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Abstract. We show that the Bailey lattice can be extended to a bilateral version in just
a few lines from the bilateral Bailey lemma, using a very simple lemma transforming bilateral
Bailey pairs relative to a into bilateral Bailey pairs relative to a/q. Using this and similar
lemmas, we give bilateral versions and simple proofs of other (new and known) Bailey
lattices, including a Bailey lattice of Warnaar and the inverses of Bailey lattices of Lovejoy.
As consequences of our bilateral point of view, we derive new m-versions of the Andrews—
Gordon identities, Bressoud’s identities, a new companion to Bressoud’s identities, and the
Bressoud—Gollnitz—Gordon identities. Finally, we give a new elementary proof of another
very general identity of Bressoud using one of our Bailey lattices.
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g-series; bilateral series
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1 Introduction and statement of results

A classical approach to obtain and prove g-series identities is the Bailey lemma, originally
found by Bailey [8], and whose iterative strength was later highlighted by Andrews [4, 5, 6]
through the so-called Bailey chain. Fix complex numbers a and ¢. Recall [8] that a Bailey pair
((an)n>0, (Bn)n>0) ((om, By) for short) relative to a is a pair of sequences satisfying
n .
Ba=S"—Y _ ypeN (1.1)

=0 (Q)n—j (CLQ)n-‘rj

Here and throughout the paper, we use standard g-series notations which can be found in [16]

(@)oo = (a5 ¢)o0 == H(l — aqj) and (@) = (a;q)x := ((a;q)oo

b
3>0 ag"; q)oo

where k € Z, and (a1,...,am)r = (a1)k - (am)g, where k is an integer or infinity, and as
usual |¢| < 1 to ensure convergence of infinite products.

This paper is a contribution to the Special Issue on Basic Hypergeometric Series Associated with Root
Systems and Applications in honor of Stephen C. Milne’s 75th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA /Milne.html
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The Bailey lemma describes how, given a Bailey pair, one can produce infinitely many of them.
Originally, Bailey [8] stated the Bailey transform and applied it in a number of cases without
iterating it, to obtain (what is now called) the weak Bailey lemma. Andrews [4] reformulated
and generalised Bailey’s result to what is called the strong Bailey lemma or Bailey lemma,
exhibiting its iterative nature, therefore giving rise to the concept of Bailey chain. Also Paule [30]
independently noticed that Bailey’s result could be iterated (using one extra parameter at each
step instead of the two parameters used by Andrews, see below).

Theorem 1.1 (Bailey lemma). If (ay,8n) is a Bailey pair relative to a, then so is (o, ),
where

o Bonlag/p)" Z": (0,0);(a4/00)n— (aa/ o) 5

(ag/p,aq/o)n " = (@)n—j(aa/p,aq/o)n

Despite its quite elementary proof, as it only requires the g-analogue of the Pfaff-Saalschiitz
formula (see [16, formula (I1.12)]), which is itself consequence of the ¢g-binomial theorem (or can
alternatively be proved elementarily by induction), it yields many formulas in g-series, some of
which are highly non trivial. For instance, in [4, equations (2.12) and (2.13)], the following unit
Bailey pair (relative to a) is considered (proving that it is indeed a Bailey pair is elementary, it
can be done either directly or by inverting the relation (1.1))

1 —ag® (a),
1—a (q)’

Qp = (_an(g) Bn = 5n,0- (1'2)

Applying Theorem 1.1 twice to the unit Bailey pair (1.2) yields a simple proof of the famous
Rogers-Ramanujan identities [31].

Theorem 1.2 (Rogers—Ramanujan identities). Let i =0 or 1. Then

qn2+(1—i)n 1
= (On (q27i7 g3t q5)oo '
Iterating » > 2 times, this process yields the i = 1 and ¢ = r special instances of the

Andrews-Gordon identities [3].
Theorem 1.3 (Andrews—Gordon identities). Let r > 2 and 1 < i < r be two integers. We have
3%+"'+5%_1+5i+“'+3r71 (q2r+1’ qi’ q2r—i+1; q2r+1)

3 q = =) (1.3)

$1> > 10 (Ds1—s2 (D sp_g—s,-1 (D) s, ()0

These identities are the analytic analogue of Gordon’s partition theorem [18].

However it is not possible to prove the cases 1 < ¢ < r of the Andrews—Gordon identities
with only the Bailey chain. Thus the Bailey lattice was developed in [2] as a more general tool
which enabled the authors to give a proof of the full Andrews—Gordon identities. The key point
is to change the parameter a to a/q at some point before iterating the Bailey lemma, therefore
providing a concept of Bailey lattice instead of the classical Bailey chain described above.

Here is the classical Bailey lattice proved in [2]. Its proof is only a little bit more involved than
for Theorem 1.1, as it relies again on the above-mentioned g-Pfaff-Saalschiitz formula, together
with the ¢-Chu-Vandermonde terminating 2¢; summation [16, formula (I1.6)] and a final mild
division into two cases.
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Theorem 1.4 (Bailey lattice). If (v, 5,) is a Bailey pair relative to a, then (o, Bl,) is a Bailey
pair relative to a/q, where

;o (P’J)n(a/f?o’)"(l ) (1 o aq2”‘2an1>

’ _
% = @0, Hn = a®n 11— ag?n2

" (a/p,a/o)n

and

N (0.0)s(a/p0)uslafpo)l
D ) M Yy o P

Alternatively, Andrews, Schilling and Warnaar showed in [7, Section 3| that it is possible
to prove (1.3) using the Bailey lemma and bypassing the Bailey lattice: actually, their method
is related to what we present below. Indeed at some point they use computations which are
equivalent to a special case of the inverse of Lemma 1.5, which is the b = 0 case of Lovejoy’s
Lemma 1.15 (these lemmas did not exist at the time).

Note that Paule [30] derives (1.3) from his weaker version of the Bailey lemma. In [14], it
is also explained how a change of base allows one to avoid using the Bailey lattice. Recently,
McLaughlin [26] showed that (1.3) can be proved much more easily by combining the classical
Bailey Lemma with a simple lemma (see also the result of Lovejoy [25, Lemma 2.2] which
corresponds to the case a = ¢ of McLaughlin’s result).

Lemma 1.5 (McLaughlin). If (apn,8y) is a Bailey pair relative to a, then (o, 3l,) is a Bailey
pair relative to a/q, where
2n—2

« aq Qp—1
dh=an (- (g =) =

In this paper, we will show, among other things, that this lemma and the Bailey lattice can
be extended to bilateral versions.

As noted in [9] and [21], it is possible to define for all n € Z a bilateral Bailey pair (ap, Bn)
relative to a by the relation

anzm Vn € Z. (1.4)

Jj<n
Remark 1.6. The relation (1.1) defining classical (unilateral) Bailey pairs is a special instance
of the above relation defining bilateral ones, as choosing «,, = 0 for negative integers n in (1.4)
implies 3, = 0 for n negative. Actually, the converse is also true, as the classical Bailey inversion
holds for bilateral Bailey pairs: (g, fy) is a bilateral Bailey pair relative to a if and only if

1— . (n—]
o, = 1—aqa ”ﬂ y=ig")g,  wnez. (1.5)

]<n

Thus, from all our results in this paper, one can deduce the corresponding unilateral results by
setting apy, = 0 (or equivalently B, = 0) for all n < 0.

In [9], the Bailey lemma is extended in the following way.

Theorem 1.7 (bilateral Bailey lemma). If (o, 8y) is a bilateral Bailey pair relative to a, then
so is (o, 31, where

75

o = Ponlag/po)” > (p,0);(ag/po)n—j(ag/po)’
" (

(aa/p,aq/o)n "= (@a-ylea/p,aq/o)n

subject to convergence conditions on the sequences oy, and [B,, which make the relevant infinite
series absolutely convergent.
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Our first result is an extension of the Bailey lattice to the bilateral case.

Theorem 1.8 (bilateral Bailey lattice). If (cu,,Bn) is a bilateral Bailey pair relative to a,
then (o, BL) is a bilateral Bailey pair relative to a/q, where

L ey e e

= ((I/p, a/a)n 1— a,q2” - 1— aq2n—2

and

p, a/pff)n ila/pa)
=2 B
i<n In—j(a/p,a/o)n
subject to convergence conditions on the sequences oy, and [B,, which make the relevant infinite
series absolutely convergent.

As mentioned above, several proofs have been given for the (unilateral) Bailey lattice. On the
other hand, simpler proofs were given to prove the Andrews—Gordon identities without using
the Bailey lattice. Here we give a very simple proof of our bilateral Bailey lattice, which when
considering Bailey pairs such that «, = 0 for n < 0 reduces to the unilateral Bailey lattice.
Hence we provide in particular a very simple proof of the classical Bailey lattice.

The key in our proof is the following simple lemma, which generalises McLaughlin’s unilateral
Lemma 1.5 and transforms bilateral Bailey pairs relative to a into bilateral Bailey pairs relative

to a/q.

Lemma 1.9 (key Lemma 1). If (a, By) is a bilateral Bailey pair relative to a, then (o, Bl) is
a bilateral Bailey pair relative to a/q, where

2n—2
« aq Q1
=) (2 - ) B (16)

subject to convergence conditions on the sequences oy, and (B,, which make the relevant infinite
series absolutely convergent.

While it is not customary to do so, we give the proof in this introduction to show that it is
just a few lines long and only requires the definition of bilateral Bailey pairs and elementary
sum manipulations which are similar to the ones for the unilateral version.

Proof of Lemma 1.9. For all n € Z, we have

Z Oé; B Z (1—a) < o aq2j_2aj_1>
j<n (Q)nfj(a)nJrj i<n (Q)nfj (a)n+j 1- anj 1-— aq2j72
_ (1—a)a; | —Z (1—-a)(1—q"7)ag¥ oy
j<n (Q)nfj(a)n#j(l - aq2j) j<n (Q)nfj(a)nJrj#l (1 - aq2j)
(1 ) w 9 .
— 1 — ad™) — ag® (1 — g7
j<n( O (a)n+]+1(1—aq29)(( aq ) aq ( q ))
= Z = B = B,
j<n n 7 aCI)n+]
which is the desired result by (1.4). [

With this lemma, we can give an extremely simple proof of the bilateral Bailey lattice.
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Proof of the bilateral Bailey lattice. Start from a bilateral Bailey pair (ay,[3,) relative
to a. Then apply Lemma 1.9 to obtain a bilateral Bailey pair (dn, Bn) relative to a/q and
satisfying (1.6). Applying the bilateral Bailey lemma (see Theorem 1.7) to (dn,ﬁn) with a
replaced by a/q gives the desired bilateral Bailey pair (o, 8},) relative to a/q. |

In addition to Lemma 1.9, let us give a similarly simple lemma whose unilateral version is
also due to McLaughlin in [26, Lemma 13.1 (2)] (see also Lovejoy [25, Lemma 3.1]), and whose
proof is very similar to the one of Lemma 1.9.

