|
SIGMA 21 (2025), 064, 54 pages arXiv:2407.01450
https://doi.org/10.3842/SIGMA.2025.064
Two-Parameter Quantum Groups and $R$-Matrices: Classical Types
Ian Martin and Alexander Tsymbaliuk
Department of Mathematics, Purdue University, West Lafayette, IN, USA
Received January 05, 2025, in final form July 13, 2025; Published online July 31, 2025
Abstract
We construct finite $R$-matrices for the first fundamental representation $V$ of two-parameter quantum groups $U_{r,s}(\mathfrak{g})$ for classical $\mathfrak{g}$, both through the decomposition of $V\otimes V$ into irreducibles $U_{r,s}(\mathfrak{g})$-submodules as well as by evaluating the universal $R$-matrix. The latter is crucially based on the construction of dual PBW-type bases of $U^{\pm}_{r,s}(\mathfrak{g})$ consisting of the ordered products of quantum root vectors defined via $(r,s)$-bracketings and combinatorics of standard Lyndon words. We further derive explicit formulas for affine $R$-matrices, both through the Yang-Baxterization technique of [Internat. J. Modern Phys. A 6 (1991), 3735-3779] and as the unique intertwiner between the tensor product of $V(u)$ and $V(v)$, viewed as modules over two-parameter quantum affine algebras $U_{r,s}(\widehat{\mathfrak{g}})$ for classical $\mathfrak{g}$. The latter generalizes the formulas of [Comm. Math. Phys. 102 (1986), 537-547] for one-parametric quantum affine algebras.
Key words: two-parameter quantum groups; $R$-matrices; PBW bases; Yang-Baxter equation.
pdf (767 kb)
tex (55 kb)
References
- Artin M., Schelter W., Tate J., Quantum deformations of ${\rm GL}_n$, Comm. Pure Appl. Math. 44 (1991), 879-895.
- Bai X., Hu N., Two-parameter quantum groups of exceptional type $E$-series and convex PBW-type basis, Algebra Colloq. 15 (2008), 619-636, arXiv:math.QA/0605179.
- Beck J., Convex bases of PBW type for quantum affine algebras, Comm. Math. Phys. 165 (1994), 193-199, arXiv:hep-th/9407003.
- Benkart G., Kang S.-J., Lee K.-H., Poincaré-Birkhoff-Witt bases for two-parameter quantum groups, available at https://www2.math.uconn.edu/ khlee/Papers/PBW.pdf.
- Benkart G., Witherspoon S., Representations of two-parameter quantum groups and Schur-Weyl duality, in Hopf Algebras, Lecture Notes in Pure and Appl. Math., Vol. 237, Dekker, New York, 2004, 65-92.
- Benkart G., Witherspoon S., Restricted two-parameter quantum groups, in Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, Fields Inst. Commun., Vol. 40, American Mathematical Society, Providence, RI, 2004, 293-318.
- Benkart G., Witherspoon S., Two-parameter quantum groups and Drinfel'd doubles, Algebr. Represent. Theory 7 (2004), 261-286, arXiv:math.QA/0011064.
- Bergeron N., Gao Y., Hu N., Drinfel'd doubles and Lusztig's symmetries of two-parameter quantum groups, J. Algebra 301 (2006), 378-405, arXiv:math.RT/0505614.
- Bergeron N., Gao Y., Hu N., Representations of two-parameter quantum orthogonal and symplectic groups, in Proceedings of the International Conference on Complex Geometry and Related Fields, AMS/IP Stud. Adv. Math., Vol. 39, American Mathematical Society, Providence, RI, 2007, 1-21, arXiv:math.QA/0510124.
- Clark S., Hill D., Wang W., Quantum shuffles and quantum supergroups of basic type, Quantum Topol. 7 (2016), 553-638, arXiv:1310.7523.
- Ding J.T., Frenkel I.B., Isomorphism of two realizations of quantum affine algebra $U_q(\mathfrak{gl}(n))$, Comm. Math. Phys. 156 (1993), 277-300.
- Drinfel'd V.G., A new realization of Yangians and of quantum affine algebras, Dokl. Math. 36 (1988), 212-216.
- Frenkel I.B., Jing N.H., Vertex representations of quantum affine algebras, Proc. Nat. Acad. Sci. USA 85 (1988), 9373-9377.
- Gao Y., Hu N., Zhang H., Two-parameter quantum affine algebra of type ${\rm G}_2^{(1)}$, Drinfeld realization and vertex representation, J. Math. Phys. 56 (2015), 011704, 27 pages.
- Ge M.L., Wu Y.-S., Xue K., Explicit trigonometric Yang-Baxterization, Internat. J. Modern Phys. A 6 (1991), 3735-3779.
- Hayaishi N., Miki K., $L$ operators and Drinfeld's generators, J. Math. Phys. 39 (1998), 1623-1636, arXiv:q-alg/9705018.
