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1 Introduction

A birational equivalence is an algebra morphism that becomes an isomorphism after a suitable
localization. In this paper, we show that every generalized Weyl algebra (GWA) is birationally
equivalent to a smash product with a rank-1 torus. This fact significantly simplifies their rep-
resentation theory, and structure problems such as the isomorphism problem [5, 23, 38, 42, 43]
and the smoothness problem [4, 23, 30, 31, 41], provided one replaces isomorphisms with suit-
able noncommutative birational equivalences. We address and solve a relative version of the
birational equivalence problem in Section 3.9, and the birational smoothness problem in Sec-
tion 4.3. We then calculate the Hochschild homology of suitably localized examples of GWAs
in Section 5.

Generalized Weyl algebras are defined by Bavula [3, 4], Hodges [23] and Rosenberg [39]
independently under different disguises. Their representation theory resembles that of Lie alge-
bras [12, 35] (see Section 3.7), their homologies are extensively studied [13, 30, 31, 41], and they
found diverse uses in areas such as noncommutative resolutions of Kleinian singularities [6, 11, 29]
and noncommutative geometry of various quantum spheres and lens spaces [9]. Apart from non-
commutative resolutions of Kleinian singularities, the class is known to contain the ordinary
rank-1 Weyl algebra A1, the enveloping algebra U(sl2) and its primitive quotients, the quan-
tum enveloping algebra Uq(sl2), the quantum monoid Oq(M2), the quantum groups Oq(GL2),
Oq(SL2) and Oq(SU2). We reverify that the standard Podleś spheres Oq

(
S2
)
[37] are GWAs [30],

and then we show that parametric Podleś spheres Oq,c

(
S2
)
of Hadfield [18] are also GWAs. We

finish the paper by calculating localized Hochschild homology of all of these examples.

The Hochschild homology of quantum groups Oq(GLn) and Oq(SLn) with coefficients in a 1-
dimensional character coming from a modular pair in involution is calculated for every n ⩾ 1
in [25], and with coefficients in themselves in specific cases in [19, 20, 32, 40]. The Hochschild
cohomology of the Podleś sphere was studied by Hadfield [18], and then in the context of
van den Bergh duality [44, 45] by Krähmer [27]. Both Hadfield and Krähmer use twisted
Hochschild (co)homology by the Nakayama automorphism with coefficients in themselves. In this
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paper, we only calculate the ordinary Hochschild homology of these algebras with coefficients in
themselves since one can always move to and from the ordinary Hochschild homology and the
twisted homology via isomorphisms coming from suitable cup and cap products [16, 27].

In this paper, we focus on GWAs, i.e., algebras that are birationally equivalent to smash prod-
ucts with rank-1 tori. The higher rank generalized Weyl algebras that (conjecturally) recover
enveloping algebras of higher rank Lie algebras and their quantizations are called twisted general-
ized Weyl algebras (TGWAs) [21, 22, 33, 34]. We conjecture that TGWAs are birationally equiv-
alent to smash products with higher rank tori, but we leave this investigation for a future paper.

The celebrated Gelfand–Kirilov conjecture, on the other hand, states that the universal en-
veloping algebra U(g) of a finite dimensional Lie algebra is birationally equivalent to a sufficiently
high rank Weyl algebra [15]. One of the equivalent forms of the conjecture is that U(g) is bira-
tionally equivalent to the smash product of a polynomial algebra with a torus. The conjecture is
known to be false in general [2, 10], but is true for a large class of Lie algebras [15, 24, 36]. The
quantum analogue of the conjecture (see [7, pp. 19–21 and Section II.10.4] and references therein)
is also known to be true many instances [1, 14]. In the light of our conjecture above, we believe
that the universal enveloping algebra U(g) of a rank-n semi-simple Lie algebra is birationally
equivalent to the smash product of a polynomial algebra with an n-torus. We also believe that
the same is true for the quantum enveloping algebras Uq(g) and the quantum groups Oq(G)
where one replaces the n-torus with a quantum n-torus.

Plan of the article. In Section 2, we recall some basic facts on localizations, relative ho-
mology of algebra extensions, smash products and biproducts. In Section 3, we prove two funda-
mental structure theorems for GWAs in Sections 3.4 and 3.5. Then we state and solve birational
equivalence problem for GWAs in Section 3.9. In Section 4, we investigate the interactions
between homology, smash biproducts and noncommutative localizations, and in Sections 4.3
and 4.4, we state and solve the birational smoothness problem for GWAs. Finally, we use our
machinery to calculate suitably localized Hochschild homologies of various GWAs in Section 5.

Notations and conventions. We fix an algebraically closed ground field k of characteris-
tic 0, and we set the binomial coefficients

(
n
m

)
= 0 whenever m > n or m < 0. All unadorned

tensor products ⊗ are taken over k. All algebras are assumed to be unital and associative,
but not necessarily commutative or finite dimensional. We use the notation k[X] for the free
unital commutative algebra generated by a set X, while we use k{X} for the free unital algebra
generated by the same set X. Throughout the paper, we use T to denote the algebra of Laurent
polynomials k

[
x, x−1

]
.

