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Abstract. We construct finite R-matrices for the first fundamental representation V of two-
parameter quantum groups Ur,s(g) for classical g, both through the decomposition of V ⊗V
into irreducibles Ur,s(g)-submodules as well as by evaluating the universalR-matrix. The lat-
ter is crucially based on the construction of dual PBW-type bases of U±

r,s(g) consisting of the
ordered products of quantum root vectors defined via (r, s)-bracketings and combinatorics
of standard Lyndon words. We further derive explicit formulas for affine R-matrices, both
through the Yang–Baxterization technique of [Internat. J. Modern Phys. A 6 (1991), 3735–
3779] and as the unique intertwiner between the tensor product of V (u) and V (v), viewed
as modules over two-parameter quantum affine algebras Ur,s(ĝ) for classical g. The latter
generalizes the formulas of [Comm. Math. Phys. 102 (1986), 537–547] for one-parametric
quantum affine algebras.

Key words: two-parameter quantum groups; R-matrices; PBW bases; Yang–Baxter equation

2020 Mathematics Subject Classification: 17B37; 16T25

1 Introduction

1.1 Summary

Let g be a Kac–Moody Lie algebra of finite type. Then, it admits a root space decomposition

g = n− ⊕ h⊕ n+ with n± = ⊕α∈Φ+C · e±α

corresponding to a polarization of the root system Φ = Φ+ ⊔ (−Φ+). The elements e±α are
called root vectors. Thus,

U(g) = U(n−)⊗ U(h)⊗ U(n+)

and the ordered products in {e±α}α∈Φ+ form a basis of U
(
n±
)
for any total order on Φ±. The

root vectors can actually be normalized so that1

[eα, eβ] = eαeβ − eβeα ∈ Z× · eα+β for all α, β ∈ Φ+ such that α+ β ∈ Φ+. (1.1)

This inductively recovers all root vectors from the generators {ei}i∈I , corresponding to simple
roots {αi}i∈I . When g is a Kac–Moody algebra of affine type, the root subspaces corresponding
to imaginary roots are no longer one-dimensional. However, the theory of such algebras and their
representations are well-understood due to their alternative realization as central extensions of
the loop algebras Lḡ for ḡ of finite type:

0→ C→ g→ Lḡ→ 0. (1.2)

1Throughout the paper, we use R× to denote the set of nonzero elements of any ring R.
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For any Kac–Moody algebra g, Drinfeld and Jimbo simultaneously introduced the quantum
groups Uq(g) which quantize the universal enveloping algebras of g. Similarly to U(g), the quan-
tum groups admit a triangular decomposition Uq(g) = Uq(n

−)⊗ Uq(h)⊗ Uq(n
+). Furthermore,

Uq

(
n±
)
admit PBW-type bases

Uq

(
n±
)
=

⊕
γ1≥···≥γk∈Φ+

C(q) · e±γ1 · · · e±γk (1.3)

formed by the ordered products of q-deformed root vectors e±α ∈ Uq

(
n±
)
, defined via Lusztig’s

braid group action, which requires one to choose a reduced decomposition of the longest ele-
ment w0 in the Weyl group W of g. It is well-known [38] that this choice precisely ensures
that the order ≥ on Φ+ is convex, in the sense of Definition 5.7. Moreover, the q-deformed
root vectors satisfy a q-analogue of relation (1.1), where α, β and α + β are any positive roots
satisfying α < α+ β < β and the minimality property (5.4):

[eα, eβ]q = eαeβ − q(α,β)eβeα ∈ Z
[
q, q−1

]× · eα+β, (1.4)

where (·, ·) denotes the scalar product corresponding to the root system of type g. Therefore,
the q-deformed root vectors can be defined (up to scalar multiple) as iterated q-commutators
of the Drinfeld–Jimbo generators ei, using the combinatorics of the root system and the chosen
convex order on Φ+.

There is however a purely combinatorial approach to the construction of PBW-type bases
of Uq

(
n±
)
, cf. (1.3), that goes back to the works of [30, 31, 33, 41]. To this end, recall Lalonde–

Ram’s bijection [32]:

ℓ : Φ+ ∼−→{standard Lyndon words in I}. (1.5)

We note that in the context of (1.5), the notion of standard Lyndon words intrinsically depends
on a fixed total order of the indexing set I of simple roots. Furthermore, (1.5) gives rise to
a total order on Φ+ via:

α < β ⇐⇒ ℓ(α) < ℓ(β) lexicographically.

It was shown in [41] (see [33, Proposition 26]) that this total order is convex, and hence can be
applied to obtain root vectors e±α ∈ Uq

(
n±
)
for all α ∈ Φ+, cf. (1.4), thus eliminating Lusztig’s

braid group action.
When g is of finite type and q is not a root of unity, the representation theory of Uq(g) is

completely parallel to that of g. On the other hand, to develop the representation theory of Uq(g)
for affine g one needs an alternative “new Drinfeld” realization UDr

q (g) from [12], a q-analogue
of (1.2). The isomorphism

Ψ: UDr
q (g) ∼−→Uq(g) for affine g (1.6)

was constructed in [3] using an affine braid group action, while Ψ−1 was stated in [12] using
q-bracketings.

One of the key features of quantum groups is that they are actually quasitriangular Hopf
algebras. The corresponding universal R-matrices R ∈ Uq(g) ⊗ Uq(g) (one needs to consider
a completion here) satisfy

quantum Yang–Baxter equation: R12R13R23 = R23R13R12. (1.7)

In particular, for any two finite-dimensional Uq(g)-modules V , W one obtains a Uq(g)-module
intertwiner

R̂VW = (ρW ⊗ ρV )(R) ◦ τ : V ⊗W ∼−→W ⊗ V, (1.8)
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where τ : V ⊗ W → W ⊗ V is the flip map v ⊗ w 7→ w ⊗ v, and ρV : Uq(g) → End(V ),
ρW : Uq(g)→ End(W ).

In fact, quantum groups first appeared in the quantum inverse scattering method, the study of
exactly solvable statistical models and quantum integrable systems arising through the quantum
Yang–Baxter equation (1.7). In this context, one starts with a solution of (1.7) or its version
with a spectral parameter

R12(x)R13(xy)R23(y) = R23(y)R13(xy)R12(x), (1.9)

and defines the algebra URTT
q (g) via the so-called RTT-relations, see [40]. The isomorphisms

Υ: Uq(g)
∼−→URTT

q (g) for finite type g (1.10)

and

Υ: UDr
q (g) ∼−→URTT

q (g) for affine type g (1.11)

were first constructed in [11] for types An, A
(1)
n through the Gauss decomposition of the gener-

ating matrices. For other classical Lie algebras and their affinizations, such isomorphisms were
first discovered in [16] and were revised much more recently in [28, 29].

The theory of multiparameter quantum groups goes back to the early 90s, see, e.g., [1, 39, 42].
However, the current interest in the subject stems from the papers [5, 6, 7], which study the
two-parameter quantum group Ur,s(gln) and provide a further application to pointed finite-
dimensional Hopf algebras. In [5], they developed the theory of finite-dimensional representa-
tions in a complete analogy with the one-parameter case, computed the two-parameter R-matrix
for the first fundamental Ur,s(gln)-representation, and used it to establish the Schur–Weyl duality
between Ur,s(gln) and a two-parameter Hecke algebra.

The above works of Benkart and Witherspoon stimulated an increased interest in the theory
of two-parameter quantum groups. In particular, the definition and the basic structural results
on Ur,s(g) for other classical simple Lie algebras g were provided in [8, 9]. Since then, multiple
papers have treated such algebras case-by-case; we refer the reader to [17] for a more uniform
treatment and complete references.

The generalization of this theory from simple finite-dimensional Lie algebras to affine Lie
algebras started with the work [18] (which however had some gaps in the exposition, see [43] for
an alternative treatment of the PBW results stated in [18] without any proof). Subsequently,
some attempts were made to provide a uniform Drinfeld–Jimbo presentation of such algebras,
establishing the triangular decomposition and the Drinfeld double construction for them. More
importantly, a new Drinfeld realization of these algebras Ur,s(ĝ) was established on a case-by-case
basis for g being of type An (see [18]), types Dn and E6 (see [22]), type G2 (see [14]), and type Cn

(see [23]). However, we note a caveat in this treatment: while a surjective homomorphism from
the Drinfeld–Jimbo to the new Drinfeld realization is constructed similarly to Ψ−1 of (1.6), there
is no proper proof of its injectivity. The aforementioned new Drinfeld realization of Ur,s(ĝ) was
used to construct the vertex representations of Ur,s(ĝ) in an analogy with the one-parameter
case (cf. [13]). Finally, the FRT-formalism for two-parameter quantum groups was carried
out for Ur,s(gln) and Ur,s

(
ĝln
)
in [26, 27], establishing the two-parameter analogues of (1.10)

and (1.11) for types An and A
(1)
n .

In this work (followed up by [36]), we develop the FRT-formalism for both Ur,s(g), Ur,s(ĝ)
when g is an orthogonal or symplectic Lie algebra. The present note is mostly concerned with the
derivation of finite and affine R-matrices (denoted by R and R(u)), while in [36] we use R, R(u)
to construct (1.10) and (1.11), naturally generalizing [28, 29] to the two-parameter setup. The
latter, in particular, immediately provides the new Drinfeld realization of Ur,s(ĝ) (which seemed
to be missing for Bn). Let us outline the key ingredients.
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To derive the finite R-matrix R̂V V , we factorize the universal R-matrix into the “local” ones
(one factor for each positive root of g) and then evaluate the result on the first fundamental
representation V of Ur,s(g). Due to the absence of Lusztig’s braid group action on Ur,s(g) (noted
first in [8]), we use the aforementioned construction of orthogonal dual bases of positive and
negative subalgebras of Ur,s(g) through standard Lyndon words and the technique of quantum
shuffle algebras, which goes back to [30, 31, 33, 41] in the one-parameter setup, to [10] in the
super case, and finally to [2, 4, 19, 20] and our accompanying note [35] for the two-parameter
case. We note, however, that once the explicit formula is obtained, one can directly check that
it coincides with the R-matrix R̂V V by verifying that it intertwines the Ur,s(g)-action on V ⊗ V
and acts by the same scalars on the highest weight vectors of V ⊗ V as R̂V V .