Lemma 1.10 (key Lemma 2). If (a, 8,) is a bilateral Bailey pair relative to a, then (o, 3,)
is a bilateral Bailey pair relative to a/q, where

n—1

) )
a;:u—a)( o _ 4 O‘) B = "B,

1— aq2n 1— aq2n—2

subject to convergence conditions on the sequences oy, and [3,, which make the relevant infinite
series absolutely convergent.

Using, as in the short proof of the bilateral Bailey lattice above, Lemma 1.10 followed by
Theorem 1.7 with a replaced by a/q, we obtain the following new bilateral Bailey lattice, similar
to Theorem 1.8. As far as we know, its unilateral version was also unknown until now.

Theorem 1.11 (new bilateral Bailey lattice). If (o, By) is a bilateral Bailey pair relative to a,
then (o, BL) is a bilateral Bailey pair relative to a/q, where

, _ (p, ff)n(a/pff)"(1 —a) ( "on ¢l ) ’

= a/p,afo)n 1—ag?  1—ag2

and

gy f(f>j<a/pa>nj<a/pa>f 6
2 Waslo/p.afo),
subject to convergence conditions on the sequences au, and [3,, which make the relevant infinite
series absolutely convergent.
Lemmas 1.9 and 1.10 can be generalised by adding an extra parameter b.

Lemma 1.12 (general lemma). If (cu,, 8,) is a bilateral Bailey pair relative to a, then (o, Bl)
is a bilateral Bailey pair relative to a/q, where

. o n—1 n—1 _ _ hon
i (Ot T o)y o

R 1—ag® 1—ag*—2 "1

Remark 1.13. Lemma 1.9 is the case b = 0 and Lemma 1.10 is the case b — oo of Lemma 1.12.

Remark 1.14. While at first glance Lemma 1.12 seems more general than Lemmas 1.9 and 1.10,
it is actually equivalent to these two lemmas taken together. Indeed, the bilateral Bailey pair in
Lemma 1.12 is equal to 1/(1 — b) times the bilateral Bailey pair of Lemma 1.9 minus b/(1 — b)
times the bilateral Bailey pair of Lemma 1.10. Using the fact that being a bilateral Bailey pair
is stable under linear combination, Lemmas 1.9 and 1.10 imply Lemma 1.12. Note that it is also
possible to prove Lemma 1.12 directly with a similar method to the proof of Lemma 1.9.

Despite following from Lemmas 1.9 and 1.10, this general Lemma 1.12 is still interesting as it
provides in the unilateral case an “inverse” to Lovejoy’s Lemma 2.3 of [25], which he first stated
in [24, equations (2.4) and (2.5)]. Actually, this result inspired our discovery of Lemma 1.12.
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Lemma 1.15 (Lovejoy). If (an, By) is a Bailey pair relative to a, then (o, 3],) is a Bailey pair
relative to aq, where

(1= ag®* ) (ag/b)n(=0)"q"" V2 I (b),

of = A fr(rfl)/Qar
(1= aq) (ba)» 2 Tagfty, 0
and
,1-b

Moreover, from Lemma 1.12, we deduce a very general theorem transforming bilateral Bailey
pairs relative to a into bilateral Bailey pairs relative to ag~ Y. Recall the M-th elementary
symmetric polynomial in N variables defined for 0 < M < N as

eM(le--wXN): § Xi1Xi2"'XiM7
1< <t <<ty <N

and epr(Xq,...,Xn)=0if M <0or M > N.
Recall also that for all 0 < j < N, the ¢-binomial coefficient is defined by

5l aioe

We extend this definition to j < 0 and j > N by setting [ij] = 0, which, as N > 0, is consistent
with the definition of ¢-Pochhammer symbols with negative indices given above. The general
theorem can be stated as follows.

Theorem 1.16 (new bilateral Bailey lattice in higher dlmensmn; Let (ap, Bn) be a bilateral
Bailey pair relative to a. For oll N > 1, define the pair (an ,571 )

v (1 _aqzn—N)(aql N ) n an—j(j+1)/2fN,j,n(b1,...,bN) . 17
S T B T D Dl (ag?"=N=3) e o
JEZ N+1
where
fN,j,n(bl, b Z Z v q (M—j+u)(n—j+u)+u(n—N) |: ]\_4 :| |:N M:|
MeZ ueZ j b “
X (_1)M€M(b17"'7b]\/)7 (18)

and

BN = (H 11—_qu ) Ba. (1.9)

i=1

(N)

Then, (04,(1 ), N ) is a bilateral Bailey pair relative to ag™ .

Remark 1.17. When j < 0 or j > N, we have fn (b1,...,bn) = 0 because of the g-binomial
coefficients in (1.8). Therefore, the sum in (1.7) is actually finite.

Remark 1.18. Note that the sums over M and u in (1.8) could equivalently be taken from 0
to N and from 0 to j, respectively. Indeed the g-binomial coefficients or eps(by,...,by) natu-
rally cancel outside of these ranges. However, the expression with infinite sums makes future
calculations easier to write.
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Again, Theorem 1.16 can be seen in the unilateral case as the inverse of a theorem of Love-
joy [24, Theorem 2.3].

Theore(z]{[r)l 1.(}\% (Lovejoy). Let (o, Bn) be a Bailey pair relative to a. For all N > 1, define the
) by

pair (an , Br

oo _ (1= aa® ) (ag™ o), (~by)"q)
" (1 —ag")(bng)n
Cy e g o ),
S (1—aq)-- (1—agN"")(aq/bi)n, - (ag" /bx),

(bl)n (bN)n no—n NN—NMN—_17—Nn ny  —(™
(b1q) 1‘"(bN qu)v D (1) g ()
n2 — nN

Qnyy

and

N 1-b

(N) — -
=1

Then, (oz,(lN), T(LN)) is a Bailey pair relative to ag” .

As particular cases of Theorem 1.16, we recover and generalise to the bilateral case some
Bailey lattices due to Warnaar, as well as discover new simple ones (see Section 3).

Moreover, we take advantage of the bilateral aspect of our results by using a bilateral Bai-
ley pair (in the special case a = ¢, see (2.5)) instead of the classical unit Bailey pair, and
obtain new generalisations, which we call m-versions, of the Andrews—Gordon identities, the
Bressoud identities, and new companions to Bressoud’s identities which we very recently discov-
ered combinatorially [15] (see (2.13)—(2.14)). The m-version of the Andrews—Gordon identities
is as follows.

Theorem 1.20 (m-version of the Andrews—Gordon identities). Letm >0, r > 2, and 0 <i <r
be three integers. We have

524 ds24m(sy 4 tsp)—81——5; B

> = (1) |
1> >8p>—|m/2] (D12 (@srr=s m 28

_ - qu (q
k=0

2r+1 q(m+1)r—i+2k 1-m)r+i—2k+1. 2r+1>
) M )

4
(9)oo

q

20 (1.10)

Note that in [10, equation (3.21)], Berkovich and Paule prove a different m-version of the
Andrews—Gordon identities, in which m is negative.
The m-version of our new companions to Bressoud’s identities is the following.

Theorem 1.21 (m-version of our identities). Let m > 0, r > 2, and 0 < i < r be integers.
Then

s%+"'+sz+m(sl+"'+Sr—1)*31*"'*Si+3r—1*25r(_q)m+2sr( 1) [ m+ S, }
(Q)51—52 e <Q)Sr—2_5r—1 (q2; qz)sr_lfsr m+ 2s, q?

- (q2'r7 q(m+1)(r—1)—i+2k7 q(l—m)r+m+i—2k+1; qQT)OO

Z q
512> 2>5.2>—|m /2]

7

=Yg (1.11)

= (@)oo
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The m-version of the classical Bressoud identities (namely the even moduli counterpart of the
Andrews-Gordon identities) is a bit less elegant (see Theorem 2.6). Recall that in [34, p. 387],
there is a different m-version of the even moduli case.

Other famous identities of the Rogers—Ramanujan type, which where found by Gollnitz [17]
and Gordon [19] independently, can be stated as follows.

Theorem 1.22 (Gollnitz—Gordon identities). Let i =0 or 1. Then
qn2+2(1—i)n(_q; ¢) 1

n — . . .
= (¢%4%), (¢*2, ¢4, 25 6%)

As for the Rogers—Ramanujan identities, there are combinatorial interpretations and mul-
tisum generalisations of the Gollnitz—Gordon identities in the spirit of the Andrews—Gordon
identities (1.3) (see, for instance, the recent paper [20]). Actually, Bressoud proved in [13] three
different such generalisations, which are listed as (3.6)—(3.8) in his paper (he also proved another
formula of the same kind, namely [13, equation (3.9)], which is so similar to [13, equation (3.8)]
that it is considered in [20] as a generalisation of the Go6llnitz—Gordon identities, although it is
not stricto sensu the case).

While looking for m-versions of all these Bressoud—Gollnitz—Gordon identities, we discovered
the following result, which surprisingly interpolates between the classical Bressoud identities
and [13, equation (3.6)].

Theorem 1.23 (m-version of the Bressoud and Bressoud-Géllnitz—Gordon identities). Let
m>0,7r>2, and 0 <7 <71 be integers. Then

524 ts24m(s14-+sp)—s —=8;—(Mm Sr m
> g st m(sitter) s (m+1)s/2 (g “)/2)5,«(_1)& {mﬂr}
3o |m/2] (@) sy—s0 (@Q)sp_1—s, (_q(wwrl)/2)57n_1 m + 2s,
i 2r _(m+1)r—i+2k—(m+1)/2 (1—m)r+i—2k+(m+1)/2. 2r
_ qu(q .q .q 'q )Oo. (1.12)

prd (@)oo

Actually, in [13], Bressoud proved a very general multi-parameter identity (see Theorem 4.1
below), of which the cases m = 0 and m = 1 of Theorems 1.20, 2.6, and 1.23 are particular cases.
This led us to believe that Theorem 4.1 could be proved using the classical Bailey lattice (see
Theorem 1.4), but we did not succeed. However we managed to prove it in a simple way by using
the unilateral version of our new Bailey lattice (see Theorem 1.11), see Section 4. Moreover, the
cases m = 0 and m = 1 of Theorem 1.21 do not seem to follow from Theorem 4.1. So the Bailey
lattice approach appears to be more general.

The paper is organised as follows. In Section 2, we use our bilateral Bailey lattices to prove
general results and deduce m-versions of many classical identities, among which Theorems 1.20—
1.23. In Section 3, we give N-iterations of our Bailey lattices, generalise some N-Bailey lattices
of Warnaar to the bilateral case, and prove Theorem 1.16. In Section 4, we show how to derive
a new proof of Bressoud’s theorem with our new Bailey lattice of Theorem 1.11, and why we fail
when trying to do the same using the classical Bailey lattice. Finally, we conclude with a short
section listing some open problems.