2 Preliminaries

2.1 Noncommutative localizations

Our main reference for noncommutative localizations is [28, Section 10].
A multiplicative submonoid S ⊆ A is called a right Ore set if for every s ∈ S and u ∈ A

(i) there are s′ ∈ S and u′ ∈ A such that su′ = us′, and

(ii) if su = 0 then there is s′ ∈ S such that us′ = 0.

If S ⊆ A is a right Ore set, then there is a universal algebra S−1A and a morphism of
algebras ιS : A → S−1A such that φ(S) ⊆ S−1A×. The morphism ιS is universal among such S
inverting morphisms, where if φ : A → B satisfies φ(S) ⊂ B×, then there is a unique morphism
of algebras φ′ : S−1A → B with φ = φ′ ◦ ιS .

In the sequel, we are going to drop the requirement that S is a multiplicative submonoid and
consider the conditions above within the submonoid generated by S. In such cases, we are still
going to use the notation S−1A for the localization.
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2.2 Birational equivalences

Given two irreducible algebraic varieties X and Y , an algebraic map f : X → Y is called a bira-
tional equivalence if f restricted to an open subvariety is an isomorphism [17, Section 4.2]. For
the purposes of this article, an algebra A is an irreducible noncommutative affine variety if A has
no primitive idempotents other than 0 and 1. Thus we call a morphism of algebras φ : A → A′

a birational equivalence if there are two Ore sets S ⊂ A and S′ ⊂ A′ such that φ(S) ⊆ S′

and the extension of φ to the localization S−1φ : S−1A → (S′)−1A′ is an isomorphism of unital
associative algebras.

2.3 Smash biproducts

Assume A and B are two unital associative algebras. A k-linear map R : B ⊗ A → A ⊗ B is
called a distributive law if the following diagrams of algebras commute:

B ⊗B ⊗A
B⊗R //

µB⊗A
��

B ⊗A⊗B
R⊗B // A⊗B ⊗B

A⊗µB

��
B ⊗A

R // A⊗B

B ⊗A⊗A
R⊗B

//

B⊗µA

OO

A⊗B ⊗A
A⊗R

// A⊗A⊗B,

µA⊗B

OO

B
1⊗B

##

B⊗1

{{
B ⊗A

R // A⊗B.

A
1⊗A

cc

A⊗1

;;

For notational convenience, we write R(b⊗ a) = R(1)(a)⊗R(2)(b) for every a ∈ A and b ∈ B.
For a distributive law R : B ⊗ A → A ⊗ B, there is a corresponding smash biproduct al-

gebra A#RB which is A ⊗ B as vector spaces with the multiplication (a ⊗ b)(a′ ⊗ b′) =
aR(1)(a

′) ⊗ R(2)(b)b
′ for every a, a′ ∈ A and b, b′ ∈ B. We will use A#B instead of A#RB

if the distributive law is clear from the context.

2.4 Hochschild homology

Let A be a unital associative algebra, and letM be an A-bimodule. Consider the graded k-vector
space CH∗(A,M) =

⊕
n⩾0M⊗A⊗n together with linear maps bn : CHn(A,M) → CHn−1(A,M)

defined for n ⩾ 1 via

bn(m⊗ a1 ⊗ an) = ma1 ⊗ a2 ⊗ · · · ⊗ an +

n−1∑
i=1

(−1)im⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nanm⊗ a1 ⊗ · · · ⊗ an−1.

These maps satisfy bnbn+1 = 0 for every n ⩾ 1, and we define H∗(A,M) = ker(bn)/im(bn+1).
We use the notation HH∗(A) for H∗(A,A).

2.5 Smooth algebras

An algebra A is said to be smooth if it has finite Hochschild homological dimension, i.e., when

hh. dim(A) := sup{n ∈ N | Hn(A,M) ̸= 0, M ∈ Ae-Mod}

is finite. We call an algebra A m-smooth if hh.dim(A) = m, for m ∈ N.
The simplest 0-smooth algebras are groups ring k[G] over finite groups where |G| does not

divide the characteristic of k, and quotients of polynomial algebras k[x]/⟨f(x)⟩ where f(x)
is a separable polynomial. For m ⩾ 1, the simplest examples of m-smooth algebras one
can consider are the polynomial algebras k[ti | i = 0, . . . ,m] and the Laurent polynomial alge-
bras k

[
ti, t

−1
i | i = 0, . . . ,m

]
with m ⩾ 0, and their smash biproducts with 0-smooth algebras.
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2.6 Homology of smash biproducts with smooth algebras

Now, let us recall the following result from [25, Proposition 1.5].

Proposition 2.1. Assume P and Q are two unital algebras together with a left flat algebra
morphism φ : Q → P . Let M be a P -bimodule. Then there is a spectral sequence whose first
page is given by

E1
i,j = Hj(Q,M ⊗Q P ⊗Q · · · ⊗Q P︸ ︷︷ ︸

i-times

)

that converges to the Hochschild homology H∗(P,M).