To derive the affine R-matrix R̂V V (u/v), we use the Yang–Baxterization technique of [15].
Since R̂V V has three distinct eigenvalues (in contrast to the case g = sln when it has only two
distinct eigenvalues), there are 12 possible resulting operators, and in each case one needs to
check some extra conditions to guarantee that they satisfy the Yang–Baxter equation. Instead,
once the explicit formula for the correctly chosen one is derived, it is straightforward to check that
it intertwines the Ur,s(ĝ)-actions on the tensor products of evaluation modules V (u)⊗ V (v) →
V (v)⊗V (u). The results of [25] then guarantee that the space of all such intertwiners is at most
one-dimensional, and therefore the operator R̂(u/v) constructed through the Yang–Baxterization
coincides with R̂V V (u/v), thus producing a solution of (1.9) by further composing with the flip
map τ .

While we were finishing the present note, closely related preprints [21, 44, 45] appeared on
arXiv. Though we communicated our results to one of those authors back in February 2024,
it is a pity they decided not to consolidate our papers to be posted simultaneously. Partially
due to this flaw, the present note is separated from a more straightforward part [36] that will
be posted later.

1.2 Outline

The structure of the present paper is the following:

• In Section 2.1, we recall two-parameter quantum groups Ur,s(g) for simple finite-dimen-
sional Lie algebras g, see Definition 2.2, and summarize their basic properties (including
the pairing of Proposition 2.5).

• In Section 3, we explicitly construct the first fundamental representations of Ur,s(g) for
classical g, see Propositions 3.1–3.4. We further decompose the tensor product V ⊗ V
into irreducible Ur,s(g)-submodules, see Proposition 3.9. The proof of the latter is derived,
through a reduction to the Lie algebra limit, by providing explicitly the corresponding
highest weight vectors.

• In Section 4, we evaluate the universal intertwiner R̂V V from Theorem 4.1 on the first
fundamental Ur,s(g)-representations from Section 3 for g = so2n+1, sp2n, so2n, see Theo-
rems 4.4–4.6. This generalizes the corresponding formula of Theorem 4.3 discovered first
in [5]. Our proof is slightly different though, as we only match the eigenvalues of the three
highest weight vectors in V ⊗ V featured in Proposition 3.9 (see Lemmas 4.8–4.10), and
then verify the intertwining property with the action of fi’s (see Lemma 4.11).

• In Section 5, we provide an alternative proof of the formulas for R̂V V from Theorems 4.3–4.6
by showing that they arise as the product of “local” operators parametrized by the positive
roots of Φ. Since Lusztig’s braid group action has no analogue for Ur,s(g), we instead use
a combinatorial approach to the construction of orthogonal PBW bases, see Theorem 5.12
(which constitutes the main result of [35]). To this end, we construct the (quantum)
root vectors iteratively by using the combinatorics of standard Lyndon words, recalled in
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Sections 5.1 and 5.3. The factorization formula that results from these considerations is
stated in Theorem 5.13. We conclude the section with a case-by-case treatment of each
classical series, providing proofs of the formulas (4.6), (4.7), (4.9), (4.11) that are more
conceptual than those presented in Section 4.

• In Section 6, we introduce the two-parameter quantum affine algebras Ur,s(ĝ), see Defini-
tion 6.2, which is in agreement with [18, 22, 23] for g of types An, Cn, Dn. We also intro-
duce their counterparts U ′r,s(ĝ) without degree generators and extend the first fundamental
Ur,s(g)-representations ρ from Propositions 3.1–3.4 to evaluation U ′r,s(ĝ)-representations
in Propositions 6.5–6.8. The latter ones are upgraded to Ur,s(ĝ)-modules in Proposi-
tion 6.9. The main results of this section are Theorems 6.11–6.13, which evaluate the
universal intertwiner of Ur,s(ĝ) on the tensor product of two such representations for
g = so2n+1, sp2n, so2n. This generalizes the corresponding formula (6.10) of Theorem 6.10,
first discovered in [27]. According to [25], composing R̂(z) of (6.10)–(6.13) with a flip
map τ produces solutions of the Yang–Baxter relation with a spectral parameter (1.9).
While the proofs are straightforward, the origin of these formulas (whose one-parameter
counterparts were discovered in [25]) is postponed till Section 7.

• In Section 7, we derive the formulas (6.10)–(6.13) through the Yang–Baxterization tech-
nique of [15].

2 Notations and definitions

Throughout the paper, we will work over an algebraically closed field K ⊃ C(r, s), where r and s
are indeterminates.2

2.1 Two-parameter finite quantum groups

Let E be a Euclidean space with a symmetric bilinear form (·, ·), and Φ ⊂ E be an indecompos-
able reduced root system with an ordered set of simple roots Π = {α1, . . . , αn}. Let g be the
complex simple Lie algebra corresponding to this root system. Let C = (cij)

n
i,j=1 be the Cartan

matrix of g, explicitly given by cij =
2(αi,αj)
(αi,αi)

, and let di =
1
2(αi, αi) where (·, ·) is normalized so

that the short roots have square length 2. We denote the root and weight lattices of g by Q
and P , respectively,

n⊕
i=1

Zαi = Q ⊂ P =
n⊕

i=1

Zϖi with (αi, ϖj) = diδij .

Having fixed above the order on the set of simple roots Π, we consider the (modified) Ringel
bilinear form ⟨·, ·⟩ on Q, such that (unless {i, j} = {n− 1, n} in type Dn) we have

⟨αi, αj⟩ =


dicij if i < j,

di if i = j,

0 if i > j,

(2.1)

while in the remaining case of Dn-type system, we set

⟨αn−1, αn⟩ = ⟨εn−1 − εn, εn−1 + εn⟩ = −1,
⟨αn, αn−1⟩ = ⟨εn−1 + εn, εn−1 − εn⟩ = 1. (2.2)

We note that (µ, ν) = ⟨µ, ν⟩+ ⟨ν, µ⟩ for any µ, ν ∈ Q.

2While most of the formulas are valid for arbitrary parameters r, s, we need to assume that r/s is not a root of
unity for Section 5, and we further prefer to keep them algebraically independent for the proof of Proposition 3.8
and construction (7.5).
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Remark 2.1. The modification (2.2) is made to ensure that the algebra Ur,s(so2n) defined below
matches its original definition in [8].

We shall also need two-parameter analogues of q-integers and q-factorials (cf. [5, equa-
tion (2.2)]):

[m]r,s =
rm − sm

r − s
= rm−1 + rm−2s+ · · ·+ rsm−2 + sm−1 for all m ∈ N,

[m]r,s! = [m]r,s[m− 1]r,s · · · [1]r,s for m > 0, [0]r,s! = 1,

and most importantly two-parameter analogues of Gaussian binomial coefficients:[
m

k

]
r,s

=
[m]r,s!

[m− k]r,s![k]r,s!
for all 0 ≤ k ≤ m.

Finally, in analogy with the one-parameter case (see [24, Section 4.2]), we define

rγ = r(γ,γ)/2, sγ = s(γ,γ)/2 for all γ ∈ Φ,

ri = rαi = rdi , si = sαi = sdi for all 1 ≤ i ≤ n. (2.3)

We are ready now to introduce the main actor of this paper, the two-parameter quantum
group of g, following [17]. While this definition is uniform for all types, we will make it more
explicit for classical Lie algebras g in Section 2.3.

Definition 2.2. The two-parameter quantum group Ur,s(g) of a simple Lie algebra g is the

associative K-algebra generated by
{
ei, fi, ω

±1
i ,
(
ω′i
)±1}n

i=1
with the following defining relations

(for all 1 ≤ i, j ≤ n):

[ωi, ωj ] =
[
ωi, ω

′
j

]
=
[
ω′i, ω

′
j

]
= 0, ω±1i ω∓1i = 1 =

(
ω′i
)±1(

ω′i
)∓1

, (2.4)

ωiej = r⟨αj ,αi⟩s−⟨αi,αj⟩ejωi, ωifj = r−⟨αj ,αi⟩s⟨αi,αj⟩fjωi, (2.5)

ω′iej = r−⟨αi,αj⟩s⟨αj ,αi⟩ejω
′
i, ω′ifj = r⟨αi,αj⟩s−⟨αj ,αi⟩fjω

′
i, (2.6)

eifj − fjei = δij
ωi − ω′i
ri − si

, (2.7)

and quantum (r, s)-Serre relations

1−cij∑
k=0

(−1)k
[
1− cij

k

]
ri,si

(risi)
1
2
k(k−1)(rs)k⟨αj ,αi⟩e

1−cij−k
i eje

k
i = 0 ∀i ̸= j,

1−cij∑
k=0

(−1)k
[
1− cij

k

]
ri,si

(risi)
1
2
k(k−1)(rs)k⟨αj ,αi⟩fk

i fjf
1−cij−k
i = 0 ∀i ̸= j. (2.8)

Remark 2.3. We note that this definition does depend on the choice of an order of Π. We shall
make a standard choice for classical g in the end of this section, thus matching with the rest of
the literature [7, 8].

We note that the algebra Ur,s(g) is Q-graded via

deg(ei) = αi, deg(fi) = −αi, deg(ωi) = 0, deg
(
ω′i
)
= 0 for all 1 ≤ i ≤ n.