2 New m-versions of the Andrews—Gordon identities and others

2.1 Combining bilateral Bailey lemmas and lattices

In [2], many applications of the Bailey lattice (see Theorem 1.4) are provided, among which
a general result, obtained in [2, Theorem 3.1] by iterating r — ¢ times Theorem 1.1, then using
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Theorem 1.4, and finally ¢ —1 times Theorem 1.1 with a replaced by a/q. Using the same process
in our bilateral point of view, replacing Theorem 1.1 (resp. Theorem 1.4) by Theorem 1.7 (resp.
Theorem 1.8), we derive the following generalisation of [2, Theorem 3.1].

Theorem 2.1. If (o, B,) is a bilateral Bailey pair relative to a, then for all integers 0 < i <r
and n € Z, we have

Z astttergsintts g (p1,01)s:  (pry ov)s,
n>sy>->sp (plgl)sl e (pTO-T)ST (Q)n—81 (Q)S1—82 e (Q)Sr—l_sr

(a/p101)n—s,(a/p202)s1—s, -+ - (a/piTi)s, 1—s:
(a/p1,a/or)n(a/p2, afo2)s, -~ (a/pisaloi)s,
(GQ/Pi+10i+1)Si—Si+1 - (aq/prov)s,_i—s,
(aq/piv1,0q/0it1)s, -+~ (aq/pr,aq/or)s,
-y (p1,01,- -, pi;03)j(pro1 - - pioi) Ta" (1 — a)
(Dn—j(@)nrjla/pr,afon, ... a/pi,aloi);

j<n

y (Pit1,Tig1s- s Pry0r)i(Pig10i41 - Prar)_j(GQ)(T‘_i)jOéj
(aq/piy1,aq/0it1,- . . aq/pr,aq/o,); (1 — ag®)

_ (Pit15 Tig1s s PryOr)j—1(Pig10541 - 'PrUr)_j+1(GQ)(T_i)(j_l)GQZj_QOéj—l
(aq/pit1,aq/0iy1,- .. aq/pr,aq/or)j-1(1 — ag?i=2) ’

subject to convergence conditions on the sequences au, and [3,, which make the relevant infinite
series absolutely convergent.

In this section, we will consider the special case below where all parameters p;,o; — oo and
at the end n — 400, which is a bilateral generalisation of [2, Corollary 4.2]. (We also shifted
the index j to j + 1 in the terms involving a;_1.)

Corollary 2.2. If (a, By) is a bilateral Bailey pair relative to a, then for all integers 0 < i <,
we have

a51+"'+5’"qs%+"'+s’2‘_81_"'_Si/B 1 Zarjqrjz,ijl - ai+1q2j(i+1)w (2.1)
Sp — - , .
(aq) oo jez 1 —ag% !

D

§1> s (Q)51—52 e <Q)5T—1_ST

subject to convergence conditions on the sequences oy, and [B,, which make the relevant infinite
series absolutely convergent.

In [2], Agarwal, Andrews and Bressoud prove the Andrews—Gordon identities (1.3) in the
following way. They apply Corollary 2.2 to the unit Bailey pair (1.2) (which we recall is uni-
lateral) with a = ¢, factorise the right-hand side using the Jacobi triple product identity [16,
formula (I1.28)]

D (1)U = (¢,2,4/2 ¢) oo, (2.2)
JEZ

and replace ¢ by 7 — 1.

Regarding m-versions of Bressoud and Bressoud—Gollnitz—Gordon type identities, we will
also need the more general case below where all parameters except p1, p, tend to oo (p1, pr are
replaced by b, ¢ below).
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Corollary 2.3. If (ay, Bn) is a bilateral Bailey pair relative to a, then for all integers 0 <1i <r,
we have

52 824+ ts2 52/2—s1/2—83——5;+sp
Z CL81+W+STq 1/2+ 2+ + T_1+ T/2 1/2 § i /2(_1)81+8r (b)sl (C)Sv B
s> >5, (Ds1—s2 7 (@) s,_1—s, bsicsr(agq/c)s,_,
o ardg(r—137—ij+j b.c): 1—bg?
a/b Z q - . (b,c); 14 ait! ](21+1) bg a;, (2.3)
—ag¥  bd(a/b,aq/c); b— agl

subject to convergence conditions on the sequences oy, and (B,, which make the relevant infinite
series absolutely convergent.

Of course when b, ¢ — oo in (2.3), one gets (2.1)

Remark 2.4. One can obtain a result similar to Theorem 2.1 by using Theorem 1.11 instead
of Theorem 1.8. However, since the limiting case of interest is nothing but Corollary 2.3 with ¢
replaced by ¢ — 1, we have decided to omit this additional theorem.

2.2 Bilateral Bailey pairs

In [21], the bilateral Bailey lemma given in Theorem 1.7 is studied in particular by considering
the case where a = ¢ for a non-negative integer m (this instance is called shifted Bailey lemma
n [21]). The following bilateral (actually shifted) Bailey pair, which was already mentioned in
another form in [7], is considered

2.4
m+ 2n (2:4)

oy = (-1)"(](3) and Bn = (q)m(—l)nq(z) |: mtn :| .

Taking m = 0 and m = 1 in (2.4) yields Bailey pairs equivalent to the cases a = 1 and a = ¢ of
the unit Bailey pair (1.2). Note that choosing ), = J, 0 and computing a,, by the inversion (1.5)
would not provide a new bilateral Bailey pair, as can be seen by Remark 1.6: it returns the
usual unit Bailey pair (1.2). However, to use in full generality the bilateral point of view while

keeping a general, it would be natural to consider

Qpn

2n
_ (_1\ntm ("+m) 1—aq (a)nfm _
(iU g B, = 5, (2.5)

where we made use of the inversion (1.5). However, applying Corollary 2.2 to the bilateral Bailey
pair (2.5) does not provide any interesting generalisation (like the m-versions of the next section
in the case of (2.4)) of (1.3), but a formula which is equivalent to (1.3) for all m. Indeed, by

applying (2.1) to (2.5) and replacing the index j by 7 —m, a few classical ¢g-series manipulations
show that at the end there is no genuine dependence on m.

2.3 m-versions of the Andrews—Gordon identities

Recall that the Andrews—Gordon identities (1.3) arise in [13] in pair with a similar formula [13,
equation (3.3)], valid for all integers r > 2 and 0 < i <r —1

§24ts? | —s1——sy 4 (q2r+1 qr—i+k qr+i—k+1.q2r+l)

Y q _ = : : : % (2.6)

s> >8,_1>0 (q)51*52 T (q)sr—2*5r—l(q)5r—l k=0 (Q)OO

Note that there is a small mistake in Bressoud’s paper: in his formula [13, equation (3.3)],
+(k —r+14) (in his notation) has to be changed to £(k —r + i+ 1). Identity (2.6) is explained
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combinatorially in [15], while it is used in [1] to solve a combinatorial conjecture of Afsharijoo
arising from commutative algebra.

We show that (1.3) and (2.6) can be embedded in a single formula involving the integer m
from the previous subsection: this is Theorem 1.20, the m-version of the Andrews—Gordon
identities. Our proof relies on Corollary 2.2, which itself is a consequence of our bilateral Bailey
lattice.

Proof of Theorem 1.20. Apply Corollary 2.2 to the bilateral Bailey pair (2.4) with a = ¢™
and divide both sides by (q), this yields the desired left-hand side of (1.10). Regarding the
right-hand side, one gets

11— q(m+2j)(1+1)

1 . .
LS iz 174,
(Q)oo ]EE% 1 — qm+2j

which by expanding the denominator in a geometric series yields

quk qu] ’L]+m7“j+2k]( 1)jq(j)

]GZ
_ Z mk Z 2r+1 )(3) i (m+1)r—i+2k)
= q .
(Q) k=0 JEZ
This gives the result by using the Jacobi triple product identity (2.2). |

The case ¢ = 0 of Theorem 1.20 is [21, Theorem 2.3, equation (2.3)], where specialisations
of this formula are also studied further. Taking m = 0 in (1.10) forces the index s, to be 0,
therefore the left-hand side is the one of (2.6). The right-hand sides actually also coincide: it
is obvious for the even indices 2k on the right-hand side of (2.6) (for 0 < 2k < i), while the
odd indices 2k + 1 correspond to indices i — k on the right-hand side of (1.10). Taking m =1
n (1.10) also yields s, to be 0, therefore the left-hand side is the one of (1.3) (in which
is replaced by i+ 1). Regarding the right-hand sides, the one of (1.3) is given by the first
term k& = 0 in (1.10) (with ¢ replaced by i — 1), while the sum from 1 to i actually cancels, even
though it is not immediate at first sight.

2.4 m-versions of Bressoud’s even moduli counterparts

In [12], Bressoud found the counterpart for even moduli to the Andrews—Gordon identities (1.3)

Z q

§1>>8p_120 (@Ds1—s5 " (@ s _2—5,1 (q2; qz)sr_l (@)oo

S%+"'+S$,1+Si+'“+5r—1 (q2r7 q'i7 q27“7i; qQT)

==X (2.7)

where r > 2 and 1 < ¢ < r are fixed integers. As for the Andrews—Gordon identities, there
is a counterpart for (2.7) similar to (2.6) which is proved in [13, equation (3.5)] and explained

combinatorially in [15]
§24ts2 | —s1— sy i (q2T7 qr—i+2k’ qr—H’—Qk; q2r)oo

2. - =D

S>> 130 (Q)sl—sg T (Q)Sr72—5T71 (q2§ q2)5T71 k=0 (Q)oo

, (28)

for all integers r > 2 and 0 < i <7 — 1.

In this subsection, we aim to find a generalisation of both formulas above, in the spirit of
Theorem 1.20. To do so, we will need the following bilateral version of [14, Theorem 2.5], which
changes the basis ¢ to ¢°.
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Theorem 2.5. If (a, By) is a bilateral Bailey pair relative to a, then so is (al,, Bl,), where

= D L5 () (a2, )

"T Cag/b)n 1 +ag L

and

(—a)2; (0% 6%), (a7 /b,bg)
(b, —aq/b)n(a* ¢%),,_,

"Iy~ (3)8; (a2, ¢?),

B=>

ji<n

provided the relevant series are absolutely convergent. Here o, (a2,q2) and By (a2,q2) means
that a and q are replaced by a® and ¢* in the bilateral Bailey pair.