Let us write R(1)(b⊗ a)⊗R(2)(b⊗ a) for R(b⊗ a), and defined

CHn(A,M)B :=
CHn(A,M)

{a⊗m ◁ b−R(1)(b⊗ a)⊗R(2)(b⊗ a) ▷ m | b ∈ B, a⊗m ∈ CHn(A,M)}
.

Corollary 2.2. Let A and B be two algebras, and let R : B⊗A → A⊗B be any distributive law.
Then for any A#B-bimodule M and for all n ⩾ 0 we have Hn(A#B,M) ∼= Hn(CH∗(A,M)B),
when B is 0-smooth.

Proof. We set P = A#B and Q = B together with φ(b) = 1 ⊗ b, and then we use Proposi-
tion 2.1. ■

3 Generalized Weyl algebras

3.1 Generalized Weyl algebras

Assume A is a unital associative algebra, let a ∈ Z(A) and σ ∈ Aut(A) be fixed. Define
a new algebra Wa,σ as the quotient of the free algebra generated by A and two non-commuting
indeterminates x and y subject to the following relations

yx− a, xy − σ(a), xu− σ(u)x, yσ(u)− uy

for every u ∈ A. The algebra Wa,σ is called generalized Weyl algebra [3, 5].

3.2 Algebras with automorphisms

One standard source of distributive laws is algebras with a fixed algebra automorphism or
endomorphisms. From now on, we will assume A is a domain with a fixed algebra automor-
phism σ ∈ Aut(A). Let T = k[Z] = k

[
x, x−1

]
be the group ring of the free abelian group on

a single generator Z. Now consider the smash biproduct B := A#T coming from the distributive
law R : T⊗A → A⊗ T defined as

R(xn ⊗ u) = σn(u)⊗ xn (3.1)

for every monomial xn ∈ T with n ∈ Z and u ∈ A. Then R defines an invertible distributive law.
In order to simplify the notation, we are going to write uxi for every monomial u⊗xi in A#T. If
there are more than one automorphisms in the context, we are going to write A#R(σ)T instead
of A#R to emphasize which automorphism we are using.
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3.3 The ordinary Weyl algebra

If we consider the subalgebra of operators generated by T (f(t)) = tf(t) and D(f(t)) = f ′(t)
on the space of differentiable functions on R, we see that we have the relation [D,T ] =
DT − TD = 1. This algebra is the motivating example of the ordinary rank-1 Weyl algebra A1,
which is defined as the k-algebra defined on two non-commuting indeterminates x and y sub-
ject to the relations xy − yx = 1. One can define A1 as a GWA if we let A = k[t] where we
set the distinguished element a = t. We define σ to be the algebra automorphism of A given
by f(t) = f(t− 1) for every f(t) ∈ A. Then the GWA Wa,σ is the ordinary Weyl algebra A1.
See [5, Example 2.3].

3.4 A structure theorem for GWAs

Given an arbitrary GWA Wa,σ, one can also realize it as a unital subalgebra of the smash
product A#T where T := k

[
x, x−1

]
and R : T⊗A → A⊗T is defined in equation (3.1). For this,

we consider the monomorphism of k-algebras φ : Wa,σ → A#T given by φ(u) = u, φ(x) = x,
φ(y) = ax−1 for every u ∈ A.

Theorem 3.1. For every a ∈ Z(A), the algebra Wa,σ is isomorphic to the unital subalgebra of
the smash biproduct A#T generated by A, x and ax−1. Hence Wa,σ is isomorphic to A#T for
every a ∈ Z(A×).

Proof. The result follows from the fact that the image of φ (as k-vector spaces) is the direct
sum

A⊗ k[x]⊕
∞⊕
n=0

〈
aσ−1(a) · · ·σ−n(a)

〉
⊗ Spank

(
x−n−1

)
,

where ⟨u⟩ denotes the two sided ideal in A generated by an element u ∈ A. ■

In specific cases, the fact that GWAs are subalgebras of smash products was already known [6,
Lemma 2.3]. However, to the best of our knowledge, the fact that one gets an isomorphism when
the distinguished element a ∈ A is a unit, even though it implicitly follows from this embedding,
is not fully taken advantage of in the literature.

From now on, we identify Wa,σ with im(φ) in A#T.

3.5 Localizations of smash products with tori

Let A be an algebra with a fixed automorphism σ ∈ Aut(A). Assume R : T ⊗ A → A ⊗ T is
the distributive law given in equation (3.1). Let S ⊆ Z(A) be any multiplicative submonoid
which stable under the action of σ. The proof of the following lemma is routine verification, and
therefore, is omitted.

Lemma 3.2. Any multiplicative monoid S in Z(A) which is σ-stable is a right Ore subset
in A#T, and S−1(A#T) = S−1A#T.

3.6 Localizations of GWAs

As before, assume A is a unital associative algebra, a ∈ Z(A) and σ ∈ Aut(A). Recall that
by Theorem 3.1 we identified the GWA Wa,σ with the subalgebra of the smash biproduct A#T
generated by the algebra A and the elements x and ax−1. Then we have a tower of algebra
extensions of the form A#k[x] ⊂ Wa,σ ⊆ A#T.
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Theorem 3.3. Consider the set S ⊂ Z(A) of the elements of the form σm(an), where n ∈ N
and m ∈ Z. Then the embedding of algebras Wa,σ ⊆ A#T is a birational equivalence with respect
to the Ore set generated by S.