For µ ∈ Q, let Ur,s(g)µ
(
or simply (Ur,s)µ

)
denote the degree µ component of Ur,s(g) under this

Q-grading.
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Analogously to the one-parameter case (cf. [24, Section 4.11]), there is a Hopf algebra struc-
ture on Ur,s(g), where the coproduct ∆, counit ϵ, and antipode S are defined on generators by
the following formulas:

∆
(
ω±1i

)
= ω±1i ⊗ ω±1i , ϵ

(
ω±1i

)
= 1, S

(
ω±1i

)
= ω∓1i ,

∆
((
ω′i
)±1)

=
(
ω′i
)±1 ⊗ (ω′i)±1, ϵ

((
ω′i
)±1)

= 1, S
((
ω′i
)±1)

=
(
ω′i
)∓1

,

∆(ei) = ei ⊗ 1 + ωi ⊗ ei, ϵ(ei) = 0, S(ei) = −ω−1i ei,

∆(fi) = 1⊗ fi + fi ⊗ ω′i, ϵ(fi) = 0, S(fi) = −fi
(
ω′i
)−1

,

Remark 2.4. The simplest way to see how the definition above generalizes the usual Drinfeld–
Jimbo one-parametric quantum groups Uq(g) (cf. [24, Section 4]) is to work in the numeric setup.
To this end, let r, s ∈ C\{0} with r2 ̸= s2 and define Ur,s(g) as in Definition 2.2, but now viewed
as an algebra over K = C. Then, for any q ∈ C with q4 ̸= 1, there is a natural Hopf algebra
epimorphism

π : Uq,q−1(g) ↠ Uq(g)

given by ei 7→ Ei, fi 7→ Fi, ωi 7→ Ki, ω′i 7→ K−1i for all 1 ≤ i ≤ n.

Moreover, the kernel of π is the two-sided ideal I generated by
{
ω′i − ω−1i

}n
i=1

. Thus, we get

Hopf algebra isomorphism : Uq,q−1(g)/I ∼−→Uq(g).

Let us also define several subalgebras of Ur,s(g):

� the “positive” subalgebra U+
r,s(g), generated by {ei}ni=1,

� the “negative” subalgebra U−r,s(g), generated by {fi}ni=1,

� the “Cartan” subalgebra U0
r,s(g), generated by

{
ω±1i , (ω′i)

±1}n
i=1

,

� the “non-negative subalgebra” U≥r,s(g), generated by
{
ei, ω

±1
i

}n
i=1

,

� the “non-positive subalgebra” U≤r,s(g), generated by
{
fi, (ω

′
i)
±1}n

i=1
.

When g is clear from the context, we will use Ur,s instead of Ur,s(g), and similarly for the above
subalgebras.

For any µ =
∑n

i=1 kiαi ∈ Q, we define ωµ, ω
′
µ ∈ U0

r,s(g) via

ωµ = ωk1
1 ωk2

2 · · ·ω
kn
n , ω′µ =

(
ω′1
)k1(ω′2)k2 · · · (ω′n)kn .

2.2 Hopf pairing

One of the basic structural properties of Ur,s(g) is that it may be realized as a Drinfel’d double of
its subalgebras U≤r,s(g) and U≥r,s(g) with respect to the Hopf algebra pairing. This was established
case-by-case in the literature, and we shall rather just refer to [17]:

Proposition 2.5. There exists a unique bilinear pairing

(·, ·) : U≤r,s(g)× U≥r,s(g)→ K (2.9)

satisfying the following structural properties:(
yy′, x

)
=
(
y ⊗ y′,∆(x)

)
,

(
y, xx′

)
=
(
∆(y), x′ ⊗ x

)
∀x, x′ ∈ U≥r,s(g), y, y′ ∈ U≤r,s(g), (2.10)

as well as being given on the generators by

(fi, ωj) = 0,
(
ω′i, ei

)
= 0, (fi, ej) = δij

1

si − ri
for all 1 ≤ i, j ≤ n,(

ω′λ, ωµ

)
= r⟨λ,µ⟩s−⟨µ,λ⟩ for all λ, µ ∈ Q. (2.11)
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We can also formally extend this pairing to the weight lattice P as follows:

(
ω′λ, ωµ

)
=

n∏
i,j=1

(
ω′i, ωj

)λiµj for any weights λ =

n∑
i=1

λiαi ∈ P, µ =

n∑
i=1

µiαi ∈ P. (2.12)

Although λi, µi may not be integers, the expression above still makes sense because K is alge-
braically closed.

Remark 2.6. As mentioned in the beginning of this subsection, the above pairing allows for
the realization of any two-parameter quantum group Ur,s(g) as a Drinfel’d double of its Hopf
subalgebras U≤r,s(g), U

≥
r,s(g) with respect to the pairing (·, ·) of (2.9).

Let us list several basic properties of this pairing that will be needed later:

� First, if x ∈ Ur,s(g)µ and ν ∈ Q, then we have

ωνxω
−1
ν =

(
ω′µ, ων

)
x, ω′νx(ω

′
ν)
−1 =

(
ω′ν , ωµ

)−1
x.

� Second, the pairing (·, ·) is of homogeneous degree zero, i.e.,

(y, x) = 0 for x ∈ U≥r,s(g)µ, y ∈ U≤r,s(g)−ν with µ ̸= ν. (2.13)

� Third, similarly to the one-parameter case (cf. [24, Sections 6.14 and 6.15]), we have

∆(x) ∈ x⊗ 1 +
⊕

0<ν<µ

U+
r,s(g)µ−νων ⊗ U+

r,s(g)ν + ωµ ⊗ x, (2.14)

∆(y) ∈ y ⊗ ω′µ +
⊕

0<ν<µ

U−r,s(g)−ν ⊗ U−r,s(g)−(µ−ν)ω
′
ν + 1⊗ y (2.15)

for any x ∈ U+
r,s(g)µ and y ∈ U−r,s(g)−µ. Here, we use the standard order ≤ on Q:

ν ≤ µ⇐⇒ µ− ν =
∑
i

kiαi with ki ∈ Z≥0.

Then, combining the properties (2.13)–(2.15) with the defining properties (2.10) and (2.11),
we obtain(

ω′µy, x
)
=
(
ω′µ, ων

)
(y, x), (yω′µ, x) = (y, x),

(y, ωνx) = (ω′µ, ων)(y, x), (y, xων) = (y, x)

for any x ∈ U+
r,s(g)ν and y ∈ U−r,s(g)−µ.

2.3 Classical types

Since in this paper we are only interested in the classical Lie algebras g, it will be helpful to
have more explicit formulas for the bilinear form, avoiding the use of the form ⟨·, ·⟩ on Q defined
in (2.1) and (2.2). To this end, let us first recall the explicit realization of the classical root
systems as well as specify the choice of simple roots for them:

� An-type (corresponding to g ≃ sln+1). Let {εi}n+1
i=1 be an orthonormal basis of Rn+1. Then,

we have

ΦAn = {εi − εj | 1 ≤ i ̸= j ≤ n+ 1} ⊂ Rn+1, ΠAn = {αi = εi − εi+1}ni=1.
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� Bn-type (corresponding to g ≃ so2n+1). Let {εi}ni=1 be an orthogonal basis of Rn with
(εi, εi) = 2 for all i. Then, we have

ΦBn = {±εi ± εj | 1 ≤ i < j ≤ n} ∪ {±εi | 1 ≤ i ≤ n} ⊂ Rn,

ΠBn = {αi = εi − εi+1}n−1i=1 ∪ {αn = εn}.

� Cn-type (corresponding to g ≃ sp2n). Let {εi}ni=1 be an orthonormal basis of Rn. Then,
we have

ΦCn = {±εi ± εj | 1 ≤ i < j ≤ n} ∪ {±2εi | 1 ≤ i ≤ n} ⊂ Rn,

ΠCn = {αi = εi − εi+1}n−1i=1 ∪ {αn = 2εn}.

� Dn-type (corresponding to g ≃ so2n). Let {εi}ni=1 be an orthonormal basis of Rn. Then,
we have

ΦDn = {±εi ± εj | 1 ≤ i < j ≤ n} ⊂ Rn,

ΠDn = {αi = εi − εi+1}n−1i=1 ∪ {αn = εn−1 + εn}. (2.16)

Remark 2.7. We note that (εi, εi) = 2 in type Bn in agreement with our scaling of the form (·, ·).

Then we have the following respective formulas for the pairing of Cartan elements (we note
that while the second formula follows from the first one in each case, it will be convenient to
use both later on):

� An-type(
ω′λ, ωi

)
= r(εi,λ)s(εi+1,λ),

(
ω′i, ωλ

)
= r−(εi+1,λ)s−(εi,λ).

� Bn-type

(
ω′λ, ωi

)
=

{
r(εi,λ)s(εi+1,λ) if 1 ≤ i < n,

r(εn,λ)(rs)−λn if i = n,(
ω′i, ωλ

)
=

{
r−(εi+1,λ)s−(εi,λ) if 1 ≤ i < n,

s−(εn,λ)(rs)λn if i = n.
(2.17)

� Cn-type

(
ω′λ, ωi

)
=

{
r(εi,λ)s(εi+1,λ) if 1 ≤ i < n,

r2(εn,λ)(rs)−2λn if i = n,(
ω′i, ωλ

)
=

{
r−(εi+1,λ)s−(εi,λ) if 1 ≤ i < n,

s−2(εn,λ)(rs)2λn if i = n.
(2.18)

� Dn-type

(
ω′λ, ωi

)
=

{
r(εi,λ)s(εi+1,λ) if 1 ≤ i < n,

r(εn−1,λ)s−(εn,λ)(rs)−2λn−1 if i = n,(
ω′i, ωλ

)
=

{
r−(εi+1,λ)s−(εi,λ) if 1 ≤ i < n,

r(εn,λ)s−(εn−1,λ)(rs)2λn−1 if i = n.
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3 Column-vector representations

Let N = n + 1 for An-type, N = 2n + 1 for Bn-type, and N = 2n for Cn- and Dn-types.
Let V = KN with standard basis vectors {vi}Ni=1. In this section, we construct an action
of Ur,s(g) on V for any classical g by specifying explicitly ρ : Ur,s(g) → End(V ), and further
decompose V ⊗ V into irreducible submodules.

