)deg
′ xc;1e⊗ F̂12(xc;1)⊗m

((
F̂23 ◦ F̂12

)
(xc;2), z

)
+ e⊗ d̂

(
F̂12(x)

)
⊗ z if k3 = 0.

Note that in the case when k3 ̸= 0 the formula (10.7) implies that the summand in the second
line vanishes unless xc;1 = 1. In the case when k3 ̸= 0 and xc;1 = 1, it becomes the sum in the
third line.

In the case when k3 = 0 after a certain cancellation, there remains another term, that is, the
fifth line.

Remark 10.27. Note that deg′ e = −1. However, as we remarked in Remark 10.7 here the sign
deg e = 0 is used.
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On the other hand,

d̂(x⊗ z ⊗w) = d̂(x)⊗ z ⊗w + (−1)deg′ x+deg zx⊗ z ⊗ d̂(w)

+
∑
c1,c2

(−1)deg′ xc1;1xc1;1 ⊗m
((

F̂23 ◦ F̂12

)
(xc1;2), z,wc2;1

)
⊗wc2;2.

Therefore, if k3 ̸= 0, we have(
I12 ◦ d̂

)
(x, z,w) =

∑
c

(−1)deg′ xc1;1e⊗ F̂12(xc;1)⊗m
((

F̂23 ◦ F̂12

)
(xc;2), z,w

)
.

If k3 = 0, we have(
I12 ◦ d̂

)
(x, z)

=
∑
c

(−1)deg′ xc1;1e⊗ F̂12(xc;1)⊗m
((

F̂23 ◦ F̂12

)
(xc;2), z

)
+ e⊗ d̂(F12(x))⊗ z.

Therefore, I12 is a filtered A∞ bi-module homomorphism. ■

Lemma 10.28.

(1) The composition I21 ◦I12,00 is equal to the identity.

(2) The composition I12,00 ◦I21 is chain homotopic to the identity.

Proof. (1) follows by an easy and straightforward calculation. We will prove (2). Let x ∈
C2((F12)ob(c1), c2), y ∈ BC2[1](c2, c

′
2), z ∈ C3((F23)ob(c

′
2), c3). We observe

(I12,00 ◦I21)(x,y, z) = (−1)deg xe⊗m∗
(
F̂23(x,y), z

)
.

We define H(x,y, z) := (−1)deg′ xe⊗ (x⊗ y)⊗ z.
Let n be as in (10.34). We calculate

(n ◦ H)(x,y, z) = (−1)deg′ xn(e⊗ (x⊗ y)⊗ z)
= x⊗ y ⊗ z + (−1)deg′ x

∑
c

e⊗ (m(x⊗ yc;1)⊗ yc;2)⊗ z

+ e⊗
(
x⊗ d̂y

)
⊗ z

+
∑
c

(−1)deg′ yc;1e⊗ (x⊗ yc;1)⊗m
(
F̂23(yc;2), z

)
− (−1)deg xe⊗m

(
F̂23(x,y), z

)
.

On the other hand,

(H ◦ n)(x,y, z) =
∑
c

(−1)deg′ yc;1H(m(x,yc;1)⊗ yc;2 ⊗ z)

+ (−1)deg xH
(
x, d̂y, z

)
+
∑
c

(−1)deg x+deg′ yc;1H(x,yc;1,m(yc,2, z))

=
∑
c

(−1)deg′ x+1e⊗ (m(x⊗ yc;1)⊗ yc;2)⊗ z

− e⊗
(
x⊗ d̂(y)

)
⊗ z

+
∑
c

(−1)deg′ yc;1+1e⊗ (x⊗ yc;1)⊗m
(
F̂23(yc;2), z

)
.
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Therefore,

(n ◦ H+ H ◦ n)(x,y, z) = x⊗ y ⊗ z − (−1)deg xe⊗m
(
F̂23(x,y), z

)
,

as required. ■

Lemmas 10.26 and 10.28 together with Proposition 7.9 imply that I12 is a homotopy equiv-
alence. Proposition 10.10 follows. ■

Proof of Proposition 10.23. We use the notation of Proposition 10.23.
Let ci ∈ OB(Ci), c, c′ ∈ OB(C ). By definition, we have

D(1)(c; c1) = C (c, (F)ob(c1)), D(2)(c, c2; c3) = C(3)((G)ob(c, c2); c3),
D(3)(c1, c2; c3) = C(3)((Gob(Fob(c1), c2); c3).

We put

D1(c1, c2; c3) = D(3)(c1, c2; c3) = C(3)((Gob(Fob(c1), c2); c3),

D2(c1, c2; c3) =
∏
c,c′,k

Hom
(
BkC [1](c, c′)“⊗D(1)(c

′; c1),D(2)(c, c2; c3)
)
.

Note that D1 is the object part of the tri-module associated to G ◦ F and D2 is the object part
of the tri-module (Hom)C (D(1),D(2)).

Note that the left module structure n of D(1) coincides with the A∞ operation m of C . We
define

I12;0,0;0 : D1(c1, c2; c3)→ D2(c1, c2; c3), I21 : D2(c1, c2; c3)→ D1(c1, c2; c3)

as follows. Let u ∈ D1(c1, c2; c3), z ∈ BC (c, c′), v ∈ D(1)(c
′; c1). We put

I12;0,0;0(u)(z; v) = (−1)(deg u+1)(deg v+deg′ z)n(z⊗ v;u).

Here n is the left C module structure on D(2). Note that the sign is different from Koszul sign
and contains the correction term deg v+deg′ z. We will check that I12;0,0;0 is a chain map. We
have

I12;0,0;0(n(u))(z; v) = (−1)∗1n(z; v; n(u)), (10.35)

where

∗1 = (deg u+ 1 + 1)(deg v + deg′ z) = deg u(deg′ z+ deg v).

On the other hand,

n(I12;0,0;0(u))(z; v) =
∑
c

(−1)deg u deg′ zc;1n(zc;1;I12;0,0;0(u)(zc;2; v))

+
∑
c

(−1)deg u+deg′ zc;1+1I12;0,0;0(u)(zc;1, n(zc;2, v))

+ (−1)deg u+1I12;0,0;0(u)
(
d̂z, v

)
=
∑
c

(−1)∗2
∑
c

n(zc;1, n(zc;2 ⊗ v;u))

+
∑
c

(−1)∗3n(zc;1 ⊗m(zc;2; v);u) + (−1)∗4n
(
d̂z⊗ v;u

)
, (10.36)
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where

∗2 = deg udeg′ zc;1 + deg u(deg′ zc;2 + deg v) + deg v + deg′ zc;2

= deg u(deg′ z+ deg v) + deg′ zc;2 + deg v,

∗3 = deg u+ deg′ zc;1 + 1 + deg u(deg′ zc;1 + deg′ zc;2 + deg v + 1)

+ deg′ zc;1 + deg′ zc;2 + deg v + 1

= deg u(deg v + deg′ z) + deg v + deg′ zc;2,

∗4 = deg u+ 1 + deg u(deg′ z+ deg v + 1) + deg′ z+ deg v + 1

= deg u(deg′ z+ deg v) + deg′ z+ deg v.

Thus (10.35) = (10.36) is a consequence of the A∞ relation. We remark that in the A∞ relation
of n, the degree of v should be counted as deg′ v (and not as deg v), since v here appears as an
element of the morphism complex of A∞ category (and not as an element of a bi-module). We
also remark that the operator m appearing in the second term of the right-hand side of (10.36)
coincides with n in this case.

Let φ = (φc;c′,k) ∈ D2(c1, c2; c3). We put I21(φ) := φc1,c2;c3(eFob(c1)). Here eFob(c1) ∈
C2(Fob(c1),Fob(c1)) is the unity. It is obvious that I21 is a chain map.

Lemma 10.29. I12;0,0;0 becomes a (0, 0) part of a filtered left C(1) bi-module homomorphism.

Proof. Let x ∈ Bk1C(1)[1](c
′
1, c1), u ∈ D1(c1, c2; c3), z ∈ BC (c, c′), and v ∈ D(1)(c

′;Fob(c1)) =
C (c′,Fob(c1)). We put

I12;k1,0,0(x;u)(z; v) := (−1)(deg′ x+deg u+1)(deg′ z+deg v)n(z⊗ v ⊗ x;u). (10.37)

We show that this defines a left C1 module homomorphism.
We remark that the left C1 module structure on D2 is induced only from the right-C1 module

structure structure on D(1). Namely,

n(x, φ)(z; v) =
∑
c

(−1)degφ+deg′ zc;1+1+deg′ x(degφ+deg′ z+deg v)φ(zc;1, n(zc;2, v,x)).

See (10.23). This is the case when x /∈ B0C1[1](c1, c2). When x = 1, we have

(n(φ))(z; v) =
∑
c

(−1)1+deg′ zc:1+degφφ(zc;1, n(zc;2, v))

+
∑
c

(−1)degφ deg′ zc:1n(zc;1, φ(zc;2, v)) + (−1)degφ+1φ
(
d̂z, v

)
.

See (10.25). On the other hand, the left C1 module structure on D1 is induced from the left C
module structure on D(1) via F .

We also remark that m
(
z, v, “F(x)) = (−1)deg′ xn(z; v;x).

We now calculate

I12(n̂(x;u))(z; v)

=
∑
a

(−1)deg′ xa:1I12(xa:1; n(xa:2;u))(z; v) + I12

(
d̂x;u

)
(z; v)

=
∑
a

(−1)∗1n
(
z⊗ v ⊗ “F(xa:1); n(“F(xa:2);u))+ (−1)∗2n

(
z⊗ v ⊗ d̂“F(x);u), (10.38)

with

∗1 = deg′ xa:1 + (deg′ x+ deg u)(deg′ z+ deg v), ∗2 = (deg′ x+ deg u)(deg′ z+ deg v).
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Here ∆x =
∑

a xa:1 ⊗ xa:2. On the other hand,(
n
(
Î12(x;u)

))
(z; v)

=
∑
a

n(xa:1;I12(xa:2;u))(z; v)

=
∑
a,c

(−1)∗3I12(xa:2;u)(zc:1; n(zc:2; v;xa:1))

+
∑
c

(−1)∗4n(zc:1;I12(x;u)(zc:2; v)) + (−1)∗5I12(x;u)
(
d̂z; v

)
=
∑
a,c

(−1)∗6n
(
zc:1 ⊗m(zc:2; v; “F(xa:1))⊗ xa:2;u

)
+
∑
c

(−1)∗7n(zc:1; n(zc:2; v;x;u)) + (−1)∗8n
(
d̂z⊗ v ⊗ x;u

)
(10.39)

with

∗3 = deg′ xa:1(deg
′ xa:2 + deg u+ deg′ z+ deg v) + 1 + deg′ xa:2 + deg u+ deg′ zc:1,

∗4 = deg′ zc:1(deg
′ x+ deg u), ∗5 = deg′ x+ deg u+ 1,

and10.3

∗6 = (deg′ x+ deg u)(deg′ z+ deg v) + deg′ zc:2 + deg v,

∗7 = (deg′ x+ deg u)(deg′ z+ deg v) + deg′ zc:2 + deg v,

∗8 = (deg′ x+ deg u)(deg′ z+ deg v) + deg′ z+ deg v.

Therefore, the A∞ relation implies (10.38) = (10.39). We remark again that in the A∞ relation
of n, the degree of v should be counted as deg′ v (and not deg v).

The proof that I12;0,0;0 extends to a tri-module homomorphism is similar. ■

Lemma 10.30.

(1) The composition I21 ◦I12,00 is equal to the identity.

(2) The composition I12,00 ◦I21 is chain homotopic to the identity.

Proof. (1) is easy to show. We prove (2). We remark that

(I12,00 ◦I21)(φ)(z; v) = (−1)(degφ+1)(deg′ z+deg v)n(z⊗ v;φ(e)),

where the notations are as above.
We define H : D2(c1, c2; c3)→ D2(c1, c2; c3) by the next formula:

H(φ)(z; v) := (−1)degφ+deg v+deg′ z+1φ(z⊗ v; e).

Let n be the structure operations of D(1) and D(2), which induce a boundary operator δ on
D2(c1, c2; c3). See Lemma–Definition 10.21. We calculate

(δ(H(φ))(z; v) =
∑
c

(−1)deg′ zc;1(1+degφ)n(zc;1,H(φ)(zc;2; v))

+
∑
c

(−1)degφ+deg′ zc;1H(φ)(zc;1; n(zc;2; v)) + (−1)degφH(φ)
(
d̂z; v

)
10.3We remark that during the calculation of the sign ∗6 we use the fact that the operator n appearing in the
third line is related to the operator m in the sixth line by (10.2).



Unobstructed Immersed Lagrangian Correspondence and Filtered A∞ Functor 135

=
∑
c

(−1)∗1n(zc;1;φ(zc;2 ⊗ v; e))

+
∑
c

(−1)∗2φ(zc;1 ⊗ n(zc;2, v); e) + (−1)∗3φ
(
d̂z⊗ v; e

)
,

with

∗1 = deg′ zc;1(1 + degφ) + degφ+ deg′ zc;2 + deg v + 1,

∗2 = degφ+ deg′ zc;1 + degφ+ deg′ z+ deg v, ∗3 = deg′ z+ deg v.

Here ∆(z) =
∑

c zc;1 ⊗ zc;2. On the other hand,(
H(δ(φ))(z; v) = (−1)degφ+deg′ z+deg v(δφ)(z⊗ v; e)

= (−1)∗4n(z⊗ v;φ(e)) + (−1)∗5
∑
c

n(zc;1;φ(zc;2 ⊗ v; e))

+ (−1)∗6φ(z⊗ v)
+
∑
c

(−1)∗7φ(zc;1; n(zc;2; v); e) + (−1)∗8φ
(
d̂z⊗ v; e

))
,

with

∗4 = degφ+ deg′ z+ deg v + degφ(deg′ z+ deg v + 1) = (degφ+ 1)(deg′ z+ deg v),

∗5 = degφ+ deg′ z+ deg v + degφdeg′ zc;1 = ∗1 + 1, ∗6 = 1,

∗7 = degφ+ deg′ z+ deg v + deg′ zc;1 + 1 + degφ = ∗2 + 1,

∗8 = degφ+ deg′ z+ deg v + 1 + degφ = ∗3 + 1.

Therefore, H is the chain homotopy we look for. ■

Proposition 10.23 follows from Lemmas 10.29, 10.30 and Proposition 7.9. ■

10.6 A note on 2-categories of A∞ categories

We remark that the diagram

BIMOD(C1;C2)
×BIMOD(C2;C3)×BIMOD(C3;C4)

−−−−→ BIMOD(C1;C2)
×BIMOD(C2;C4)y y

BIMOD(C1;C3)× BIMOD(C3;C4) −−−−→ BIMOD(C1;C4)

(10.40)

strictly commutes. Here the arrows are the derived tensor product functor ten. The same holds
if we replace BIMOD(∗; ∗) by BIMOD(∗; ∗)op. This implies that the diagram

FUNC(C1,C2)
×FUNC(C2,C3)×FUNC(C3,C4)

−−−−→ FUNC(C1,C2)
×FUNC(C2,C4)y y

FUNC(C1,C3)×FUNC(C3,C4) −−−−→ FUNC(C1,C4)

(10.41)

commutes up to homotopy equivalence. Here the arrows are the composition functors comp.
Since we take homotopy inverses to relative Yoneda functors to obtain comp from ten, the
diagram (10.41) does not commute strictly. Using the version of Whitehead theorem with the
notion ‘homotopic’ rather than ‘homotopy equivalent’ (see Section 13), the ‘set of choices of
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homotopy inverse’ seems to be ‘contractible’. So we might be able to prove the associativity of
comp in a certain A∞ sense. That might give a definition of A∞ category of A∞ categories. The
author does not try to work it out here. Instead, he points out the following.

Let A be a set whose elements are strict, unital and gapped filtered A∞ categories. We
construct a DG-2-category C(A ) whose object set is A and morphism category from C1 ∈ A to
C2 ∈ A is a full subcategory C(C1,C2) of BIMOD(C1;C2)

op such that the object set of C(C1,C2)
consists of the bi-modules which are homotopy equivalent to an element of the image of the
relative Yoneda functor RYonob : OB(FUNC(C1,C2))→ OB(BIMOD(C1,C2)

op).
The composition bi-functor of C(A ) is ten. By the strict commutativity of (10.40), the

composition bi-functors of C(A ) are strictly associative as DG-tri-functors.
Lemma–Definition 10.3 implies that FUNC(C1,C2) is homotopy equivalent to C(C1,C2).

Moreover, this homotopy equivalence intertwines composition bi-functors of C(A ) with the
composition bi-functors of FUNC(C1,C2) up to homotopy equivalence.

It is an opinion of the author that we can use C(A ) as the ‘2-category of A∞ categories’ for
most of the purposes.

11 Associativity of compositions

11.1 Statement of the result of Section 11

In this section, we prove the associativity of the composition functor defined in Theorem 8.5.

Situation 11.1. Let (Xi, ωi, Vi) be a symplectic manifold (Xi, ωi) equipped with a back-
ground datum Vi. Let Li(i+1) for i = 1, 2, 3 be a finite set of π∗1(Vi ⊕ TXi) ⊕ π∗2(Vi+1) rela-
tively spin Lagrangian submanifolds of −Xi × Xi+1. Let Li(i+2), i = 1, 2, be a finite set of
π∗1(Vi ⊕ TXi+1)⊕ π∗2(Vi+2) relatively spin Lagrangian submanifolds of −Xi ×Xi+2. Let L14 be
a finite set of π∗1(V1 ⊕ TX1)⊕ π∗2(V4) relatively spin Lagrangian submanifolds of −X1 ×X4.

We assume

(1) For i = 1, 2, 3 and for any element Li(i+1) of Li(i+1) and L(i+1)(i+2) of L(i+1)(i+2), we
assume that the fiber product Li(i+1)×Xi+1 L(i+1)(i+2) is transversal. We also assume that
its immersion to Xi(i+2) has clean self-intersection.

(2) For i = 1, 2, 3, the geometric composition of an element of Li(i+1) and of L(i+1)(i+2) is
contained in Li(i+2).

(3) We assume the same condition as item (1) for the pairs (L12,L24), (L13,L34).

(4) The geometric composition of an element of L12 and of L24 is contained in L14. The
geometric composition of an element of L13 and of L34 is contained in L14.

For 1 ≤ i < i′ ≤ 4, let Fuk(−Xi × Xi′) be the filtered A∞ category defined in Theorem 3.49
whose objects is an element of Lii′ and Fukst(−Xi × Xi′) the strict category associated to
Fuk(−Xi ×Xi′).

Theorem 11.2. Suppose we are in Situation 11.1. The next diagram commutes up to homotopy
equivalence:

Fukst(−X1 ×X2)× Fukst(−X2 ×X3)

×Fukst(−X3 ×X4)
−−−−→ Fukst(−X1 ×X3)

×Fukst(−X3 ×X4)y y
Fukst(−X1 ×X2)× Fukst(−X2 ×X4) −−−−→ Fukst(−X1 ×X4),

(11.1)

where all the arrows are defined by the composition functor in Theorem 8.5. The homotopy
equivalence is one of unital, strict and gapped filtered A∞ tri-functors.
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The proof of Theorem 11.2 occupies the rest of this section. The proof is completed in
Section 11.4. The argument of Section 11.4 is similar to Section 10.4. The commutativity
of (11.1) is homotopy equivalence between two tri-functors. Using relative Yoneda embedding,
it is equivalent to homotopy equivalence between certain two quatro-modules. For the proof, we
will construct a quatro-module homomorphism between them. The quatro-module homomor-
phism which we call Double-pants transformation is defined by using a moduli space of objects
which we call Double-pants. Double-pants in this section plays the role Y-diagram played in
Section 10.

11.2 Opposite bi-modules and opposite drums

For the proof of Theorem 11.2, we need a certain digression.

Definition 11.3. Let Ci be a filtered A∞ category for i = 1, 2 and D = (D, n) a left-C1, right-C2

bi-module. We define the opposite bi-module Dop = (Dop, nop), which is a left-C op
2 , right-C op

1

module by the next formula. Let x ∈ BC op
2 (c2, c

′
2), z ∈ BC op

1 (c′1, c1), y ∈ Dop(c′2, c
′
1) :=

D(c′1; c
′
2),

nop(x; y; z) = (−1)∗n(zop; y;xop). (11.2)

Here the sign ∗ is by Kuszul rule +1. (See Definition 2.30.) We remark there are two convention
of the degree of bi-module, one is shifting the degree of an element of D the other is not shifting
the degree of an element of D. We put ∗ = ε(x)+deg′ xdeg′ z+deg′ y(deg′ x+deg′ z)+1 when
we take the first convention and ∗ = ε(x) + deg′ xdeg′ z + deg y(deg′ x + deg′ z) + 1 when we
take the second convention.

It is easy to check (11.2) satisfies the A∞ relation.

Example 11.4. In Section 2.5, we defined the Yoneda functor Yon : C → FUNC(C op, CH) and
the opposite Yoneda functor OpYon : C op → FUNC(C , CH). These two functors define left-C ,
right-C bi-module structures on C (c, c′). It is easy to check that they are opposite bi-modules
each other.

We next define the opposite drum.

Definition 11.5. Suppose we are in the situation of Definition 8.15. We consider the ob-
ject (Σ; z⃗12, z⃗23, z⃗13;u1, u2, u3; γ1, γ2, γ3) such that they enjoy the same properties as Defini-
tion 8.15 except the following:

(i) u1 is a JX1-holomorphic map from W2 and u2 is a JX2-holomorphic map from W1.

(ii) We enumerate z⃗12, z⃗23 downward and z⃗13 upward.

We denote by
◦◦
Mop

DR(⃗a12, a⃗23, a⃗13; a−, a+;E) the set of isomorphism classes of such objects.
We call an element of

◦◦
Mop

DR
(⃗a12, a⃗23, a⃗13; a−, a+;E) or its compactification an opposite pseudo-

holomorphic drum.

Proposition 11.6. The moduli space
◦◦
Mop

DR(⃗a12, a⃗23, a⃗13; a−, a+;E) has a compactification, ab-
breviated by Mop

DR(⃗a12, a⃗23, a⃗13; a−, a+;E), which is compact and Hausdorff. The compactifica-
tions have a system Kuranishi structures and CF-perturbations. They induce a left Fukst(−X1×
X2), Fukst(−X2 ×X3) and right Fukst(−X1 ×X3) tri-module.

The proof is the same as the argument of Section 8.2. For example, Figures 8.5 and 8.6 are
replaced by the next Figures 11.1 and 11.2.

We denote the tri-module obtained in Proposition 11.6 by C F op(L12,L23;L13). We recall
that in Section 8 we defined the left-Fuk(−X1 × X3) right-Fuk(−X1 × X2), Fuk(−X2 × X3)
tri-module C F (L13;L12,L23).
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Figure 11.1. Opposite version of Figure 8.5.

−X1 ×X2

z12;1x

x

x

x

x

z12;2

z12;3

z12;4
z12;5

Figure 11.2. Opposite version of Figure 8.6.

Lemma 11.7. C F op(L12,L23;L13) is the opposite module to C F (L13;L12,L23).

Proof. We define

I :
◦◦
Mop

DR(⃗a12, a⃗23, a⃗13; a−, a+;E)→
◦◦
MDR(⃗a12, a⃗23, a⃗13; a−, a+;E)

as follows. We take F : S1 × R → S1 × R by F (t, τ) = (1 − t, τ). This is an anti-holomorphic
map. In view of (8.7), this operation exchanges the domains W1 and W2. Moreover, it revert
the enumeration of the marked points on the seams. Thus composing F with the maps in the
moduli space, we obtain a bijection I. It is easy to see that the compactification is preserved.
We can take the Kuranishi structures and CF-perturbations so that they are preserved by I.
We remark that the map I reverse the enumeration of the marked points on the seams. This
means that the operators obtained from these two moduli spaces are related by the operation
taking the opposite category. Therefore, in view of Example 11.4, the lemma holds up to sign.
In Section 17.3, we define orientation of the moduli spaces of the drums and opposite drums via
appropriate doubling constructions. Therefore, Theorem 3.54 implies that the sign becomes one
of the opposite module. ■

In Section 8, we defined the functor

comp : Fuk(−X1 ×X2)× Fuk(−X2 ×X3)→ Fuk(−X1 ×X3), (11.3)

so that the composition

Yon ◦ comp : Fuk(−X1 ×X2)× Fuk(−X2 ×X3)→ FUNC(Fuk(−X1 ×X3)
op, CH)

is the tri-module C F (L13;L12,L23).
On the other hand, the tri-module analogue of Lemma–Definition 10.3 defines

RYon : FUNC(C1 × C2,C3)→ T RIMOD(C1,C2;C3)
op.

Corollary 11.8. C F op(L12,L23;L13) is homotopy equivalent to the tri-module obtained by ap-
plying RYonob to (11.3).

This is a consequence of Lemma 11.7 and Example 11.5.
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11.3 Double pants

In this subsection, we work in Situation 11.1. The proof of Theorem 11.2 is based on a study of
a moduli space of pseudo-holomorphic maps from a space divided into pieces, which we explain
now. We consider the non-compact Riemann surface W of genus zero with 4 ends and its
division W =

⋃4
i=1Wi as in Figure 11.3 below.

W
2

W
2

W
3

W
3 W

1

W
1

(back side)
(back side)

W
4

W
4
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S
34

S
23

S
13

S
14

S
24S

13

S
14

S
23

S
34

S
12

S
24

S
14S

34

Figure 11.3. Domain W .

The domain W is biholomorphic to S2 minus 4 points. It is divided into 4 domains Wi,
i = 1, 2, 3, 4. The intersection Sii′ = Wi ∩Wi′ is an arc for ii′ = 12, 13, 14, 23, 24, 34, which we
call a seam. We call four points where three of the seams intersect the holes.

+

- -

W
1
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4
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W
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34
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23

S
13

S
14

S
24

Figure 11.4. Domain W (alternative view).

We consider the domain W minus holes and remove a relatively compact set from it. Then
the complement is biholomorphic to the disjoint union of the two copies of (−∞, 0] × S1 and
the two copies of [0,∞)×S1. Each of those connected components are divided into three pieces
by seams. In other words, each of them intersects with three of Wi’s among four, as is shown
in Figures 11.5 and 11.6. We take and fix a bi-holomorphic map between each of those ends
and (−∞, 0]× S1 or [0,∞)× S1.

We take the orientation of the seams Sii′ as follows:

(seo1) For ii′ = 12, 23, 34, we orient the seams so that it goes from the positive end to the
negative end.

(seo2) For ii′ = 14, we orient the seam so that it goes from the negative end to the positive
end.
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Figure 11.5. Negative ends of the domain W .
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Figure 11.6. Positive ends of the domain W .

(seo3) For ii′ = 13, we orient the seam so that it goes from the end written in the left-hand side
of Figure 11.5 to the end written in the right-hand side of Figure 11.5. For ii′ = 24, we
orient the seam so that it goes from the end written in the right-hand side of Figure 11.6
to the end written in the left-hand side of Figure 11.6.

See Figures 11.5 and 11.6 for this orientation.
We observe that Figure 11.5 coincides with the negative end of the opposite drum used to

define C F op(L12,L23;L13) and C F op(L13,L34;L14). The right figure in Figure 11.6 coincides
with the positive end of the opposite drum used to define C F op(L12,L24;L14). In the left side
of the Figure 11.6, the positive end is actually an input. So we rotate the figure by 180 degree
so that it becomes the negative end. Then it coincides with the negative end of the drum11.1

used to define C F (L24;L23,L34).
We decompose the fiber product to the connected components as

L̃ii′ ×Xi×Xi′ L̃ii′ =
⋃

a∈ALii′

Lii′(a). (11.4)

Situation 11.1 (2) implies that the fiber product in the left-hand side is clean. Note that one of
the components of (11.4) is the diagonal component.

11.1We emphasise that this is not the opposite drum.
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For i, i′, i′′ ∈ {1, 2, 3, 4} with i < i′ < i′′, we decompose

(Lii′ × Li′i′′ × Lii′′)×(Xi×Xi′×Xi′′ )
2 ∆ =

⋃
a∈Aii′i′′

Rii′i′′(a),

where ∆ is the diagonal in (Xi × Xii′ × Xii′i′′)
2. This is the decomposition to the connected

components. Situation 11.1 (4) implies that the fiber product in the left-hand side is clean.

Let

a⃗ii′ = (aii′,1, . . . , aii′,kii′ ) ∈ (ALii′ )
kii′ , a⃗i = (ai,1, . . . , ai,ki) ∈ (ALi)

ki , aii′i′′ ∈ Aii′i′′ .

In the next definition, we define
◦◦
MDP((⃗aii′)ii′ ; (aii′i′′)ii′i′′ ;E).

Definition 11.9. We consider (Σ; (z⃗ii′)1≤i<i′≤4; (ui; i = 1, 2, 3, 4); (γii′)1≤i<i′≤4) with the follow-
ing properties.

(1) The bordered nodal curve Σ is a union of W and trees of sphere components attached
to W . The roots of the trees of sphere components are not on

⋃
i,i′ Sii′ .

(2) For i = 1, 2, 3, 4, we denote by Σi the union of Wi together with the trees of sphere
components rooted on Wi. The map ui : Σi → Xi is JXi holomorphic for i = 1, 2, 3, 4.

(3) z⃗ii′ = (zii′,1, . . . , zii′,kii′ ) and zii′,j ∈ Sii′ . We require zii′,j < zii′,j′ for j < j′, where
we identify Sii′ ∼= R by using the orientation defined in (seo1), (seo2), (seo3). We put
|z⃗ii′ | = {zii′,1, . . . , zii′,kii′}.

(4) The map γii′ : Sii′ \ |z⃗ii′ | → L̃ii′ is smooth and satisfies iLii′ (γii′(z)) = (ui(z), ui′(z)).

(5) At z⃗ii′ , the map γii′ satisfies the switching condition(
lim

z∈Sii′↑zii′,j
γii′(z), lim

z∈Sii′↓zii′,j
γii′(z)

)
∈ Lii′(aii′,j). (11.5)

Here we identify Sii′ ∼= R and then ↑, ↓ have obvious meaning (see Definition 3.17 (5)) by
using the orientation of Sii′ .

(6) At the negative end of W , the following asymptotic boundary condition is satisfied:

lim
τ→−∞

(γ12(τ), γ23(τ), γ13(−τ)) ∈ R123(a123),

lim
τ→−∞

(γ13(τ), γ34(τ), γ14(−τ)) ∈ R134(a134). (11.6)

(7) At the positive end of W , the following asymptotic boundary condition is satisfied:

lim
τ→+∞

(γ23(τ), γ34(τ), γ14(−τ)) ∈ R234(a134),

lim
τ→+∞

(γ12(τ), γ24(τ), γ24(−τ)) ∈ R124(a124). (11.7)

(8) The stability condition, which is defined in the same way as Definition 9.7 (2), is satisfied.

(9)
∑4

i=1

∫
Σi
u∗iωi = E.

In the same way as Definition 9.7 (3), we define an equivalence relation ∼ among the ob-
jects (Σ; (z⃗ii′)1≤i<i′≤4; (ui)i=1,2,3,4; (γii′)1≤i<i′≤4) satisfying (1)–(9). We denote the set of all
the equivalence classes of this equivalence relation by

◦◦
MDP((⃗aii′)ii′ ; (aii′i′′)ii′i′′ ;E) . We call its

element a pseudo-holomorphic double pants.
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We define evaluation maps

evii′,j :
◦◦
MDP((⃗aii′)ii′ ; (aii′i′′)ii′i′′ ;E)→ Lii′(aii′,j) (11.8)

by using (11.5). We define evaluation maps

evii′i′′ :
◦◦
MDP((⃗aii′)ii′ ; (aii′i′′)ii′i′′ ;E)→ Rii′i′′(aii′i′′) (11.9)

by using one of (11.6)–(11.7).

Proposition 11.10. We can define a topology on
◦◦
MDP((⃗aii′)ii′ ; (aii′i′′)ii′i′′ ;E) such that it has

a compactificationMDP((⃗aii′)ii′ ; (aii′i′′)ii′i′′ ;E), which is a compact metrizable space. They have
Kuranishi structures with corners which enjoy the following properties:

(1) The normalized boundary of MDP((⃗aii′)ii′ ; (aii′i′′)ii′i′′ ;E) is a disjoint union of 2 types of
fiber products, which we describe below.

(2) The evaluation maps (11.8) and (11.9) extend to strongly smooth maps with respect to this
Kuranishi structure. (11.9) is weakly submersive. The extension is compatible with the
description of the boundary in item (1).

(3) The orientation local system of MDP((⃗aii′)ii′ ; (aii′i′′)ii′i′′ ;E) is isomorphic to the tensor
product of the pullbacks of Θ− by the evaluation maps (11.8) and (11.9). For the component
R124(a124), we take Θ+ in place of Θ−.

(4) The Kuranishi structure is compatible with the forgetful map of the marked points corre-
sponding to the diagonal components.

We describe the boundary components.
(I) The first type of boundary corresponds to the bubble at one of the Lagrangian bound-

ary conditions Lii′ . We describe the case of L12. Let b ∈ AL12 and i ≤ j. We put a⃗112 =
(a12,0, . . . , a12,i, b, a12,j+1, . . . , a12,k12), a⃗

2
12 = (b, a12,i+1, . . . , a12,j). We put a⃗′12 = a⃗112, a⃗

′
ii′ = a⃗ii′

for ii′ ̸= 12. This boundary corresponds to the fiber product

MDP((⃗a
′
ii′)i,i′ ; (aii′i′′)i,i′,i′′ ;E1)×L12(b)M′

(
L12; a⃗

2
12;E2

)
.

Here E1 + E2 = E. We remark that we use the compactification M′ in the second factor,
which is a moduli space of pseudo-holomorphic disks (see Remark 5.38 and Section 12). See
Figure 11.7. The bubble at Lii′ for ii

′ ̸= 12 can be described in the same way.
(II) The second type of boundary corresponds to the limit where the domain will be divided

into two parts at the ends. There are 4 ends of our domain. We first consider the case of the
ends in the left-hand side of Figure 11.5.

Let jii′ ∈ {0, . . . , kii′} for ii′ = 12, 23 or 13. We put a⃗1ii′ = (aii′,1, . . . , aii′,jii′ ), a⃗
2
ii′ =

(aii′,jii′+1, . . . , aii′,kii′ ) for ii
′ = 12 or 23. We also put a⃗2ii′ = (aii′,1, . . . , aii′,jii′ ), a⃗

1
ii′ = (aii′,jii′+1,

. . . , aii′,kii′ ) for ii
′ = 13. We then put a⃗′ii′ = a⃗2ii′ for ii

′ = 12, 23 or 13 and a⃗′ii′ = a⃗ii′ otherwise.
Let a ∈ A123. We put a′123 = a and a′ii′i′′ = aii′i′′ for ii

′i′′ ̸= 123.
Now this boundary is described by the next fiber product

MDP

((
a⃗1ii′
)
ii′
; (a′ii′i′′)ii′i′′ ;E1

)
×R123(a)M

op
DR((⃗a

′
ii′)ii′=12,23,13; a123, a;E2),

where E1 + E2 = E and a ∈ AL12 . See Figure 11.8. Note thatMop
DR((⃗a

′
ii′)i,i′ ; a, a123;E2) is the

moduli space of opposite pseudo-holomorphic drums as in Definition 11.5.
In the case of the end in the right-hand side of Figure 11.5, the end is described by the fiber

product

MDP

((
a⃗1ii′
)
ii′
; (a′ii′i′′)ii′i′′ ;E1

)
×R134(a)M

op
DR((⃗a

′
ii′)ii′=13,34,14; a134, a;E2).

Here a⃗1ii′ , a⃗
′
ii′i′′ and a⃗

′
ii′ are defined in a way similar to the first case.
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Figure 11.7. Bubble of Type I.
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Figure 11.8. Bubble of Type II.

In the case of the end in the left-hand side of Figure 11.6, the end is described by the fiber
product

MDP

((
a⃗1ii′
)
ii′
; (a′ii′i′′)ii′i′′ ;E1

)
×R234(a)MDR((⃗a

′
ii′)ii′=23,34,24; a234, a;E2).

Here a⃗1ii′ , a⃗
′
ii′i′′ and a⃗

′
ii′ are defined in a way similar to the first case. We remark that the second

factor is the moduli space of pseudo-holomorphic drums11.2 as in Definition 8.15. The reason
why pseudo-holomorphic drums appear here is explained right after the orientation of seams
(seo1), (seo2), (seo3) are defined.

In the case of the end in the right-hand side of Figure 11.6, the end is described by the fiber
product

Mop
DR((⃗a

′
ii′)ii′=12,24,14; a, a124;E2)×R124(a)MDP

((
a⃗1ii′
)
ii′
; (a′ii′i′′)ii′i′′ ;E1

)
.

Here the moduli space of opposite pseudo-holomorphic drums appears. Moreover, it appears as
the first factor. The reason is in the case of this end, R124(a) corresponds to the output of the
second factor.

The proof of Proposition 11.10 is similar to various other propositions we discussed before in
this and other papers and so is omitted. (See Section 17.5 for the proof of Proposition 11.10 (3).)

Proposition 11.11. For each E0, there exists a system of CF-perturbations “S on the space
MDP((⃗aii′)ii′ ; (aii′i′′)ii′i′′ ;E) (with respect to Kuranishi structures which are outer collarings of
thickenings of those in Proposition 11.10) for E < E0 such that the following holds:

(1) They are transversal to 0.

(2) The evaluation map (11.9) is strongly submersive11.3 with respect to this CF-perturbation.

(3) The CF-perturbations are compatible with the description of the boundary. Namely, re-
striction of the CF-perturbation on the boundary coincides with the fiber product CF-
perturbation in the sense of [40, Lemma–Definition 10.6] and [46].

11.2Not opposite drum.
11.3See [40, Definition 9.2] and [46] for its definition.
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(4) The CF-perturbations are compatible with the forgetful maps of the boundary marked points
corresponding to the diagonal component, in the sense of [28, Theorem 5.1].

The proof is similar to the other similar statements we discussed already and is now a routine.
We omit it.

We now use Propositions 11.10 and 11.11 to produce certain operations in a similar way
as previous sections. We need certain notations. For 1 ≤ i < i′ ≤ 4 and 1 ≤ j ≤ kii′ ,
let hii′,j ∈ Ω(Lii′(aii′,j); Θ

−). We put hii′ = (hii′,1, . . . , hii′,kii′ ) ∈ Bkii′CF [1](Lii′ ;L′ii′). For
ii′i′′ = 123 or 134, let

hii′i′′ ∈ Ω(Rii′i′′(aii′i′′); Θ
−) ⊆ CF op(Lii′ ,Li′i′′ ;Lii′′),

and for ii′i′′ = 234, let

h234 ∈ Ω(R234(a234); Θ
−) ⊆ CF (L24;L23,L34).

Definition 11.12. We define DPT E,ε((hii′)i,i′ ;h123, h134, h234) ∈ Ω(R124(a124); Θ
−) by the

next formula

ev124!

Å∏
i<i′

ev∗hii′ ∧
∏

ii′i′′=123,134,234

ev∗ii′i′′hii′i′′ ;
”Sε

ã
. (11.10)

Here we use the moduli space M((⃗aii′)ii′ ; (aii′i′′)ii′i′′ ;E) and its CF-perturbation “S to de-
fine (11.10). There is actually a sign in the right-hand side. We will explain it in Section 17.5.

We extend DPT E,ε by Λ0 linearly and use it to define

DPT <E0,ε :
∏
i<i′

BCF [1](Lii′ ;L′ii′)⊗ CF op(L′12,L′23;L13)

⊗ CF op(L′13,L′34;L14)⊗ CF (L′24;L23,L34)→ CF op(L12,L24;L′14) (11.11)

by the next formula DPT <E0,ε =
∑

E<E0
TEDPT E,ε. We call DPT <E0,ε the double pants

transformation.

We next state the main property of the double pants transformation. We need some notations.
Let hii′i′′ ∈ CF op(Lii′ ,Li′i′′ ;Lii′′) for ii′i′′ = 123 or 134, h234 ∈ CF (L24;L23;L34) and hii′ =
(hii′,1, . . . , hii′,kii′ ) ∈ Bkii′CF [1](Lii′ ,L′ii′). We put ∆hii′ =

∑
c h

c;1
ii′ ⊗ hc:2ii′ . For ρ = jj′j′′ = 123,

134 or 234 we define hρ,cii′ as follows. Let Wρ be one of the four ends corresponding to ρ = jj′j′′:

(1) hρ,cii′ = hc,1ii′ and hρ,c;′ii′ = hc,2ii′ if Sii′ does not intersect with Wρ.

(2) hρ,cii′ = hc;1ii′ and hρ,c;′ii′ = hc;2ii′ if Sii′ ∩Wρ ̸= ∅ and Wρ lies at the −∞ side with respect to
the orientation of the seam Sii′ .

(3) hρ,cii′ = h
c(ρ);2
ii′ and hρ,c;′ii′ = hc;1ii′ if Sii′ ∩Wρ ̸= ∅ and Wρ lies at the +∞ side with respect to

the orientation of the seam Sii′ .

In case ρ = jj′j′′ = 124, we define hρ,cii′ by exchanging the conditions (2) and (3).

We also put d̂jj′(hii′)ii′ = (h∗ii′)ii′ where h∗ii′ = hii′ for ii
′ ̸= jj′ and h∗jj′ = d̂hjj′ . We then

put d̂(hii′)ii′ =
∑

jj′ d̂jj′(hii′)ii′ .

Proposition 11.13. The double pants transformation DPT <E0,ε satisfies the next congruence
modulo TE0:

DPT <E0,ε
(
d̂((hii′)ii′);h123, h134, h234

)
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+
∑

c(12),c(23),c(13)

DPT <E0,ε
((
h
123,c(ii′)
ii′

)
ii′
;

nop
(
h
123,c(12);′
12 ,h

123,c(23);′
23 , h123;h

123,c(13);′
13 ), h134, h234

)
+

∑
c(13),c(34),c(14)

DPT <E0,ε
((
h
134,c(ii′)
ii′

)
ii′
;

h123, n
op
(
h
134,c(13);′
13 ,h

134,c(34);′
34 , h134;h

134,c(34);′
14

)
, h234

)
+

∑
c(23),c(34),c(24)

DPT <E0,ε
((
h
234,c(ii′)
ii′

)
ii′
;h123, h134, n

(
h234;′
24 ;h234;h

234;′
23 ,h234;′

34

))
−

∑
c(12),c(24),c(14)

nop
(
h
124,c(12)
12 ,h

124,c(24)
24 ;

DPT <E0,ε
((
h
124,c(ii′)
ii′

)
ii′
;h123, h134, h234

)
;h

124,c(14);′
14

)
≡ 0 mod TE0 . (11.12)

Here n is the structure operation defined by the moduli space of pseudo-holomorphic drums in
Section 8 and nop is the structure operation defined by the moduli space of opposite pseudo-
holomorphic drums in Definition 11.6. The signs (which we omit from the above formula) are
by Koszul rule.

Proof. Using Propositions 11.10, 11.11, Stokes’ formula (see [40, Proposition 9.26] and [46]),
and the composition formula (see [40, Theorem 10.20] and [46]), the proof goes in the same way
as the proof of Proposition 3.35. In fact, the first term of (11.12) corresponds to the end of
Type I (see Figure 11.7) and the second-fifth terms of (11.12) corresponds to the end of Type II
(see Figure 11.8).

In fact, Type I ends are described by the fiber products of the moduli spaces of double
pants diagrams and of pseudo-homomorphic polygons. Type II ends are described by the fiber
products of the moduli spaces of double pants diagrams and of (opposite) pseudo-homomorphic
drums. ■

We can use Proposition 11.13 to prove the next lemma in the same way as we used Proposi-
tions 3.30, 3.41 in Section 3.3.

Lemma 11.14. We can define DPT which is congruent to DPT <E0,ε modulo TE0 and which
satisfies the same formula as (11.12) except the congruence is replaced by the equality.

We call DPT in Lemma 11.14 also a double pants transformation. We next twist the DPT
by bounding cochains. Let bii′ be bounding cochains of Lii′ . We define

tb⃗ :
∏
i<i′

BCF [1](Lii′)→
∏
i<i′

BCF [1](Lii′)

by the same formula as (5.9). We then put DPT b⃗ = DPT ◦
(
tb⃗ ⊗ id

)
.

Lemma 11.15. DPT b⃗ satisfies the same formula as (11.12) except we twist d̂ and n by b⃗ and
the congruence is replaced by the equality.

The proof is easy and so is omitted.

11.4 Proof of the associativity

Now we use the double pants transformation to prove Theorem 11.2. The proof is similar to the
arguments of Sections 9 and 10.

We first prove the next proposition, which is similar to Proposition 9.2.



146 K. Fukaya

Proposition 11.16. In Situation 11.1, let L12 = (L12, σ12, b12) (resp. L23 = (L23, σ23, b23),
L34 = (L34, σ34, b34) ) be an object of Fukst(−X1×X2) (resp. Fukst(−X2×X3), Fukst(−X3×X4)).
We put

L13 = (L13, σ13, b13) = Comp(L12,L23), L(1)14 =
(
L
(1)
14 , σ

(1)
14 , b

(1)
14

)
= Comp(L13,L34),

and

L24 = (L24, σ24, b24) = Comp(L23,L34), L(2)14 =
(
L
(2)
14 , σ

(2)
14 , b

(2)
14

)
= Comp(L12,L24).

Then we have the following:

(1)
(
L
(1)
14 , σ

(1)
14

)
=
(
L
(2)
14 , σ

(2)
14

)
. Here the equality is as submanifolds equipped with relative spin

structures.

(2) b
(1)
14 is gauge equivalent to b

(2)
14 in the sense of [34, Definition 4.3.1].

Proof. (1) is proved in the same way as Proposition 9.2 (1), which is proved in Section 17.4.
We prove (2) below.

We put hii′ = ebii′ for 1 ≤ i < i′ ≤ with ii′ ̸= 14 and h14 = eb
(1)
14 . Let hii′i′′ = 1ii′i′′

for ii′i′′ = 123, 134, 234. Here 1ii′i′′ is the function 1 on the diagonal component, which is
diffeomorphic to L̃ii′′ . We define

1
(1)
124 = DPT b⃗((hii′)ii′ ;h123, h134, h234).

We consider the filtered A∞ tri-module C F (L14;L12,L24) and twist it by the bounding cochains
b12, b24. We then obtain a left filtered A∞ module C F (L14;L12,L24) over Fukst(−X1 × X4).
By Lemma 11.15, we have

n
(
eb

(1)
14 ;1

(1)
124

)
= 0. (11.13)

Let 1
(2)
124 be the function 1 ∈ CF (L14;L12, L24) on the diagonal component, which is diffeo-

morphic to L̃14. By definition (see formulas (8.4) and (6.3)), we have

n(eb
(2)
14 ;1

(2)
124) = 0. (11.14)

By the definition of DPT b⃗ and 1
(1)
124, we find that

1
(1)
124 ≡ 1

(2)
124 mod Λ+. (11.15)

Using (11.13), (11.14), (11.15), we can apply (the left module analogue of) Lemma 9.14 to
conclude that b

(1)
14 is gauge equivalent to b

(2)
14 . ■

Proof of Theorem 11.2. We first study the composition

Fukst(−X1 ×X2)× Fukst(−X2 ×X3)× Fukst(−X3 ×X4)

→ Fukst(−X1 ×X3)× Fukst(−X3 ×X4)→ Fukst(−X1 ×X4). (11.16)

We apply the object part of the relative Yoneda functor to

Fukst(−X1 ×X2)× Fukst(−X2 ×X3)→ Fukst(−X1 ×X3).

We then obtain the filtered A∞ tri-module C F op(L12,L23;L13) by Corollary 11.8.
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On the other hand, applying the object part of the relative Yoneda functor to the composition

Fukst(−X1 ×X3)× Fukst(−X3 ×X4)→ Fukst(−X1 ×X4),

we obtain the filtered A∞ tri-module C F op(L13,L34;L14) by Corollary 11.8. Therefore, by
Proposition 10.10, applying the relative Yoneda functor to the composition (11.16) gives the
derived tensor product

D1 = ten(C F op(L12,L23;L13),C F op(L13,L34;L14))

over Fukst(−X1×X3). The quatro-module structure on D1 is defined in the same way as one in
the derived tensor product (see Lemma–Definition 10.6). Here the quatro-module structure is
left-Fukst(−X1 ×X2), Fukst(−X2 ×X3), Fukst(−X3 ×X4) and right Fukst(−X1 ×X4) module
structure.

We next consider the composition

Fukst(−X1 ×X2)× Fukst(−X2 ×X3)× Fukst(−X3 ×X4)

→ Fukst(−X1 ×X2)× Fukst(−X2 ×X4)→ Fukst(−X1 ×X4). (11.17)

By definition (see Proposition 8.11), the composition functor

Fukst(−X2 ×X3)× Fukst(−X3 ×X4)→ Fukst(−X2 ×X4)

composed with the Yoneda functor

Yon : Fukst(−X2 ×X4)→ FUNC(Fukst(−X2 ×X4)
op; CH)

gives a left-Fukst(−X2 ×X4), right-Fukst(−X2 ×X3), Fukst(−X3 ×X4) tri-module. C F (L24;
L23,L34). On the other hand, applying the relative Yoneda functor to

Fukst(−X1 ×X2)× Fukst(−X2 ×X4)→ Fukst(−X1 ×X4)

gives the left-Fukst(−X1×X2), Fukst(−X2×X4) right-Fukst(−X1×X4) tri-module C F op(L12,
L24;L14).

Therefore, we can apply Proposition 10.23 by putting

C(1) = Fukst(−X2 ×X3)× Fukst(−X3 ×X4), C(2) = Fukst(−X1 ×X2),

C(3) = Fukst(−X1 ×X4), C = Fukst(−X2 ×X4),

D(1) = C F op(L12,L24;L14), D(2) = C F (L24;L23,L34),

to find that applying relative Yoneda functor to the map (11.17) gives a left-Fukst(−X1 ×X2),
Fukst(−X2 ×X3), Fukst(−X3 ×X4) and right Fukst(−X1 ×X4) quatro-module

D2 = HomFukst(−X2×X4)(C F (L24;L23,L34),C F op(L12,L24;L14)).

Now a quatro-module homomorphism from D1 to D2 is a map from

BCF [1](L12,L′12)⊗BCF [1](L23,L′23)⊗BCF [1](L34,L′34)
⊗ CF op(L′12,L′23;L13)⊗BCF [1](L13,L′13)⊗ CF op(L′13,L′34;L14)
⊗ CF (L24;L′23,L′34)⊗BCF [1](L24,L′24)⊗ CF (L14,L′14) (11.18)

to CF op(L12,L24;L′14).
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The double pants transformation DPT b⃗ is such a map. Note that in (11.11) L′24;L23,L34
appears in CF (. . . ) and all similar triple appears in CF op(. . . ). This coincides with (11.18).
The main property of double pants transformation, that is, Lemma 11.15, implies that DPT b⃗

gives a quatro-module homomorphism.

Thus we obtained a natural transformation from (11.16) to (11.17). The fact that it induces
an isomorphism for objects can be proved in the same way as the last part of the proof of
Theorem 10.16 (see Section 10.4). We can combine it with the argument of the proof of Propo-
sition 11.16 to complete the proof of Theorem 11.2 in the same way as the last step of the proof
of Theorem 9.1 (see Section 10.2). ■

12 Two different ways to compactify the moduli space
of pseudo-holomorphic disks in the direct product

12.1 The reason why we need a different compactification

Let (L12, σ12) be a π∗1(V1⊕TX1)⊕π∗2(V2) relatively spin Lagrangian submanifold of −X1×X2.
(Here Vi is a vector bundle on (Xi)[3] for i = 1, 2.) Let us consider the set M̊(L12; a⃗12;E), which
we defined in Definition 3.19.

Definition 12.1. The subset
◦◦
M(L12; a⃗12;E) of M̊(L12; a⃗12;E) consists of the equivalence

classes [(Σ;u; z⃗; γ)] such that Σ is a disk. In other words, it consists of the stable maps with no
sphere or disk bubbles.

In Section 3 (see formula (3.20)), we compactified
◦◦
M(L12; a⃗12;E) toM(L12; a⃗12;E). In Def-

inition 5.37, we did not use this compactification but mentioned that we use a slightly different
compactificationM′(L12; a⃗12;E) to define the partial compactification M̊(⃗a1, a⃗12, a⃗2; a−, a+;E)
of the space

◦◦
M(⃗a1, a⃗12, a⃗2; a−, a+;E). See Remark 5.38. In this section, we define this compact-

ificationM′(L12; a⃗12;E) and its Kuranishi structure.

We first explain the reason why we need to use different compactification fromM(L12; a⃗12;E).
Actually, the space M(⃗a1, a⃗12, a⃗2; a−, a+;E) will not carry Kuranishi structure if we use the
compactificationM(L12; a⃗12,j ;E) in (5.15). We explain its reason in the following example.

Example 12.2. We consider a neighborhood of an element (ξ, η) of the fiber product. We
define ξ, η below. Let

ξ = ([−1, 1]× R;∅, (0, 0),∅;u1, u2; γ1, γ12, γ2) ∈
◦◦
M(∅, (a12),∅; a−, a+;E1).

In other words, we consider the case when the source curve Σ is [−1, 1]× R and has no sphere
bubble, and consider only one (boundary) marked point (0, 0) which is (0, 0) ∈ {0} × R. See
Figure 12.1.

a

a
+

a
12

u
1

u
2

Figure 12.1. Element ξ.
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We also consider

η = (Σ;u3; (1); γ3) ∈ M̊(L12; (a12);E2). (12.1)

Here Σ is the union of D2 and S2 glued at 0 ∈ D2 and [∞] ∈ S2 = C∪{∞}, u3 : Σ→ −X1×X2

is a pseudo-holomorphic map such that u3(∂Σ3) ⊂ L12 and 1 ∈ ∂Σ is a boundary marked point.
See Figure 12.2.

u
3

u
d

u
s

Figure 12.2. Element η.

We assume (u1, u2)(0, 0) = u3(1) and regard the pair (ξ, η) as an element of the fiber product

◦◦
M(∅, (a12),∅; a−, a+;E1)×L12(a12)M(L12; (a12);E2).

This fiber product is similar to (5.15) but we useM(L12; (a12);E2) in place ofM′(L12; (a12);E2).
We assume E = E1 + E2. See Figure 12.3.

Figure 12.3. Element (ξ, η).

Let us consider a neighborhood of this element in the compactified moduli space. For sim-
plicity, we assume that the element (ξ, η) is Fredholm regular in the fiber product. We put
ud = u3|D2 and us = u3|S2 . We denote by V quil, V d, V s the parameter to deform ξ, ud, us,
respectively. We have two kinds of extra parameters which resolve the singular point. One
is [0, ε) which parametrizes the way to resolve the boundary node and the other is D2

ε which
parametrizes the way to resolve the interior node. Therefore, we might imagine that the gluing
analysis implies that the neighborhood of (ξ, η) inM(∅,∅,∅; a−, a+;E) is parametrized by

V quil ×L12(a12) V
s ×X1×X2 V

d × [0, ε)×D2
ε . (12.2)

However, (12.2) does not parametrize a neighborhood of (ξ, η) correctly. To see this we examine
the process of gluing more carefully. Actually it suffices to see the pre-gluing, which is the
process to obtain approximate solution of the nonlinear Cauchy–Riemann equation by using
partition of unity. (The process to modify it to obtain an actual solution is the same as other
well-established cases.)

The maps ud and us are maps to the direct product −X1 ×X2. So we write ud =
(
ud1 , u

d
2

)
and us = (us1, u

s
2).

We first glue (u1, u2) with ud. This gluing is parametrized by the parameter ρ ∈ [0, ε)
with ρ ̸= 0. We put u1(s, t) = u1(−s, t) and regard (u1, u2) as a map from a neighborhood
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of (0, 0) in [0, 1] × R to −X1 × X2 and glue it with ud. We obtain a map (u1, u2)#ρu
d from

[0, 1]× R to −X1 ×X2.
We them regard (u1, u2)#ρu

d as a pair of maps (u′1, u
′
2) where u

′
1 : [0, 1]×R→ X1, u

′
2 : [0, 1]×

R → X2 such that (u′1(0, t), u
′
2(0, t)) ∈ L12. By an abuse of notation, we may regard the

pair (u′1, u
′
2) as

(
u1#ρu

d
1 , u2#ρu

d
2

)
. See Figure 12.4.

u
1

u
2

u
1

d u
2

d

Figure 12.4.
(
u1#ρu

d
1 , u2#ρu

d
2

)
.

We next glue us to this pair
(
u1#ρu

d
1 , u2#ρu

d
2

)
. This gluing is parametrized by the parame-

ter θ ∈ D2
ε . We assume θ ̸= 0. We observe that the marked point 0 ∈ D2 at which we glue the

sphere bubble becomes a pair of points (−c(ρ), 0) ∈ [−1, 0]×R and (c(ρ), 0) ∈ [0, 1]×R after the
first gluing. Therefore, when we glue us we glue us1 : S

2 → X1 to u1#ρu
d
1 at the point (−c(ρ), 0)

and glue us2 : S
2 → X2 to u2#ρu

d
2 at the point (0, c(ρ)). (Here us1 is obtained from us1 by using

anti-holomorphic involution of the source.) We thus can write the element obtained by the
gluing as

(
u1#ρu

d
1#θu

s
1, u2#ρu

d
2#θu

s
2

)
. See Figure 12.5.

biholomorphic

c( )

∼=

Figure 12.5.
(
u1#ρu

d
1#θu

s
1, u2#ρu

d
2#θu

s
2

)
.

In this way, we obtain a family of approximate solutions parametrized by (12.2).
Now the issue is that this family does not have correct dimension. In fact, it has two more

parameters than the correct parameter. Let us elaborate on this point below.
Let v : S2 → S2 be a biholomorphic map which preserves ∞ ∈ C ∪ {∞} ∼= S2. We re-

mark that us2 ◦ v and us2 are the same element of the moduli space of pseudo-holomorphic
spheres with one marked point in X1. However, (us1, u

s
2 ◦ v) is a different element from (us1, u

s
2)

in the moduli space of pseudo-holomorphic spheres with one marked point in −X1 × X2.
Thus

(
u1#ρu

d
1#θu

s
1, u2#ρu

d
2#θu

s
2 ◦ v

)
may become the same element as

(
u1#ρu

d
1#θu

s
1, u2#ρu

d
2

#θu
s
2

)
but (u1, u2 ◦ v) ̸= (u1, u2).

Another point is that, using the notation
(
u1#ρu

d
1#θu

s
1, u2#ρu

d
2#θu

s
2

)
, we can glue us1 and u

s
2

by different gluing parameter at interior nodes. Namely, we have a family of elements of our
moduli space

(
u1#ρu

d
1#θ1u

s
1, u2#ρu

d
2#θ2u

s
2

)
where θ1 ̸= θ2 may occur.

In fact, a part of the freedom to reparametrize the first (but not the second) factor by v
corresponds to the freedom to choose θ1 ̸= θ2. We will elaborate on this point. We iden-
tify

(
S2,∞

)
= (C ∪ {∞},∞). For z ∈ C in a neighborhood of 1, we define vz : (C ∪ {∞},∞)→

(C ∪ {∞},∞) by vz(z) = zz. Then the element
(
u1#ρu

d
1#zθ1u

s
1, u2#ρu

d
2#θ2u

s
2 ◦ vz

)
represents

the same element as
(
u1#ρu

d
1#θ1u

s
1, u2#ρu

d
2#θ2u

s
2

)
. See Remark 12.3 below. We now observe

that the real dimension of the group of automorphisms of (C∪{∞},∞) is 4. On the other hand,
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the extra parameter by allowing θ1 ̸= θ2 is 2. Thus we can conclude the dimension of (12.2) is 2
plus the correct dimension of our moduli space.