Proof. Asin [14], we only need to use the definition (1.4) of a bilateral Bailey pair, interchange
summations and apply [14, formula (2.2)]. [

As a consequence, letting b — —+o0o, we derive the following bilateral Bailey pair, therefore
generalising (D4) in [14]

14+a , (—a);
04% = mq (67 ((;,/27 qz) and ,87/1 = ]; (272)2_qu&] (a2, q2) . (29)

Note that there are many other changes-of-base results in the literature complementing those
of [14]. All of them should allow for the same bilateralisation as well. Nevertheless we only
consider here the ones that we need for our purposes (see also (2.15)).

Now we are ready to give our result.

Theorem 2.6 (m-version of the Bressoud identities). Let m >0, r > 2, and 0 < i < r be three
integers. We have

Z q

51> >8,2>—|m/2] (q)81_52 o (q)ST*Z_STfl (QQ; q2)8r—1_8'r

s24-+sZ+m(si++sp_1)—s1—

-
( Q)m+2s7~71 (1)sr|: m—j;r :| = am,(2.10)
m Sy q2

where

2r 2m(r—1)+r—i+2k+2¢ r+i—2m(r—1)—2k—2¢. 2r

azm—iz Jezmiezme (74 o 4o
o0

k=0 ¢=0

and

2r 2r—2m—1—i+44

m
g 4
Aomi1 = (_1) 2—r)m2+(1+i—r)m Zq%

i+2m+1—4¢. 2
i+2m+ 1q r)oo

Proof. We start from the bilateral Bailey pair (2.4) with a = ¢, to which we apply (2.9). This
results in the bilateral Bailey pair

L+g™ 2 (=q™)2 [m+i
—(—1)" n? — (2.2 1) J
(7% ( ) q 1+qm+2n) /Bn (q ) )m;( )q (qz;qQ)n_j m+2] q2

Then apply Corollary 2.2 with a = ¢ and r replaced by r — 1 to the above bilateral Bailey pair
and divide both sides by (1 + ¢")(q)m: the left-hand side is the desired one (3, above is fs, ,
while 7 = s,.). The right-hand side is equal to

(m+25)(i+1) 1

am = S (—1)igs im0 L2

- -, 2.11
(Q)oo = 1— qm+2] 1+ qm+2j ( )
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Shifting the index of summation j to —j — m yields after rearranging

(m427)(i+1) (_1)m g (m+25)(m+1)

= —— (-1t itmr; L2

- - 2.12
(@)oo JET 1 —qm+2 1+ qm+2 ( )

Therefore, we get by adding (2.11) and (2.12)

(2m+25)(i+1) | + q(2m+2j)(2m+1)

G = = 3 (C1)igr im0 it S
2( )Oojez 1_qm J ]__|_qm J

in which we can expand both denominators in geometric series and obtain the desired result by
using (2.2). Summing (2.11) and (2.12) gives in the odd case
1 2 —ij+(2m1)(r—1)j (2m+1427)(i+1)
a2m+1 = 575 (—=1)7¢" @m0 (7 — q !
T 2w J% ( )

1— q(2m+1+2j)(2m+2)

1 — q2@m+1+2j)

Expanding the denominator in a geometric series and using (2.2) yields

1 m . A
_ (Am~+2)¢( 2r _(2m+1)(r—1)4+r—i+4f _i—2m+1)(r—1)+r—4£. 2r
Q21 = o (;q (¢*.q ,q 07
m
_ Z q(2m+1)(i+1)+(4m+2)€
=0

X(q2r7 2mA1) (r—1)+r+i+2+46 —i—2—(2m+1)(r—1)+r—A4¢. 2T)oo>'

q 4 4
Then observe that we can remove the 2mr factors in the infinite products by using in the first
sum

4m+2)¢ (q(2m+1)(7‘—1)+r—i+4f i—(2m+1)(r—1)+r—4¢,

2r
q a7
2r—2m—1—i4+4¢ _i+2m—+1—4¢, 2r)
) Oo?

q(

= (_1)mq(2—r)m2+(1+i—r)m+2g(

q q g

and in the second one

(2m+1)(i+1)+(4m+2)€( 2m+1)(r—1)+r+i+24+4¢ —i—2—2m+1)(r—1)+r—4¢,

2r
q 07
—2m~+1+i+4f  2r+2m—i—1—4£, 2 )
) OO'

q(
_ (_1)m+1q(277")m2+(1+i7r)m72€+2m (

q

q q vq”

Therefore, replacing £ by m — £ in the second sum in as;, 11 above yields the result. |

Taking m = 0 in (2.10) forces the index s, to be 0, therefore we obtain the identity (2.8)
multiplied by 1/2. Taking m = 1 in (2.10) also yields s, to be 0, therefore we get (2.7) in which ¢
is replaced by ¢ + 1.

Remark 2.7. Contrary to Theorem 1.20, we had to consider the parity of m to use the Jacobi
triple product (2.2) in (2.11). However, we managed to find a general expression for a,,, but
only when ¢ is odd, writing

2m4-45)(i+1)/2

U = LE :(_1>jqrj2—ij+m(r—1)j1 — q2mt45)(i+1)/

" (Q)oo 1— q2m+4j
JEZ

This gives for odd ¢ and any non-negative integer m

(i-1)/2 2r m(r—1)4r—it+dk
b

A 2k (072

k=0

qr+i—m(r—1)—4k; q2r) .

(@)oo
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2.5 me-versions of new even moduli counterparts

In [15], while studying combinatorial interpretations of the Andrews—Gordon and Bressoud
identities ((1.3), (2.6) and (2.7)—(2.8)), the authors discovered in a purely combinatorial way the
following pair of formulas, to be compared with (2.7) and (2.8)

(1+q) > 4

aon i no @si—se (@sramse (0%67),
1 . . . .
_ (q)oo ((q2r7q2r i 17(12—1—1;(]27")0O + Q(QQT,Q2T z+17qz 1;q2r)oo) , (213>
where r > 2 and 1 <7 <r, and
) :

§13>>8p_1>0 (Q)51752 T (Q)5r_2*5r_1 (q2; q2)sr,1

sFbsi_ st tsr 242801

5%+"'+32_1*31*"'*51"1’57“—1

7

B (qQT’q
2

where r >2and 0 < <r—1.

Again, we are able to embed (2.13) and (2.14) into a general m-version, namely Theorem 1.21.
To do this, instead of (2.9), we use the following bilateral Bailey pair generalising (D1) in [14],
and which is considered in [21]

o, = an(a®,q")  and ﬁéZZ(q(zZz?))% ¢"IB; (0% 7). (2.15)
) n_]

Proof of Theorem 1.21. We start from the bilateral Bailey pair (2.4) with a = ¢™, to which
we apply (2.15). This results in the bilateral Bailey pair

1+m :

_ 2 (2.2 24n—2; (=€ )25 [ M+
an=(-1"¢" " and B, =(¢%q%),, Y (-1)¢ |-
mjgn (q2;q2)nij m+ 27 2

Then apply Corollary 2.2 with a = ¢'™ and r replaced by » — 1 to the above bilateral Bailey
pair and divide both sides by (q)m, the left-hand side is the desired one (8, above is fs,_,
while 7 = s,). The right-hand side is equal to

r—i+2k—1  r+i—2k+1. 27’)
] 7q o0

q
(@)oo

: (2.14)

j<n

(m+25)(i+1)

- —1)d g @D m{r—1)j S
(Q)oo %-A( ) 1- qm+2]
which by expanding the denominator in a geometric series yields

)

1 3 g $ 0 (—1)igra (D12

(@)oo k=0 JEZ
1< mk i 2r(2) g D(r—1)—i+2k
_ Zq Z(_l)Jq 7“(z)qa((er )(r—=1)—i+2k)
()o k=0 JEL
This gives the result by using the Jacobi triple product identity (2.2). |

The case i = 0 is [21, Theorem 3.2]. Taking m = 0 in (1.11) forces the index s, to be 0,
therefore we get (2.14). Taking m = 1 in (1.11) also yields s, to be 0, therefore the left-hand
side is the one of (2.13) (in which i is replaced by i + 1). Regarding the right-hand sides, the
one of (2.13) is given by the two first terms k = 0 and k = 1 in (1.11) (with ¢ replaced by i — 1),
while the sum from 2 to i actually cancels, even though it is not immediate at first sight.
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2.6 m-versions of the Bressoud and Bressoud—Gollnitz—Gordon identities

In [13], in addition to (1.3) and (2.6)—(2.8), Bressoud proved four identities of the same kind,
denoted (3.6)—(3.9) in his paper, among which (3.6)—(3.8) generalise the Gollnitz—Gordon iden-
tities of Theorem 1.22. In this section, we will give m-versions for all of these. More precisely,
as our m-versions yield nice simplifications in the cases m = 0 and m = 1, all formulas come in
pairs, as in the previous subsections. [13, formulas (3.6) and (3.7)] will surprisingly arise in pairs
with (2.7) and (2.8) respectively, while each of [13, formulas (3.8) and (3.9)] will be associated
with formulas which seem to be new.

2.6.1 m-version of [13, equation (3.6)]
First recall (3.6) in [13]

Y

i (' sqz)srs? (i), , . (),

2(s24-+s2_ —s1——5;) (_q1+2sr,1; q2)
x

qq ooz dr o 2r=2it2k-1

7q2r+2i—2k+1; q47’)oo7 (216)
q q 00 k=0

where 7 > 2 and 0 < ¢ <r — 1 are fixed integers. Note that the parameters in Bressoud’s work
are renamed (k,r,7) — (7,7 + 1,k) to match our notation. The appropriate m-version of this
formula is given by (1.12) that we prove below. Surprisingly, it also gives a m-version of (2.7).

Proof of Theorem 1.23. We start from the bilateral Bailey pair (2.4) with a = ¢, to which
we apply Corollary 2.3 with a = ¢™, b — oo, ¢ = —¢"™+1)/2 and divide both sides by (¢)m. The
left-hand side is the desired one. The right-hand side is equal to
1 . 9 .. . .
—1)Igri—tmri—(m+1)j/
(0)o0 2 (=1

o1 — q(mH20)(t1)
1— qm+2j )

JEZ.

which by expanding the denominator in a geometric series yields

quk Z 7‘] 2 —ij+mrj+2kj—(m+1)j/2
]EZ
_ Z mk Z J((mAA1)r—i+2k—(m+1)/2)
(Q) k=0 JEZ
This gives the result by using the Jacobi triple product identity (2.2). |

Taking m = 0 in (1.12) forces the index s, to be 0. Next, shifting ¢ — ¢? and multiplying
both sides by

(~4:6°) o = (a:¢%), (=" ¢%)

the left-hand side coincides with the one of (2.16). The right-hand side is also the one of (2.16):
it is obvious for the even indices 2k on the right-hand side of (2.16) (for 0 < 2k < ¢), while the
odd indices 2k + 1 correspond to indices i — k on the right-hand side of (1.12). Taking m =1
in (1.12) also yields s, to be 0, therefore the left-hand side is the one of (2.7) (in which i is
replaced by i+ 1). Regarding the right-hand sides, the one of (2.7) (with i replaced by i+ 1) is
given by the first term k£ = 0 in (1.12), while the sum from 1 to ¢ actually cancels, even though
it is not immediate at first sight.
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2.6.2 m-version of [13, equation (3.7)]
First recall (3.7) in [13]
2(s24-+82_ +sip1++sr—1) (_q3+2sr,1 . q2)
? 0

q
512'”;120 (q2; q2)81*82 o (q2; q2)3r72*3r71 (q2; qz)srfl

2 (3
—q;9 it1— _9i—
( )oo (_q)k(q4r?q21+1 2k7q4r 21 lJer,q4r)oo7 (217)
oo k

= - H

(4% ¢%)

where 7 > 2 and 0 < i < r — 1 are fixed integers. Note that the parameters in Bressoud’s work
are again renamed (k,r, i) — (r,i+1, k) to match our notation. Our m-version also extends (2.8)
and reads as follows.