3.1 First fundamental representations

While the A-type representation goes back to [5], we decided to include it since it serves as
a prototype for the other classical types, new in the literature.

Proposition 3.1 ([5, Section 1]). The following defines a representation ρ : Ur,s(sln+1) →
End(V ) with

ρ(ei) = Ei,i+1, ρ(fi) = Ei+1,i,

ρ(ωi) = rEii + sEi+1,i+1 +

j ̸=i,i+1∑
1≤j≤n+1

Ejj , ρ
(
ω′i
)
= sEii + rEi+1,i+1 +

j ̸=i,i+1∑
1≤j≤n+1

Ejj .

In what follows, we shall use the involution ′ on the indexing set {1, . . . , N} defined via

i′ := N + 1− i for all 1 ≤ i ≤ N.

Proposition 3.2 (type Bn). The following defines a representation ρ : Ur,s(so2n+1)→ End(V )
with

ρ(ei) = Ei,i+1 − E(i+1)′,i′ , 1 ≤ i ≤ n,

ρ(fi) =

{
Ei+1,i − (rs)−2Ei′,(i+1)′ if 1 ≤ i < n,(
r−1 + s−1

)
En+1,n −

(
r−1 + s−1

)
En′,n+1 if i = n,

ρ(ωi) =



r2Eii + s2Ei+1,i+1 + r−2Ei′i′ + s−2E(i+1)′,(i+1)′

+

j ̸=i,i+1∑
1≤j≤n

(
Ejj + Ej′j′

)
+ En+1,n+1 if 1 ≤ i < n,

rs−1Enn + En+1,n+1 + r−1sEn′n′ +
n−1∑
j=1

(
r−1s−1Ejj + rsEj′j′

)
if i = n,

ρ
(
ω′i
)
=



s2Eii + r2Ei+1,i+1 + s−2Ei′i′ + r−2E(i+1)′,(i+1)′

+

j ̸=i,i+1∑
1≤j≤n

(
Ejj + Ej′j′

)
+ En+1,n+1 if 1 ≤ i < n,

r−1sEnn + En+1,n+1 + rs−1En′n′ +

n−1∑
j=1

(
r−1s−1Ejj + rsEj′j′

)
if i = n.

Proof. The proof is straightforward, as we just need to verify that the above linear opera-
tors satisfy the defining relations (2.4)–(2.8). The relation (2.4) is obvious since all the op-
erators ρ(ωi), ρ(ω

′
j) act diagonally in the basis {vk}Nk=1. To check the first equality of (2.5),

we note that both sides act trivially on vk unless k ∈ {j + 1, j′}. In the latter case, one
needs to compare the ratios of eigenvalues of ρ(ωi) on vj and vj+1, or v(j+1)′ and vj′ , to
the pairing (ω′j , ωi). The other three relations of (2.5) and (2.6) are verified analogously.
The relation [ρ(ei), ρ(fj)] = 0 for i ̸= j is obvious as both ρ(ei)ρ(fj) and ρ(fj)ρ(ei) then
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act trivially on V . On the other hand, for 1 ≤ i < n, the commutator [ρ(ei), ρ(fi)] acts
diagonally in the basis {vk}Nk=1, with nonzero eigenvalues 1, −1, r−2s−2, −r−2s−2 only for
k = i, i + 1, (i + 1)′, i′, respectively, which exactly coincide with the eigenvalues of

ρ(ωi)−ρ(ω′
i)

r2−s2 .
Likewise, the commutator [ρ(en), ρ(fn)] acts diagonally in the basis vk with nonzero eigenvalues
r−1 + s−1, −r−1 − s−1 only for k = n, n′, respectively, which exactly coincide with the eigen-
values of ρ(ωn)−ρ(ω′

n)
r−s . Finally, the Serre relations (2.8) hold as each summand acts trivially on

all vk. ■

Proposition 3.3 (type Cn). The following defines a representation ρ : Ur,s(sp2n) → End(V )
with

ρ(ei) =

{
Ei,i+1 − E(i+1)′,i′ if 1 ≤ i < n,

Enn′ if i = n,

ρ(fi) =

{
Ei+1,i − (rs)−1Ei′,(i+1)′ if 1 ≤ i < n,

(rs)−1En′n if i = n,

ρ(ωi) =



rEii + sEi+1,i+1 + r−1Ei′i′ + s−1E(i+1)′,(i+1)′

+

j ̸=i,i+1∑
1≤j≤n

(
Ejj + Ej′j′

)
if 1 ≤ i < n,

rs−1Enn + r−1sEn′n′ +
n−1∑
j=1

(
r−1s−1Ejj + rsEj′j′

)
if i = n,

ρ(ω′i) =



sEii + rEi+1,i+1 + s−1Ei′i′ + r−1E(i+1)′,(i+1)′

+

j ̸=i,i+1∑
1≤j≤n

(
Ejj + Ej′j′

)
if 1 ≤ i < n,

r−1sEnn + rs−1En′n′ +

n−1∑
j=1

(
r−1s−1Ejj + rsEj′j′

)
if i = n.

Proof. The proof is analogous to that of Proposition 3.2; we leave details to the reader. ■

Proposition 3.4 (type Dn). For n ≥ 2, the following defines a representation ρ : Ur,s(so2n)→
End(V ) with

ρ(ei) =

{
Ei,i+1 − E(i+1)′,i′ if 1 ≤ i < n,

(rs)−1En−1,n′ − En,(n−1)′ if i = n,

ρ(fi) =

{
Ei+1,i − (rs)−1Ei′,(i+1)′ if 1 ≤ i < n,

En′,n−1 − E(n−1)′,n if i = n,

ρ(ωi) =



rEii + sEi+1,i+1 + r−1Ei′i′ + s−1E(i+1)′,(i+1)′

+

j ̸=i,i+1∑
1≤j≤n

(
Ejj + Ej′j′

)
if 1 ≤ i < n,

s−1En−1,n−1 + rEnn + sE(n−1)′,(n−1)′ + r−1En′n′

+

n−2∑
j=1

(
r−1s−1Ejj + rsEj′j′

)
if i = n,
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ρ(ω′i) =



sEii + rEi+1,i+1 + s−1Ei′i′ + r−1E(i+1)′,(i+1)′

+

j ̸=i,i+1∑
1≤j≤n

(
Ejj + Ej′j′

)
if 1 ≤ i < n,

r−1En−1,n−1 + sEnn + rE(n−1)′,(n−1)′ + s−1En′n′

+

n−2∑
j=1

(
r−1s−1Ejj + rsEj′j′

)
if i = n.

Proof. The proof is analogous to that of Proposition 3.2; we leave details to the reader. ■

The classification of finite-dimensional Ur,s(g)-modules for classical g is completely parallel
to that of one-parameter quantum groups (cf. [24, Section 5]). For A-type, this has been carried
out in [5], while for BCD-types this constitutes the major result of [9]. Let us recall only the
notions relevant to the rest of this section. A vector v in a Ur,s(g)-module V is said to have
weight λ ∈ P if

ωiv = (ω′λ, ωi)v and ω′iv = (ω′i, ωλ)
−1v for all 1 ≤ i ≤ n.

Let V [λ] denote the subspace of all weight λ vectors in V . The following result is straightforward.

Lemma 3.5.

(a) For the vector representation V from Propositions 3.2 in type Bn, we have

V = V [0]⊕
n⊕

i=1

(V [εi]⊕ V [−εi])

with V [0] = Kvn+1, V [εi] = Kvi, V [−εi] = Kvi′ for 1 ≤ i ≤ n.

(b) For the vector representation V from Proposition 3.3 in type Cn, we have

V =
n⊕

i=1

(V [εi]⊕ V [−εi]) with V [εi] = Kvi, V [−εi] = Kvi′ for 1 ≤ i ≤ n.

(c) For the vector representation V from Proposition 3.4 in type Dn, we have

V =

n⊕
i=1

(V [εi]⊕ V [−εi]) with V [εi] = Kvi, V [−εi] = Kvi′ for 1 ≤ i ≤ n.

We note that ε1 = ϖ1 is the first fundamental weight of g. Since the vector v1 is clearly
annihilated by all ρ(ei) and ρ

(
U0
r,s(g)

)
acts diagonally on the basis {vk}Nk=1 with distinct joint

eigenvalues, we conclude the following corollary.

Corollary 3.6. For g being one of the Lie algebras so2n+1, sp2n, so2n, the Ur,s(g)-module V
constructed respectively in Propositions 3.2–3.4 is isomorphic to L(ϖ1), the first fundamental
Ur,s(g)-representation.

3.2 Decomposition of the tensor square

In the rest of this section, we shall study the decomposition of the tensor square V ⊗ V into
irreducible Ur,s(g)-submodules. In type An, this has been carried out in [5, Proposition 5.3].
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Proposition 3.7 ([5]). The Ur,s(sln+1)-module V ⊗ V decomposes into the direct sum of two
irreducible modules V ⊗ V ≃ L(2ε1) ⊕ L(ε1 + ε2) with the highest weight vectors v1 ⊗ v1
and v1 ⊗ v2 − rv2 ⊗ v1.

In contrast, we shall show in Proposition 3.9 that V ⊗ V actually decomposes into the direct
sum of three irreducible Ur,s(g)-submodules in the remaining classical types Bn, Cn, Dn (with
n ≥ 2 for type Cn and n ≥ 3 for type Dn). To this end, we start by establishing the following
preliminary result (which is of independent interest).