In other words, we can not define Kuranishi structure of our compactification if we use
M(L12; a⃗12;E) in place ofM′(L12; a⃗12;E) in (5.15).

Remark 12.3. To elaborate on the fact(
u1#ρu

d
1#zθ1u

s
1, u2#ρu

d
2#θ2u

s
2 ◦ vz

)
∼
(
u1#ρu

d
1#θ1u

s
1, u2#ρu

d
2#θ2u

s
2

)
,

we consider the case when θ1 = θ2 = 0, that is,(
u1#ρu

d
1#0u

s
1, u2#ρu

d
2#0u

s
2 ◦ vz

)
∼
(
u1#ρu

d
1#0u

s
1, u2#ρu

d
2#0u

s
2

)
. (12.3)

In this case, the domain of those elements are depicted as in Figure 12.6 below.

S2
1 S2

2

Figure 12.6. The domain in the case when θ1 = θ2 = 0.

There are two sphere bubbles on the domain. We denote by S2
1 and S2

2 the sphere bubbles
which lie in the left and the right of the seam, respectively. The maps on S2

1 and S2
2 are us1

and us2 for the right-hand side of (12.3). In the case of left-hand side of (12.3), the maps on S2
1

and S2
2 are us1 and u

s
2◦vz, respectively. We define v̂z to be an isomorphism from the configuration

as in Figure 12.6 to itself so that v̂z is the identity map outside S2
2 and is vz on S

2
2 . Then it is

easy to see that(
u1#ρu

d
1#0u

s
1, u2#ρu

d
2#0u

s
2

)
◦ v̂z =

(
u1#ρu

d
1#0u

s
1, u2#ρu

d
2#0u

s
2 ◦ vz

)
.

This implies the equivalence (12.3).

We can choose the various additional data which we use to perform the gluing process so
that the equivalence in the case θi = 0 can be extended to the case θi ̸= 0. (We omit the detail
of this part since the rigorous proof is not necessary for the proof of our results. The discussion
here is a motivation to introduce new compactification.)

We also observe the following. We take the limit as ρ goes to 0 in (12.3). The domain depicted
by Figure 12.6 converges to the domain depicted by Figure 12.3. The automorphisms v̂z however
cannot be extended to this limit. In fact, in the domain of Figure 12.3 two sphere bubbles
become the one sphere bubble and so we are not allowed to take two different biholomorphic
maps on the sphere bubble. Therefore, ‘the limit’ of left and right-hand sides (as ρ goes to 0)
are not equivalent. By this reason, it seems likely that it is impossible to define an appropriate
topology which is Hausdorff, if we use M(L12; a⃗12,j ;E12,j) in place of M′(L12; a⃗12,j ;E12,j) in
Theorem 5.43 (2).

Remark 12.4. A similar problem already appeared in [42] (see the proof of [42, Lemma 6.62]).
In [42, Lemma 6.62], we compared two moduli spaces. One is the space of pseudo-holomorphic
maps u from a disk to −X ×X so that u

(
∂D2

)
lies in the diagonal. The other is the space of
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pseudo-holomorphic maps u′ from a sphere toX. We can use reflection principle to identify those
two moduli spaces. When we consider their stable map compactifications the identification does
not extend. To explain this fact, we consider the case when u is a map from D2 with a sphere
bubble to −X×X so that u

(
∂D2

)
lies in the diagonal. Suppose that u is (u1, u2) on the bubble.

Then the corresponding element u′ is a map from S2 with two sphere bubbles and the maps
on those sphere bubbles are u1 and u2, respectively (see Figure 12.7). When we replace u2
by u2 ◦ vz the object in the compactification of the moduli space of disks changes. However,
the corresponding objects in the compactification of the moduli space of spheres are equivalent.
This is similar to the situation of Example 12.2 and Remark 12.3.

(u1, u2)

u1

u2D2 S2

Figure 12.7. Reflection principle at infinity.

In [42], the problem is slightly less serious since there we need to show two well-defined
numbers to coincide. So we can use the fact that the problem occurs only in codimension ≥ 2
strata and use dimension counting argument. Here we need to work out the chain level argument.
So we describe the different compactificationM′(L12; a⃗;E) in detail in this section.

Remark 12.5. We remark that the problem of different reparametrizations applied to the first
and the second factors in the bubble, which we described in Example 12.2, does not occur for
the disk bubble but occurs only for the sphere bubble. Let us elaborate on this point below.

Let us consider the same ξ as Example 12.2. We replace η as in (12.1) by

η =
(
D2;u3; (1); γ3

)
∈ M̊(L12; (a12);E2).

Namely, we assume the source curve of η is a disk. The group of automorphisms of the
pair

(
D2, 1

)
of a disk with one boundary marked point 1 ∈ ∂D2 is identified with the group of

affine transformations z 7→ φa,b(z) = az + b with a ∈ R+ and b ∈ R. Here we identify D2 \ {1}
with the upper half plane {z ∈ C | Im z ≥ 0}.

Let ud =
(
ud1 , u

d
2

)
be a representative of an element of M̊(L12; (a12);E2), where u

d
1 : D

2 → X1

and ud2 : D
2 → X2.

Note that in this case
(
ud1 , u

d
2 ◦ φa,b

)
does not represent an element of M̊(L12; (a12);E2) in

general, since this element may not satisfy the boundary condition.

Remark 12.6. The compactification M′ℓ,ℓ1,ℓ2(L12; a⃗;E) which we will define in the next sub-
section, is ‘smaller’ thanMℓ,ℓ1,ℓ2(L12; a⃗;E). An intuitive reason why we need smaller compact-
ification lies in the fact that

◦◦
MQT(L1, L12, L2; p, q) is also ‘smaller’ than

◦◦
M(L12, L1 × L2; p, q).

In fact, we can define

forgetQT :
◦◦
M(L12, L1 × L2; p, q)→

◦◦
MQT(L1, L12, L2; p, q).

Here p = (p1, p2) ∈ (L1 × L2) ∩ L12, q = (q1, q2) ∈ (L1 × L2) ∩ L12.
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The space
◦◦
M(L12, L1 × L2; p, q) is a partially compactified moduli space of pseudo-holomor-

phic strips. Its element is an equivalence class of (Σ;u) where Σ is a strip [0, 1]×R with trees of
sphere bubbles and u : Σ → −X1 ×X2 is a pseudo-holomorphic map. We require that u|{0}×R
(resp. u|{1}×R ) lifts to a map to L̃12 (resp. to L̃1 × L̃2) and u is asymptotic to p (resp. q) when
the R-factor of the domain goes to −∞ (resp. +∞).

The space
◦◦
MQT(L1, L12, L2; p, q) is a partially compactified moduli space of pseudo-holo-

morphic quilt. Its element is an equivalence class of (Σ′;u1, u2). Here Σ′ is [−1, 1] × R with
trees of sphere bubbles, which is decomposed to Σ′1 ∪ Σ′2 such that Σ′1 (resp. Σ′2) is [−1, 0]× R
(resp. [0, 1]× R) together with sphere bubbles. ui : Σ

′
i → Xi is a pseudo-holomorphic map. We

require that u1|{−1}×R (rest. u2|{1}×R) lifts to a map to L̃1

(
resp. L̃2

)
. We also require a matching

condition, that is, the map τ 7→ (u1(0, τ), u2(0, τ)) lifts to a map to L̃12. Furthermore, we require
asymptotic boundary condition given by p, q.

We define forgetQT as follows. Let (Σ;u) represent an element of
◦◦
M(L12, L1 × L2; p, q). We

write u = (u1, u2) where ui is a map to Xi. We consider (Σ;u1) and shrink all the unstable
sphere components of Σ on which u1 is constant to obtain Σ′′1. Using the map (t, τ) 7→ (−t, τ)
(which is a map [−1, 0] × R → [0, 1] × R), we obtain Σ′1 from Σ′′1. The map u1 induces
a map u′1 : Σ

′
1 → X1. In a similar (and simpler) way we obtain Σ′2 and u′2 : Σ

′
2 → X2. We

glue Σ′1 and Σ′2 on the line {0} × R to obtain Σ′. It is easy to see that (Σ′;u′1, u
′
2) represents an

element of
◦◦
MQT(L1, L12, L2; p, q).

Using Lemma–Definition 14.33, we can extend the map forgetQT so that it includes the case
when the objects have disk bubbles.

The map Dob in formula (17.9) is an inverse of forgetQT on certain open dense subsets.

12.2 The definition of the compactification M′(L12; a⃗;E)

Based on the observation in the previous subsection, we define the compactificationM′(L12; a⃗;
E). For later use, we also include the case when there are interior marked points and will
defineM′ℓ,ℓ1,ℓ2(L12; a⃗;E).

Definition 12.7. We consider objects(((
Σ1, z⃗1, z⃗

int
1 , w⃗int

1

)
, u1
)
,
((
Σ2, z⃗2, , z⃗

int
2 , w⃗int

2

)
, u2
)
,I , γ

)
with the following properties:

(1) The space Σi, i = 1, 2, is a bordered curve of genus zero with one boundary component.
z⃗i = (zi,0, . . . , zi,k) are mutually distinct boundary marked points of Σi such that the enu-
meration of the marked points respects orientation of the boundary. z⃗ int

i =
(
zinti,0 , . . . , z

int
i,ℓ

)
and w⃗int

i =
(
wi,1, . . . , wi,ℓi

)
are mutually distinct interior marked points on Σi. Marked

points are not nodal points.

(2) The maps u1 : Σ1 → −X1, u2 : Σ2 → X2 are pseudo-holomorphic. (We do not assume
that

((
Σi, z⃗i, z⃗

int
i , w⃗int

i

)
, ui
)
is stable. The stability condition we assume is Definition 12.10

below.)

(3) We shrink all the unstable sphere components of
(
Σi, z⃗i, z⃗

int
i

)
(that is, the sphere compo-

nents which have less than 3 nodal or marked points in z⃗ int
i ). We denote by

(
Σ0
i , z⃗i, z⃗

int
i

)
the marked bordered nodal curve obtained by this shrinking. (We use the same symbols z⃗i,
z⃗ int
i for marked points by an abuse of notation.) (We remark that we forget w⃗int

i when
we define Σ0

i .) Then, I : Σ0
1 → Σ0

2 is a biholomorphic map such that I (z1,j) = z2,j ,
I (zint1,j) = zint2,j . (See Figure 12.8.)

(4) The map γ : ∂Σ1 \ z⃗1 → L̃12 is continuous and satisfies

iL12(γ(z)) = (u1(z), u2(I (z))). (12.4)
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(Note that (12.4) implies (u1(z), u2(I (z))) ∈ L12 for z ∈ ∂Σ1.) (We also remark ∂Σ1 =
∂Σ0

1.)

(5) We require the switching condition, Condition 12.8, below.

(6) We require the stability condition, Definition 12.10, below.

(7) −
∫
Σ1
u∗1ω1 +

∫
Σ1
u∗2ω2 = E.

u = const

z

z

z

z

w

Σ1

Σ2 Σ2,0

Σ1,0

Figure 12.8. Source curve of an element ofM′ℓ,ℓ1,ℓ2(L12; a⃗;E).

We call zinti,j an interior marked point of first kind and wint
i,j an interior marked point of second

kind .
We denote byM′ℓ,ℓ1,ℓ2(L12; a⃗;E) the set of the equivalence classes of such objects with respect

to the equivalence relation ∼ defined in Definition 12.9.

Condition 12.8. For each j, (limz∈∂Σ1,z↑z1,j γ(z), limz∈∂1Σ,z↓z1,j γ(z)) ∈ L12(a1,j).

Definition 12.9. Let ξ =
(((

Σ1, z⃗1, z⃗
int
1 , w⃗int

1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 , w⃗int

2 ), u2
)
,I , γ

)
and let ξ′ =(((

Σ′1, z⃗
′
1, z⃗

int′
1 , w⃗int′

1

)
, u′1
)
,
((
Σ′2, z⃗

′
2, z⃗

int′
2 , w⃗int′

2

)
, u′2
)
,I ′, γ′

)
be objects satisfying (1)–(5) of Defi-

nition 12.7.
A weak isomorphism from ξ to ξ′ is a pair of maps (ψ1, ψ2) with the following properties:

(1) The map ψi : Σi → Σ′i is biholomorphic.

(2) ψi(zi,j) = z′i,j .

(3) There exist permutations σ : {1, . . . , ℓ} → {1, . . . , ℓ}, σi : {1, . . . , ℓi} → {1, . . . , ℓi} such
that ψi

(
zinti,j
)
= zint′i,σ(j), and that ψi

(
wint
i,j

)
= wint′

i,σi(j)
, for i = 1, 2.

(4) u′i ◦ ψi = ui for i = 1, 2.

(5) Note that (1)–(3) above implies that ψi induces a map ψi : Σ
0
i → Σ′0i . We require: I ′◦ψ1 =

ψ2 ◦I on Σ0
1.

A weak isomorphism (ψ1, ψ2) is said to be an isomorphism if σ and σi in item (3) are the identity
maps.

We say ξ is equivalent to ξ′ and write ξ ∼ ξ′ if there exists an isomorphism from ξ to ξ′.



Unobstructed Immersed Lagrangian Correspondence and Filtered A∞ Functor 155

Definition 12.10. An object ξ satisfying (1)–(5) of Definition 12.7 is said to be stable if the
set of isomorphisms from ξ to ξ is finite.

We say ξ is source stable if the set of (ψ1, ψ2) which satisfies (1), (2), (3), (5) of Definition 12.9
(but not necessary (4)) is finite.

Remark 12.11. We consider
(((

Σ1, z⃗1, z⃗
int
1 , w⃗int

1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 , w⃗int

2 ), u2),I , γ
)
such that

there exists an unstable disk component Σ1(a) of Σ1 on which u1 is constant. Such an object can
still be stable in the sense of Definition 12.10. In fact, if u2 is non-constant on Σ2(a) = I (Σ1(a)),
then by condition Definition 12.10 (4) there is no continuous family of automorphisms supported
on this component.

Example 12.12. We consider the situation of Example 12.2. The element η corresponds in our
compactification to an element η′ from the domain as in Figure 12.9. Σ1,0

∼= Σ2,0 is a disk in this
case and I is the identity map. u1, u2 are defined on the sphere bubbles rooted on Σ1,0, Σ2,0,
respectively. By the definition of our equivalence relation, the object is equivalent if we replace u2
by u2 ◦ v. Here v : S2 → S2 is a biholomorphic map which preserves the point 0 where sphere
bubble is attached. Therefore, the problem mentioned in Example 12.2 disappears.

u1 u2

Σ1 Σ2

Σ2,0Σ1,0

Figure 12.9. Element η′.

Let

i = (i0, i1, i2), i0 : {1, . . . , ℓ} → {1, . . . , ℓ′}, ii : {1, . . . , ℓi} → {1, . . . , ℓ′i} (12.5)

be a triple of injective maps. It induces a forgetful map

i∗ : M′ℓ′,ℓ′1,ℓ′2(L12; a⃗;E)→M′ℓ,ℓ1,ℓ2(L12; a⃗;E), (12.6)

as follows.
Let(((

Σ1, z⃗1, z⃗
int
1 , w⃗int

1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 , w⃗int

2 ), u2
)
,I , γ

)
∈M′ℓ′(L12; a⃗;E).

We put zint′i,j = zinti,i(j), w
int′
i,j = wint

i,ii(j)
. We consider

ξ =
(((

Σ1, z⃗1, z⃗
int′
1 , w⃗int′

1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int′
2 , w⃗int′

2

)
, u2
)
,I , γ

)
.

We shrink components such that there are infinitely many automorphisms supported on it and
obtain

ξ′ =
(((

Σ′1, z⃗
′
1, z⃗

int′
1 , w⃗int′

1 ), u1
)
,
((
Σ′2, z⃗

′
2, z⃗

int′
2 , w⃗int′

2

)
, u′2
)
,I ′, γ′

)
.

We define i∗(ξ) = ξ′.
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Definition 12.13. Let

ξ =
(((

Σ1, z⃗1, z⃗
int
1 , w⃗int

1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 , w⃗int

2 ), u2
)
,I , γ

)
be an element ofM′ℓ′,ℓ′1,ℓ′2(L12; a⃗;E). We say an element

ξ′ =
(((

Σ′1, z⃗
′
1, z⃗

int′
1 , w⃗int′

1

)
, u′1
)
,
((
Σ′2, z⃗

′
2, z⃗

int′
2 , w⃗int′

2

)
, u′2
)
,I ′, γ′

)
of the spaceM′ℓ,ℓ1,ℓ2(L12; a⃗;E) is a source stabilization of ξ if the following holds:

(1) There exists i as in (12.5) such that i∗(ξ′) = ξ.

(2) For any isomorphism (ψ1, ψ2) : ξ → ξ, there exists an weak isomorphism (ψ′1, ψ
′
2) : ξ

′ → ξ′

such that the next diagram commutes:

Σ′i
ψ′
i−−−−→ Σ′iy y

Σi
ψi−−−−→ Σi,

where the vertical arrows are the maps shrinking unstable sphere components.

(3) The element ξ′ is source stable.

We call an interior marked point of ξ an added marked point if it does not correspond to
a marked point of ξ′. (There are ℓ− ℓ′ + ℓi − ℓ′i added marked points on each Σi (i = 1, 2).)

We next define a topology, stable map topology, on M′ℓ(L12; a⃗;E), in a similar way as [49,
Definition 10.3], as follows.

We first consider the case of elements

ξ =
(((

Σ1, z⃗1, z⃗
int
1 , w⃗int

1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 , w⃗int

2 ), u2
)
,I , γ

)
and

ξ(k) =
(((

Σ1(k), z⃗1(k), z⃗
int
1 (k), w⃗int

1 (k)
)
, u1(k)

)
,((

Σ2(k), z⃗2(k), z⃗
int
2 (k), w⃗int

2 (k)), u2(k)
)
,I (k), γ(k)

)
ofM′ℓ(L12; a⃗;E) such that ξ and ξ(k) are all source stable. In such case, we define the following.

Definition 12.14. We say limsk→∞ ξ(k) = ξ if the following holds:

(1)
(
Σi(k), z⃗i(k), z⃗

int
i (k), w⃗int

1 (k)
)
converges to

(
Σi, z⃗i, z⃗

int
i , w⃗int

1

)
as k →∞ in the moduli space

of bordered marked nodal curves, for i = 1, 2.

(2) Let Ni(ε) be the ε neighborhood of the set of the nodal points of Σi. Using a universal
family of nodal marked bordered curves together with item (1), we take a smooth em-
bedding Ii,k : Σi \Ni(ε)→ Σi(k), such that it converges to the identity map as k goes to
infinity. (Here we regard Σi(k) as a subset of the total space of the universal family.)
Moreover,

(a) Ii,k(zi,j) = zi,j(k).

(b) Ii,k(z
int
i,j ) = zinti,j (k).

(c) Ii,k(w
int
i,j ) = wint

i,j (k).
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(3) For any small ε > 0, we have

lim
k→∞

sup{d(ui(k)(Ii,k(z)), ui(z)) | z ∈ Σi \Ni(ε)} = 0.

(4) There exist εk → 0, δk → 0 such that for each connected component Si,a(k) of Σi(k) \
Ii,k(Σi \Ni(εk)) we have DiamSi,a(k) ≤ δk.

(5) We may choose Ni(εk) and εk → 0 with the following property. Let Ni(εk) be the image
of Ni(εk) in Σ0

i . Then I
(
N1(εk) ∩ Σ0

1

)
⊆ N2(εk) ∩ Σ0

2. Now we require

lim
k→∞

sup{d(I (k)(I1,k(z)), I2,k(I (z))) | z ∈ Σ1 \N1(εk)} = 0.

Remark 12.15. We require C0 convergence in item (3). Since the maps are pseudo-holomor-
phic, it implies Cn convergence for any n.

Definition 12.16. Let ξ, ξ(k) ∈ M′ℓ,ℓ1,ℓ2(L12; a⃗;E). We say limk→∞ ξ(k) = ξ if there exists ℓ′,
ℓ′1, ℓ

′
2, i as in (12.5) and ξ+, ξ(k)+ ∈M′ℓ′,ℓ′1,ℓ′2(L12; a⃗;E) such that

(1) i∗(ξ+) = ξ, i∗(ξ(k)+) = ξ(k). Moreover, ξ+, ξ(k)+ are source stabilizations of ξ, ξ(k),
respectively.

(2) limsk→∞ ξ
+(k) = ξ+.

We will use the next lemma to show that Definition 12.16 determines a topology. (See
Lemma 12.19.) Lemma 12.17 is also used during the construction of the Kuranishi structure, in
Section 12.3.

Lemma 12.17. We consider

ξ ∈M′ℓ,ℓ1,ℓ2(L12; a⃗;E), ξ(1) ∈M′
ℓ(1),ℓ

(1)
1 ,ℓ

(1)
2

(L12; a⃗;E),

ξ(2) ∈M′
ℓ(2),ℓ

(2)
1 ,ℓ

(2)
2

(L12; a⃗;E).

Suppose that i∗(1)ξ
(1) = i∗(2)ξ

(2) = ξ for some forgetful maps i(1), i(2). We assume that ξ(1), ξ(2) are
source stable. Let ξ(2)(k) be a sequence of source stable objects such that limsk→∞ξ

(2)(k) = ξ(2).
Then there exists a sequence of elements ξ(1)(k) which are source stable and such that

i∗(1)
(
ξ(1)(k)

)
= i∗(2)ξ

(2)(k)

and limsk→∞ ξ
(1)(k) = ξ(1).

ξ

ξ(1) ξ(2)

ξ(2)(k)

∃
ξ(1)(k)

ξ(k)

Figure 12.10. ξ(i) and ξ(i)(k) in Lemma 12.17.

ξ

ξ(1) ξ(2)

ξ(3)

ξ(3)(k)

ξ(2)(k)

∃

Figure 12.11. ξ(i) and ξ(i)(k) in the claim.
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Proof. We claim that there exist ξ(3), ξ(3)(k) such that limsk→∞ ξ
(3)(k) = ξ(3) and i∗(32)ξ

(3) =
ξ(2), i∗(31)ξ

(3) = ξ(1), i∗(32)ξ
(3)(k) = ξ(2)(k). Here i∗(32), i

∗
(31) are appropriate forgetful maps. (Dur-

ing the proof of this claim, we do not use the assumption that ξ(1) is source stable.)
The proof of this claim is by an induction on the number of added marked points of ξ(1). We

put

ξ(i) =
(((

Σ
(i)
1 , z⃗

(i)
1 , z⃗

(i),int
1 , w⃗

(i),int
1

)
, u

(i)
1

)
,
((
Σ
(i)
2 , z⃗

(i)
2 , z⃗

(i),int
2 , w⃗

(i),int
2

)
, u2
)
,I (i), γ(i)

)
for i = 1, 2 and

ξ(2)(k) =
(((

Σ
(2)
1 (k), z⃗

(2)
1 (k), z⃗

(2),int
1 (k), w⃗

(2),int
1 (k)), u

(2)
1 (k)),((

Σ
(2)
2 (k), z⃗

(i)
2 (k), z⃗

(i),int
2 (k), w⃗

(2),int
2 (k)), u2(k)

)
,I (2)(k), γ(2)(k)

)
,

ξ =
(((

Σ1, z⃗1, z⃗
int
1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 , w⃗int

2

)
, u2
)
,I , γ

)
.

Suppose the number of added marked point is one. We consider the case when the added marked
point is of type 2 and is w

(1),int
1 in Σ1. (The other cases are similar and so are omitted.)

Note that there are holomorphic maps π
(i)
j : Σ

(i)
j → Σj , which shrink certain irreducible com-

ponents.
Case 1: We assume that the irreducible component containing w

(1),int
1 is not shrunk by

π
(1)
1 : Σ

(1)
1 → Σ1.

Case 1-1: Suppose π
(1)
1

(
w

(1),int
1

)
is not in the image of a nodal or a marked point of Σ

(2)
1 . There

exists a point ŵ in Σ
(2)
1 which goes to π

(1)
1

(
w

(1),int
1

)
by π

(2)
1 . The point ŵ is not nodal or marked.

We add ŵ as an extra added marked point to Σ
(2)
1 to obtain ξ(3). We then take one marked

point ŵ(k) on Σ
(2)
1 (k) for each k, which is ‘close’ to ŵ and add ŵ(k) to ξ(2)(k) to obtain ξ(3)(k)

such that limsk→∞ξ
(3)(k) → ξ(3). It is easy to see that ξ(3) and ξ(3)(k) have the required

properties.
Case 1-2: Suppose π

(1)
1

(
w

(1),int
1

)
is the image of a marked point w′ of Σ

(2)
1 . We add a sphere

bubble S at w′ to Σ
(2)
1 and add one marked point ŵ on this bubble. (Then the sphere compo-

nent S has one node and two marked points. One of the two marked points corresponds to w′

and the other is ŵ.) We thus obtain ξ(3). (See Figure 12.12.)

π
(1)
1 (w

(1),int
1 ) = π

(2)
1 (w )

w

ŵ

ξ

ξ(1)

ξ(2)

ξ(3)

w
(1),int
1

w
(1),int
1

Figure 12.12. Case 1–2.

We consider Σ
(2)
1 (k). We take the marked point w′(k) corresponding to w′. We add a sphere

bubble S(k) at w′(k) and a marked point ŵ(k) on S(k). We thus obtain ξ(3)(k) in the same
way. It is easy to see that ξ(3), ξ(3)(k) have the required property.
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Case 1-3: Suppose π
(1)
1

(
w

(1),int
1

)
is in the image of a node x of Σ

(2)
1 . We add a sphere bubble

at x to Σ
(2)
1 and add one marked point on this bubble. (Then this sphere component has two

nodal points and one marked point.) We thus obtain ξ(3). (See Figure 12.13.)

π
(1)
1 (w

(1),int
1 ) = π

(2)
1 (w )

ξ

ξ(1)

ξ(2)

ξ(3)

x ×

π
(1)
1 (w

(1),int
1 ) = π

(2)
1 (x )

×

w
(1),int
1

w
(1),int
1

Figure 12.13. Case 1–3.

We consider Σ
(2)
1 (k). There are two cases. If there is a nodal point x(k) corresponding to x

in Σ
(2)
1 (k) then we add a sphere bubble S(k) at x(k) and do the same construction as above to

obtain ξ(3)(k). If there is no nodal point in Σ
(2)
1 (k) corresponding to x, then there is a ‘neck

region’ corresponding to x. We add a marked point in this neck region to obtain ξ(3)(k). (See
Figure 12.14.)

× w
(3),int
1 (k)

ξ(3)(k)

Figure 12.14. Put a marked point on the neck region.

It is easy to see that ξ(3), ξ(3)(k) have the required property.

We remark that Case 1-2 and Case 1-3 can occur at the same time. Also the marked point w′

in Case 1-2 or a node x in Case 1-3 may not be unique. We can take any of such choices to
prove the claim in those cases.

Case 2: We assume that the component containing w
(1),int
1 is shrunk by π

(1)
1 : Σ

(1)
1 → Σ1.

We consider the point π
(1)
1

(
w

(1),int
1

)
∈ Σ1. We consider three subcases.

Case 2-1: π
(1)
1

(
w

(1),int
1

)
∈ Σ1 is not in the image of a nodal or a marked point of Σ

(2)
1 . The

construction is the same as Case 1-1.

Case 2-2: π
(1)
1

(
w

(1),int
1

)
∈ Σ1 is in the image of a marked point of Σ

(2)
1 . The construction is

the same as Case 1-2.

Case 2-3: π
(1)
1

(
w

(1),int
1

)
∈ Σ1 is not in the image of a nodal point of Σ

(2)
1 . The construction is

the same as Case 1-3.

We thus proved the claim in the case when the number of added marked points in ξ(1) is 1.

Now we prove the claim by the induction of the number n of added marked points in ξ(1).
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(Such an induction is possible since during the proof of this claim we do not use the assumption
that ξ(1) is source stable.)

The case n = 1 is already proved. Suppose the claim is proved for n − 1. We remove
one added marked point from ξ(1) and obtain ξ(1),−. We apply induction hypothesis to ob-
tain ξ(3)−, ξ(3)−(k).

Now we apply the case n = 1 taking ξ(1), ξ(3)−, ξ(3)−(k) as ξ(1), ξ(2), ξ(2)(k). It implies the
claim in the case of n.

We have thus proved the claim.
We remark i∗(31)

(
ξ(3)
)
= ξ(1). Namely, ξ(1) is obtained by forgetting certain marked points

of ξ(3). We forget the corresponding marked points of ξ(3)(k) and obtain ξ(1)(k). Since ξ(1)

is source stable ξ(1)(k) is source stable for sufficiently large k. Then limsk→∞ξ
(3)(k) = ξ(3)

implies limsk→∞ξ
(1)(k) = ξ(1). Since i∗(32)(ξ

(3)(k)) = ξ(2)(k) we have i∗(1)(ξ
(1)(k)) = i∗(2)(ξ

(2)(k)).
The proof of the lemma is complete. ■

Note that we proved the next lemma also during the proof of the claim in the proof of
Lemma 12.17.

Lemma 12.18. We consider

ξ ∈M′ℓ,ℓ1,ℓ2(L12; a⃗;E), ξ(1) ∈M′
ℓ(1),ℓ

(1)
1 ,ℓ

(1)
2

(L12; a⃗;E),

ξ(2) ∈M′
ℓ(2),ℓ

(2)
1 ,ℓ

(2)
2

(L12; a⃗;E).

Suppose that

i∗(1)
(
ξ(1)
)
= i∗(2)

(
ξ(2)
)
= ξ

for some i(1), i(2). Then there exists ξ(3) ∈M′
ℓ(1),ℓ

(3)
1 ,ℓ

(3)
2

(L12; a⃗;E), where ℓ
(3)
i = ℓ

(1)
i + ℓ

(2)
i − ℓi,

such that

i∗(3,1)
(
ξ(3)
)
= ξ(1), i∗(3,2)

(
ξ(3)
)
= ξ(2).

Here i∗(3,1), i
∗
(3,2) are appropriate forgetful maps.

We now show that Definition 12.16 determines a topology on M′(L12; a⃗;E). For a sub-
set A ⊂M′(L12; a⃗;E), we define its closure Ac as the set of all elements ξ such that there exists
a sequence ξ(k) ∈ A which converges to ξ in the sense of Definition 12.16. Using Kuratowski’s
theorem (see, for example, [56, Chapter 1, Theorem 8]), it suffices to show the next lemma to
prove the existence of the topology on M′(L12; a⃗;E) for which A 7→ Ac becomes the process
taking the closure.

Lemma 12.19. The following 4 properties are satisfied: (a) ∅c = ∅. (b) A ⊆ Ac. (c) Acc = Ac.
(d) (A ∪B)c = Ac ∪Bc.

Proof. (a), (b), (d) are trivial to check. We verify (c). Let ξ(i) ∈ Ac which converges to
ξ ∈ Acc. We take ξ(i, j) ∈ A such that limj→∞ ξ(i, j) = ξ(i). It suffices to find ji such that
limi→∞ ξ(i, ji) = ξ.

Using Lemma 12.17, we may assume that ξ, ξ(i), ξ(i, j) are all source stable. Let Σ, Σ(i),
Σ(i, j) be the source curves of ξ, ξ(i), ξ(i, j) and u, ui, ui,j are maps on them, respectively.

Let ε > 0 be an arbitrary positive number. We take sufficiently small neck of Σ such that
the diameter of the image by u of each of the neck is smaller than ε. Let Σ0 be the complement
of the neck. We are given embedding of Σ0 to Σ(i) and to Σ(i, j).

By Definition 12.14, there exists I such that if i ∈ I then the diameter of each of the ui image
of connected component of Σ(i) \ Σ0 is smaller than 2ε. Moreover, there exists Ji such that
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if i > I, j > Ji, then the diameter ui,j image of each of connected component of Σ(i, j) \ Σ0 is
smaller than 3ε.

By Definition 12.14 again, there exists I ′ such that if i ∈ I ′ then the C2 distance between ui|Σ0

and u|Σ0 is smaller than ε. Moreover there exists I ′j such that if i > I ′, j > J ′i , then the C2

distance between ui,j |Σ0 and u|Σ0 is smaller than 2ε.

This implies that if ji > max{Ji, J ′i} then ξ(i, ji) converges to ξ in the sense of Definition 12.14.
This proves (c). ■

In (3.19), we defined a compactification M(L12; a⃗;E), whose element is a bordered stable
map with boundary marked points, switching specified by a⃗ and with energy E. We can include
interior marked points and defineMℓ(L12; a⃗;E). The way to include interior marked points is
the same as [34, Definition 2.1.24] and so its detail is omitted.

Lemma–Definition 12.20. We can define the forgetful map

fg : Mℓ+ℓ1+ℓ2(L12; a⃗;E)→M′ℓ,ℓ1,ℓ2(L12; a⃗;E),

which is continuous.

Proof. Let
((
Σ, z⃗, z⃗ int ∪ w⃗int

1 ∪ w⃗int
2

)
, u, γ

)
be an element of Mℓ+ℓ1+ℓ2

(
L12; a⃗;E, γ

)
. Here

the object
(
Σ, z⃗, z⃗ int ∪ w⃗int

1 ∪ w⃗int
2

)
is a bordered nodal marked curve of genus zero with one

boundary component. (z⃗ are boundary marked points, z⃗ int are first ℓ interior marked points,
w⃗int
1 =

(
wint
1,1, . . . , w

int
1,ℓ1

)
are next ℓ1 interior marked points and w⃗int

2 =
(
wint
2,1, . . . , w

int
2,ℓ2

)
are

last ℓ2 interior marked points.) The map u : (Σ, ∂Σ)→ (−X1 ×X2, L12) is pseudo-holomorphic
and γ : ∂Σ \ z⃗ → L̃12 is a lift of the restriction of u.

We put u = (u1, u2), where ui is a map to Xi from Σ. We consider
((
Σ, z⃗, z⃗ int ∪ w⃗int

i

)
, ui
)

for i = 1, 2.

We remark that, for i = 1, we forget the marked points w⃗int
2 and, for i = 2, we forget the

marked points w⃗int
1 .

We shrink unstable sphere components of
((
Σ, z⃗, z⃗ int ∪ w⃗int

i

)
, ui
)
. Here an unstable sphere

component of
((
Σ, z⃗, z⃗ int ∪ w⃗int

i

)
, ui
)
is an unstable sphere component of the source curve(

Σ, z⃗, z⃗ int ∪ w⃗int
i

)
on which ui is constant. We denote by

((
Σi, z⃗i, z⃗

int
i ∪ w⃗int

i ), ui
)
the pair of

a bordered marked curve and a map obtained by this shrinking.

We next forget w⃗int
i and let

(
Σ0
i , z⃗i, z⃗

int
i

)
be the bordered marked curve obtained from

(
Σi, z⃗i,

z⃗ int
i

)
by shrinking all the unstable sphere components.

We remark that
(
Σ0
1, z⃗1, z⃗

int
1

)
is canonically isomorphic to

(
Σ0
2, z⃗2, z⃗

int
2

)
. In fact, they both are

obtained by shrinking all the unstable sphere components of (Σ, z⃗, z⃗ int
)
. Therefore, we obtain

a biholomorphic map I :
(
Σ0
1, z⃗1, z⃗

int
1

)
→
(
Σ0
2, z⃗2, z⃗

int
2

)
. We define

fg((Σ, z⃗, z⃗ int ∪ w⃗int
1 ∪ w⃗int

2

)
, u, γ

)
=
(((

Σ1, z⃗1, z⃗
int
1 ∪ w⃗int

1 ), u1
)
,
((
Σ2, z⃗2, z⃗

int
2 ∪ w⃗int

2 ), u2
)
,I , γ

)
.

Note that we regard the interior marked points z⃗ int
i as interior marked points of first kind

and w⃗int
i as interior marked points of second kind.

The continuity of the map is easy to show from the definition. ■

Example 12.21. We consider the case when L12 is embedded and a⃗ consists of one element
which corresponds to the diagonal component. We define an element

(((Σ1, z1), u1), ((Σ2, z2), u2),I , γ)

ofM′0,0,0(L12; a⃗;E) as follows.
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Σ = Σ1 = Σ2 is obtained by gluing the disk D2 with S2 at 0 ∈ D2 and ∞ ∈ S2 ∼= C ∪ {∞}.
We take z1 = z2 = 1 ∈ ∂D2 as the (boundary) marked point. We take a holomorphic map

u : (Σ, ∂Σ)→ (−X1 ×X2, L12).

We denote its restriction to D2 by ud =
(
ud1 , u

d
2

)
.
(
Here udi is a map to Xi.

)
We denote its

restriction to S2 by us = (us1, u
s
2). ui : Σi → Xi is a map which is udi on D2 and is usi on S2.

Note Σ0
i (in the sense appearing in Definition 12.7 (3)) is D2 in this case. Let I : Σ0

1 → Σ0
2 be

the identity map. We put γ = us|∂Σ. We thus obtain ξ = (((Σ1, z1), u1), ((Σ2, z2), u2),I , γ) ∈
M′0(L12; a⃗;E). See Figure 12.15.

u
1

s
u
2

s

u
2

d

u
1

d

Figure 12.15. (((Σ1, z1), u1), ((Σ2, z2), u2),I , γ).

We describe the fiber fg−1(ξ) ⊂ M0(L12; a⃗;E). It is a real 4-dimensional compact space.
For a ∈ C \ {0} and b ∈ C, we put va,b(z) = az + b, and

usa,b = (us1, u
s
2 ◦ va,b) : S2 → −X1 ×X2.

Since∞ is a fixed point of va,b we can glue it with ud to obtain ua,b : (Σ, ∂Σ)→ (−X1×X2, L12).
Then ξa,b = (((Σ, 1), ua,b), γ) is an element ofM0(L12; a⃗;E) for any a, b and fg(ξa,b) = ξ. Those
elements are parametrized by (C\{0})×C and consists a non-compact space. See Figure 12.19.

The other elements of this fiber is described below in Figures 12.16, 12.17, 12.18.

u
d

u
2

s

u
1

s

Figure 12.16. First stratum.

u
1

s

u
d

u
2

s

Figure 12.17. Second stratum.

Figure 12.16 shows an element which has two sphere bubbles. The map on the sphere
component directly attached to a disk is constant in the X1 factor and the map on the other
sphere component is constant in the X2 factor. The element in the fiber fg−1(ξ) of the form
Figure 12.16 is parametrized by the position of the nodal point between two sphere components.
So this part of the fiber is identified with C.

In Figure 12.17, the role of X1 and X2 is exchanged from one in Figure 12.16. This part of
fiber is also identified with C.
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u
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s

constant map

Figure 12.18. Third stratum.

u
d

(us
1, u

s
2)

Figure 12.19. Fourth stratum.

The closures of the parts Figures 12.16 and 12.17 intersect at one point that is one depicted
in Figure 12.18. Here the map on one of the sphere components is a constant map.

The elements of the form depicted in Figures 12.16, 12.17, 12.18 together with {ξa,b | (a, b) ∈
(C \ {0})× C} consists a compact 4-dimensional space, which is the fiber fg−1(ξ).

Proposition 12.22. The spaceM′ℓ,ℓ1,ℓ2(L12; a⃗;E) is compact and Hausdorff.

Proof. The proof is similar to the proof of [49, Theorem 11.1] and [49, Lemma 10.4] and proceed
as follows.

We first prove that the moduli space is sequentially compact. Let ξk be a sequence in
M′ℓ,ℓ1,ℓ2(L12; a⃗;E). We can add marked points to ξk so that it becomes source stable. Since the
number of irreducible components of elements ofM′ℓ,ℓ1,ℓ2(L12; a⃗;E) is bounded, we may assume
that the number of marked points we add to ξk is independent of k. Therefore, to prove the
existence of convergent subsequence of ξk it suffices to assume that ξk are source stable. We
assume so below.

Since the moduli space of stable marked curves is compact, we may assume that the sequence
of source (marked) curves of ξk converges. So using the local trivialization of the universal
family, we obtain a diffeomorphism between source curves of ξk and the limit, outside the neck
region. Therefore, the maps uk,i, i = 1, 2, which is a part of ξk can be regarded as a map ui
from Σi, the limit curve. If uk,i converges, there is nothing to show.

Suppose uk,i does not have a convergent subsequence. Then the first derivative of uk,i diverges
somewhere.

If it diverges on a disk component, we can add two interior marked points of the first kinds
there in the same way as the proof of [49, Theorem 11.1] so that after we perform this replacement
finitely many times the sequence of maps uk,i does not diverge on the disk component.

Suppose uk,i diverges on a sphere component. Then we can add two interior marked points
of the second kind around that point in the same way as the proof of [49, Theorem 11.1] so
that after we perform this replacement finitely many times the sequence of maps uk,i does not
diverge on the sphere component either.

Thus by adding marked points the sequence of maps uk,i converges. The proof of sequential
compactness is complete.

We next prove the Hausdorffness. It is easy to see from the definition and Lemma 12.17
that M′ℓ,ℓ1,ℓ2(L12; a⃗;E) satisfies the first axiom of countability. Therefore, it suffices to show
the following. “For each sequence ξk inM′ℓ,ℓ1,ℓ2(L12; a⃗;E) its limit is unique.” We will prove it
below.

Suppose limk→∞ ξk = ξ, limk→∞ ξk = ξ′. By definition, there exists ξ̂k, ξ̂
′
k, ξ̂, ξ̂

′, such
that they are all source stable, i∗(ξ̂k) = ξk, i∗

(
ξ̂′k
)
= ξk, limsk→∞ξ̂k = ξ̂, limsk→∞ξ̂

′
k = ξ̂′ and

i∗
(
ξ̂
)
= ξ, i∗

(
ξ̂′
)
= ξ′. Here i∗ are forgetful maps.

By Lemma 12.18, we can find ξ̂′′k such that i∗1
(
ξ̂′′k
)
= ξ̂k, i∗2

(
ξ̂′′k
)
= ξ̂′k for certain forgetful

maps i∗1 and i∗2.
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By taking a subsequence, we may assume that ξ̂′′k converges. Let ξ̂′′ be the limit. Then by

the continuity of forgetful map we have i∗1
(
ξ̂′′
)
= ξ̂, i∗2

(
ξ̂′′
)
= ξ̂′. ξ = ξ′ follows.

To complete the proof, it suffices to show the next lemma.

Lemma 12.23. The spaceM′ℓ,ℓ1,ℓ2(L12; a⃗;E) satisfies the second axiom of countability.

Proof. The proof is by induction on E. In the case of smallest E for whichM′ℓ,ℓ1,ℓ2(L12; a⃗;E) is
non-empty, we haveM′ℓ,ℓ1,ℓ2(L12; a⃗;E) =

◦◦
Mℓ,ℓ1,ℓ2(L12; a⃗;E). It is easy to see that the right-hand

side satisfies the second axiom of countability.

Suppose we have proved that M′ℓ′,ℓ′1,ℓ′2(L12; a⃗;E
′) satisfies the second axiom of countabili-

ty for E′ < E. We consider the case of E. Note that M′ℓ,ℓ1,ℓ2(L12; a⃗;E) has a stratifica-
tion SkM′ℓ,ℓ1,ℓ2(L12; a⃗;E) by its combinatorial types. We will prove that SkM′ℓ,ℓ1,ℓ2(L12; a⃗;E)
satisfies the second axiom of countability by downward induction on k. For the stratum of small-
est virtual dimension, SkM′ℓ,ℓ1,ℓ2(L12; a⃗;E) is a fiber product of various

◦◦
Mℓ′,ℓ′1,ℓ

′
2
(L12; a⃗;E

′)
with E′ ≤ E, and hence satisfies the second axiom of countability. Suppose we have proved
Sk+1M′ℓ,ℓ1,ℓ2(L12; a⃗;E) satisfies the second axiom of countability. We will study the case of k.
As we will prove in Section 12.4 later, each point p of Sk+1M′ℓ,ℓ1,ℓ2(L12; a⃗;E) has a Kuranishi
neighborhood (Vp, Ep, sp, ψp). Therefore, p has an open neighborhoodWp in SkM′ℓ,ℓ1,ℓ2(L12; a⃗;E)
which satisfies the second axiom of countability. In fact, Wp is a closed subset of an orbifold.
Since Sk+1M′ℓ,ℓ1,ℓ2(L12; a⃗;E) satisfies the second axiom of countability by induction hypothesis
and since it is sequentially compact, we can cover its open neighborhood by a finitely manyWpi .
Note that

SkM′ℓ,ℓ1,ℓ2(L12; a⃗;E) \
⋃
i

Wpi

is sequentially compact and is contained in a fiber product of various
◦◦
Mℓ′,ℓ′1,ℓ

′
2
(L12; a⃗;E

′) for
E′ ≤ E. Therefore, it is contained in an open subset which satisfies the second axiom of count-
ability.

Thus SkM′ℓ,ℓ1,ℓ2(L12; a⃗;E) is covered by a finitely many open subsets each of which satisfies
the second axiom of countability. This implies that SkM′ℓ,ℓ1,ℓ2(L12; a⃗;E) satisfies the second
axiom of countability. The proof of Lemma 12.23 is complete. ■

The proof of Proposition 12.22 is now complete. ■

12.3 Kuranishi structure of the compactification M′(L12; a⃗;E)

Let a⃗ = (a0, . . . , ak) and let ξ =
(((

Σ1, z⃗1, z⃗
int
1 , w⃗int

1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 , w⃗int

2

)
, u2
)
,I , γ

)
be an

element ofM′(L12; a⃗;E). We define evaluation maps

ev =
(
ev∂ , evint,(1), evint,(2),1, evint,(2),2

)
:

M′ℓ,ℓ1,ℓ2(L12; a⃗;E)→
k∏
j=0

L12(aj)× (X1 ×X2)
ℓ ×Xℓ1

1 ×Xℓ2
2 , (12.7)

by

ev∂(ξ) := (γ1(z1,0), . . . , γ1(z1,k)),

evint,(1)(ξ) :=
((
u1
(
zint1,1

)
, u2
(
zint2,1

))
, . . . ,

(
u1
(
zint1,ℓ

)
, u1
(
zint2,ℓ

)))
,

evint,(2),i(ξ) :=
(
ui
(
wint
i,1

)
, . . . , ui

(
wint
i,ℓi

))
.
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Theorem 12.24. M′ℓ,ℓ1,ℓ2(L12; a⃗;E) has a Kuranishi structure. The evaluation map ev∂ be-
comes an underlying continuous map of a strongly smooth map. The map, ev∂0 , the evaluation
map at the 0-th boundary marked point, is weakly submersive. They satisfy the same compati-
bility conditions as Theorem 3.24.

Proof. We prove the case of M′(L12; a⃗;E) = M′0,0,0(L12; a⃗;E) below. The general case is
similar. (We use the caseM′(L12; a⃗;E) only in this paper.) See Remark 12.34.

Most of the proof is similar to the proof of Theorem 3.24, which was given in the reference
quoted there. We describe the place where the proof of Theorem 12.24 is different from the
proof of Theorem 3.24. Especially we discuss the way how we include the maps I , which is
a part of the data defining an element of M′(L12; a⃗;E) (see Definition 12.7 (3)), in the gluing
analysis etc., which we use to construct a Kuranishi chart. The proof occupies this and the next
subsections.

For this purpose, we review the construction of the Kuranishi structure discussed in various
literatures, explaining the places where the construction here is to be modified. Since the most
detailed description of the gluing analysis is given in [48], we follow the description of [48,
Section 8]. (We follow [38, Part 4] on the discussion about stabilization of the domain since that
part is omitted in [48].)

Let ξ =
(((

Σ1, z⃗1, z⃗
int
1 , w⃗int

1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 , w⃗int

2 ), u2
)
,I , γ

)
be an element of the moduli

spaceM′ℓ,ℓ1,ℓ2(L12; a⃗;E). We first assume that it is source stable.

Let
{
Σd
i,a | a ∈ compdi

}
(resp. {Σs

i,a | a ∈ compsi}) be the set of the disk (resp. sphere)
components of Σi. The (bordered) nodal curve Σd

i,a (resp. Σs
i,a) together with marked or nodal

points on it determines an element ofMd
ki,a,ℓi,a

(resp.Ms
ℓi,a

), which we denote by ξdi,a (resp. ξ
s
i,a.)

Here Md
ki,a,ℓi,a

is the moduli space of complex structures of disks with ki,a boundary and ℓi,a
interior marked points andMs

ℓi,a
is the moduli space of complex structures of spheres with ℓi,a in-

terior marked points. (We require that the enumeration of the boundary marked points respects
the orientation of the boundary of the disk.)

Let CMd
k,ℓ, CMs

ℓ be the Deligne–Mumford type compactifications ofMd
k,ℓ,Ms

ℓ, respectively.
Namely, we add stable nodal disks or spheres to compactify them. Let π : Cdk,ℓ → CMd

k,ℓ be the
universal family. Namely, π : Cdk,ℓ → CMd

k,ℓ comes with sections sdj , j = 1, . . . , k, ssj , j = 1, . . . , ℓ,
such that for x ∈ CMd

k,ℓ the fiber π−1(x) together with the marked points
((
sdj (x)

)
j=1,...,k

)
,

(ssj(x))j=1,...,ℓ)) becomes a representative of x.

Let π : Csℓa → CM
s
ℓa be the universal family in a similar sense.

Definition 12.25 (compare [38, Definition 16.2] and [48, Definition 8.6]). Suppose an element ξ
ofM′ℓ,ℓ1,ℓ2(L12; a⃗;E) is source stable. A source gluing data G L at ξ is the following objects:

(1) A neighborhood Vdi,a (resp. Vsi,a) of ξdi,a (resp. ξsi,a) inMd
ki,a,ℓi,a

(resp.Ms
ℓi,a

).

(2) A trivialization of π : Cdki,a,ℓi,a → CM
d
ki,a,ℓi,a

(resp. π : Csℓi,a → CM
s
ℓi,a

) on Vdi,a (resp. Vsi,a).
Here trivialization is one in C∞ category and is required to be compatible with the sec-
tions ((sdj )j=1,...,ki,a), (s

s
j)j=1,...,ℓi,a). (We remark that π : Cdki,a,ℓi,a → CM

d
ki,a,ℓi,a

is a fiber
bundle on Vdi,a since elements of Vdi,a are nonsingular.)

(3) For each (boundary or interior) nodes of Σd
i,a or Σs

i,a, we take analytic families of coordi-
nates of the corresponding marked points on Vdi,a or Vsi,a. (Note that one node is contained
in two irreducible components. We take an analytic family of coordinates at each of them.)
The notion of an analytic family of coordinates is defined in [48, Definitions 8.1 and 8.5].

(4) The objects in (1), (2), (3) are preserved by all the weak isomorphisms (ψ1, ψ2) : ξ → ξ.

The above conditions are mostly the same as one appearing in the construction of Kuranishi
structure onM(L12; a⃗;E), for example. We need additional conditions to include the map I .
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(5) All the interior marked points on the disk components are of first kind. All the marked
points on the sphere components are of second kind.

(6) By (5) and Definition 12.7 (3), for each of disk component ξd1,a of Σ1 there exists corre-
sponding disk component of Σ2, which we write ξd2,a. Namely, I gives an isomorphism
between ξd1,a and ξd2,a. We require that Vd1,a = Vd2,a. Moreover, we require the trivialization
on Vd1,a given in (2) is the same as the trivialization on Vd2,a.

(7) We require that the coordinate at nodal points given by (3) on disk component ξd1,a coincide
with those on ξd2,a. (We require this condition both for boundary and interior nodes.)

(8) We will require all the analytic families of coordinates are extendable in the sense we will
define later in Definition 12.32.

We remark that for any element of M′(L12; a⃗;E) we can find its source stabilization such
that the conditions (5)–(8) are satisfied.

We next include the process to start with ξ ∈ M′(L12; a⃗;E) which is not necessary source
stable and add marked points to obtain an element ofM′ℓ,ℓ1,ℓ2(L12; a⃗;E) which is source stable.

Definition 12.26 (compare [38, Definition 17.5]). Let

ξ =
(((

Σ1, z⃗1, z⃗
int
1 , w⃗int

1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 , w⃗int

2

)
, u2
)
,I , γ

)
be an element ofM′ℓ,ℓ1,ℓ2(L12; a⃗;E).

A stabilization data S T at ξ is the following objects:

(1) A source stabilization ξ′ of ξ is given. In particular, i∗(ξ′) = ξ.

(2) We require that the number of the irreducible components of the source curve of ξ′ is the
same as one of ξ.

(3) A gluing data in the sense of Definition 12.25 is given at ξ′.

(4) We write ξ′ =
(((

Σ1, z⃗1, z⃗
int
1 , w⃗int

1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 , w⃗int

2

)
, u2
)
,I , γ

)
.

Note that we use the same symbols Σi, z⃗i, ui, I , γ for ξ′ as ξ. In fact, item (2) implies
that we can identify the source curves of ξ′ and of ξ. We do not put prime in the notation
of interior marked points of ξ′. Since ξ has no interior marked points it does not cause
confusion.

(5) Let z1,j be an interior marked point of first kind, which is necessary on the disk component
by item (2) and Definition 12.25 (5). Suppose it is contained in Σd

1,aj
. We put I (z1,j) = z2,j

and I (Σd
1,aj

) = Σd
2,aj

. We define udj : Σ
d
1,aj
→ −X1 ×X2 by udj (z) = (u1(z), u2(I (z))).

(a) If udj is non-constant, we require that udj is an immersion at z1,j .

(b) In the situation of (a), we take and fix a codimension 2 submanifold N (1)
j of −X1×X2

which intersects transversally with udj at udj (z1,j).

(6) Let wi,j be an interior marked point of second kind, which is necessary on the sphere
component by item (2) and Definition 12.25 (5). Suppose it is contained in Σs

i,aj
.

(a) If ui is non-constant on Σs
i,aj

, we require that ui is an immersion at w1,j .

(b) In the situation of (a), we take and fix a codimension 2 submanifold N (2)
j of Xi which

intersects transversally with ui at ui(wi,j).

(7) The data in item (6) are invariant under the action of the group of weak isomorphisms
of ξ. (Note that a weak isomorphism is the identity map on the disk components.)

It is easy to see that stabilization data always exist.
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Remark 12.27. We need to add marked points of second kinds to stabilize the source curve.

We next describe the way how we use gluing data to parametrize the deformation of the
source objects.

Let ξ be a source stable element ofM′ℓ,ℓ1,ℓ2(L12; a⃗;E). We take its gluing data as in Defini-
tion 12.25 and use the notation of Definition 12.25.

Let
{(

zb,∂ , φ
(j)
b,∂

)
| b ∈ Node+∂ , j = 1, 2

}
be the set of pairs of boundary nodes and analytic

families of coordinates at those points. (Since each boundary node is contained in two irreducible
components, there are two choices j = 1, 2 of this pair for each boundary node.)

Let
{(

zi,b,int, φ
(j)
i,b,int

)
| b ∈ Node+i,int, j = 1, 2

}
be the set of pairs of interior nodes of Σi and

analytic families of coordinates at those points (i = 1, 2).
We denote by

{
Σd
i,a | a ∈ compdi

}
(resp. {Σs

i,a | a ∈ compsi}) the set of disk (resp. sphere) com-
ponents of Σi. Together with nodal or marked points the (bordered) Riemann surfaces Σd

i,a, Σ
s
i,a

determine ξdi,a, ξ
s
i,a. Its neighborhood V

(
ξdi,a
)
and V

(
ξdi,s
)
in Deligne–Mumford type moduli spaces

are determined by Definition 12.25 (1).
We consider the direct product∏

a∈compd1

V(ξd1,a)×
∏
i=1,2

∏
a∈compsi

V(ξsi,a)×
∏

b∈Node+∂

[0, 1)b ×
∏
i=1,2

∏
b∈Node+i,int

D2
b. (12.8)

Here [0, 1)b is a copy of [0, 1) taken for each b ∈ Node+∂ andD2
b is a copy ofD2 = {z ∈ C | |z| < 1}

taken for each b ∈ Node+int.
The space (12.8) parametrizes the deformation of the source curve of ξ. We will define

a map Glue = (Glue1,Glue2)

Gluei : (12.8)→ CMd
k,ℓ+ℓi

(12.9)

to describe it.
Let σda ∈ V

(
ξd1,a
)
= V(ξd2,a), σsi,a ∈ V(ξsi,a) and let ξdi,a

(
σda
)
, ξsi,a(σ

s
i,a) be its representative. We

denote by Σd
i,a

(
σda
)
, Σs

i,a(σ
s
i,a) the underlying (bordered) Riemann surface. (Actually it is either

a disk or a sphere.)
We also denote

σ =
((
σda
)
a∈compd1

, (σs1,a)a∈comps1
, (σs2,a)a∈comps2

)
. (12.10)

We call σ the source deformation parameter .
Let rb ∈ [0, 1)b and rb ∈ D2

b. We write

r = ((rb)b∈Node+∂
, (rb)b∈Node+1,int

, (rb)b∈Node+2,int
). (12.11)

We call r the gluing parameter.
We consider the disjoint union

Σ̂(σ) = Σ̂1(σ) ⊔ Σ̂2(σ) =
∐
i=1,2

∐
a∈compdi

Σd
i,a

(
σda
)
⊔
∐
i=1,2

∐
a∈compsi

Σs
i,s(σ

s
i,a).

For each b ∈ Node+∂ and b ∈ Node+i,int, the analytic families of coordinates we have taken in
Definition 12.25 (3) induce holomorphic embeddings φ

(j),∂
i,b,σ : D

2
≥0 → Σ̂(σ), φ

(j),int
b,σ : D2 → Σ̂(σ),

for j = 1, 2, i = 1, 2, where D2
≥0 =

{
z ∈ D2 | Im z ≥ 0

}
. We put

Σ̂(σ, r) = Σ̂(σ) \
⋃
j=1,2

⋃
i=1,2

⋃
b∈Node+∂

φ
(j),∂
i,b,σ

(
D

2
≥0(rb)

)
\
⋃
j=1,2

⋃
i=1,2

⋃
b∈Node+i,int

φ
(j),int
b,σ

(
D

2
(|rb|)

)
,

which we decompose to Σ̂(σ, r) = Σ̂1(σ, r) ⊔ Σ̂2(σ, r).
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Definition 12.28. We define an equivalence relation ∼ on Σ̂(σ, r) as follows:

(1) If b ∈ Node+∂ and z, w ∈ D2
≥0 \D

2
≥0(rb), i = 1, 2, with |zw| = rb, Arg z = −Argw, then

φ
(1),∂
i,b,σ (z) ∼ φ

(2),∂
i,b,σ (w) for i = 1, 2. See Figure 12.20. Note that −θ in the figure is Arg z

and θ′ in the figure is Argw.

(2) If b ∈ Node+i,int, z, w ∈ D2 \D2
(|rb|), i = 1, 2, with zw = rb, then φ

(1),int
b,σ (z) ∼ φ(2),int

b,σ (w).
See Figure 12.21.

We put Σ(σ, r) = Σ̂(σ, r)/ ∼ and decompose Σ(σ, r) = Σ1(σ, r) ⊔ Σ2(σ, r).

θ

θ

|z|

|w|

|z||w| = rb

Figure 12.20. Gluing at boundary node.

z wX X

zw = rb

Figure 12.21. Gluing at interior node.