Proof. Now, by Lemma 3.2, we have that S−1(A#T) = S−1A#T, and by Theorem 3.1, we see
that the algebra S−1A#T is itself generated by S−1A, x and ax−1 since a ∈ S−1A is now
a unit. ■

3.7 Highest weight modules of GWAs

Assume A is unital associative with a distinguished element a ∈ Z(A) and an automorphism
σ ∈ Aut(A). Let V be a representation over the GWA Wa,σ. We have an (not necessarily
exhaustive) increasing filtration of submodules of the form

V [ℓ] =
{
v ∈ V | v ◁ aσ−1(a) · · ·σ−ℓ(a) = 0

}
defined for ℓ ∈ N. Let us also define

V [∞] =
⋃
ℓ⩾0

V [ℓ].

We define hta,σ(V ) the height of V as the smallest integer ℓ such that V [ℓ] = V [∞], and if no
such integer exists we set hta,σ(V ) = ∞.

Assume V is a finite dimensional representation. Then h = hta,σ(V ) is necessarily finite.
Furthermore, if the height filtration satisfies V [h] = V , then we get the analogue of a highest
weight module for the GWA Wa,σ. Approaches for such cases can be seen in [12, 35].

Proposition 3.4. Let S ⊆ Z(A) be the subset of elements of the form σn(am) with n ∈ Z
and m ∈ N, and let S−1(Wa,σ) be the localization of Wa,σ at S. Assume V is an arbitrary Wa,σ-
module, and let h = hta,σ(V ). Then S−1V := V ⊗Wa,σ S

−1(Wa,σ) is isomorphic to S−1
(
V/V [h]

)
.

Proof. We consider the following short exact sequence of Wa,σ-modules:

0 → V [h] → V → V/V [h] → 0

and use the fact that the functor S−1( · ) is exact. ■

3.8 Morphisms of algebra extensions

An algebra C together with a subalgebra A is called an algebra extension. Given two exten-
sions A ⊆ C and A ⊆ C ′ of a fixed algebra A, a morphism f : (C,A) → (C ′, A) of extensions is
a commutative triangle of algebra morphisms of the form

C
f // C ′.

A

__ >>

3.9 Isomorphisms of smash products with tori

In this subsection, we consider the isomorphism problem for smash products with T = k
[
x, x−1

]
since all isomorphism problems for GWAs birationally reduce to isomorphism problems for such
smash products.
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Theorem 3.5. Assume σ and η are two algebra automorphisms of A. Then the algebra ex-
tensions A ⊆ A#R(σ)T and A ⊆ A#R(η)T are isomorphic if and only if η = uσ±1u−1 for
some u ∈ A×.

Proof. Assume for now that σ = uηu−1 or σ = uη−1u−1. Consider an arbitrary v ∈ A. In the
first case, define δ : A#R(σ)T → A#R(η)T by letting δ(x) = ux and we get

δ(xv) =uxv = uη(v)x = σ(v)ux = δ(σ(v)x),

which implies δ is an isomorphism of smash biproducts. The proof for the second case is similar,
and therefore, is omitted. On the opposite direction, assume δ : A#R(σ)T → A#R(η)T is an
isomorphism of algebra extensions. The one easily see that δ restricted T yields an algebra
monomorphism, and therefore, δ(x) = ux±1 for some u ∈ A× and δ restricted to A is identity.
Thus σ = uη±1u−1 as expected. ■

Notice that given an automorphism σ ∈ Aut(A) and its inverse σ−1 extended to A#R(σ)T
are now an inner automorphisms. From this perspective Theorem 3.5 says that given two
automorphism σ and η, they define two different smash products if their outer automorphism
classes are different. In particular, we have the following result.

Corollary 3.6. If σ ∈ Aut(A) is an inner automorphism, then the smash biproduct A#R(σ)T
is isomorphic to the direct product A× T.

4 Homology of GWAs

4.1 Homology of smash products with tori

Assume M is a T-module M via an automorphism σ : M → M . We define MT = {m ∈
M | t ▷ m = m}. We also consider M ⊗ T as a T-bimodule via t ▷

(
m ⊗ ti

)
= σ(m) ⊗ ti,(

m⊗ ti
)
◁ t = m⊗ ti+1. We denote this bimodule by M#T. Now, we have the following lemma.

Lemma 4.1.

Hn(T,M#T) ∼=


MT#T if n = 0,

MT#T if n = 1,

0 otherwise.