=0

Theorem 2.8 (m-version of the Bressoud identities [13, equation (3.7)]). Let m > 0, r > 2,
and 0 < i <r —1 be three integers. We have

s24-tsZ4m(s1+-tsr—148r/2)—s1——S; (_qm/2)

q°t
2 (Q)51—52 T (q)sr—l—sr (_q1+m/2)

= (_1)87" |: m + Sr :|
m + 2,

§12>sp>—|m/2] Sr—1
= b, (2.18)
where
14 qm i 2m
bom = 2( ) Z(_l)équk-‘rmK (qu" q2mr+r—z—m+2k+€, qr+z—2mr+m—2k’—€; qZT)OO,
Voo 150120
and
I - 14 g@mt+n/2 2 "
Domi1 = (_1)mq(1 r)ym2+(14-2i—2r)m,/2 2(1( ) quk+£
9)oo k=0 £=0
% ((QQT, q27*—z—m—l—2k—‘,—2€—1/27 qz+m—2k—2€+1/2; qQT)OO

_ g\ (qu’ g2 A2 ikm—2k—20-1/2. q2r)oo)_
Proof. We start from the bilateral Bailey pair (2.4) with a = ¢, to which we apply Corol-

lary 2.3 with a = ¢™, b — oo, ¢ = —¢"/? and divide both sides by (¢). The left-hand side is
the desired one. The right-hand side is equal to

(2.19)

2 25) (i+1
by, = 71 + qm/ Z(_l)quJQ*ij+mrj*mj/2 1- q(m+ J)(Z'—i_ : 1 .
m (q) oo — 1 —qgmt2 1+ q(m+2j)/2
J
As in the proof of Theorem 2.6, shifting the index j to —j — m above and adding the result
with (2.19) yields after rearranging

(m~+27)(i+1) 14+ (_1)mq(m+2j)(m+l)/2

1—{—qm/2 Lo sl —q
b = ——— » (=1 g7 tmrimmi/ : 4 . (2.20)
m 2((])00 ]26; 1— qm+23 1+ q(m+23)/2
This gives
by, = LHT” S (—1)igratitemr—m 1- q(zm”j)(i‘“) 1+ q(m”)(z’f“)
2(q)oo 1 — g?m+2i L+qmti 7

JEZ
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in which we can expand both denominators in geometric series and obtain the desired result by
using (2.2). Equation (2.20) also yields

1 4 g(2m+1)/2
2(a)o0 jEZ
1 — q@mA2i+1)(+1) | _ o (2m+2j+1)(m+1)
1— @m+2i+l 1+ qCm+2+1)/2

bam41 = (1) qr9*~id+@mA1)rj—(2m+1)j/2

X

Using (1 + q(2m+2j+1)/2) (1- q(2m+2j+1)/2) =1 — ¢?™*t2*+1 and expanding both denominators
in geometric series yields

1+ q(2m+1)/2

bom+1 = 2@ (_1)jq1“j2fij+(2m+1)rjf(2m+1)j/2
Voo ez
7 m
x (1- q(2m+2y+1)/2) Zq(2m+2j+1 )k Z g(2m+2i+ e
k=0 (=0

which, by using (2.2), yields

7

14 q(2m+1
Dol = Z Z g(2mH 1) (k)

k=0 (=0
% ((q2r7q(2m+1)r i+r— m+2k+2€fl/2,qr+i (2m+1)r+m—2k— 2€+1/27q )

_ q(2m+1)/2 (q2r’q(2m+1)r7i+rfm+2k+2€+1/27qr+i7(2m+1)r+m 2k—20— 1/2;q2r)oo).

The result follows after using manipulations similar to the ones for asy,+1 in the proof of Theo-
rem 2.6. |

Taking m = 0 in (2.18) forces the index s, to be 0, therefore we obtain (2.8). Taking m =1
in (2.18) also yields s, to be 0. Next, shifting ¢ — ¢ and multiplying both sides by

(0% ¢%) o = (=¢% %), (" 5d7) s

the left-hand side coincides with the one of (2.17). The right-hand side becomes

2
oo Qk 47‘ 47‘—2i+4k:—1 2i—4k+1, Ar
.q 0"
OO k=0
4r—2i+4k+1 —4k—1
—q(q .q ,q* q'") )

This sum is indeed twice the one on the right-hand side of (2.17): to see this, keep the terms k
above for 0 < 2k < ¢ and 0 < 2k 4+ 1 < 4, and replace k by ¢ — k for the terms k satisfy-
ingi+1<2k<2andi¢+1<2k+1<2i+41.

2.6.3 m-version of [13, equation (3.8)]
First recall (3.8) in [13]

Z q2(8%+---+5371+8¢+1+-"+Sr—1) (_q1*281 : qQ)S

2.

812“'287‘—120 (q ’ QQ)SI_SQ o (qz7 q2)5r72_57‘71 (q27 q2)5r71

1

%( dr 2l pAr—2i-1. q4r)oo’ (2.21)

T (E) .
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where r > 2 and 0 <7 < r — 1 are fixed integers. Note that the parameters in Bressoud’s work
are again changed by (k,r,i) — (7,7 + 1,k) to match our notation. Our m-version reads as
follows.

Theorem 2.9 (m-version of the Bressoud identities [13, equation (3.8)]). Let m > 0, r > 2,
and 0 < i <r —1 be three integers. We have

>

§12>sp>—|m/2]

q8§/2+sg+~--+53+m(51/2+82+~-+sr71)+51/2—(81+~~-+8¢) (_qm/2>
s1

(@s1—s5 " (Ds,_1—sn

sy m—+ s
% (—=1)%r¢(7) L — 2.22
(g | I | = e (2.22)
where
2t 2m
Com = q oo ZZ é mk+m€ (q r’q2mr+r7i7m+k+€,qr+i72mr+m7kf€; qQT)OO7
2(q k=0 ¢=0
and
2m—+1)/2
Comp1 = (_1)mq(177ﬂ)m2+(1+2i727’)m/2 (_q( (T;L) )/ )oo
oo
m
« Z qé (q2r7 q2rfzfm+2ffl/2?qz+m72€+1/2; qZT)OO'
=0

Proof. We start from the bilateral Bailey pair (2.4) with a = ¢™, to which we apply Corol-
lary 2.3 with a = ¢, b = —¢"/?, ¢ — 00 and divide both sides by (q),,. The left-hand side is
the desired one. The right-hand side is equal to

( m/2 (m+2])(2z+1)/
1
—ij+ /2 q
oo § ] T’j ij+mrj—mj 1 57 . (223)

Cm =
JEZ

As in the proof of Theorem 2.6, shifting the index j to —j — m above and adding the result
with (2.23) yields after rearranging

2 N
o ( m/ OO Z ] 7ij+mrjimj/21 _ q(m+2j)(21+1)/2
m 1— qm+2j
JEZ
X (1 + (—1)mq(m+2j)(m+1)/2), (2.24)
This gives
o — —g" oo ] Tj 2 it omriemj 1— q(m+])(2z+l) 1+ q(m+])(2m+l)
Q(Q jEZ 1 —qgmt 14+gmti

in which we can expand both denominators in geometric series and obtain the desired result by
using (2.2). Equation (2.24) also yields

q(2m+1)/2
Comil = 00 Z J g7 2_ij+(2m+1)rj—(2m+1)j/2

JEZ
(2m+2j+1)(m+1)

. , 1—g¢
2m—+25+1)(2i+1) /2
« (1_q( m+25+1)(2i )/) T

and the result follows after expanding the denominator in a geometric series and using manip-
ulations similar to the ones for asy,+1 in the proof of Theorem 2.6. |
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Taking m = 0 in (2.22) forces the index s, to be 0, therefore we obtain the following identity,
which seems to be new.

Corollary 2.10. Letr > 2 and 0 < i <r — 1 be two integers. We have

2

§13>8r_1>0 (q)81—82 e (q)57‘72_57‘71(q)5r71

qS%/2+3%+'“+82_1+51/2*(51+'”+3i) (=1)s,

OO r r z+k r+i7k

) -

Taking m = 1 in (2.22) also yields s, to be 0. Replacing ¢ by ¢? in the resulting formula
therefore yields (2.21) by using (—g; (]2)81 = qsf( g2 g2 )

2.6.4 m-version of [13, equation (3.9)]
First recall (3.9) in [13]

2(824++52_ +sip1+ts— 1-2s1. 2
Z q(l r—1T5i+1 1)(_q 81’q)$
2

s122sp—120 (q ;q2)$1_82 o (qQ; q2)5r72_5r71 (q4; q4)sr71

1

(- q2)oo dr—2  2i+1  4r—2i—3. Ar—2
= @ g 147 ) oo (2.25)
(¢*:1¢%),
where 7 > 2 and 0 < i < r — 1 are fixed integers. Note that the parameters in Bressoud’s work
are again renamed (k,r,7) — (r,i+ 1, k) to match our notation. Our m-version reads as follows.