The marked points of ξ determine marked points on Σi(σ, r) in an obvious way. We denote
them by z⃗i(σ, r), z⃗

int
i (σ, r), w⃗int

i (σ, r). We put ξi(σ, r) =
(
Σi(σ, r), z⃗i(σ, r), z⃗

int
i (σ, r), w⃗int

i (σ, r)
)
.

Definition 12.29. We define Gluei(σ, r) = ξi(σ, r). We call Gluei and Glue := (Glue1,Glue2)
the source gluing maps.
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For a ∈ compd1 = compd2 , we put

K+,d
i,a

(
σda
)
= Σd

i,a

(
σda
)
\
⋃
j=1,2

⋃
b∈Node+∂

φ
(j),∂
i,b,σ

(
D

2
≥0(rb)

)
\
⋃
j=1,2

⋃
b∈Node+i,int

φ
(j),int
b,σ

(
D

2
(|rb|)

)
,

and

Kd
i,a

(
σda
)
= Σd

i,a

(
σda
)
\
⋃
j=1,2

⋃
b∈Node+∂

φ
(j),∂
i,b,σ

(
D

2
≥0
)
\
⋃
j=1,2

⋃
b∈Node+i,int

φ
(j),int
b,σ

(
D

2)
. (12.12)

For a ∈ compsi we define K
+,s
i,a (σsa) and K

s
i,a(σ

s
a) with K

s
i,a(σ

s
a) ⊂ K+,s

i,a (σsa) ⊂ Σs
i,a(σ

s
a) in the same

way. We call Ks
i,a(σ

s
a) and K

d
i,a

(
σda
)
the core. See Figures 12.22 and 12.23.

d
i,a(σ

d
a )

s
i,a(σ

s
a)

K

K

Figure 12.22. Core.

d
i,a(σ

d
a )

d,+
i,a (σd

a )K

K

Figure 12.23. Kd
i,a

(
σd
a

)
and Kd,+

i,a

(
σd
a

)
.

Definition 12.30. By definition, we have holomorphic embeddings

I+,di,a,σ,r : K+,d
i,a

(
σda
)
→ Σi(σ, r), I+,si,a,σ,r : K+,s

i,a (σsa)→ Σi(σ, r).

We call its restriction

Idi,a,σ,r : Kd
i,a

(
σda
)
→ Σi(σ, r), Isi,a,σ,r : Ks

i,a(σ
s
a)→ Σi(σ, r),

the canonical holomorphic embedding.

Lemma 12.31. All the weak isomorphisms ψ = (ψ1, ψ2) : ξ → ξ canonically induce biholomor-
phic maps ψi,σ,r : Σi(σ, r)→ Σi((ψi)∗(σ, r)).

Proof. The map ψi permutes the interior nodes. We permute the components of the gluing
parameter r in the same way. The map ψi also permutes the sphere components. We permute
the components of σ in the same way. This is the definition of (ψi)∗. The lemma is then an
immediate consequence of Definition 12.25 (4) and the construction. ■
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Our next task is to define a biholomorphic map Iσ,r : Σ
0
1(σ, r) → Σ0

2(σ, r). Here Σ0
i (σ, r) is

the union of disk components of Σi(σ, r).
Such an isomorphism is not canonically induced from I , since Σ0

1(σ, r) may contain a part
of the sphere components Ks

i,a(σ
s
a), on which I is not defined.

We take a certain special choice of the coordinates around the nodes which we use to glue,
so that we can define Iσ,r.

Definition 12.32.

(1) A holomorphic embedding D2 → S2 is said to be extendable if it is a restriction of a bi-
holomorphic map S2 → S2.

(2) A holomorphic embedding D2 → D2 is said to be extendable if it is a restriction of biholo-
morphic map D2(R)→ D2 for some R > 1.

(3) A holomorphic embedding
(
D2
≥0, D

2∩R
)
→
(
D2, ∂D2

)
is said to be extendable if its double

is extendable in the sense of (1).

(4) An analytic family of coordinates is said to be extendable if its members are extendable in
the sense of (1), (2) or (3).

We recall that we assumed that all the analytic families of coordinates appearing as a part
of gluing data are extendable. (See Definition 12.25 (8).)

Lemma 12.33. We can canonically define a biholomorphic map Iσ,r : Σ
0
1(σ, r)→ Σ0

2(σ, r) with
the following properties:

(1) The next diagram commutes:

K+,d
1,a

(
σda
)
−−−−→ K+,d

2,a

(
σda
)

I
+,d
1,a,σ,r

y yI
+,d
2,a,σ,r

Σ0
1(σ, r)

Iσ,r−−−−→ Σ0
2(σ, r),

(12.13)

where the first horizontal arrow is the isomorphism induced by I . The vertical arrows are
maps induced by I+,d1,a,σ,r and I+,d2,a,σ,r.

(2) If ψ = (ψ1, ψ2) is a weak isomorphism: ξ → ξ, then we have Iψ∗(σ,r)◦ψ1,σ,r = ψ2,σ,r◦Iσ,r.

(3) Iσ,r

(
zint1,j(σ, r)

)
= zint2,j(σ, r). It also preserves boundary marked points.

Proof. We put Σi(σ) := Σi(σ,0), where the gluing parameter 0 is by definition rb = 0, rb = 0
for all b. Since we deform the disk components of Σ1 and of Σ2 in exactly the same way by
definition, we have a biholomorphic maps Iσ,0 : Σ

0
1(σ)→ Σ0

2(σ). Therefore, to construct Iσ,r it
suffices to find biholomorphic maps Jσ,i : Σ

0
i (σ, r)→ Σ0

i (σ) such that Jσ,i ◦ I+,di,a,σ,r = I+,di,a,σ,0.
We describe the construction of Jσ,i in the following case. Σi(σ) is a union of D2 and S2

where we glue them at 0 ∈ D2 and 0 ∈ S2 = C∪{∞}. By the definition of extendable coordinate,
we take our coordinate φd and φs by φd(z) = cz ∈ D2, φs(z) = c′z ∈ C ∪ {∞}, where c ∈ R+

is a small positive number and c′ ∈ C is a nonzero complex number with small absolute value.
We denote the gluing parameter by r ∈ D2.

By definition, Σ0
i (σ) = D2 ⊂ Σi(σ). Let r ̸= 0. Then Σ0

i (σ, r) is obtained by gluing

D2 \D2(c|r|) (12.14)

and

C ∪ {∞} \D2(|c′r|) (12.15)
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by the equivalence relation ∼. The equivalence relation ∼ is defined in Definition 12.28. In
our case, it is described as follows. Let z ∈ (12.14) and w ∈ (12.15). Then z ∼ w if and
only if z/c × w/c′ = r. Namely, z = cc′r/w. Therefore, we define Jσ,i such that Jσ,i(z) = z
if z ∈ (12.14) and Jσ,i(w) = cc′r/w if w ∈ (12.15). See Figure 12.24.

∼ = ∼ =σ,1 σ,2

id

Σ0
1(σ, r) Σ0

2(σ, r)

Σ0
2(σ)Σ0

1(σ)

Figure 12.24. Definition of I .

We thus defined Jσ,i in the above cases. Its definition in the general case is similar. See
Figure 12.25 below.

(1)
(1)

(2)
(2)

(3)

(3)

(4)

(4)

(5)

(5)

(6)

(6)

Figure 12.25. Definition of Iσ,i in the general case.

The properties (1), (2), (3) can be easily proved from the construction. ■

Remark 12.34. We remark that in our situation Σ0
i (σ, r) is a tree of disks without sphere

bubbles. This is because of Definition 12.25 (5), that is, all the marked points on the sphere
components are of second kind. Note that we forget all the marked points of second kind to
obtain Σ0

i (σ, r). By this reason, we consider only core of disk components K+,d
i,a

(
σda
)
in (12.13).

Since we are studyingM′0,0,0(L12; a⃗;E) as we mentioned at the beginning of the proof, we can as-
sume Definition 12.25 (5). When we generalize the construction to the case ofM′ℓ,ℓ1,ℓ2(L12; a⃗;E)
then we need to study the case when there is a marked point of the first kind on the sphere
components. So there may exist a core K+,s

i,a (σsa) in the sphere components contained in Σ0
i (σ, r).

In such cases, to define Iσ,r, on such parts, we need to modify (12.8). Namely, for example, in
place of

∏
i=1,2

∏
a∈compsi

V(ξsi,a) we need to consider its subset such that V(ξs1,a) factor and V(ξs2,a′)
factor are the same for certain a, a′. We do not discuss this point since we do not use it.

We thus described the way to glue source curves. To discuss the way to glue maps (that is the
part where nonlinear functional analysis enters), we first describe the way to define obstruction
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spaces. This part is mostly the same as the construction of the Kuranishi structure on the
moduli space of pseudo-holomorphic disks. (See [38, Sections 17 and 18], [44, 47].) We include
its discussion here for completeness.

Let ξ =
(((

Σ1, z⃗1, z⃗
int
1 , w⃗int

1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 , w⃗int

2

)
, u2
)
,I , γ

)
be an element of the mod-

uli space M′ℓ,ℓ1,ℓ2(L12; a⃗;E). Using the above notations, we consider the source deformation
parameter σ which corresponds to the source curve of ξ itself. We denote this σ as 0. We
put Ks

i,a = Ks
i,a(0) ⊂ Σi, K

d
i,a = Kd

i,a(0) ⊂ Σi.

Definition 12.35. An obstruction bundle data OB centered at ξ is the following objects:

(1) We take a stabilization data at ξ.

(2) We take a finite-dimensional linear subspace Esi,a ⊂ C∞
(
Ks
i,a, u

∗
iTXi⊗Λ0,1

)
for each sphere

component of Σi and Eda ⊂ C∞
(
Kd

1,a, (u1, u2)
∗(T (X1×X2)⊗Λ0,1

))
for each disk component

of Σi.

Note that we regard Kd
1,a
∼= Kd

2,a by I .

We call them the obstruction spaces. We assume that the supports of the elements of
obstruction spaces are away from nodes and marked points. We also assume that the
supports of the elements of Eda is away from boundary. Furthermore, we assume the
supports of the elements of Eda (resp. Esa) are in a compact subset contained in the interior
of Kd

1,a (resp. Ks
i,a).

(3) We assume that the obstruction spaces satisfy the transversality conditions (see Condi-
tions 12.37 and 12.38 below).

(4) We assume that {Esi,a} and
{
Eda
}
are invariant of the weak isomorphism ξ′ → ξ′, where ξ′

is the source stabilization of ξ which is a part of the stabilization data given in (1).

(5) We require that Esi,a = 0 if ui is constant on Σs
i,a and Eda = 0 if u is constant on Σd

a .

(6) We require Diam
(
ui ◦ φ(j),int

b,σ

)(
D2
)
≤ ε1 for each b ∈ Node+i,int and Diam

(
ui ◦ φ(j),∂

i,b,σ

)(
D2
≥0
)

≤ ε1 for each b ∈ Node+∂ . Here ε1 is a sufficiently small number. (It is smaller than the
injectivity radius of X1 ×X2. It is the constant appearing [48, Condition 3.1].)

(7) We require all the marked points are in the core, Ks
i,a, K

d
i,a.

Below we describe the transversality condition mentioned in item (3). We review the lin-
earization of the nonlinear Cauchy–Riemann equation for this purpose. For each sphere compo-
nent, the linearization of the nonlinear Cauchy–Riemann equation induces a linear differential
operator of first order(

Dui∂
)s
i,a

: C∞(Σs
i,a;u

∗
iTXi)→ C∞

(
Σs
i,a;u

∗
iTXi ⊗ Λ0,1

)
. (12.16)

The definition of the function spaces appearing in (12.16) is obvious from notation. Let us
discuss the case of disk component Σd

i,a. We remark that Σd
1,a
∼= Σd

2,a, which we write Σd
a . The

pair of maps u = (u1, u2) define a map u : Σd
a → −X1 ×X2. Let z⃗a = (za,1, . . . , za,ka) be the set

of all marked or nodal points on Σd
1,a. u(za,j) lies on the image of L̃12 ×X1×X2 L̃12 = ∪L12(a).

We define aa,j such that u(za,j) lies in the image of L12(aa,j).

Definition 12.36. We define the function space

C∞
((
Σd
a , ∂Σ

d
a , z⃗a

)
; (u∗TX, γ∗L12, L12(⃗aa))

)
as the set of the pairs (V, v) such that

(1) V is a section of u∗T (X1 ×X2) defined on Σd
a .
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(2) v is a section of γ∗T L̃12 defined on ∂Σd
a \ z⃗a.

(3) If z ∈ ∂Σd
a \ z⃗a, then V (z) := (diL12)(v(z)). Here iL12 : L̃12 → L12 is the immersion.

(4) Let za,j ∈ z⃗a. We then require

( lim
z∈∂Σd

a↑za,j
v(z), lim

z∈∂Σd
a↓za,j

v(z)) ∈ TL12(aa,j).

The operator(
Du∂

)d
a
: C∞

((
Σd
a , ∂Σ

d
a , z⃗a

)
; (u∗TX, γ∗L12, L12(⃗aa))

)
→ C∞

(
Σd
a ;u
∗T (X1 ×X2)⊗ Λ0,1

)
is defined by

(
Du∂

)d
a
(V, v) :=

(
Du∂

)
(V ).

Condition 12.37. We say that obstruction spaces Esi,a, Eda satisfy mapping transversality con-
dition if the following holds:

(1) For each sphere component Σs
i,a, we assume

Im
(
Dui∂

)s
i,a

+ Esi,a = C∞
(
Σs
i,a;u

∗
iTXi ⊗ Λ0,1

)
.

(2) For each disk component Σd
a , we assume

Im
(
Du∂

)d
a
+ Eda = C∞

(
Σd
a ;u
∗T (X1 ×X2)⊗ Λ0,1

)
.

To describe another transversality condition, we define a linearized version EV of the evalu-
ation map. The domain of this evaluation map is the direct sum⊕

i=1,2

⊕
a

C∞(Σs
i,a;u

∗
iTXi)⊕

⊕
a

C∞
((
Σd
a , ∂Σ

d
a , z⃗a

)
; (u∗TX, γ∗L12, L12(⃗aa))

)
. (12.17)

Here the first direct sum is taken over all the sphere components Σs
i,a and the second direct sum

is taken over all the disk components Σd
a .

We next describe the target of EV. Let zb be a boundary node. There exists a compo-
nent L12(ab) of L̃12 ×X1×X2 L̃12 such that it is mapped to u(zb) = (u1(zb), u2(zb)) by iL12 . The
target space of EV is the direct sum⊕

i=1,2

⊕
b

Tui(zb)Xi ⊕
⊕
b

Tγ(zb)L12(ab). (12.18)

Here the first direct sum is one over interior nodes zb. The second direct sum is one over
boundary nodes zb. The point γ(zb) ∈ L12(ab) is by definition

γ(zb) = ( lim
z∈∂Σd

a↑zb
γ(z), lim

z∈∂Σd
a↓zb

γ(z)) ∈ L12(aa,j).

(See Definition 3.17 (5).)
Now we define

EV : (12.17)→ (12.18). (12.19)

Let V⃗ = ((Va,1, (Va,2)), (Va)) be an element of domain (12.17). Let zb be an interior node.
There are two components Σ

c(1,b)
i,a(1,b), Σ

c(2,b)
i,a(2,b) containing it. Here c(1, b), c(2, b) are either s or d.

Suppose c(1, b) = d, c(2, b) = s. Then we define

Tui(zb)Xi component of EV
(
V⃗
)
= Πi(Va(1,b)(zb))− Va(2,b),i(zb), (12.20)
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where Πi : T (X1 ×X2) → T (Xi) is the projection. The definitions in the other cases of c(1, b),
c(2, b) are similar.

Let zb be a boundary node. There are two disk components Σd
a(1,b), Σ

d
a(2,b) containing it. We

define

Tγ(zb)L12(ab) component of EV
(
V⃗
)
= (Va(1,b), va(1,b))(zb)− (Va(2,b), va(2,b))(zb). (12.21)

Here

(Va(i,b), va(i,b))(zb) = ( lim
z∈∂Σd

a(i,b)
↑zb
v(z), lim

z∈∂Σd
a(i,b)

↓zb
v(z)) ∈ Tγ(zb)L12.

(12.20) and (12.21) define a map (12.19).

Condition 12.38. We say that obstruction spaces Esi,a, Eda satisfy evaluation transversality
condition if the restriction of EV to the direct sum⊕

i=1,2

⊕
a

((
Dui∂

)s
i,a

)−1
(Esi,a)⊕

⊕
a

((
Du∂

)d
a

)−1(Eda )
is surjective.

We thus defined the notion of obstruction bundle data. Our next task is to send obstruction
spaces to a nearby object. We make precise the meaning of ‘nearby object’ below.

Definition 12.39. A candidate of an element of the extended moduli space M′ℓ,ℓ1,ℓ2(L12; a⃗;E)
is, by definition, an object

η =
(((

Σ♡1 , z⃗
♡
1 , z⃗

♡,int
1 , w⃗♡,int1

)
, u♡1

)
,
((
Σ♡2 , z⃗

♡
2 , z⃗

♡,int
2 , w⃗♡,int2

)
, u♡2

)
,I ♡, γ♡

)
,

which satisfies the same conditions as Condition 12.7 except we do not assume u♡i : Σ♡i → Xi is
pseudo-holomorphic as in Condition 12.7 (2) but only assume that it is of C∞ class.

Definition 12.40. Let ξ =
(((

Σ1, z⃗1, z⃗
int
1 , w⃗int

1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 , w⃗int

2

)
, u2
)
,I , γ

)
be an ele-

ment ofM′ℓ,ℓ1,ℓ2(L12; a⃗;E). We assume that ξ is source stable and fix a source gluing data G L
on it.

Let η be a candidate of an element of the extended moduli space ofM′ℓ,ℓ1,ℓ2(L12; a⃗;E).

We say that η is ε close to (ξ,G L ), if the following holds:

(1) There exists σ, r as in (12.10) and (12.11) such that

ξi(σ, r) =
(
Σ♡i , z⃗

♡
i , z⃗

♡,int
i , w⃗♡,inti

)
. (12.22)

Moreover, via this isomorphism the biholomorphic map Iσ,r in Lemma 12.33 is coincides
with I ♡.

(2) The object (σ, r) is in the ε neighborhood of (0,0).

(3) The restriction of ui to each Kd
i,a

(
σda
)
is ε close to the restriction of u♡i to it in C2 norm.

Here we use Idi,a,σ,r and the isomorphism (12.22) to regard the restrictions of ui, u
♡
i as

a map defined on Kd
i,a

(
σda
)
.

(4) The restriction of ui to each Ks
i,a(σ

s
a) is ε close to the restriction of u♡i to it in C2 norm.

Here we use Isi,a,σ,r and the isomorphism (12.22) to regard the restrictions of ui, u
♡
i as

maps defined on Ks
i,a(σ

s
a).
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(5) For any connected component S of

Σi(σ, r) \
⋃
a

Kd
i,a

(
σda
)
\
⋃
a

Ks
i,a

(
σda
)
,

we require Diamu♡i (S) < ε. (In other words, we require the diameter of the images by u♡i
of the neck regions are smaller than ε.)

Let η′ be a candidate of an element of the extended moduli space ofM′ℓ,ℓ1,ℓ2(L12; a⃗;E). We
forget all the interior marked points of η′ and shrink the components which become unstable. We
then obtain a candidate of an element of the extended moduli space ofM′(L12; a⃗;E). We denote
it by η = i∗(η′). Note this definition is a version of (12.6). Here i is (12.6) with ℓ′ = ℓ′1 = ℓ′2 = 0.

Definition 12.41. Let ξ be an element of M′(L12; a⃗;E). We fix its stabilization data S T .
Let η be a candidate of an element of the extended moduli space ofM′(L12; a⃗;E).

We say that η is ε-close to (ξ,S T ) if the following holds:

(1) There exists a candidate of an element of the extended moduli space ofM′ℓ,ℓ1,ℓ2(L12; a⃗;E),
which we denote by η′ such that i∗(η′) = η.

(2) Let ξ′ be the source stabilization of ξ which is a part of S T . (See Definition 12.26 (1).)
Let G L be the gluing data at ξ′ which is a part of S T . (See Definition 12.26 (3).)

Then η′ is ε close to (ξ′,S T ) in the sense of Definition 12.40.

(3) Let zint1,j be an interior marked point of first kind of ξ′. Let z♡int1,j be the corresponding in-
terior marked point of first kind of η′. (See (12.22).) Let N (1)

j be the codimension 2
submanifold of −X1 ×X2 which is a part of S T . (See Definition 12.26 (5).) We require

u♡
(
z♡int1,j

)
∈ N (1)

j . (12.23)

Here u♡(z) =
(
u♡1 (z), u

♡
2 (I

′(z))
)
.

(4) Let wint
i,j be an interior marked point of second kind of ξ′, and let w♡inti,j be the corresponding

interior marked point of first kind of η′ (see (12.22)). Let N (2)
j be the codimension 2 sub-

manifold of Xi which is a part of S T . (See Definition 12.26 (6).) We require

u♡i
(
w♡inti,j

)
∈ N (2)

j . (12.24)

Let ξ be an element ofM′(L12; a⃗;E). We fix an obstruction bundle data OB of it. It includes
a source stabilization data S T . Let η be a candidate of an element of extended moduli space
ofM′(L12; a⃗;E) which is ε close to (ξ,S T ).

Our next task is to send obstruction spaces (which is a part of OB) to a subspace of sections
on the source curve Σ♡i of η.

Let Kd
i,a (resp. Ks

i,a) be a core of disk (resp. sphere) component of ξ. We consider

Idi,a : Kd
i,a
∼= Kd

i,a

(
σda
)
→ Σi(σ, r) ∼= Σ♡i . (12.25)

Here the first map is a diffeomorphism which is induced by the trivialization given in Defini-
tion 12.25 (2). The second map is the map Idi,a,σ,r in Definition 12.30. The third map is a bi-
holomorphic map (12.22). Actually, the image of (12.25) lies in a certain disk component of Σ♡i
which we denote Σd,♡

i,a♡
. By I and I ♡, we can identify Id1,a with Id2,a. We write the composi-

tion (12.25) as Ida : Kd
a → Σd,♡

a♡
. It defines a complex linear map C∞0

(
Kd

a ; Λ
0,1
)
→ C∞

(
Σd,♡
a♡

; Λ1
)
.

(Note that Idi,a may not be holomorphic.) Here C∞0 denotes the set of smooth sections which
have compact support in the interior. We compose it with the projection to obtain

C∞0
(
Kd

a ; Λ
0,1
)
→ C∞

(
Σ♡
a♡

; Λ0,1
)
. (12.26)

This map is complex linear.
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On the other hand, for each z ∈ Kd
a we take the minimal geodesic joining u(z) ∈ X1 × X2

and u♡
(
Ida (z)

)
. Then taking a complex linear part of the parallel transport (with respect to

a certain connection for which L12 is parallel), we obtain a complex linear map

Tu(z)(−X1 ×X2)→ T
u♡
(
Ida (z)

)(−X1 ×X2).

It induces

C∞0
(
Kd

a ;u
∗(T (−X1 ×X2))

)
→ C∞

(
Σd,♡
a♡

;
(
u♡
)∗
T (−X1 ×X2)

)
. (12.27)

(12.26) and (12.27) are induced by pointwise complex linear maps. So we take pointwise tensor
product over C of (12.26) and (12.27) and obtain

Ψd
a,u♡ : C∞0

(
Kd

a ;u
∗(T (−X1 ×X2))⊗ Λ0,1

)
→ C∞

(
Σd,♡
a♡

;
(
u♡
)∗
T (−X1 ×X2)⊗ Λ0,1

)
.

We consider the direct sum⊕
a♡

C∞0
(
Σd,♡
a♡

;
(
u♡
)∗
T (−X1 ×X2)⊗ Λ0,1

)
⊕
⊕
i=1,2

⊕
a♡

C∞0
(
Σs,♡
i,a♡

;
(
u♡i
)∗
T (Xi)⊗ Λ0,1

)
. (12.28)

Here the first direct sum is taken over disk components of Σ♡ and the second direct sum is taken
over sphere components of Σ♡i . The symbol 0 in C∞0 means sections with compact support away
from nodal or marked points and from boundary.

Taking direct sum of the maps Ψd
a,u♡

, we obtain

Ψd
u♡ :

⊕
a

C∞0
(
Kd

a ;u
∗(T (−X1 ×X2))⊗ Λ0,1

)
→ (12.28).

Here direct sum of the domain is taken over disk components. In case we specify ξ and OB, we
write Ψd

ξ,u♡
or Ψd

ξ,OB,u♡
.

We can perform a similar construction for sphere components to obtain

Ψs
i,u♡ = Ψs

ξ,OB,i,u♡ :
⊕
a

C∞0
(
Ks
i,a;u

∗(TXi)⊗ Λ0,1
)
→ (12.28).

Definition 12.42. We denote

E(ξ,OB) :=
⊕
i=1,2

⊕
a

Esi,a ⊕
⊕
a

Eda .

We define the subspace E(ξ,OB; η) ⊂ (12.28) to be the image of E(ξ,OB) by the map Ψd
u♡
⊕

Ψs
1,u♡
⊕Ψs

2,u♡
.

We write E(ξ; η) in place of E(ξ,OB; η) in case the choice of OB is obvious from the context.

We remark that the choice of σ, r and the third isomorphism in (12.25) is not unique. The
maps Ψd

u♡
⊕Ψs

1,u♡
⊕Ψs

2,u♡
depend on this choice. However, two different choices are trans-

formed each other by the weak isomorphism of ξ. Therefore, by Definitions 12.26 (7) and 12.35 (4)
the image E(ξ,OB) is independent of such choices.

Roughly speaking, the underlying orbifold of Kuranishi chart consists of η such that ∂u♡ ∈
E(ξ; η). To obtain Kuranishi chart so that we can define coordinate transformation among them,
we need one more steps to work out.



Unobstructed Immersed Lagrangian Correspondence and Filtered A∞ Functor 177

We remark that for each (ξ,OB) there exists ε(ξ,OB) such that the construction of E(ξ,OB;
η) works for η which is ε(ξ,OB) close to (ξ,S T ).

For each ξ ∈M′(L12; a⃗;E), we choose and fix an obstruction bundle data OB. We also take
a closed neighborhood N(ξ) of ξ inM′(L12; a⃗;E) such that each element of N(ξ) is ε(ξ,OB)/2
close to (ξ,S T ).

We take a finite subset

{ξi | i ∈ I} ⊂ M′(L12; a⃗;E) (12.29)

such that⋃
i∈I

IntN(ξi) =M′(L12; a⃗;E). (12.30)

Using the data we fixed above, we will construct a Kuranishi neighborhood of an arbitrary
element ξ ofM′(L12; a⃗;E). We put

I(ξ) := {i ∈ I | ξ ∈ N(ξi)}. (12.31)

By perturbing obstruction spaces of (ξi,OB) we may assume that the sum
⊕

i∈I(ξ) E(ξi,OB; ξ)
is a direct sum. See [38, Lemma 18.8], which is proved in [38, Section 27] and more detailed
in [44, Section 11.4].

We take stabilization data S T at ξ. We assume that Definition 12.35 (5) is satisfied. (S T
may or may not coincide with one included in OB taken above.) We take ε2(ξ) enough small so
that if η is a candidate of an element of extended moduli space ofM′(L12; a⃗;E) which is ε2(ξ)
close to (ξ,S T ) then η is ε(ξi,OB) close to (ξi,OB) for each i ∈ I(ξ).

Definition 12.43. For ε < ε2(ξ), we define U(ξ; ε) to be the isomorphism classes of η with the
following properties.

(1) η =
(((

Σ♡1 , z⃗
♡
1

)
, u♡1

)
,
((
Σ♡2 , z⃗

♡
2

)
, u♡2

)
,I ♡, γ♡

)
is a candidate of an element of extended

moduli space ofM′(L12; a⃗;E).

(2) η is ε close to (ξ,S T ).

(3)

∂u♡i ∈
⊕
i∈I(ξ)

E(ξi,OB; η) (12.32)

on the image of Ida : Kd
a → Σd,♡

a♡
and

∂u♡i ∈
⊕
i∈I(ξ)

E(ξi,OB; η) (12.33)

on the image of Isi,a. Moreover, u♡i is pseudo-holomorphic outside the images of Ida and Isi,a.

Let Γξ be the set of all automorphisms of ξ. We denote E(ξ) :=⊕i∈I(ξ) E(ξi,OB).

The next proposition claims that we can construct a Kuranishi neighborhood of ξ using the
above data.

Proposition 12.44. For sufficiently small ε > 0, the following holds:

(1) There exists a smooth manifold V (ξ; ε) of finite dimension on which Γξ acts smoothly such
that the quotient space V (ξ; ε)/Γξ is homeomorphic to U(ξ; ε).
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(2) We can define a smooth Γξ equivalent map sξ : V (ξ; ε)→ E(ξ) as follows. For η̂ ∈ V (ξ; ε)
whose equivalence class is mapped to η ∈ U(ξ; ε) by the homeomorphism in item (1), we
can take its representative and a choice of the map (12.25) (among finitely many pos-
sible choices) such that the components of sξ(η̂) is obtained by applying

(
Ψd
ξi,u′
)−1

or(
Ψd
ξi,OB,u′

)−1
to ∂u, ∂ui.

(3) We define ψξ : s
−1
ξ (0)→M′(L12; a⃗;E) by regarding an element η̂ ∈ s−1ξ (0) as an element

of M′(L12; a⃗;E). Then ψξ induces a homeomorphism from s−1ξ (0)/Γξ to a neighborhood
of ξ.

(4) U(ξ, ε) = (V (ξ; ε),Γξ, E(ξ), sξ, ψξ) is a Kuranishi neighborhood of ξ in the sense of [35,
Definition A1.1].

Proof. Below we provide the construction of (V (ξ; ε),Γξ, E(ξ), sξ, ψξ) leaving the gluing analysis
and smoothness proof to the next subsection.

The construction of the manifold V (ξ; ε) and a homeomorphism V (ξ; ε)/Γξ ∼= U(ξ; ε) is the
gluing construction of the solution space of the equation (12.32) and (12.33).

The stabilization data of ξ we take include a source stabilization ξ′ and gluing data at it. It
induces a source gluing map whose domain is∏

a∈compd1

V
(
ξ′,d1,a
)
×
∏
i=1,2

∏
a∈compsi

V(ξ′,si,a)×
∏

b∈Node+∂

[0, ε)b ×
∏
i=1,2

∏
b∈Node+i,int

D2
b(ε). (12.34)

(We restrict the gluing parameter so that the domain is smaller than (12.8).) We denote (12.34)
by V(ξ′,G L ).
V (ξ; ε) is a submanifold of the product of this space and the other space which parametrizes

the map. We define the latter space below.
For each disk component ξ′,da and sphere component ξ′,si,a, we consider the set of maps

u♡,da :
(
Σd
a , ∂Σ

d
a , z⃗a

)
→ (X1 ×X2, γ

∗L12, L12(⃗aa)), u♡,si,a : Σs
i,a → Xi

(here the notation in the first line is as in Definition 12.36), such that ∂u♡,da ∈ E(ξ′), ∂u♡,si,a ∈ E(ξ′)
and that the C2 distance between u♡,da

(
resp. u♡,si,a

)
and u′,da

(
resp. u′,si,a

)
is smaller than ε.

Here u′,da , u′,si,a are parts of ξ′.
We denote the set of such maps u♡,da (resp. u♡,si,a ) by Wd

a (ξ
′; ε)

(
resp. Ws

i,a(ξ
′; ε)
)
and put

W+(ξ′; ε) :=
∏
a

Wd
a (ξ
′; ε)×

∏
i=1,2

∏
a

Ws
i,a(ξ

′; ε).

Here the first product is taken over disk components and the second product is taken over sphere
components.

We consider the direct product∏
i=1,2

∏
b∈node+i,int

(Xi)
2 ×

∏
b∈node+∂

(L12(ab))
2. (12.35)

Here L12(ab) is as in (12.18).
Note each node is contained in exactly two irreducible components. So using the evaluation

maps on those components, we define evnode : W+(ξ′; ε)→ (12.35).

Lemma 12.45. Let

∆ =
∏
i=1,2

∏
b∈node+i,int

Xi ×
∏

b∈node+∂

L12(ab)

be the diagonal in (12.35). Then the map evnode is transversal to ∆ if ε is sufficiently small.
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Proof. This is a consequence of Condition 12.37, which implies that evnode is transversal to ∆
at
((
uda
)
, (usi,a)

)
. ■

Definition 12.46. We put W(ξ′; ε) = ev−1node(∆) ⊂ W+(ξ′; ε).

Note that Γξ the group of automorphisms of ξ acts ξ′ as a group of weak automorphisms.
Then it acts on V(ξ′,G L ) and W+(ξ′; ε) by exchanging the factors. It then acts on W(ξ′; ε).

The gluing construction proves the next proposition.

Proposition 12.47. For each ρ =
((
ρda
)
, (ρsi,a)

)
∈ W(ξ′; ε) and (σ, r) ∈ V(ξ′,G L ), we obtain

an object η(ρ, σ, r) satisfying conditions in Definition 12.43 except (12.23) and (12.24) and whose
source object is (Glue(σ, r),Iσ,r).

On the contrary, any object satisfying conditions in Definition 12.43 except equation (12.23)
and (12.24) with sufficiently small ε is equivalent to some η(ρ, σ, r).

The isomorphism class of η(ρ, σ, r) is the same as the isomorphism class of η(γ(ρ, σ, r))
for γ ∈ Γξ.

The proof is given in the next subsection.

We next cut down the space V(ξ′,G L )×W(ξ′; ε) by conditions (12.23) and (12.24). We com-
pose the map (ρ, σ, r) 7→ η(ρ, σ, r) and the evaluation maps at the interior marked points (12.7)
to obtain

evint : V(ξ′,G L )×W(ξ′; ε)→ (X1 ×X2)
ℓ ×Xℓ1

1 ×Xℓ2
2 . (12.36)

The next proposition claims its smoothness. We need carefully choose the smooth structure
of V(ξ′,G L ) so that evint becomes a smooth map.

Let r ∈ [0, ε)b and r ∈ D2
b (ε) (see (12.34)). We define T , θ by

r = e−10πT , r = e−10πT+2π
√
−1θ (12.37)

and put s = 1/T , S = e2π
√
−1θ/T . We use s and S as coordinates in place of r and r to define

a smooth structure of V(ξ′,G L ).

Proposition 12.48. When we put the above smooth structure on V(ξ′,G L ), the map evint
in (12.36) is smooth.

We will prove this proposition in the next subsection.

Definition 12.49. Let V (ξ; ε) be the subset of V(ξ′,G L ) × W(ξ′; ε) consisting of elements
(ρ, σ, r) such that

evint(ρ, σ, r) ∈
∏
j

N (1)
j ×

∏
j

N (2)
j .

Here N (1)
j and N (2)

j are as in (12.23) and (12.24). The direct product in the first factor of
the right-hand side is taken over interior marked points on disk components and the direct
product of the second factor of the right-hand side is taken over interior marked points on
sphere components.

Corollary 12.50. If ε is sufficiently small, then V (ξ; ε) is a smooth submanifold of V(ξ′,G L )×
W(ξ′; ε).

Proof. In view of Proposition 12.48, it suffices to show that evint is transversal to
∏
j N

(1)
j ×∏

j N
(2)
j at

((
uda
)
, (usi,a)

)
. This is a consequence of Definition 12.26 (5b) and (6b). ■
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From Corollary 12.50 and Proposition 12.47, it is easy to see that there is a canonical iso-
morphism between V (ξ; ε)/Γξ and U(ξ; ε). We thus have proved Proposition 12.44 (1).

We next prove Proposition 12.44 (2). Let i ∈ I(ξ). We take a source stabilization ξ′i of ξi and
a source stabilization ξ′ of ξ such that ξ′ is ε close to (ξ′i ,G L ). (Note ξ′ may depend on i.) We
then fix a map

Idi,a(0) : Kd
i,a(ξ

′
i)
∼= Kd

i,a

(
σda (0)

)
→ Σi(σ(0), r(0)) ∼= Σi, (12.38)

where Σi is an irreducible component of ξ (which is also an irreducible component of ξ′)
and (σ(0), r(0)) so that the source gluing map at ξ′i sends (σ(0), r(0)) to ξ′. Kd

i,a(ξ
′
i) is a core

of a disk component of the source curve of ξ′i .
Note that the image of (12.38) is in a disk component Σd

i,a of the source curve of ξ′.
Now let (σ, r) ∈ V(ξ′,G L ). The source curve of η(ρ, σ, r) depends only on (σ, r) and

is ε(ξi,OB) close to (ξi,S T ). We write Σi(σ, r) it. Then we can uniquely choose

Idi,a(σ, r) : Kd
i,a(ξ

′
i)→ Σi(σ, r)

as (12.25) which depends continuously on (σ, r) and becomes (12.38) when (σ, r) = (0,0). We
can choose a similar map for the sphere component in the same way.

Using this choice, the map sξ : V (ξ; ε)→ E(ξ) in Proposition 12.44 (2) is continuous.
The Γξ equivalence of this map is proved by Γξ ⊆ Γξi and Γξi invariance of various objects in

the obstruction bundle data.
The smoothness of sξ follows from the exponential decay estimate in the next subsection (see

Proposition 12.56).
The proof of Proposition 12.44 (3), (4) is now an immediate consequence of the construc-

tion. The proof of Proposition 12.44 is complete modulo the points postponed to the next
subsection. ■

We thus constructed a Kuranishi chart at each point ofM′(L12; a⃗;E). Let ξ1 ∈M′(L12; a⃗;E)
and ξ2 ∈ M′(L12; a⃗;E) is in the image of ψξ1 . Using the closedness of N(ξ1), we may as-
sume I(ξ2) ⊆ I(ξ1), by shrinking our Kuranishi neighborhood of ξ1 if necessary. Then by defini-
tion U(ξ2, ε2) ⊂ U(ξ1, ε1) if we choose ε2 sufficiently small. We can use this fact and exponential
decay estimate in the next subsection to construct a smooth coordinate change from the Ku-
ranishi neighborhood of ξ2 to one of ξ1. Thus we obtain the required Kuranishi structure.

12.4 Gluing analysis for the construction of a Kuranishi chart

In this subsection, we prove Propositions 12.47 and 12.48. The proof is by gluing analysis
similar to [35, 38, 48]. Since our compactification is slightly different from the stable map
compactification used in those references, we explain the way we modify the method of previous
literatures so that it works in our situation. In [35, 38, 48], a combination of the alternative
method and the Newton’s iteration was used. We follow this method in this subsection. We
follow [48] since the description is the most detailed in this reference. Below we provide the
detail of the formulation and the inductive scheme of the proof. Once they are clarified the
estimate, we need on each step of the induction is entirely similar to [48].

For the sake of simplicity of notation, we write the detail of our proof in the following special
case. This case contains all the points we need to work out the general case.

We take Σd
i = D2 with one boundary marked point 1 ∈ ∂D2 and two interior marked

points 0, zi ∈ IntD2, 0 ̸= zi.
We take Σs

i = S2 = C ∪ {∞} and consider three marked points 0, 1, ∞ on it.
We put Σd = Σd

1 = Σd
2 . We regard z1, z2 ∈ Σd. We glue Σd

i and Σs
i at zi ∈ Σd

i and 0 ∈ Σs
i .

The points z1, z2 may or may not coincide. In case we use stable map compactification, a sphere
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component bubbles off when z1 = z2. However, in our compactification, the locus where z1 = z2
does not play a special role. We assume L12 ⊂ −X1×X2 is an embedded Lagrangian submanifold.

z1

z2
1 1

Σs
1

Σs
2

Σd
2

Σd
1

Figure 12.26. The source domain we study. (We do not draw interior marked points in the figure.)

The immersed case can be worked out in a similar way, given the formulation we have provided
in the last subsection. We assume L12 is embedded for the sake of simplicity of notation only.

We also remark that throughout this section, we use almost complex structure −JX1 on X1

and JX2 on X2, unless otherwise mentioned explicitly.
We consider families of pseudoholomophic maps

ud,ρ
d
=
(
ud,ρ

d

1 , ud,ρ
d

2

)
:
(
Σd, ∂Σd

)
→ (−X1 ×X2, L12), u

s,ρsi
i : Σs

i → Xi,

parametrized by ρd ∈ Vd, ρsi ∈ Vsi .
Remark 12.51. In the case we are studying here, there are two marked points and one nodal
point on the sphere bubble. We identify them as 0, 1, ∞. Therefore, the domain coordinate
is canonically determined. In particular, the maps ud,ρ

d
, u

s,ρsi
i are determined by ρd and ρsi

uniquely. See Remark 12.57, for an explanation of the case when the domain of the map is not
stable.

Let o ∈ IntD2 \ 0 and O a small open neighborhood of it. Let 0 ∈ Vd and 0 ∈ Vsi . We
assume ud,0i (o) = us,0i (0), for i = 1, 2.

We consider the following element ξ0 ofM′1,2,2(L12; (diag);E). Here diag denotes the diagonal
component of L12 ×X1×X2 L12 (which is actually the only component of it) and

E =
2∑
i=1

(−1)i
∫
Σd

i

(
ud,0i

)∗
ωi +

2∑
i=1

(−1)i
∫
Σs

i

(
us,0i

)∗
ωi.

The source curve of ξ0 is a pair of Σd
i and Σs

i glued at o ∈ Σd
i and 0 ∈ Σs

i . The point 1 ∈ Σd is
its boundary marked point, the point 0 ∈ Σd is an interior marked point of first kind, and the
points 1,∞ ∈ Σs

i are interior marked points of second kind. I is the identity map Σd
1 = Σd = Σd

2 .
The maps ui are u

d,0
i , us,0i on each of the components.

We study a neighborhood of ξ0 inM′1,2,2(L12; (diag);E).

Definition 12.52. We consider the set V consisting of
(
ρd, ρs1, ρ

s
2, z1, z2

)
such that

(1) ρd ∈ Vd, ρsi ∈ Vsi .
(2) z1, z2 ∈ O.

(3) ud,ρ
d

i (zi) = u
s,ρsi
i (0) for i = 1, 2.

We may regard V as a fiber product

V =
(
Vd ×O×O

)
×X1×X2 (Vs1 × Vs2). (12.39)

We work under the following assumptions.



182 K. Fukaya

Assumption 12.53.

(1) Vd, Vs1 and Vs2 are smooth manifolds. Moreover, the linearizations of the nonlinear Cauchy–
Riemann equations

D
ud,ρd

∂ : C∞
((
Σd; ∂Σd

)
;
((
ud,ρ

d
)∗T (X1 ×X2

)
,
(
ud,ρ

d)∗
TL12

))
→ C∞

(
Σd,

(
ud,ρ

d)∗
T (X1 ×X2)⊗ Λ0,1

)
and

D
u
s,ρs

i
i

∂ : C∞
(
Σs
i ;
(
u
s,ρsi
i

)∗
TXi

)
→ C∞

(
Σd,

(
us,ρ

s
i
)∗
TXi ⊗ Λ0,1

)
are surjective.

(2) The fiber product (12.39) is transversal.

Note that Assumption 12.53 implies that V is a smooth manifold.

Remark 12.54. In the general situation, we introduce obstruction bundles and use the extended
moduli space in place of Vd, Vsi , so that a similar condition as Assumption 12.53 holds. The
way to introduce obstruction bundles is explained in detail in the last subsection. Then the way
to include the obstruction bundle in the gluing analysis is the same as [48] etc. So, for the sake
of simplicity of notation, we restrict ourselves to the case when Assumption 12.53 is satisfied in
this subsection.

We next recall the source gluing map in our situation.
Let c be a small positive number. We define a map φd

zi : D
2 → Σd by φd

zi(z) = cz+zi. We also
define φs

i : D
2 → Σs

i by φ
s
i(z) = cz. They are analytic families of coordinates and are extendable.

We use them to define the source gluing map (12.9). Using also Lemma 12.33, we obtain

(Σ1(z1, r1),Σ2(z2, r2),Iz1,z2,r1,r2), (12.40)

for r1, r2 ∈ D2. Here Σi(zi, ri) is obtained by gluing Σd
i and Σs

i by the gluing parameter ri using
coordinates φd

zi and φs
i . Iz1,z2,r1,r2 : Σ

0
1(z1, r1) → Σ0

2(z2, r2) is a biholomorphic map obtained in
Lemma 12.33 by extending identity map.

Proposition 12.55. We assume Assumption 12.53. Then for sufficiently small ε there exists
a map

G : V ×D2(ε)×D2(ε)→M′1,2,2(L12; (diag);E)

with the following properties:

(1) The source object of G
((
ρd, ρs1, ρ

s
2, z1, z2

)
,
(
r1, r2

))
is (12.40).

(2) G is a homeomorphism onto a neighborhood of ξ0.

Proposition 12.55 is a special case of Proposition 12.44 (1). To prove Propositions 12.44 (2),
(3), (4), 12.47, 12.48 and the smoothness of coordinate change, we use the next Proposition 12.56.
To state it we need notations.

We take a small open set O+ ⊂ Σd which contains the closure of c-neighborhood of O. We
put Kd

1,− = Kd
2,− = Kd

− = Σd \O+ and Ks
i = Σs

i \ Im φs
i . We may regard Kd

i,−,K
s
i ⊂ Σi(r) for

all r.
Let u

(ρd,ρs1,ρ
s
2,z1,z2),(r1,r2)

i : Σi(r)→ Xi be the map part of G
((
ρd, ρs1, ρ

s
2, z1, z2

)
, (r1, r2)

)
. We

denote its restriction to Kd
i,−, K

s
i by(

Resdi,− ◦ G
)((

ρd, ρs1, ρ
s
2, z1, z2

)
, (r1, r2)

)
∈ C∞(Kd

i,−, Xi),

(Ressi ◦ G )
((
ρd, ρs1, ρ

s
2, z1, z2

)
, (r1, r2)

)
∈ C∞(Ks

i , Xi)
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and (
Resd− ◦ G

)((
ρd, ρs1, ρ

s
2, z1, z2

)
, (r1, r2)

)
=
((
Resd1,− ◦ G

)
,
(
Resd2,− ◦ G

))((
ρd, ρs1, ρ

s
2, z1, z2

)
, (r1, r2)

)
∈ C∞

(
Kd
−, X1 ×X2

)
.

We define Ti ∈ R+, θi ∈ [0, 1], by

ri = exp
(
−10πTi − 2π

√
−1θi

)
. (12.41)

Proposition 12.56. For m > 10, there exists εm,n > 0 and Cm,n, cm,n > 0 such that the
following holds if ε < εm,n (note ε is the number in Proposition 12.55):

(1) ∥∥∥∥∥∇n(ρd,ρs1,ρs2,z1,z2) ∂ℓ1∂T ℓ11

∂ℓ
′
1

∂θ
ℓ′1
1

∂ℓ2

∂T ℓ22

∂ℓ
′
2

∂θ
ℓ′2
2

(
Resd− ◦ G

)∥∥∥∥∥
L2
m−ℓ

≤ Cm,ne−cm,nT1

if ℓ = ℓ1 + ℓ′1 + ℓ2 + ℓ′2 ≤ m− 2, ℓ1, ℓ
′
1, ℓ2, ℓ

′
2 ∈ Z≥0 and ℓ1 + ℓ′1 > 0. Here ∇n

(ρd,ρs1,ρ
s
2,z1,z2)

is
n-th derivative with respect to

(
ρd, ρs1, ρ

s
2, z1, z2

)
.

(2) ∥∥∥∥∥∇n(ρd,ρs1,ρs2,z1,z2) ∂ℓ1∂T ℓ11

∂ℓ
′
1

∂θ
ℓ′1
1

∂ℓ2

∂T ℓ22

∂ℓ
′
2

∂θ
ℓ′2
2

(
Resd− ◦ G

)∥∥∥∥∥
L2
m−ℓ

≤ Cm,ne−cm,nT2

if ℓ = ℓ1 + ℓ′1 + ℓ2 + ℓ′2 ≤ m− 2, ℓ1, ℓ
′
1, ℓ2, ℓ

′
2 ∈ Z≥0 and ℓ2 + ℓ′2 > 0.

(3) The same inequality as (1), (2) holds for Ressi ◦ G , i = 1, 2.

We can use the exponential decay estimate such as Proposition 12.56 in the same way as [48,
Chapter 8] to prove Propositions 12.47, 12.44 (2), (3), (4), Proposition 12.48 and the smooth-
ness of coordinate changes. So to complete the proof of Theorem 12.24, it remains to prove
Propositions 12.55 and 12.56. The rest of this subsection is occupied by their proofs. ■

Remark 12.57. As we mentioned in Remark 12.51, we study the case when there are marked
points on the sphere bubbles so that the domain is stable in Propositions 12.55 and 12.56. In the
general case, we follow the method of [49, Appendix] and proceed as follows. (This is a special
case of the method we explained in the last subsection.) Suppose we consider an element ξ′0
ofM′1,0,0(L12; (diag);E) which is similar to the element ξ0 except we forget the 4 marked points
on the sphere bubbles. We consider the case when the maps us;0i on the sphere bubbles which are
parts of the data consisting ξ′0 is non-constant. We fix two points on each of the sphere bubbles
such that us;0i is an immersion at those points. We change the objects by automorphisms so that
the marked points we add are 1,∞ ∈ S2. We denote by 1i, ∞i (i = 1, 2) those added marked
points (of second kind) on the sphere bubbles S2

i . The nodal points on the sphere bubbles are
identified with 0. We take codimension 2 submanifolds Ni,1, Ni,∞ of Xi which intersects with
the image of the map us;0i transversally at 1i and ∞i.

We consider ξ′0 with those extra four marked points added as an element ξ0 of the space
M′1,2,2(L12; (diag);E). We can then apply Propositions 12.55 and 12.56 to obtain a map

G : V ×D2(ε)×D2(ε)→M′1,2,2(L12; (diag);E).

Then the Kuranishi neighborhood of ξ′0 of M′1,0,0(L12; (diag);E) is the smooth submanifold

of V ×D2(ε)×D2(ε) which is cut out by the conditions

(evi,1 ◦ G )(x) ∈ Ni,1, (evi,∞ ◦ G )(x) ∈ Ni,∞. (12.42)
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Here evi,1, evi,∞ are the evaluation maps: M′1,2,2(L12; (diag);E) → Xi at the marked points
corresponding to 1i and ∞i.

We remark that the Kuranishi neighborhood of ξ′0 obtained in this way depends on the
choice of additional 4 marked points on the sphere bubbles and also to the choice of transver-
sals Ni,1, Ni,∞. However, using Proposition 12.56 we can show the Kuranishi neighborhood
obtained is independent of such choices in a neighborhood of ξ′0 up to diffeomorphism. This
independence is a special case of the smoothness of the coordinate change, which is proved by
using Proposition 12.56. See [48, Chapter 8].

We will discuss this example more in Remark 12.76.

Proof of Propositions 12.55 and 12.56. Proposition 12.55 is similar to [48, Theorem 3.13]
and Proposition 12.56 is similar to [48, Theorem 6.4]. Their proofs are also similar.

We first modify the way to describe the disk component of the source curve in a way convenient
for our gluing analysis.

Definition 12.58. We take a z ∈ O parametrized smooth family of diffeomorphisms hz : D
2 →

D2 with the following properties:

(1) hz = the identity map outside O+. Here O+ is an open subset of D2 which contains the
closure of O and is disjoint from {0} ∪ ∂D2.

(2) hz ◦ φd
o = φd

z . In particular, hz(o) = z.

We pull back the standard complex structure j of D2 by hz to obtain jz = h∗z j.

We remark
((
D2, j

)
, (1, 0, z)

)
is isomorphic to

((
D2, jz

)
, (1, 0, o)

)
. In other words, we move

a complex structure j in place of moving a marked point z. In this identification, the map I
becomes Iz1,z2 = hz2 ◦ (hz1)−1. We put ud,ρ

d,zi
i = ud,ρ

d

i ◦ hzi and ud,ρ
d,z =

(
ud,ρ

d,z1
1 , ud,ρ

d,z2
2

)
. The

map ud,ρ
d,zi

i is holomorphic with respect to the complex structure jzi of the source.

Hereafter, to simplify the notation we write ρ =
(
ρd, ρs, z1, z2

)
and write ud,ρi etc. in place

of ud,ρ
d,z

i etc.

We remark V ∼=
{
ρ | ud,ρi (o) = us,ρi (0) for i = 1, 2

}
.

We use the cylindrical coordinate on neighborhoods of o ∈ Σd and of 0 ∈ Σs
i , which we

describe below.

Hereafter, we write φd in place of φd
o . Let z ∈ D2 and p = φd(z) ∈ Σd. We then define

τ ′(p) ∈ [0,∞) and t′(p) ∈ [0, 1) by 2π
(
τ ′(p) +

√
−1t′(p)

)
= − log z. Let qi = φs

i(wi) ∈ Σs
i We

then define τ ′′i (qi) ∈ (−∞, 0] and t′′i (qi) ∈ [0, 1) by 2π
(
τ ′′i (qi) +

√
−1t′′i (qi)

)
= logwi. We glue Σd

with Σs
i by the gluing parameter ri as follows. If p = φd(z) and qi = φs

i(wi), we identify p and
q if and only if

zwi = ri. (12.43)

See Definition 12.28. In view of (12.41), the condition (12.43) is equivalent to

τ ′′i − τ ′ = 10Ti, t′′i − t′ ≡ θi mod Z. (12.44)

Compare [48, equations (6.2) and (6.3)] and see Figure 12.27. We use Riemannian metric on
Σd \ {o} (resp. Σs

i \ {0}) such that on the image of φd (resp. φs
i) it is isometric to [0,∞) × S1(

resp. (−∞, 0]× S1
)
with (τ ′, t′) (resp. (τ ′′i , t

′′
i )) as coordinates.

We introduce the weighted Sobolev spaces which we use for our gluing analysis. We follow [48,
Section 3] here. For ρ ∈ V, we put ud,ρ(o) = pρ. We take sufficiently small positive number δ
and fix it. (δ is taken to be small compared to the decay rate of the pseudo-holomorphic curve
at the neck. For example, δ < 1/100. See, for example, [48, Section 2].)
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10T2

10T1

τ = 0

τ1 = 0

τ2 = 0

θ1

θ2

Figure 12.27. Gluing disk and 2 spheres.

We take and fix connections of X1 and of X2 and then direct product connection of X1 ×X2.
Let Palo be the parallel transport of the tangent bundle of X1 × X2 with respect to this con-
nection. We denote by the same symbol the parallel transport of the tangent bundle of Xi. We
denote by PalJo the complex linear part of it. (We remark that the almost complex structure we
use is −JX1 ⊕ JX2 .)

Definition 12.59. We denote by W 2
m+1,δ

((
Σd; ∂Σd

)
,
(
ud,ρ

)∗
T (X1×X2);

(
ud,ρ

)∗
T (L12)

)
the set

of all pairs (s, v) such that

(1) s is a section of
(
ud,ρ

)∗
T (X1 ×X2) on Σd \ {o} which is locally of L2

m+1 class.

(2) v ∈ Tpρ(X1 ×X2).

(3) s(z) ∈ Tud,ρ(z)L12 if z ∈ ∂Σd.

(4)

m+1∑
k=0

∫ ∞
0

dτ ′
∫
S1

e2δτ
′ |∇k

(
s− vpal

)
|2dt′ <∞. (12.45)

Here vpal(τ ′, t′) = (Palo)
ud,ρ(τ ′,t′)
o (v).

The W 2
m+1,δ norm of (s, v) is by definition

∥(s, v)∥2W 2
m+1,δ

:=

m+1∑
k=0

∫
Σd\φd

o (D2)
|∇k(s)|2 + (12.45) + |v|2.

We define the L2 inner product between two elements (s1, v1) and (s2, v2) of the function
space W 2

m+1,δ

((
Σd; ∂Σd

)
,
(
ud,ρ

)∗
T (X1 ×X2);

(
ud,ρ

)∗
T (L12)

)
by

⟨⟨(s1, v1), (s2, v2)⟩⟩L2 =

∫
[0,∞)×S1

(
s1 − vPal1 , s2 − vPal2

)
+

∫
Σd\φd

o (D2)
(s1, s2) + (v1, v2).

We denote by W 2
m+1,δ

(
(Σs),

(
us,ρi
)∗
TXi

)
the set of all pairs (s, v) such that

(1) s is a section of (us,ρ)∗TXi on Σs
i \ {0} which is locally of L2

m+1 class.

(2) v ∈ TpρXi.
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(3)

m+1∑
k=0

∫ 0

−∞
dτ ′′

∫
t′′∈S1

e−2δτ
′ |∇k

(
s− vpal

)
|2dt′′ <∞.

Here vpal(τ ′′, t′′) = (Palo)
us,ρi (τ ′′,t′′)
o (v).

The W 2
m+1,δ norm and the L2 inner product is defined in a similar way.

Definition 12.60. We denote by L2
m,δ

(
Σd
i ,
(
ud,ρi

)∗
TXi ⊗ Λ0,1

ρ

)
the set of all s such that

(1) s is a section of
(
ud,ρi

)∗
TXi ⊗ Λ0,1

(
Σd, jzi

)
on Σd \ {o} which is locally of L2

m class. Note
that we use the complex structure jzi to define the notion of (0, 1) forms on Σd.

(2)

m∑
k=0

∫ ∞
0

dτ ′
∫
S1

e2δτ
′∣∣∇ks∣∣2dt′ <∞. (12.46)

The square of the L2
m norm of s is by definition the sum of (12.46) and the square of L2

m norm
of the restriction of s to Σd \ φd

(
D2
)
.

The weighted Sobolev space L2
m,δ

(
Σs
i ,
(
us,ρi
)∗
TXi⊗Λ0,1

)
of sections of

(
us,ρi
)∗
TXi⊗Λ0,1(Σs, j)

and its L2
m,δ norm is defined in a similar way.

The direct sum⊕
i=1,2

L2
m,δ

(
Σd
i ,
(
ud,ρi

)∗
TXi ⊗ Λ0,1

ρ

)
is denoted by L2

m,δ

(
Σd,

(
ud,ρ

)∗
T (X1⊕X2)⊗Λ0,1

ρ

)
, by a slight abuse of notation. (Note that the

complex structure we use for Σd is different between X1 factor and X2 factor.)

We next define the linearization operator of the nonlinear Cauchy–Riemann equation.

We use the parallel transport and the exponential map for this purpose.

Definition 12.61. We take a z ∈ Σd depending family of connections ∇z of the tangent bundle
of X1 ×X2 such that

(1) If z ∈ O+, then ∇z coincides with direct product connection mentioned right above Defi-
nition 12.59.

(2) There exists a neighborhood of ∂Σd such that if z is in this neighborhood then ∇z coincides
with a connection ∇0 for which L12 is totally geodesic.

Let

Expz : T (X1 ×X2)→ (X1 ×X2)
2 (12.47)

be the exponential map defined by ∇z.
If z ∈ O+, item (1) implies that (12.47) becomes a direct product of two exponential maps

Expi : TXi → (Xi)
2. The restriction of the exponential maps are diffeomorphisms onto a neigh-

borhood of the diagonal, which contain U(∆Xi) etc. We denote their inverses by

Ez : U(∆X1×X2))→ T (X1 ×X2), Ei : U(∆Xi))→ TXi.
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Let x, y ∈ X1 × X2 which is sufficiently close each other. Then we can use the ∇z-parallel
transport with respect to the ∇z geodesic to define (Palz)

y
x : Tx(X1 ×X2)→ Ty(X1 ×X2). We

denote by
(
PalJz

)y
x
its complex linear part.

(1) implies that it splits into direct product if z ∈ O+. (2) implies that if x, y ∈ L12

and z ∈ ∂Σd, then

(Palz)
y
x(TxL12) ⊂ TyL12.