Proof. Using the fact that T has Hochschild dimension 1, we can immediately conclude that
Hn(T,M#T) = 0 for n ⩾ 2. As for degree 0, we have H0(T,M#T) ∼= (M#T)T and

(M#T)T = (M#T)/[T,M#T] =
M#T{

σi(m)⊗ ti −m⊗ ti | m ∈ M, i ∈ Z
} ∼= MT#T

As for degree 1,

H1(T,M#T) =
{
m⊗ tj ⊗ tn | m⊗ tn+j = σn(m)⊗ tn+j

}{
m⊗ ti+j ⊗ tn −m⊗ ti ⊗ tn+j + σn(m)⊗ tn+i ⊗ tj

} .
Thus a copy of MT#T generated by elements of the form m ⊗ tn ⊗ t, where σ(m) = m in the
first homology. In the quotient, for all m ∈ M with σn(m) = m, we have

m⊗ 1⊗ tn =σn−1(m)⊗ tn−1 ⊗ t+m⊗ t⊗ tn−1,
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and by inductively repeating we get

m⊗ 1⊗ tn =
n−1∑
i=0

σi(m)⊗ tn−1 ⊗ t

for those pairs m⊗ tn ∈ M#T with σn(m) = m. This means in the first homology terms of the
form m⊗ ti ⊗ tn with σn(m) = m are replaced by terms of the form(

n−1∑
j=0

σj(m)

)
⊗ tn+i−1 ⊗ t.

Notice that the sum on the left is σ-invariant. Result follows. ■

Thanks to Lemma 4.1, we now have the following result by using the spectral sequence given
in Proposition 2.1.

Proposition 4.2. Let σ ∈ Aut(A) and assume σ acts on CH∗(A) diagonally extending the action
on A. Let CH∗(A)T and CH∗(A)

T respectively be the complex of coinvariants and invariants of σ.
Then

HHn(A#T) ∼= Hn(CH∗(A)T)⊗ T⊕Hn−1

(
CH∗(A)T

)
⊗ T.

4.2 Algebraic and separable endomorphisms

We call an algebra endomorphism σ ∈ End(A) algebraic if there is a polynomial f(t) ∈ k[t] such
that f(σ) = 0 in End(A). For an algebraic endomorphism σ of A, the monic polynomial f(t)
with the minimal degree that satisfies f(σ) = 0 is called the minimal polynomial of σ. We call an
algebraic endomorphism σ ∈ End(A) as separable if the minimal polynomial of σ is separable.

Notice that all endomorphisms of a finite dimensional k-algebra are algebraic. Regardless of
the dimension, all automorphisms of finite order and all nilpotent non-unital endomorphisms
are also algebraic. If k has characteristic 0, automorphisms of finite order are separable, but
nilpotent non-unital endomorphisms are not.

4.3 Algebras with separable automorphisms

For a fixed algebraic automorphism σ ∈ Aut(A), let Spec(σ) be the set of unique eigenvalues
of σ, and let A(λ) be the λ-eigenspace of σ corresponding to λ ∈ Spec(σ).

Theorem 4.3. Assume σ ∈ Aut(A) is separable with minimal polynomial f(x), and let B be
the quotient k[x]/⟨f(x)⟩. Then

Hn(A#T) = Hn

(
CH

(1)
∗ (A)

)
⊗ T⊕Hn−1

(
CH

(1)
∗ (A)

)
⊗ T

and Hn(A#B) = Hn

(
CH

(1)
∗ (A)

)
⊗ B, where CH

(1)
∗ (A) is generated by homogeneous tensors of

the form a0 ⊗ · · · ⊗ an with ai ∈ A(λi) and λ1 · · ·λn = 1 for every n ⩾ 0.

Proof. One can extend the distributive law R : T ⊗ A → A ⊗ T given in equation (3.1) to
a distributive law of the form R : B ⊗ A → A ⊗ B. Notice that since f(x) is separable, B is
a product of a finite number of copies of k, and therefore, is 0-smooth. Then the result for A#B
immediately follows from Corollary 2.2. On the other hand, the result for A#T follows from
Proposition 4.2. ■
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Note that Theorem 4.3 solves the smoothness problem for smash products with T, and there-
fore the birational smoothness problem for all GWAs, provided that the action is implemented
via a separable automorphism. Namely, a smash product with Z via a separable automorphism

is smooth if and only if the complex subcomplex of invariants CH
(1)
∗ (A) has bounded homol-

ogy. In the next subsection, we solve the birational smoothness problem for all GWAs without
requiring automorphism to be separable.

4.4 Localization of GWAs in homology

Consider the set S of elements of the form σm(an) in Z(A) where n ∈ N and m ∈ Z. Let k[S]
be the (commutative) subalgebra of A generated by S, and let S−1k[S] be its localization at S.
Then we have that S−1A = A⊗k[S]S

−1k[S]. Now let k[S]T be the algebra of coinvariants of k[S]
which is given by the following quotient:

k[S]T :=
k[S]

⟨σ(s)− s | s ∈ S⟩
.

Corollary 4.4. We have

HHn

(
S−1Wa,σ

) ∼= HHn

(
S−1A#T

)
∼= Hn

(
CH∗(A)T ⊗k[S]T S

−1(k[S]T)
)
⊗ T⊕Hn−1

(
CH∗

(
S−1A

)T)⊗ T,

where we view CH∗(A) as an k[S]-module and k[S]T-module on the coefficient.