Theorem 2.11 (m-version of the Bressoud identities [13, equation (3.9)]). Let m > 0, r > 2,
and 0 < i <r —1 be three integers. We have

2 24 ...462 — P
Z qsl/2+52+ +s24m(s1/24+s2++sr—1)+s1/2—(s1+ +sl)(_qm/2)81 (_q(m+1)/2)57.
s1>>8p>—|m/2] (Q)51—52 o (q)srfl_s?“ (_q(m+1)/2)sr71
+ s
% (—1)srq—(mADsp/2 | TS g 2.26
(1)g N (2.26)
where
_qm 21 2m
dom = o) ZZ E mk+m€
2D (i
« (q2r 1 2mr+r z72m+k+£fl/27qr+i+2m72mr7kf€fl/2;q2r71)oo7
and
_(2m+1)/2
dom+1 = (—1)mq(3*2”m2/2+(1+i77~)m( g / >oo
(@)oo
m
« Z qf ((]21”—17 q2r—z—m+26—3/2,qz+m—2€+1/2; q2r—1)oo.
=0

Proof. We start from the bilateral Bailey pair (2.4) with a = ¢™, to which we apply Corol-
lary 2.3 with a = ¢™, b = —¢"/2, ¢ = ¢"*1D/2 and divide both sides by (¢)m. The left-hand
side is the desired one. The right-hand side is equal to

(m+27)(2i4+1)/2

m/2
dpm = (a OO Z 1)7 g(r=13*~ijtm(r— j+522L — 4

o T (2.27)

JEZ
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As in the proof of Theorem 2.6, shifting the index j to —j — m above and adding the result
with (2.27) yields after rearranging

(m—+25)(2i4+1)/2

m/2
dm = ( OO Z J (T )52 —ij+m(r— 1)J+12/21 —4q

1—qmt2i
X (1 + (—1)mq(m+2a)(m+1>/2)‘ (2.28)
This gives
oy = —q")oo (T V) 2—ijtom(r—1)j+52/2 L = gt 2it1) 1 4 q(erJ)(Qerl)7
2(q jEZ L —qmt 1+ gmti

in which we can expand both denominators in geometric series and obtain the desired result by
using (2.2). Equation (2.24) also yields
domer = ) o S gl ma - 2
2(q)oo :
JEZ
(2m—+2j+1)(m+1)

2m—+2;+1)(2i+1)/2
« (1_q( m+2j41)(2i )/) T

and the result follows after expanding the denominator in a geometric series and using manip-
ulations similar to the ones for agy,+1 in the proof of Theorem 2.6. [ |

Taking m = 0 in (2.26) forces the index s, to be 0, therefore we obtain the following identity,
which seems to be new.

Corollary 2.12. Letr > 2 and 0 < i <r — 1 be two integers. We have

>

$1>>8,_1>0 (Q)sl—32 o (q)8r72_5r71(q)3r71 (_q1/2)5T71

2 2,042 _ vetss
q81/2+52+ +s2_1+s1/2—(s1+ +sl)(_1)81

o

_ ((_3)00 i: 2r—17qr—i+k—1/2’qr+i—k—1/2;q2r—1)oo.
7)o 17

Taking m = 1 in (2.26) also yields s, to be 0. Replacing ¢ by ¢? in the resulting formula
therefore yields (2.25).

3 Bilateral N-extensions

3.1 Results

Using our new bilateral Bailey lattice given in Theorem 1.11 and Lemma 1.12, we were able to
deduce Theorem 1.16, a very general bilateral N-Bailey lattice with parameters by,...,bxy.
The proof of Theorem 1.16, quite technical, is left for the next subsection. However, some
of its particular cases, which correspond to the two key Lemmas 1.9 and 1.10, are much more
simple to state (and to prove), and imply two bilateral N-extensions of the Bailey lattice found
by Warnaar in [33, Theorems 3.1 and 3.2]. Hence we state them separately here.
Since eM(O, cee ,0) = (5]\/[70,

. : o[ N g N
_ —u _(0—u)(n—u)+(j—u)(n—N _ n—N
Frin(0,. . 0) = 3 ai g0 in—u G )H [j_u}_ayqx >[}

UEZ

and Theorem 1.16 reduces to the following.
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Theorem 3.1 (first new N-Bailey lattice). Let (an, 8,) be a bilateral Bailey pair relative to a.
For all N > 0, define the pair (a%N), 1(1N)) by

NG [
] Qn—j,

OK%N) — (1 _ aq2n—N) (aql—N) (_1)] '
N jeZZ (ag® = N) iy

(N) 5(N)

and ﬂéN) = Bn. Then (an , Bn ) is a bilateral Bailey pair relative to ag~™ .

Applying first Theorem 3.1 to a bilateral Bailey pair relative to a, and then Theorem 1.7
with a replaced by ag™ to the resulting Bailey pair, we immediately derive the following result,
whose unilateral case is due to Warnaar [33, Theorem 3.1].

Theorem 3.2 (Warnaar, bilateral version). Let (au,, 5y,) be a bilateral Bailey pair relative to a,
and N >0 be a fized integer. Then (o, Bl) is a bilateral Bailey pair relative to aq=", where

o Vn(agt=N /po)" _ _
n= (2271—)N/(p7qaq1—/1\€/3) (1 —ag* ) (ag"™)

qf 2n=N)i=iG+D/2 TN
X§ (_1) On—j,
Jj=0

J
(ag?n—N-J) Ny1 LJ

(0%

and

g s 2oliled N o), (ag" ™ /po)’ 5
n pard <Q)n—j (aql—N/p7 aql_N/a)n 7.

Note that the bilateral Bailey lattice given in Theorem 1.8 corresponds to the case N =1 in
Theorem 3.2.

On the other hand, applying first Theorem 1.7 to a bilateral Bailey pair relative to a, and
then Theorem 3.1 to the resulting bilateral Bailey pair, we derive the following second result,
whose unilateral version is also due to Warnaar [33, Theorem 3.2].

Theorem 3.3 (Warnaar, bilateral version). Let (ay, 8,) be a bilateral Bailey pair relative to a,
and N > 0 be a fized integer. Then (o, B) is a bilateral Bailey pair relative to aq~N, where

0
ad ¢(2n—N)i=i(+1)/2 [N] (p,0)n—j(aq/po)" ™I

. (ag>=N=3) ., Lil (ag/pag/o)ny "7
and
g = — (p,0)j(aq/po)n—j(aq/po)’ 5,
= (Dn-jlag/p,aq/o)n
Since limp_, o0 (1 — b)Neas(b, ..., b) = Sarn,

o INgn (D) S eu (V) (- G-y (- N) [N 0 | _ v—pm— |V
i Dl S <0 |

and Theorem 1.16 reduces to the following.
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Theorem 3.4 (second new N-Bailey lattice). Let (o, 5y) be a bilateral Bailey pair relative to
a. For all N > 0, define the pair (anN)7ﬂqu)) by

NG/ [N
3o

OJ%N) —(1-a 2n—N a 1-N 1) 4
( q )( q )N%%( ) (aq2anf])

N1 LJ

(N) 5(N)

and By(LN) = ¢"N3,. Then (an , Bn ) is a bilateral Bailey pair relative to ag™ ™.

We give two new theorems similar to Warnaar’s N-Bailey lattices, but coming from Theo-
rem 3.4 instead of Theorem 3.1.

Applying first Theorem 3.4 to a Bailey pair relative to a, and then Theorem 1.7 with a
replaced by ag™" to the resulting bilateral Bailey pair gives the following result.

Theorem 3.5. Let (o, Bn) be a bilateral Bailey pair relative to a, and N > 0 be a fized integer.
Then (o), 3) is a bilateral Bailey pair relative to ag~, where

(p,0)n (aql_N/pa)n on— N N N N (=) +iG=1)/2 [N}
al, = 1—ag¢™" aq g —1)/ . | an—j,

(ag'=N /p, aql—N/O.)n ( )( )N j:0< ) (ananfj)NH j J
and

PR (p,a)j(aqlN/pa)n_j(aqlN/pa)jqjNﬂ'
" (@ei(agtN/pag =N fo), ’

Note that Theorem 1.11 corresponds to the case N = 1 of Theorem 3.5.
On the other hand, applying first Theorem 1.7 to a bilateral Bailey pair relative to a, and
then Theorem 3.4 to the resulting bilateral Bailey pair, we derive the following result.

Theorem 3.6. Let (ay, B,) be a bilateral Bailey pair relative to a, and N > 0 be a fized integer.

Then (o, BL) is a bilateral Bailey pair relative to aq™N, where
' (] ad? N (=N TGV N (p 0)nj(ag/po)™ T
Qp = ( —aq )(aq )N (=1) 2n—N—j : ] n—js
= (ag Jnsr L3 (aa/p.aq/o)n-;

and

g - quZn: (p,0);(aq/po)n—j(aq/po) 5,

n = (Q)n—j(aq/,(% aq/o—)n

3.2 Proof of Theorem 1.16

Now we can turn to the proof of Theorem 1.16. Recall the classical g-analogues of Pascal’s
triangle

[N +1] [N N
J J Jg—1 (3.1)
and
[N +1]7 N [ N
N :HwNHJ[. ] (3.2)
L J Jg—1

for all integers N, j with N > 0.
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3.2.1 Recurrence relation for fn jn(b1,...,bn)

We first prove the following recurrence relation, which plays a central role in our proof.

Proposition 3.7 (Recurrence relation). For all 0 < j < N +1,

(1= ag® ™) fns1n(b1s- .. bng1)
= (1 —bnt1¢") (1 —ag® N9 fnjnlbr, ..., bN)
+ (ag" N —byia) (1= ag® ) fnjm1n-1(b1, ..., bN).

We start by giving two technical lemmas which are extensions of (3.1) and (3.2). Their proofs
are straightforward verifications and are therefore omitted here.

Lemma 3.8. For all j,u € Z and 0 < M < N,

MVIN+1-M]  oioumn| M N+1-M
j—u u 4 j—u+1 w—1

R P (L)

_ RIS 2MABEN M N-M
j—u+1 u—2 |

Note that when M = 0 and v = j, Lemma 3.8 reduces to (3.1).

Lemma 3.9. Forall jjuceZ and0 < M < N,

M+1|IN=-M| o opy| M+1 N-M
Jj—u U 9 j—u—+1 u—1

= |2 U e O Y L Y

_ Nﬂ-quM[ M } {N—M]'

q J—u u—1

Note that when M =1 and u = j, Lemma 3.9 reduces to a combination of (3.1) and (3.2).
We can now prove our recurrence relation.

Proof of Proposition 3.7. Using the homogeneity of ey, recall from Theorem 1.16 that

INjn(bi,...,bN)
= 3 3 argr i tun=n) M N =M
j—u U

:| EM(—bl, .. 7_bN)
MeZueZ

Thus

(1 —ag® ) fns1jm(br, .- bng1)
— Z Zauq(M—j+u)(n—j+u)+u(n—N—1)

MeZ ueZ

(e S REY)

X GM(—bl,...,—bN+1). (33)



24 J. Dousse, F. Jouhet and I. Konan

Writing
eM(—bl, ceey _bN—i-l) = EM(—bl, ceey —bN) — bN+1€M_1(—b1, ey —bN),
it is enough to show that coefficients of b?VHa“eM(—bl, ...,—bn) and b]lVHa“eM(—bl, ooy, —bN)
coincide on both sides of Proposition 3.7.
First, we derive from (3.3) that the coefficient of b?VHaUeM(—bl, ...,—bn) on the left-hand
side of Proposition 3.7 is equal to ¢(M—Jtw(n—jtu)tun=N—-1) tipeg
[.MHNH—M}_C]%_%_MH[_ M HNH—M]_ (3.4)
Jj—u U j—u+1 u—1
Now the coefficient of b?VHa“eM(—bl, ...,—bn) on the right-hand side of Proposition 3.7 is

equal to gM—ituw)(n—jtu)tu(n=N-1) timeq

A MW e RO K

Jj—u U j—u+1| | u—-1 j—u|l | u—1
; M N-M
_ N+2j—2M—3u+3
4 [j—u+1}[u—2]' (3.5)

Note finally that (3.4) (resp. (3.5)) is the left-hand (resp. right-hand) side of Lemma 3.8, so we
are done regarding this first coefficient.