Remark 12.62. Note that there may not exist a connection satisfying both of Definition 12.61
(1), (2). This is the reason why we use z dependent family of connections.

Definition 12.63. We define an operator

Dρ
ud,ρ

∂ :=
(
Dρ

ud,ρ1

∂,Dρ

ud,ρ2

∂
)
: W 2

m+1,δ

((
Σd; ∂Σd

)
,
(
ud,ρ

)∗
T (X1 ×X2);

(
ud,ρ

)∗
T (L12)

)
→ L2

m,δ

(
Σd,

(
ud,ρ

)∗
T (X1 ⊕X2)⊗ Λ0,1

ρ

)
(12.48)

as follows. Let (s, v) ∈W 2
m+1,δ

((
Σd; ∂Σd

)
,
(
ud,ρ

)∗
T (X1 ×X2);

(
ud,ρ

)∗
T (L12)

)
.

Let z ∈ O+. We put s = (s1, s2), where si is a section of
(
ud,ρi

)∗
TXi. Then we define(

Dρ

ud,ρi

∂
)
(s, v) :=

d

dt
P−1

(
∂jziExpi

(
ud,ρi , tsi

))∣∣∣
t=0

(12.49)

in a neighborhood of z. Here Expi
(
ud,ρi , tsi

)
is a map z 7→ Expi

(
ud,ρi (z), tsi(z)

)
. Then

∂jzi
(
Expi

(
ud,ρi , tsi

))
at z is an element of Ty(t)Xi ⊗ Λ0,1

x

(
Σd
i , jzi

)
, where

y(t) = Expi
(
ud,ρi (z), tsi(z)

)
.

P is induced by (Palz)
y(t)
x where x = ud,ρi (z). (We remark that Palz = Palo in our case.)

Let z /∈ O+. Then the complex structure jzi is the standard complex structure j in a neigh-
borhood of z. We define(

Dρ
ud,ρ

∂
)
(s, v) :=

d

dt
P−1z

(
∂Expz

(
ud,ρ, ts

))∣∣∣
t=0

(12.50)

in a neighborhood of z. The notation in (12.50) is similar to (12.49). We however remark that
in (12.50) we work on the product space X1×X2 and use z parametrized family of connections
to define the exponential map and the parallel transport.

By Definition 12.61 (1), it is easy to see that (12.50) coincides with (12.49) on the overlapped
part and define (12.48).

The definition of the linearization map

Dρ
us,ρi

∂ : W 2
m+1,δ

(
Σs
i ,
(
us,ρi
)∗
TXi

)
→ L2

m,δ

(
Σs
i ,
(
us,ρi
)∗
TXi ⊗ Λ0,1

)
(12.51)

is similar to and easier than (12.48).

Definition 12.64. We denote by W
(
m;ud,ρ, us,ρ1 , us,ρ2

)
the subspace of direct sum

W 2
m+1,δ

((
Σd; ∂Σd

)
,
(
ud,ρ

)∗
T (X1 ×X2);

(
ud,ρ

)∗
T (L12)

)
⊕
⊕
i=1,2

W 2
m+1,δ

(
Σs
i ,
(
us,ρi
)∗
TXi

)
consisting ((s, v), (s1, v1), (s2, v2)) with v = (v1, v2). We consider the direct sum

L2
m,δ

(
Σd,

(
ud,ρ

)∗
T (X1 ⊕X2)⊗ Λ0,1

ρ

)
⊕
⊕
i=1,2

L2
m,δ

(
Σs
i ,
(
us,ρi
)∗
TXi ⊗ Λ0,1

)
. (12.52)

We define

Dρ
ud,ρ,us,ρ1 ,us,ρ2

∂ : W
(
m;ud,ρ, us,ρ1 , us,ρ2

)
→ (12.52) (12.53)

as the restriction of the direct sum of (12.48) and (12.51).
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Lemma 12.65. The map Dρ
ud,ρ,us,ρ1 ,us,ρ2

∂ in (12.53) is surjective if δ is sufficiently small.

Proof. Since we assumed Conditions 12.37 and 12.38 with trivial obstruction bundle (that
is, Assumption 12.53) this is a consequence of the standard exponential decay estimate and
regularity of linear operators. ■

Definition 12.66. We denote by H
(
m;ud,ρ, us,ρ1 , us,ρ2

)
the L2 orthonormal complement of the

kernel of Dρ
ud,ρ,us,ρ1 ,us,ρ2

∂ in W
(
m;ud,ρ, us,ρ1 , us,ρ2

)
.

We next introduce bump functions we use in our gluing analysis. (This part is similar to [48,
Section 3.1].)

Notation 12.67. Hereafter, we use [a, b]τ ′ , [a, b]τ ′′1 , [a, b]τ ′′2 for the interval [a, b] to specify the
coordinates τ ′, τ ′′1 or τ ′′2 we use.

Definition 12.68. We define AiTi , X iTi , BiTi for i = 1, 2 as follows:

AiTi = [4Ti − 1, 4Ti + 1]τ ′ × S1 = [−6Ti − 1,−6Ti + 1]τ ′′i × S
1,

X iTi = [5Ti − 1, 5Ti + 1]τ ′ × S1 = [−5Ti − 1,−5Ti + 1]τ ′′i × S
1,

BiTi = [6Ti − 1, 6Ti + 1]τ ′ × S1 = [−4Ti − 1,−4Ti + 1]τ ′′i × S
1.

They may be regarded as subsets of Σd
i or of Σs

i or of Σi(r). (Here r = (r1, r2) and Ti is related
to ri by (12.41).)

τ = 0

τi = 0−6Ti −5Ti −4Ti

4Ti

5Ti

6Ti

Ai
Ti

X i
Ti Bi

Ti

Figure 12.28. Ai
Ti
, X i

Ti
, BiTi

.

Let χ : R→ [0, 1] be a nondecreasing smooth function such that

χ(τ) =

®
0 if τ ≤ 1,

1 if τ ≥ 1.

We use it to define functions on [0, 10Ti]τ ′ × S1 ∼= [−10Ti, 0]τ ′′i × S
1 as follows:

χ→Ai
Ti

(τ ′, t′) := χ(τ ′ − 4Ti), χ→Ai
Ti

(τ ′′i , t
′′) := χ(τ ′′i + 6Ti),

χ→X i
Ti

(τ ′, t′) := χ(τ ′ − 5Ti), χ→X i
Ti

(τ ′′i , t
′′) := χ(τ ′′i + 5Ti),

χ→BiTi
(τ ′, t′) := χ(τ ′ − 6Ti), χ→BiTi

(τ ′′i , t
′′) := χ(τ ′′i + 4Ti)

and χ←Ai
Ti

:= 1− χ→Ai
Ti

, χ←X i
Ti

:= 1− χ→X i
Ti

, χ←BiTi
:= 1− χ→BiTi

. We can extend them outside of

[0, 10Ti]τ ′ × S1 ∼= [−10Ti, 0]τ ′′i × S
1
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1

1

1

1

1

1

0

0

0

0

0

0

Ai
Ti

χ→Ai
Ti

χ←Ai
Ti

χ←Bi
Ti

χ←X i
Ti

χ→X i
Ti

χ→Bi
Ti

X i
Ti

Bi
Ti

Figure 12.29. Bump functions.

as locally constant functions and regard them as functions on Σd
i or on Σs

i or on Σi(r). See
Figure 12.29.

Now we are ready to start our inductive construction of gluing. We discuss the case when the
gluing parameters r1 and r2 are both nonzero. (In the case when r1 = r2 = 0, there is nothing
to do. The discussion when one of r1, r2 is zero is similar and is omitted.)

Pregluing. We put uρ(o) = pρ =
(
pρ1, p

ρ
2

)
. We recall r = (r1, r2). A pair of complex

numbers r corresponds to T1, θ1, T2, θ2 by (12.37). We define uρr,(0),i : Σ
ρ
i (ri)→ Xi as follows.

We put Kd
i = Σd

i \ φd
oi

(
D2
)
. Then Σρi (ri) = Kd

i ∪Ks
i ∪ [0, 10Ti]τ ′ .

On [0, 10Ti]τ ′ × S1 ∼= [−10Ti, 0]τ ′′i × S
1 we put

uρi,r,(0)(τ
′, t′) = Expi

(
pρi , χ

←
BiTi

(τ ′, t′)Ei
(
pρi , u

ρ1
1 (τ ′, t′)

)
+ χ→Ai

Ti

(τ ′′i , t
′′
i )Ei

(
pρi , u

ρ2
2 (τ ′′i , t

′′
i )
))
.

Here (τ ′′i , t
′′
i ) is related to (τ ′, t′) by (12.44). We also put uρr,(0) = (uρ1,r,(0), u

ρ
2,r,(0)) with u

ρ
r,(0) :=

ud,ρ onKd
i and uρi,r,(0) := us,ρi onKs

i . u
ρ
r,(0) is an approximate solution of our pseudo-holomorphic

curve equation.
Step 0-(3+4) (Separating error terms into two parts).

Definition 12.69. We define

ûd,ρr,(0) =
(
ûd,ρ1,r,(0), û

d,ρ
2,r,(0)

)
:
(
Σd, ∂Σd

)
→ (−X1 ×X2, L12)

as follows:

ûd,ρi,r,(0)(z) :=


Expi

(
pρi , χ

←
BiTi

(τ ′ − Ti, t′)
× Ei

(
pρi , u

ρ
i,r,(0)(τ

′, t′)
))

if z = (τ ′, t′) ∈ [0, 10Ti]τ ′ × S1,

uρi,r,(0)(z) if z ∈ Kd
i ,

pρi if z ∈ [10Ti,∞)τ ′ × S1.
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We also define ûs,ρi,r,(0) : Σ
s
i → Xi as follows:

ûs,ρi,r,(0)(z) :=


Expi

(
pρi , χ

→
Ai

Ti

(τ ′′i + Ti, t
′′
i )

× Ei
(
pρi , u

ρ
i,r,(0)(τ

′
i , t
′
i)
))

if z = (τ ′′i , t
′′
i ) ∈ [−10Ti, 0]τ ′′i × S

1,

uρi,r,(0)(z) if z ∈ Ks
i ,

pρi if z ∈ (−∞,−10Ti]τ ′′i × S
1.

Definition 12.70. We put

Errρ,di,r,(1) = χ←X i
Ti

∂jziu
ρ
T,(0),i, Errρ,si,r,(1) = χ→X i

Ti

∂ju
ρ
T,(0),i.

We regard them as elements of the weighted Sobolev spaces

L2
m,δ

(
Σd
i ,
(
ûd,ρi,r,(0)

)∗
TXi ⊗ Λ0,1

ρ

)
and L2

m,δ

(
Σs
i ,
(
ûs,ρi,r,(0)

)∗
TXi ⊗ Λ0,1

)
by extending them to be 0 outside the support of χ←X i

Ti

and χ→X i
Ti

, respectively. Note that

L2
m,δ

(
Σd
i ,
(
ûd,ρi,r,(0)

)∗
TXi ⊗ Λ0,1

ρ

)
and L2

m,δ

(
Σs
i ,
(
ûs,ρi,r,(0)

)∗
TXi ⊗ Λ0,1

)
are defined in the same way as Definition 12.60.

Step 1-1 (approximate solution for linearization). We define

W
(
m; ûd,ρr,(0), û

s,ρ
1,r,(0), û

s,ρ
2,r,(0)

)
in the same way as Definition 12.64. Using

(
PalJz

)ûd,ρr (z)

ud,ρ(z)
and

(
PalJo

)ûs,ρi,r (z)

us,ρi (z)
, we obtain a linear

map

Φρ,(0) : W
(
m;ud,ρ, us,ρ1 , us,ρ2

)
→W

(
m; ûd,ρr,(0), û

s,ρ
1,r,(0), û

s,ρ
2,r,(0)

)
.

(See [48, Definition 5.10 and Lemma 5.11].) We consider the direct sum

L2
m,δ

(
Σd,

(
ûd,ρr,(0)

)∗
T (X1 ⊕X2)⊗ Λ0,1

ρ

)
⊕
⊕
i=1,2

L2
m,δ

(
Σs
i ,
(
ûs,ρi,r
)∗
TXi ⊗ Λ0,1

)
. (12.54)

We define

Dρ

ûd,ρ
r,(0)

,ûs,ρ
1,r,(0)

,ûs,ρ
2,r,(0)

∂ : W
(
m; ûd,ρr,(0), û

s,ρ
1,r,(0), û

s,ρ
2,r,(0)

)
→ (12.54)

in the same way as (12.53).

Lemma 12.71. There exists a unique element

Vρ,(1) =
((
V d
ρ,(1),∆pρ,(1)

)
, (V s

1,ρ,(1),∆p1,ρ,(1)), (V
s
2,ρ,(1),∆p2,ρ,(1))

)
which is contained in the image of the restriction of Φρ,(0) to the L2 orthogonal complement of
the kernel

KerDρ

ûd,ρ
r,(0)

,ûs,ρ
1,r,(0)

,ûs,ρ
2,r,(0)

∂ in W
(
m; ûd,ρr,(0), û

s,ρ
1,r,(0), û

s,ρ
2,r,(0)

)
such that(

Dρ

ûd,ρ
r,(0)

,ûs,ρ
1,r,(0)

,ûs,ρ
2,r,(0)

∂
)
(Vρ,(1)) =

(
Errρ,dr,(1),Err

ρ,s
1,r,(1),Err

ρ,s
2,r,(1)

)
.
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This is a consequence of Lemma 12.65 and can be proved in the same way as [48, Lem-
ma 5.13].

Step 1-2 (gluing solutions).

Definition 12.72. We define uρr,(1) = (uρ1,r,(1), u
ρ
2,r,(1)) as follows:

(1) If z ∈ Kd, we put uρr,(1)(z) = Expz
(
ûd,ρr,(0), V

d
ρ,(1)(z)

)
.

(2) If z ∈ Ks
i , we put uρi,r,(1)(z) = Expz

(
ûs,ρi,r,(0), V

s
i,ρ,(1)(z)

)
.

(3) If z = (τ ′, t′) ∈ [0, 10Ti]τ ′ × S1, we put

uρi,r,(1)(τ
′, t′) = Expz

(
uρr,(0)(τ

′, t′), χ←BiTi
(τ, t)

(
V d
i,ρ,(1)(τ

′, t′)− (∆pi,ρ,(1))
Pal
)

+ χ→Ai
Ti

(τ ′, t′)
(
Vi,ρ,(1)(τ

′′
i , t
′′)− (∆pi,ρ,(1))

Pal
)
+ (∆pi,ρ,(1))

Pal
)
.

We also define pρ(1) =
(
p1,ρ(1), p

2,ρ
(1)

)
by pρi,(1) = Expi(p

ρ
i ,∆pi,ρ,(1)).

uρr,(1)(z) is an improved approximate solution. Note that by Definition 12.61 (1), uρr,(1)(z)
satisfies the boundary condition at ∂Σ(r).

Step 1-4 (separating error terms into two parts).

Definition 12.73. We define

ûd,ρr,(1) =
(
ûd,ρ1,r,(1), û

d,ρ
2,r,(1)

)
:
(
Σd, ∂Σd

)
→ (−X1 ×X2, L12)

as follows:

ûd,ρi,r,(1)(z) :=



Expi
(
pρi,(1), χ

←
BiTi

(τ ′ − Ti, t′)
× Ei

(
pρi , u

ρ
i,r,(0)(τ

′, t′)
))

if z = (τ ′, t′) ∈ [0, 10Ti]τ ′ × S1,

uρi,r,(1)(z) if z ∈ Kd
i ,

pρi,(1) if z ∈ [10Ti,∞)τ ′ × S1.

We also define ûs,ρi,r,(1) : Σ
s
i → Xi as follows:

ûs,ρi,r,(1)(z) :=



Expi
(
pρi,(1), χ

→
Ai

Ti

(τ ′′i + Ti, t
′′
i )

× Ei
(
pρi , u

ρ
i,r,(0)(τ

′
i , t
′
i)
))

if z = (τ ′′i , t
′′
i ) ∈ [−10Ti, 0]τ ′′i × S

1,

uρi,r,(1)(z) if z ∈ Ks
i ,

pρi,(1) if z ∈ (−∞,−10Ti]τ ′′i × S
1.

Definition 12.74. We put

Errρ,di,r,(2) = χ←X i
Ti

∂jziu
ρ
T,(1),i, Errρ,si,r,(2) = χ→X i

Ti

∂ju
ρ
T,(1),i.

We regard them as elements of the weighted Sobolev spaces L2
m,δ

(
Σd
i ,
(
ûd,ρi,r,(1)

)∗
TXi ⊗ Λ0,1

ρ

)
and L2

m,δ(Σ
s
i , (û

s,ρ
i,r,(1))

∗TXi ⊗ Λ0,1), respectively, by extending them to be 0 outside the support
of χ←X i

Ti

and χ→X i
Ti

, respectively.

We now come back to Step 2-1 and continue. We thus obtain a sequence of maps uρr,(κ) =
(uρ1,r,(κ), u

ρ
2,r,(κ)) for κ = 0, 1, 2, . . . inductively on κ.

In the same way as [48, Section 5], we can show that it converges to uρr = (uρ1,r, u
ρ
2,r) in L

2
m+1

norm as κ goes to infinity.
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Together with source object (12.40), uρr defines an element of M′1,2,2(L12; (diag);E). This

element is by definition G
((
ρd, ρs1, ρ

s
2, z1, z2

)
, (r1, r2)

)
. The proof that it is injective and its image

is an open neighborhood of ξ0 is the same as [48, Section 7].

Let us elaborate on the latter proof now. Below we discuss the case when the source ob-
ject is unstable. (So it is slightly more involved than the case of Proposition 12.55.) We
consider the situation at the beginning of Section 12.4, depicted in Figure 12.26. We write
the element of M′1,2,2(L12; (diag);E) described there as x+. Denote the four interior marked
points of x+ by wi,j , i = 1, 2, j = 1, 2, where wi,j is on Σs

i . Note that 0 on the disk is
an interior marked point of first kind. This element x+ comes with one boundary marked
point 1 (the symbol (diag) shows existence of one boundary marked point). We forget the
four interior marked points of second kind and one interior marked point of first kind to ob-
tain x ∈M′0,0,0(L12; (diag);E).

We add 4 codimension two transversals Ni,j ⊂ Xi which intersect with the image of us,0i
transversally at wi,j . We also add 1 codimension two transversal N ⊂ X1 ×X2 which intersect
with

(
ud,01 , ud,02

)
transversally at 0. We will prove that the set of the image of G satisfy-

ing the transversal constraint contains a neighborhood of x in M′0,0,0(L12; (diag);E). Suppose
that yn is a sequence of elements M′0,0,0(L12; (diag);E) converging to x. By the definition of
topology and Lemma 12.17, there exists y+

n such that i∗(y+
n ) = yn and limsn→∞y+

n = x+.
Here i∗ is the forgetful map of the marked points. In particular, the source curves of y+

n

converge to the source curve of x+. Let wni,j be the four interior marked points of second
kind of y+

n and zni be the interior marked points of first kind of y+
n . Then, the source curve

of y+
n is a pair ((Σn1 , (1; z

n
1 , w

n
1,1, ;w

n
1,2)), (Σ

n
2 , (1; z

n
2 , w

n
2,1, ;w

n
2,2))) together with an isomorphism

of the disk part of Σn1 to the disk part of Σn2 , which sends 1 and zn1 to 1 and zn2 , respectively.
(We denote the boundary marked point by 1.) Therefore, (Σni , (1; z

n
1 , w

n
i,1, ;w

n
i,2)) converges to

(Σ, (1; 0, wi,1, wi,2)) in the moduli space of marked stable bordered curves. Here Σ is a disk with
one sphere bubble on it. We change the representative and assume that zn1 is 0.

So we obtain a gluing parameter rn1 and the parameter of the position of the node zn1 uniquely
such that (Σn1 , (1; 0;w

n
1,1, ;w

n
1,2)) is conformal to (Σ1(z

n
1 , r

n
1 ), (1, 0, w1,1, w1,2)). We obtain rn2

and zn2 in a similar way. We remark that limn→∞ rni = 0.

We can identify Σni
∼= Σi(z

n
i , r

n
i ) and Σi(z

n
i ,0) outside the neck region12.1 using the local triv-

ialization of the universal family (outside the node). Via this identification, the map uni which
is a part of y+

n converges to ui which is a part of x+ outside the neck region in the compact
C∞ topology as n goes to infinity. On the neck region, we can use the exponential decay esti-
mate such as [48, Proposition 7.1]. Therefore, we can take ρn =

(
ρn,d, ρn,s1 , ρn,s2

)
such that the

difference of two elements y+
n and G (ρn, zn1 , z

n
2 , r

n
1 , r

n
2 ) goes to zero.

Hence we can interpolate uni which is a part of y+
n and un,′i which is a map part of G (ρn, zn1 , z

n
2 ,

rn1 , r
n
2 ) to obtain a one parameter family of maps un,si : Σni → Xi for s ∈ [0, 1] such that it be-

comes uni and un,′i at s = 0, 1. (Note that the domain curves of them are isomorphic each other.)
We may also assume that the transversality constraints are satisfied.

For a sufficiently large n, this path s 7→ un,si can be arbitrary short. (The shortness is taken
in the sense of the weighted Sobolev norm we used in the gluing analysis.)

Now we run the Newton’s iteration in the one parameter family and modify un,si so that it is
pseudo-holomorphic. Since uni and un,′i are both pseudo-holomorphic, Newton’s iteration does
not change them. Hence the path s 7→ un,si still joins them. We may still assume that the
transversality constraint are satisfied by using implicit function theorem.

By index calculation, the image of the map G has the same dimension as the moduli space
for each fixed domain. Therefore, we can lift our path to the domain of G for sufficiently large n.
This is the proof of openness of the image.

12.1There exists a one neck for each i ∈ {1, 2}.
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We thus proved Proposition 12.55.

Then the proof of Proposition 12.56 is entirely the same as [48, Section 6].

The proof of Theorem 12.24 is now complete. ■

Example 12.75. We consider the sequence ρ(n) =
(
ρdn, ρ

s
n

)
, (z1(n), z2(n)) and a sequence

r(n) = ((r1(n), r2(n)), (z1(n), z2(n))) which converges to (0, z0, z0) and to (0,0) as n goes to
infinity. The limit of G (ρ(n), r(n)) in our compactification M′1,2,2(L12; (diag);E) is the ob-
ject ξ0 = G ((0, (0,0)), r(n)) and is independent of the choice of such sequences ρ(n), r(n).

On the other hand, the limit of the sequence G (ρ(n), r(n)) in the stable map compactifica-
tionM1,2,2(L12; (diag);E) depend on the choice of ρ(n), r(n) as follows.

We put d(n) = |z1(n)− z2(n)|.
Case 1: If d(n)/|r1(n)| → 0, d(n)/|r2(n)| → 0. Then the source curve of the limit G (ρ(n), r(n))

in the stable map compactification is as in Figure 12.18.

Case 2: d(n)/|r1(n)| > c > 0, |r2(n)|/|r1(n)| → 0. Then the source curve of the limit
G (ρ(n), r(n)) in the stable map compactification is as in Figure 12.17.

Case 3: d(n)/|r2(n)| > c > 0, |r1(n)|/|r2(n)| → 0. Then the source curve of the limit
G (ρ(n), r(n)) in the stable map compactification is as in Figure 12.16.

Case 4: d(n)/|r2(n)| > c > 0, c2 > |r1(n)|/|r2(n)| > c1. Then the source curve of the limit
G (ρ(n), r(n)) in the stable map compactification is as in Figure 12.19.

We can prove these facts by looking the proof of Lemma 12.33.

Thus the stable map compactification M1,2,2(L12; (diag);E) is a kind of blow up of the
space M′1,2,2(L12; (diag);E). Note that the fact that the blow up of a variety Z is smooth
does not imply the smoothness of Z in algebraic geometry. By the same reason, the fact
that M1,2,2(L12; (diag);E) has Kuranishi structure, which was proved in previous literatures,
does not implyM′1,2,2(L12; (diag);E) has Kuranishi structure. This is the reason why we provide
the detail of the proof of Theorem 12.24 in this subsection.

Remark 12.76. We discuss the example in Remark 12.57 and how the gluing analysis works
in that case. Moreover, we will compare it to the gluing analysis in the case of stable map
compactification.

In the situation of Remark 12.57, we consider the case when the configuration ξ′0 which is
defined by

(
ud1, u

d
2, u

s
1, u

s
2

)
is isolated among the objects in this combinatorial type,12.2 up to an

automorphism on the sphere bubbles which preserves the point D2
i ∩ S2

i that is 0i ∈ S2
i . Here

ud1 : D2 → −X1, ud2 : D2 → X2, us1 : S2 → −X1, us2 : S2 → X2.

with the constraint udi (o) = usi (0), i = 1, 2 and
(
ud1(z), u

d
2(z)

)
∈ L12 for z ∈ ∂D2. Since we

assume this configuration is isolated, udi is uniquely determined by these conditions.12.3 The
automorphisms on the sphere bubbles which preserves 0 consist a complex two-dimensional
group Gi. So usi has a freedom usi 7→ usi ◦ gi, gi ∈ Gi. The space V has complex dimension 6,
parametrized g1, g2 and z1, z2. Here zi ∈ D2

i which parametrizes the ‘root’ of the sphere
bubble. Note that we assumed that ξ′0 is isolated among the object in this combinatorial type.
Therefore, such element is unique if z1 = z2. So there is one constraint and the dimension
is dimCG1 + dimCG2 + 2− 1 = 5.

Together with two gluing parameters ρ1, ρ2 the domain of the map G has 7 complex dimen-
sion.

12.2Here ‘this combinatorial type’ contains the condition z1 = z2, that is, the roots z1, z2 ∈ D2 of the two sphere
bubbles coincide.
12.3This follows from the fact that the group of automorphisms of the source curve acts as an identity map on
the disk component. This is because the disk component has one boundary marked point and one interior node.
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The Kuranishi neighborhood of ξ′0 inM′1,0,0(L12; (diag);E) is a submanifold of this real 14-
dimensional manifold cutting out by the constraint (12.42). The constraint is by codimension 2
submanifolds at 4 added marked points. Therefore, it decreases dimension by 8.

Thus Kuranishi neighborhood of ξ′0 inM′1,0,0(L12; (diag);E) is a real 6-dimensional manifold.
It can be depicted schematically in the Figure 12.30 (a).

ξ0 x

X

X

z

X

η0

X

z

x

X

y

(a) (b)

Figure 12.30. Schematic pictures of Kuranishi neighborhoods.

z1 z2

z1 = z2
z1 = z2

ξ0

x
z

Figure 12.31. Source curves of objects in Figure 12.30 (a).

η0 x y z

Figure 12.32. Source curves of objects in Figure 12.30 (b).

We next compare it with the Kuranishi neighborhood of the corresponding object in the
stable map compactification. The element η′0 ∈ M1,0(L12; (diag);E) corresponding to ξ′0 in the
stable map compactification,12.4 has a source curve consisting of D2 and one sphere bubble. The
map on the disk is

(
ud1, u

d
2

)
and the map on the sphere is (us1, u

s
2). Note that the element η′0 is not

isolated in this combinatorial type. Namely, if we change (us1, u
s
2) to (us1, u

s
2 ◦ g2) with g2 ∈ G2 it

represents a different element inM1,0(L12; (diag);E). Thus this stratum is a real 4-dimensional
manifold. (This family is depicted in Figure 12.30 (b) by a thick line containing η′0.) Together
with real 2-dimensional gluing parameter it gives 6-dimensional family of objects. The dimen-
sion coincides to the dimension of the Kuranishi neighborhood of ξ′0 in M′1,0,0(L12; (diag);E).

12.4Note that there is no prime in M1,0,0(L12; (diag);E).
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Figure 12.33. Source curves of objects mentioned in the footnote.

Those two moduli spaces are identical before compactification and so the dimension must co-
incide.12.5 The Kuranishi neighborhood of η′0 in M1,0,0(L12;E) can be depicted schematically
as in Figure 12.30 (b).12.6 The points x and z in Figure 12.30 (b) are objects whose domain are
depicted in Figure 12.32.

One can observe that Figure 12.30 (b) is a kind of blow up of Figure 12.30 (a) at the stratum
containing ξ′0.

Remark 12.77. Note that we did not care about the compatibility of the Kuranishi structure
with the forgetful map of the boundary marked points in this section. We actually use such
a compatibility to prove that the operations we obtain from our moduli spaces is unital. We can
prove the compatibility with the forgetful map in the same way as, for example, [28, Sections 3
and 5]. Note that we only need to consider the forgetful map at the diagonal component to
study unitality. Let a⃗ be as in Theorem 12.24. We remove all the diagonal components from it
except possibly a0. We denote it by a⃗′. We use Theorem 12.24 to obtain a Kuranishi structure
on M′(L12; a⃗

′;E). Now for each element of M′(L12; a⃗;E) we use the obstruction space used
in the construction ofM′(L12; a⃗

′;E). We then perform the gluing analysis in the same way to
obtain a Kuranishi structure onM′(L12; a⃗;E). This Kuranishi structure is obviously compatible
with the forgetful map.

We omit the detail since there is nothing new in this construction compared to those which
have already appeared in the literature.

13 Homotopy equivalence and homotopy between
filtered A∞ functors

In Section 2.1 (see Definition 2.25), we defined the notion of two filtered A∞ functors being
homotopy equivalent and built homotopy theory of filtered A∞ categories based on this notion.
This is the way taken in [27]. The way taken in [34] (in the case of filtered A∞ algebras) is
slightly different. We describe the method of [34] in the filtered A∞ category case and discuss
its relation to the method of Section 2.1.

There are certain issues to state it correctly because the category of categories is rather a 2-
category than a 1-category and so claiming two morphisms of the category of categories to be
‘the same’ is a nontrivial issue. A certain part of the discussion of this section is related to this
point.

We say a filtered A∞ functor F : C1 → C2 is linear if Fk : BkC1[1]→ C2[1] is 0 for k ̸= 1.

Definition 13.1 (compare [34, Definition 4.2.1]). Let C be a non-unital curved filtered A∞
category. A model of C × [0, 1] consists of (C, Incl,Eval0,Eval1) with the following properties:

12.5When we work out the gluing process starting from η′
0, we proceed as follows. We take two marked points,

say 1, ∞, on the sphere bubble and take N1, N∞ codimension 2 submanifold of X1 × X2 which intersects
with us := (us

1, u
s
2) transversally at us(1) and us(∞). We thus obtain η0. Note that the neighborhood of η0 has 4

extra (real) parameter corresponding to the group G of automorphisms of S2 preserving 0. After gluing we cutout
by using the constraint defined by N1,N∞. Which decrease the dimension by 4.
12.6This is an oversimplified picture. In fact, there are other kinds of strata such as those depicted in Figure 12.33.
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(1) C is a curved non-unital filtered A∞ category..

(2) Incl : C → C, Eval0 : C → C , Eval1 : C → C are linear filtered A∞ functors, such that
Inclob : OB(C ) → OB(C), (Eval0)ob : OB(C) → OB(C ), (Eval1)ob : OB(C) → OB(C )
are bijections.

(3) Eval0 ◦ Incl = Eval1 ◦ Incl = the identity functor: C → C .

(4) For c, c′ ∈ Cob, the map Incl1(c, c
′) : C (c, c′)→ C(Inclob(c), Inclob(c

′)) is a chain homotopy
equivalence of the chain complexes, where m1 is the boundary operators. (Here Incl etc.
denotes the R-reduction.) For c, c′ ∈ Cob and j = 0, 1, the map

(
Evalj

)
1
(c, c′) : C(c, c′) →

C ((Evalj)ob(c), (Evalj)ob(c
′)) is a chain homotopy equivalence of the chain complexes,

where m1 is the boundary operators.

(5) For c, c′ ∈ Cob, the Λ0 module homomorphism

(Eval0)1(c, c
′)⊕ (Eval1)1(c, c

′) :

C(c, c′)→ C ((Eval1)ob(c), (Eval1)ob(c
′))⊕ C ((Eval2)ob(c), (Eval2)ob(c

′))

is split surjective.

In the case when C is strict (resp. unital, G-gapped), the model of C × [0, 1] is said strict (resp.
unital, G-gapped) if C, Incl, Eval0, Eval1 are all strict (resp. unital, G-gapped).

Sometimes, we say C is a model of C × [0, 1] (and do not specify Evalj and Incl) by an abuse
of notation.

By (2) and (3), we can identify OB(C ) and OB(C). So we identify these two sets from now
on.

Proposition 13.2. For any curved non-unital filtered A∞ category C , a model of C × [0, 1]
exists. If C is strict (resp. unital, G-gapped), then we take the model so that it is strict (resp.
unital, G-gapped).

The proof is the same as the proof of [34, Lemma 4.2.13] (if R contains Q) [34, Lemma 4.2.25]
(in general). Those are the cases of a filtered A∞ algebra but the proof of the category case is
the same.

Proposition 13.3. Let Cj (j = 1, 2) be non-unital curved filtered A∞ categories and F : C1 →
C2 a filtered A∞ functor. Let Cj be a model of Cj × [0, 1] for j = 1, 2. Then there exists
a filtered A∞ functor F : C1 → C2 such that Evalj ◦ F = F ◦Evalj for j = 0, 1. If Cj and F are
strict (resp. unital, G-gapped), we may choose F to be strict (resp. unital, G-gapped).

The proof is the same as the proof of [34, Theorem 4.2.34] and so is omitted. Note that in
Proposition 13.3 the case C1 = C2 = C and F is the identity functor is included. In that case
Proposition 13.3 implies the following.

Corollary 13.4. Let Cj be a model of C × [0, 1] for j = 1, 2. Then there exists a filtered A∞
functor F : C1 → C2 such that Evalj ◦ F = Evalj for j = 0, 1. If C is strict (resp. unital,
G-gapped), we may choose F to be strict (resp. unital, G-gapped).

Definition 13.5. Let Cj be a non-unital curved filtered A∞ category for j = 1, 2 and F ,G : C1

→ C2 filtered A∞ functors. Let C2 be a model of C2 × [0, 1].

We say F is homotopic to G and write F ≈ G if there exists a filtered A∞ functor H : C1 →
C2 such that Eval0 ◦H = F , Eval1 ◦H = G . We call H the homotopy functor.

We can define a strict (resp. unital, G-gapped) version in an obvious way.
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Remark 13.6. If F is homotopic to G , then Fob = Gob. This is a consequence of Defini-
tion 13.1 (2)(3).

Lemma 13.7.

(1) The notion ‘homotopic’ is independent of the choice of the model of C2 × [0, 1].

(2) ‘homotopic’ is an equivalence relation.

(3) If F ≈ F ′, then F ◦ G ≈ F ′ ◦ G , G ◦F ≈ G ◦F ′.

The strict (resp. unital, G-gapped) version of these statements also hold.

Proof. (1) follows from Corollary 13.4 (see [34, Lemma 4.2.36]). (2) can be proved in the same
way as [34, Proposition 4.2.37]. The proof of (3) is the same as [34, Lemma 4.2.43]. ■

Definition 13.8. Let F : C1 → C2 be a filtered A∞ functor between non-unital curved fil-
tered A∞ categories. We say that F is a strong homotopy equivalence if there exists a filtered A∞
functor G : C2 → C1 such that F ◦ G : C2 → C2 and G ◦ F : C1 → C1 are homotopic to the
identity functor.

We call G the strong homotopy inverse to F . We say two non-unital curved filtered A∞
categories are strongly homotopy equivalent to each other if there exists a strong homotopy
equivalence between them.

We can define a strict (resp. unital, G-gapped) version in an obvious way.

Remark 13.9. If F : C1 → C2 is a strong homotopy equivalence, then it induces a bijec-
tion OB(C1)→ OB(C2). This is a consequence of Definition 13.6.

This is a rather restrictive requirement. To define an appropriate notion of equivalence
between (A∞) categories, it is not a correct idea to require that the set of objects are equal.
This point is related to the basic concept of category, where an equality should be replaced by
an equivalence. This is a point where the notion of a homotopy equivalence which we introduced
in Definition 2.27 is more natural from the point of view of category theory than the notion of
a strong homotopy equivalence we defined above.

We will further discuss the relation between these two notions later in this section.

Lemma 13.10. Let F : C1 → C2 be a strong homotopy equivalence.

(1) Let G ,G ′ : C → C1 be filtered A∞ functors. Then G is homotopic to G ′ if and only if F ◦G
is homotopic to F ◦ G ′.

(2) Let G ,G ′ : C2 → C be filtered A∞ functors. Then G is homotopic to G ′ if and only if G ◦F
is homotopic to G ′ ◦F .

(3) Composition of strong homotopy equivalences is a strong homotopy equivalence.

The strict (resp. unital, G-gapped) version of these statements also hold.

The proof is easy and is omitted.
Now a strong homotopy equivalence version of Theorem 2.28 is the following. We assume

that the ground ring R is a field.

Theorem 13.11. Let C1, C2 be G-gapped filtered A∞ categories and F : C1 → C2 a G-gapped
filtered A∞ functor such that

(1) For any c, c′ ∈ OB(C1), the map F 1 : C 1(c1, c
′
1) → C 2(Fob(c1),Fob(c

′
1)) induces an

isomorphism on m1 homology.

(2) The map Fob : OB(C1)→ OB(C2) is a bijection.
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Then F is a strong homotopy equivalence. The strong homotopy inverse can be taken to be
G-gapped. If C1, C2, F are strict (resp. unital), then we may take the strong homotopy inverse
to be strict (resp. unital).

The proof is the same as the proof of [34, Theorem 4.2.45].
We next discuss a relation between strong homotopy equivalence and homotopy equivalence.

Lemma 13.12. Suppose C is a model of C × [0, 1] and assume that C is G-gapped. Then Incl
is a strong homotopy inverse of Eval0. It is a strong homotopy inverse of Eval1 also.

Proof. By Theorem 13.11, Incl is strong homotopy equivalence. The lemma then follows from
Evalj ◦ Incl = identity and Lemma 13.10. ■

Proposition 13.13. In the situation of Definition 13.5 we assume that C1, C2, F and G are
strict and G-gapped. We also assume that C2 is unital. Then the following holds. If F is
homotopic to G in the sense of Definition 13.5, then F is homotopy equivalent to G in the sense
of Definition 2.25.

Proof. We first prove the following analogue of Lemma 13.12.

Lemma 13.14. Suppose C is a model of C × [0, 1] and assume that C is strict unital and
G-gapped. Then Incl is a homotopy inverse of Eval0. It is a homotopy inverse of Eval1 also.

Proof. Using Theorem 2.28 in place of Theorem 13.11, the proof is the same as the proof of
Lemma 13.12. ■

We also remark that Lemma 13.10 still holds when we replace strong homotopy equivalence
by homotopy equivalence.

Now we prove Proposition 13.13. We assume that F is homotopic to G in the sense of Defi-
nition 13.5 and let H : C1 → C2 be the homotopy. Since Eval0 ◦H = F , Lemma 13.14 implies
that Incl ◦F is homotopy equivalent to H . In the same way, we can show that Incl ◦ G to H .
Therefore, Incl ◦F is homotopy equivalent to Incl ◦ G . Since Incl is a homotopy equivalence,
the analogue of Lemma 13.10 we mentioned above implies F is homotopy equivalent to G . ■

We remark that the converse to Lemma 13.14 is false. Namely, there is a pair of strict, unital
and G-gapped filtered A∞ functors F , G such that they are homotopy equivalent, Fob = Gob,
but F is not homotopic to G . A counterexample is the following.

Example 13.15. Let C be an associative ring with unit. We regard it as a differential graded
algebra with trivial boundary operator and grading. We then regard it as a (filtered) A∞
category C (with trivial filtration) as in Definition 2.8, Remark 2.9. Let f1, f2 : C → C be ring
homomorphisms. We regard them as (filtered) A∞ functors C → C . We remark that f1 is
homotopic to f2 in the sense of Definition 13.8 if and only if f1 = f2. On the other hand, f1 is
homotopy equivalent to f2 in the sense of Definition 2.25 if and only if there exists an invertible
element g ∈ C

(
that is, an element such that there exists g−1 ∈ C with g · g−1 = g−1 · g = 1

)
such that f1(x) = g−1f2(x)g. Thus they are different notion in this case.

Corollary 13.16. Let Ci be a G-gapped filtered A∞ category for i = 1, 2. We assume that
they are strict and C2 is unital. Let F : C1 → C2 be a filtered A∞ functor, which is strict and
G-gapped. Assume Fob : OB(C1) → OB(C2) is a bijection. Then the next two conditions are
equivalent:

(1) F is a strong homotopy equivalence in the sense of Definition 13.8.

(2) F is a homotopy equivalence in the sense of Definition 2.27.
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Proof. This is immediate from Theorems 2.28 and 13.11. ■

Remark 13.17. Let F ,G : C1 → C2 be two strict filtered A∞ functors between strict fil-
tered A∞ categories. We assume F is homotopy equivalent to G . It means that there exists
natural transformations T : F → G , S : G → F of degree 0 and pre-natural transformations
U : F → F , V : G → G such that

m2(S, T ) = ID + δU , m2(T ,S) = ID + δV. (13.1)

Let us elaborate on these equalities. For c1, c2 ∈ OB(C1), the functors F and G induce homo-
morphisms

(F1)∗ : H(C1(c1, c2))→ H(C2(Fob(c1),Fob(c2)),

(G1)∗ : H(C1(c1, c2))→ H(C2(Gob(c1),Gob(c2)). (13.2)

Here H in the right and left-hand sides are m1-homologies. We show that the two maps in (13.2)
coincide as follows. We observe that T and S induce

T (ci) ∈ H(C2(Fob(ci),Gob(ci))), S(ci) ∈ H(C2(Gob(ci),Tob(ci))).

We define

φ : H(C2(Fob(c1),Fob(c2))→ H(C2(Gob(c1),Gob(c2)),

ψ : H(C2(Gob(c1),Gob(c2))→ H(C2(Fob(c1),Fob(c2))

by φ([x]) = [m2(m2(S(c1), x), T (c2))], ψ([y]) = [m2(m2(T (c1), y),S(c2))]. Using (13.1) and
definitions, we can show that φ ◦ ψ = id, ψ ◦ ϕ = id, φ ◦ (F1)∗ = (G1)∗. In other words, two
maps (F1)∗ and (G1)∗ are identified by the isomorphism φ, ψ.

We also can show the proposition on a relation between associated strict functors and homo-
topies.

Proposition 13.18. Let F ,G : C1 → C2 be two filtered G-gapped A∞ functors between G-gapped
non-unital curved filtered A∞ categories. We assume C2 is unital. Let F s,G s : C s

1 → C s
2 be

associated strict functors between associated strict categories. If F is homotopic to G , then F s

is homotopy equivalent to G s.

Proof. Let C2 be a model of C2 × [0, 1] and H : C1 → C2 a homotopy between F and G. It
induces a strict filtered A∞ functor Hs : C s

1 → Cs2. The linear filtered A∞ functors Incl, Eval0,
Eval1 induce Incls : C s

1 → Cs2, Eval
s
0,Eval

s
1 : C

s
2 → C s

1 , respectively. We obtain equalities

Evals0 ◦ Incls = Evals1 ◦ Incls = I D , Evals0 ◦ Hs = Fs,Evals1 ◦ Hs = Gs (13.3)

from the corresponding equalities between F , G and etc.
Moreover, by Theorem 2.28, the first line of (13.3) and Definition 13.1 (4) imply that Incls,

Evals0 and Evals1 are homotopy equivalences and Incls is a homotopy inverse to Evalsi , i = 0, 1.
The second line of (13.3) then implies

Incls ◦ Fs ≈ Incls ◦ Evals0 ◦ Hs ≈ Hs ≈ Incls ◦ Evals1 ◦ Hs ≈ Incls ◦ Gs.
Then using Proposition 2.18, we conclude Fs ≈ Gs. ■

Remark 13.19. In the situation of Proposition 13.18, we can not expect F s is homotopic to G s.
In fact, the object F s

ob(c, b) is (Fob(c),F∗(b)) and the object G s
ob(c, b) is (Gob(c),G∗(b)). They

are in general different objects. Note that Fob(c) = Gob(c) but F∗(b) ̸= G∗(b) in general. We
can show that F∗(b) is gauge equivalent to G∗(b), in the sense of [34, Definition 4.3.1]. So they
are not so far away from being ‘equal’. However, because of well-known problem to distinguish
saying equal and equivalent this small difference should be taken seriously.
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We remark that a filtered A∞ bi-functor F : C1 × C2 → C3 is identified with a filtered A∞
functor C1 → FUNC(C2,C3) by Definition 5.14. We can use this fact to define the notion
that two filtered A∞ bi-functors to be homotopic each other, in an obvious way. The case of
a tri-functor etc. is similar.

14 Independence of the filtered A∞ functors of the choices

14.1 Statement

In this section, we prove that the correspondence functor and correspondence bi-functor are
independent of the choices involved in the construction. In this subsection, we state the main
result of this section.

Choice 14.1. Suppose we are in Situation 6.1. We choose a compatible almost complex struc-
ture JXi on Xi. We also choose Kuranishi structures and a system of their CF-perturbations on
the moduli spaces of the pseudo-holomorphic disks which appear in the definition of Fuk(Xi;Li).
(See Theorem 3.24 and Proposition 3.30.)

Choice 14.2. Suppose (Xi, ωi), Li, L12 etc. are as in Situation 6.1. We take −JX1 ×JX2 as the
compatible almost complex structure of −X1 ×X2.

(1) We choose Kuranishi structures and their CF-perturbations of the moduli spaces used
to define filtered A∞ category Fuk(−X1 × X2,L12). This construction is the same as
Theorem 3.24 and Proposition 3.30, except we use the compactificationM′(L12; a⃗;E) etc.
which we discussed in Section 12 instead ofM(L12; a⃗;E).

(2) Suppose we made Choices 14.1 and 14.2 (1). Finally, we take Kuranishi structures and
their CF-perturbations of the moduli spaces of pseudo-holomorphic quilts appearing in the
construction of the filtered A∞ tri-functor in Theorem 5.25. See Theorem 5.43 and Propo-
sition 5.48. These Kuranishi structures and their CF-perturbations should be compatible
with those we took already in Choice 14.1 and item (1).

Remark 14.3. In Choice 14.2, we take the compactification M′(L12; a⃗;E) in Section 12 to
define a filtered A∞ category Fuk(−X1 × X2,L12). We can use the stable map compactifica-
tionM(L12; a⃗;E) also to define a filtered A∞ category whose objects are identified with elements
of L12. We will show in Section 14.4 that those two categories are homotopy equivalent.

Theorem 14.4. Suppose we take two different ways of Choice 14.1, which we denote by Ξi,1
and Ξi,2, respectively. We denote by Fuk(Xi;Li; Ξi,1), Fuk(Xi;Li; Ξi,2), the filtered A∞ categories
obtained by these two different choices, respectively.

(1) The filtered A∞ category Fuk(Xi;Li; Ξi,1) is strongly homotopy equivalent to Fuk(Xi;Li;
Ξi,2).

(2) There is a choice of the strong homotopy equivalence in item (1) which is canonical up to
homotopy.

When we take two different ways of Choice 14.2 (1), Ξ12,1 and Ξ12,2, then for two filtered A∞
categories Fuk(−X1,×X2,L12; Ξ12,1), Fuk(−X1,×X2,L12; Ξ12,2) the same conclusion as above
(1), (2) holds.

The proof is given in Section 14.3.
We denote by

G i : Fuk(Xi;Li; Ξi,1)→ Fuk(Xi;Li; Ξi,2),
G 12 : Fuk(−X1,×X2,L12; Ξ12,1)→ Fuk(−X1,×X2,L12; Ξ12,2),

the strong homotopy equivalences given in Theorem 14.4.
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Situation 14.5. Suppose we are in the situation of Theorem 14.4. In particular, we made
a choice of Ξi,j for i = 1, 2, j = 1, 2 and of Ξ12,j for j = 1, 2.

For each j = 1, 2, we make Choice 14.2 (2) so that this choice is compatible with Ξ1,j ,
Ξ2,j , Ξ12,j at the boundaries. We denote this choice by Ξquilt

12,j . By Corollary 7.4, those choices
determine a filtered A∞ functor

Fukst(−X1,×X2,L12; Ξ12,j)→ FUNC(Fukst(X1;L1; Ξ1,j),Fukst(X2;L2; Ξ2,j)).

(Here we put st to denote the associated strict category.) We denote by MWWΞquilt
12,j this

filtered A∞ functor.

Theorem 14.6. In Situation 14.5, the next diagram commutes up to homotopy equivalence:

Fukst(X1;L1; Ξ1,1)
×Fuk(−X1 ×X2;L12; Ξ12,1)

MWWΞ
quilt
12,1−−−−−−−−→ Fukst(X2;L2; Ξ2,1)

G 1×G 12

y G 2

y
Fukst(X1;L1; Ξ1,2)
×Fuk(−X1 ×X2;L12; Ξ12,2)

MWWΞ
quilt
12,2−−−−−−−−→ Fukst(X2;L2; Ξ2,2).

The proof is in Section 14.4.

14.2 Higher pseudo-isotopy

We will prove Theorem 14.4 (1) by constructing pseudo-isotopy between two filteredA∞ algebras.
As we will see in the next subsection, pseudo-isotopy induces a homotopy equivalence. To prove
Theorem 14.4 (2), we need to show that the homotopy equivalence is independent of the choice
of pseudo-isotopy up to homotopy. To prove it, we use pseudo-isotopy of pseudo-isotopies.

As we explained in [35, Section 7.2.3] and Section 3.3, during the construction of various
structures, to obtain structure operations directly from geometry (moduli spaces), we need to
fix an arbitrary but finite E0 and define structure operations up to energy level E0 only. We then
take homotopy inductive limit as E0 →∞. To work out homotopy inductive limit argument, we
need one extra parameter. Namely, to obtain a pseudo-isotopy of pseudo-isotopies we need to
define a pseudo-isotopy of pseudo-isotopies up to energy level E0 and a pseudo-isotopy between
two pseudo-isotopies of pseudo-isotopies, one up to energy level E0 and the other up to energy
level E1. In other words, we need pseudo-isotopy of pseudo-isotopies of pseudo-isotopies. To
define such objects, it seems simpler to define a family of filtered A∞ structures parametrized
by a cornered manifold. Such a construction is worked out in detail in [43, Section 21], [46,
Chapter 22] and [2]. In this subsection, we provide its summary.

Let P be an n-dimensional manifold with corners. We consider only the case when P ⊂ Rn.
We consider L̃×X L̃, where L =

(
L̃, iL

)
is an immersed Lagrangian submanifold of a symplectic

manifold X, which has clean self intersection.
Let Θ is a principal O(1) bundle on L̃×X L̃ and we put

CF (P × L; Θ; Λ0) = Ω
(
P ×

(
L̃×X L̃

)
; Θ
)“⊗Λ0,

CF (P × L; Θ;R) = Ω
(
P ×

(
L̃×X L̃

)
; Θ
)
.

(Compare (3.11).)

Definition 14.7 ([46, Definition 21.27]). A multilinear map F : Bk(CF (P × L; Θ;R)[1]) →
CF (P × L; Θ;R)[1] is said to be pointwise in P direction if the following holds. For each
I, J1, . . . , Jk ⊆ {1, . . . , d} and t ∈ P , there exists a continuous map

F t
I;J1,...,Jk

: Bk(CF (L; Θ;R)[1])→ CF (L; Θ;R)[1]
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such that

F (dtJ1 ∧ h1, . . . , dtJk ∧ hk)|{t}×L =
∑
I

dtI ∧ dtJ1 ∧ · · · ∧ dtJk ∧ F t
I;J1,...,Jk

(
ht1, . . . , h

t
k

)
,

where |{t}×L means the restriction to {t} ×
(
L̃×X L̃

)
. Moreover, F t

I;J1,...,Jk
depends smoothly

on t with respect to the operator topology. Here hti is the restriction of hi to {t} ×
(
L̃ ×X L̃

)
and tI = ti1,...,i|I| if I = {i1, . . . , i|I|} with i1 < · · · < i|I|.

Here the continuity of F t
I;J1,...,Jk

mentioned above is one in C∞ topology.

Definition 14.8. A P -parametrized family of G-gapped filtered A∞ structures on CF (P ×
L; Θ; Λ0) is

{
mP
k,β

}
for β ∈ G and k = 0, 1, 2, . . . , that satisfies the following:

(1) mP
k,β : Bk(Ω(P × L)[1])→ Ω(P × L)[1] is a multilinear map of degree 1.

(2) mP
k,β is pointwise in P direction if β ̸= β0.

(3) mP
k,β0

= 0 for k ̸= 1, 2.

(4) mP
1,β0

(h) = (−1)∗dh. Here d is the de Rham differential and ∗ is as in (3.33).

(5) mP
k,β satisfies the following A∞ relation:

∑
k1+k2=k+1

∑
β1+β2=β

k−k2+1∑
i=1

(−1)∗mP
k1,β1

(
h1, . . . ,m

P
k2,β2(hi, . . . , hi+k2−1), . . . , hk

)
= 0,(14.1)

where ∗ = deg′ h1 + · · ·+ deg′ hi−1.

We put mP
k =

∑
β∈G T

βmP
k,β. (14.1) the implies A∞ relation for mP

k .

Remark 14.9. We may choose mP
2,β0

such that mP
2,β0

(h1∧h2) = (−1)∗h1∧h2 holds if h1 or h2 are
supported on the diagonal component. Here ∧ is the wedge product and ∗ = deg h1(deg h2+1).
See Remark 3.44.

Definition 14.10. A partial P -parametrized family of G-gapped filtered A∞ algebra structures
on CF (P × L; Θ; Λ0) of energy cut level E and of minimal energy e0 is

{
mP
k,β

}
that satisfies

the same properties as above except the following points:

(a) mP
k,β is defined only for β ∈ G, k = 0, 1, 2, . . . with β + ke0 ≤ E.

(b) We require the A∞ relation (14.1) only for β, k with β + ke0 ≤ E.

(c) mP
k,β = 0 if 0 < β < e0.

We can restrict a P -parametrized family of G-gapped filtered A∞ algebra structures to the
normalized boundary of P and corners of P in an obvious way.

Example 14.11. The [0, 1]-parametrized family of G-gapped filtered A∞ algebra structures of
energy cut level E is nothing but a pseudo-isotopy modulo TE of G-gapped filtered A∞ algebra
as in Definition 3.36.

We next define the notion of collared structure. We define the case P = [0, 1]n, only. See [43,
46] for the general case.
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Definition 14.12. Let
{
mP
k,β

}
be a P -parametrized family of G-gapped partial A∞-structure

of energy cut level E0 and minimal energy e0. We say it is τ -collared if the following holds
for (t1, . . . , tn) ∈ [0, 1]n.

We consider the case t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn, only. The general case is similar.
Let ti ∈ [0, τ ], tj+1 ∈ [1− τ, 1] and ti+1, . . . , tj ∈ (τ, 1− τ). Let (s1, . . . , si+n−j) = (t1, . . . , ti,

tj+1, . . . , tn) and (s′1, . . . , s
′
j−i) = (ti+1, . . . , tj). A differential form of P in a neighborhood is

written as
∑
fII′dsI ∧ ds′I′ , where dsI are wedge products of dsi’s and ds

′
I′ are wedge products

of ds′i’s.
By definition, mP

k,β is written on this neighborhood as the form

mP
k,β(h1, . . . , hk) =

∑
I,I′

dsI ∧ ds′I′ ∧ms,s′

k,β;I,I′(h1, . . . , hk),

where hi are smooth differential forms P ×L twisted by Θ which does not have dti components.
We now require:

(1) ms,s′

k,β;I,I′(h1, . . . , hk) = 0 unless I = ∅.

(2) If I = ∅, ms,s′

k,β;I,∅(h1, . . . , hk) is independent of s ∈ [0, τ ]i × [1− τ, 1]n−j .

We say
{
mP
k,β

}
is collared if it is τ -collared for some τ > 0.

The main lemma we will use to prove Theorems 14.4 and 14.6 is Proposition 14.14 below.

Situation 14.13. Let P be a manifold with corner and E1 > E0 ≥ 0, e0 > 0. We assume that
we are given the following objects:

(1) A P × [0, 1]-parametrized collared partial A∞ structure
{
m
P×[0,1]
k,β

}
of energy cut level E0

and of minimal energy e0 on CF (P × L; Θ; Λ0).

(2) A collared partial A∞ structure
{
m
P×{1}
k,β

}
on CF (P × {1} × L; Θ; Λ0) of energy cut

level E1 is given. We require that it coincides with the restriction of
{
m
P×[0,1]
k,β

}
to P ×{1}

as the partial A∞ structures of energy cut level E0.

(3) Assume ∂P =
∐
∂iP is the decomposition of the normalized boundary of P into the

connected components. Then for each i, we are given a collared filtered A∞ structure{
m
∂iP×[0,1]
k,β

}
of energy cut level E1. We require that it coincides with the restriction of

structure
{
m
P×[0,1]
k,β

}
to ∂iP × [0, 1] as the partial A∞ structures of energy cut level E0.

(4) We assume that the restriction of the structure
{
m
P×{1}
k,β

}
in item (2) coincides with the

structure
{
m
∂iP×[0,1]
k,β

}
in item (3) on ∂iP × {1}.

(5) Suppose that the images of ∂iP and ∂jP intersect each other in P at the component ∂ijP
of the codimension 2 corner of P . (Note that the case i = j is included. In this case,
∂iiP is the ‘self intersection’ of ∂iP .) We then assume that the restriction of

{
m
∂iP×[0,1]
k,β

}
to ∂ijP × [0, 1] coincides with the restriction of

{
m
∂jP×[0,1]
k,β

}
.

See Figure 14.1.

Proposition 14.14. In Situation 14.13, there exists a collared partial P -parametrized family
of G-gapped filtered A∞ algebra structures on CF (P × L; Θ; Λ0) of energy cut level E1 and of
minimal energy e0, which we denote by

{
m
P×[0,1]
+,k,β

}
. It has the following properties:

(1) If we regard
{
m
P×[0,1]
+,k,β

}
as a partial structure of energy cut level E0, then it coincides

with
{
m
P×[0,1]
k,β

}
.

(2) If we restrict
{
m
P×[0,1]
+,k,β

}
to P × {1}, then it coincides with the structure

{
m
P×{1}
k,β

}
in

Situation 14.13 (2).
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P

P × [0, 1]

energy cut level E0

energy cut level E1
m

P×{1}
k,β

m
∂iP×[0,1]
k,β

m
P×[0,1]
k,β

Figure 14.1. P × [0, 1]-parametrized family.

(3) If we restrict
{
m
P×[0,1]
+,k,β

}
to ∂iP × [0, 1], then it coincides with the structure

{
m
∂iP×[0,1]
k,β

}
in Situation 14.13 (3).

In the case when P is a one point, this is nothing but Lemma 3.42. The proposition in this
generality is proved in [43], [46, Proposition 22.13]. See also [28, Section 14].14.1

14.3 Well definedness of a filtered A∞ category
up to strong homotopy equivalence

Proof of Theorem 14.4 (1). We prove the case of (X1, ω1,L1). The other cases are the same.
By the trick we used in Section 3.4, it suffices to consider the case when L1 consists of a single
immersed Lagrangian submanifold L1. Let J1,j (j = 1, 2) be the almost complex structure
on X1 chosen as a part of Choice Ξ1,j . We take one parameter family of compatible almost
complex structures J1,s parametrized by s ∈ [0, 1] such that J1,s = J1 for s ∈ [0, τ ] and J1,s = J2
for s ∈ [1− τ, 1]. We use the notations of Section 3.3. The moduli space Mk+1(L1;E) is as
in (3.20). We writeMk+1((L1, J);E) to specify the almost complex structure J we use.

