Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 064, 54 pages      arXiv:2407.01450      https://doi.org/10.3842/SIGMA.2025.064

Two-Parameter Quantum Groups and $R$-Matrices: Classical Types

Ian Martin and Alexander Tsymbaliuk
Department of Mathematics, Purdue University, West Lafayette, IN, USA

Received January 05, 2025, in final form July 13, 2025; Published online July 31, 2025

Abstract
We construct finite $R$-matrices for the first fundamental representation $V$ of two-parameter quantum groups $U_{r,s}(\mathfrak{g})$ for classical $\mathfrak{g}$, both through the decomposition of $V\otimes V$ into irreducibles $U_{r,s}(\mathfrak{g})$-submodules as well as by evaluating the universal $R$-matrix. The latter is crucially based on the construction of dual PBW-type bases of $U^{\pm}_{r,s}(\mathfrak{g})$ consisting of the ordered products of quantum root vectors defined via $(r,s)$-bracketings and combinatorics of standard Lyndon words. We further derive explicit formulas for affine $R$-matrices, both through the Yang-Baxterization technique of [Internat. J. Modern Phys. A 6 (1991), 3735-3779] and as the unique intertwiner between the tensor product of $V(u)$ and $V(v)$, viewed as modules over two-parameter quantum affine algebras $U_{r,s}(\widehat{\mathfrak{g}})$ for classical $\mathfrak{g}$. The latter generalizes the formulas of [Comm. Math. Phys. 102 (1986), 537-547] for one-parametric quantum affine algebras.

Key words: two-parameter quantum groups; $R$-matrices; PBW bases; Yang-Baxter equation.

pdf (767 kb)   tex (55 kb)  