Similarly, the coefficient of b}vﬂa“eM(—bl, ...,—by) in (3.3) is —gMH1—gtw)(n—jtu)tu(n-N-1)
times
M+1| [ N-M 9j—ou—m | M+1 N-M
j—u U j—u+1| | u—-1
and the coefficient of b}v 1atenr(=b1,...,—by) on the right-hand side of Proposition 3.7 is

equal to —gMH1-jtu)(n—jtu)tu(n=N-1) timeq

o e A P L S Y]

; M N-M
_ N+j+1-2u—M
! L‘—uHu—l]‘ D

As (3.6) (resp. (3.7)) is the left-hand (resp. right-hand) side of Lemma 3.9, this ends the proof
of Proposition 3.7. |

3.2.2 Proof of Theorem 1.16

Now we use Proposition 3.7 and Lemma 1.12 to prove Theorem 1.16.
We proceed by induction on N. For N = 0, by (1.9), 6,(10) = [, and by (1.7),
Qp

Oé,glo) = (1 — aQQH)W = Olp,.

Thus (ow(lo), 67(10)) is a bilateral Bailey pair relative to a.
Now, assume that for some integer N > 0, (a%N), T(ZN)) is a bilateral Bailey pair relative
to ag~™ and show that (agNH),ﬁnNH)) is a bilateral Bailey pair relative to ag”¥~!. By
—N=1 where

Lemma 1.12 with b = byy1, (a,, 3),) is a bilateral Bailey pair relative to aq

(0%

_ N_ N
;_l—ag™ (1= bn1q")ars " agm N - bN+1)04n_)1
no = byt 1— anan 1— aq2an72 ’
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and
L —bn419" (v
r_
Now let us show that (a),, ],) = (a%NH), 7(1N+1))' It is clear that (3, = 7(1N+1), and for o,

by (1.7) we have

(0}

" 1—byp -

_ _N_— N
, l—ag N (A =byagal ¢ ag N = byg)al,
1 _ ann—N 1 _ ann—N—Q

— (ag™) v s Z(—l)j @ IUD2(1 — by 10") fnjn (b1, - bN)a .
(1—by)--(1—byt1) = (ag2n—N-7) n—j

N+1

G =)= /2 (ggn—1-N _p o

14 (ag N+1) INjn—1(b1,. .., bN) '
+ E (=1) (ag2n—2-N) Qp—1-j

Jez N+1
(aq*N)NH Z( )y Gn—iG+)/2 (b - S
= o 4 B 4
(]. _bl)(l_bN+l) ez (aq2n7N7‘771)N+2 N+lq q
X fNjn(b1s .o 0n) + (ag" N = byga) (1= ag® ) fnjmin—1(b1s .. b)) Q.

Now by Proposition 3.7, this equals

-N Yy
o (aq )N+1 Z ) ¢n—i+1)/2 (1 - aq2nflfN)
n (1=>b1)-+- (1 —bny1) e (aq2n—N—J—1)N+2
X fn1gn(bL, - byg1)an—; = oY,
Thus the pair (agNH), 7(ZN+1)) is indeed a Bailey pair relative to ag= N1,

4 A new proof of Bressoud’s identity

In this last section, we show that the unilateral version of Theorem 1.11 can be used to give
a simple proof of Bressoud’s identity [13] which generalises the analytic version of the Rogers—
Ramanujan identities (indeed for k = 2, r = 1 and ¢1,¢2,b; — 00, a =1 or a = ¢, (4.1) reduces
to the Rogers—Ramanujan identities).

Theorem 4.1 (Bressoud). For integers 0 < r < k and parameters a, c1, ¢, by, ..., bar_1, we
have

arttsaglEd st (agfeica),

_]_ S1 =
Z =1 bi' (babar—1)%2 - -+ (brbyy1)r (g,aq/c1,aq/c2)s,

s12 285120
" (b1)sy (b2, b2r 1)y - -+ (bry bry1)s, (a/b2bor—1)sy—sy = (@/brbri1)s, s,
(@Ds1—s2 (@) sp_a—s1 (a/ba,a/bor—1)s; -+~ (a/br,a/bry1)s,
_ (a/b1)oco Z (b1,...,bar—1,c1,c2,a)(b1 - - bgr_lcl02)_jaqu(k_”)j2+j
(@)oo =5 (a/b,....a/by—1,aq/c1,aq/c2, q);

arql (1—b1¢) -+ (1 = byr—1¢”)
X <1 + br-bor—1 (1—agi/by) - (1— aqj/b%_l)) : (4.1)
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To see why the result above is actually equivalent to Bressoud’s formula, see the following
subsection.

The open problem of giving a combinatorial proof of Theorem 4.1 (when parameters ¢y, co —
oo and the other parameters have specific forms), known as Bressoud’s conjecture, was solved
by Bressoud himself in some cases; then the next big step towards its resolution was made by
Kim and Yee [23], and the full problem has recently been settled by Kim [22].

We give our proof of Theorem 4.1 in this section, by showing that it is a consequence of the
unilateral version of our new bilateral Bailey lattice in Theorem 1.11. We also show that it does
not seem to follow from the classical Bailey lattice of Theorem 1.4, which seems surprising at
first sight.

4.1 Bressoud’s result

In [13], Bressoud defines F) j ,(c1,¢2;b1,...,bx;a;q) and Gy i r(c1,¢2;b1, ... ,by;a; q), which are
two functions whose integral parameters satisfy & > r > \/2 > 0. This is equivalent to 2k —1 >
2r —1 > A > 0. Then Bressoud’s main theorem in [13] states on the one hand that for all
k>mr>\/2>0, we have

Fypr(c1,c2301, ... ,bxa5q) = Gy r(cr, 2301, ..., bxs a3 q), (4.2)
and on the other hand that for all £ > r > A/2 > 0, we have

lim  Fyg,(c1,c2:b1,...,00a;q) = lim Gy (c1,c2501,...,bx5a5q). (4.3)

C1,C2— 00 C1,C2—00
We want to prove that these identities are both special cases of our new Bailey lattice. To do

that, first note that it is enough to prove them when A takes its maximal value, that is A = 2r—1.
Indeed, by the definitions of Bressoud’s functions, we have

lim Fypr(c1,co;b1,...,0x50;9) = Fao1pr(c1,62;01,...,002150;q),
b)\A)OO
and
bli_r)n Gagrler,c2;b1,..,bx5059) = Ga_1pp(c1,c501,. .0, 0x 1505 9).
A [o¢]

Now for A = 2r — 1, one can define the first of these functions by
For 1 pr(c1,c0501, .00 b2r1505q)
(a/ba,...,a/bar—1)s0
_ (a/b1)oo Z (b1,...,bap—1,c1,¢2,a) (b1 - bgr_lclcQ)*jaqu(
(@)oo (a/bi,...,a/bayr—1,aq/c1,aq/c2,q);

k—1)j%+j

J=0

g (1=big?) - (1= by ag)
X <1 + by boyr_1 (1 _ aqj/bl) B, (1 _ aqj/b2T1)> . (4.4)

The second function of Bressoud can be defined for A = 2r — 1 as

Gor—1kr(c1,c2;b1,...,b2r—1;059)

24462 gy ——
@ttt g o).,

B Z < (Qv G’Q/Clv GQ/CQ)Sk_l(Q)81—82 to (Q)sk—2—5k—1

1228120
X (ql_sl/bl)sl (@/b2bor—1)sy—s5 - (a/brbri1)s, 1 —s,
x (q' 7% /by, q1_52/52r—1)52 o (ql_sr/br’ql_sr/bTH)Sr

x (ag® /by, aq® [bor—1,...,aq" " /by, aqs*‘l/brﬂ)w) .
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Using

(ql—n/b)n _ (_1)nb—nq—n(n—1)/2(b)n and (aq" /b)oo = (C;/b)oo

this gives

Gor—1kr(c1,c2;01,...,b2r—150;q)
(a/bg, ey a/bQT_l)oo

Z <( )S a81+""+sk_lQS%/2+S%+1+W+Si71_81/2+ST (CLQ/ClcQ)Sk 1
fd _1 1 _
bi* (b2bor—1)52 - - - (bypbry1)®r (g,aq/c1,aq/c2)s,_,

81228120

« (b1)s1 (D2, b27—1) sy =+ - (bry brg1)s, (a/babar—1)s1—s5 -+ - (a/brbri1)s, 1 —s, > (4.5)
(Q)mfsz e (Q)sk,zfsk,l (a/b27 a/b2r71)51 T (a/bra a/br+1)57«_1

Then identity (4.2) of Bressoud translates for A = 2r — 1 as
For 1 pp(c1, 501, bar—13a5q) = Gop—1kr(c1, €23 b1, -, bopo1505 ),

with 0 < r < k, which from (4.4) and (4.5) is equivalent to (4.1). Finally, Bressoud’s second
result (4.3) asserts that (4.1) is still valid for » = k when ¢, co — 0.

4.2 A proof through our new Bailey lattice

Replacing the use of Theorem 1.4 by the unilateral version of our new Bailey lattice given
in Theorem 1.11 gives the following sequence: iterate r — ¢ times Theorem 1.1, then use the
unilateral version of Theorem 1.11, and finally ¢ — 1 times Theorem 1.1 with a replaced by a/q.
This yields a final Bailey pair relative to a/q to which we apply (1.1) with a replaced by a/q.
This is summarised in the following result, to be compared with [2, Theorem 3.1] (equivalently
the unilateral version of Theorem 2.1).