Hereafter, in this subsection we omit the suffix 1 and write L, X, Jj , Ξj etc. in place of L1,
X1, J1,j , Ξ1,j etc.

Definition 14.15. We define

Mk+1(L;E; [0, 1]s) =
⋃

s∈[0,1]s

Mk+1((L, Js);E)× {s}.

The evaluation map

ev = (ev0, . . . , evk) : Mk+1(L;E; [0, 1]s)→ Lk+1 (14.2)

is defined by Definition 3.22. The other evaluation map

ev[0,1]s : Mk+1(L;E; [0, 1]s)→ [0, 1]s (14.3)

is defined by sendingMk+1((L, Js);E)× {s} to s.14.2

Proposition 14.16. We can define a topology onMk+1(L;E; [0, 1]s), the stable map topology,
which is Hausdorff and compact. There exists a system of Kuranishi structures with a boundary
and corners onMk+1(L;E; [0, 1]s) for various k and E with the following properties:

14.1The singular homology version (of the case P = [0, 1]) is [35, Theorem 7.2.212]. Actually singular homology
version is harder to state and prove.
14.2We use the notation [0, 1]s here to distinguish it from the interval which we use for different parameter.
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(1) The evaluation maps (14.2) and (14.3) extend to strongly smooth maps. The map (ev0,
ev[0,1]s) is weakly submersive.14.3

(2) The normalized boundary of Mk+1(L;E; [0, 1]s) is a disjoint union of the following two
types of spaces:

(I) The fiber product

Mk1+1(L;E1; [0, 1]s)(evi,ev[0,1]s ) ×(ev0,ev[0,1]s )
Mk2+1(L;E2; [0, 1]s),

over L × [0, 1]s. Here k1 + k2 = k, i = 1, . . . , k2, E1 + E2 = E. The fiber product
carries a Kuranishi structure because of the weak submersivity of (ev0, ev[0,1]). See
[40, Definition 4.9], [46, Chapter 26].

(II) The inverse image ev−1[0,1](∂[0, 1]s) ⊂Mk1+1(L;E; [0, 1]s).

(3) For sufficiently small τ , the following holds. The restriction of the Kuranishi structure to
ev−1[0,1]([0, τ ]) coincides with the direct product of the trivial Kuranishi structure on [0, τ ]
and the Kuranishi structure of Mk+1((L, J1);E), which is a part of the data Ξ1. The
restriction of the Kuranishi structure to ev−1[0,1]([1− τ, 1]) coincides with the direct product
of the trivial Kuranishi structure on [1 − τ, 1] and the Kuranishi structure of Mk+1((L,
J2);E) which is a part of the data Ξ2.

(4) The orientation bundles are compatible with the description of the boundary in item (2).

The proof is a one parameter version of the proof of Theorem 3.24. Note that the fact that our
Kuranishi structure (and the moduli space) is of product type near the boundary of Type (II),
which is stated as item (3), is a consequence of our choice of family of almost complex structures.

Let G(L; Ξj) be the discrete submonoid defined in Definition 3.19. Note that it depends on
the almost complex structure and so on Ξj . However, we may choose a discrete submonoid G(L)
with the following properties:

(Mo.1) The submonoid G(L) contains both G(L; Ξ1) and G(L; Ξ2).

(Mo.2) IfMk+1(L;E; [0, 1]) is nonempty then E ∈ G(L).

We put G(L) = {E1, E2, . . . , En, . . . }, where E1 < E2 < · · · . Let Ei ∈ G(L). Proposition 3.30
assigns a CF-perturbation ofMk+1((L, Jj);E) with E ≤ Ei (j = 1, 2). These CF-perturbations
and the Kuranishi structures on which they are defined are parts of the data Ξj . We denote this
CF-perturbation by “S(Ξj ;Ei).

Proposition 14.17. There exists a system of CF-perturbations “S([0, 1]s;Ei) on outer collarings
of thickenings ofMk+1(L;E; [0, 1]s) with E ≤ Ei with the following properties:

(1) The CF-perturbation “S([0, 1]s;E) is transversal to 0.

(2) The map (ev0, ev[0,1]s) is strongly submersive with respect to “S([0, 1]s;E).

(3) The restriction of “S([0, 1]s;E) to the boundary in Proposition 14.16 (2), (I) coincides with
the fiber product CF-perturbation (see [43, Definition 10.13]), which is well-defined by
item (2).

(4) For sufficiently small τ , the following holds. The restriction of “S([0, 1]s;E) to ev−1[0,1]s
([0, τ ])

coincides with the pullback of “S(Ξ1;E). The restriction of “S([0, 1]s;E) to ev−1[0,1]s
([1− τ, 1])

coincides with the pullback of “S(Ξ2;E).

14.3Since [0, 1]s has boundary, we need to define weakly submersivity a bit carefully. See [43, Section 25], [46,
Chapter 26].



206 K. Fukaya

Proof. We define the CF-perturbation on the neighborhood of the boundary component in
Proposition 14.16 (2), (II) by item (4). Then we can extend it using the (relative version) of the
existence of CF-perturbation. (See [43, 46, Chapter 17].) ■

Remark 14.18. During the proof of Proposition 14.17, we construct Kuranishi structures on
which our CF-perturbations are defined at the same time. See [43, 46] for this point.

Now for β = E ∈ G(L) with E ≤ Ei, we define

m
Ei;[0,1]s
k,E : CF ([0, 1]s × L; Θ;R)⊗k → CF ([0, 1]s × L; Θ;R)

by

m
Ei;[0,1]s
k,E (h1, . . . , hk) = (ev0, ev[0,1]s)!((ev1, ev[0,1]s)

∗(h1)∧
· · · ∧ (evk, ev[0,1]s)

∗(hk);“S([0, 1]s;Ei)). (14.4)

Here the integration by parts is taken on the spaceMk+1(L;E; [0, 1]s) using the CF-perturba-
tion “S([0, 1]s;Ei). See [46, Section 2.2.4] and [72, Section 4.1] for the sign.

Lemma 14.19. The operations
{
m
Ei;[0,1]s
k,E ;E ≤ Ei

}
define a collared partial [0, 1]s-parametrized

family of G(L)-gapped filtered A∞ algebra structures on CF ([0, 1]s × L; Θ; Λ0) of energy cut
level Ei and of minimal energy e0.

14.4

This is a consequence of Proposition 14.17. Point-wiseness in [0, 1]s direction follows from [46,
Proposition 22.17]. Moreover, the restrictions of the structure operations

{
m
Ei;[0,1]s
k,E ;E ≤ Ei

}
to {0} ∈ [0, 1]s (resp. {1} ∈ [0, 1]s) coincide with the partial [0, 1]s-parametrized family of G(L)-
gapped filtered A∞ algebra structures on CF (L; Θ; Λ0) of energy cut level Ei, which we used
during the construction of Fuk(X;L; Ξ1) (resp. Fuk(X;L; Ξ2)).

We remark however that m
Ei;[0,1]s
k,E itself is not the structure operation of the pseudo-isotopy

between Fuk(X;L; Ξ1) and Fuk(X;L; Ξ2), which we look for. This is because this structure is
yet a partial structure where m

Ei;[0,1]s
k,E is defined for E ≤ Ei only. We will combine the process

of taking homotopy limit with the construction of pseudo-isotopy as follows.

During the construction of the structure operations of Fuk(X;L; Ξj), we used a Kuranishi
structure on Mk+1((L, Jj);E) × [0, 1]t and its CF-perturbation such that the restriction of
this CF-perturbation to Mk+1((L, Jj);E) × {0} is “S(Ξj ;Ei) and that the restriction of this
CF-perturbation to Mk+1((L, Jj);E) × {1} is “S(Ξj ;Ei+1) (see Lemma 3.38). We denote this
CF-perturbation by “S([0, 1]t,Ξj ;Ei, Ei+1). Note that we can take this CF-perturbation so that
it is constant in t direction for t ∈ [0, µ] ∪ [1− µ, 1].

During the proof of Proposition 3.37, we used “S([0, 1]t,Ξj ;Ei, Ei+1) in the same way as (14.4)
to define a collared partial [0, 1]t-parametrized family of G(L)-gapped filtered A∞ algebra struc-
tures on CF ([0, 1]t × L; Θ; Λ0) of energy cut level Ei+1 and of minimal energy e0 (see (3.40)).
We denote the structure operation of this structure by {mEi,Ei+1;[0,1]t

k,E ;E ≤ Ei}.
We then construct a pseudo-isotopy of pseudo-isotopies using the next proposition.

Proposition 14.20. There exists a system of CF-perturbations, which we denote by “S([0, 1]s×
[0, 1]t;Ei, Ei+1), on outer collarings of thickenings of Mk+1(L;E; [0, 1]s) × [0, 1]t for E ≤ Ei+1

with the following properties:

(1) The CF-perturbation “S([0, 1]s × [0, 1]t;Ei, Ei+1) is transversal to 0.

14.4The minimal energy is always e0 in this section. So we omit it from now on.
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(2) The map

(ev0, ev[0,1]s , ev[0,1]t) : Mk+1(L;E; [0, 1]s)× [0, 1]t →
(
L̃×X L̃

)
× [0, 1]s × [0, 1]t

is strongly submersive with respect to “S([0, 1]s × [0, 1]t,Ξj ;Ei, Ei+1).

(3) We consider the restriction of “S([0, 1]s × [0, 1]t;Ei, Ei+1) to the boundary component,
which is a product of [0, 1]t and the boundary component of Mk+1(L;E; [0, 1]s) in Propo-
sition 14.16 (2) (I). It then coincides with the fiber product CF-perturbation, which is well-
defined by item (2).

(4) For sufficiently small τ , the following holds. The restriction of “S([0, 1]s × [0, 1]t;Ei, Ei+1)
to ev−1[0,1]s

([0, τ ]) coincides with the pullback of “S([0, 1]t,Ξ1;Ei, Ei+1). The restriction of“S([0, 1]s × [0, 1]t;Ei, Ei+1) to ev−1[0,1]s
([1− τ, 1]) coincides with the pullback of “S([0, 1]t,Ξ2;

Ei, Ei+1).

(5) For sufficiently small τ , the following holds. The restriction of “S([0, 1]s × [0, 1]t;Ei, Ei+1)
to ev−1[0,1]t

([0, τ ]) coincides with the pullback of “S([0, 1]s;Ei). The restriction of “S([0, 1]s ×
[0, 1]t;Ei, Ei+1) to ev−1[0,1]s

([1− τ, 1]) coincides with the pullback of “S([0, 1]s;Ei+1).

t

s

S
([0,1]s ;E

i+
1 )

S
([0,1

]s ;E
i )

S([0, 1]t,Ξ1,1;Ei, Ei+1)

S([0, 1]t,Ξ1,2;Ei, Ei+1)

S([0, 1]s × [0, 1]t;Ei, Ei+1)

Figure 14.2. “S([0, 1]s × [0, 1]t;Ei, Ei+1).

The proof of Proposition 14.20 is by induction on E. On each step of the induction, the
CF-perturbation on the boundary is determined by the statement we are proving. So we can
extend it. (See [43, 46, Chapter 17].)

We now recall the construction at the end of Section 3.3. We consider the restriction
to s = 0. We use Ξ1 to obtain a system of partial filtered A∞ structures

{
mΞ1,i,E≤Ei

k,β

}
and

pseudo-isotopies
{
m

[0,1]t,Ξ1,i,E≤Ei

k,β

}
among them. Then we used Lemma 3.42, which is nothing

but the case of P = [0, 1] of Proposition 14.14. We then obtain a sequence of filtered A∞
structures

{
mΞ1,i
k,β

}
on CF (L; Θ; Λ0) such that it coincides with

{
mΞ1,i,E≤Ei

k,β

}
as partial struc-

tures with energy cut level Ei, for each i. Moreover, there exists a pseudo-isotopy
{
m

[0,1]t,Ξ1,i
k,β

}
between

{
mΞ1,i,E≤Ei

k,β

}
and

{
m

Ξ1,i+1,E≤Ei+1

k,β

}
which coincides with

{
m

[0,1]s,Ξ1,i,E≤Ei

k,β

}
as a pseudo-

isotopy with energy cut level Ei. See Figure 14.3.
We can perform the same construction for s = 1 using Ξ1 and obtain operations

{
m

[0,1]t,Ξ2,i
k,β

}
,{

m
Ξ2,i+1,E≤Ei+1

k,β

}
.

Now we apply Proposition 14.14 inductively and obtain the following.
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m
[0,1]t,Ξ1,1,i
k,β

m
[0,1]t,Ξ1,2,i
k,β

m
[0,1]s×[0,1]t,i
k,βm

Ei;[0,1]s
k,E

m
Ei+1;[0,1]s
k,E

t

s

Figure 14.3. Pseudo-isotopy of pseudo-isotopies.

Lemma 14.21. There exists a sequence of P = [0, 1]s× [0, 1]t parametrized family of filtered A∞
algebra

{
m

[0,1]s×[0,1]t,i
k,β

}
on CF ([0, 1]s × [0, 1]t × L; Θ;R) with the following properties.

(1) It coincides with one obtained by the CF-perturbation “S([0, 1]s × [0, 1]t;Ei, Ei+1) as partial
structures with energy cut level Ei.

(2) Its restriction to s = 0 coincides with
{
m

[0,1]t,Ξ1,i
k,β

}
.

(3) Its restriction to s = 1 coincides with
{
m

[0,1]t,Ξ2,i
k,β

}
.

(4) Its restriction to t = 1 coincides with
{
m
Ei+1;[0,1]s
k,E ;E ≤ Ei+1

}
in Lemma 14.19 as partial

structures with energy cut level Ei+1.

(5) Its restriction to t = 0 coincides with
{
m
Ei;[0,1]s
k,E ;E ≤ Ei

}
in Lemma 14.19 as partial

structures with energy cut level Ei.

See Figure 14.4.

S([0, 1]s × [0, 1]t;E0, E1) S([0, 1]s × [0, 1]t;E1, E2) S([0, 1]s × [0, 1]t;E2, E3)

S([0, 1]t,Ξ1,1;E0, E1) S([0, 1]t,Ξ1,1;E1, E2) S([0, 1]t,Ξ1,1;E2, E3)

S([0, 1]t,Ξ1,2;E2, E3)S([0, 1]t,Ξ1,2;E1, E2)S([0, 1]t,Ξ1,2;E0, E1)

S([0, 1]s;E0)

S([0, 1]s;E1) S([0, 1]s;E2)
S([0, 1]s;E3)

Figure 14.4. Inductive limit construction of pseudo-isotopy.

We restrict
{
m

[0,1]s×[0,1]t,0
k,β

}
to t = 0 and obtain the following.

Corollary 14.22. There exists a pseudo-isotopy of filtered A∞ structures
{
m

[0,1]s
k,E

}
on CF ([0, 1]s

× L; Θ;R) with the following properties:

(1) The structure
{
m

[0,1]s
k,E

}
coincides with

{
m
E0;[0,1]s
k,E ;E ≤ E0

}
in Lemma 14.19 as partial

structures of energy cut level E0.

(2) The restriction of
{
m

[0,1]s
k,E

}
to s = 0 and s = 1 coincide with

{
mΞ1
k,E

}
and

{
mΞ2
k,E

}
, respec-

tively.

Corollary 14.22 implies that
{
mΞ1
k,E

}
is pseudo-isotopic to

{
mΞ2
k,E

}
. It particular they are

strongly homotopy equivalent. The proof of Theorem 14.4 (1) is complete. ■
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Proof of Theorem 14.4 (2). The proof of Theorem 14.4 (2) is similar to the proof of (1) but
we need to iterate once more the process to take higher homotopy as the following.

During the construction of pseudo-isotopy in Corollary 14.22 we made various choices. Espe-
cially we made a choice of CF-perturbations “S([0, 1]s× [0, 1]t;Ei, Ei+1) in Proposition 14.20. We
will prove the homotopy equivalence we obtained in the proof of Theorem 14.4 (1) is independent
of such choices up to homotopy.

Suppose “S([0, 1]s × [0, 1]t; j;Ei, Ei+1), j = 1, 2, are two choices. We denote by
{
m

[0,1]s,j=1
k,E

}
,{

m
[0,1]s,j=2
k,E

}
the pseudo-isotopies obtained by these two choices, respectively.

Lemma 14.23. There exists a system of CF-perturbations, which we denote by “S([0, 1]s ×
[0, 1]t×[0, 1]u;Ei, Ei+1), on outer collarings of thickenings ofMk+1(L1;E; [0, 1]s)×[0, 1]t×[0, 1]u
for E ≤ Ei+1 with the following properties.

(1) The CF-perturbation “S([0, 1]s × [0, 1]t × [0, 1]u;Ei, Ei+1) is transversal to 0.

(2) The map

(ev0, ev[0,1]s , ev[0,1]t , ev[0,1]u) :

Mk+1(L1;E; [0, 1]s)× [0, 1]t × [0, 1]u → R× [0, 1]s × [0, 1]t × [0, 1]u

is strongly submersive with respect to “S([0, 1]s × [0, 1]t × [0, 1]u;Ei, Ei+1).

(3) We consider the restriction of “S([0, 1]s × [0, 1]t × [0, 1]u;Ei, Ei+1) to the boundary com-
ponents, which are products of [0, 1]t × [0, 1]u and the boundary components of the space
Mk+1(L1;E; [0, 1]s) in Proposition 14.16 (2), (I). It then coincides with the fiber product
CF-perturbation, which is well-defined by item (2).

(4) For sufficiently small τ , the following holds. The restriction of the CF-perturbation “S([0, 1]s
×[0, 1]t×[0, 1]u;Ei, Ei+1) to ev−1[0,1]u

([0, τ ]) coincides with the pullback of “S([0, 1]s×[0, 1]t; 1;
Ei, Ei+1). The restriction of “S([0, 1]s× [0, 1]t× [0, 1]u;Ei, Ei+1) to ev−1[0,1]u

([1− τ, 1]) coin-
cides with the pullback of “S([0, 1]s × [0, 1]t, 2;Ei, Ei+1).

(5) For sufficiently small τ , the following holds. The restriction of “S([0, 1]s×[0, 1]t×[0, 1]u;Ei,
Ei+1) to ev−1[0,1]s

([0, τ ]) coincides with the pullback of “S([0, 1]t,Ξ1;Ei, Ei+1). (In partic-

ular, this restriction is constant in u direction.) The restriction of “S([0, 1]s × [0, 1]t ×
[0, 1]u;Ei, Ei+1) to ev−1[0,1]s

([1− τ, 1]) coincides with the pullback of “S([0, 1]t,Ξ2;Ei, Ei+1).

(6) For sufficiently small τ , the following holds. The restriction of “S([0, 1]s × [0, 1]t × [0, 1]u;

Ei, Ei+1) to ev−1[0,1]t
([0, τ ]) coincides with the pullback of “S([0, 1]s;Ei). The restriction

of “S([0, 1]s × [0, 1]t × [0, 1]u;Ei, Ei+1) to ev−1[0,1]s
([1− τ, 1]) coincides with the pullback of“S([0, 1]s;Ei+1).

See Figure 14.5. The proof of Lemma 14.23 is the same as other similar results such as
Proposition 14.20.

Now we discuss in the same way as Lemma 14.21 and Corollary 14.22 using Proposition 14.14
and obtain:

Lemma 14.24. There exists a P = [0, 1]s × [0, 1]u parametrized family of filtered A∞ struc-
tures

{
m

[0,1]s×[0,1]u
k,E

}
on CF ([0, 1]s × [0, 1]u × L; Θ;R) with the following properties:

(1) The restriction of the structure
{
m

[0,1]s×[0,1]u
k,E

}
to u = 0 (resp. u = 1) coincides with the

pseudo-homotopy of Corollary 14.22 obtained by using “S([0, 1]s × [0, 1]t; 1;Ei, Ei+1) (resp.“S([0, 1]s × [0, 1]t; 2;Ei, Ei+1)).

(2) The restriction of
{
m

[0,1]s
k,E

}
to s = 0 and s = 1 coincide with the pullback of

{
mΞ1
k,E

}
and{

mΞ2
k,E

}
, respectively. In particular, they are trivial in [0, 1]u factor.
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t

su
S([0, 1]s × [0, 1]t × [0, 1]u;Ei, Ei+1)

S([0, 1]s × [0, 1]t; 1;Ei, Ei+1)

S([0, 1]s × [0, 1]t; 2;Ei, Ei+1)

(Bottom)

(Top)

(back)

(front)

S([0, 1]s;Ei)

(left)

S([0, 1]s;Ei+1)

(right)

S([0, 1]t,Ξ1;Ei, Ei+1)

S([0, 1]t,Ξ2;Ei, Ei+1)

Figure 14.5. pseudo-isotopy of pseudo-isotopies of pseudo-isotopies.

In other words, we have the following commutative diagram:(
CF (L),

{
mΞ2
k,E

}) Evalu=0←−−−−− CF ([0, 1]u × L) Evalu=1−−−−−→
(
CF (L),

{
mΞ2
k,E

})
Evals=1

x xEvals=1

xEvals=1(
CF ([0, 1]s × L),{
m

[0,1]s,j=1
k,E

}) Evalu=0←−−−−−
(
CF ([0, 1]s × [0, 1]u × L),{
m

[0,1]s,j=1
k,E

}) Evalu=1−−−−−→
(
CF ([0, 1]s × L),{
m

[0,1]s,j=2
k,E

})
Evals=0

y yEvals=0

yEvals=0(
CF (L),

{
mΞ1
k,E

}) Evalu=0←−−−−− CF ([0, 1]t × L) Evalu=1−−−−−→
(
CF (L),

{
mΞ1
k,E

})
.

All the arrows in the diagram are strong homotopy equivalences. By Lemma 14.24 (2), we find
that Evalu=1 in the first horizontal line is homotopic to Evalu=0 in the first horizontal line. The
same holds for the third horizontal line. The composition

Evals=1 ◦ (Evals=0)
−1 :

(
CF (L),

{
mΞ1
k,E

})
→
(
CF (L),

{
mΞ2
k,E

})
of maps in the first vertical line is the strong homotopy equivalence obtained from the choice“S([0, 1]s × [0, 1]t; 1;Ei, Ei+1). In the same way, the third vertical line gives the strong homotopy
equivalence obtained from the choice “S([0, 1]s × [0, 1]t; 2;Ei, Ei+1). Thus those two homotopy
equivalences are homotopic each other. The proof of Theorem 14.4 is complete. ■

Remark 14.25. The above diagram is similar to [4, Figure 10.1], which is used for a similar
purpose.

14.4 Proof of Theorem 14.6

14.4.1 Pseudo-isotopy of tri-modules

Situation 14.26. Let Rm, m = 1, 2, 3, be a compact smooth manifold without boundary
and Θm a principal O(1) bundles on it. Let R be a compact smooth manifold without boundary
and Θ a principal O(1) bundle on it.
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Let P be a manifold with corners and C(P ×Rm;R) = C∞(Ω(P ×Rm)) (resp. C(P ×R;R) =
C∞(Ω(P ×R))) the set of smooth forms on P ×Rm (resp. R) twisted by Θm (resp. Θ).

We define C(P ×Rm; Λ0) (resp. C(P ×R; Λ0)) as a completion of the tensor product C(P ×
Rm;R)⊗ Λ0 (resp. C(P ×R;R)⊗ Λ0).

Suppose that, for each m, we are given a P -parametrized family of G-gapped filtered A∞
structures on C(P×R; Λ0), which we denote by

{
mP,m
k,β

}
. We put C P

m = (C(P×R; Λ0),
{
mP,m
k,β

}
).

Definition 14.27. A P -parametrized family of G-gapped filtered A∞ tri-module structures on
CF (P × R; Θ; Λ0) over C

(
P × Rm; Λ0,

{
mP,m
k,β

})
, m = 1, 2, 3, is

{
nPk1,k2,k3;β

}
for β ∈ G and

ki = 0, 1, 2, . . . , that satisfies the following:

(1)

nPk1,k2,k3;β :
3⊗
i=1

Bki(Ω(P ×Ri)[1])⊗ Ω(P ×R)[1]→ Ω(P ×R)[1]

is a multilinear map of degree 1.

(2) The maps nPk1,k2,k3;β is pointwise in P direction if β ̸= β0 or k1 + k2 + k3 ≥ 1.

(3) nP0,0,0;β0(h) = (−1)∗dh. Here d is the de Rham differential and ∗ is as in (3.33).

(4) The operations
{
nPk1,k2,k3;β

}
define a filtered A∞ tri-module over Cm(P ) (m = 1, 2, 3).

In the case when P = [0, 1] we call CF ([0, 1] × R; Θ; Λ0) together with its P -parametrized
family of G-gapped filtered A∞ tri-module structures, a pseudo-isotopy of G-gapped filtered A∞
tri-modules over the pseudo-isotopies C

[0,1]
m , m = 1, 2, 3, of filtered A∞ categories.

14.4.2 Existence of a pseudo-isotopy of tri-modules

We go back to our geometric situation of Theorem 14.6. We consider the case when the sets L1,
L2 and L12 consist of single immersed Lagrangian submanifolds.

We put R1 = L̃1 ×X1 L̃1, R2 = L̃2 ×X2 L̃2, R3 = L̃12 ×X1×X2 L̃12. The pseudo-isotopy C
[0,1]
m

are given by Corollary 14.22. In particular, we make Choices Ξ1,j , Ξ2,j , Ξ12,j in Situation 14.5.
They give filtered A∞ structures of C s=0

m and of C s=1
m . We also take

R = L̃1 ×X1 L̃12 ×X2 L̃2. (14.5)

We make a choice of Ξquilt
12,j in Situation 14.5. It determines a filtered A∞ tri-module structure

on CF (R; Θ; Λ0) over C s=0
m or C s=1

m for j = 1, 2.

Proposition 14.28. There exists a pseudo-isotopy of filtered A∞ tri-module on CF ([0, 1] ×
R; Θ; Λ0) over C

[0,1]
m for m = 1, 2, 3. We may choose it so that the restriction to s = 0, 1

coincides with the tri-module structure induced by Choices Ξquilt
12,j for j = 1, 2.

Proof. The proof of this proposition is mostly the same as the proof of Lemma 14.21 in Sec-
tion 14.3. We first define the notion of a partial pseudo-isotopy of tri-module structures with
energy cut level E. We then can show the existence of a partial pseudo-isotopy of tri-module
structures with energy cut level E for any E. Then we proceed in the same way to define the
notion of a partial pseudo-isotopy of pseudo-isotopies of tri-module structures and use it to work
out the homotopy inductive limit construction. The way to modify the proof of Lemma 14.21
is thus a routine, which we omit. ■

Situation 14.29. Let L1, L12, L2 be as in Situation 6.1. We consider the (disjoint) union of all
the elements of L1 (resp. L12, L2) and denote them by L1, L12, L2. We consider R as in (14.5).



212 K. Fukaya

We remark that since we are in Situation 6.1 the fiber product L̃0
2 = L̃1 ×X1 L̃12 is an open

subset of L2. We put R0 = L̃1×X1 L̃12×X2 L̃
0
2 ⊆ R. We remark also R0 = L̃0

2×X2 L̃
0
2 ⊆ R2. We

remark that the tri-module structure we used in Theorem 6.3 satisfies the following properties.
If h2, h ∈ C∞(R0,Ω(R) ⊗ Θ), then n0,0,1;β0(1, 1, h2;h) = (−1)deg h2h2 ∧ h. This fact is used
during the proof of Proposition 6.12.

Lemma 14.30. We can take the pseudo-isotopy in Proposition 14.28 such that the following
holds in addition. If h2, h ∈ C∞([0, 1]×R0,Ω(R)⊗Θ), then

n
[0,1]
0,0,1;β0

(1, 1, h2;h) = (−1)deg h2h2 ∧ h.

Using the fact that the moduli space defining n
[0,1]
0,0,1;β0

on [0, 1]×R0 consists of constant maps,
and has the required transversality and submersivity properties without perturbation, the proof
of the lemma is similar to an argument during the proof of Proposition 6.12 and so is omitted.

14.4.3 Completion of the proof of Theorem 14.6

Now we are in the position to complete the proof of Theorem 14.6.

Suppose we are in Situation 14.29. We use the same trick as Section 3.4 to obtain a fil-
tered A∞ category from a filtered A∞ algebra C

[0,1]
m , m = 1, 2, 3. Here C

[0,1]
m is obtained

in Proposition 14.28. We denote them by Fukst(X1;L1)
[0,1], Fukst(−X1 × X2;L12)

[0,1] and
Fukst(X2;L2)

[0,1]. The sets of their objects are the same as the sets of objects of Fukst(X1;L1),
Fukst(−X1 ×X2;L12) and Fukst(X2;L2), respectively.

Hereafter, we omit L1, L12, L2 from the notation for simplicity. The pseudo-isotopy of
tri-modules we produced in Proposition 14.28 induces a tri-module structure over the strict
categories Fukst(X1)

[0,1], Fukst(−X1 × X2)
[0,1] and FUNC

(
Fukst(X2)

[0,1]
)
. It induces a strict

filtered A∞ bi-functor

Fukst(X1)
[0,1] × Fukst(−X1 ×X2)

[0,1] → FUNC
((
Fukst(X2)

[0,1]
)op

, CH
)
. (14.6)

We denote by REP
(
Fukst(X2)

[0,1]
)
the full subcategory of the filtered A∞ category

FUNC
((
Fukst(X2)

[0,1]
)op

, CH
)

whose object is homotopy equivalent to the image of the Yoneda-functor

Fukst(X2)
[0,1] → FUNC

((
Fukst(X2)

[0,1]
)op

, CH).

We define REP(Fukst(X2)) in the same way.

Lemma 14.30 implies that the image of the functor (14.6) lies in REP
(
Fukst(X2)

[0,1]
)
. Thus

we obtain the next diagram, which commutes up to homotopy equivalence:

Fukst(X1; Ξ1,2)
×Fukst(−X1 ×X2; Ξ12,2)

F−−−−→ REP(Fukst(X2; Ξ2,2)) ←−−−− Fukst(X2; Ξ2,2)

Evals=1

x yEval∗s=1

xEvals=1

Fukst(X1)
[0,1]

×Fukst(−X1 ×X2)
[0,1]

F−−−−→ REP
(
Fukst(X2)

[0,1]
)
←−−−− Fukst(X2)

[0,1]

Evals=0

y xEval∗s=0

yEvals=0

Fukst(X1; Ξ1,1)
×Fukst(−X1 ×X2; Ξ12,1)

F−−−−→ REP(Fukst(X2; Ξ2,1)) ←−−−− Fukst(X2; Ξ2,1).
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All arrows in the diagram are homotopy equivalences except the three horizontal arrows in the
left-hand side, which are written as F . By definition, the composition of the arrows of the
first line is the filtered A∞ functorMWWΞquilt

12,2 . The composition of the arrows of the third line
is the filtered A∞ functorMWWΞquilt

12,1 .
The composition of two arrows in the first column is the functor G 1× G 12. The composition

of the two arrows in the third column is the functor G 2. Thus Theorem 14.6 follows from the
commutativity of the diagram.

Note that we can prove the next theorem in the same way.

Theorem 14.31. The composition functor Comp in Theorem 8.5 is independent of the choices
up to homotopy equivalence.

We omit the proof.

14.5 Coincidence of A∞ structures defined by the two compactifications

Let L12 be a clean collection of π∗1(TX1 ⊕ V1) ⊕ π∗2(V2) relatively spin immersed Lagrangian
submanifolds of −X1 ×X2.

In Section 3, we used the stable map compactification M(L12; a⃗;E) of the moduli space
of pseudo-holomorphic disks to define a filtered A∞ category the set of whose objects is L12.
We denote it by Fuk(−X1 × X2,L12). In Section 12, we introduced a different compactifica-
tion M′(L12; a⃗;E). We use it also to define a filtered A∞ category the set of whose objects
is L12. We denote it by Fuk′(−X1 ×X2,L12). In this subsection, we prove the following.

Proposition 14.32. Fuk(−X1 ×X2,L12) is pseudo-isotopic to Fuk′(−X1 ×X2,L12).

Proof. By the same trick as Section 3.4, it suffices to consider the case when L12 consists of
a single immersed Lagrangian submanifold L12 and construct a pseudo-isotopy of filtered A∞
algebras.

Lemma–Definition 14.33. We can define the forgetful map

fg : Mℓ(L12; a⃗;E)→M′ℓ,0,0(L12; a⃗;E),

which is continuous.

Proof. Let
((
Σ, z⃗, z⃗ int

)
, u, γ

)
be an element ofMℓ(L12; a⃗;E, γ). Here

(
Σ, z⃗, z⃗ int

)
is a bordered

nodal marked curve of genus zero with one boundary component. (z⃗ are boundary marked
points and z⃗ int are interior marked points.) The map u : (Σ, ∂Σ)→ (−X1 ×X2, L12) is pseudo-
holomorphic and the map γ : ∂Σ \ z⃗ → L̃12 is a lift of the restriction of u.

We put (u1, u2) := u, where ui is a map toXi from Σ. We consider
((
Σ, z⃗, z⃗ int

)
, ui
)
for i = 1, 2

and shrink unstable sphere components. Here an unstable sphere component of
((
Σ, z⃗, z⃗ int

)
, ui
)

is an unstable sphere component of the source curve
(
Σ, z⃗, z⃗ int

)
on which ui is constant. We

denote by
((
Σi, z⃗i, z⃗

int
i

)
, ui
)
the pair of a bordered marked curve and a map obtained by this

shrinking.
Let

(
Σ0
i , z⃗i, z⃗

int
i

)
be the bordered marked curve obtained from

(
Σi, z⃗i, z⃗

int
i

)
by shrinking all

the unstable sphere components.
We remark that

(
Σ0
1, z⃗1, z⃗

int
1

)
is canonically isomorphic to

(
Σ0
2, z⃗2, z⃗

int
2

)
. In fact, they both are

obtained by shrinking all the unstable sphere components of
(
Σ, z⃗, z⃗ int

)
. Therefore, we obtain

a biholomorphic map I :
(
Σ0
1, z⃗1, z⃗

int
1

)
→
(
Σ0
2, z⃗2, z⃗

int
2

)
. We define

fg
((
Σ, z⃗, z⃗ int

)
, u, γ

)
=
(((

Σ1, z⃗1, z⃗
int
1

)
, u1
)
,
((
Σ2, z⃗2, z⃗

int
2 ),I , γ

))
.

Note that we regard the interior marked points z⃗ int as interior marked points of first kind in the
sense of Definition 12.7.

The continuity of the map fg is easy to show from the definition. ■
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We consider the case when ℓ = 0 to obtain a map fg :M(L12; a⃗;E) → M′(L12; a⃗;E). We
start with a Kuranishi structure which we defined onM′(L12; a⃗;E) and will pull it back to one
onM(L12; a⃗;E). We describe the detail of this pullback construction now.

Let ξ̃ ∈ M(L12; a⃗;E). We take ξ̂ =
((
Σ, z⃗, z⃗ int

)
, u, γ

)
∈ Mℓ(L12; a⃗;E) such that ξ̃ =

[(Σ, z⃗), u, γ] and
(
Σ, z⃗, z⃗ int

)
is stable. We use it to define a notion that ((Σ′, z⃗ ′), u′, γ′) is ε-

close to ξ̂ in a similar way as Definition 12.40 as follows.

Definition 14.34. Let
((
Σ♡, z⃗♡

)
, u♡, γ♡

)
be an object which has the same properties as an

element of M(L12; a⃗;E) except we do not require u♡ to be pseudo-holomorphic. We call such
an object a candidate of an element of the extended moduli space.

Definition 14.35. We say
((
Σ♡, z⃗♡

)
, u♡, γ♡

)
is ε-close to

(
ξ̃, ξ̂
)
if there exists z⃗ int,♡ with the

following properties:

(1)
(
Σ♡, z⃗♡, z⃗int,♡

)
is ε-close to

(
Σ, z⃗, z⃗ int

)
in the moduli space of marked stable disks.14.5

(2) We define the core Ks
a and Kd

a in the same way as (12.12). Here a is an index of the
irreducible component of Σ. Ks

a lies in a sphere component and Kd
a lies in a disk compo-

nent. Then we obtain smooth embeddings Id♡ : Kd
a → Σ♡, Is♡ : Ks

a → Σ♡, in the same
way as (12.25) and Definition 12.30. (We use analytic family of coordinates at the nodal
points of Σ and also a trivialization of the universal family of marked stable disks on the
ε neighborhood of

(
Σ, z⃗, z⃗ int

)
to define them. See [38, Section 18], [40, Section 3] etc.)

We now require

(a) The restriction of u to each Kd
a , is ε close to u♡ ◦ Id♡ in C2 norm.

(b) The restriction of u to each Ks
a is ε close to u♡ ◦ Is♡ in C2 norm.

We remark that these conditions are similar to Definition 12.40 (3), (4), respectively.

(3) For any connected component S of

Σ♡ \
⋃
a

Id♡
(
Kd

a

)
\
⋃
a

Is♡(Ks
a),

we require Diamu♡(S) < ε. (In other words, we require the diameters of the images by u♡i
of the neck regions are smaller than ε.) We remark that these conditions are similar to
Definition 12.40 (6).

Lemma 14.36. Let ξ̂′ =
((
Σ, z⃗, z⃗int,′

)
, u, γ

)
∈ Mℓ′(L12; a⃗;E) such that ξ̃ = [(Σ, z⃗), u, γ] and

(Σ, z⃗, z⃗ int,′) is stable. Then for each ε there exists δ with the following properties. If
((
Σ♡, z⃗♡

)
,

u♡, γ♡
)
is δ-close to (ξ̂′, ξ̃), then

((
Σ♡, z⃗♡

)
, u♡, γ♡

)
is ε-close to (ξ̂, ξ̃).

The proof of Lemma 14.36 and the next Lemma 14.37 are similar, for example, to the proof
of [33, Lemma 7.26]. So we omit it.

Let η̃ =
((
Σ♡, z⃗♡

)
, u♡, γ♡

)
be a candidate of an element of M(L12; a⃗;E). We define

η = fg(η̃), which is a candidate of an element of M′(L12; a⃗;E) in the sense of Definition 12.39
in the same way as Lemma–Definition 14.33.

Lemma 14.37. Let ξ̃ ∈ M(L12; a⃗;E) and ξ̂ ∈ Mℓ(L12; a⃗;E) as in Definition 14.35. We fix
a stabilization data S T (see Definition 12.26) for ξ = fg

(
ξ̃
)
∈ M(L12; a⃗;E). Then for each

ε > 0 there exists δ > 0 with the following properties. If η is δ-close to
(
ξ̃, ξ̂
)
in the sense of

Definition 14.35, then η = fg(η̃) is ε-close to (ξ,S T ) in the sense of Definition 12.41.

14.5We take and fix a metric of the moduli space of marked stable disks to define this ε-closeness.
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Now we will describe the process to pullback Kuranishi structure onM′(L12; a⃗;E) to one on
M(L12; a⃗;E). Let ξ = fg

(
ξ̃
)
∈ M′(L12; a⃗;E). We take an obstruction bundle data OB at ξ in

the sense of Definition 12.35.

Let η̃ be a candidate of an element ofM(L12; a⃗;E) which is ε-close to
(
ξ̃, ξ̂
)
. (Here we fix ξ̂.

Lemma 14.36 shows that the Kuranishi chart we obtain below is independent of this choice in
a neighborhood of the origin.)

We put η̃ =
((
Σ♡, z⃗♡

)
, u♡, γ♡

)
and

η = fg(η̃) =
(((

Σ♡1 , z⃗
♡
1

)
, u♡1

)
,
((
Σ♡2 , z⃗

♡
2

)
, u♡2

)
,I ♡, γ♡

)
.

By Definition 12.40, we have a finite-dimensional linear subspace E(ξ,OB; η) of⊕
a♡

C∞0
(
Σd,♡
a♡

;
(
u♡1 , u

♡
2

)∗
T (−X1 ×X2)⊗ Λ0,1

)
⊕
⊕
i=1,2

⊕
a♡

C∞0
(
Σs,♡
i,a♡

;
(
u♡i
)∗
T (Xi)⊗ Λ0,1

)
.

We observe that there exists a map I♡i : Σ♡ → Σ♡i which is either bi-holomorphic or a constant
map, on each irreducible component. We can pull back the subspace E(ξ,OB; η) by I♡1 , I

♡
2 and

obtain a finite-dimensional linear subspace of⊕
a

C∞0
(
Σ♡a ;

(
u♡a
)∗
T (−X1 ×X2)⊗ Λ0,1

)
.

Here the index a runs in the set of irreducible components of Σ♡ and Σ♡a is the irreducible
component corresponding to a. We denote this subset by E(ξ,OB; η̃). (Note that this subspace
depends only on ξ, η̃ but is independent of the lift ξ̃. This is because E(ξ,OB; η) is zero on the
part where we shrink Σ to define fg.)

While we defined a Kuranishi structure on M′(L12; a⃗;E) we made choices of a finite set
{ξi | i ∈ I} ⊂ M′(L12; a⃗;E) (12.29) and a closed set N(ξi) ⊂ M′(L12; a⃗;E) satisfying (12.30).
We defined a subset I(ξ) in (12.31). We use them to define a Kuranishi chart at ξ̃ ∈M(L12; a⃗;E)
in the same way as Definition 12.43 as follows.

Definition 14.38. We fix ξ̂ and take a sufficiently small positive number ε and define U
(
ξ̃; ε
)

to be the isomorphism classes of η̃ =
((
Σ♡, z⃗♡

)
, u♡, γ♡

)
with the following properties:

(1) η̃ is a candidate of an element of extended moduli spaceM(L12; a⃗;E).

(2) η is ε close to
(
ξ̃, ξ̂
)
.

(3) ∂u♡ ∈⊕i∈I(ξ) E(ξi,OB; η̃).

Let Γξ̃ be the set of all automorphisms of ξ̃. It acts on U
(
ξ̃; ε
)
and the quotient space is an

orbifold V
(
ξ̃; ε
)
.

We can define E
(
ξ̃
) (

an orbibundle on V
(
ξ̃; ε
))
, its section sξ̃, and a map ψξ̃ : s

−1
ξ̃

(0) →
M(L12; a⃗;E) which is a homeomorphism onto an open neighborhood of ξ̃. We can show
that

(
V
(
ξ̃; ε
)
, E
(
ξ̃
)
, sξ̃, ψξ̃

)
is a Kuranishi chart at ξ̃ of M(L12; a⃗;E) in the same way as the

proof of Proposition 12.44. We thus defined a Kuranishi structure onM(L12; a⃗;E). We call it
the induced Kuranishi structure.

Lemma 14.39. For a given system of CF-perturbations on M′(L12; a⃗;E), which induces a fil-
tered A∞ algebra structure m′k on CF (L12,Λ0), we can define a system of CF-perturbations on
the induced Kuranishi structures of M(L12; a⃗;E), so that the filtered A∞ algebra structure m′′k
induced by it on CF (L12,Λ0) is exactly the same as m′k.
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Proof. There exists a group homomorphism Γξ̃ → Γξ and an equivariant map U
(
ξ̃; ε
)
→

U(ξ; ε). Moreover, there exists E
(
ξ̃
)
→ E(ξ) which can be identified with an equivariant bundle

map which covers U
(
ξ̃; ε
)
→ U(ξ; ε). Thus the given CF-perturbation onM′(L12; a⃗;E) can be

lifted to a CF-perturbation on the induced Kuranishi structure. Since evaluation maps are com-
patible with U

(
ξ̃; ε
)
→ U(ξ; ε), and this map is an isomorphism outside a set of codimension 2,

the operations m′k obtained by the CF-perturbation is the same as the operations m′k obtained
by the pull-backed CF-perturbation. The lemma follows. ■

Now we have two systems of Kuranishi structures and its CF-perturbations. One (the induced
Kuranishi structures and its induced CF-perturbations) gives m′k = m′′k. The other gives mk. In
other words, mk is obtained from the Kuranishi structures and the CF-perturbations, which we
described in Section 3. We can find a system of Kuranishi structures of M(L12; a⃗;E) × [0, 1]
and their CF-perturbations which interpolates the two systems of Kuranishi structures and CF-
perturbations, in the same way as Propositions 14.16 and 14.17. We use it in the same way
as Lemma 14.19 to obtain the required pseudo-isotopy. (We need to use a pseudo-isotopy of
pseudo-isotopies to take homotopy inductive limit. This step again is the same as Section 14.2
and so is omitted.) The proof of Proposition 14.32 is complete. ■

15 Independence of the filtered A∞ functors
of the Hamiltonian isotopy

15.1 Algebraic preliminary

In this section, we prove that if (L1, b1) is Hamiltonian equivalent to (L′1, b
′
1) and (L12, b12) is

Hamiltonian equivalent to (L′12, b
′
12) then the functor W(L12,b12)(L1, b1) is homotopy equivalent

to the functor W(L′
12,b

′
12)

(L′1, b
′
1) in the category Fukst(X2) over Λ coefficient.

To state and prove this result, we start with an algebraic preliminary. Let C be a filtered A∞
category. We consider its associated strict category C s.

Definition 15.1. We define an A∞ category C Λ as follows:

(1) OB
(
C Λ
)
= OB(C s).

(2) For (c1, b1), (c2, b2) ∈ OB
(
C Λ
)
= OB(C s), we put

C Λ((c1, b1), (c2, b2)) = C s((c1, b1), (c2, b2))⊗Λ0 Λ.

(3) The structure operations of C Λ is obtained by extending the structure operations of C s

by Λ linearity.15.1

Definition 15.2. In the situation of Definition 15.1, let (c1, b1), (c2, b2) ∈ OB
(
C Λ
)
= OB(C s).

We assume C is unital. We say (c1, b1) is homotopy equivalent to (c2, b2) over Λ and write
(c1, b1) ∼Λ (c2, b2) if they are homotopy equivalent as objects of C Λ. Suppose (c1, b1) ∼Λ (c2, b2).
We define the Hofer distance dHof((c1, b1), (c2, b2)) between them as the infimum of the positive
numbers ε such that the following holds:

(1) There exists x12 ∈ C Λ((c1, b1), (c2, b2)) x21 ∈ C Λ((c2, b2), (c1, b1)), y1 ∈ C Λ((c1, b1),
(c1, b1)), y2 ∈ C Λ((c2, b2), (c2, b2)), such that

(a) m2(x21, x12) = ec2 +m1(y2).

(b) m2(x12, x21) = ec1 +m1(y1).

(c) m1(x21) = 0. m1(x12) = 0.
15.1We remark that structure operations of C s are Λ0 linear.
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(2) We require T ε1x21 ∈ C s((c1, b1), (c2, b2)), T
ε2x12 ∈ C s((c2, b2), (c1, b1)), where ε1, ε2 are

positive numbers with ε1 + ε2 ≤ ε. We also require T εy1 ∈ C s((c1, b1), (c1, b1)), T
εy2 ∈

C s((c2, b2), (c2, b2)).

It is easy to see that ∼Λ is an equivalence relation. It is also easy to see that

dHof((c1, b1), (c2, b2)) + dHof((c2, b2), (c3, b3)) ≥ dHof((c1, b1), (c3, b3)). (15.1)

We also remark that if (c1, b1) is homotopy equivalent to (c2, b2) as objects of C s, then

dHof((c1, b1), (c2, b2)) = 0.

The next lemma is also easy to show.

Lemma 15.3. Let F : C1 → C2 be a strict and unital homotopy equivalence of filtered A∞
categories. Then the following holds for c1, c2 ∈ OB(C1):

(1) c1 ∼Λ c2 if and only if F (c1) ∼Λ F (c2).

(2) dHof(c1, c2) = dHof(F (c1),F (c2)).

15.2 Homotopy equivalence over Λ in the geometric situation

Situation 15.4. Let (X,ω) be a symplectic manifold which is compact or tame and V a back-
ground datum. Suppose that a map Φ: X → X is a Hamiltonian diffeomorphism generated by
a compactly supported time dependent Hamiltonian H : X × [0, 1] → R. We take a finite set
L of V -relatively spin compact Lagrangian submanifolds of X. We assume that it is a clean
collection. We assume L ∈ L and Φ(L) ∈ L.

Theorem 15.5. In Situation 15.4, let b ∈ CF (L) be a bounding cochain.

(1) There exists a bounding cochain Φ∗(b) ∈ CF (Φ(L)).
(2) (L, b) is equivalent to (Φ(L),Φ∗(b)) over Λ. (Note that they are objects of Fukst(X,L).)
(3) The Hofer distance between (L, b) and (Φ(L),Φ∗(b)) is not greater than the Hofer dis-

tance [52] between Φ and the identity map.

Theorem 15.5 (1) is a slightly stronger version of [34, Theorem G (G4)]. Theorem 15.5 (2) is
a slightly stronger version of [34, Theorem 6.1.25] (see also [39]). We explain how Theorem 15.5
follows from the argument of the above quoted papers [34, 39] in Section 15.2.

We also remark the following.

Proposition 15.6. If (L, b), (L′, b′) ∈ OB(Fukst(X;L)) and L ̸= L′, then

dHof((L, b), (L
′, b′)) > 0.

Proof. Let L be a relatively spin (immersed) Lagrangian submanifold of (X,ω). In [34,
Definition 6.5.42], we defined the notion of a bounding cochain modulo TE as an element b
of CF (L; Λ+) such that

∞∑
k=0

mk(b, . . . , b) ≡ 0 mod TE .

When (L1, b1), (L2, b2) are pairs of Lagrangian submanifolds with bounding cochains modulo TE ,
we can define Floer homology over Λ0/T

E as follows (see [34, Definition 6.5.45]). Let CF (L1, L2)
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be the left CF (L1; Λ0) and right CF (L2; Λ0) bi-module, which is nothing but the morphism space
from (L1, b1) to (L2, b2) in the curved A∞ category of X. Let

nk1,k2 : Bk1CF (L1)[1]⊗ CF (L1, L2)⊗Bk2CF (L2)[1]→ CF (L2; Λ0)

be the structure operations. We put

δb1,b2(x) =
∞∑

k1,k2=0

nk1,k2
(
bk11 , x, b

k2
2

)
.

The A∞ relations imply δb1,b2 ◦ δb1,b2 ≡ 0 mod TE . Therefore, δb1,b2 becomes a boundary oper-
ator on CF (L1, L2)⊗Λ0 Λ0/T

E . Its cohomology is by definition HF
(
(L1, b1), (L2, b2); Λ0/T

E
)
.

It is independent of the choices of perturbations and almost complex structures.

Lemma 15.7. Let (L1, b1), (L2, b2) be objects of Fukst(X,L) and (L, b) a pair of an element
of L and its bounding cochain modulo TE. Suppose dHof((L1, b1), (L2, b2)) = 0. Then

HF
(
(L1, b1), (L, b); Λ0/T

E
) ∼= HF

(
(L2, b2), (L, b); Λ0/T

E
)
.

Proof. By perturbing a bit and using [34, Theorem 6.5.47] we may assume that L1 and L2

are transversal to L. Then, for an arbitrary small ε, there exist x12 ∈ CF (L1, L2; Λ) and
x21 ∈ CF (L2, L1; Λ) as in Definition 15.2. Multiplications with T εx12 and with T εx21 define
chain maps

φ12 : CF (L1, L)⊗Λ0 Λ0/T
E′ → CF (L2, L)⊗Λ0 Λ0/T

E′
,

φ21 : CF (L2, L)⊗Λ0 Λ0/T
E′ → CF (L1, L)⊗Λ0 Λ0/T

E′

for any E′ ≤ E. Moreover, using Definition 15.2 (2) we can show that

φ12 ◦ φ21 : CF (L1, L)⊗Λ0 Λ0/T
E → CF (L1, L)⊗Λ0 Λ0/T

E

φ21 ◦ φ12 : CF (L2, L)⊗Λ0 Λ0/T
E → CF (L2, L)⊗Λ0 Λ0/T

E

are chain homotopic to T 2ε times the identity map. We write

HF
(
(Li, bi), (L, b); Λ0/T

E
)
=

Ni∑
j=1

Λ0/T
ai,j ,

where ai,j ≤ E and ai,j > ai,j+1. Then using φ12, φ21 and their properties explained above, we
have the following: if a1,j > 4ε, we have |a1,j − a2,j | ≤ 2ε. (See [34, pp 391–392].) Since ε is
arbitrary small, we obtain the lemma by taking the limit ε→ 0. ■

Now we are in the position to prove Proposition 15.6. Suppose L ̸= L′. We may assume that
there exists p ∈ L \L′. Let d = d(p, L′). Let ρ be a positive number sufficiently small compared
to d. We can take a small Clifford type torus Tρ such that Tρ ∩ L′ = ∅, Tρ ∩ L ̸= ∅ and Tρ
intersects transversally with L. We may also assume that Tρ admits a bounding cochain bρ
modulo T ρ. Since Tρ ∩ L′ = ∅, HF ((L′, b′), (Tρ, bρ); Λ0/T

ρ) = 0. On the other hand, using
the fact Tρ ∩ L ̸= ∅ and all the non-constant holomorphic strips have positive energy we can
show HF ((L, b), (Tρ, bρ); Λ0/T

ρ) ̸= 0. (This is a classical fact going back to Chekanov [14].) This
contradicts Lemma 15.7. ■
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15.3 The main theorem

Situation 15.8. Let X1, V1, L1, Φ1, L1 be as in Situation 15.4. Let (X2, ω2) be a compact sym-
plectic manifold and V2 a background datum. Let −X1×X2, π

∗
1(V1⊕TX1)⊕π∗2(V2),L12, L12,Φ12

be also as in Situation 15.4. Let L2 be a finite set of V2-relatively spin compact Lagrangian sub-
manifolds of X2. We assume that it is a clean collection. We assume also that for any L′1 ∈ L1

and L′12 ∈ L12 the geometric transformation of L′1 by L′12 is contained in L2.

Theorem 15.9. In Situation 15.8, let b1 be a bounding cochain of L1 and b12 a bounding cochain
of L12. Then

(1) W(L12,b12)(L1, b1) is equivalent to W(Φ12L12,(Φ12)∗b12)(Φ1(L1), (Φ1)∗(b1)) over Λ.

(2) The Hofer distance

dHof(W(L12,b12)(L1, b1),W(Φ12L12,(Φ12)∗b12)(Φ1(L1), (Φ1)∗b1))

is not greater than the sum of the Hofer distance [52] between Φ1 and the identity map and
the Hofer distance between Φ12 and the identity map.

The proof is given in the next subsection.

The next result is a more functorial version of Theorem 15.9.

Situation 15.10. Let (Xi, ωi) be a compact symplectic manifold, Vi a background datum of Xi,
and Li a finite set of Vi relatively spin immersed Lagrangian submanifolds, for i = 1, 2. We
assume Li are clean collections. Let L12 be a π∗1(V1 ⊕ TX1)⊕ π∗2(V2) relatively spin Lagrangian
submanifold of −X1×X2 and Φ: −X1 ×X2 → −X1 ×X2 a Hamiltonian diffeomorphism. We
assume that for each L1 ∈ L1 the geometric transformations L1 ×X1 L12, L1 ×X1 Φ(L12) are
both elements of L2. We assume that L12 is unobstructed and b12 is its bounding cochain. By
Theorem 15.5, we obtain a bounding cochain Φ∗(b12) of Φ(L12).

Theorem 15.11. In Situation 15.10, we consider two filtered A∞ functors

W(L12,b12) : Fukst(X1;L1)→ Fukst(X2;L2),

W(Φ(L12),Φ∗(b12)) : Fukst(X1;L1)→ Fukst(X2;L2).

They induce the following filtered A∞ functors of Λ linear categories in an obvious way:

WΛ
(L12,b12)

: Fukst(X1;L1)
Λ → Fukst(X2;L2)

Λ,

WΛ
(Φ(L12),Φ∗(b12))

: Fukst(X1;L1)
Λ → Fukst(X2;L2)

Λ.

(1) WΛ
(L12,b12)

is homotopy equivalent to WΛ
(Φ(L12),Φ∗(b12))

.

(2) The Hofer distance between W(L12,b12) and W(Φ(L12),Φ∗(b12)) in the filtered A∞ category
FUNC(Fukst(X1;L1),Fukst(X2;L2)) is not greater than the Hofer distance between Φ and
the identity map.

The proof is given in the next subsection.

Remark 15.12.

(1) The two immersed Lagrangian submanifolds L1 ×X1 L12 and L1 ×X1 Φ(L12) may not be
isotopic each other in general. So Theorem 15.11 provides a lot of examples of a pair of
Lagrangian submanifolds which are not isotopic but are Floer theoretically equivalent.
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(2) K. Ono [67] studied a Lagrangian intersection between L and L′ where the lifts of L and L′

to the prequantum bundle are Hamiltonian isotopic each other. Theorem 15.11 is related
to his study.

(3) We recall that two Lagrangian submanifolds L,L′ ∈ X are said to be Lagrangian cobordant
if there exists a Lagrangian submanifold L̃ in C×X and a sufficiently large ball D(R) of C
centered at 0 such that

L̃ ∩ ((C \D(R))×X) = (((−∞, 0)× L) ∪ ((0,∞)× L′)) ∩ ((C \D(R))×X).

We can show L1 ×X1 L12 is Lagrangian cobordant to L1 ×X1 Φ(L12) in this sense.

(4) In the situation of item (3), assuming L,L′, L̃ are monotone and L′′ ⊂ X is also monotone
Biran–Cornea [9] proved HF (L,L′′) ∼= HF (L′, L′′). It seems likely that we can generalize
it as follows. Suppose L, L′ have bounding cochains b, b′, respectively. Moreover, we
assume that there exists a bounding cochain b̃ of L̃ such that on ((C \ D(R)) × X) it
coincides with the pullbacks of b and b′. Then

HF ((L, b), (L′′, b′′); Λ) ∼= HF ((L′, b′), (L′′, b′′); Λ).

We say (L, b) is unobstructed-Lagrangian cobordant to (L′, b′) in this situation. We
can then try to use the argument of the proof of Theorem 6.3 to prove the following.
Let (L1, b1), (L12, b12) be objects of Fukst(X1;L1), Fukst(X1;L1), Fukst((X1, ω1),L1) ×
Fukst((X1 × X2,−π∗1(ω1) + π∗2(ω2)),L12), respectively. Let Φ: − X1 × X2 → −X1 × X2

be a Hamiltonian diffeomorphism and (Φ(L12),Φ∗(b12)) be also an object of Fukst((X1 ×
X2,−π∗1(ω1) + π∗2(ω2)),L12). We put L2 = L1 ×X1 L12 and L′2 = L1 ×X1 Φ(L12). We
obtain their bounding cochains by Theorem 6.3, which we denote by b2, b

′
2. Then (L2, b2)

is unobstructed-Lagrangian cobordant to (L′2, b
′
2).

This argument can be an alternative proof of Theorem 15.11 (1).

(5) Cornea–Shelukhin [16] study the area of the image π
(
L̃
)
of the Lagrangian cobordism L̃

by the projection π : C × X → C. Including the bounding cochain, their argument may
imply that if (L, b) is unobstructed-Lagrangian cobordant to (L′, b′) by a pair

(
L̃, b̃
)
, then

the Hofer distance (in the sense of Definition 15.2) is not greater than the area of π
(
L̃
)
.

This statement is related to Theorem 15.11 (2).

15.4 Proof of the main theorem

Theorem 15.9 is an immediate consequence of Theorem 15.5 and the following purely algebraic
result.

Proposition 15.13. Let C1, C2, C3 be strict and unital filtered A∞ categories and F : C1×C2

→ C3 a strict and unital filtered A∞ bi-functor. Suppose c1, c
′
1 ∈ OB(C1), c2, c

′
2 ∈ OB(C2).

