Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 063, 15 pages      arXiv:2009.14801      https://doi.org/10.3842/SIGMA.2025.063

Birational Equivalences and Generalized Weyl Algebras

Atabey Kaygun
Istanbul Technical University, Istanbul, Turkey

Received June 24, 2024, in final form July 21, 2025; Published online July 30, 2025

Abstract
We calculate suitably localized Hochschild homologies of various quantum groups and Podleś spheres after realizing them as generalized Weyl algebras (GWAs). We use the fact that every GWA is birationally equivalent to a smash product with a 1-torus. We also address and solve the birational equivalence problem, and the birational smoothness problem for GWAs.

Key words: noncommutative birational equivalences; generalized Weyl algebras; Hochschild homology; Podleś spheres; quantum groups; quantum enveloping algebras.

pdf (481 kb)   tex (25 kb)  

References

  1. Alev J., Dumas F., Sur le corps des fractions de certaines algèbres quantiques, J. Algebra 170 (1994), 229-265.
  2. Alev J., Ooms A., van den Bergh M., A class of counterexamples to the Gelfand-Kirillov conjecture, Trans. Amer. Math. Soc. 348 (1996), 1709-1716.
  3. Bavula V., Generalized Weyl algebras and their representations, St. Petersburg Math. J. 4 (1993), 71-92.
  4. Bavula V., Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras, Bull. Sci. Math. 120 (1996), 293-335.
  5. Bavula V., Jordan D., Isomorphism problems and groups of automorphisms for generalized Weyl algebras, Trans. Amer. Math. Soc. 353 (2001), 769-794.
  6. Boddington P., Deformations of type D Kleinian singularities, arXiv:math.RA/0612853.
  7. Brown K.A., Goodearl K.R., Lectures on algebraic quantum groups, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2002.
  8. Brylinski J.-L., Central localization in Hochschild homology, J. Pure Appl. Algebra 57 (1989), 1-4.
  9. Brzeziński T., Noncommutative differential geometry of generalized Weyl algebras, SIGMA 12 (2016), 059, 18 pages, arXiv:1602.07456.
  10. Colliot-Thélène J.L., Kunyavskiǐ B., Popov V.L., Reichstein Z., Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?, Compos. Math. 147 (2011), 428-466, arXiv:0901.4358.
  11. Crawley-Boevey W., Holland M.P., Noncommutative deformations of Kleinian singularities, Duke Math. J. 92 (1998), 605-635.
  12. Drozd Yu.A., Guzner B.L., Ovsienko S.A., Weight modules over generalized Weyl algebras, J. Algebra 184 (1996), 491-504.
  13. Farinati M.A., Solotar A., Suárez-Álvarez M., Hochschild homology and cohomology of generalized Weyl algebras, Ann. Inst. Fourier (Grenoble) 53 (2003), 465-488, arXiv:math.KT/0109025.
  14. Futorny V., Hartwig J.T., Solution of a $q$-difference Noether problem and the quantum Gelfand-Kirillov conjecture for $\mathfrak{gl}_N$, Math. Z. 276 (2014), 1-37, arXiv:1111.6044.
  15. Gelfand I.M., Kirillov A.A., Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 5-19.
  16. Goodman J., Krähmer U., Untwisting a twisted Calabi-Yau algebra, J. Algebra 406 (2014), 272-289, arXiv:1304.0749.
  17. Griffiths P., Harris J., Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience, New York, 1978.
  18. Hadfield T., Twisted cyclic homology of all Podleś quantum spheres, J. Geom. Phys. 57 (2007), 339-351, arXiv:math.QA/0405243.
  19. Hadfield T., Krähmer U., Twisted homology of quantum ${\rm SL}(2)$, $K$-Theory 34 (2005), 327-360, arXiv:math.QA/0405249.
  20. Hadfield T., Krähmer U., On the Hochschild homology of quantum ${\rm SL}(N)$, C. R. Math. Acad. Sci. Paris 343 (2006), 9-13, arXiv:math.QA/0509254.