Proof. By Theorem 3.3, we have S−1Wa,σ
∼= S−1A#T. Now, we consider the algebra exten-

sion S−1A ⊆
(
S−1A

)
#T for which by [26] there is a spectral sequence whose first page is

E1
p,q = Hq

(
S−1A,CHp

(
S−1A#T|S−1A

))
= Hq

(
S−1A,CHp

(
T, S−1A#T

))
that converges to HH∗

(
S−1A#T

)
. Since S ⊆ Z(A), by [8], we know that

E1
p,q

∼= Hq

(
A,S−1CHp

(
T, S−1A#T

)) ∼= Hq

(
A,CHp

(
T, S−1A#T

))
.

Thus we have an isomorphism of the form HH∗
(
S−1A#T

) ∼= H∗
(
A#T, S−1A#T

)
. Then by

Lemma 4.1 and Proposition 4.2, we get

HHn

(
S−1Wa,σ

) ∼= Hn

(
CH∗

(
A,S−1A

)
T
)
⊗ T⊕Hn−1

(
CH∗

(
S−1A

)T)⊗ T.

Since S ⊆ Z(A), we get that CH∗
(
A,S−1A

)
= S−1CH∗(A). On the other hand, both the

coinvariants functor ( · )T and localization functor S−1( · ) are specific colimits, and colimits
commute. Then

CHn

(
S−1Wa,σ

) ∼= S−1CHn(A)T ⊗ T⊕ CH∗
(
S−1A

)T ⊗ T.

On the other hand,(
S−1CH∗(A)

)
T
∼=
(
CH∗(A)⊗k[S] S

−1k[S]
)
T
∼= CH∗(A)⊗k[S]⋊T S−1k[S]

S−1CH∗(A)T ∼= CH∗(A)T ⊗k[S]T S
−1(k[S]T)

since the S-localization of an A-module M can be written as

S−1M = M ⊗A S−1A ∼= M ⊗k[S] S
−1k[S]. ■
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5 Homology calculations

5.1 The rank-1 Weyl algebra

Consider the ordinary Weyl algebra as a GWA as we did in Section 3.3. Now, let S be the
multiplicative system generated by elements of the form (t − m) where m ∈ Z. Since t is not
a unit in A we see that Wt,σ is the proper subalgebra of k[t]#T generated by x and tx−1 where
the distributive law is defined as R(x⊗ t) = (t− 1)⊗ x. Since there is no non-constant rational
function invariant under the action σ(f(t)) = f(t − 1), we get that CH∗

(
S−1k[t]

)T
= CH∗(k).

Next, we see that the subalgebra generated by S is A = k[t] itself. Moreover, since σ(t)− t = 1
we get that k[S]T is zero, and therefore, we get

HHn

(
S−1A1

)
=

{
T if n = 1,

0 otherwise

for every n ⩾ 0.

5.2 The enveloping algebra U(sl2)

The universal enveloping algebra of sl2 is given by the presentation

k{E,F,H}
⟨EH − (H − 2)E,FH − (H + 2)F,EF − FE −H⟩

.

The center of this algebra is generated by the Casimir element

Ω = 4FE +H(H + 2) = 4EF +H(H − 2).

In this subsection, we would like to write a generalized Weyl algebra isomorphic to U(sl2).
Let A = k[c, t] and a = c − t(t + 1). Define σ to be the algebra automorphism defined

by σ(f(c, t)) = f(c, t− 1) for every f(c, t) ∈ A. In this case, Wa,σ is generated by c, t, x
and (c− t(t+ 1))x−1 in the smash product algebra A#T. The GWAWa,σ is isomorphic to U(sl2)
via an isomorphism defined as H 7→ 2t, E 7→ x, F 7→ (c− t(t+ 1))x−1, see [13, Example 2.2].

Let us define S to be the multiplicative system generated by elements of the form c−(t−n)(t−
n− 1), for n ∈ Z. Then S−1Wt,σ is isomorphic to S−1k[c, t]#T, and CH∗

(
S−1A

)T
= CH∗(k[c]).

Moreover, the subalgebra of A = k[c, t] generated by S is A itself and since σ(t) − t = 1, we
again get that k[S]T = 0. Therefore,

HHn

(
S−1U(sl2)

)
=

{
k[c]⊗ T if n = 1, 2,

0 otherwise.

5.3 Primitive quotients of U(sl2)

One can also consider Bλ := Wa,σ/⟨c − λ⟩, where Wa,σ is U(sl2) as we defined above. These
algebras are also GWAs since we can realize them using A = k[t], a = λ − t(t + 1) with the σ
given by t 7→ t− 1. See [5, Section 3].