Proposition 3.8. If λ ∈ P+ is a dominant integral weight, then the irreducible Ur,s(g)-module
L(λ) of the highest weight λ has the same dimension as the corresponding irreducible g-module.

Proof. The idea of the proof is to specialize r to q and s to q−1, and then appeal to the
analogous result in the one-parameter case. The argument presented below closely follows that
of [24, Sections 5.12–5.15].

Let us first set up some notation. Let M(λ) = Ur,s(g)⊗U≥
r,s(g)

K be the Verma Ur,s(g)-module
of highest weight λ ∈ P+, and let V = L(λ) be its finite-dimensional irreducible quotient, with
highest weight vector denoted by vλ (cf. [5, 9]). Let F = C(r) and A = F

[
s, s−1

]
. For any

sequence I = (i1, . . . , ik) ∈ {1, 2, . . . , n}k, set fI = fi1 · · · fik , so that V is spanned by all the
vectors fIvλ. Since V is finite-dimensional and Q-graded, we note that fIvλ = 0 for all but
finitely many sequences I. Therefore the A-submodule

VA =
∑
I

AfIvλ

is finitely generated, and is clearly also torsion-free. Thus, VA is a free A-module since A is
a PID. Furthermore, one can easily check that the natural map K ⊗A VA → V is an isomor-
phism (since K contains the field of fractions of A), so that rkAVA = dimK V . On the other
hand, we have an isomorphism F ∼−→C(q) given by r 7→ q, which may be further extended to
a homomorphism A→ C(q) via s 7→ q−1, making C(q) into an A-module. Consider the module
V = C(q)⊗A VA, which has an obvious C(q)-vector space structure. Note that any basis of VA

over A yields a basis of V over C(q). Thus, it suffices to make V into a Uq(g)-module in such
a way that V ≃ L(λ) as Uq(g)-modules, where Uq(g) is the Drinfeld–Jimbo quantum group
over C(q) (as the irreducible highest weight modules over g and Uq(g) have the same dimension,
cf. [24, Theorem 5.15]).

Let us first show that VA is actually stable under the action of all generators fi, ei, ω
±1
i ,(

ω′i
)±1

. For fi, this is obvious. Moreover, since all the pairings (ω′µ, ωi)
±1,

(
ωi, ω

′
µ

)±1
belong

to A, the fact that VA is stable under ω±1i ,
(
ω′i
)±1

follows from the fact that VA has a weight
space decomposition. Finally, to prove stability of VA under ei, we first note that if v ∈ Vµ, then

ωi − ω′i
ri − si

v =
r⟨µ,αi⟩s−⟨αi,µ⟩ − r−⟨αi,µ⟩s⟨µ,αi⟩

ri − si
v = (rs)−⟨αi,µ⟩ r

(αi,µ) − s(αi,µ)

ri − si
v,

which belongs to VA since (αi, µ) is divisible by di. Evoking ejvλ = 0 for all j, we thus get

ejfi1 · · · fikvλ =

is=j∑
1≤s≤k

fi1 · · · fis−1

ωis − ω′is
ri − si

fis+1 · · · fikvλ,

which is in VA by what we have already proved.
It remains to note that the factors r⟨αj ,αi⟩s−⟨αi,αj⟩ and r−⟨αi,αj⟩s⟨αj ,αi⟩ specialize to q(αi,αj)

and q−(αi,αj), respectively, under the specialization r 7→ q, s 7→ q−1. Therefore, the operators ei,
fi, ωi, ω

′
i on V satisfy the same relations as the generators Ei, Fi, Ki, K

−1
i of Uq(g), so that V

is a Uq(g)-module. Since V is also a finite-dimensional highest weight module with the highest
weight λ, we have V ≃ L(λ) as Uq(g)-modules. ■
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Proposition 3.9. For g being one of the Lie algebras so2n+1, sp2n, so2n (where n ≥ 2 if g = sp2n
and n ≥ 3 if g = so2n) and V being the corresponding Ur,s(g)-representation from Proposi-
tions 3.2–3.4, we have the following decomposition into irreducibles:

V ⊗ V ≃ L(2ε1)⊕ L(ε1 + ε2)⊕ L(0). (3.1)

Proof. We shall only present complete details for g = so2n+1, the other cases being analogous.
Type Bn. Let us first show that the following are highest weight vectors for the Ur,s(so2n+1)-

action on V ⊗ V :

w1 = v1 ⊗ v1,

w2 = v1 ⊗ v2 −
(
ω′ε1 , ω1

)
v2 ⊗ v1 =

{
v1 ⊗ v2 − rs−1v2 ⊗ v1 if n = 1,

v1 ⊗ v2 − r2v2 ⊗ v1 if n > 1,

w3 =
n∑

i=1

r2(i−1)vi ⊗ vi′ + r2n−1s−1vn+1 ⊗ vn+1 +
n∑

i=1

r2n−1s2(i−n)−1vi′ ⊗ vi. (3.2)

The equality ei(w1) = 0 for all i follows immediately from

ei · vj =


vi if j = i+ 1,

−v(i+1)′ if j = i′,

0 otherwise.

Likewise, since ei(v2) = 0 unless i = 1 and e1(v2) = v1, ω1(v1) =
(
ω′ε1 , ω1

)
v1, we also obtain

ei(w2) = ωi(v1)⊗ ei(v2)− (ω′ε1 , ω1)ei(v2)⊗ v1 = 0 for all 1 ≤ i ≤ n.

It remains to check that w3 is a highest weight vector. Indeed, for k < n we get

ek(w3) = r2kvk ⊗ v(k+1)′ − r2n−1s2(k−n)−1v(k+1)′ ⊗ vk

− r2(k−1)ωk(vk)⊗ v(k+1)′ + r2n−1s2(k−n)+1ωk

(
v(k+1)′

)
⊗ vk

= r2kvk ⊗ v(k+1)′ − r2(k−1)r2vk ⊗ v(k+1)′

− r2n−1s2(k−n)−1v(k+1)′ ⊗ vk + r2n−1s2(k−n)+1s−2v(k+1)′ ⊗ vk = 0,

and similarly for k = n, we have

en(w3) = r2n−1s−1vn ⊗ vn+1 − r2n−1s−1vn+1 ⊗ vn

− r2(n−1)ωn(vn)⊗ vn+1 + r2n−1s−1ωn(vn+1)⊗ vn

= r2n−1s−1vn ⊗ vn+1 − rs−1 · r2(n−1)vn ⊗ vn+1

− r2n−1s−1vn+1 ⊗ vn + r2n−1s−1vn+1 ⊗ vn = 0.

It is clear that w1, w2, w3 are linearly independent, and since w1 has weight 2ε1, w2 has weight
ε1 + ε2, and w3 has weight 0, the result of the Proposition will follow if we can match the
corresponding dimensions:

dimL(ε1) + dimL(ε1 + ε2) + dimL(0) = (2n+ 1)2. (3.3)

In view of Proposition 3.8, we can prove this by using the Weyl dimension formula. In type Bn,
we have

ρ =
1

2

∑
α∈Φ+

α =

n∑
i=1

(
n+

1

2
− i

)
εi,
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and therefore(
1
2ρ, εi − εj

)
= j − i,

(
1
2ρ, εi + εj

)
= 2n+ 1− i− j,

(
1
2ρ, εi

)
= n+ 1

2 − i.

Consequently, we obtain:

∏
α∈Φ+

(
1
2ρ, α

)
=

(
n∏

i=1

(
n+ 1

2 − i
))( ∏

1≤i<j≤n
(j − i)(2n+ 1− j − i)

)
.

A similar computation yields∏
α∈Φ+

(
ε1 +

1
2ρ, α

)
=

(
n∏

i=2

(1 + i)(2n+ 2− i)
(
n+ 1

2 − i
))(

n+ 3
2

)( ∏
2≤i<j≤n

(j − i)(2n+ 1− i− j)

)
,

and thus we get

dimL(2ε1) =

∏
α∈Φ+(2ε1 + ρ, α)∏

α∈Φ+(ρ, α)
=

∏
α∈Φ+

(
ε1 +

1
2ρ, α

)∏
α∈Φ+

(
1
2ρ, α

) = n(2n+ 3).

Similarly, we obtain

dimL(ε1 + ε2) = n(2n+ 1).

This completes the proof of the equality (3.3) and hence of the Proposition, since dimL(0) = 1.
Type Cn. Highest weight vectors for the Ur,s(sp2n)-action on V ⊗ V are

w1 = v1 ⊗ v1, w2 = v1 ⊗ v2 −
(
ω′ε1 , ω1

)
v2 ⊗ v1 = v1 ⊗ v2 − rv2 ⊗ v1,

w3 =

n∑
i=1

(
ri−1vi ⊗ vi′ − rnsi−n−1vi′ ⊗ vi

)
, (3.4)

and we have

dimL(2ε1) = n(2n+ 1), dimL(ε1 + ε2) = (2n+ 1)(n− 1), dimL(0) = 1.