(1) If c1 ∼Λ c
′
1, c2 ∼Λ c

′
2, then F (c1, c2) ∼Λ F (c′1, c

′
2).

(2) dHof(F (c1, c2),F (c′1, c
′
2)) ≤ dHof(c1, c

′
1) + dHof(c2, c

′
2).

Proof. By (15.1), it suffices to show the case c1 = c′1 and the case c2 = c′2. By symmetry,
it suffices to prove the case c2 = c′2. Let ε > dHof(c1, c

′
1) and we take x1 ∈ C Λ

1 (c1, c
′
1), x2 ∈

C Λ
1 (c′1, c1), y1 ∈ C Λ

1 (c1, c1), y2 ∈ C Λ
1 (c′1, c

′
1) such that

m2(x1, x2) = ec1 +m1(y1), m2(x2, x1) = ec′1 +m1(y2), m1(x1) = m1(x2) = 0.

We also assume that T ε1x1 ∈ C1(c1, c
′
1), T

ε2x2 ∈ C1(c
′
1, c1) with ε1 + ε2 ≤ ε and T εy1 ∈

C1(c1, c1), T
εy2 ∈ C1(c

′
1, c
′
1).
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We put

x1 := F1,1(x1, ec2), x2 := F1,1(x2, ec2), y1 := F1,1(y1, ec2),

y2 := F1,1(y2, ec2).

(Note that we extend F1,1 by Λ linearity to define the right-hand sides.) Since F is strict, we
have

m2(x1, x2) = F1,1(m2(x1, x2), ec2) = F1,1(ec1 +m1(y1), ec2)

= eF (c1,c2) +m1(F1,1(y1, ec2)) = eF (c1,c2) +m1(y1).

Similarly, we have m2(x2, x1) = eF (c′1,c2)
+m1(y2), and m1(x1) = m1(x2) = 0. Therefore, F (c1, c2)

∼Λ F (c′1, c2). (1) follows. (2) follows from

T ε1x1 ∈ C3(F (c1, c2),F (c′1, c2)), T ε2x2 ∈ C3(F (c′1, c2),F (c1, c2)),

T εy1 ∈ C3(F (c1, c2),F (c1, c2)), T εy2 ∈ C3(F (c′1, c2),F (c′1, c2)). ■

Theorem 15.11 is an immediate consequence of Theorem 15.5 and the following purely alge-
braic result.

Lemma 15.14. Let C1, C2, C3 be strict and unital filtered A∞ categories and F : C1×C2 → C3

a strict and unital filtered A∞ bi-functor. It induces a strict and unital filtered A∞ func-
tor F∗ : C2 → FUNC(C1,C3) by Lemma 5.14 (and its unital and strict analogue). Suppose
c2, c

′
2 ∈ OB(C2).

(1) If c2 ∼Λ c
′
2, then the two (Λ linear) filtered A∞ functors F∗(c2)Λ,F∗(c′2)

Λ : C Λ
1 → C Λ

3 are
homotopy equivalent.

(2) The inequality dHof(F∗(c2),F∗(c
′
2)) ≤ dHof(c2, c

′
2) holds.

The proof is easy and so is omitted.

15.5 Proof of Theorem 15.5

In this subsection, we explain how Theorem 15.5 follows from (the proof of) [34, Theorem G (G4)
and Theorem 6.1.25] and [39]. Suppose we are in Situation 15.4.

We put Φ(L) = L′. We take a compatible almost complex structure J and consider fil-
tered A∞ structures

mJ,L
k : Ω

(
L̃×X L̃

)⊗k → Ω
(
L̃×X L̃

)“⊗Λ0, mJ,L′

k : Ω
(
L̃′ ×X L̃′

)⊗k → Ω
(
L̃′ ×X L̃′

)“⊗Λ0.

Note that we can decompose mJ,L
k , mJ,L′

k to a sum

mJ,L
k =

∑
E

TEmJ,L
k,E , mJ,L′

k =
∑
E

TEmJ,L′

k,E ,

where mJ,L
k,E and mJ,L′

k,E are R linear.

Remark 15.15. The right-hand side is an infinite sum. However, for each E0 the set of E < E0

such that mJ,L
k,E , m

J,L′

k,E is nonzero is a finite set. This is a consequence of Gromov compactness.

We denote CF (L) = Ω
(
L̃ ×X L̃

)“⊗Λ0 and CF (L′) = Ω
(
L̃′ ×X L̃′

)“⊗Λ0. The next theorem
is the de Rham version of [34, Corollary 4.6.3].
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Theorem 15.16. There exists a (curved) filtered A∞ homomorphism

f̂ = {fk | k = 0, 1, 2, . . . } :(
CF (L),

{
mJ,L
k ; k = 0, 1, 2, . . .

})
→
(
CF (L′),

{
mJ,L′

k ; k = 0, 1, 2, . . .
})
,

fk : CF (L)
⊗k → CF (L′) such that f1(h) =

(
Φ−1

)∗
(h) mod Λ+.

Proof. Let J ′ =
(
Φ−1

)
∗J . The moduli space of J ′ holomorphic disks with the boundary

conditions given by L is canonically identified with the moduli space of J holomorphic disks
with the boundary condition given by L′. Therefore, the following diagram commutes:

BkCF [1](L
′)

mJ,L′
k−−−−→ CF (L′)

(Φ−1)∗
x x(Φ−1)∗

BkCF [1](L)
mJ′,L

k−−−−→ CF (L).

Therefore, it suffices to construct a filtered A∞ homomorphism g = {gk} from
(
CF (L),

{
mJ,L
k

})
to
(
CF (L),

{
mJ ′,L
k

})
such that g1 ≡ id mod Λ+.

We take a one parameter family of compatible almost complex structures J =
{
J (ρ)

}
such

that

(1) J (0) = J ,

(2) J (1) = J ′.

For the proof of Theorem 15.16, we can take any such J . We will specify J later during the
proof of Proposition 15.22.

We use the ‘time ordered product’ moduli spaces Mk+1(L;J ;E; top(ρ)) introduced in [34,
Section 4.6.1], which have the properties spelled out in Proposition 15.17 below. We use the
following notation in Proposition 15.17.

The moduli spaceMk+1(L;E) is defined in (3.20). To specify the almost complex structure
we use, we writeMk+1(L;E; J). It comes with evaluation maps

ev = (ev0, ev1, . . . , evk) : Mk+1(L;E; J)→
(
L̃×X L̃

)k+1
,

which is strongly smooth and such that ev0 is weakly submersive. (See [40, 46] and [45, Part 7]
for the definition of strong smoothness and weak submersivity.)

Proposition 15.17. There exists a compact Hausdorff space Mk+1(L;J ;E; top(ρ)) equipped
with a Kuranishi structure with corners, which enjoys the following properties:

(1) There exists an evaluation map

ev = (ev0, ev1, . . . , evk) : Mk+1(L;J ;E; top(ρ))→
(
L̃×X L̃

)k+1

which is strongly smooth. Moreover, ev0 is weakly submersive.

(2) The normalized boundary of Mk+1(L;J ;E; top(ρ)) is the union of two types of the fiber
products:

(I) The fiber product

Mk1+1(L;E1; J)ev0 ×eviMk2+1(L;J ;E2; top(ρ)), (15.2)

where k1 + k2 = k, E1 + E2 = E and i = 1, . . . , k2.
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(II) The fiber product

m∏
i=1

Mki+1(L;J ;Ei; top(ρ))(ev0,...,ev0) ×(ev1,...,evm)Mm+1(L;E0; J
′), (15.3)

where k1 + · · ·+ km = k and E1 + · · ·+ Em + E0 = E.

(3) In the case when E = 0 and k = 0,M1(L;J ; 0; top(ρ)) = L̃×X L̃, and ev0 is the identity
map.

(4) The set of E such thatMk+1(L;J ;E; top(ρ)) ̸= ∅ is discrete.

A sketch of the proof. The construction of the moduli spacesMk+1(L;J ;E;top(ρ)) is worked
out in detail in [34, Definition 4.6.1].15.2 Its element is an object ((Σ, z⃗), u, γ, {ραi}) as depicted in
Figure 15.1. Here (Σ, z⃗) is a bordered marked curve of genus zero with one boundary component
and k + 1 boundary marked points, and u : (Σ, ∂Σ)→ (X,L) is a smooth map. The restriction
of u to ∂Σ \ (z⃗ ∪ {boundary node}) is lifted to a map γ : ∂Σ \ (z⃗ ∪ {boundary node})→ L̃. The
map αi 7→ ραi assigns a number ραi ∈ [0, 1] to each irreducible component Σαi of Σ. We require
the next Condition 15.18 for ραi . We also require that the restriction of u to Σαi is J (ραi )-
holomorphic. At boundary marked points and boundary nodes, we require switching conditions
similar to those appeared in Section 3. (See Definition 3.17 (5).)

uα0

uα2

uα3

uα4

uα5

z2

z1

kz

uα1

is holomorphic.

ρ

ρ

ρ ρ

ρ

ρ
≤

≤

≤≤

≥

z0

α1

α2α4

α3

α0

α5

uαi J (ραi
)

Figure 15.1. Time ordered product moduli space.

Condition 15.18. Let p ∈ Σ be a boundary node and p ∈ Σαi∩Σαj , Σαi ̸= Σαj . We suppose Σαi

is contained in the connected component of Σ \ {p} which contains the zero-th marked point z0.
Then we require ραi ≥ ραj .

The definition of the topology of this moduli space and proof of its compactness and Haus-
dorffness are similar to those of Theorem 3.24. The construction of the Kuranishi structure is
similar to the proof of Theorem 3.24.

15.2Actually, we need a slight modification since our Lagrangian submanifolds are immersed. This modification
is the same as the argument of Section 3.



224 K. Fukaya

We next describe the boundary. We observe that (15.2) corresponds to the case when one
of ραi becomes 0 and that (15.3) corresponds to the case when one of ραi becomes 1. Actually,
such Σαi is necessary the irreducible component containing z0, the zero-th marked point. (This
is a consequence of Condition 15.18.)

The other possible boundary components ofMk+1(L;J ;E; top(ρ)) cancel out each other as is
explained in [34, p. 246]. The key observation is the cancellation between two types of potential
boundaries. One is depicted in Figure 15.2 below and the other is depicted in Figure 15.3 below.
(Those two figures are [34, Figure 4.6.2] and [34, Figure 4.6.3], respectively.)

iev0 ev0

Figure 15.2. Cancellation in [34, Section 4.6] : 1.

ρ
(i)
α

ρ
(i)

ρ
(i)
α ρ

(i)
α 0−

α

ev0

Figure 15.3. Cancellation in [34, Section 4.6] : 2.

Item (3) of Proposition 15.17 is a consequence of the fact that left-hand side is the moduli
space of constant maps, which is transversal. Item (4) follows from Gromov compactness. ■

For later use, we define ρ0 :Mk+1(L;J ;E2; top(ρ))→ [0, 1] as follows:

ρ0((Σ, z⃗), u, γ, {ραi}) = ρα0 , (15.4)

where Σα0 is the irreducible component which contains the 0-th marked point.
Now using Proposition 15.17, we define gk,E by the next formula

gk,E(h1, . . . , hk) = ev0!
(
ev∗1h1 ∧ · · · ∧ ev∗khk; (Mk+1(L;J ;E; top(ρ));“Sε)

)
. (15.5)

Here we take a system of CF-perturbations “Sε onMk+1(L;J ;E; top(ρ))15.3 such that

(1) ev0 is strongly submersive with respect to this CF-perturbation.

15.3More precisely, the outer collaring of its thickening.
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(2) Those CF-perturbations are compatible with the identification of the boundary as (15.2),
(15.3).

We use this system of CF-perturbations to define the integration along the fiber ev0! in (15.5).
We now define

gk(h1, . . . , hk) :=
∑
E

TEgk,E(h1, . . . , hk).

This is well-defined by Proposition 15.17 (4).
Stokes’ formula (see [40, Proposition 9.26] and [46]) and the composition formula (see [40,

Theorem 10.20] and [46]) imply that gk defines a filtered A∞ homomorphism. In fact, (15.2)
corresponds to

gk1,E1

(
h1, . . . ,m

J,L
k1,E2

(hi+1, . . . , hi+k1), . . . , hk
)

and (15.3) corresponds to mJ ′,L
m,E0

(
gk1,E1

(
h⃗1
)
, . . . , gkm,Em

(
h⃗m
))
. Here h⃗1 = (h1, . . . , hk1), h⃗2 =

(hk1+1, . . . , hk1+k2), etc.
The congruence g1 ≡ id mod Λ+ follows from Proposition 15.17 (3). The proof of Theo-

rem 15.16 is complete. ■

Remark 15.19. We omit the argument needed to take the homotopy inductive limit E →∞,
since it is similar to the other cases. (This process is necessary since we work with only finitely
many moduli spaces consisting of moduli spaces of objects with energy < E0, to construct
a system of Kuranishi structures and its CF-perturbations.)

Theorem 15.5 (1) follows from Theorem 15.16. We turn to the proof of Theorem 15.5 (2), (3).
We use Yoneda embedding for the proof. The objects (L, b) and (Φ(L),Φ∗(b)) define fil-

tered A∞ right modules Yon(L, b) and Yon(Φ(L),Φ∗(b)) over Fukst(L), respectively. By Lem-
ma 15.3 and A∞ Yoneda lemma (see Theorem 2.44), it suffices to prove the following.

(2)′ The equivalence Yon(L, b) ∼Λ Yon(Φ(L),Φ∗(b)) holds as objects of the functor cate-
gory FUNC(Fukst(L)op, CH).

(3)′ The Hofer distance dHof(Yon(L, b),Yon(Φ(L),Φ∗(b))) is not greater than the Hofer dis-
tance between Φ and the identity map.

The proof of (2)′, (3)′ occupies the rest of this subsection. We put L′ = Φ(L) and M =
the disjoint union of elements of L. Note that M =

(
M̃, iM

)
is an immersed Lagrangian sub-

manifold of X. We put

R := L̃×X M̃ R′ := L̃′ ×X M̃. (15.6)

They are submanifolds of L̃× M̃ , L̃′ × M̃ , respectively. We define

CF (L,M) = Ω(R)“⊗Λ0, CF (L′,M) = Ω(R′)“⊗Λ0, CF (M) = Ω
(
M̃ ×X M̃

)“⊗Λ0.

We take a bounding cochain bM ofM . Then together with the bounding cochain b of L and Φ∗(b)
of L′ we obtain a right

(
CF (M),

{
mbM
k

})
module structures

nLk : CF (L,M)⊗BkCF (M)→ CF (L,M),

nL
′

k : CF (L′,M)⊗BkCF (M)→ CF (L′,M). (15.7)

They are nothing but Yon(L, b) and Yon(Φ(L),Φ∗(b)). We set

CF (L,M)Λ = CF (L,M)⊗Λ0 Λ, CF (L′,M)Λ = CF (L′,M)⊗Λ0 Λ.
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We first review the moduli spaces we use to define the filtered bi-module structure (15.7)
on CF (L,M) (resp. CF (L′,M)) over CF (L)-CF (M) (resp. CF (L′)-CF (M)). See [34, Sec-
tions 3.7.4 and 3.7.5] for detail. We consider the equation

∂u

∂τ
+ J

∂u

∂t
= 0 (15.8)

for a map u : R× [0, 1]→ X with boundary conditions:

(a) u(τ, 0) ∈M .

(b) u(τ, 1) ∈ L (resp. u(τ, 1) ∈ L′).

We consider z⃗0, z⃗1 such that z⃗0 = (z0,1, . . . , z0,k0), where z0,i = (τ0,i, 0) with τ0,1 < · · · < τ0,k0 , and
z⃗1 = (z1,1, . . . , z1,k1), where z1,i = (τ1,i, 0) with τ1,1 > · · · > τ1,k1 .

15.4 We also consider γ0 : R ×
{0}\z⃗0 → M̃ , γ1 : R×{1}\z⃗1 → L̃, lifts of the restriction of u. We assume an appropriate switch-
ing condition similar to those appeared in Section 3. (See Definition 3.17 (5).) We finally require

(c) limτ→±∞(γ0(τ), γ1(τ)) ∈ R (resp. limτ→±∞(γ0(τ), γ1(τ)) ∈ R′).
(d)

∫
R×[0,1] u

∗ω = E.

We consider such (z⃗0, z⃗1;u; γ0, γ1) satisfying the above conditions and the moduli space of such
objects. We then take its quotient by the R action induced by the translation of the first factor
of the source R× [0, 1]. We denote this space by M̊k1,k0(L,M ;E; J) (resp. M̊k1,k0(L

′,M ;E; J)).

Remark 15.20. In equation (15.8) (and in other places of this subsection), we take R × [0, 1]
as a strip, while in Section 5 (and in other places of this paper) we took [0, 1] × R. In this
subsection, we use R × [0, 1] for the sake of consistency with [34, Sections 3.7.4 and 3.7.5]. In
Section 5, we identified (t, τ) ∈ [0, 1]× R with t+

√
−1τ ∈ C to define complex structure. (See

the proof of Lemma 5.35.) Here we identify (τ, t) with τ +
√
−1t ∈ C. (Note that in Section 5

the equation corresponding to (15.8) is ∂u
∂τ = J ∂u∂t .)

In both cases, if we regard the first coordinate (t in case of Section 5 and τ in case of this
subsection) as the x-axis and the second coordinate as the y-axis, then the above choice is
consistent with the standard conformal structure of the xy-plane.

We also remark that in Section 5 we construct right CF (L1) module and L1 is assigned at the
right, that is, t = 1. In this subsection, we construct right CF (M) module and M is assigned
at the bottom, that is, t = 0. This is consistent with our choice of orientation and conformal
structure of the domain.

τ

γ0

γ1

z0,1 = (τ0,1, 0)

z0,4

z1,3z1,4

u

M

L

RR

Figure 15.4. Elements ofMk1,k0
(L′,M ;E; J).

15.4Note that we use the counter clock-wise ordering to enumerate the marked points.
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Proposition 15.21. The space M̊k1,k0(L,M ;E; J) (resp. M̊k1,k0(L
′,M ;E; J)) has a compact-

ification Mk1,k0(L,M ;E; J) (resp. Mk1,k0(L
′,M ;E; J)) which is compact and Hausdorff, with

respect to the stable map topology. They have Kuranishi structures with corners, and enjoy the
following properties:

(1) There exist evaluation maps

ev =
(
ev(1), ev(0)

)
=
((
ev

(1)
1 , . . . , ev

(1)
k1

)
,
(
ev

(0)
1 , . . . , ev

(0)
k0

))
:

Mk1,k0(L,M ;E; J)→
(
L̃×X L̃

)k1 × (M̃ ×X M̃
)k0

(resp.

ev =
(
ev(1), ev(0)

)
=
((
ev

(1)
1 , . . . , ev

(1)
k1

)
,
(
ev

(0)
1 , . . . , ev

(0)
k0

))
:

Mk1,k0(L
′,M ;E; J)→

(
L̃′ ×X L̃′

)k1 × (M̃ ×X M̃
)k0 .)

These maps are evaluation maps at the marked points z⃗1, z⃗0 and are underlying continuous
maps of strongly smooth maps.

(2) There exists also evaluation maps at infinity (ev−∞, ev+∞) :Mk1,k0(L,M ;E; J)→ R×R,
(resp. (ev−∞, ev+∞) :Mk1,k0(L

′,M ;E; J)→ R′×R′.) These maps are defined by the limit
in item (c) above and are underlying continuous maps of strongly smooth maps. The
map ev+∞ is weakly submersive.

(3) The normalized boundary ofMk1,k0(L,M ;E; J) (resp.Mk1,k0(L
′,M ;E; J)) is the disjoint

union of the following three types of fiber products:

(I) The fiber product

Mk1,1+1(L;E1; J)ev0 ×ev
(1)
i

Mk1,2,k0(L,M ;E2; J),

where k1,1 + k1,2 = k1, E1 + E2 = E and i = 1, . . . , k1,2 (resp. the same except we
replace L by L′). (See Figure 15.5.)

(II) The fiber product

Mk0,1+1(M ;E1; J)ev0 ×ev
(0)
i

Mk1,k0,2(L,M ;E2; J),

where k0,1 + k0,2 = k0, E1 + E2 = E and i = 1, . . . , k0,2 (resp. the same except we
replace L by L′). (See Figure 15.6.)

(III) The fiber product

Mk1,1,k0,1(L,M ;E1; J)ev+∞ ×ev−∞Mk1,2,k0,2(L,M ;E2; J),

where k0,1 + k0,2 = k0, k1,1 + k1,2 = k1, E1 + E2 = E (resp. the same except we
replace L by L′). (See Figure 15.7.)

The evaluation maps are compatible with these identifications of the boundary with fiber
product.

(4) There exists a principal O(1) bundle on L̃×X L̃, L̃×X L̃, L̃′×X L̃′, R and R′ and the trivial-
ization of the orientation bundle ofMk1,k0(L,M ;E; J) tensored with the pullbacks of those
principal O(1) bundles. These trivializations are compatible with the above identification
of the boundary.

(5) The set of E for which Mk1,k0(L,M ;E; J) (resp. Mk1,k0(L
′,M ;E; J)) is nonempty is

discrete.
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z1,1z1,i−1

z1,i

z1,i+k1+1−1

z1,i+k1,1z1,k1

Figure 15.5. Boundary of type I.

z0,1 z0,i−1

z0,i
z0,i+k0,1−1

z0,i+k0,1 z0,k0

Figure 15.6. Boundary of type II.

k0,1
{ {

{ {
k0,2

k1,2k1,1

RRR

Figure 15.7. Boundary of type III.

The proof is now a routine. (See also [34, Sections 3.7.4 and 3.7.5], [47] and Section 3.2 of
this paper.) We now define

nLk1,k0 : Bk0CF (L)[1]⊗ CF (L,M)⊗Bk1CF (M)[1]→ CF (L,M),

nL
′

k1,k0 : Bk0CF (L
′)[1]⊗ CF (L′,M)⊗Bk1CF (M)[1]→ CF (L′,M),

by

nLk1,k0
(
h
(1)
1 , . . . , h

(1)
k1

;h;h
(0)
1 , . . . , h

(0)
k0

)
:=
∑
E

TEev+∞!
((
ev

(1)
1

)∗
h
(1)
1 ∧

(
ev

(1)
k1

)∗
h
(1)
k1
∧ ev∗−∞h

∧
(
ev

(0)
1

)∗
h
(0)
1 ∧

(
ev

(0)
k0

)∗
h
(0)
k0

;Mk1,k0(L,M ;E; J);“Sε

)
. (15.9)

Here we take a system of CF-perturbations “Sε onMk1,k0(L,M ;E; J) such that ev+∞ is strongly
submersive with respect to “Sε and that the CF-perturbations “Sε are compatible with the fiber
product description of the boundaries in Proposition 15.21 (3). We use the CF-perturbation
to define the integration along the fiber ev+∞! in (15.9). (See [40, Definitions 7.78 and 9.13]
and [46].) The definition of nL

′
k1,k0

is similar. We can show that these maps define structures
of filtered A∞ bi-module by using Stokes’ formula (see [40, Proposition 9.26] and [46]) and the
composition formula (see [40, Theorem 10.20] and [46]) together with Proposition 15.21 (3).

We now define the map (15.7) by

nLk (y;x1, . . . , xk) :=
∑

ℓ,m0,...,mk

nLℓ,k+
∑
mi

(
bℓ; y; bm0

M x1b
m1
M · · · b

mk−1

M xkb
mk
M

)
.

Here and hereafter, for example, b2MxbM means bM ⊗ bM ⊗ x ⊗ bM . The A∞ relation of nLk1,k0
and the fact that b, bM are bounding cochains imply that nLk defines a (strict and unital) filtered
right A∞

(
CF (M);

{
mbM
k

})
module structure on CF (L,M).

We can define nL
′

k in the same way.
We next describe the moduli spaces which we use to define a filtered right A∞ module

homomorphism CF (L,M)Λ → CF (L′,M)Λ. We follow [34, Section 5.3.1] with modification
given in [39]. We will use a two parameter family of almost complex structures JJ , which is
defined in Definition 15.23, to define the moduli space appearing in Proposition 15.22.
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Proposition 15.22. There exists a system of compact Hausdorff spaces

Mk1,k0(L,L
′;M ;E;JJ ; top(ρ))

with the following properties. The spacesMk1,k0(L,L
′;M ;E;JJ ; top(ρ)) carry Kuranishi struc-

tures with corners.

(1) There exist evaluation maps

ev =
(
ev(1), ev(0)

)
=
((
ev

(1)
1 , . . . , ev

(1)
k1

)
,
(
ev

(0)
1 , . . . , ev

(0)
k0

))
:

Mk1,k0(L,L
′;M ;E;JJ ; top(ρ))→

(
L̃×X L̃

)k1 × (M̃ ×X M̃
)k0 .

These maps are underlying continuous maps of strongly smooth maps.

(2) There exist also evaluation maps at infinity

(ev−∞, ev+∞) : Mk1,k0(L,L
′;M ;E;JJ ; top(ρ))→ R×R′.

These maps are underlying continuous maps of strongly smooth maps. ev+∞ is weakly
submersive. R and R′ are defined in (15.6).

(3) The normalized boundary of Mk1,k0(L,L
′;M ;E;JJ ; top(ρ)) is the disjoint union of the

following four types of fiber products:

(I) The fiber product

Mk1,1+1(L;E1; J)ev0 ×ev
(1)
i

Mk1,2,k0(L,L
′;M ;E2;JJ ; top(ρ)), (15.10)

where k1,1 + k1,2 = k1, E1 + E2 = E and i = 1, . . . , k1,2 (see Figure 15.8).

(II) The fiber product

Mk0,1+1(M ;E1; J)ev0 ×ev
(0)
i

Mk1,k0,2(L,L
′;M ;E2;JJ ; top(ρ)),

where k0,1 + k0,2 = k0, E1 + E2 = E and i = 1, . . . , k0,2 (see Figure 15.9).

(III) The fiber product

Mk0,1,k1,1(L,M ;E1; J)ev+∞ ×ev−∞Mk1,2,k0,2(L,L
′;M ;E2;JJ ; top(ρ)), (15.11)

where k0,1 + k0,2 = k0, k1,1 + k1,2 = k1, E1 + E2 = E (see Figure 15.10).

(IV ) The fiber product of

Mk1,1,k0,1(L,L
′;M ;E;JJ ; top(ρ)) (15.12)

and

ℓ∏
j=1

Mmj+1(L;J ;E2,j ; top(ρ))

(ev0,...,ev0) ×(ev
(1)
1 ,...,ev

(1)
1,2)
Mk0,2,k1,2(L

′,M ;E2,0; J), (15.13)

where k1,1 +
∑ℓ

j=1mj = k1, k0,1 + k0,2 = k0, E1 +
∑k1,2

j=0E2,j = E. We use
ev+∞ : (15.12) → R′ and ev−∞ : (15.13) → R′ to take fiber product between (15.12)
and (15.13) (see Figure 15.11).

The evaluation maps are compatible with this identifications.
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(4) There exists a principal O(1) bundle on L̃ ×X L̃, L̃ ×X L̃, L̃′ ×X L̃′, R and R′ and the
trivializations of the orientation bundle of Mk1,k0(L,L

′;M ;E;JJ ; top(ρ)) tensored with
the pullbacks of those principal O(1) bundles. These trivializations are compatible with the
above identification of the boundary.

(5) The set of E for whichMk1,k0(L,L
′;M ;E;JJ ; top(ρ)) is nonempty is discrete.

The elements of the moduli spaces corresponding to the boundaries of types (I)(II)(III)(IV)
are depicted in the Figures 15.8–15.11 below. The explanation of the figures will be given during
the proof of Proposition 15.22.

ρα = 0

ρ0 = ρα0

(τ1,i, 1)

θ(ρ0) ≤ τ1,i

M

L

Figure 15.8. Boundary of type I.

M

L

Figure 15.9. Boundary of type II.

∂u

∂τ
+ Jτ,t

∂u

∂t
− χ(τ)XHt = 0.

∂u

∂τ
+ J

∂u

∂t
= 0.R R R

Figure 15.10. Boundary of type III.

∂u

∂τ
+ Jτ,t

∂u

∂t
− χ(τ)XHt = 0.

∂u

∂τ
+ (Φt)−1

∗ J
∂u

∂t
−XHt = 0. RRR

Figure 15.11. Boundary of type IV.

Proof. We take one parameter family of Hamiltonian diffeomorphisms Φρ such that Φ0 = id
and Φ1 = Φ. WhenH : X×[0, 1]→ R is the time dependent family of Hamiltonians generating Φ,
we take Φρ so that

dΦρ

dρ
= XHρ ◦ Φρ, Φ0 = id, (15.14)

where Hρ(x) = H(x, ρ) and XHρ is the Hamiltonian vector field associated to Hρ.
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We replace H by cH and obtain one parameter family of Hamiltonian diffeomorphisms, which
we denote by ΦρcH .

We take a non-decreasing function χ : R→ [0, 1] such that

(1) χ(τ) = 0 for sufficiently small τ .

(2) χ(τ) = 1 for sufficiently large τ .

Definition 15.23. We take a two parameter family of complex structures JJ = {Jτ,t} with
the following properties:

(1) There exists A > 0 such that Jτ,t = J if τ < −A.
(2) Jτ,t =

(
Φt
)−1
∗ J if τ > +A.

(3) We denote by ΦρcH the one parameter family of Hamilton diffeomorphisms generated by
the time dependent Hamiltonian cH : X × [0, 1]→ R. Then Jτ,1 =

(
Φ1
χ(τ)H

)−1
∗ J if τ > 0.

(4) Jτ,0 = J for any τ .

We take the one parameter family of almost complex structures J =
{
J (ρ)

}
which we used

to prove Proposition 15.17 as follows. We take and fix an order preserving diffeomorphism
θ : (0, 1)→ R. We then put

J (ρ) =
(
Φ1
χ(θ(ρ))H

)−1
∗ J. (15.15)

We consider maps

u : R× [0, 1]→ X, (15.16)

which satisfy the following conditions.

Condition 15.24.

(1) u satisfies the equation

∂u

∂τ
+ Jτ,t

Å
∂u

∂t
− χ(τ)XHt

ã
= 0. (15.17)

Here H is the time dependent Hamiltonian as in (15.14).

(2) u(τ, 0) ∈M .

(3) u(τ, 1) ∈ L.

Remark 15.25. In [34, Section 5.3.1], we used pseudo-holomorphic curve equation (without
Hamiltonian term) with a moving boundary condition, (which becomes the condition u(τ, 1) ∈
Φχ+(τ)(L) in our situation). (See [34, equations (5.3.18.1) and (5.3.18.2)].) Here we use the
equation (15.17) (which has a Hamiltonian term) and the boundary conditions are given by
fixed Lagrangian submanifolds M and L. The way taken here is the same as [39]. (See [39,
equations (3.3) and (3.4)].) The relation between these two formulations are explained in [39,
Section 4]. We use the current formulation since then we can obtain energy estimate (see
Lemma 15.29) easier.

Definition 15.26. We define
◦◦
Mk1,k0(L,L

′;M ;E;JJ ; top(ρ)) as the set of objects

((R× [0, 1]; z⃗0, z⃗1);u; γ; ρ⃗)

such that
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(1) The map u is as in (15.16) and satisfying Conditions 15.24.

(2) z⃗0 (resp. z⃗1) is a k0 (resp. k1) tuple of points, that is, z⃗0 = (z0,1, . . . , z0,k0), where z0,i =
(τ0,i, 0) with τ0,1 < · · · < τ0,k0 (resp. z⃗1 = (z1,1, . . . , z1,k1), where z1,i = (τ1,i, 0) with
τ1,1 > · · · > τ1,k1).

(3) The maps γ0 : (R×{0}) \ z⃗0 → M̃ , γ1 : (R×{1}) \ z⃗1 → L̃ are lifts of the restrictions of u.
Namely, u(τ, 1) = iL(γ1(τ))), u(τ, 0) = iM (γ0(τ)). We assume an appropriate switching
condition similar to those appeared in Section 3. (See Definition 3.17 (5).)

(4) ρ⃗ = (ρ1, . . . , ρk1), where ρi are real numbers. We require

θ(ρi) ≤ τ1,i. (15.18)

(5) We require

E =

∫
R×[0,1]

u∗ω + lim
τ→+∞

∫
[0,1]

H(t, u(τ, t))dt.

M

L
(τ1,1, 1)(τ1,2, 1)(τ1,3, 1)

(τ0,1, 0) (τ0,2, 0) (τ0,3, 0) (τ0,4, 0)

∂u

∂τ
+ Jτ,t

∂u

∂t
− χ(τ)XHt = 0.

θ(ρ1) ≤ τ1,1θ(ρ3) ≤ τ1,3 θ(ρ2) ≤ τ1,2

Figure 15.12. An element of
◦◦
Mk1,k0

(L,L′;M ;E;JJ ; top(ρ)).

We define evaluation maps

ev1,i :
◦◦
Mk1,k0(L,L

′;M ;E;JJ ; top(ρ))→ L̃×X ×L̃

(resp.

ev0,i :
◦◦
Mk1,k0(L,L

′;M ;E;JJ ; top(ρ))→ M̃ ×X ×M̃),

as the evaluation maps at the marked points z0,i (resp. z1,i) using the switching condition in the
same way as (3.13). Namely,

ev1,i((R× [0, 1]; z⃗0, z⃗1);u; γ; ρ⃗) = ( lim
τ↓τ1,i

γ1(τ), lim
τ↑τ1,i

γ1(τ)),

and

ev0,i((R× [0, 1]; z⃗0, z⃗1);u; γ; ρ⃗) = ( lim
τ↑τ0,i

γ0(τ), lim
τ↓τ0,i

γ0(τ)),

respectively.
We also define the evaluation maps at infinity

ev−∞ :
◦◦
Mk1,k0(L,L

′;M ;E;JJ ; top(ρ))→ R

(resp.

ev+∞ :
◦◦
Mk1,k0(L,L

′;M ;E;JJ ; top(ρ))→ R′).
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Here we define ev+∞ by

ev+∞((R× [0, 1]; z⃗1;u; γ; ρ⃗) = lim
τ→+∞

(γ0(τ),Φ(γ1(τ))). (15.19)

Note that the limit ℓ(t) = limτ→+∞ u(τ, t) satisfies
dℓ
dt = XHt ◦ℓ. This is a consequence of (15.24)

and limτ→+∞
∂u
∂τ = 0. Therefore, limτ→+∞Φ(u(τ, 0)) = limτ→+∞ u(τ, 1). Hence the right-hand

side of (15.19) is an element of R′.
Finally, we define

evdetii :
◦◦
Mk1,k0(L,L

′;M ;E;JJ ; top(ρ))→ [0, 1]

by evdetii ((R× [0, 1]; z⃗0, z⃗1);u; γ; ρ⃗) = ρi. (Here deti stands for ‘time with delay’.)

Definition 15.27. M̊k1,k0(L,L
′;M ;E;JJ ; top(ρ)) is a union of fiber products of

k′1∏
j=1

Mmj+1(L;J ;E1,j ; top(ρ)) (15.20)

and

◦◦
Mk′1,k0

(L,L′;M ;E2;JJ ; top(ρ)), (15.21)

where the union is taken over k′1, {mj}, {E1,j}, E2 with
∑k′1

j=1mj = k1,
∑k′1

j=1E1,j + E2 = E.

The fiber product is taken over
∏k′1
j=1

((
L̃×X L̃

)
× R

)
. We use the map (15.20)→ ∏k′1

j=1

((
L̃

×X L̃
)
×R
)
which is ((ev0, ρ0), . . . , (ev0, ρ0)) and the map (15.21)→∏k′1

j=1

((
L̃×X L̃

)
× R

)
which

is
((
ev1,1, ev

deti
1,1

)
, . . . ,

(
ev1,k′1 , ev

deti
1,k′1

))
to define the fiber product. (Note ρ0 is defined by (15.4).)

Figure 15.13 below depicts an element of M̊k1,k0(L,L
′;M ;E;JJ ; top(ρ)). It is a map to X

from the domain which is a union of a strip R× [0, 1] and trees of disks attached at t = 1. It is
pseudo-holomorphic with respect to the almost complex structure of X which depends on the
components of the domain. The almost complex structure we use is J (ρi) on the disk components
depicted in Figure 15.13. Note that J (ρ) is defined in (15.15).

M

L
(τ1,1, 1)

(τ0,1, 0) (τ0,2, 0) (τ0,3, 0) (τ0,4, 0)

∂u

∂τ
+ Jτ,t

∂u

∂t
− χ(τ)XHt = 0.

(τ1,2, 1)(τ1,3, 1)

ρ1

ρ2

ρ3
ρ4

ρ5

ρ5

ρ6

ρ6

ρ1

ρ2

ρ3

ρ4

≤

≤
≤

≤

θ(ρ3) ≤ τ1,2
θ(ρ6) ≤ τ1,3

Figure 15.13. An element of M̊k1,k0
(L,L′;M ;E;JJ ; top(ρ)).

We remark that all the fiber products of (15.20) and (15.21) have the same virtual dimension
that is independent of k′1, {mj}, {E1,j}, E2 but depends only on the total homology class of the
map, and k1, k2.
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We also remark that the union includes the case when mj = 1 and E1,j = 0 for all j. In this
case, the fiber product of (15.20) and (15.21) is nothing but

◦◦
Mk1,k0(L,L

′;M ;E;JJ ; top(ρ)).

Remark 15.28. We remark that the space M̊k1,k0(L,L
′;M ;E;JJ ; top(ρ)) contains several

components with the same virtual dimension as the space
◦◦
Mk1,k0(L,L

′;M ;E;JJ ; top(ρ)). So,
even in the case when all the elements are Fredholm regular, the subset

◦◦
Mk1,k0(L,L

′;M ;E;
JJ ; top(ρ)) may not be a dense subset of the moduli space M̊k1,k0(L,L

′;M ;E;JJ ; top(ρ)).

The moduli space Mk1,k0(L,L
′;M ;E;JJ ; top(ρ)) is the stable map compactification of

M̊k1,k0(L,L
′;M ;E;JJ ; top(ρ)). The compactification is obtained by adding the following:

(Bub.1) We include the case when the source curve has a sphere bubble.

(Bub.2) We include the case when the source curve has a disk bubble at t = 0. (The disk bubble
at t = 1 is already included when we take the fiber product in Definition 15.27.)

(Bub.3) We include the case when the source curve splits into several pieces in the τ -direction.
The cases when it splits into two pieces are depicted in Figures 15.10, 15.11.

The detail of this stable map compactification is written in [34, Section 5.3.1] and is now a rou-
tine. So we omit it here. (We remark that all the components corresponding to one of (Bub.1),
(Bub.2), (Bub.3) have codimension ≥ 1.)

We now study the boundary of the moduli spaceMk1,k0(L,L
′;M ;E;JJ ; top(ρ)).

Case (I) in Proposition 15.22 (3) occurs at the point ((ξj), ξ0) where one of the factors ξj
of (15.20) lies in the boundary point of that factor. This corresponds to the case when some ραi

is 0, where ξj = ((Σ, z⃗), u, γ, {ραi}). This boundary corresponds to Proposition 15.17 (2), (15.2).
Therefore, this case is described by the fiber product (15.10). See Figure 15.8.

Note that the boundary which corresponds to Proposition 15.17 (2), (15.3) does not appear
here. In fact, (15.18) implies θ(ρi) ≤ τ1,i. Here ρi, τ1,i are parts of the data of ξ0. Moreover, by
the definition of the fiber product appearing in Definition 15.27, we find ρ0(ξi) = ρi. Therefore,
since θ is a diffeomorphism ρ0(ξi) = 1 occurs only in the limit which we discuss in Case (IV).

Case (II) in Proposition 15.22 (3) occurs when a disk bubble occurs at t = 0, that is, (Bub.2).
See Figure 15.9.

We remark that the situations of the bubbles at t = 0 and t = 1 are different. This is because
the boundary conditions are different.

Case (III) in Proposition 15.22 (3) occurs when the domain splits into two pieces one of which
moves to the direction τ → −∞.

Note that in this limit some of the trees of disk bubbles at t = 1 may be attached to the piece
which moves to the direction τ → −∞. If such a tree of disk bubbles corresponds to ξi (that is,
one of the factors of the fiber product (15.20) and the root of such piece is (τi, 1), then τ → −∞.
Therefore, ρ0(ξi) = 0. (In fact, ρ0(ξi) ≤ evdeti1,i (ξ), where ξ is an element of the factor (15.21).)

Therefore, by definition this case is described by the fiber product (15.11). See Figure 15.10.

Case (IV) in Proposition 15.22 (3) occurs when the domain splits into two pieces one of which
moves to the direction τ → +∞.

Note that the piece which moves to the direction τ → +∞ consists of a map from a strip
R× [0, 1] plus a union of trees of disk bubbles. The map u∞ : R× [0, 1]→ X, which is a part of
this map, satisfies the equation

∂u∞
∂τ

+
((
Φt
)−1
∗ J

)Å∂u∞
∂t
−XHt

ã
= 0, (15.22)

together with the boundary condition u∞(τ, 0) ∈ M and u∞(τ, 1) ∈ L. We put v(τ, t) =
Φt(u∞(τ, t)). Then (15.22) is equivalent to ∂v

∂τ +J
∂v
∂t = 0. The corresponding boundary condition
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for v is v(τ, 0) ∈M and v(τ, 1) ∈ L′. This is the equation and the boundary condition which we
used in the definition ofMk0,k1(L

′,M ;E; J).

The trees of disk bubbles at t = 1 may be attached to the piece which moves to the direc-
tion τ → +∞. Such a tree of disk bubbles corresponds to ξi, that is, one of the factors of the
fiber product (15.20). Since evdeti1,i can take any value between 0 and 1, there is no constraint
on ρ0 for ξi.

Therefore, by definition this case is described by the fiber product of (15.12) and (15.13).
See Figure 15.11.

We have thus checked that all the fiber products described by (I), (II), (III), (IV) in Propo-
sition 15.22 (3) appear as boundary components of Mk1,k0(L,L

′;M ;E;JJ ; top(ρ)). To show
that all other potential boundary components cancel out each other, the most important point
to observe is the following. We consider the case when a disk bubble occurs at t = 1 for a limit
of a sequence of elements of

◦◦
M0,k0(L,L

′;M ;E;JJ ; top(ρ)). Let E1 be the energy of the disk
bubble. The set of elements of the compactification

◦◦
M0,k0(L,L

′;M ;E;JJ ; top(ρ)) correspond-
ing to such a disk bubble is described by the pair (ξ, x, ρ1), where

(DB.1) ξ ∈M0+1

(
L;E1; J

(ρ1)
)
.

(DB.2) x ∈
◦◦
M1,k0(L,L

′;M ;E2;JJ ; top(ρ)).
(DB.3) (θ(ρ1), 1) is the (unique) boundary marked point of the element x.

(DB.4) ρ0(ξ) = ρ1. Here ρ0 :M0+1

(
L;E1; J

(ρ1)
)
→ [0, 1] is as in (15.4).

(DB.5) ev0(ξ) = ev1,i(x).

See Figure 15.14 below. We remark that the disk bubble at (τ, 1) is identified with an element
ofM0+1

(
L;E1; J

(ρ(τ))
)
.

M

L

J (ρ1) ξ

{
{

x(θ(ρ1), 1)

ev0(ξ) = ev1,i(x)

Figure 15.14. An element (ξ, x, ρ1).

We next consider the fiber product

M0+1(L;J ;E1; top(ρ))

(ev0,ρ0) ×(ev1,1,evdeti1,1 )

◦◦
M1,k0(L,L

′;M ;E2;JJ ; top(ρ)). (15.23)

This is a part of M̊0,k0(L,L
′;M ;E;JJ ; top(ρ)) defined in Definition 15.27. We consider a part of

the boundary of
◦◦
M1,k0

(L,L′;M ;E2;JJ ; top(ρ)) which consists of ((R × [0, 1]; z0,1, z⃗1);u; γ; ρ⃗)
such that z0,1 = ρ1. This is the case when the equality holds in the inequality (15.18). (See
Figure 15.15.)

Now it is easy to see that the part of the boundary of (15.23) which we describe above cancels
with the part of the boundary corresponding to the disk bubble at t = 1, which we describe by
(DB.1), (DB.2), (DB.3), (DB.4), (DB.5).

In a similar way as above, we can show that all the potential boundaries of the moduli
space M1,k0(L,L

′;M ;E2;JJ ; top(ρ)) other than those spelled out in Proposition 15.22 (3),
(I)–(IV) cancel each other. The proof of Proposition 15.22 is complete. ■
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J (ρ1)

(θ(ρ1), 1)

J (ρ1)

θ(ρ1) < τ

Figure 15.15. Cancellation at (ξ, x, ρ1).

We use the next energy estimate which is due to Chekanov [14]. (See also [39, Section 5].)
From now on, we will assume

∫
X Htω

n = 0 and
∫
X ω

n = 1. We put

∥H∥+ =

∫ 1

0
sup(Ht)dt, ∥H∥− = −

∫ 1

0
inf(Ht)dt.

They are non-negative numbers. We remark that the Hofer distance [52] from Φ to identity is
the infimum of ∥H∥− + ∥H∥+ for all H with Φ1

H = Φ.

Lemma 15.29. IfMk1,k0(L,L
′;M ;E;JJ ; top(ρ)) is nonempty, then E ≥ −∥H∥−.

Proof. We remark u∗ω = ω
(
∂u
∂τ ,

∂u
∂t

)
dτ ∧ dt. By equation (15.17), we have

ω

Å
∂u

∂τ
,
∂u

∂t

ã
= −ω

Å
Jτ,t

Å
∂u

∂τ

ã
+ χ(τ)XHt ,

∂u

∂τ

ã
= g

Å
∂u

∂τ
,
∂u

∂τ

ã
− χ(τ)∂(H ◦ u)

∂τ
.

Therefore,∫
R×[0,1]

u∗ω ≥ −
∫
R×[0,1]

χ(τ)
∂(H ◦ u)

∂τ
dτdt

≥ +

∫
R×[0,1]

∂χ

∂τ
(H ◦ u)dτdt− lim

τ→+∞

∫
[0,1]

H(t, u(τ, t))dt

≥ −∥H∥− − lim
τ→+∞

∫
[0,1]

H(t, u(τ, t))dt.

Here the first inequality is a consequence of positivity of the Riemannian metric g, the second
equality is proved by integration by parts, and the third inequality follows from the definition
of ∥H∥−.

We remark that the energy E is defined in Definition 15.26 (5).

The lemma follows. ■

Remark 15.30. When we identified the solution space of the equation (15.22) with the mod-
uli space Mk0,k1(L

′,M ;E; J), we identify u : R × [0, 1] → X with v : R × [0, 1] → X by
v(τ, t) = Φt(u∞(τ, t)). The term limτ→+∞

∫
[0,1]H(t, u(τ, t))dt which appear in the definition
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of the energy E and the above calculation is related to this point. In fact, for a solution u of
equation (15.22) we define its energy by∫

R×[0,1]
u∗ω + lim

τ→+∞

∫
[0,1]

H(t, u(τ, t))dt− lim
τ→−∞

∫
[0,1]

H(t, u(τ, t))dt.

The third term is 0 in our case.
Note that equation (15.22) is regarded as a gradient flow equation of certain action func-

tional and the above energy is the difference between values of action functional at τ = +∞
and τ = −∞.

We define

φk1,k0 : Bk1CF [1](L)⊗ CF (L;M)⊗Bk0CF [1](M)→ CF (L′;M)⊗Λ0 Λ

by

φk1,k0(h1,1, . . . , h1,k1 ;h;h0,1, . . . , h0,k0)

=
∑
E

TEev+∞!
(
ev∗1,1h1,1 ∧ · · · ∧ ev∗1,k1h1,k1 ∧ ev∗−∞h

∧ ev∗0,1h0,1 ∧ · · · ∧ ev∗0,k0h1,k0 ;Mk1,k0(L,L
′;M ;E;JJ ; top(ρ)),”Sε

)
.

Lemma 15.31. {φk1,k0} is a filtered A∞ CF (L)-CF (M) bi-module homomorphism over the
filtered A∞ homomorphisms g : CF (L)→ CF (L′) and id : CF (M)→ CF (M).15.5

Proof. This is a consequence of Proposition 15.22 together with Stokes’ formula (see [40, Propo-
sition 9.26] and [46]) and the composition formula (see [40, Theorem 10.20] and [46]). In fact,
the boundaries of type (I), (II), (III), (IV) corresponds to (15.24), (15.25), (15.26) and (15.27)
below, respectively,

φk1,k0,2(h1,1, . . . , h1,k1 ;h;h0,1, . . . ,mk0,1(h0,i, . . . , h0,i+k0,1−1), . . . , h0,k0), (15.24)

φk1,2,k0(h1,1, . . . ,mk1,1(h1,i, . . . , h1,i+k1,1−1), . . . , h1,k0 ;h;h0,1, . . . , h0,k0), (15.25)

φk1,2,k0,2(h1,1, . . . , nk1,1,k0,1(h1,k1,2−1, . . . , h1,k1 ;h;h0,1, . . . , h0,k0,1), . . . , h0,k0), (15.26)

nk1,2,k0,2(gm1(h1,1, . . . , h1,m1), . . . , gmℓ
(h1,k1,2−mℓ+1, . . . , h1,k1,2),

φk1,2,k0,1(h1,k1,2+1 . . . , h1,k1 ;h;h0,1, . . . , h0,k0,2), . . . , h0,k2). (15.27)

Here in (15.27) we put k1,2 =
∑ℓ

j=1mj . (Note k1,1 + k1,2 = k1.) ■

Note that the filtered A∞ bi-module structure etc. appearing in Lemma 15.31 are curved.
We define

ψm : CF (L;M)⊗BmCF [1](M)→ CF (L′;M)⊗Λ0 Λ

by

ψm(h;h1, . . . , hm) =
∞∑
k0=0

∞∑
k1,0=0

· · ·
∞∑

k1,m=0

φk0,k1+
∑m

i=0 k1,i

(
bk0L ;h; b

k1,0
M h1 · · ·hkbk1,mM

)
.

Lemma 15.31 now implies the following. We use bM and bL to define a strict and unital fil-
tered A∞

(
CF (M),

{
mbM
k

})
right module structure on CF (L;M). We use bM and bL′ to define

a strict and unital filtered A∞
(
CF (M),

{
mbM
k

})
right module structure on CF (L′;M).

15.5See [34, Definition 3.7.7] for the definition of A∞ bi-module homomorphism over a pair of A∞ homomorphisms.
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Lemma 15.32. {ψm | m = 0, 1, 2, . . . } define a strict and unital right filtered A∞ module
homomorphism: CF (L;M)⊗Λ0 Λ→ CF (L′;M)⊗Λ0 Λ.

Lemma 15.29 implies the next lemma.

Lemma 15.33.
{
T ∥H∥+ψm | m = 0, 1, 2, . . .

}
define a strict and unital right filtered A∞ module

homomorphism: CF (L;M)→ CF (L′;M).

By exchanging the role of L′ and L, we obtain the following.

Lemma 15.34. There exists {ψ′m | m = 0, 1, 2, . . . } which define a strict and unital left fil-
tered A∞ module homomorphism: CF (L′;M)⊗Λ0Λ→ CF (L;M)⊗Λ0Λ. Moreover,

{
T ∥Φ∥−ψ′m |

m = 0, 1, 2, . . .
}
define a strict and unital left filtered A∞ module homomorphism: CF (L′;M)→

CF (L;M).

We put ψ = {ψm | m = 0, 1, 2, . . . } and ψ′ = {ψ′m | m = 0, 1, 2, . . . }. We can use a similar
argument (one parameter version) to show that there exists a strict and unital filtered A∞
pre-natural transformations ϕ and ϕ′ such that

ψ′ ◦ ψ −m1(ϕ) = identity, ψ ◦ ψ′ −m1(ϕ
′) = identity.

Moreover, T ∥H∥++∥H∥−ϕ determines pre-natural transformation CF (L;M) → CF (L;M) and
T ∥H∥++∥H∥−ϕ′ determines pre-natural transformation CF (L′;M) → CF (L′;M). We omit the
detail of the proof of this statement. See [34, Sections 5.3.3 and 5.3.4] and [39, Lemma 6.4] for
the proof of this part. (The way to adapt the argument there to the current situation is the
same as the way we do so for ψ which we explained in detail above.)

We thus proved that CF (L′;M) is equivalent to CF (L;M) over Λ in the category of right
CF (M) module. This proves Theorem 15.5 (2).

To prove Theorem 15.5 (3), it suffices to recall that the infimum of ∥H∥+ + ∥H∥− over all H
which generates the Hamiltonian diffeomorphism Φ is nothing but the Hofer distance between Φ
and the identity map.

The proof of Theorem 15.5 is now complete.

15.6 Completion by Hofer distance

In [34, Section 6.5.4], we proved that if ci, ci′ are Cauchy sequences of objects of a strict fil-
tered A∞ category C with respect to the Hofer distance dH , then we can define an inductive
limit

lim
i→∞

HF (ci, ci′) (15.28)

as Λ0 modules. Namely, we consider the m1 cohomology HF (ci, ci′) and write it as

HF (ci, ci′) = Λn0 ⊕
ki⊕
j=1

Λ0

T λi,jΛ0
.

Here λi,j are positive numbers such that λi,j ≥ λi,j+1.
15.6 In fact, dH(ci, cj) < ∞ the rank n is

independent of i. The torsion exponent λi,j is one Lipschitz by [34, Theorem 6.1.25] and [39,
Theorem 6.2]. We use it to define the inductive limit (15.28). The inductive limit (15.28) has
a form

lim
i→∞

HF (ci, ci′) = Λn0 ⊕
⊕ Λ0

T λjΛ0
. (15.29)

15.6See [34, Theorem 6.1.20].
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Here the direct sum in the second factor may be infinite sum with limj→∞ λj → 0. See [34,
Proposition 6.5.38] and [34, Example 6.5.40]. It seems likely that we can prove the next conjec-
ture purely algebraically.

Conjecture 15.35. The A∞ operations mk extend ‘continuously’ to the limit (15.29) and define
a ‘filtered A∞ category’ whose object is a Cauchy sequence of OB(C ).

Remark 15.36. Conjecture 15.35 appeared in the preprint version of this paper in 2017. A ver-
sion of its positive answer is now given in [32].

One reason why proving Conjecture 15.35, taking completion of OB(C ) and trying to find
a filtered A∞ category whose object is an element of such a completion, could be interesting
is as follows. In this paper, we consider only a set of Lagrangian submanifolds L1, L12 etc.
which satisfy certain ‘clean intersection’ properties. If L1 and L12 do not necessary have clean
intersection, the geometric transformation of L1 by L12 may not exist. However, Theorem 15.5
implies that it exists as an object of a certain completion of Fukst(X2). So by taking the
completion with respect to the Hofer distance, we may take the geometric transformation and
the composition of Lagrangian correspondences without assuming any kinds of transversality or
cleanness of the Lagrangian submanifolds involved.

16 Künneth bi-functor revisited

16.1 Tensor product of filtered A∞ categories

We begin with defining the tensor product of filtered A∞ categories. There are various works
such as [6, 57, 62, 69] etc. on this subject. We describe it using the notion of filtered A∞
bi-functor. We remark that in this section, we use the sign convention of the filtered A∞ multi-
module so that its element v contributes deg′ v to the sign. This convention is different from
one we used in Section 10, where the contribution is deg v.

Remark 16.1. In this section, we always assume the ground ring R is a field. We also assume
that filtered A∞ categories are always gapped. Moreover, for two objects c, c′ of C we assume
that the m1 cohomology H(C (c, c′);m1) is finitely generated. (It is then a finite direct sum
of Λ0.)

Under this assumption, the cohomology H(C (c, c′);m1) is isomorphic to a direct sum of
finitely many copies of Λ0 or Λ0/T

aΛ0 (see [34, Proposition 6.3.14]). Using this fact, cohomology
of completed tensor product behaves in the same way as the case of usual tensor product over
Dedekind ring. In fact,

Λ0

T aΛ0

“⊗ Λ0

T bΛ0
=

Λ0

T aΛ0
, Tor

Å
Λ0

T aΛ0
,

Λ0

T bΛ0

ã
=

Λ0

T aΛ0
,

if a ≤ b.
It seems that the construction of the tensor product below is a category version of one

suggested by Kontsevich and Soibelman [57, p. 174, line 6].
Let Ci be a unital filtered A∞ category for i = 1, 2. There are 2 versions of the story of tensor

products of filtered A∞ categories, that are, strict and G-gapped versions. Let

BIFUNC(C op
1 × C op

2 ; CH)
be the filtered A∞ category whose objects are filtered A∞ bi-functors C op

1 × C op
2 → CH. We

require objects of BIFUNC to be strict (resp. G-gapped). In other words, it is a category of
left C1, C2 bimodules.16.1

16.1In the gapped case, we use the language of left filtered A∞ modules.
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Lemma 16.2. There exists a strict (resp. G-gapped) and unital filtered A∞ bi-functor

BIYON : C1 × C2 → BIFUNC(C op
1 × C op

2 ; CH).
Definition 16.3. We call BIYON the A∞ bi-Yoneda functor.

Proof. We discuss the strict case. The construction of G-gapped case is similar. Let c = (c1, c2)
be an objects of C1 × C2 (namely, ci ∈ OB(Ci)). We construct BiYon(c) : C op

1 × C op
2 → CH.

Let b = (b1, b2) be an object of C op
1 × C op

2 .
We defineBiYonob(c)(b) = C1(b1, c1)“⊗C2(b2, c2) which is a chain complex. This is the object

part. We next define

BiYonk1,k2(c) : Bk1C
op
1 [1](b1,1, b1,2)“⊗Bop

k2
C2[1](b2,1, b2,2)

→ Hom(C1(b1,1, c1)“⊗C2(b1,2, c2),C1(b2,1, c1)“⊗C2(b2,1, c2)).

If k1 ̸= 0 and k2 ̸= 0, we put BiYonk1,k2(c) = 0. Otherwise, we define

BiYonk1,0(c)(x1 ⊗ 1)(z1 ⊗ z2) = (−1)∗1m(xop
1 , z1)⊗ z2,

BiYon0,k2(c)(1⊗ x2)(z1 ⊗ z2) = (−1)∗2z1 ⊗m(xop
2 , z2).

Here ∗1 = ε(x1), ∗2 = ε(x2) + (1 + deg′ x2) deg
′ y1 are Koszul sign. (The symbol ε(x) is

defined in (2.13).) It is easy to check that BiYon(c) = (BiYonob(c), {BiYonk1,k2(c)}) becomes
a filtered A∞ bi-functor. (The calculation is similar to [27, p. 93], which is the case of usual
Yoneda functor.)

We thus constructed the object part of bi-Yoneda functor. We next construct its morphism
part. Let ci = (ci,1, ci,2) be an element of OB(C1) × OB(C2) for i = 1, 2. We denote by
(C(c1, c2), d) the complex of all pre-natural transformations from BiYonob(c1) to BiYonob(c2).
We define the product ◦ : C(c1, c2) ⊗ C(c2, c3) → C(c1, c3) by the composition of pre-natural
transformations. We thus obtain a DG-category (C, d, ◦). (We use the fact CH is not only an
A∞ category but also DG-category to obtain this DG category.) We regard it as an A∞ category.

We now define a filtered map

BiYonℓ1,ℓ2 : Bℓ1C1[1](c1,1, c1,2)⊗Bℓ2C2[1](c2,1, c2,2)→ C(c1, c2).