In this case, using a similar automorphism we used for U(sl2), we can replace S with the mul-
tiplicative system generated by elements of the form µ−(t−n) and µ+(t−n), where µ ∈ k is fixed
and n ranges over Z. Then k[S] = k[t] and S−1Bλ

∼= S−1k[t]#T. In this case, CH∗
(
S−1k[t]

)T
is CH∗(k) and k[S]T = 0 since σ(t)− t = 1 as before. Then we get

HHn

(
S−1Bλ

) ∼= {T if n = 1, 2,

0 otherwise

for every n ⩾ 0.
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5.4 Quantum 2-torus

Fix an element q ∈ k× which is not a root of unity. Let A = k
[
t, t−1

]
and let a = t as in the

case of the ordinary Weyl algebra. But this time, let us define σ ∈ Aut(A) to be the algebra
automorphism given by σ(f(t)) = f(qt) for every f(t) ∈ A. The smash biproduct algebra A#T
is the algebraic quantum 2-torus T2

q and the GWA Wa,σ is the quantum torus itself since a = t
is a unit.

Note that for every u ∈ A and m ∈ Z we have σm(u) ̸= u unless m = 0 since q is not a root
of unity. Thus CH∗(A)T = CH∗(A)T = CH

(0)
∗ (A) where

CH(0)
m (A) = Spank

(
tn0 ⊗ · · · ⊗ tnm | n1, . . . , nm ∈ Z with 0 =

∑
i

ni

)
,

which gives us just the group homology of Z. Then by Proposition 4.2, we get

HHn

(
T2
q

) ∼= k(
2
n) ⊗ T

for every n ⩾ 0 as expected.

5.5 The quantum enveloping algebra Uq(sl2)

For a fixed q ∈ k×, the quantum enveloping algebra of the lie algebra sl2 is given by the
presentation

k
{
K,K−1, E, F

}〈
KE − q2EK,KF − q−2FK,EF − FE = K−K−1

q−q−1

〉 .
As before, we assume q is not a root of unity. There is an element Ω in the center of Uq(sl2)
called the quantum Casimir element defined as

Ω = EF +
q−1K + qK−1(

q − q−1
)2 = FE +

qK + q−1K−1(
q − q−1

)2 .

See [7, Section I.3]. Our first objective is to give a GWA that is isomorphic to Uq(sl2).
We start by setting A = k

[
c, t, t−1

]
together with a = c−

(
q−1t+qt−1

)
and σ ∈ Aut(A) given

by σ(f(c, t)) = f
(
c, q2t

)
for every f(c, t) ∈ k

[
c, t, t−1

]
. Define an algebra map γ : Wa,σ → Uq(sl2)

given on the generators by

t 7→ K, c 7→
(
q − q−1

)2
Ω, x 7→

(
q − q−1

)
F, ax−1 7→

(
q − q−1

)
E.

Notice that the inverse of γ is defined easily as

K 7→ t, E 7→ ax−1

q − q−1
, F 7→ x

q − q−1
.

One can show that both γ and its inverse are well-defined by showing the relations are preserved.
Now, let S be the multiplicative system in A generated by the elements of the form

c−
(
q−2n+1t+ q2n−1t−1

)
for n ∈ Z.

In this case too, the subalgebra of A generated by S is A itself. Then we have

CH∗
(
S−1A

)T ∼= CH
(0)
∗
(
k
[
c, t, t−1

]) ∼= CH∗(A)T.

On the other hand, since σ(t)− t =
(
q2 − 1

)
t and t is a unit, we get that k⟨S⟩T = 0. Thus, as

in the case of U(sl2) we get

HHn

(
S−1Wa,σ

) ∼=HHn

(
S−1Uq(sl2)

) ∼= {k[c]⊗ T if n = 1, 2,

0 otherwise

for every n ⩾ 0.
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5.6 The quantum matrix algebra Oq(M2)

For a fixed q ∈ k× the algebra Oq(M2) of quantum 2× 2 matrices is given by the presentation

bc = cb, ab = q−1ba, ac = q−1ca, db = qbd,

dc = qcd, ad− da =
(
q−1 − q

)
bc.

The quantum determinant Ω = ad−q−1bc = da−qbc generates the center of this algebra, see [7,
pp. 4–8].

Now, let A = k[u, v, w] with the distinguished element u+qvw ∈ A where we set σ(f(u, v, w))
= f

(
u, q−1v, q−1w

)
for every f(u, v, w) ∈ A. Then the GWA Wa,σ is the subalgebra of A#T

generated by A, x and (u+ qvw)x−1, and it is isomorphic to Oq(M2) via

u 7→ Ω, v 7→ b, w 7→ c, x 7→ a, (u+ qvw)x−1 7→ d,

and its inverse is

a 7→ x, b 7→ v, c 7→ w, d 7→ (u+ qvw)x−1.

Since Oq(GL2) is obtained by localizing Oq(M2) at the quantum determinant, we see that
Oq(GL2) is isomorphic to u−1Wa,σ which itself is a GWA with A replaced by k

[
u, u−1, v, w

]
with the remaining datum unchanged.

On the other hand, Oq(SL2) is the quotient of Oq(M2) by the two sided ideal generated
by u − 1, and therefore, is again a GWA with the same datum where this time we replace A
by k[u, v, w]/⟨u− 1⟩. We also know that Oq(GL2) is isomorphic (as algebras only) to Oq(SL2)×
k[Ω].