- Hu N., Pei Y., Notes on 2-parameter quantum groups. I, Sci. China Ser. A 51 (2008), 1101-1110, arXiv:math.QA/0702298.
- Hu N., Rosso M., Zhang H., Two-parameter quantum affine algebra $U_{r,s}(\widehat{\mathfrak{sl}}_n)$, Drinfel'd realization and quantum affine Lyndon basis, Comm. Math. Phys. 278 (2008), 453-486, arXiv:0812.3107.
- Hu N., Wang X., Convex PBW-type Lyndon basis and restricted two-parameter quantum groups of type $G_2$, Pacific J. Math. 241 (2009), 243-273, arXiv:0811.0209.
- Hu N., Wang X., Convex PBW-type Lyndon bases and restricted two-parameter quantum groups of type $B$, J. Geom. Phys. 60 (2010), 430-453, arXiv:0812.3343.
- Hu N., Xu X., Zhuang R., $RLL$-realization of two-parameter quantum affine algebra of type $B^{(1)}_n$, arXiv:2405.06587.
- Hu N., Zhang H., Generating functions with $\tau$-invariance and vertex representations of quantum affine algebras $U_{r,s}(\widehat{\mathfrak{g}})$ (I): simply-laced cases, arXiv:1401.4925.
- Hu N., Zhang H., Two-parameter quantum affine algebra of type $C^{(1)}_n$, Drinfeld realization and vertex representation, J. Algebra 459 (2016), 43-75, arXiv:1509.02271.
- Jantzen J.C., Lectures on quantum groups, Grad. Stud. Math., Vol. 6, American Mathematical Society, Providence, RI, 1996.
- Jimbo M., Quantum $R$ matrix for the generalized Toda system, Comm. Math. Phys. 102 (1986), 537-547.
- Jing N., Liu M., $R$-matrix realization of two-parameter quantum group $U_{r,s}(\mathfrak{gl}_n)$, Commun. Math. Stat. 2 (2014), 211-230, arXiv:1406.5711.
- Jing N., Liu M., $R$-matrix realization of two-parameter quantum affine algebra $U_{r,s}(\widehat{\mathfrak{gl}}_n)$, J. Algebra 488 (2017), 1-28, arXiv:1604.06309.
- Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: type $C$, J. Math. Phys. 61 (2020), 031701, 41 pages, arXiv:1903.00204.
- Jing N., Liu M., Molev A., Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: types $B$ and $D$, SIGMA 16 (2020), 043, 49 pages, arXiv:1911.03496.
- Kharchenko V.K., A quantum analog of the Poincaré-Birkhoff-Witt theorem, Algebra Log. 38 (1999), 259-276, arXiv:math.QA/0005101.
- Kharchenko V.K., A combinatorial approach to the quantification of Lie algebras, Pacific J. Math. 203 (2002), 191-233, arXiv:math.QA/0002149.
- Lalonde P., Ram A., Standard Lyndon bases of Lie algebras and enveloping algebras, Trans. Amer. Math. Soc. 347 (1995), 1821-1830.
- Leclerc B., Dual canonical bases, quantum shuffles and $q$-characters, Math. Z. 246 (2004), 691-732, arXiv:math.QA/0209133.
- Lothaire M., Combinatorics on words, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1997.
- Martin I., Tsymbaliuk A., Orthogonal bases for two-parameter quantum groups, arXiv:2412.06670.
- Martin I., Tsymbaliuk A., Bicharacter twists of quantum groups, in preparation.
- Neguţ A., Tsymbaliuk A., Quantum loop groups and shuffle algebras via Lyndon words, Adv. Math. 439 (2024), 109482, 69 pages, arXiv:2102.11269.
- Papi P., A characterization of a special ordering in a root system, Proc. Amer. Math. Soc. 120 (1994), 661-665.
- Reshetikhin N., Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys. 20 (1990), 331-335.
- Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
- Rosso M., Lyndon bases and the multiplicative formula for $R$-matrices, unpublished.
- Takeuchi M., A two-parameter quantization of ${\rm GL}(n)$ (summary), Proc. Japan Acad. Ser. A Math. Sci. 66 (1990), 112-114.
- Tsymbaliuk A., PBWD bases and shuffle algebra realizations for $U_v(L\mathfrak{sl}_n), U_{v_1, v_2}(L\mathfrak{sl}_n), U_v(L\mathfrak{sl}(m|n))$ and their integral forms, Selecta Math. (N.S.) 27 (2021), 35, 48 pages, arXiv:1808.09536.
- Zhong X., Hu N., Jing N., $RLL$-realization of two-parameter quantum affine algebra in type $C^{(1)}_n$, arXiv:2405.06597.
- Zhuang R., Hu N., Xu X., $RLL$-realization of two-parameter quantum affine algebra in type $D_n^{(1)}$, Pacific J. Math. 329 (2024), 357-395, arXiv:2405.06581.
|
|