Let bi = (bi,1, bi,2), ci = (ci,1, ci,2) an element of OB(C1)×OB(C2) i = 1, 2. Let

(x1 ⊗ x2) ∈ Bk1C op
1 [1](b1,1, b2,1)“⊗Bk2C op

2 [1](b1,2, b2,2),

(y1 ⊗ y2) ∈ Bℓ1C1[1](c1,1, c2,1)“⊗Bℓ2C2[1](c1,2, c2,2) (16.1)

and (z1, z2) ∈ F (c1)ob(b2). We define

((BiYonℓ1,ℓ2(y1 ⊗ y2)k1,k2)(x1 ⊗ x2))(z1, z2) = 0

if (k1, ℓ1) ̸= (0, 0) and (k2, ℓ2) ̸= (0, 0). In case either (k1, ℓ1) = (0, 0) or (k2, ℓ2) = (0, 0), we define

((BiYonℓ1,0(y1 ⊗ 1)k1,0)(x1 ⊗ 1))(z1, z2)

= (−1)∗1m(xop
1 , z1,y1)⊗ z2 ∈ C1(b1,1, c2,1)“⊗C2(b1,2, c2,2) (16.2)

(note that b1,2 = b2,2, c1,2 = c2,2 in this case) and

((BiYon0,ℓ2(1⊗ y2)0,k2)(1⊗ x2))(z1, z2)

= (−1)∗2z1 ⊗m(xop
2 , z2,y2) ∈ C1(b1,1, c2,1)“⊗C2(b1,2, c2,2). (16.3)

(Note that b1,1 = b2,1, c1,1 = c2,1 in this case.) Here ∗i is the Koszul sign, that is,

∗1 = ε(x1) + (deg′ z1 + deg′ x1) deg
′ y1,

∗2 = ε(x2) + deg′ y2(deg
′ x2 + deg′ z1 + deg′ z2) + deg′ z1(deg

′ x2 + 1).
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Sublemma 16.4. (16.2) and (16.3) define filtered A∞ bi-functor.

The proof is a straightforward calculation similar to the proof of [27, Lemma 9.8] and so is
omitted. The proof of Lemma 16.2 is complete. ■

Definition 16.5. Let C1 and C2 be unital filtered A∞ categories. We define the full subcategory
of BIFUNC(C op

1 ×C op
2 ; CH) whose objects are image of the bi-Yoneda functor the tensor product

of C1 and C2 and write C1 ⊗ C2. By definition, there exists a strict and unital filtered A∞ bi-
functor C1 × C2 → C1 ⊗ C2.

It is easy to show that C1⊗C2 is homotopy equivalent to C ′1⊗C ′2 if Ci is homotopy equivalent
to C ′i .

Lemma 16.6. Suppose C1, C2 are DG-categories. Then the tensor product as filtered A∞ cate-
gory C1⊗C2 is homotopy equivalent to the (DG-category) tensor product C1⊗C2 as filtered A∞
categories.

We prove Lemma 16.6 in Section 16.4. Lemma 16.6 implies that the tensor product defined
in [6, 19] etc. is the tensor product in the sense of Definition 16.5.

We put C = C1 ⊗ C2. Note that by construction there exists a left C1, C2 and right C,
filtered A∞ tri-moduleM(C1,C2;C), and leftC right C1, C2 tri-moduleM(C;C1,C2), as follows.
Let c = (c1, c2) ∈ OB(C1)×OB(C2), b = (b1, b2) ∈ OB(C) = OB(C1)×OB(C2). Then we put

M(C1,C2;C)(c1, c2; b) = C1[1](c1, b1)⊗ C2[1](c2, b2),

M(C;C1,C2)(b; c1, c2) = C1[1](b1, c1)⊗ C2[1](b2, c2). (16.4)

This is the object part of our tri-module. The morphism part is defined as follows. Let T ∈
C(b1, b2) and T ∈ BkC(b1, b2). Let x1 ⊗ x2 be as in (16.1). Let (z1, z2) ∈ C1[1](c2,1, b1,1) ⊗
C2[1](c2,2, b1,2) = M(C1,C2;C)(c2,1, c2,2; b1). Now we define the bi-module structure nℓ1,ℓ2;k as

nℓ1,ℓ2;k(x1 ⊗ x2; (z1, z2);T) ∈M(C1,C2;C)(c1,1, c1,2; b2), (16.5)

where (16.5) = 0 unless (ℓ1, ℓ2; k) = (ℓ1, 0; 0), (ℓ1, ℓ2; k) = (0, ℓ2; 0), or k = 1. In case k = 1, we
define

(16.5) = (−1)deg′Tℓ1,ℓ2 (deg′ x1+deg′ x2+deg′ z1+deg′ z2)Tℓ1,ℓ2(x1 ⊗ x2)(z1, z2). (16.6)

Here T = T is a pre-natural transformation. In case k = 0, the structure nℓ1,ℓ2;k is nothing
but the left filtered A∞ module structure over C1, C2, which is nothing but the filtered A∞
bi-functor C op

1 × C op
2 → CH. More explicitly, it is

nℓ1,0;0(x1 ⊗ 1; (z1, z2); 1) = m(x1, z1)⊗ z2,
n0,ℓ2;0(1⊗ x2; (z1, z2); 1) = (−1)∗z1 ⊗m(x2, z2), (16.7)

with ∗ = (deg′ x2 + 1) deg′ z1.
The definition of tri-module structure on M(C;C1,C2) is similar.
By the definition of a pre-natural transformation, the composition and the differential, it is

straightforward to check that (16.4)–(16.7) define filtered A∞ tri-module structure. (We remark
that C is a DG-category because CH is a DG-category.)

We next define a filtered A∞ bi-module M(C;C) over C × C as follows: M(C;C)(c, b) =
C(c, b), and the structure operations of the bi-moduli structure are given by the structure
operation of the filtered A∞ category C. (This is actually a DG bi-module.) Using A∞ bi-
functor C1 × C2 → C, we regard M(C;C) as a left C1, C2 and right C A∞ tri-modules or left
C and right C1, C2 A∞ tri-module.
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Lemma 16.7. There exists a homotopy equivalence M(C;C) ∼ M(C1,C2;C) as left C1, C2

and right C tri-modules. There exists also a homotopy equivalence M(C;C) ∼M(C;C1,C2) as
left C and right C1, C2 tri-modules.

The proof is given in Section 16.4.

16.2 Künneth functor in Lagrangian Floer theory

Situation 16.8. Let (Xi, ωi) be a compact symplectic manifold, Vi a background datum of Xi,
and Li a finite set of Vi-relatively spin immersed Lagrangian submanifolds for i = 1, 2. We
assume Li is a clean collections for i = 1, 2.

We obtain a curved filtered A∞ category Fuk(Xi;Li) for i = 1, 2. We denote by Fukst(Xi;Li)
the strict category associated to Fuk(Xi;Li).

We consider the direct product (X1 ×X2, ω1 ⊕ ω2) and the background datum π∗1V1 ⊕ π∗1V2
on it. We put L1×L2 := {L1×L2 | L1 ∈ L1, L2 ∈ L2}. This is a clean collection of π∗1V1⊕π∗1V2
relatively spin immersed Lagrangian submanifolds. We then obtain a curved filteredA∞ category
Fuk(X1×X2;L1×L2). We denote by Fukst(X1×X2;L1×L2) the strict category associated to
Fuk(X1 ×X2;L1 × L2).

The next theorem is the main result of this section.

Theorem 16.9. There exists a strict and unital filtered A∞ functor

Fukst(X1;L1)⊗ Fukst(X2;L2)→ Fukst(X1 ×X2;L1 × L2),

which is a homotopy equivalence to the image.

Theorem 16.9 was obtained previously by L. Amorin [7] by a different method.

We call the functor in Theorem 16.9 the Künneth bi-functor and denote it by K .

Corollary 16.10. Let Li ⊂ Xi be a Vi-relatively spin immersed Lagrangian submanifold for
i = 1, 2. Suppose L1, L2 are unobstructed. Then L1 × L2 is also unobstructed. Moreover,
bounding cochains b1 and b2 of L1 and L2 determine a bounding cochain b1 × b2 of L1 × L2

canonically up to gauge equivalence and we have an exact sequence

0→ Tor(HF ((L1, b1), (L
′
1, b
′
1)), HF ((L2, b2), (L

′
2, b
′
2))

→ HF ((L1 × L2, b1 × b2), (L′1 × L′2, b′1 × b′2))
→ HF ((L1, b1), (L

′
1, b
′
1))⊗Λ0 HF ((L2, b2), (L

′
2, b
′
2))→ 0.

Proof. Let C1, C2 be strict and unital filtered A∞ categories and ci, c
′
i ∈ OB(Ci). It suffices

to show the existence of the next exact sequence

0→ Tor(H(C1(c1, c
′
1),m1), H(C2(c2, c

′
2),m1))

→ H((C1 ⊗ C2)((c1, c2), (c
′
1, c
′
2)),m1)→ H(C1(c1, c

′
1),m1)⊗Λ0 H(C2(c2, c

′
2),m1)→ 0.

This is immediate in case C1, C2 are DG-categories by Lemma 16.6. The corollary then follows
from the fact that any filtered A∞ category is homotopy equivalent to a DG-category. ■

Proof of Theorem 16.9. We apply Theorems 5.25 and 3.54. We then obtain a left Fuk((X1×
X2, π

∗
1(V1)⊕ π∗2(V2);L1 × L2), right Fuk((X1, V1);L1),Fuk((X2, V2);L2) filtered A∞ tri-module

C F (L12;L1,L2) (16.8)
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as follows. We replace (X1, ω1), V1 in Theorems 5.25 by (X1,−ω1), V1 ⊕ TX1. Since

Fuk((−X1, V1 ⊕ TX1);L2) ∼= Fuk((X1, V1);L1)
op

by Theorem 3.54, we obtain (16.8).
The tri-module (16.8) induces a filtered A∞ bi-functor

F : Fukst(X1;L1)× Fukst(X2;L2)→ FUNC(Fukst(X1 ×X2;L1 × L2)
op, CH).

Proposition 16.11. Let (Li, bi) ∈ OB(Fukst(Xi;Li)).

(1) L1×L2 is unobstructed. Moreover, b1, b2 determine a bounding cochain b1× b2 of L1×L2

up to gauge equivalence canonically.

(2) The object (L1 × L2, b1 × b2) of the category Fukst(X1 ×X2;L1 × L2) represents the func-
tor F ((L1, b1), (L2, b2)) : Fukst(X1 ×X2;L1 × L2)

op → CH.
Proof. The proof of (1) is similar to the proof of Theorem 6.3 and the proof of (2) is similar
to the proof of Theorem 7.3.

We start with (1). The tri-module applied to L1, L2 and L1×L2 induces a left CF (L1×L2),
right CF (L1), CF (L2) tri-module D. Its structure operations are

nk12,k1,k2 : Bk12CF (L1 × L2)[1]⊗D ⊗Bk1CF (L1)[1]⊗Bk2CF (L2)[1]→ D.

We use bounding cochains b1, b2 to deform it to obtain nb1,b2k12
: Bk12CF (L1 × L2) ⊗ D → D.

Namely, we put

nb1,b2k (x1, . . . , xk; y) =
∑
k1,k2

nk,k1,k2
(
x1, . . . , xk; y; b

k1
1 , b

k2
2

)
.

The maps
{
nb1,b2k | k = 0, 1, 2, . . .

}
define a structure of left CF (L1 × L2) module over D.

By definition, there exists an isomorphism D = Ω
((
L̃1 ×X1

(
L̃1 × L̃2

)
×X2 L̃2

))
⊗ Λ̂0 as Λ0

modules. So D is actually isomorphic to CF (L1 ×L2), as a Λ0 module. The differential 0-form
(function) 1 on the diagonal component L̃1 × L̃2 ⊂ L̃1 ×X1

(
L̃1 × L̃2

)
×X2 L̃2 is a cyclic element

of the left CF (L1 × L2) module D. (We can prove it in the same way as Proposition 6.12.)
Proposition 16.11 (1) now follows from (the left module analogue of) Proposition 6.6. We

remark that the bounding cochain b1 × b2 is characterized by the formula

0 =
∑

k1,k2,k12

nk12,k1,k2
((
b1 × b2

)k12 ; 1; bk11 , bk22 ).
We turn to the proof of (2). Let K1, . . . ,Kk be elements of L1×L2 and bKi a bounding cochain
of Ki. We consider D(Ki) = F (L1, L2)(Ki). It is a left CF (Ki), right CF (L1), CF (L2) tri-
module. Note that we use b1, b2, bKi to obtain a left CF (Ki, bKi), right CF (L1, b1), CF (L2, b2)
tri-module structure on D(Ki), which we write

n
bKi

,b1,b2
k12,k1,k2

: Bk12CF (Ki)[1]⊗D(Ki)⊗Bk1CF (L1)⊗Bk2CF (L2)→ D(Ki).

We also have

nm :
m⊗
i=1

CF (Ki−1,Ki)⊗D(Km)→ D(K0). (16.9)

In (16.9), we include corrections by bounding cochains of Li and Ki.
We consider two left Fukst(X1 × X2;L1 × L2) modules D1 and D2 as follows. We write

K = (K, bK),Ki = (Ki, bKi). They are elements of OB(Fukst(X1 ×X2;L1 × L2)).
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(M1-1) As a Λ0 module D1(K) is D(K).

(M1-2) The structure operations of the left Fukst(X1×X2;L1×L2) module structure are (16.9).

(M2-1) D2(K) := CF ((K, bK), (L1 × L2, b1 × b2)). Here the right-hand side is the module of
morphisms in Fukst(X1 ×X2;L1 × L2).

(M2-2) The structure operations of the left Fukst(X1 ×X2;L1 × L2) module structure are the
structure operations of the filtered A∞ structure of Fukst(X1 ×X2;L1 × L2).

Note that D1 is nothing but the left filtered A∞ module F ((L1, b1), (L2, b2)) and D2 is nothing
but the left filtered A∞ module Yon(X1 ×X2;L1 × L2). Therefore, the next lemma completes
the proof of Proposition 16.11.

Lemma 16.12. D1(K) is homotopy equivalent to D2(K) as left Fukst(X1×X2;L1×L2) modules.

Proof. Let 1 ∈ D(L1 × L2, b1 × b2) be the cyclic element. We define

T0(K) : D2(K)→ D1(K),

Tm−1(K1, . . . ,Km) :
m−1⊗
i=1

CF (Ki,Ki+1)⊗D2(Km)→ D1(K1)

as follows. We put K0 = K, K1 = (L1 × L2, b1 × b2) in (16.9) and define T0(K)(z) = n1(z;1).
Here z ∈ CF (K,L1 × L2) and 1 ∈ CF (L1 × L2;L1, L2) is the cyclic element.

We put Km = (L1 × L2, b1 × b2) and take Ki for i = 1, . . . ,m− 1 in (16.9) and define

Tm−1(K)(x1, . . . , xm−1)(z) = nm−1(x1, . . . , xm−1; z;1)

for z ∈ D2(Km) ∈ CF (Km, L1 × L2), xi ∈ CF (Ki,Ki+1). See Figure 16.1.

L1
L2L1 × L2

z

x1

xm

1

. .
.

n(x1, . . . , xm−1, z;1)

Figure 16.1. Tm−1.

The A∞ relations for {nm} imply that {Ti | i = 0, 1, . . . } is a left Fukst(X1 × X2;L1 × L2)
module homomorphism.

To show that it is a homotopy equivalence, we first observe that D1(K), D2(K) both are
isomorphic to Ω

(
K̃×X1×X2

(
L̃1×L̃2

))“⊗Λ0 as Λ0 modules.
(
Here K̃ → X1×X2 is the immersed

Lagrangian submanifold which is a part of K.
)
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We next observe that T0(K) is congruent to the identity map (via the above identifica-
tion D1(K) = D2(K)). In fact, T0 = n1 is defined by using the moduli space of pseudo-
holomorphic disks and we put TE as a part of the weight when we use the moduli space of
pseudo-holomorphic disks with symplectic area E. The disk with symplectic area 0 is nothing
but a constant map, whose contribution to T0 is the identity map.

The proof of Lemma 16.12 is complete. ■

The proof of Proposition 16.11 is complete. ■

We consider the full subcategory of Fukst(X1×X2;L1×L2) the set of whose objects consists
of (L1 × L2, b1 × b2) where Li ∈ Li and b1 × b2 is a bounding cochain of L1 × L2 obtained by
Lemma 16.11 from bounding cochains b1 and b2 of L1 and L2. We denote it by L .

We put Ci = Fukst(Xi,Li) and C = C1⊗C2. The formulas (16.4) and (16.6) define a left C1,
C2 and right C filtered A∞ tri-module M(C1,C2;C). (See also (16.10).)

By (16.8), we obtain a left L right C1, C2 tri-module, which we denote by M(L ;C1,C2).
Note that the set of objects of C is canonically identified with the set of objects of L .

(In fact, they both are ObFukst(X1,L1) × ObFukst(X2,L2).) For any objects c of C, the
tri-module M(C;C1,C2) determines a right C1, C2 filtered A∞ bi-module, which we write
M(C;C1,C2)(c; ∗, ∗). We define a right C1, C2 filtered A∞ bi-module M(L ;C1,C2)(c; ∗, ∗)
in the same way.

Lemma 16.13. For any object c of C, the module M(C;C1,C2)(c; ∗, ∗) is isomorphic16.2 to
M(L ;C1,C2)(c; ∗, ∗) as right C1, C2 filtered A∞ bi-modules.

Remark 16.14. Let ci = (Li, bi), c
′
i = (L′i, b

′
i) ∈ Li and we put c = (c1, c2), c

′ = (c′1, c
′
2). The

chain complex M(L ;C1,C2)(c; c
′
1, c
′
2) is chain homotopy equivalent to

CF ((L1 × L2, b1 × b2), (L′1 × L′2, b′1 × b′2))

by Proposition 16.11 (2).
On the other hand, the chain complex M(C;C1,C2)(c; c

′
1, c
′
2) is chain homotopy equivalent

to CF ((L1, b1), (L
′
1, b
′
1))⊗CF ((L2, b2), (L

′
2, b
′
2)), by definition. Therefore, Lemma 16.13 implies

CF ((L1 × L2, b1 × b2), (L′1 × L′2, b′1 × b′2)) ∼ CF ((L1, b1), (L
′
1, b
′
1))⊗CF ((L2, b2), (L

′
2, b
′
2)),

where ∼ means chain homotopy equivalence. This is Künneth formula. The proof of Theo-
rem 16.9 shows that this chain homotopy equivalence is functorial.

Proof of Lemma 16.13. We put c = (c1, c2) and c′j = (c′j,1, c
′
j,2) for j = 1, 2. The structure

operations of the right bi-module structure on M(C;C1,C2)(c; ∗, ∗), which we denote by m′ is
defined by

m′(((z1, z2),x,y) :=


0 if x ̸= 1 or y ̸= 1,

(−1)deg′ xdeg′ z2(m(z1,x), z2) if y = 1,

(−1)deg′ z1(z1,m(z2,y)) if x = 1.

(16.10)

Here m is the structure operations of Ci, which is obtained by ‘counting’ pseudo-holomorphic
polygons, x ∈ BC1[1](c

′
1,1, c

′
2,1), y ∈ BC2[1](c

′
1,2, c

′
2,2) and zi ∈ Ci[1](ci, c′1,i) for i = 1, 2.

On the other hand, the structure operations of the bi-module structure on M(L ;C1,C2)(c;
∗, ∗) is the operations {n} which are structure operations of the tri-module (16.8) and obtained
by ‘counting’ pseudo-holomorphic quilts.

16.2Here two right filtered A∞ bi-modules are said to be isomorphic each other if there exist a bi-module homo-
morphism between them which has an inverse.
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For bi, b
′
i ∈ ObFukst(Xi,Li), we define

Fk1,k2 : M(C;C1,C2)(c; b1, b2)⊗Bk1C1[1](b1, b
′
1)⊗Bk2C2[1](b2, b

′
2)

→M(L ;C1,C2)(c; b
′
1, b
′
2)

by

Fk1,k2((z1, z2), (x,y)) :=
∑
c

(−1)∗n(n(1; 1⊗ (z2 ⊗ yc)); (z1 ⊗ x)⊗ y′c), (16.11)

where ∗ = deg′ z1(deg
′ z2+deg′ yc)+deg′ xdeg′ yc is the Koszul sign. Here x ∈ Bk1C1[1](b1, b

′
1),

y ∈ Bk2C2[1](b2, b
′
2), and zi ∈ Ci[1](ci, bi). The symbol 1 is the fundamental class of M(L ;C1,

C2)(c; (c1, c2)), that is, the cyclic element and ∆(y) =
∑

c yc⊗y′c. The idea behind this definition
can been seen from Figure 16.2 below.

X Xz2 z1
yc

yc }}

1

x }

L1 L1

L2 L2

L12 L12

n(1; 1⊗ (z2 ⊗ yc))

n(1; 1⊗ (z2 ⊗ yc))

Figure 16.2. Fk1,k2
((z1, z2), (x,y)).

We will prove that {Fk1,k2} is a right filtered A∞ bi-module homomorphism. We denote by
m̂′ the maps⊕

b1,b2

M(C;C1,C2)(c; b1, b2)⊗BC1[1](b1, c
′
1)⊗BC2[1](b2, c

′
2)

→
⊕
b1,b2

M(C;C1,C2)(c; b1, b2)⊗BC1[1](b1, c
′
1)⊗BC2[1](b2, c

′
2)

induced by m′ (see (16.10)) and denote by m the structure operations of Ci. We also denote by

F̂ :
⊕
b1,b2

M(C;C1,C2)(c; b1, b2)⊗BC1[1](b1, c
′
1)⊗BC2[1](b2, c

′
2)

→
⊕
b1,b2

M(L ;C1,C2)(c; b1, b2)⊗BC1[1](b1, c
′
1)⊗BC2[1](b2, c

′
2)

the map induced by Fk1,k2 .
We will check(

n ◦ F̂
)
((z1, z2), (x,y)) =

(
F ◦ m̂′

)
((z1, z2), (x,y)). (16.12)
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Remark 16.15. Intuitively (16.12) can be proved easily by studying the boundary of the moduli
space depicted by Figure 16.2. The proof below is an algebraic analogue of such a geometric
argument.

Let m̂i : BCi → BCi is the map induced by the structure operations of Ci. We denote
m̂ = m̂1“⊗ id + id“⊗ m̂2. Let m be the C1 ⊗ C2 component of m̂.

We put ∆(x) =
∑

b xb ⊗ x′b , ((∆⊗ id) ◦∆)(y) =
∑

c′ yc′ ⊗ y′c′ ⊗ y′′c′ .
Now the right-hand side of (16.12) is∑

c

(−1)∗1n
(
n(1; 1⊗ (z2 ⊗ yc));

(
z1 ⊗ m̂(x)

)
⊗ y′c

)
+
∑
c

(−1)∗2n
(
n(1; 1⊗ (z2 ⊗ yc)); (z1 ⊗ x)⊗ m̂(y′c)

)
+
∑
c

(−1)∗3n
(
n(1; 1⊗

(
z2 ⊗ m̂(yc))

)
; (z1 ⊗ x)⊗ y′c

)
+
∑
c,c′

(−1)∗4n(n(1; 1⊗ (m(z2 ⊗ yc′)⊗ y′c′); (z1 ⊗ x)⊗ y′′c′)

+
∑
b,c

(−1)∗5n(1; n(1⊗ (z2 ⊗ yc)); (m(z1 ⊗ xb)⊗ x′b)⊗ y′c), (16.13)

where the signs ∗i are by Koszul rule. Note that the sign here is always by Koszul rule and
so it is actually not necessary to calculate the sign as we will explain at the end of the proof
of (16.12).

On the other hand, the left-hand side of (16.12) is∑
b,c′

n(n(n(1; 1⊗ (z2 ⊗ yc′)); (z1 ⊗ xb)⊗ y′c′);x
′
b ⊗ y′′c′) (16.14)

up to sign. We put zc := ±n(1; 1⊗ (z2 ⊗ yc)), where ∆(y) =
∑

c yc ⊗ y′c.
(16.14) plus the next formula (16.15) is obtained by applying n twice to the element

∑
c zc⊗

((z1 ⊗ x)⊗ y′c)) up to sign,∑
c′′

n(n(n(1; 1⊗ (z2 ⊗ yc)); 1⊗ y′c′); (z1 ⊗ x)⊗ y′′c′). (16.15)

Therefore, applying A∞ formula for n, the formula (16.14) is equal to

+
∑
c

n
(
zc; m̂(z1 ⊗ x)⊗ y′c

)
+
∑
c

n(zc; (z1 ⊗ x)⊗ m̂(y′c)) + (16.15) (16.16)

up so sign. This cancels with (16.13) up to sign. In fact, the first term of (16.16) cancel with
the first and fifth terms of (16.13), the second term of (16.16) cancel with the second term
of (16.13), and (16.15) cancel with the third and fourth terms of (16.13), using A∞ relation (of
left bi-module structure) applied to 1⊗ (1⊗ (z2 ⊗ yc)).

The calculation of sign looks complicated. However, we actually do not need to check the
sign by calculation to see the corresponding terms cancel out with sign. In fact, all the signs
are caused by changing the order of operators or elements (which are graded), that is by Koszul
rule. So except the minus sing which comes from exchanging the order of m and n (both of
which have degree ±1) the sign of the corresponding terms coincide. Therefore, the cancellation
occurs with signs.16.3

Thus {Fk1,k2} defines a filtered bi-module homomorphism.

16.3This is the standard magic of Koszul sign.



248 K. Fukaya

We remark that M(C;C1,C2)(c; c
′) as Λ0 module is a T -adic completion of the tensor prod-

uct of de Rham complex Ω
(
L̃1 ×X1 L̃

′
1

)“⊗Λ0 and Ω
(
L̃2 ×X2 L̃

′
2

)“⊗Λ0. On the other hand,
M(L ;C1,C2)(c; c

′) is Ω
((
L̃1 × L̃2

)
×X1×X2

(
L̃′1 × L̃′2

))“⊗Λ0. Therefore, their reductions to the
ground ring is isomorphic each other. It is easy to see that R reduction of F0,0 is this isomor-
phism. Therefore, F0,0 is an isomorphism. Hence F is an isomorphism. ■

We recall that C = C1 ⊗ C2 can be regarded as the category of right bi-module homo-
morphisms M(C;C1,C2)→M(C;C1,C2) in the following sense. An object of C is identified
with a pair of objects (c1, c2) of C1 and of C2. For a fix (c1, c2), by moving (c′1, c

′
2) this de-

fines a right C1, C2 module, which is nothing but M(C;C1,C2)(∗, ∗, (c1, c2)). The morphisms
and operations in C are defined to be the right C1, C2 bi-module homomorphisms and their
compositions.16.4

By Lemma 16.13, M(C;C1,C2) is isomorphic to M(L ;C1,C2). Now using the fact that
M(L ;C1,C2) is a left L , right C1, C2 tri-module, we obtain a filtered A∞ functor G : L →
C1 ⊗ C2. Note that the object part of G is the identity map.

Lemma 16.16. The linear part G1 of G is a chain homotopy equivalence from L ((c′1, c
′
2), (c1, c2))

to C((c′1, c
′
2), (c1, c2)).

We prove Lemma 16.16 at the end of Section 16.3. Lemma 16.16 implies G is a homotopy
equivalence. The proof of Theorem 16.9 is complete. ■

16.3 The Künneth functor and the correspondence tri-module

Suppose that we are in Situation 5.24. We consider the set L1×L2 of Lagrangian submanifolds
of −X1 ×X2 which consists of direct products L1 × L2 of elements L1 ∈ L1 and L2 ∈ L2. The
Künneth functor defines

K : Fukst((−X1, V1 ⊕ TX1);L1)× Fukst((X2, V2);L2)

→ Fukst((−X1 ×X2, π
∗
1(V1 ⊕ TX1)⊕ π∗2(V2));L1 × L2). (16.17)

Note that we replace X1, V1 by −X1, V1⊕ TX1 when we apply Theorem 16.9 to obtain (16.17).

Theorem 16.17. Let L1 ∈ L1, L12 ∈ L12 and b1, b12 their bounding cochains. We put L1 =
(L1, b1), L12 = (L12, b12). Using correspondence bi-functor, we obtain (L2, b2) = WL12(L1).
Then we have the following isomorphism for any L′2 ∈ L2 and its bounding cochain b′2:

HF ((L2, b2); (L
′
2, b
′
2); Λ0) ∼= HF ((L12, b12); (L1 × L′2, b1 × b′2); Λ0).

Here (L1 × L′2, b1 × b′2) := Kob((L1, b1), (L
′
2, b
′
2)).

Proof. In our situation, where X1, V1 are replaced by −X1, V1 ⊕ TX1, the tri-module (16.8)
is the correspondence tri-module. Therefore, the theorem is an immediate consequence of The-
orems 7.3 and 16.9. ■

16.4 Proof of Lemmas 16.6, 16.7 and 16.16

In this subsection, we prove Lemmas 16.6, 16.7 and 16.16. It suffices to consider the case when
C1, C2 are DG-categories.

16.4Here we use the operation taking opposite module (see Definition 11.3) to go from left module to right module
and vice versa.
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Proof of Lemma 16.7. We prove the first half. The proof of the second half is similar. We
define a tri-module homomorphism I : M(C1,C2;C)→M(C;C) as follows.

We first define

n : (BC1[1](b1,1, b2,1)⊗BC2[1](b1,2, b2,2))⊗ C1[1](b2,1, c1,1)⊗ C2[1](b2,2, c1,2)⊗C(c1, c2)

→ C1[1](c1,1, c2,1)⊗ C2[1](c1,2, c2,2),

as follows. Note an element T ∈ C(c1, c2) is a pre-natural transformation from C(c1) to C(c2).
Such pre-natural transformation assigns to each b1 = (b1,1, b1,2), b2 = (b2,1, b2,2) a map

(BC1[1](b1,1, b2,1)⊗BC2[1](b1,2, b2,2))⊗ C1[1](b2,1, c1,1)⊗ C2[1](b2,2, c1,2)

→ C1[1](c1,1, c2,1)⊗ C2[1](c1,2, c2,2).

For x ⊗ y ⊗ z ∈ (BC1[1](b1,1, b2,1) ⊗ BC2[1](b1,2, b2,2)) ⊗ C1[1](b2,1, c1,1) ⊗ C2[1](b2,2, c1,2), we
denote by n(x⊗ y, z, T ) the image of x⊗ y ⊗ z by this map.

We next define I0,0,0(c1, c2) : C1[1](c1,1, c1,2)⊗ C2[1](c2,1, c2,2)→ C(c1, c2) by the formula

n(x⊗ y, z,I0,0,0(c1, c2)(a1, a2))

=

®
(−1)deg′ a1 deg′ z2(m2(z1, a1),m2(z2, a2)) if x⊗ y = 1⊗ 1,

0 otherwise.
(16.18)

Here n is defined as above16.5 and z = (z1, z2) ∈ C1[1](b2,1, c1,1) ⊗ C2[1](b2,2, c1,2), x ⊗ y ∈
BC1[1](b1,1, b2,1)⊗BC2[1](b1,2, b2,2), (a1, a2) ∈ C1[1](c1,1, c1,2)⊗ C2[1](c2,1, c2,2).

Hereafter, we write I0,0,0 in place of I0,0,0(c1, c2). We define all other Ik1,k2;ℓ to be 0.

Sublemma 16.18. I : M(C1,C2;C)→M(C;C) is a tri-module homomorphism.

Proof. Since Ci and C are DG categories, (16.18) implies that n(x⊗ y; z; δ(I0,0,0(a1, a2))) = 0
unless x ⊗ y ∈ Bk1C1[1] ⊗ Bk2C2[1] with (k1, k2) = (0, 0), (1, 0), (1, 1). Here δ is the boundary
operator of C. In case (k1, k2) = (1, 0), we calculate16.6

n(x⊗ 1, z, δ(I0,0,0(a1, a2)) = (m2(m2(x, z1), a1),m2(z2, a2))

+ (m2(x,m2(z1, a1)),m2(z2, a2))

= 0 = n(x⊗ 1, z,I0,0,0(m1(a1, a2))).

Note that the second equality follows from the fact that the product structures on Ci are strictly
associative.

The case (k1, k2) = (0, 1) is similar. In case (k1, k2) = (0, 0), we calculate

n(1⊗ 1, z, δ(I0,0,0(a1, a2))) = m1(n(1⊗ 1, z,I0,0,0(a1, a2)))− n(1⊗ 1,m1(z), I0,0,0(a1, a2)))

= (m1(m2(z1, a1)),m2(z2, a2)) + (m2(z1, a1),m1(m2(z2, a2)))

− (m2(m1(z1), a1),m2(z2, a2))− (m2(z1, a1),m2(m1(z2), a2))

= n(1⊗ 1; z; I0,0,0(m1(a1, a2))).

We thus proved that I0,0,0 is a chain map. Note that the fact the equality holds with the sign
since we always use Koszul sign here, as we mentioned during the proof of (16.12).

The calculation to show that I is a tri-module homomorphism is similar. We omit it. ■

16.5We remark that the pre-natural transformation T is determined if n(x⊗ y, z, T ) are given for all x, y, z.
16.6In the calculation below, we omit the Koszul sign unless otherwise mentioned.
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We remark that I is a bijection on objects. So to prove Lemma 16.7, it suffices to show
that I0,0,0 is a chain homotopy equivalence. We will prove it below.16.7 We write I in place of
I0,0,0, for simplicity.

We define a map J : M(C;C)(c, b)→M(C1,C2;C)(c, b) by

J(T ) = n(1; (e, e); T ). (16.19)

Here e is the unit of Ci and T ∈ C.

Sublemma 16.19. J is a chain map.

Proof. m1(J(T )) = m1(n(1;m1(e, e); T )) + n(1; (e, e); δ(T )) = n(1; (e, e); δ(T )). ■

We calculate J(I(a1, a2)) = n(1; (e, e); I(a1, a2)) = (a1, a2). Therefore, J ◦ I = id. We finally
prove I◦J is chain homotopic to the identity map. We define the maps Hi : C(c1, c2)→ C(c1, c2)
by the next formula

n((x⊗ y); z;H1(T )) = (−1)∗1n(((x⊗ z1)⊗ y); (e⊗ z2); T ),
n((x⊗ y); z;H2(T )) = (−1)∗2n((x⊗ (y ⊗ z2)); (z1 ⊗ e); T ), (16.20)

where ∗1 = deg′ z2 + deg′ x deg′ z1, ∗2 = deg′ z1 deg
′ z2. We will calculate δ ◦ Hi +Hi ◦ δ, where

δ is the boundary operator of C. We define maps Φi : C(c1, c2)→ C(c1, c2) by the next formula

n((x⊗ y); z; Φ1(T )) =
®
(−1)∗3n(z1 ⊗ 1; n(1⊗ y; (e⊗ z2); T )) if x = 1,

0 otherwise,

n((x⊗ y); z; Φ2(T )) =
®
(−1)∗4n(1⊗ z2; n(x⊗ 1; (z1 ⊗ e); T )) if y = 1,

0 otherwise,

where ∗3 = deg′ z1 deg
′ y + (deg′ y + deg′ z2) + deg′ z2, ∗4 = deg′ z2 deg

′ x+ deg′ xdeg′ z1.

Sublemma 16.20. δ ◦ Hi +Hi ◦ δ = id + Φi.

Proof. We write x = xf ⊗ xR = xL ⊗ xl. and y = yf ⊗ yR = yL ⊗ yl. We first calculate
omitting all the signs

n(x⊗ y; z; (H1 ◦ δ)(T ))
= n((x⊗ z1)⊗ y; (e⊗ z2); δ(T )) = m(n((x⊗ z1)⊗ y; (e⊗ z2); T ))
+ nC (xf ⊗ 1; n((xR ⊗ z1)⊗ y; (e⊗ z2); T )) + n((x⊗ y); z; Φ1(T ))
+ nC (1⊗ yf ; n((x⊗ z1)⊗ yR; (e⊗ z2); T )) + n((m̂(x)⊗ z1)⊗ y; (e⊗ z2); T )
+ n((x⊗m(z1))⊗ y; (e⊗ z2); T ) + n((xL ⊗m2(xl, z1))⊗ y; (e⊗ z2); T )
+ n
(
(x⊗ z1)⊗ m̂(y); (e⊗ z2); T

)
+ n((x⊗ z1)⊗ y; (e⊗m1(z2)); T )

+ n(x⊗ y; (z1 ⊗ z2); T ).

Here nC is the structure operation of left C1, C2 bimodule structure on C1 ⊗ C2. (n is defined
at the beginning of the proof of Lemma 16.7.)

16.7The proof below is similar to a proof of A∞ Yoneda’s lemma. The key idea of the proof of Yoneda’s lemma
is plugging in the identity morphisms to obtain an inverse to the Yoneda embedding. We follow this idea. In
fact (16.19) is nothing but plugging in the identity morphism. In the case of usual Yoneda’s lemma then it defines
an inverse. In the A∞ case, it is only a chain homotopy inverse. So we need to find a chain homotopy. The chain
homotopy (16.20) is similar to one given in [27] for the A∞ Yoneda’s lemma.
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We also calculate

n(x⊗ y; z; (δ ◦ H1)(T ))
= m(n((x⊗ z2)⊗ y; (e⊗ z1); T )) + nC (xf ⊗ 1; n((x⊗ z1)⊗ y; (e⊗ z2); T ))
+ nC (1⊗ yf ; n((x⊗ z1)⊗ yR; (e⊗ z2); T )) + n

(
m̂(x⊗ y)⊗ (z1 ⊗ 1); (e⊗ z2); T

)
+ n((x⊗m(z1))⊗ y; (e⊗ z2); T ) + n((x⊗ z1)⊗ y; (e⊗m1(z2)); T )
+ n((xL ⊗m2(xl, z1))⊗ y; (e⊗ z2); T ) + n((x⊗ z1)⊗ yL; (e⊗m2(yl ⊗ z2)); T ).

We remark that all the terms of the first formula except the 3rd and 10th ones appear in the
second formula. The formula for H1 thus follows up to sign.

Remark again that all the signs are caused by changing the order of operators or elements
(which are graded), that is by Koszul rule. So except the minus sing which comes from exchang-
ing the order of δ and Hi (both of which are degree ±1) the sign of the corresponding terms
coincide.

Therefore, the cancellation occurs with signs. Thus the formula for H1 holds with sign.

The proof of the formula for H2 is similar. ■

Sublemma 16.20 implies that Φ1 ◦ Φ2 is chain homotopic to the identity. It is easy to see
that Φ1 ◦ Φ2 = I ◦ J. The proof of Lemma 16.7 is complete. ■

Proof of Lemma 16.6. We define

I1,1 : C1[1](c1,1, c1,2)⊗ C2[1](c2,1, c2,2)→ C(c1, c2)

by (16.18) and define all the other Ik,ℓ to be zero. It is easy to see that it defines a DG-
functor. (We use the assumption that C1 and C2 are DG-categories here.) We proved, during
the proof of Lemma 16.7, that I1,1 is a chain homotopy equivalence. The lemma now follows
from Theorem 2.28. ■

Proof of Lemma 16.16. Let ci = (Li, bi), c
′
i = (L′i, b

′
i). Note that

L ((c′1, c
′
2), (c1, c2))

∼= CF (L′1, L1)⊗ CF (L′2, L2) ∼= C1(c
′
1, c1)⊗ C2(c

′
2, c2).

On the other hand, we use the fact that the filtered A∞ category obtained by Lagrangian Floer
theory becomes a DG-category, after reduction of coefficient to the ground ring, the reduction
of the map I1,1 is given by formula (16.18). Here we use the fact that Fk1,k2 in (16.11) is 0
for (k1, k2) ̸= (0, 0) and is an isomorphism for (k1, k2) = (0, 0).

It is easy to see that the reduction of G1 is the same map. Therefore, the reduction of G1

to the ground ring is a chain homotopy equivalence. It implies that G1 is a chain homotopy
equivalence. ■

17 Orientation and sign

In this section, we discuss the orientation and the sign. The orientation of the moduli spaces of
pseudo-holomorphic quilts is studied by [80]. The orientation of the moduli spaces of pseudo-
holomorphic disks (polygons) and its relation to A∞ structures is studied in detail in [34, Chap-
ter 8]. In this section, we will prove that orientation and sign appearing in various moduli spaces
and operations in this paper can be reduced to ones of the moduli spaces of pseudo-holomorphic
disks and operations defined by it.



252 K. Fukaya

17.1 Koszul rule in A∞ structures

As we mentioned several times, the sign in various formulas in this paper is by Koszul rule (except
a few cases which appear in purely algebraic situations, see the beginning of Section 10.5). By
this reason, we do not write the explicit sign in many of those formulas. In principle, it is
possible (and not so difficult) to calculate and put the explicit sign to those formulas. However,
actually it is unnecessary to calculate the sign for the purpose of this paper. This is because the
check of the signs in the equalities needed in this paper is carried out based on the fact that the
sign is always by Koszul rule and not by an explicit calculation of the signs. Since some of such
formulas are complicated, checking the signs by an explicit calculation could be cumbersome
and lengthy. Fortunately, we never need it in this paper.

In this subsection, we describe what we mean by Koszul rule precisely and demonstrate how
it works in certain examples.

We first consider the A∞ formula

0 =
∑

k1+k2=k+1

k1−1∑
i=0

(−1)∗mk1(x1, . . . , xi,mk2(xi+1, . . . , xk2), . . . , xk). (17.1)

Here the sign is given by

∗ = i+

i∑
j=1

deg xj . (17.2)

We explain how this sign is determined by the Koszul rule. We order variables and operations
appearing in the formula as follows17.1

m,m, x1, x2, . . . , xk (17.3)

In one of the terms of (17.1), it appears in the following order

m, x1, x2, . . . ,m, xi+1, . . . , xk. (17.4)

The permutation of operators and variables we need to go from (17.3) to (17.4) is a composition
of permutations of m and xj for j = 1, . . . , i. We remark that the degree of m is 1 and the
(shifted) degree of xj is 1 + deg xj . So the sign we pick up by exchanging them is 1 + deg xj .
Summing them up for j = 1, . . . , i we obtain the sign (17.2).17.2

In this way, we can obtain the signs appearing in various formulas systematically. The author
emphasis that this is not only an idea to define a sign but is also a logical and rigorous definition
of the sign.

To elaborate on this rule, let us describe one more example. We consider formula (9.23) in
Proposition 9.11. In a similar way to (17.3), we start with

Y T ,m, h∞,123,h12,h23,h13, h∞,12, h∞,23,h1,h2,h3. (17.5)

17.1The particular choice of orders in (17.3) is not important. If we take another choice, then the sign in the
formulas changes in exactly the same way for all the terms of (17.1).
17.2There are several other sign conventions of A∞ structure in the literature. For example, Stasheff’s original
convention [73, 74] and Seidel’s convention [71] are different from our convention, which is introduced in [34]. An
advantage of our convention lies in the fact that it is exactly by Koszul rule. Therefore, we can automatically
determine all the signs appearing in various formulas by requiring them to be the Koszul convention. Since there
are many operators which are related to but are slightly different each other in this paper, putting the sign ‘by
hand’ and checking the consistency by a calculation becomes much cumbersome and lengthy. We can avoid it by
using Koszul convention in all the places.
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(Here the symbol m appears. It is identified with n while studying certain terms of (9.23).) In
the third term, where (−1)∗3 appears, the operations and variables appear in the order

Y T , h∞,123,h12,h23,h
c;1
13 ,m,h

c;2
13 ,h

c;3
13 , h∞,12, h∞,23,h1,h2,h3. (17.6)

Here we put

((∆⊗ id) ◦∆)(h13) =
∑
c

hc;113 ⊗ hc;213 ⊗ hc;313

and remark that

d̂(h13) =
∑
c

(−1)deg′ hc;1
13 hc;113 ⊗m

(
hc;213

)
⊗ hc;313 . (17.7)

The sign we pick up to go from (17.5) to (17.6) is (−1)∗ with

∗ = deg′ h∞,123 + deg′ h12 + deg′ h23 + deg′ hc;113 .

Since deg′ hc;113 cancels with the corresponding sign in (17.7), we have

∗3 = deg′ h∞,123 + deg′ h12 + deg′ h23.

We next consider the 9th term where (−1)∗9 appears. The order of the operations and variables
appearing in this term is

Y T , h∞,123,h12,h
c23;1
23 ,h13, h∞,12, n,h

c2;1
2 ,hc3;13 ,hc23;223 , h∞,23,h1,h

c2;2
2 ,hc3;23 . (17.8)

The sign we pick up to go from (17.5) to (17.8) is

deg′ h∞,123 + deg′ h12 + deg′ hc23;123 + deg′ h13 + deg′ h∞,12

+deg′ hc23;223

(
deg′ h13 + deg′ h∞,12 + deg′ hc2;12 + deg′ hc3;13

)
+deg′ h∞,23

(
deg′ hc2;12 + deg′ hc3;13

)
+ deg′ h1

(
deg′ hc2;12 + deg′ hc3;13

)
+deg′ hc2;22 deg′ hc3;13 .

This is by definition ∗9. The other ∗k is defined in the same way. Note that there is a minus sign
in front of the 10th term. This minus sign is caused by the fact that the order of n and Y T is
exchanged (only) in this term.

The formula we gave for ∗9 above is rather complicated and actually it is not useful to write
it down explicitly. On the other hand, it is important that there is a well-defined and canonical
way to determine the signs.

The latter fact is used, for example, in the following way. During the proof of Theorem 10.16 in
Section 10.4, we claimed that the Y-diagram transformation is a quatro-module homomorphism.
In other words, the formula which implies that a pre-quatro-module homomorphism is a quatro-
module homomorphism coincides with formula (9.23) in Proposition 9.11. It is easy to see that
the terms appearing in those two formulas are the same except possibly the sign. We also need
to check the signs appearing in those two formulas coincide. Since there are many terms to be
checked and since the signs (such as ∗9 above) are rather complicated to write down explicitly,
verifying this coincidence by calculating the signs in those formulas could be cumbersome and
lengthy. Fortunately, we do not need to carry out any calculation to check the coincidence of
the signs, since this fact is an immediate consequence of the fact that both signs are by Koszul
rule.
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The author also remarks that the way we use Koszul rule here is equivalent to a certain point
in the study of A∞, L∞ structures and their cousins by using the language of supermanifolds and
super-vector-fields on it. See, for example, [5] for such a method. In those methods, calculation
of the explicit sign is avoided by saying several objects are functions, vector fields, etc. in the
sense of supermanifolds.

Another point where we use the fact that all the signs are by Koszul rule is the proof of the
fact that after adding appropriate correction terms and putting appropriate orientations, the
operations obtained from moduli spaces satisfy the basic formulas with Koszul sign. The way
we will prove it in this section is as follows. We describe the way how various moduli spaces
such as those used to define tri-module structures, Y-diagram transformations, Double pants
transformations, and etc. can be identified to moduli spaces of holomorphic disks (polygons)
outside a certain subspace lying in strata of positive codimension. Then we use the conclusion
of the papers on the construction of A∞ operations in Lagrangian Floer theory with sign (such
as [35, 46, 72]) so that there exists a way to define orientations of those moduli spaces and
correction terms of the signs, by importing ones of the corresponding moduli space of pseudo-
holomorphic disks via the identification we will give in this section. Then the A∞ formula of
operations in Lagrangian Floer theory implies the basic formulas on tri-module structures, Y-
diagram transformations, Double pants transformations, and etc. with signs. This is because
they both are by Koszul rule. We will explain this process more in a concrete situation in
Example 17.3. We emphasis that this proof does not need to use the proof of the signs for
the A∞ formula of Lagrangian Floer theory, in the literature. It uses only the conclusion of
those papers. In fact, there could be several different ways to put orientations and correction
terms of the signs so that the A∞ formula of Lagrangian Floer theory can be proved. The
argument of this section is independent on such choices. For each choice of system of orientations
and correction terms in Lagrangian Floer theory, we can expand it to the case of tri-module
structures, Y-diagram transformations, Double pants transformations, and etc. We also remark
that we will not provide explicit correction terms to define tri-module structures, Y-diagram
transformations, Double pants transformations, and etc. In principle it is possible to find it by
going back to the corresponding discussions in the case of Lagrangian Floer theory and modify
it by Koszul rule. See Section 17.2 and Example 17.3.17.3 However, doing so in many places are
rather cumbersome and lengthy process. Fortunately, we do not need to do so, since we only
claim the existence of the correction terms of the signs. Existence of such correction terms is
certainly enough to prove all the results in this paper.

17.2 Orientation of the moduli space of the simplest quilt

In this subsection, we consider the case of the moduli space
◦◦
MQT(⃗a1, a⃗12, a⃗2; a−, a+;E) which is

defined in Definition 5.27. For simplicity we begin with the case when a⃗1, a⃗12, a⃗2 are empty sets,
that is, the case we do not consider marked points. (We will discuss the case when there are
marked points later in this subsection.) We write this moduli space as

◦◦
MQT(L1, L12, L2; a−, a+;

E), where a± are connected components of L̃1 ×X1 L̃12 ×X2 L̃2. When we are interested in
defining orientation only, it suffices to consider its subset consisting of a map from a strip
Σ = [−1, 1]×R. We write this subset asMreg

QT(L1, L12, L2; a−, a+;E). It is an equivalence class
of maps ((u1, u2), (γ1, γ12, γ2)), where u1 : [−1, 0]×R→ X1, u2 : [0, 1]×R→ X2 and γi : R→ Li
(i = 1, 2), γ12 : R→ L12 and they have the following properties:

(A.1) u1(−1, τ) = iL1(γ1(τ)), u2(1, τ) = iL2(γ2(τ)) and (u1(0, τ), u2(0, τ)) = iL12(γ12(τ)).

17.3If we want to do so, we would need to see the detail of the proof of the signs in Lagrangian Floer theory. For
example, it occupies more than 70 pages in [35]. So, it seems likely that many of the readers do not want to go
back and see the proof in the literature and try to understand how it is adapted to our situation. The way we
take in this section is written in such a way that it is unnecessary for the readers to do so.
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(A.2) We require asymptotic boundary condition Condition 5.29.

(A.3) u1, u2 are assumed to be J1, J2 holomorphic, respectively.

(A.4) ∫
[−1,0]×R

u∗1ω1 +

∫
[0,1]×R

u∗2ω2 = E.

We define Dub((u1, u2), (γ1, γ12, γ2)) as (u; γl, γr) such that

(B.1) u : [0, 1]× R→ −X1 ×X2 is defined by u(τ, t) = (u1(−t, τ), u2(t, τ)).
(B.2) γr = γ12 : R→ L̃12. γl : R→ L̃1 × L̃2 is defined by γl(τ) = (γ1(τ), γ2(τ)).

By definition, u is −J1 × J2 holomorphic.
We consider the disjoint union L = (L1 × L2) ∪ L12. Then (u, γl, γ+) becomes an element

of M̊(L, (a−, a+);E) which is defined in Definition 3.19. Here we write it as M̊(L12, L1 ×
L2; (a−, a+);E). This is the moduli space used in [34, Section 3.7.4] to define the boundary
operator on CF (L12, L1 × L2).

We thus obtain an open embedding

Dob: Mreg
QT(L1, L12, L2; a−, a+;E)→ M̊(L12, L1 × L2; (a−, a+);E). (17.9)

We assumed that L12 is π∗1(V1 ⊕ TX1) ⊕ π∗2V2 relatively spin. We also assumed L1 is V1
relatively spin and so is V1 ⊕ TX1 relatively spin. In fact, since TX1|L1 = TL1 ⊗R C and TL1

is oriented. So TX1|L1 has canonical spin structure. We assumed L2 is V2 relatively spin.
Therefore, L1 × L2 is also π∗1(V1 ⊕ TX1)⊕ π∗2V2 relatively spin.

Thus by Proposition 3.29, we have an isomorphism of principal O(1) bundle

OMreg(a−,a+;E)
∼= OM̊(L,(a−,a+);E)

∼= ev∗−Θ
−
a− ⊗ ev∗+Θ

+
a+ . (17.10)

We can use the isomorphism (17.10) to define ev+! ◦ ev∗− : Ω(Ra− ; Θ−a−) → Ω(Ra− ; Θ
−
a+) by

smooth correspondence. This is (5.18) in case we do not have boundary marked points.
We next show the consistency of orientations at the boundary.

Remark 17.1. Before doing so, we explain what we mean by ‘consistency of orientations at the
boundary’ more precisely. We consider the ‘open inclusion’

(−1)∗1Mk1+1(L;β1)evi ×ev0Mk2+1(L;β2) ⊆ ∂Mk+1(L;β),

where k1 + k2 = k, β1 + β2 = β. Here ∗1 is a certain correction term of the sign.17.4 This
is an example of consistency of orientations at the boundary. Namely, the orientations of the
moduli spaces appearing in the left and right-hand sides of the formula coincide. To give a
rigorous meaning to its coincidence, we also need to fix a convention of the orientation of the
fiber product (as well as the boundary).

The ‘consistency of orientations at the boundary’ are supposed to imply the fundamen-
tal equation (in this case the A∞ relation) with sign, which is the Koszul sign in this paper.
Let us elaborate on this point. Let C(L) be a certain chain model of the cohomology of the
space L̃×X L̃. (In this paper we take de Rham model.) The moduli spaceMk+1(L;β) regarded
as a correspondence from Lk to L gives an operation, which is mk,β : C(L)

⊗k → C(L). In the
case of de Rham model, it is (h1, . . . , hk) 7→ (−1)∗2ev0!(ev∗1h1 ∧ · · · ∧ ev∗khk). (More precisely,
we need CF-perturbations.) To make sense of this formula, we need to fix a convention of sign

17.4Mk+1(L;β) is the compactified moduli space of pseudo-holomorphic disks with k+1 boundary marked points
and of homology class β ∈ π2(X,L).
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for integration along fiber ev0!. (Provably, the sign convention for the pullback ev∗i is mostly
obvious.) Here ∗2 is a certain correction term of the sign. Thus we have to fix all the conventions
mentioned above together with correction terms ∗1, ∗2 so that the operator mk,β satisfies the A∞
relation with Koszul sign.

In the case of this A∞ relation, this is worked out in singular chain complex model in [35] and
in de Rham model in [46] and [72], in the case when our Lagrangian submanifold is embedded.
In the case of an immersed Lagrangian submanifold which has transversal self-intersection, it
is worked out in [4] in singular chain complex model. In the case of an immersed Lagrangian
submanifold which has self-clean intersection, it is written in Section 17.6 in singular chain
complex model and in the paper [68] by Kaoru Ono in de Rham model. We use the conclusion
of those results (but not the proof of them).

The sign convention of [35] and of [46] are different17.5 but they both satisfy the same A∞
formula with the same sign. (Note that if we regard smooth singular chains as currents and
approximate them by smooth differential forms, then we can ask whether various conventions
(the convention of the sign of pushout (= integration along the fiber) or pullback), together with
correction terms ∗217.6 gives the same operator mk,β with sign or not.)17.7 The author did not
check whether the convention of [46] coincides with [72] or not. The convention of [4] is slightly
different from [35] at the point which we mention in Proposition 17.31.

The sign part of the works [4, 35, 46, 72], is computational.17.8 The conventions and correction
terms are defined by ‘hand’ and the sign part of the A∞ formula is checked by computation.
It might be possible to give more conceptional proof. So far no such proof is written in the
literature. Since the check of sign in many cases are complicated and pains taking such a proof
would be desired. However, it is not a theme of this paper.

The discussion of this section, which reduces the sign issue of this paper to one of A∞ relation
among m, is not computational.

Remark 17.2. In several places, we write explicit correction terms (written as (−1)∗1 , (−1)∗2
in Remark 17.1), following the convention of [46, 72]. However, actually we never used these
particular choices or the choices of other conventions. We use only the fact that there exist such
choices which induce A∞ formula with Koszul sign.

We go back to the discussion of consistency of orientations at the boundary. We first obser-
ve that the boundary of the compactification MQT(L1, L12, L2; a−, a+;E) of the moduli space
Mreg

QT(L1, L12, L2; a−, a+;E) consists of four kinds of components depicted in Figures 5.6–5.9.

On the other hand, the codimension one boundary component of the compactificationM(L12,
L1 × L2; (a−, a+);E) of M̊(L12, L1 × L2; (a−, a+);E) is described by one of the configurations
(1), (2), (3) depicted in Figures 17.1 below.

We observe that Figure 17.1 (1) and (2) correspond to Figures 5.6 and 5.8, respectively. Since
the orientation is defined so that (17.9) lifts to the isomorphism of orientation bundles (princi-
pal O(1) bundles) the compatibility of the orientation of the moduli space, the compactification
ofMreg

QT(L1, L12, L2; a−, a+;E), at the boundary described by Figures 5.6 and 5.8 follows from
the corresponding compatibility ofM(L12, L1 × L2; (a−, a+);E) at the boundary described by
Figure 17.1 (1) and (2). The latter is established in [34, Chapter 8, Theorem 8.8.10 etc.].

We finally consider the boundary described by Figure 17.1 (3). The homology class of the
bubbled disk is β ∈ π2(X1×X2;L1×L2;Z) = π2(X1;L1;Z)×π2(X2;L2;Z). We write it (β1, β2).
We consider the following three cases separately.

17.5In fact, the sign of m1 is different.
17.6Which is not the same in two books.
17.7The correction term ∗1 coincide in those two books.
17.8There are geometric ideas behind those computations in many cases. However, such ideas are not used during
the proof.
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L1 × L2

L1 × L2

Ra−

Ra+

Ra

L12

L12

L1 × L2

Ra+

L12

Ra−

L1 × L2

Ra+

L12

Ra−

(1) (2) (3)

ββ

Figure 17.1. Boundary components ofM(L1, L12, L2; a−, a+;E).

Case 1: β1 ̸= 0 ̸= β2. The configuration which corresponds to an element of the space
Mreg(L1, L12, L2; a−, a+;E) of this case is depicted in Figure 17.2 below. We remark that this
component has codimension greater than 1. Therefore, we do not need to study this case to
show the consistency of the orientation at the boundary.

L12L1 L2

β2
β1

Figure 17.2. Case 1.

Case 2: β1 = 0 ̸= β2. This case corresponds to Figure 5.9. Therefore, the consistency of
orientation at this boundary component follows from the corresponding discussion for Figure 5.9,
which is in [34, Chapter 8, Theorem 8.8.10 etc.].

Case 3: β1 ̸= 0 = β2. This case corresponds to Figure 5.7. Therefore, the consistency
of orientation at this boundary component follows from [34, Chapter 8], except the following
points.

For an element ((u1, u2), (γ1, γ12, γ2)) ofMreg(L1, L12, L2; a−, a+;E), we require u1 to be −J1
holomorphic. Since in Case 3 bubble occurs at the line t = −1, the map in the bubble is −J1
holomorphic. We also consider the map (t, τ) 7→ u1(−t, τ). Note we use V1 ⊕ TX1 relative
spin structure of L1 for our orientation. As was shown as Theorem 3.54, the orientation of the
moduli space of −J1 holomorphic map (t, τ) 7→ u1(−t, τ) using V1⊕TX1 relative spin structure,
coincides with one of u1 using J1 holomorphic map moduli space using V1 relative spin structure,
after reversing the enumeration of the boundary marked points. This is consistent with the fact
that we study opposite category for L1. Moreover, we use V1 ⊕ TX1 relative spin structure in
place of V1 relative spin structure for orientation. As is shown in Section 3.5, this is equivalent
to use −JX1 instead of JX1 .

Note that the above discussion proves Theorem 5.43 (7).
We next include the case when there are marked points and explain the way to fix the sign

of the operations nE,εk1,k12,k2
in (5.18). We use the notations in (5.18). We put m = k1 + k2 We

denote by Shuf(k1, k2) the set of pairs of maps (I1, I2), where Ij : {1, . . . , kj} → {1, . . . ,m} such
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that

(1) The image of I1 and I2 are disjoint.