For the remaining of the section, we are going to concentrate on Oq(SL2) only given as the
subalgebra of k[v, w]#T generated by v, w, x and (1 + qvw)x−1.

Now, let S be the Ore set generated by elements of the form 1 + q2n+1vw for n ∈ Z.
Then S−1Oq(SL2) is isomorphic to S−1k[v, w]#T. In this case, since q is not a root of unity,
we get that CH∗

(
A,S−1A

)T
= CH∗(k) = CH∗(A)T. The subalgebra of k[v, w] generated by S is

the polynomial algebra k[vw] over the indeterminate vw. Since σ(vw)− vw =
(
q−2 − 1

)
vw, we

get that k[vw]T = k. Hence

HHn

(
S−1Oq(SL2)

) ∼= k(
2
n) ⊗ T

for every n ⩾ 0.

5.7 Quantum group Oq(SU2)

Let us fix q ∈ k×. The algebraic quantum group Oq(SU2) is the noncommutative ∗-algebra
generated by two non-commuting indeterminates s and x subject to the following relations:

x∗x = 1− s∗s, xx∗ = 1− q2s∗s, s∗s = ss∗, xs = qsx, xs∗ = qs∗x.

See [18, p. 4]. One can write Oq(SU2) as a GWA Wa,σ by letting A = k[s, s∗] with the
distinguished element a ∈ A is defined as 1 − s∗s and σ(f(s, s∗)) = f(qs, qs∗) for every
f(s, s∗) ∈ k[s, s∗].

Let S be the multiplicative system in A generated by elements of the form q2ns∗s−1 for n ∈ Z.
Then S−1Oq(SU2) is isomorphic to S−1A#T by Theorem 3.3. If we assume that q ∈ k× is not
a root of unity, we get that CH∗

(
S−1A

)T
= CH∗(k) = CH∗(A)T We also see that the subalgebra

of k[s, s∗] generated by S is the polynomial algebra k[ss∗], and since σ(ss∗)− ss∗ =
(
q2 − 1

)
ss∗

we get that k⟨S⟩T = k. Then

HHn

(
S−1Oq(SU2)

) ∼= k(
2
n) ⊗ T

for every n ⩾ 0.



Birational Equivalences and Generalized Weyl Algebras 13

5.8 Podleś spheres

For a fixed q ∈ k×, the algebra of functions Oq

(
S2
)
on standard Podleś quantum spheres [18, 37]

is the subalgebra of Oq(SU2) generated by elements s∗s, xs and s∗x∗. This means Oq

(
S2
)
is the

subalgebra of the smash product k[s, s∗]#T generated by the elements s∗s, sx and s∗(1−s∗s)x−1.
One can give a presentation for the Podleś sphere as

xt = q2tx, yt = q−2ty, yx = −t(t− 1), xy = −q2t
(
q2t− 1

)
,

then we get a GWA structure if we let A = k[t] and where we set t = s∗s with a = −t(t − 1)
and σ(f(t)) = f

(
q2t
)
for every f(t) ∈ A.

Let S be the multiplicative system in A generated by the set
{
t
(
t − q2n

)
| n ∈ Z

}
, then

S−1Oq

(
S2
) ∼= S−1A#T. Instead of this generating set, one can use {t} ∪

{(
t− q2n

)
| n ∈ Z

}
to

get the same localization. Then we get that k[S] is A itself. If we assume that q ∈ k× is not
a root of unity, we get that CH∗

(
S−1A

)T
= CH

(0)
∗
(
k
[
t, t−1

])
, and CH∗(A)T = CH∗(k). In this

case, k[S]T = k since σ(t)− t =
(
q2 − 1

)
t. Thus

HHn

(
S−1Oq

(
S2
)) ∼= k(

2
n) ⊗ T

for every n ⩾ 0.

5.9 Parametric Podleś spheres

In [18], Hadfield defines another family of Podleś spheres Oq,c

(
S2
)
given by a presentation is

equivalent to the following:

xt = q2tx, x∗t = q−2tx∗, x∗x = c− t(t− 1), xx∗ = c− q2t
(
q2t− 1

)
.

If we set A = k[c, t], and let the distinguish element a ∈ A be c − t(t − 1) together with
σ(f(c, t)) = f

(
c, q2t

)
for every f(c, t) ∈ A, we get a GWA structure on Oq,c

(
S2
)
similar to the

GWA structure on U(sl2) where we changed only the algebra automorphism from σ(f(c, t)) =
f(c, t− 1) to σ(f(c, t)) = f

(
c, q2t

)
.

Let S be the multiplicative system inA generated by the elements of the form c−q2nt
(
q2nt−1

)
.

If we assume that q ∈ k× is not a root of unity, we conclude that

CH∗
(
S−1A

)T
= CH∗(k[c]) = CH∗(A)T

which allows us to conclude

HHn

(
S−1Oq,c

(
S2
)) ∼= k(

2
n) ⊗ k[c]⊗ T

for every n ⩾ 0.
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Technological Research Council of Turkey (TÜBİTAK) sabbatical grant 2219. The author would
like to thank both universities and TÜBİTAK for their support.
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