Type Dn. Highest weight vectors for the Ur,s(so2n)-action on V ⊗ V are

w1 = v1 ⊗ v1, w2 = v1 ⊗ v2 −
(
ω′ε1 , ω1

)
v2 ⊗ v1 = v1 ⊗ v2 − rv2 ⊗ v1,

w3 =

n∑
i=1

(
ri−1vi ⊗ vi′ + rn−1si−nvi′ ⊗ vi

)
, (3.5)

and we have

dimL(2ε1) = (2n− 1)(n+ 1), dimL(ε1 + ε2) = n(2n− 1), dimL(0) = 1. ■

4 R-matrices

In this section, we evaluate the Ur,s(g)-module isomorphism V ⊗V ∼−→V ⊗V for g one of so2n+1,
sp2n, so2n and their first fundamental representation V from Section 3, arising through the uni-
versal R-matrix. This produces two-parametric solutions of the quantum Yang–Baxter equation
for classical Lie algebras, cf. (1.7):

R12R13R23 = R23R13R12. (4.1)
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4.1 Universal construction

Let us first recall the general construction (1.8) of a Ur,s(g)-module isomorphism V ⊗W →W⊗V
arising through the universal R-matrix (see [7, Section 4] for Ur,s(sln) and [9, Section 3] for other
classical Ur,s(g), both modeled after the treatment of one-parameter case in [24, Section 7]).
To this end, we pick dual bases

{
xµi
}
and

{
yµi
}
of U+

r,s(g)µ and U−r,s(g)−µ with respect to the
Hopf pairing (2.9), and set

Θ = 1 +
∑
µ>0

Θµ with Θµ =
∑
i

yµi ⊗ xµi . (4.2)

Let τ : V ⊗W → W ⊗ V be the flip map v ⊗ w 7→ w ⊗ v. Finally, consider f : P × P → K×
satisfying

f(λ+ ν, µ) = f(λ, µ)f(ν, µ), f(λ, µ+ ν) = f(λ, µ)f(λ, ν),

f(λ, αi) =
(
ω′i, ωλ

)−1
, f(αi, µ) =

(
ω′µ, ωi

)−1
(4.3)

for all λ, µ ∈ P , ν ∈ Q, and αi ∈ Π. Then, for any two Ur,s(g)-modules V and W with weight
space decomposition, we define a linear map f̃ : V ⊗W → V ⊗W via f̃(v ⊗ w) = f(λ, µ) · v ⊗ w
if v ∈ V [λ], w ∈W [µ]. The following is standard.

Theorem 4.1. For any finite-dimensional Ur,s(g)-modules V and W , the map

R̂VW = Θ ◦ f̃ ◦ τ : V ⊗W →W ⊗ V (4.4)

is an isomorphism of Ur,s(g)-modules.

Let RVW = R̂WV ◦ τ = Θ ◦ f̃ : V ⊗W → V ⊗W . Given finite-dimensional Ur,s(g)-modules
V1, V2, V3, define three endomorphisms of V1⊗V2⊗V3: R12 = RV1,V2⊗IdV3 , R23 = IdV1⊗RV2,V3 ,
R13 = (Id⊗τ)R12(Id⊗τ). We likewise define linear operators R̂12, R̂23, R̂13. According to [7, 9],
modelled after [24], we have

R12R13R23 = R23R13R12 : V1 ⊗ V2 ⊗ V3 → V1 ⊗ V2 ⊗ V3,

R̂12R̂23R̂12 = R̂23R̂12R̂23 : V1 ⊗ V2 ⊗ V3 → V3 ⊗ V2 ⊗ V1. (4.5)

In particular, we obtain a whole family of solutions of the quantum Yang–Baxter equation.

Corollary 4.2. For any finite-dimensional Ur,s(g)-module V , the operator RV V = R̂V V ◦ τ
satisfies (4.1).

4.2 Explicit R-matrices

For the representation V of Proposition 3.1, the explicit formula for R̂V V was obtained in [5,
Section 5].

Theorem 4.3 (type An). The Ur,s(sln+1)-module isomorphism R̂V V : V ⊗ V ∼−→V ⊗ V from
Theorem 4.1 for the Ur,s(sln+1)-module V from Proposition 3.1 coincides with the following
operator:

R̂ =
n+1∑
i=1

Eii ⊗ Eii + r
∑

1≤i<j≤n+1

Eji ⊗ Eij + s−1
∑

1≤i<j≤n+1

Eij ⊗ Eji

+
(
1− rs−1

) ∑
1≤i<j≤n+1

Ejj ⊗ Eii. (4.6)
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The main results of this section generalize the above formula to the other classical series.

Theorem 4.4 (type Bn). The Ur,s(so2n+1)-module isomorphism R̂V V : V ⊗ V ∼−→V ⊗ V from
Theorem 4.1 for the Ur,s(so2n+1)-module V from Proposition 3.2 coincides with the following
operator:

R̂ = r−1s

i ̸=n+1∑
1≤i≤2n+1

Eii ⊗ Eii + En+1,n+1 ⊗ En+1,n+1 + rs−1
i ̸=n+1∑

1≤i≤2n+1

Eii′ ⊗ Ei′i

+

j ̸=i,i′∑
1≤i,j≤2n+1

aijEij ⊗ Eji +
(
r2 − s2

)
(rs)−1

n∑
i=1

(
r2(n−i)+1s2(i−n)−1 − 1

)
Ei′i′ ⊗ Eii

+
(
s2 − r2

)
(rs)−1

j ̸=i′∑
i>j

Eii ⊗ Ejj +
(
r2 − s2

)
(rs)−1

j ̸=i′∑
i<j

tit
−1
j Ei′j ⊗ Eij′ , (4.7)

with the constants ti and aij given explicitly by

ti =


s2(i−n)−1 if i < n+ 1,

s−1 if i = n+ 1,

r2(n+1−i)+1 if i > n+ 1,

aij =

{
(rs)−σiσj if i < j, j′ or i > j, j′,

(rs)σiσj if j < i < j′ or j′ < i < j,
(4.8)

where we set

σi =


−1 if i < n+ 1,

0 if i = n+ 1,

1 if i > n+ 1.

Theorem 4.5 (type Cn). The Ur,s(sp2n)-module isomorphism R̂V V : V ⊗V ∼−→V ⊗V from The-
orem 4.1 for the Ur,s(sp2n)-module V from Proposition 3.3 coincides with the following operator:

R̂ = r−1/2s1/2
2n∑
i=1

Eii ⊗ Eii + r1/2s−1/2
2n∑
i=1

Eii′ ⊗ Ei′i +

j ̸=i,i′∑
1≤i,j≤2n

aijEij ⊗ Eji

+ (s− r)(rs)−1/2
n∑

i=1

(
rn+1−isi−n−1 + 1

)
Ei′i′ ⊗ Eii

+ (s− r)(rs)−1/2
j ̸=i′∑
i>j

Eii ⊗ Ejj + (r − s)(rs)−1/2
j ̸=i′∑
i<j

tit
−1
j Ei′j ⊗ Eij′ , (4.9)

with the constants ti and aij given explicitly by

ti =

{
si−n−1 if i ≤ n,

−rn−i if i > n,
aij =

{
(rs)−

1
2
σiσj if i < j, j′ or i > j, j′,

(rs)
1
2
σiσj if j < i < j′ or j′ < i < j,

(4.10)

where we set

σi =

{
1 if i ≤ n,

−1 if i > n.



18 I. Martin and A. Tsymbaliuk

Theorem 4.6 (type Dn). The Ur,s(so2n)-module isomorphism R̂V V : V ⊗V ∼−→V ⊗V from The-
orem 4.1 for the Ur,s(so2n)-module V from Proposition 3.4 coincides with the following operator:

R̂ = r−1/2s1/2
2n∑
i=1

Eii ⊗ Eii + r1/2s−1/2
2n∑
i=1

Eii′ ⊗ Ei′i +

j ̸=i,i′∑
1≤i,j≤2n

aijEij ⊗ Eji

+ (s− r)(rs)−1/2
n∑

i=1

(
1− rn−isi−n

)
Ei′i′ ⊗ Eii

+ (s− r)(rs)−1/2
j ̸=i′∑
i>j

Eii ⊗ Ejj + (r − s)(rs)−1/2
j ̸=i′∑
i<j

tit
−1
j Ei′j ⊗ Eij′ , (4.11)

with the constants ti and aij given explicitly by

ti =

{
si−n if i ≤ n,

rn+1−i if i > n,
aij =

{
(rs)−

1
2
σiσj if i < j, j′ or i > j, j′,

(rs)
1
2
σiσj if j < i < j′ or j′ < i < j,

(4.12)

where we set

σi =

{
1 if i ≤ n,

−1 if i > n.

Remark 4.7. Although the proofs of Theorems 4.4–4.6 share many similarities with that of
Theorem 4.3, there are slight differences. Indeed, instead of explicitly determining bases of each
irreducible component from the decomposition (3.1) and computing the action of R̂ on these
basis vectors, we rather verify that operators R̂ from (4.7), (4.9) and (4.11) do commute with
the action of all fi acting on V ⊗ V , and act on the three highest weight vectors by the desired
scalars. This approach is essential to our construction of R̂(z) in Section 6.

4.3 Proofs of explicit formulas

To prove theorems in the previous subsection, we shall first study the operators R̂ featured
in (4.7), (4.9) and (4.11). Our first technical result evaluates R̂-action on the three highest
weight vectors of V ⊗ V , see Proposition 3.9.

Lemma 4.8 (type Bn). The highest weight vectors w1, w2, w3 ∈ V ⊗ V from (3.2) are eigen-
vectors of the operator R̂ from (4.7), with respective eigenvalues λ1 = r−1s, λ2 = −rs−1,
λ3 = r2ns−2n.

Lemma 4.9 (type Cn). The highest weight vectors w1, w2, w3 ∈ V ⊗V from (3.4) are eigenvec-
tors for the operator R̂ from (4.9), with respective eigenvalues λ1 = r−1/2s1/2, λ2 = −r1/2s−1/2,
λ3 = −rn+1/2s−n−1/2.

Lemma 4.10 (type Dn). The highest weight vectors w1, w2, w3 ∈ V ⊗V from (3.5) are eigenvec-
tors of the operator R̂ from (4.11), with respective eigenvalues λ1 = r−1/2s1/2, λ2 = −r1/2s−1/2,
λ3 = rn−1/2s−n+1/2.

As the proofs of all three results are completely analogous, we shall prove only the first one.