  21. Hartwig J.T., Locally finite simple weight modules over twisted generalized Weyl algebras, J. Algebra 303 (2006), 42-76, arXiv:math.RT/0502352.
  22. Hartwig J.T., Twisted generalized Weyl algebras, polynomial Cartan matrices and Serre-type relations, Comm. Algebra 38 (2010), 4375-4389, arXiv:0908.2054.
  23. Hodges T.J., Noncommutative deformations of type-$A$ Kleinian singularities, J. Algebra 161 (1993), 271-290.
  24. Joseph A., Proof of the Gelfand-Kirillov conjecture for solvable Lie algebras, Proc. Amer. Math. Soc. 45 (1974), 1-10.
  25. Kaygun A., Sütlü S., Homology of quantum linear groups, Homology Homotopy Appl. 23 (2021), 9-31, arXiv:1910.09747.
  26. Kaygun A., Sütlü S., On the Hochschild homology of smash biproducts, J. Pure Appl. Algebra 225 (2021), 106506, 12 pages, arXiv:1809.08873.
  27. Krähmer U., The Hochschild cohomology ring of the standard Podleś quantum sphere, Arab. J. Sci. Eng. Sect. C Theme Issues 33 (2008), 325-335, arXiv:0806.1615.
  28. Lam T.Y., Lectures on modules and rings, Grad. Texts in Math., Vol. 189, Springer, New York, 1999.
  29. Levy P., Isomorphism problems of noncommutative deformations of type $D$ Kleinian singularities, Trans. Amer. Math. Soc. 361 (2009), 2351-2375, arXiv:math.RA/0610490.
  30. Liu L., Homological smoothness and deformations of generalized Weyl algebras, Israel J. Math. 209 (2015), 949-992, arXiv:1304.7117.
  31. Liu L., On homological smoothness of generalized Weyl algebras over polynomial algebras in two variables, J. Algebra 498 (2018), 228-253, arXiv:1711.05970.
  32. Masuda T., Nakagami Y., Watanabe J., Noncommutative differential geometry on the quantum ${\rm SU}(2)$. I. An algebraic viewpoint, $K$-Theory 4 (1990), 157-180.
  33. Mazorchuk V., Ponomarenko M., Turowska L., Some associative algebras related to $U(\mathfrak{g})$ and twisted generalized Weyl algebras, Math. Scand. 92 (2003), 5-30.
  34. Mazorchuk V., Turowska L., Simple weight modules over twisted generalized Weyl algebras, Comm. Algebra 27 (1999), 2613-2625.
  35. Meinel J., Duflo theorem for a class of generalized Weyl algebras, J. Algebra Appl. 14 (2015), 1550147, 21 pages, arXiv:1405.3917.
  36. Nghiêm Xuân Hai, Réduction de produits semi-directs et conjecture de Gelfand et Kirillov, Bull. Soc. Math. France 107 (1979), 241-267.
  37. Podleś P., Quantum spheres, Lett. Math. Phys. 14 (1987), 193-202.
  38. Richard L., Solotar A., Isomorphisms between quantum generalized Weyl algebras, J. Algebra Appl. 5 (2006), 271-285, arXiv:math.QA/0402413.
  39. Rosenberg A.L., Noncommutative algebraic geometry and representations of quantized algebras, Math. Appl., Vol. 330, Kluwer, Dordrecht, 1995.
  40. Rosso M., Koszul resolutions and quantum groups, Nuclear Phys. B Proc. Suppl. 18 (1990), 269-276.
  41. Solotar A., Suárez-Alvarez M., Vivas Q., Hochschild homology and cohomology of generalized Weyl algebras: the quantum case, Ann. Inst. Fourier (Grenoble) 63 (2013), 923-956, arXiv:1106.5289.
  42. Suárez-Alvarez M., Vivas Q., Automorphisms and isomorphisms of quantum generalized Weyl algebras, J. Algebra 424 (2015), 540-552, arXiv:1206.4417.
  43. Tang X., The automorphism groups for a family of generalized Weyl algebras, J. Algebra Appl. 17 (2018), 1850142, 20 pages, arXiv:1610.04535.
  44. van den Bergh M., A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc. 126 (1998), 1345-1348.
  45. van den Bergh M., Erratum to ''A relation between Hochschild homology and cohomology for Gorenstein rings'', Proc. Amer. Math. Soc. 130 (2002), 2809-2810.

Previous article  Next article  Contents of Volume 21 (2025)