Theorem 4.2. If (ay, ) is a Bailey pair relative to a, then for all integers 0 < i <r andn > 0,
we have

S TRy (o) (o),
5122520 (p101)81 e (IOTO-T)ST (Q)nfm (q)31*32 s (q)srflfsr

(a/p101)n—s,(a/p202)sy—s, -+ (a/pio'i)8¢—1—si
(a/p1,a/o1)n(a/p2,a/02)s, - (a)pisa/oi)s,
(GQ/Pi—&-le’-&-l)Si—sz'H o (aq/prov)s,_1—s,
(aq/piv1,aq/oi1)s; - - (aq/priaq/or)s,

™ ~ (p1,01, .-, pi,03);(p1o1 -+ pioy) Ja(1 - a)
~ (q)n(a)n +j§:1 (Dn—j(a)n+j(a/p1,a/or, ... a/pi;a/0;);

y (Pit1s ity Pry 0r)j (Pi10is1 -+ proy) 7 (aq) "~V oy
(aq/pi+1,aq/0iy1, ..., aq/py,aq/or);(1 — ag®)

Pit1Tit1s- - Pry0r)j—1(Pit10i41 - proy) T (ag) T Dgi 1o 4
_< )i ) ag) Vg ey o
(aq/piv1,0q/0is1,- .. aq/pr,aq/or)j-1(1 — ag?=2)
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Now let n — oo in (4.6) and simplify the factor (¢)3! appearing on both sides, and rewrite

the right-hand side by shifting the index j to j + 1 in the summation involving a;_1:

Z a81+'-'+5?"q8i+m+87}/88r (p].a 01)51 e (Pra O-T)Sr (a/p202)51_52 T (a/pio-i)si_l—si
s1> >85>0 (plgl)sl T (pTUT)ST (Q)51—52 T (Q)Sr—l_Sr (a/pz, a/UQ)Sl T (a/pi’ a/o-i)Sifl

(GQ/Pi+lgi+1)si—sz’+1 - (aq/prov)s,_1—s,
(aq/pi+1,aq/0it1)s; - - - (aq/pr,aq/or)s,
(a/p1,a/01)00 l—a

2.1

(a,a/p101)o0 >0 —ag*

(P1,01, s pry o) j(p1O1 -+ pro) g = i
(G/Pla a/017 sy a/piu a/aia GQ/pi-i-l? CLQ/O'i+1, sy QQ/pT‘u GQ/UT)j

) <1 - p101 - Pi0;
(1= pd) (1= o1) - (1 pig?) (1 — o) )
(1—ag /o) (1 —agifor) -~ (1 — agi [p;) (1 — agi/oy) )

In (4.7), replace r by r — 1, and use the Bailey pair obtained from the unit Bailey pair (1.2)
by one iteration of the Bailey lemma given in Theorem 1.1. This yields for 0 <i <r —1,

X

(4.7)

SO ()0 (e o)y
s S50 (PO (proror1)* =t (g, a9/p,aq/0)s, . (@si—sz - (Dsra—s,1
(a/0202)51—52 T (a/Pz‘Uz‘)si_l—si (CLQ/Pi—i-le‘—i—l)si—SiH T (GQ/pr—IUr—l)sra—srq
(a/p2,a/02)s, -~ (a/pisa/oi)s,_, (aq/pi+1,aq/cit1)s, - (aq/pr—1,aq/0r—-1)s, 4
_(a/p1,a/01)0c = (=1 (p1,01, ..., pr—1,00_1,p,0,0);
~ (@a/po)ee 20 (a/prajon,..afpialoi);

(101 prrOr1p0)Tariqr=i+Di+iG-1/2 <1 o

(ag/pit1,aq/0iy1, ... aq/pr-1,aq/0r-1,0q/p,aq/0,q); p1O1 -+ - PO
(1= 1?) (1= ) (1 = ) (1 )

uawmuawm~uwmmwm0'

Next, in (4.8), take o1, p;,0; = oo for j =i+ 1,...,r — 1, which yields

>

51> e 130 (p1)%1(p202)2 - - - (pioy)*i (q,aq/p,aq/0)s,_,

X

(4.8)

2 2 2 _ .
asrttsr—1 g8/ 2k s bebsi s 248 (g /p0 )

y (p1)s1(p2,02) sy -~ (i, 0i)s; (a)p202)si—sy - (a/piTi)s, 4 —s,
(Q)s1752 T (Q)87-72*S7'—1 (a/p2, a/a2)81 -+ (a/pi, a/o'i)sz'q
_ (a/p1)oo Z (p1,p2,02, ..., pi, 04, p, O, a)j(ﬂlpmn : "Pz'UiPU)fjarjq(“i)jQH
(@)oo = (a/p1,a/p2,a/o2,. .. a/pi,a/oi,aq/p,aq/0,q);
y <1 L dd
P1P202 " PiT;
(L=pd?) (1= p2g?) (1 —02¢?) - (1 = pi¢?) (1 — 0¢”) ) (4.9)
(1—ag?/p1) (1 —ag?/p2) (1 — ag? fo2) -+ (1 — aq?/pi) (1 — ag’ /i) ) '

Replacing k by r and r by 4, Bressoud’s formula (4.1) becomes

Foi ety e0501, .00 b2im15059) = G rilcr, o3 b1, ..o 21505 q),
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which corresponds to (4.9) by taking ¢; = p, ca = o, by = p1, by = pa, bai_1 = 02, ..., bj = p;,
bit1 = 0;. As (4.9) is valid for 0 <17 <r — 1, we conclude that both formulas (4.2) and (4.3) of
Bressoud’s theorem are special cases of our Bailey lattice.

In the first place, we tried to use the classical Bailey lattice of [2, Theorem 3.1] (or the
unilateral version in Theorem 2.1) instead of Theorem 4.2, and saw that to recover Bressoud’s
formula (4.1), one has to follow the same lines as above. We came up with the following formula
instead of (4.9):

2 2 2 —
gt ttaoi gt st a2 (ag/po)s,

(-1 :
Sl>__‘§_l>0 (p1)51(p202)%2 - - - (pio)*i (q,aq/p,aq/0)s,_,

(p1)s1 (P2, 02) sy -+ (pis i), (a)p202)si—s, =~ (a/piCi)s; | —s,
(Q)s1752 T (Q)87-72*S7'—1 (a/an a/02)81 T (a/pi> a/o'i)sz'q
_ (a/p1)w > (152, 02: - pis 04, p,0,0)j (p1p202 - -~ pioipo) T q" ="
(@)oo = (a/p1,a/p2,a/os, ... a/pi,a/oi,aq/p,aq/0,q);
y <1 N ai+1q3j
P1P202 - - P;i0;
y (L=pmd?) (1= p2g?) (1 = 02¢”) - (1 = pi¢?) (1 — 0¢”)
(1—ag?/p1) (1 —ag?/p2) (1 — ag? fo2) -+ (1 — aq? /pi) (1 — ag’ /o)

Therefore, we could only prove the special case

). (4.10)

lim  Foip1riri(cr, e b1, .., 0241505 Q)
bit1,bi42—00

= lim  Gopipiti(cr,e2;01,. .0, b2i41505q)
bi+1,bit2—00
of Bressoud’s formula (4.1) in which one takes k =r, r =i+ 1, ¢c; = p, c2 = 0, by = p1, by = po,
b2it+1 =02, ..., bi = pi, bit3 = 0;.
But we could not derive the most general identity (4.1) of Bressoud in this way.

4.3 Special cases

The case A = 1 obtained from (4.1) by taking b; — oo for all j > 2 (and replacing k by r
and r by i), exactly corresponds to (4.10) in which one takes p;,0; — oo for all j > 2 and
pr="bi,p=c1, 0 =ca:

>y

1> >8r_1>0 (Q)S1—82 T (q)sr—Z_sr—l (Q)Sr—1 bil (GQ/Clv GQ/CQ)Sr—1

T A O G U S Y
_ \%/¥1)oo rj (r 7 1 :
(@) jgo @ + b 1 —aqg’ /by

(b1,c1,c2,a)j(biercg) ™
(a/bla CIQ/Cl, GJQ/C% Q)] '

2 2 2 .
a51+"'+57‘71q51/2+52+"‘+51~71_51/2_32_"'_51—1 (b1)s, (ag/crcs)s, .

(4.11)

Note that we obtain the exact same formula with ¢ replaced by ¢ 4+ 1 by taking similar limits
in (4.10).

Obviously, the case A = 0 of Bressoud’s result is obtained from (4.11) by taking b; — oo.
Moreover all special case (3.2)—(3.7) in [13] are consequences of the latter A = 0 case, with the
choices (¢; — 00,c0 — 00,a = q), (¢ = 00,¢0 = 00,a = 1), (1 = —q,c0 — 00,a = q), (c1 =
~1,c0 — 00,a=1), (¢ = ¢* c1 = —q,ca = 00,a=1), and (¢ = ¢*,c1 = —q,c0 — 0,a = ¢?),
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respectively. The two other special cases (3.8) and (3.9) of [13] are obtained from (4.11) with
(¢ = ¢* c1 = 00,c0 = 00,b1 = —q,a = ¢?) and (¢ — ¢*,c1 = —¢%, 2 = 00, b1 = —q,a = ¢?),
respectively.

Therefore, we can conclude that all special cases of Bressoud’s theorem exhibited in [13]
(giving Andrews—Gordon, Bressoud, and Gollnitz—Gordon type identities) are consequences of
both unilateral Bailey lattices, the classical one and the new one. This is not surprising by
Remark 2.4.

5 Conclusion and open problems

We saw several applications of our key lemmas and bilateral Bailey lattices throughout the
paper. We conclude with a few possible further applications suggested by the referees.

e In [30], Paule gave a way to iterate Bailey pairs different from the one of Andrews [4],
essentially creating in each step a new Bailey pair with one free parameter b (instead
of the two free parameters p and o of Andrews) where in the underlying simplification
of the double sum one only requires the ¢-Chu—Vandermonde summation (instead of the
g-Pfaff-Saalschiitz summation). Despite of the simpler lemma, iteration still gives the
full Andrews—Gordon and Bressoud identities, and also a number of new identities for
multisums. Could some of these identities be reproved or extended using the tools of the
present paper?

e Theorem 2.1 seems reminiscent of a theorem of Milne [27, Theorem 1.7], also related to
the Bailey machinery. Would it be possible to use our techniques to prove this theorem
directly? Milne originally proved it by applying Ismail’s analytic continuation method to
Andrew’s multisum extension of the Watson transformation.

e In a recent paper [32], Schlosser obtained some other bilateral identities of the Rogers—
Ramanujan type (see, for example, Theorem 2.1 or Theorem 4.6 in his paper). Can one
find a bilateral Bailey pair that would yield Schlosser’s results?

e Recently Warnaar [35] gave an extension of the Ay Bailey chain into a tree, proving Rogers—
Ramanujan type g-series identities related to characters of the affine Lie algebra Aél). Can
the Ay Bailey chain or Warnaar’s generalisation be bilateralised? If so, could this be
extended to the A, or C,, Bailey chains?

e Related to the previous question, there already exist A, and C, Bailey lemmas, which
are however essentially different from Warnaar’s As case, and could be named A, and C),
Bailey lemmas of “Milne type” (see for instance the work of Milne and Lilly in [28, 29]).
Can one find “Milne type” A, and C, extensions of the results in the present paper?
In [11], Bhatnagar and Schlosser find A,, and C,, elliptic Bailey lemmas, whose p = 0 cases
yield A,, and C), well-poised Bailey lemmas.
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