(2) I1 reverses the order.

(3) I2 preserves the order.

For I = (I1, I2) ∈ Shuf(k1, k2), we write

xIj =

®
xi if I1(i) = j,

zi if I2(i) = j.

Let

nEm,k12 : BmCF (L1 × L2)⊗ CF (L1 × L2;L12)⊗Bk12CF (L12)→ CF (L1 × L2;L12)

be the filtered A∞ bimodule structure for the pair of Lagrangian submanifolds L1 × L2, L12

of X1 ×X2.
(
More precisely, its coefficient of TE .

)
This is defined in [34, Definition 3.7.41] in

the singular homology version. The de Rham version is a part of the structure operation of
the filtered A∞ category associated to the symplectic manifold X1 × X2, which we defined in
Theorem 3.49. See also [46, 72].

The discussion in the case without marked point, implies that in our case the moduli space
we use to define the filtered tri-module structure nE,εk1,k12,k2

coincides with the closure of union of
the moduli spaces defining nEm,k12 for various I = (I1, I2) ∈ Shuf(k1, k2), outside codimension 1
set. Namely, we have

nE,εk1,k12,k2
(x,y, w, z) =

∑
I∈Shuf(k1,k2)

(−1)∗Inm,k12
(
y, w, xI

)
. (17.11)

Here the sign (−1)∗I is the Koszul sign, which is determined as follows. We remark that xI , w, y
coincide with x, y, z, w up to exchanging the order. So we shift the degree of them by one and
put the sign which arises when we exchange the order of those variables via Koszul rule.

For example, if k1 = 2, k2 = 1 and k12 = 1 and Im(I1) = {1, 3}, then the corresponding term
is (−1)∗n1,3(y1, w, x2, z1, x1), where

∗ = deg′ x1(deg
′ y1 + degw′ + deg′ x2 + deg′ z1) + deg′ x2(deg

′ y1 + degw′) + deg′w deg′ y1

is the sign which we get to exchange y1, w, x2, z1, x1 7→ x1, x2, y1, w, z1. See Figure 17.3 and
Example 17.3.

x1 x1

x2 x2

z1 z1

y1

L1 L2 L1 × L2L12 L12

y1

Figure 17.3. Enumeration of marked points assigned to L1 × L2.
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The bimodule structure n satisfies the relation∑
a1,a2

(−1)∗n
(
y(1)
a1 , n

(
y(2)
a1 , w, x

(1)
a2

)
, x(2)a2

)
+
∑
a

(−1)∗n
(
y(1)
a ⊗m

(
y(2)
a

)
⊗ y(3)

a , w, x
)

+
∑
a

(−1)∗n
(
y, w, x(1)a ⊗m

(
x(2)a
)
⊗ x(3)a

)
. (17.12)

Here ∆(y) =
∑

a1
y
(1)
a1 ⊗ y

(2)
a1 , (∆⊗ 1)(∆(y)) =

∑
a y

(1)
a ⊗ y

(2)
a ⊗ y

(3)
a etc.

The sign ∗ in (17.12) is the Koszul sign. The relation (17.12) is [34, Theorem 3.7.72] in
singular homology version and is a part of Theorem 3.49 in de Rham version. The Koszul sign
rule is a consequence of [34, Chapter 8, Theorem 8.8.10].

Since the sign is always by Koszul rule in this paper, the (tri-module analogue of) the for-
mula (5.12), where the sign is also by Koszul rule, is a consequence of (17.12), once we take the
next two points (dif.1) (dif.2) into account.

(dif.1) When we put x = xI in formula (17.12), the third sum contains a term where m is
applied to both xi’s and zi’s. For example, if k1 = 2, k2 = 1 and k12 = 1 and Im(I1) = {1, 3},
a term such as

±n1,2(y1, w, x2,m2(z1, x1)) (17.13)

appears. There is no corresponding term in (5.12). The reason is as follows. The compacti-
fication we take for the moduli space MQT(L1, L12, L2; a⃗1, a⃗12, a⃗2; a−, a+;E) which we used to
define (5.12) is different from the compactification of M̊(L12, L1 × L2; (a−, a+);E) which we use
to define nm,k12 . More specifically, the configuration such as Figure 17.2 (with marked points
included) do not appear in the codimension one boundary of MQT(L1, L12, L2; a⃗1, a⃗12, a⃗2; a−,
a+;E). As we observed before, this is a special case of the codimension one boundary described
in Figure 17.1 (2), which gives a term such as (17.13).

Note that this fact does not affect the discussion of sign of the other components which both
appear in (5.12) and (17.12).

(def.2) We remark the following three points:

• For (I1, I2) ∈ Shuf(k1, k2), we require I1 to be order reversing.

• When we consider the bubble which occurs at L1 for the compactified moduli space
MQT(L1, L12, L2; a⃗1, a⃗12, a⃗2; a−, a+;E), the map on this bubble is regarded as a J1 holo-
morphic map. On the other hand, when we consider the corresponding object as a bubble
in an element of the compactification of M̊(L12, L1 × L2; (a−, a+);E), the map on the
bubble is regarded as a −J1 holomorphic map by using appropriate anti-holomorphic
map D2 → D2.

• We regard L1 as V1⊕TX1 relatively spin when we consider the moduli spaceMQT(L1, L12,
L2; a⃗1, a⃗12, a⃗2; a−, a+;E) but as V1 relatively spin when we consider M̊(L12, L1 × L2;
(a−, a+);E).

By Theorem 3.54, these three points cancel out and we obtain the correct sign.

Example 17.3. Let us elaborate on this fact more by an explicit example. Let us consider
the moduli space depicted in Figure 17.3. We first study the boundary component depicted in
Figure 17.4 below.

The left figure corresponds to

⟨n2,1;1(x1, x2; y1; p;m1(z1)), q⟩. (17.14)
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x1

x2

z1

y1

L1 L2L12

x1

x2

z1

L1 × L2L12

y1

p p

q q

Figure 17.4. A boundary component of Figure 17.3.

Here p and q are chains of (L1 × L2) ×X1×X2 L12 appearing at τ → ±∞. The right figure
corresponds to

⟨n1,3(y1; p;x2,m1(z1), x1), q⟩. (17.15)

Note that in the A∞ relation of tri-module (17.14) appears with sign (−1)∗1 , where ∗1 = deg′ x1+
deg′ x2 + deg′ y1 + deg′ p. In the A∞ relation of Lagrangian Floer theory (the A∞ bi-module
structure on CF (L12, L1×L2)), (17.15) appears with sign (−1)∗2 , where ∗2 = deg′ y1 +deg′ p+
deg′ x2. We next study the boundary component depicted in Figure 17.5 below.

x1

x2

z1

y1

L1 L2L12

p

q

r

z1

y1

r

L1 × L2L12

p

x1

x2

q

Figure 17.5. Another boundary component of Figure 17.3.

The left figure corresponds to

⟨n1,1;0(x1, y1; n1,0;1(x2; p; z1)), q⟩ (17.16)

and the right figure corresponds to

⟨n1,1(y1, n0,2(p, x2, z1), x1), q⟩. (17.17)
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(17.16) comes with sign (−1)∗3 where ∗3 = deg′ x1+deg′ y1+deg′ x2 deg
′ y1. (17.17) comes with

sign (−1)∗4 where ∗4 = deg′ y1. Thus the A∞ formula of the tri-module structure n which we
want to prove is of the form

0 = · · ·+ (−1)∗1n2,1;1(x1, x2; y1; p;m1(z1)) + · · ·
+ (−1)∗3n1,1;0(x1, y1; n(x2; p; z1)) + · · · , (17.18)

and the A∞ formula for operations n, m which was proved in the literature is

0 = · · ·+ (−1)∗2n1,3(y1, p, x2,m1(z1), x1) + · · ·
+ (−1)∗4n1,1(y1, n0,2(p, x2, z1), x1) + · · · . (17.19)

We claim that (17.18) is a consequence of (17.19). To see this, we calculate the difference of
signs between n’s and m’s.

We note that for v = m1(z1) we have n2,1;1(x1, x2; y1; p; v) = (−1)∗5n1,3(y1, p, x2, v, x1),
where ∗5 is the Koszul sign induced by the change of the order of variables x1, x2, y1, p, v −→
y1, p, x2, v, x1. Therefore,

∗5 = deg′ x1(deg
′ x2 + deg′ y1 + deg′ p+ deg′ v) + deg′ x2(deg

′ y1 + deg′ p)

= deg′ x1(deg
′ x2 + deg′ y1 + deg′ p+ deg′ z1 + 1) + deg′ x2(deg

′ y1 + deg′ p).

We have also n1,1(x2; p; z1) = (−1)∗6n0,2(p, x2, z1), where ∗6 is the Koszul sign induced by the
change of the order of variables x2, p, z1 −→ p, x2, z1. Therefore, ∗6 = deg′ x2 deg

′ p. For
w = ±n0,2(p, x2, z1), we have n1,1;0(x1, y1;w) = (−1)∗7n1,1(y1, w, x1), where ∗7 is the Koszul sign
induced by the change of the order of variables x1, y1, w −→ y1, w, x1. Therefore,

∗7 = deg′ x1(deg
′ y1 + deg′w) = deg′ x1(deg

′ y1 + deg′ p+ deg′ x2 + deg′ z1 + 1).

The claim that (17.18) is a consequence of (17.19) follows from the congruence

∗1 + ∗2 + ∗3 + ∗4 + ∗5 + ∗6 + ∗7 ≡ 0 mod 2. (17.20)

One can check (17.20) by calculating the formula of ∗i given explicitly above. However, actually
we do not need any calculation to show (17.20), since (17.20) is an immediate consequence of
the fact that the map from permutation group to {±1} which associates the Koszul sign to each
permutation is a group homomorphism.

In fact, both ∗1 + ∗2 + ∗5 and ∗3 + ∗4 + ∗6 are the Koszul sign associated to the permuta-
tion n, n, x1, x2, y1, p, z1 → n, n, y1, p, x2, z1, x1.

By this reason, the discussion of this example can be easily generalized to other cases, as far
as the sign of the formulas we want to prove is by Koszul rule and we are given an identification
of the moduli spaces we use to moduli spaces of pseudo-holomorphic disks (polygons).

17.3 Orientation of the moduli space of pseudo-holomorphic drums

In this subsection, we study the orientation of the moduli space of pseudo-holomorphic drums,
Definition 8.15. The quilted domain W there is divided into three pieces W1, W2 and W3 and
ui : Wi → Xi is −JXi holomorphic. We identify Wi = [−1, 1]× R and put W−i = [−1, 0] × R,
W+
i = [0, 1]×R. Let u+i , u−i be the restriction of ui toW

+
i ,W−i . We define ûi = (û−i , û

+
i ) : [0, 1]×

R→ X2
i by û−i (t, τ) = u−i (t, τ), û

+
i (t, τ) = u+i (−t, τ). Then

(û1, û2, û3) : [−1, 0]× R→ (−X1 ×X1)× (−X2 ×X2)× (−X3 ×X3)
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is pseudo-holomorphic. See Figures 17.6 and 17.7. In Figure 17.6, we add 3 extra seams that
are depicted by dotted lines in Figure 17.6. The boundary condition becomes the product of
diagonals

∏3
i=1∆Xi at the boundary {0} × R and is L13 × L12 × L23 at the boundary {1} × R.

Let L be the disjoint union of
∏3
i=1∆Xi and L13 × L12 × L23. It is an immersed Lagrangian

submanifold of
∏3
i=1(−Xi ×Xi).

We decompose

3∏
i=1

∆Xi ×∏3
i=1(−Xi×Xi)

(
L̃13 × L̃12 × L̃23

)
into components R123(a), a ∈ A.

L12

L23 ∆X2

∆X1

∆X3

W1

L13

u+
1u−

1

u−
2

u+
2u−

3

u+
3

W2W3

Figure 17.6. Adding diagonal to a drum.

∆X1 ×∆X2 ×∆X3 L13 × L12 × L23

Figure 17.7. Regard a drum as a strip.

Thus the above construction defines a map

Dob: Mreg
DR(L13, L12, L23; a−, a+;E)

→
◦◦
M(∆X1 ×∆X2 ×∆X3 , L13 × L12 × L23; a−, a+;E). (17.21)

Here the moduli space
◦◦
MDR(L13, L12, L23; a−, a+;E) is a special case of the moduli space◦◦

MDR(⃗a13, a⃗12, a⃗23; a−, a+;E) in Definition 8.15, where a⃗13, a⃗12, a⃗23 are empty sets.17.9
◦◦
M(∆X1×

17.9In other words, we do not put marked points on the seams.
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∆X2 ×∆X3 , L12 × L23 × L13; a−, a+;E) is the part of
◦◦
M(L, a−, a+;E) which is used to define

the boundary operator

n0,0 : CF (∆X1 ×∆X2 ×∆X3 , L12 × L23 × L13)

→ CF (∆X1 ×∆X2 ×∆X3 , L12 × L23 × L13).

(17.21) is an isomorphism of Kuranishi structure and so we can use orientation of the right-
hand side to define orientation of the left-hand side. This implies Proposition 8.19 (3). We
remark that once Proposition 8.19 (3) is proved then the choice of σ13, the relative spin structure
of the geometric composition L13 = L12 ×X2 L23 is obtained in the same way as the proof of
Lemma 6.7. Namely, we apply Proposition 8.19 in the case L13 = L12 ×X2 L23. Then the triple
fiber product

∆×X2
1×X2

2×X2
3

(
L̃12 × L̃23 × L̃13

)
=

⋃
a∈A123

R123(a) (17.22)

contains a ‘diagonal component’ which is diffeomorphic to L̃13. We can use Lemma 3.11 to prove
the unique existence of the relative spin structure σ13 on L̃13 so that the orientation bundle Θ−
induced on the diagonal component L̃13 is trivial.

Now we include boundary marked points. In other words, we use the structure operation of
the bimodule structure

nk,m : BkCF [1](∆X1 ×∆X2 ×∆X3)⊗ CF (∆X1 ×∆X2 ×∆X3 , L12 × L23 × L13)

⊗BmCF [1](L12 × L23 × L13)→ CF (∆X1 ×∆X2 ×∆X3 , L12 × L23 × L13) (17.23)

to define the structure operations

ntri,<E0,ε
k13,k12,k23

: CF (L13)
⊗k13 ⊗ CF (L12)

⊗k12

⊗ CF (L13, L12, L23)⊗ CF (L23)
⊗k23 → CF (L13, L12, L23) (17.24)

of the tri-module structure. We use appropriate triples I13, I12, I23 which splits {1, . . . ,m}
(m = k13 + k12 + k23), in the same way as (17.11). We use again the Koszul sign rule. Namely,
(17.24) is a sum with Koszul sign of (17.23) over the choice of I13, I12, I23. (In (17.23), we put
k = 0, see (def.3).)

Now taking into account similar points as (dif.1) (dif.2) and the next point (dif.3), the bi-
module property of (17.23) implies the tri-module property (8.17) of (17.24), with sign.

(def.3) The bubble at the Lagrangian submanifold ∆X1 × ∆X2 × ∆X3 appears in the com-
pactification M(∆X1 × ∆X2 × ∆X3 , L12 × L23 × L13; a−, a+;E) but there is no corresponding
boundary component in the compactification of the moduli spaceMreg

DR(L13, L12, L23; a−, a+;E).

In fact, the disk bubble at ∆X1 ×∆X2 ×∆X3 corresponds to the sphere bubble of an element
ofMreg

DR(L13, L12, L23; a−, a+;E) at the seams depicted by the dotted lines in Figure 17.6. Since
they are sphere bubbles and occurs in codimension ≥ 2, they do not contribute the formula. In
other words, we can consider only k = 0 case of (17.23) and obtain a left CF (L13), CF (L12)
and right CF (L23) tri-module structure.

17.4 Orientation of the moduli space of Y -diagrams

In this subsection, we study orientation of the moduli space of Y -diagrams. We consider Y -
diagram as in Figure 9.1 and Definition 9.6. We put 3 extra seams which are depicted by dotted
lines in Figure 17.8 below. The domain Y in Figure 9.1 is divided into three pieces Yi (i = 1, 2, 3).
The added seams divide each of Yi into two pieces Yi,+ and Yi,− as depicted in Figure 17.8.
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Definition 9.6 defines a moduli space
◦◦
MY (⃗a12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3, a∞,−, a⃗∞,+;E). We consider

the case when a⃗12, a⃗23, a⃗13; a⃗1, a⃗2, a⃗3 are all empty sets and write it as
◦◦
MY(L1, L2, L3;L12, L23,

L13; a∞,−, a⃗∞,+;E).
We consider an element (Σ; z⃗1, z⃗2, z⃗3; z⃗12, z⃗23, z⃗13;u1, u2, u3; γ1, γ2, γ3; γ12, γ23, γ13) of the mod-

uli space
◦◦
MY(L1, L2, L3;L12, L23, L13; a∞,−, a⃗∞,+;E). We restrict ui to Yi,+ and Yi,− and ob-

tain u+i and u−i .

Y
Y

1

Y
2

Y
3

1 Y
2

Y
3

S
12

S
23

S
13

∆X1

∆X2

∆X3

Y1,+

Y1,−

Y2,−

Y2,+

Y3,+

Y3,−

Figure 17.8. Split domains in the Y-diagram.

We identify Yi,+ and Yi,− with a triangle T in Figure 17.9. We use a holomorphic map to
identify Yi,+ with T and an anti-holomorphic map to identify Yi,− with T. By this identification,
the point depicted by the white circle (resp. the gray circles) in Figure 17.8 is sent to the point
depicted by the white circle (resp. the gray circle) in Figure 17.9. Three ends of the domain Y
in Figure 17.8 is sent to the black circle in Figure 17.9. Thus u+i and u−i , i = 1, 2, 3, altogether
induce a pseudo-holomorphic map û : T→∏3

i=1(−Xi×Xi). At the three boundary components,
the map û satisfies the boundary condition given by the Lagrangian submanifolds

∏3
i=1∆Xi ,

L12 × L23 × L13, L
2
1 × L2

2 × L2
3, respectively.

∆X1
×∆X2

×∆X3

L12 × L23 × L13

(L1 × L2 × L3)
2

T

Figure 17.9. Reglue maps from the Y-diagram.

The boundary conditions at the three vertices are obtained as follows. a∞,− assigns a compo-
nent R123(a∞,−) of the fiber product (17.22) (see (9.3)). This boundary condition is used at the
vertex depicted by white circles in Figure 17.9. We next use a⃗∞,+ = (a∞,+,12, a∞,+,23, a∞,+,13).
Then determine components Rii′(a∞,+,ii′) of L̃i ×Xi L̃ii′ ×Xi′ L̃i′ (see (9.2)). Here (ii′) =
(12), (23), (13). Then the boundary condition at the black circles is given by

R(⃗a∞,+) := R12(a∞,+,12)×R23(a∞,+,23)×R13(a∞,+,13).

We finally describe the boundary condition at the vertex drawn by gray circle in Figure 17.9.
It should be a component of the fiber product(

3∏
i=1

∆Xi

)
×∏3

i=1(−Xi×Xi)
L2
1 × L2

2 × L2
3.



Unobstructed Immersed Lagrangian Correspondence and Filtered A∞ Functor 265

We take the diagonal component ∼= L̃1 × L̃2 × L̃3 and its fundamental class as the boundary
condition. We denote by

Mreg
3

(∏
∆Xi , L12 × L23 × L13, L

2
1 × L2

2 × L2
3; ∆, R123(a∞,−), R(⃗a∞,+);E

)
the moduli space of such holomorphic triangles.

Thus the above construction defines a map

Dob:
◦◦
MY(L1, L2, L3;L12, L23, L13; a∞,−, a⃗∞,+;E)

→Mreg
3

(∏
∆Xi , L12 × L23 × L13, L

2
1 × L2

2 × L2
3;

∆, R123(a∞,−), R(⃗a∞,+);E
)
. (17.25)

The orientation of the right-hand side of (17.25) is defined by Proposition 3.29. We thus define
the orientation of

◦◦
MY(L1, L2, L3;L12, L23, L13; a∞,−, a⃗∞,+;E) so that (17.25) preserves orienta-

tion. This proves Proposition 9.8 (3).

We show the compatibility of the orientation at the boundary below. We consider the codi-
mension one boundary component of the target of (17.25). We divide it into various cases.

Case 1. Disk bubble at
∏

∆Xi . There is no corresponding codimension one boundary com-
ponent in the source of (17.25). In fact, this corresponds to the sphere bubble at the seams
depicted by the dotted lines in Figure 17.8. This occurs in codimension ≥ 2.

Case 2. Disk bubble at L12 × L23 × L13. This corresponds to the disk bubble in Figure 9.4.
The homotopy class β of such disk is determined by

π2

(
3∏
i=1

(Xi ×Xi), L12 × L23 × L13

)
∼=

∏
(ii′)=(12),(23),(13)

π2(Xi ×Xii′ ;Lii′).

If β = (β12, β23, β13) and at least two of β12, β23, β13 are nonzero, then there is no corresponding
component in the source of (17.25). The reason is the same as the reason why Figure 17.2
appears in codimension ≥ 2. Therefore, it suffices to consider the case when only one of β12,
β23, β13 is nonzero. The boundary component corresponding to such cases corresponds to the
boundary component described by Figure 9.4. Therefore, the orientation is consistent at this
boundary component.

Case 3. Disk bubble at L2
1 × L2

2 × L2
3. The homotopy class of such bubble is given by

(
∏
(π2(Xi, Li)))

2. By the same reason as above it suffices to consider the case only one of those 6
factors is nonzero. Then it corresponds to the boundary component depicted by Figure 9.5 in
the right-hand side. Thus the orientation is consistent at this boundary.

We next consider the boundary component corresponding to the three vertices of T.

Case 4. The boundary component corresponding to the white vertex. This is described by
the fiber product of

M
(∏

∆Xi ;L12 × L23 × L13;R123(a)
)

(17.26)

with

Mreg
3

(∏
∆Xi , L12 × L23 × L13, L

2
1 × L2

2 × L2
3; ∆, R123(a), R(⃗a∞,+);E

)
over R123(a). We apply the identification of (17.21) and (17.26). Then this boundary component
corresponds to one in Figure 9.6. Thus the orientation is consistent at this boundary.
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Case 5. The boundary component corresponding to the black vertex. This is described by
the fiber product of

Mreg
3

(∏
∆Xi , L12 × L23 × L13, L

2
1 × L2

2 × L2
3; ∆, (a∞,−), R(⃗a

′
∞,+);E

)
withM

(
L12×L23×L13, L

2
1×L2

2×L2
3;R(⃗a

′
∞,+), R(⃗a∞,+)

)
taken over R(⃗a′∞,+). We put a⃗′∞,+ =

(a′∞,+,12, a
′
∞,+,23, a

′
∞,+,13). In the case when two among the three inequalities a′∞,+,12 ̸= a∞,+,12,

a′∞,+,23 ̸= a∞,+,23, a
′
∞,+,13 ̸= a∞,+,13 hold, the corresponding component in the source of (17.25)

has codimension ≥ 2. (The reason is the same as Case 2.) Therefore, it suffices to consider the
case when exactly one of the three inequalities a′∞,+,12 ̸= a∞,+,12, a

′
∞,+,23 ̸= a∞,+,23, a

′
∞,+,13 ̸=

a∞,+,13 hold. This case corresponds to one depicted in Figure 9.7. Thus the orientation is
consistent at this boundary.

Case 6. The boundary component corresponding to the gray vertex. The corresponding
component in the source of (17.25) has codimension ≥ 2. In fact, it corresponds to the case
when there is a disk bubble exactly at the gray vertex of Figure 17.8. This is a codimension 2
phenomenon.

We thus checked the consistency of the orientation at the codimension one component. We
proved Proposition 9.8 (3).

Proof of Proposition 9.2 (1). Given L1, L2, L12, L23 we consider the case when L̃13 =
L̃12 ×X2 L̃23 and L̃3 = L̃2 ×X2 L̃23 = L̃1 ×X1 L̃23.

We take the diagonal component as a for R123(a) and a∞,+,12, a∞,+,23, a∞,+,13 for R(⃗a∞,+).
Given relative spin structure σ1, σ12 of L̃1, L̃12, we have chosen the relative spin structure σ2

of L̃2 so that the local system associated to R12(a∞,+,12) ∼= L̃2 is trivial. We also have chosen
the relative spin structure σ13 of L̃13 so that the local system associated to R123(a) ∼= L̃13 is
trivial.

We consider the moduli space
◦◦
M(L1, L2, L3;L12, L23, L13; a∞,−, a⃗∞,+; 0) consisting of con-

stant map. It corresponds to the moduli space of constant maps

Mreg
3

(∏
∆Xi , L12 × L23 × L13, L

2
1 × L2

2 × L2
3; ∆, (a∞,−), R(⃗a

′
∞,+); 0

)
.

This space is diffeomorphic to L̃3 and is oriented.
Therefore, by Proposition 3.29, for any choice of relative spin structure σ3 of L̃3, the local

system induced on R13(a∞,+,13) ∼= L̃3 is isomorphic to one on R23(a∞,+,23) ∼= L̃3.
If σ3 = σ

(1)
3 , then it is trivial for R23(a∞,+,23) ∼= L̃3. It σ3 = σ

(2)
3 then it is trivial for

R13(a∞,+,13) ∼= L̃3. Therefore, σ
(1)
3 = σ

(2)
3 . Proposition 9.2 (1) is proved. ■

We next include marked points on the boundary of Y -diagram and will prove the equal-
ity (9.23) with sign.

Including marked points on the boundary the target of (17.25) becomes the moduli space
which is used to define structure operation

mm1+m2+m3+3 : BCFm1

Ä∏
∆Xi

ä
⊗ CF (∆)⊗BCFm2 (L12 × L23 × L13)⊗ CF (R123(a))

⊗BCFm3

(
L2
1 × L2

2 × L2
3

)
→ CF (R(⃗a∞,+);E)), (17.27)

of a filtered A∞ category assigned to
∏
(−Xi×Xi) and its Lagrangian submanifolds

{∏
∆Xi , L

2
1×

L2
2 × L2

3, L12 × L23 × L13

}
. It satisfies the A∞ relation. We convert first and second factor of

the output CF (R(⃗a∞,+)) = CF (R(a∞,+,12))⊗ CF (R(a∞,+,23))⊗ CF (R(a∞,+,13)) to the input
by duality.

Then the operation (17.4) with an appropriate sign becomes the operator YT E,ε
k12,k23,k13;k1,k2,k3

in (9.20). Here m1 = 0, m2 = k12 + k23 + k13, m3 = k1 + k2 + k3. We use the Koszul rule
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in the same way as Sections 17.2, 17.3, to define the sign. Then taking into account (def.2),
the A∞ relation for (17.4) becomes the equality (9.23) with sign. (We use the fact that some of
the terms of the A∞ relation of (17.4) is absent in (9.23). The reason is explained in Cases 1–6
above.)

17.5 Orientation of the moduli space of double pants diagrams

In this subsection, we study orientation of the moduli space of double pants diagrams. We draw
double pants as in Figure 11.4 and put 12 seams as in Figure 17.10 below. In Figure 17.10, the
new seams are depicted by dotted lines. We have new vertices also. There are 4 black vertices
which are new. The circles of Figure 11.4 are now depicted by white vertices in Figure 17.10.
There are 4 white vertices in Figure 17.10. Here the outer circle in Figure 17.10 should be
regarded as a vertex.

(
In other words, the domain should be regarded as S2.

)

W
1

W
4

W
2

W
3

S
12

S
34

S
23

S
13

S
14

S
24

Figure 17.10. Adding seams to double pants.

We cut the domain in Figure 17.10 and obtain the triangle T in the Figure 17.11 below.
The maps ui (i = 1, 2, 3, 4) in Definition 11.9 induces a map û : T → ∏4

i=1(−Xi × Xi). Its
boundary condition is given by ∆X1 × ∆X2 × ∆X3 × ∆X4 for the (two) dotted edges and∏

(ij)=(12),(13),(14),(23),(24),(34) Lij for the other edge.

T

(ij)=(12),(13),(14),(23),(24),(34)

Lij

∆X1
×∆X2

×∆X3
×∆X4

∆X1
×∆X2

×∆X3
×∆X4

Figure 17.11. Regluing double pants.

We thus obtain an identification of the moduli space
◦◦
M((⃗aii′ ; i, i

′); (aii′i′′ ; i, i
′, i′′);E) of Defini-

tion 11.9 with the moduli space of pseudo-holomorphic triangles depicted in Figure 17.11. There-
fore, applying Proposition 3.29 to the moduli space of pseudo-holomorphic triangles depicted in
Figure 17.11, we obtain an orientation of the moduli space

◦◦
MDP((⃗aii′ ; i, i

′); (aii′i′′ ; i, i
′, i′′);E).

The compatibility at the boundary can be proved in the same way as Section 17.4. It implies
Proposition 11.10 (3).

The proof of Proposition 11.16 (1) is the same as the proof of Proposition 9.2 (1) given in
Section 17.4.
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We consider marked points on the seam in Figure 17.10. Then the double pants transfor-
mation DPT E,ε in Definition 11.12 is defined by using appropriate A∞ operation (which is
defined from (17.11) with marked points added). The sign is defined by Koszul rule. So again
taking into account (def.2), A∞ formula implies formula (11.12) with Koszul sign.

17.6 Orientation and sign for A∞-structure in the Morse–Bott case

The proof of A∞-formula with sign is written in detail in the case of a single embedded La-
grangian submanifold in [35, 46, 72] etc. For an immersed Lagrangian submanifold which has
transversal self-intersection, it is written in detail in [4]. The latter implies the A∞ formula
with sign in the case when we have finitely many immersed Lagrangian submanifolds which
have transversal self-intersection and are mutually transversal. We can prove it in the case of
immersed Lagrangian submanifold which has clean self-intersection (Morse–Bott type) in a sim-
ilar way. Since it is not easy to find a reference which describes Morse–Bott case in detail, we
below explain the way to obtain the orientation which gives A∞-formula with Koszul sign in
such a case.

In this subsection, we follow Akaho–Joyce’s method in [4] and will explain how we modify
it to generalize to the Morse–Bott case. In the paper [68], written by Kaoru Ono, the way to
generalize [46] to the Morse–Bott situation will be written.

We consider the moduli spaceM(L; a⃗;E) defined in equation (3.19). It comes with evaluation
maps (3.21)

ev = (ev0, . . . , evk) : M(L; a⃗;E)→ L(⃗a). (17.28)

Here L(⃗a) = L(a0) × · · · × L(ak) is a direct products of connected components of L̃ ×X L̃. In
[4], L̃ ×X L̃ minus diagonal components is written as R. (In their case, R is a finite set. In
our case, it is a disjoint union of smooth compact manifolds.) In [4, p. 425, equation (50)],
Akaho and Joyce take a product ofM(L; a⃗;E) with vector spaces associated to each point R to
obtain M̂(L; a⃗;E). (They use the notation M̃. The author changes it to M̂ since M̃ is used in
Definition 3.19.)

Let x ∈ L(a) which is not in a diagonal component. We consider operators

∂Z−,λx : L2
k(Z−;TxX;λa; δ)→ L2

k−1(Z−;TxX; δ),

∂Z+,λx : L2
k(Z+;TxX;λa; δ)→ L2

k−1(Z+;TxX; δ)

as in (3.5). Here we fix a choice of λx. As is proved in [4, Proposition 5.15], the definition
of orientation and sign which we describe below is independent of such a choice. To study
orientation problem we can work locally on L(⃗a). So when x is in a (small) neighborhood of
given x0 we can and will take a choice of λx depending continuously on x. We can also perturb
appropriately so that ∂Z±,λx are surjective. Then Ker ∂Z−,λx defines a vector bundle on L(a).
(More precisely, on a neighborhood of x0 of L(a).) We denote its total space by L̂(a). In
case L(a) is a diagonal component, we define L̂(a) = L(a). We put L̂(⃗a) = L̂(a0)× · · · × L̂(ak).
Following [4, equation (59)] we put

M̂(L; a⃗;E) :=M(L; a⃗;E)×L(a⃗) L̂(⃗a). (17.29)

Note that the line bundle Θ−ai appearing in Proposition 3.29 is the determinant line bundle
of L̂(ai)→ L(ai). Therefore, Proposition 3.29 implies that M̂(L; a⃗;E) has a canonical orienta-
tion.

For i = 0, the convention of ẽv0 in [4, equation (62)] is slightly inconsistent with our conven-
tion of ev0 at the point which we explain below. Let σ be the involution L̃ ×X L̃ → L̃ ×X L̃
defined by σ(x, y) = (y, x). We denote by L(σ(a)) the component to which L(a) is sent by σ.
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(If L(a) is a diagonal component, then σ(a) = a.) The 0-th evaluation map used by [4] is
the composition σ ◦ ev0, where ev0 is the evaluation map (17.28). From now on, in this sub-
section we use [4]’s convention. Namely, we change the definition of ev0 to those by Akaho–
Joyce.17.10 This is only a matter of notation and there is no mathematical difference. Note that
then L(⃗a) = L(σ(a0))× L(a1)× · · · × L(ak) in this convention.

We next describe the evaluation map following [4, equations (61) and (62)]. We first de-
fine L̃(a) by modifying a bit [4]’s R̃. (We need slight modification since our L(a) may not be
discrete.) Let x = (p, q) ∈ L(a). We take λx ∈ Pax . (See Definition 3.7.) Then as we proved
in (3.6), we have

TxL̃ ∼= Ker ∂Z−,λx ⊕Ker ∂Z+,λx ⊕ TxL(a). (17.30)

We take a vector bundle on L(a) (more precisely on a neighborhood of x0 in L(a)) whose fiber
at x is Ker ∂Z−,λx ⊕Ker ∂Z+,λx and define L̃(a) to be the total space of this vector bundle. We
remark that L(a) may not be orientable. However, since we assume L to be oriented L̃(a) is
oriented.

We put L̃(⃗a) = L̃(σ(a0))× L̃(a1)× · · · × L̃(ak). For σ(x) ∈ L(σ(a)), we take λσ(x) to be the
opposite path to λx. Then we have canonical isomorphisms

Ker ∂Z−,λσ(x)
∼= Ker ∂Z+,λx , Ker ∂Z+,λσ(x)

∼= Ker ∂Z−,λx .

In particular, the involution σ : L(a)→ L(σ(a)) lifts to an involution σ : L̃(a)→ L̃(σ(a)).
We remark that (17.30) implies that dim L̃(a) = n for any a. (Here n = dimL.)

(
The

right-hand side is independent of a. This is an advantage to replace L(a) by L̃(a).
)

Now we define ẽv = (ẽv0, . . . , ẽvk) : M̂(L; a⃗;E)→ L̃(⃗a) in a similar way as [4, equations (61)

and (62)] as follows. We remark that an element of M̂(L; a⃗;E) is (x; (ξi)
k
i=0), where ξi ∈

Ker ∂Z−,λevi(x)
for i ̸= 0 and ξ0 ∈ Ker ∂Z−,λσ(ev0(x))

. We put

ẽvi(x) = (evi(x), ξi) ∈ L̃(ai), i ̸= 0, ẽvi(x) = (ev0(x), σ(ξ0)) ∈ L̃(σ(a0)), i = 0.

We remark that σ(ξ0) ∈ Ker ∂Z+,λev0(x)
. We use this fact and Theorem 3.24 to prove the following:

Proposition 17.4. M̂(L; a⃗;E) has Kuranishi structure with corners whose normalized boundary
is the disjoint union of the fiber products as follows

∂M̂(L; a⃗;E) =
∐
b,i,j

E1+E2=E

(−1)∗M̂(L; a⃗(b, i, j, 2);E2)ẽv0

×ẽvi+1 M̂(L; a⃗(b, i, j, 1);E1). (17.31)

(17.31) is mostly the same as (3.38),17.11 but we replace M by M̂ and ev by ẽv. We also
remark that the order of first and second factors in the right-hand side of (17.31) is the same as
[4, equation (73)] but is opposite to [46, equation (20.11)]. (See [4, the last part of Section 4.2].)
In this subsection, we follow [4]. Note that in (17.31) ẽvi+1 is used at the place where ẽvi is used
in [4]. This is because of the convention used in a⃗(b, i, j, 2) and a⃗(b, i, j, 1) and is not related to
the mathematical contents of the formula.

Now we state the compatibility of the orientations with the isomorphism (17.31), that is, the

sign ∗ in (17.31). As we mentioned already, Proposition 3.29 can be restated that M̂(L; a⃗;E)
is oriented. Also in (17.31) we take the fiber product over L̃(a), which is always n-dimensional
and oriented.

17.10The map ev0 used to define (17.29) is the one in (17.28). With this choice our ”M coincides with [4]’s ›M.
17.11(3.38) is the case of Theorem 3.24 (3) when the graph Γ has one interior vertex.
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Therefore, the situation is the same as the case of A∞ algebra associated to a single embedded
Lagrangian submanifold. We require ∗ = n + (i + 1) + (i + 1)k2. This is the same as [4,
equation (73)] except i is replaced by i + 1. (It is different from [46, equation (21.7)] by the
above mentioned reason.)

The rest of the argument is mostly the same as [4]. Let Pi = (Pi, fi) be a chain in L(ai). More
precisely, it is a smooth singular chain with an orientation of Θai,− ⊗ DetNPiL(ai) given.17.12

(Such a chain can be used to calculate the cohomology of L(ai) with Θai,− coefficient. Note
that in case Θai,− is trivial, the chain is co-oriented and so is related to cohomology rather than
homology. We remark that L(ai) may not be orientable. Even in such a case the set of singular
chains with co-orientation is a model of its cohomology.) We put

P̃i = Pi ×Ker ∂Z−,λσ(x0)
. (17.32)

Here we take λσ(x0) for x0 ∈ L(ai) and assume the image of fi is in a small neighborhood of x0.
Compare [4, equation (68)]. Note that

Ker ∂Z−,λσ(x0)
∼= Ker ∂Z+,λx0

. (17.33)

Then by the definition of Θai,− and (17.30) the chain P̃i is oriented.17.13 Using (17.33), we
obtain f̃i : P̃i → L̃(ai) in an obvious way.

Now we define

M̂(L; a⃗;E; P⃗ ) := (−1)∗M̂(L; a⃗;E)×L̃(a1)×···×L̃(ak) P̃1 × · · · × P̃k. (17.34)

Here we use ẽvi and f̃i to define the fiber product. The sign is

∗ = (n+ 1)

k∑
ℓ=1

(k − ℓ) degPℓ. (17.35)

Since deg in [4] is the shifted degree deg′ in FOOO’s notation (see [4, p. 418]), (17.35) exactly
coincides with the sign in [4, equation (79)]. (In (17.35), degPℓ is one in FOOO’s convention.)
Note that the degree of the chain in L(ai) as an element of CF (L(ai−1), L(ai)) is shifted from
its codimension in L(ai) by the dimension of Ker ∂Z−,λx0

. (It is the Morse index in the related
context of Morse–Bott theory.) Therefore, the degree of Pi as an element of CF (L(ai−1), L(ai))
is equal to the codimension of P̃i in L̃(ai).

It is easy to see that M̂(L; a⃗;E; P⃗ ) coincides with

M(L; a⃗;E; P⃗ ) =M(L; a⃗;E)×L(a1)×···×L(ak) P1 × · · · × Pk (17.36)

as spaces with Kuranishi structure (if we forget the orientation). The reason we rewrite (17.36)
to (17.34) is then the correction term to orientation is easier to write down. The map ẽv0 : M̂(L;
a⃗;E) → L̃(a0) induces ẽv0 : M̂(L; a⃗;E; P⃗ )→ L̃(a0). If we triangulate the domain, it gives
singular chains of L̃(a0). It is easy to see that those singular chains are related to the singular
chains obtained from ev0 :M(L; a⃗;E; P⃗ )→ L(a0) by the formula (17.32).

Now the rest of the construction is entirely the same as [4, pp. 434–444] and we obtain
operations which satisfy A∞ relations with Koszul sign, in the singular chain complex model.
As is explained in [29] (see the discussion around formula [29, pp. 190–191]), the sign and
orientation in the singular homology model induces one in the de Rham model.17.14

In the paper [68] by Kaoru Ono, the direct discussion based on de Rham model is given.

17.12Here we denote by NPiL(ai) the normal bundle. The determinant line bundle of the normal bundle is defined
even in the case fi : Pi → L(ai) is not an immersion.
17.13It might be more natural to say that it is co-oriented. However, in our situation the ambient manifold L̃(ai)
is oriented. So ‘oriented’ and ‘co-oriented’ are equivalent.
17.14Since we converted the situation to the case when all the fiber products involved are taken over n-dimensional
oriented manifolds, we can also import the method of [46].
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18 Concluding remarks

18.1 What we need to convert informal Definition 1.1 /
Informal Summary 1.2 into formal ones

In this subsection, we explain certain issues which will appear when one tries to give a rigorous
versions of Definition 1.1 or Informal Summary 1.2. We explain the following three points:

(A) In Theorem 1.3, we take a finite set of Lagrangian submanifolds (not all the Lagrangian
submanifolds) and the object set of the curved filtered A∞ category is this finite set.

(B) The geometric transformation of a Lagrangian submanifold L1 by a Lagrangian corre-
spondence L12 is defined under certain transversality assumptions. The composition of
Lagrangian correspondences is defined under certain transversality assumptions.

(C) The commutativity of several diagrams such as (1.1) or (1.10) is up to homotopy equiva-
lence and is not strict.

We elaborate on those points below.

(A) In Theorem 1.3, we take a finite set of (immersed and spin) Lagrangian submanifolds L
of (X,ω) and an object of our filtered A∞ category is a pair (L, b) of an element L of L
and its bounding cochain b. This category of course depends on the choice of L and so is
not canonically associated to (X,ω). A natural way to make it more canonical is taking
all the Lagrangian submanifolds. There is an issue for such a construction.

First we use a trick in Section 3.4 to reduce the construction of a filtered A∞ category to
one of a filtered A∞ algebra, by taking disjoint union of all the elements of L and regarding
it as a single immersed Lagrangian submanifold. This trick does not work if L has infinite
order. However, this point itself does not seem to be so serious since we used this trick
mainly to shorten the paper.

The other and more essential issue is gappedness. Our construction in Section 3 is based
on the induction on energy filtration. We took and fix a discrete submonoid G = {0 =
E0, E1, . . . } of R≥0 and construct an A∞ category modulo TEi by an induction on i. The
monoid G is generated by the set of symplectic areas of the all pseudo-holomorphic maps
(polygons, strips and etc.) which appear during the construction. Such G is discrete by
Gromov compactness when L is finite. In the case L is infinite we cannot take such a
discrete submonoid G.

In a certain situation, we can overcome this problem by using ‘homotopy inductive limit’
as follows. Suppose we have a countable set of spin immersed Lagrangian submanifolds L
of (X,ω). We take finite subsets L(j) of L for each j = 1, 2, 3, . . . such that L(j) ⊂ L(j+1)

and the union of all L(j) is L. For each j, we can take a discrete submonoid Gj such
that we can construct a Gj-gapped filtered A∞ category Fukst

(
(X,ω),L(j)

)
from the finite

set L(j). We may assume Gj ⊂ Gj+1. We next regard Fukst
(
(X,ω),L(j)

)
as a Gj+1-

gapped filtered A∞ category. Then we can construct a Gj+1-gapped filtered A∞ functor
Fukst

(
(X,ω),L(j)

)
→ Fukst

(
(X,ω),L(j+1)

)
which is a homotopy equivalence to the image.

In this way we can construct an inductive system of filtered A∞ categories.

In the case when the completion (with respect to the Hofer–Chekanov distance [15]) of
the set of Lagrangian submanifolds we study is separable, we can use the above sequence
and construct the inductive limit lim−→Fukst

(
(X,ω),L(j)

)
= Fukst((X,ω),L), see [32]. The

author does not know how much the separability assumption is essential.

(B) Let L12 ⊂ −X1×X2 and L23 ⊂ −X2×X3 be immersed Lagrangian correspondences. If the
fiber product L12 ×X2 L23 is transversal, then it becomes a Lagrangian correspondence ⊂
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−X1×X3. If those Lagrangian correspondences are self-clean, then assuming L12, L23 are
unobstructed, we proved that the composition of correspondence functors W(L12,b12) and
W(L23,b23) are represented by an unobstructed Lagrangian correspondence (L13, b13). (We
need to restrict ourselves to a finite set of Lagrangian submanifolds because of point (A).)

However, if the fiber product L12×X2 L23 is not transversal, there is no good candidate of
a Lagrangian correspondence representing the composition of correspondence functors.

A possible way to resolve this issue is using the result of [32] as follows. We perturb L23

to Lε23 by a small Hamiltonian isotopy. Then we obtain Lε13 = L12 ×X2 L
ε
23 which is an

immersed Lagrangian correspondence. If b12 and b23 are bounding cochains of L12 and L23

respectively, then we obtain a bounding cochain bε13 of Lε13. We can show that for εn → 0,
the sequence (Lεn13 , b

εn
13) becomes a Cauchy sequence with respect to the Hofer distance as

objects of Fukst(−X1 × X3) (see Definition 15.1).18.1 Generalizing various constructions
of this paper to the completion of filtered A∞ category via Gromov–Hausdorff distance
(which is introduced in [32]), it seems likely that we can define the composed functor as
the limit of W(Lεn

13 ,b
εn
13 )

.

We remark that if we change the coefficient from Novikov ring Λ0 to its field of fractions
Λ, then the problem becomes easier to handle. In fact, over Λ two objects (L23, b23) and
(Lε23, b

ε
23) are equivalent. So we do not need to take the limit as above. On the other hand,

the Lagrangian Floer theory over Λ0 is much richer and contains much more information
than the Lagrangian Floer theory over Λ.

(C) By inspecting the proofs of the commutativity of diagrams (1.1) and (1.10) given in this
paper, we find that they actually do not strictly commute but commute only up to homo-
topy equivalence. It seems likely that there is a certain pseudo-isotopy which interpolates
two compositions appearing in the diagram. Those pseudo-isotopies are well-defined up
to pseudo-isotopy of pseudo-isotopies. For the composition, we can also try to understand
the ‘higher associativity’, as follows. In the case when we consider four unobstructed im-
mersed Lagrangian correspondences (Li(i+1), bi(i+1)), i = 1, 2, 3, 4, from Xi to Xi+1, the
correspondence functors W(L12,b12), W(L23,b23), W(L34,b34), W(L45,b45) can be composed in
various different orders. For example,

W(L45,b45) ◦ (W(L34,b34) ◦ (W(L23,b23) ◦W(L12,b12))),

((W(L45,b45) ◦W(L34,b34)) ◦W(L23,b23)) ◦W(L12,b12)

and etc. There exist pseudo-isotopies between the compositions with different orders.
Moreover, it seems likely that one can construct a pseudo-isotopies of pseudo-isotopies
parametrized by the Stasheff 2-gon. It seems likely that one can continue and obtain a
certain infinite category type construction, if the issues (A), (B) are resolved.

The above discussions sketch a possible way to proceed to overcome (A), (B), (C) and actually
prove ‘Informal Summary 1.2’. However, the actual works needed to carry out those plans are
extremely heavy and likely become extremely lengthy. So I think taking a break at the point
where we proved the results in this paper before going further is a reasonable choice.

18.2 Relations to the works by Bottman–Wehrheim

In this subsection, we mention relations of this paper with several papers by Bottman [11, 12] and
Bottman–Wehrheim [13]. First we review briefly the method of a strip shrinking, introduced by
Wehrheim–Woodward, in the simplest case. In Section 5.2, we consider a moduli space consisting

18.1Moreover, it is a Cauchy sequence with respect to the Hofer infinite distance, which is introduced in [32].
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of u1, u2 where u1 : [−1, 0]× R→ X1 and u2 : [0, 1]→ X2 are pseudo-holomorphic maps, which
satisfy a certain matching (boundary) condition at {0}×R. One can generalize this moduli space
so that u1 is a map from [−S, 0]×R for a certain S > 0. We denote byMQT(L1, L12, L2;S) the
moduli space obtained in this way.18.2 We can then proceed in the same way to obtain a tri-
module, which we denote by C F (L1,L12;L2;S). We can use it instead of C F (L1,L12;L2) to
obtain a filtered A∞ functor,WS

L12
: Fukst(X1;L1)→ Fukst(X2;L2) in the same way as Sections 6

and 7.
Wehrheim–Woodward–Ma’u–Bottman studied the limit when S goes to zero. It is believed

that the limit limS→0MQT(L1, L12, L2;S) becomes a moduli space M(L′2, L2) together with
bubbles on the boundary {0} × R. Here M(L′2, L2) is a moduli space of pseudo-holomorphic
maps u : [0, 1]→ X2 such that u(0, τ) ∈ L′2 and u(1, τ) ∈ L2 and L′2 is the geometric transfor-
mation L1 ×X1 L12. See Figure 18.1.

−S 0 1

L1 L2

L12

0 1

X1 X2

X2
L2L2

Figure 18.1. Strip shrinking 1.

The bubble on the line {0} × R is called a Figure 8 bubble and in this case it is expected to
be described by a moduli space of (u1, u2) which are pseudo-holomorphic maps

u1 : [−1, 0]× R→ X1, u2 : [0,∞)× R→ X2

with boundary conditions u1(−1, τ) ∈ L1, (u1(0, τ), u2(0, τ)) ∈ L12, limt→∞ u2(t, τ) = p,
where p ∈ L′2 is independent of τ . See Figure 18.2.

0

L1

L12

X1 X2

−1

p ∈ L2

Figure 18.2. Figure 8 bubble 1.

The conjecture mentioned in Remark 1.6 claims that the virtual fundamental chain of the
moduli space of Figure 8 bubbles becomes a bounding cochain b′2 of L′2 and the homology of the
tri-module C F ((L1, b1), (L12, b12); (L2, b2)) becomes isomorphic to HF ((L′2, b

′
2), (L2, b2)).

We conjecture also that b′2 is gauge equivalent to the bounding cochain we obtained in The-
orem 1.5 as follows.

We consider the bounding cochains b′2(S) such that (L′2, b
′
2(S)) = WS

L12
(L1, b1). Using the

fact that C F (L1,L12;L2;S) is pseudo-isotopic to C F (L1,L12;L2;S
′) for S, S′ > 0, we can show

that b′2(S) is independent of S up to gauge equivalence. Note that b′2(S) is characterized by the
condition that

nS
(
eb1 , eb12 ;1; eb

′
2(S)
)
= 0, (18.1)

18.2It is an analogue of the moduli space MQT(⃗a1, a⃗12, a⃗2; a−, a+;E) introduced in Section 5.2. Since the discus-
sion here is heuristic, I do not include the marked points or energy in the notation.
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where nS is the structure operation of the tri-module C F (L1, L12;L
′
2;S) and 1 is the cyclic

element, which is the 0-form 1 on the diagonal component of the fiber product L1 ×X1 L12 ×X2

L′2
∼= L′2 ×X2 L

′
2.

The tri-module C F (L1, L12;L
′
2;S) is expected to ‘converge’ to the Floer chain complex

CF (L′2, L
′
2) with the boundary operator corrected by b′2, which is

d(x) = m
(
eb

′
2 , x
)
. (18.2)

Here b′2 is the conjectured bounding cochain obtained from Figure 8 bubbles.18.3 It is easy to
see that

m
(
eb

′
2 ,1, eb

′
2
)
= 0. (18.3)

Here m is the structure operation of the A∞ algebra associated to L′2 and 1 is the fundamental
class, which is the 0 form 1 of L′2. Comparing (18.1) and (18.3), we expect limS→0 b

′
2(S) = b′2.

Namely, the bounding cochain obtained from the moduli space of Figure 8 bubbles is gauge
equivalent to one in Theorem 1.5.

We mention a reason18.4 why the virtual fundamental chain of the moduli space of Figure 8
bubbles is not yet rigorously constructed. We draw Figure 18.2 on the 2 sphere as in Figure 18.3
below.

{0} × R {1} × R
u1

u2

L1
L12

p

Figure 18.3. Figure 8 bubble 2.

Two lines (seams) {0}×R and {1}×R on which we require boundary conditions are tangent
at the point ∞ (which is required to be sent to p). This is different from the situation of the Y-
diagram, where 3 seams intersect transversally at the hole. The existence of tangency between
seems is a new phenomenon and Fredholm theory for such boundary valued problem is not
yet established. We like to mention Bottman [11, 12] and Bottman–Wehrheim [13] established
compactness and removable singularity, which is a very important step toward constructing the
virtual fundamental chain of the moduli space of Figure 8 bubbles.

18.3 Relation to the works by Ma’u–Wehrheim–Woodward

As we mentioned in the introduction, Weinstein [82] proposed to regard a Lagrangian sub-
manifold of the product −X × Y as a morphism X → Y between symplectic manifolds.
Since Weinstein’s proposal looks so natural, there had been attempts to associate a func-
tor FL : Fukst(X)→ Fukst(Y ) to an unobstructed immersed Lagrangian correspondence L =
(L, b). A possible naive idea to do so is the following. Let L1 be a Lagrangian submanifold
of X. Instead of associating an object of Fukst(Y ) to L1, we try to define a right Fukst(Y )

18.3Note that d ◦ d = 0 may not hold for the operator (18.2). We need to add bounding cochain of CF (L′
2, L

′
2)

which acts from the right also to obtain d′ such that d′ ◦ d′ = 0.
18.4Which was known to various researchers before the year 2010.
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module FL(L1). In the cohomology level, FL(L1) can be defined by associating the Floer ho-
mology HF (L;L1×L2) in the product −X×Y to a Lagrangian submanifold L2 of Y . Actually
we can construct an A∞ functor

FL : Fukst(X)→ RMOD(Fukst(Y )) (18.4)

in this way, as we did in Section 5. Here RMOD(Fukst(Y )) is the DG-category of right Fukst(Y )
modules. Because of Yoneda’s lemma, an object of RMOD(Fukst(Y )) can be regarded as an
‘extended object’ of Fukst(Y ). Thus (18.4) could be regarded as a version of FL : Fukst(X) →
Fukst(Y ).

However, the problem is in this formulation it is difficult to compose FL12 and FL23 where
Li(i+1) = (Li(i+1), bi(i+1)) is an unobstructed immersed Lagrangian submanifold of −Xi ×Xi+1,
for i = 1, 2. This point is mentioned also in the first page of [63]. In the early 2000’s, the
author tried to resolve this problem by a purely algebraic method of homological algebra of A∞
categories, but he was not successful.18.5

Remark 18.1. The above naive idea can be regarded as a ‘finite-dimensional analogue’ of the
proposal [25] to construct instanton Floer homology of 3-manifolds with boundary as an A∞
module. In the moduli space introduced in [26] during the attempt to realize the proposal, a line
in the domain of C where the equation changes from the ASD-equation (on a 4-manifold) to the
pseudo-holomorphic curve equation, appears. This line plays the same role as seams play in the
study of Lagrangian correspondences. The moduli space introduced by Lipyanskiy [60] is more
directly an infinite-dimensional analogue of the moduli space of pseudo-holomorphic quilts.

As mentioned in Remark 1.6, Wehrheim–Woodward–Ma’u used the following idea to go
around this problem. For a given symplectic manifold X, they consider a series of Lagrangian
correspondences Li ⊂ −Xi × Xi+1 such that X0 is a point and Xn = X. They regard such
a system (L0, . . . , Ln) as an object of expanded category Fuk#(X). Then, if L′′ ⊂ −X ×
Y is a Lagrangian correspondence, one can define (WL)ob : OB

(
Fuk#(X)

)
→ OB

(
Fuk#(Y )

)
,

by (L0, . . . , Ln) 7→ (L0, . . . , Ln, L
′′).

To define the A∞ category Fuk#(X), one needs to define the Floer homology between ex-
tended objects (L0, . . . , Ln), (L

′
0, . . . , L

′
n′), where Li ⊂ −Xi ×Xi+1 and L′i ⊂ −X ′i ×X ′i+1, X0,

X ′0 are points and Xn = X ′n′ = X. They denote this Floer homology by HF (L0, . . . , Ln, L
′
n′ , . . . ,

L′0). Wehrheim–Woodward–Ma’u used the notion of a pseudo-holomorphic quilt to define it. The
pseudo-holomorphic quilt used to define HF (L0, . . . , Ln, L

′
n′ , . . . , L′0) is as in Figure 18.4 below.

Here ui (resp. u
′
i) is a pseudo-holomorphic map to Xi (resp. X

′
i) and u is a pseudo-holomorphic

map to X.

u1 u2

L1 L1

. . .

Ln

u1
u2

. . .

Ln

uL0
L0

un un

Figure 18.4. A pseudo-holomorphic quilt.

18.5Theorem 1.5 resolves this problem by using more geometric input.
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Wehrheim–Woodward–Ma’u went further to define a version of the correspondence bi-func-
torMWW : Fuk#(−X × Y )× Fuk#(X)→ Fuk#(Y ). Their works are very important contribu-
tions to the study of Lagrangian correspondence and Lagrangian Floer homology.

We remark that in a way similar to Theorem 16.17 (and using reflection principle in a similar
way as we used in Section 17), we can show the next isomorphism.

HF (L0, . . . , Ln, L
′
n′ , . . . , L′0)

∼= HF (L0 × · · · × Ln × L′0 × · · · × L′n′ ; ∆). (18.5)

Here

∆ ⊂
(
n−1∏
i=1

(−Xi ×Xi)

)
×
(
n′−1∏
i=1

(−X ′i′ ×X ′i′)
)
× (−X ×X) (18.6)

is the product of diagonals. The right-hand side of (18.5) is the Floer homology of two La-
grangian submanifolds in the symplectic manifold given in (18.6).

The advantage to use a pseudo-holomorphic quilt rather than Floer homology in the direct
product (as in (18.5)) lies in the fact that, then, one can use a strip shrinking to prove the next
important isomorphism

HF (L0, . . . , Ln, L
′
n′ , . . . , L′0)

∼= HF (L0, . . . , Ln−1, Ln ×X L′n′ , L′n′−1, . . . , L
′
0). (18.7)

As mentioned in the last subsection, a strip shrinking is a process to change the width between
two seams until it becomes 0 (see Figure 18.5). Note that the method of using reflection principle
to replace Wehrheim–Woodward’s definition by (18.5) works only in the case when all the strips
have the same width. Therefore, it is not consistent with strip shrinking.

Figure 18.5. Strip shrinking 2.

Wehrheim–Woodward proved the isomorphism (18.7) under the assumption that all the La-
grangian submanifolds involved (including the fiber product Ln ×X L′n′) are embedded and
monotone. The isomorphism (18.7) is a version of composability of filtered A∞ functors associ-
ated to the composition of Lagrangian correspondences.

The reason why one does not need to study Figure 8 bubbles in the case when all the
Lagrangian submanifolds involved are embedded and monotone is as follows. One can show
that if the Figure 8 bubble occurs then it carries a strictly positive energy and so the virtual
dimension of the moduli space of the configuration drops at least 2 in the monotone case. By
this dimension counting argument, one can avoid Figure 8 bubbles in the monotone situation.
Later Lekili and Lipyanskiy [59] gave an alternative proof of (18.7) using Y-diagram. (They
assume embeddedness and monotonicity.)

This is somewhat similar to the usual Floer theory or Gromov–Witten theory. In the semi-
positive case, one can avoid sphere bubbles by the dimension counting argument. Therefore, one
does not need to find a Kuranishi chart at such ‘infinity’. When we study a symplectic manifold
which is not semi-positive then we need an abstract perturbation and so we need a chart centered
at a point of infinity, which corresponds to a stable map with sphere bubbles.
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