References

  1. Artin M., Schelter W., Tate J., Quantum deformations of ${\rm GL}_n$, Comm. Pure Appl. Math. 44 (1991), 879-895.
  2. Bai X., Hu N., Two-parameter quantum groups of exceptional type $E$-series and convex PBW-type basis, Algebra Colloq. 15 (2008), 619-636, arXiv:math.QA/0605179.
  3. Beck J., Convex bases of PBW type for quantum affine algebras, Comm. Math. Phys. 165 (1994), 193-199, arXiv:hep-th/9407003.
  4. Benkart G., Kang S.-J., Lee K.-H., Poincaré-Birkhoff-Witt bases for two-parameter quantum groups, available at https://www2.math.uconn.edu/ khlee/Papers/PBW.pdf.
  5. Benkart G., Witherspoon S., Representations of two-parameter quantum groups and Schur-Weyl duality, in Hopf Algebras, Lecture Notes in Pure and Appl. Math., Vol. 237, Dekker, New York, 2004, 65-92.
  6. Benkart G., Witherspoon S., Restricted two-parameter quantum groups, in Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, Fields Inst. Commun., Vol. 40, American Mathematical Society, Providence, RI, 2004, 293-318.
  7. Benkart G., Witherspoon S., Two-parameter quantum groups and Drinfel'd doubles, Algebr. Represent. Theory 7 (2004), 261-286, arXiv:math.QA/0011064.
  8. Bergeron N., Gao Y., Hu N., Drinfel'd doubles and Lusztig's symmetries of two-parameter quantum groups, J. Algebra 301 (2006), 378-405, arXiv:math.RT/0505614.
  9. Bergeron N., Gao Y., Hu N., Representations of two-parameter quantum orthogonal and symplectic groups, in Proceedings of the International Conference on Complex Geometry and Related Fields, AMS/IP Stud. Adv. Math., Vol. 39, American Mathematical Society, Providence, RI, 2007, 1-21, arXiv:math.QA/0510124.
  10. Clark S., Hill D., Wang W., Quantum shuffles and quantum supergroups of basic type, Quantum Topol. 7 (2016), 553-638, arXiv:1310.7523.
  11. Ding J.T., Frenkel I.B., Isomorphism of two realizations of quantum affine algebra $U_q(\mathfrak{gl}(n))$, Comm. Math. Phys. 156 (1993), 277-300.
  12. Drinfel'd V.G., A new realization of Yangians and of quantum affine algebras, Dokl. Math. 36 (1988), 212-216.
  13. Frenkel I.B., Jing N.H., Vertex representations of quantum affine algebras, Proc. Nat. Acad. Sci. USA 85 (1988), 9373-9377.
  14. Gao Y., Hu N., Zhang H., Two-parameter quantum affine algebra of type ${\rm G}_2^{(1)}$, Drinfeld realization and vertex representation, J. Math. Phys. 56 (2015), 011704, 27 pages.
  15. Ge M.L., Wu Y.-S., Xue K., Explicit trigonometric Yang-Baxterization, Internat. J. Modern Phys. A 6 (1991), 3735-3779.
  16. Hayaishi N., Miki K., $L$ operators and Drinfeld's generators, J. Math. Phys. 39 (1998), 1623-1636, arXiv:q-alg/9705018.
  17. Hu N., Pei Y., Notes on 2-parameter quantum groups. I, Sci. China Ser. A 51 (2008), 1101-1110, arXiv:math.QA/0702298.
  18. Hu N., Rosso M., Zhang H., Two-parameter quantum affine algebra $U_{r,s}(\widehat{\mathfrak{sl}}_n)$, Drinfel'd realization and quantum affine Lyndon basis, Comm. Math. Phys. 278 (2008), 453-486, arXiv:0812.3107.
  19. Hu N., Wang X., Convex PBW-type Lyndon basis and restricted two-parameter quantum groups of type $G_2$, Pacific J. Math. 241 (2009), 243-273, arXiv:0811.0209.
  20. Hu N., Wang X., Convex PBW-type Lyndon bases and restricted two-parameter quantum groups of type $B$, J. Geom. Phys. 60 (2010), 430-453, arXiv:0812.3343.
  21. Hu N., Xu X., Zhuang R., $RLL$-realization of two-parameter quantum affine algebra of type $B^{(1)}_n$, arXiv:2405.06587.
  22. Hu N., Zhang H., Generating functions with $\tau$-invariance and vertex representations of quantum affine algebras $U_{r,s}(\widehat{\mathfrak{g}})$ (I): simply-laced cases, arXiv:1401.4925.
  23. Hu N., Zhang H., Two-parameter quantum affine algebra of type $C^{(1)}_n$, Drinfeld realization and vertex representation, J. Algebra 459 (2016), 43-75, arXiv:1509.02271.
  24. Jantzen J.C., Lectures on quantum groups, Grad. Stud. Math., Vol. 6, American Mathematical Society, Providence, RI, 1996.
  25. Jimbo M., Quantum $R$ matrix for the generalized Toda system, Comm. Math. Phys. 102 (1986), 537-547.
  26. Jing N., Liu M., $R$-matrix realization of two-parameter quantum group $U_{r,s}(\mathfrak{gl}_n)$, Commun. Math. Stat. 2 (2014), 211-230, arXiv:1406.5711.
  27. Jing N., Liu M., $R$-matrix realization of two-parameter quantum affine algebra $U_{r,s}(\widehat{\mathfrak{gl}}_n)$, J. Algebra 488 (2017), 1-28, arXiv:1604.06309.
  28. Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: type $C$, J. Math. Phys. 61 (2020), 031701, 41 pages, arXiv:1903.00204.
  29. Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: types $B$ and $D$, SIGMA 16 (2020), 043, 49 pages, arXiv:1911.03496.
  30. Kharchenko V.K., A quantum analog of the Poincaré-Birkhoff-Witt theorem, Algebra Log. 38 (1999), 259-276, arXiv:math.QA/0005101.
  31. Kharchenko V.K., A combinatorial approach to the quantification of Lie algebras, Pacific J. Math. 203 (2002), 191-233, arXiv:math.QA/0002149.
  32. Lalonde P., Ram A., Standard Lyndon bases of Lie algebras and enveloping algebras, Trans. Amer. Math. Soc. 347 (1995), 1821-1830.
  33. Leclerc B., Dual canonical bases, quantum shuffles and $q$-characters, Math. Z. 246 (2004), 691-732, arXiv:math.QA/0209133.
  34. Lothaire M., Combinatorics on words, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1997.
  35. Martin I., Tsymbaliuk A., Orthogonal bases for two-parameter quantum groups, arXiv:2412.06670.
  36. Martin I., Tsymbaliuk A., Bicharacter twists of quantum groups, in preparation.
  37. Neguţ A., Tsymbaliuk A., Quantum loop groups and shuffle algebras via Lyndon words, Adv. Math. 439 (2024), 109482, 69 pages, arXiv:2102.11269.
  38. Papi P., A characterization of a special ordering in a root system, Proc. Amer. Math. Soc. 120 (1994), 661-665.
  39. Reshetikhin N., Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys. 20 (1990), 331-335.
  40. Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
  41. Rosso M., Lyndon bases and the multiplicative formula for $R$-matrices, unpublished.
  42. Takeuchi M., A two-parameter quantization of ${\rm GL}(n)$ (summary), Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), 112-114.
  43. Tsymbaliuk A., PBWD bases and shuffle algebra realizations for $U_v(L\mathfrak{sl}_n), U_{v_1, v_2}(L\mathfrak{sl}_n), U_v(L\mathfrak{sl}(m|n))$ and their integral forms, Selecta Math. (N.S.) 27 (2021), 35, 48 pages, arXiv:1808.09536.
  44. Zhong X., Hu N., Jing N., $RLL$-realization of two-parameter quantum affine algebra in type $C^{(1)}_n$, arXiv:2405.06597.
  45. Zhuang R., Hu N., Xu X., $RLL$-realization of two-parameter quantum affine algebra in type $D_n^{(1)}$, Pacific J. Math. 329 (2024), 357-395, arXiv:2405.06581.

Previous article  Next article  Contents of Volume 21 (2025)