Proof of Lemma 4.8. For w1, we clearly get

R̂(v1 ⊗ v1) = r−1sv1 ⊗ v1.
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Likewise, if n > 1, then for w2 we obtain

R̂
(
v1 ⊗ v2 − r2v2 ⊗ v1

)
= rsv2 ⊗ v1 − rs−1v1 ⊗ v2 −

(
s2 − r2

)
rs−1v2 ⊗ v1

= −rs−1
(
v1 ⊗ v2 − r2v2 ⊗ v1

)
.

If n = 1, then we have a12 = a21 = 1, and so we get

R̂
(
v1 ⊗ v2 − rs−1v2 ⊗ v1

)
= v2 ⊗ v1 − rs−1v1 ⊗ v2 − rs−1

(
r−1s− rs−1

)
v2 ⊗ v1

= −rs−1
(
v1 ⊗ v2 − rs−1v2 ⊗ v1

)
.

Finally, for w3 we obtain

R̂

(
n∑

i=1

r2(i−1)vi ⊗ vi′ + r2n−1s−1vn+1 ⊗ vn+1 +

n∑
i=1

r2n−1s−2(n−i)−1vi′ ⊗ vi

)

=

n∑
i=1

r2i−1s−1vi′ ⊗ vi + r2n−1s−1vn+1 ⊗ vn+1 +
n∑

i=1

r2ns2(i−n)−2vi ⊗ vi′

+
(
rs−1 − r−1s

) n∑
i=1

(
r2(n−i)+1s2(i−n)−1 − 1

)
r2n−1s2(i−n)−1vi′ ⊗ vi

+
(
rs−1 − r−1s

) n∑
i=1

r2n−1s2(i−n)−1vi′ ⊗ vi

+
(
rs−1 − r−1s

) n∑
i=1

i−1∑
j=1

r2(i−1)s2(j−i)vj′ ⊗ vj

+
(
rs−1 − r−1s

) n∑
i=1

j ̸=i∑
1≤j≤(i+1)′

tjt
−1
i′ r2n−1s2(i−n)−1vj′ ⊗ vj ,

where the last three summands arise from the action of the last sum in (4.7).
The last two summands simplify as follows:

n∑
i=1

i−1∑
j=1

r2(i−1)s2(j−i)vj′ ⊗ vj =

n−1∑
j=1

(
n∑

i=j+1

r2(i−1)s2(j−i)

)
vj′ ⊗ vj

=
n∑

j=1

r2js2(j−n)[n− j]r2,s2vj′ ⊗ vj

and

n∑
i=1

j ̸=i∑
1≤j≤(i+1)′

tjt
−1
i′ r2n−1s2(i−n)−1vj′ ⊗ vj

=
n∑

i=1

n∑
j=1

r4n−2is2(i+j−2n−1)vj′ ⊗ vj −
n∑

i=1

r4n−2is4(i−n)−2vi′ ⊗ vi

+

n∑
i=1

n∑
j=i+1

r2(j−i+n)−1s2(i−n)−1vj ⊗ vj′ +

n∑
i=1

r4n−2is2(i−n−1)vn+1 ⊗ vn+1

=

n∑
j=1

(
r2ns2j−4n[n]r2,s2 − r4n−2js4(j−n)−2

)
vj′ ⊗ vj
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+
n∑

j=1

r2n+1s1−2n[j − 1]r2,s2vj ⊗ vj′ + r2ns−2n[n]r2,s2vn+1 ⊗ vn+1.

Thus, the coefficient of vi′ ⊗ vi in R̂(w3) for 1 ≤ i ≤ n equals

r2i−1s−1 +
(
rs−1 − r−1s

)(
r2(n−i)+1s2(i−n)−1 − 1

)
r2n−1s2(i−n)−1

+
(
rs−1 − r−1s

)
r2n−1s2(i−n)−1 + r2i−1s2(i−n)−1

(
r2(n−i) − s2(n−i)

)
+ r2n−1s2i−4n−1

(
r2n − s2n

)
− r4n−2i−1s4(i−n)−3

(
r2 − s2

)
= r4n−1s2i−4n−1 = r2ns−2n · r2n−1s2(i−n)−1,

as desired. Likewise, the coefficient of vi ⊗ vi′ in R̂(w3) for 1 ≤ i ≤ n equals r2(n+i−1)s−2n =
r2ns−2n · r2(i−1), while the coefficient of vn+1 ⊗ vn+1 equals r4n−1s−2n−1 = r2ns−2n · r2n−1s−1.
This completes the proof. ■

Next, we verify that the operators R̂ are indeed Ur,s(g)-module homomorphisms.

Lemma 4.11. The operators R̂ : V ⊗V → V ⊗V from (4.7), (4.9) and (4.11) are isomorphisms
of Ur,s(g)-modules.

Proof. In each case, it suffices to verify ∆(fk)R̂ = R̂∆(fk) ∈ End(V ⊗ V ) for all k, since
Lemmas 4.8–4.10 then imply that R̂ acts as a nonzero scalar on each irreducible component
of V ⊗ V (see Proposition 3.9). We will present this verification only in type Bn, since the
arguments in the remaining cases are similar.

To make the computations more manageable, it will be helpful to break the operator R̂
from (4.7) into the following six pieces:

R1 = r−1s

i ̸=n+1∑
1≤i≤2n+1

Eii ⊗ Eii + En+1,n+1 ⊗ En+1,n+1,

R2 = rs−1
i ̸=n+1∑

1≤i≤2n+1

Eii′ ⊗ Ei′i,

R3 =

j ̸=i,i′∑
1≤i,j≤2n+1

aijEij ⊗ Eji,

R4 =
(
r2 − s2

)
(rs)−1

n∑
i=1

(
r2(n−i)+1s2(i−n)−1 − 1

)
Ei′i′ ⊗ Eii,

R5 =
(
s2 − r2

)
(rs)−1

j ̸=i′∑
i>j

Eii ⊗ Ejj ,

R6 =
(
r2 − s2

)
(rs)−1

j ̸=i′∑
i<j

tit
−1
j Ei′j ⊗ Eij′ .

Now, for k < n, the matrix of ∆(fk) is

∆(fk) = 1⊗ Ek+1,k − (rs)−21⊗ Ek′,(k+1)′ + s2Ek+1,k ⊗ Ekk

+ r2Ek+1,k ⊗ Ek+1,k+1 + s−2Ek+1,k ⊗ Ek′k′ + r−2Ek+1,k ⊗ E(k+1)′,(k+1)′

+

j ̸=k,k+1∑
1≤j≤n

(
Ek+1,k ⊗ Ejj + Ek+1,k ⊗ Ej′j′

)
+ Ek+1,k ⊗ En+1,n+1
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− r−2Ek′,(k+1)′ ⊗ Ekk − s−2Ek′,(k+1)′ ⊗ Ek+1,k+1 − r−2s−4Ek′,(k+1)′ ⊗ Ek′k′

− r−4s−2Ek′,(k+1)′ ⊗ E(k+1)′,(k+1)′

− (rs)−2
j ̸=k,k+1∑
1≤j≤n

(
Ek′,(k+1)′ ⊗ Ejj + Ek′,(k+1)′ ⊗ Ej′j′

)
− (rs)−2Ek′,(k+1)′ ⊗ En+1,n+1.

Thus, by direct computation, we get

R1∆(fk) = r−1sEk+1,k+1 ⊗ Ek+1,k − r−3s−1Ek′k′ ⊗ Ek′,(k+1)′

+ rsEk+1,k ⊗ Ek+1,k+1 − r−3s−3Ek′,(k+1)′ ⊗ Ek′k′ ,

∆(fk)R1 = r−1sEkk ⊗ Ek+1,k − r−3s−1E(k+1)′,(k+1)′ ⊗ Ek′,(k+1)′

+ r−1s3Ek+1,k ⊗ Ekk − r−5s−1Ek′,(k+1)′ ⊗ E(k+1)′,(k+1)′ ,

R2∆(fk) = rs−1Ek+1,(k+1)′ ⊗ E(k+1)′,k − r−1s−3Ek′,k ⊗ Ek,(k+1)′

+ (rs)−1E(k+1)′,k ⊗ Ek+1,(k+1)′ − (rs)−1Ek,(k+1)′ ⊗ Ek′k,

∆(fk)R2 = rs−1Ek′k ⊗ Ek+1,k′ − r−1s−3Ek+1,(k+1)′ ⊗ Ek′,k+1

+ rs−3Ek+1,k′ ⊗ Ek′k − rs−3Ek′,k+1 ⊗ Ek+1,(k+1)′ ,

R3∆(fk)−∆(fk)R3

= rsEk+1,k ⊗ Ekk + (rs)−1Ek+1,k′ ⊗ Ek′k − (rs)−1Ek′,k+1 ⊗ Ek+1,(k+1)′

− (rs)−3Ek′,(k+1)′ ⊗ E(k+1)′,(k+1)′ + r−1sEkk ⊗ Ek+1,k + rs−1Ek′k ⊗ Ek+1,k′

− rsEk+1,k ⊗ Ek+1,k+1 − (rs)−1E(k+1)′,k ⊗ Ek+1,(k+1)′ + (rs)−1Ek,(k+1)′ ⊗ Ek′k

+ (rs)−3Ek′,(k+1)′ ⊗ Ek′k′ − r−1s−3Ek+1,(k+1)′ ⊗ Ek′,k+1

− r−3s−1E(k+1)′,(k+1)′ ⊗ Ek′,(k+1)′ − rs−1Ek+1,k+1 ⊗ Ek+1,k

− r−1sEk+1,(k+1)′ ⊗ E(k+1)′,k + r−3s−1Ek′k ⊗ Ek,(k+1)′ + r−1s−3Ek′k′ ⊗ Ek′,(k+1)′ ,

R4∆(fk) =
(
r2 − s2

)
(rs)−1

(
r2(n−k−1)+1s2(k+1−n)−1 − 1

)
E(k+1)′,(k+1)′ ⊗ Ek+1,k

−
(
r2 − s2

)
r−3s−1

(
r2(n−k)+1s2(k−n)−1 − 1

)
Ek′,(k+1)′ ⊗ Ekk,

∆(fk)R4 =
(
r2 − s2

)
(rs)−1

(
r2(n−k)+1s2(k−n)−1 − 1

)
Ek′k′ ⊗ Ek+1,k

−
(
r2 − s2

)
r−1s−3

(
r2(n−k)−1s2(k−n)+1 − 1

)
Ek′,(k+1)′ ⊗ Ek+1,k+1,

∆(fk)R5 −R5∆(fk)

=
(
rs−1 − r−1s

)
Ek′k′ ⊗ Ek+1,k +

(
r−1s− rs−1

)
Ek+1,k+1 ⊗ Ek+1,k

+
(
r−1s− rs−1

)
E(k+1)′,(k+1)′ ⊗ Ek+1,k −

(
r−3s−1 − r−1s−3

)
Ek′k′ ⊗ Ek′,(k+1)′

−
(
r−1s3 − rs

)
Ek+1,k ⊗ Ekk +

(
r−1s−1 − rs−3

)
Ek′,(k+1)′ ⊗ Ek+1,k+1

−
(
r−3s− r−1s−1

)
Ek′,(k+1)′ ⊗ Ekk +

(
r−5s−1 − r−3s−3

)
Ek′,(k+1)′ ⊗ E(k+1)′,(k+1)′ ,

R6∆(fk) =
(
r2 − s2

)
(rs)−1r2(n−k)−1s2(k−n)−1Ek′,(k+1)′ ⊗ Ekk

−
(
r2 − s2

)
(rs)−1s2(k−n)+1r2(n−k)−1E(k+1)′,(k+1)′ ⊗ Ek+1,k

−
(
rs−1 − r−1s

)
Ek+1,(k+1)′ ⊗ E(k+1)′,k +

(
r−1s−3 − r−3s−1

)
Ek′k ⊗ Ek,(k+1)′ ,

∆(fk)R6 =
(
r2 − s2

)
(rs)−1r2(n−k)−1s2(k−n)−1Ek′,(k+1)′ ⊗ Ek+1,k+1

−
(
r2 − s2

)
(rs)−1r2(n−k)+1s2(k−n)−1Ek′k′ ⊗ Ek+1,k

+
(
rs−3 − r−1s−1

)
Ek′,k+1 ⊗ Ek+1,(k+1)′ −

(
rs−3 − r−1s−1

)
Ek+1,k′ ⊗ Ek′k.
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In particular, we obtain

R4∆(fk) +R6∆(fk)

= −
(
rs−1 − r−1s

)
E(k+1)′,(k+1)′ ⊗ Ek+1,k +

(
r−1s−1 − r−3s

)
Ek′,(k+1)′ ⊗ Ekk

−
(
rs−1 − r−1s

)
Ek+1,(k+1)′ ⊗ E(k+1)′,k +

(
r−1s−3 − r−3s−1

)
Ek′k ⊗ Ek,(k+1)′

and

∆(fk)R4 +∆(fk)R6

= −
(
rs−1 − r−1s

)
Ek′k′ ⊗ Ek+1,k +

(
rs−3 − r−1s−1

)
Ek′,(k+1)′ ⊗ Ek+1,k+1

+
(
rs−3 − r−1s−1

)
Ek′,k+1 ⊗ Ek+1,(k+1)′ −

(
rs−3 − r−1s−1

)
Ek+1,k′ ⊗ Ek′k.

From the computations above, we finally get

R3∆(fk)−∆(fk)R3 +R1∆(fk) +R2∆(fk)−∆(fk)R1 −∆(fk)R2 (4.13)

=
(
r−1s−3 − r−3s−1

)
Ek′k′ ⊗ Ek′,(k+1)′ +

(
rs−1 − r−1s

)
Ek+1,(k+1)′ ⊗ E(k+1)′,k

+
(
r−3s−1 − r−1s−3

)
Ek′k ⊗ Ek,(k+1)′ +

(
rs− r−1s3

)
Ek+1,k ⊗ Ekk

+
(
r−1s−1 − rs−3

)
Ek+1,k′ ⊗ Ek′k +

(
rs−3 − r−1s−1

)
Ek′,k+1 ⊗ Ek+1,(k+1)′

+
(
r−5s−1 − r−3s−3

)
Ek′,(k+1)′ ⊗ E(k+1)′,(k+1)′ +

(
r−1s− rs−1

)
Ek+1,k+1 ⊗ Ek+1,k

and

∆(fk)R5 −R5∆(fk) + ∆(fk)R4 +∆(fk)R6 −R4∆(fk)−R6∆(fk) (4.14)

=
(
r−1s− rs−1

)
Ek+1,k+1 ⊗ Ek+1,k +

(
r−1s−3 − r−3s−1

)
Ek′k′ ⊗ Ek′,(k+1)′

+
(
rs− r−1s3

)
Ek+1,k ⊗ Ekk +

(
r−5s−1 − r−3s−3

)
Ek′,(k+1)′ ⊗ E(k+1)′,(k+1)′

+
(
rs−3 − r−1s−1

)
Ek′,k+1 ⊗ Ek+1,(k+1)′ +

(
r−1s−1 − rs−3

)
Ek+1,k′ ⊗ Ek′k

+
(
rs−1 − r−1s

)
Ek+1,(k+1)′ ⊗ E(k+1)′,k +

(
r−3s−1 − r−1s−3

)
Ek′k ⊗ Ek,(k+1)′ .

The right-hand sides of (4.13) and (4.14) are obviously equal, which implies R̂∆(fk) = ∆(fk)R̂
for k < n.

The computation for k = n is similar. This completes the proof of the lemma. ■

Now we are ready to prove the main results of this section, Theorems 4.4–4.6. We present
full details only for the first one, since the other two are completely analogous (details are left
to the interested reader).

Proof of Theorem 4.4. According to Theorem 4.1 and Proposition 3.9, the action of R̂V V

on the tensor product V ⊗ V is uniquely determined by the eigenvalues of the highest weight
vectors w1, w2, w3 from (3.2) with respect to R̂V V . We shall now verify that these eigenvalues are
precisely equal to λ1, λ2, λ3 from Lemma 4.8, which thus completes the proof due to Lemma 4.11.

The eigenvalue λ̃1 of the R̂V V -action on w1 is equal to f(ε1, ε1). Since ε1 = α1 + · · · + αn,
f(ε1, αi) =

(
ω′i, ωε1

)−1
, and a computation using (2.17) yields

(
ω′1, ωε1

)
= s−2,

(
ω′n, ωε1

)
= rs,(

ω′i, ωε1

)
= 1 if 1 < i < n, we thus obtain λ̃1 = r−1s = λ1.

The eigenvalue λ̃2 of the R̂V V -action on w2 equals the coefficient of v1 ⊗ v2 in R̂V V (w2),
and the latter appears only from applying f̃ ◦ τ to the multiple of v2 ⊗ v1. Thus, we have
λ̃2 = −rs−1f(ε1, 0) = −rs−1 = λ2 if n = 1. On the other hand, if n > 1, then λ̃2 = −r2f(ε1, ε2),
and since ε2 = α2 + · · ·+ αn, a similar calculation to the one above yields λ̃2 = −r2 · (rs)−1 =
−rs−1 = λ2.

The eigenvalue λ̃3 of the R̂V V -action on w3 equals the coefficient of v1⊗v1′ in R̂V V (w3). The
latter appears only from applying f̃◦τ to the multiple of v1′⊗v1, thus λ̃3 = r2n−1s1−2nf(ε1,−ε1).
As f(ε1,−ε1) = f(ε1, ε1)

−1 = rs−1, we thus get λ̃3 = r2ns−2n = λ3. ■
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Remark 4.12. The above proofs of Theorems 4.4–4.6 are quite elementary, but they require
knowing the correct formulas for R̂ in the first place. In the next section, we provide the
conceptual origin of these formulas by factorizing them into an ordered product of “local”
operators, one for each positive root of g.

5 PBW bases, orthogonality, and factorization

In this section, we present the factorization formulas for R̂ from (4.7), (4.9) and (4.11). In the
absence of Lusztig’s braid group action on Ur,s(g), one rather needs to use the combinatorial
construction of orthogonal dual bases of U+

r,s(g) and U−r,s(g), based on the combinatorics of
standard Lyndon words, cf. [30, 31, 33, 41] (the details are presented in [35, 36]).

5.1 Standard Lyndon words

Let I = {1, 2, . . . , n} be a finite ordered alphabet parametrizing the simple roots of g, and let I∗

be the set of all finite length words in the alphabet I. For u = [i1 . . . ik] ∈ I∗, we define its length
by |u| = k. We introduce the lexicographical order on I∗ in a standard way:

[i1 . . . ik] < [j1 . . . jl] if

{
i1 = j1, . . . , ia = ja, ia+1 < ja+1 for some a ≥ 0

or i1 = j1, . . . , ik = jk and k < l.

For a word w = [i1 . . . ik] ∈ I∗, the subwords

wa| = [i1 . . . ia] and w|a = [ik−a+1 . . . ik]

with 0 ≤ a ≤ k will be called a prefix and a suffix of w, respectively. We call such a prefix or
a suffix proper if 0 < a < k. We start with the following important definition:

Definition 5.1. A word w is Lyndon if it is smaller than all of its proper suffixes:

w < w|a for all 0 < a < |w|.

We recall the following two basic facts from the theory of Lyndon words:

Proposition 5.2 ([34, Proposition 5.1.3]). Any Lyndon word ℓ has a factorization

ℓ = ℓ1ℓ2 (5.1)

defined by the property that ℓ1 is the longest proper prefix of ℓ which is also a Lyndon word.
Then, ℓ2 is also a Lyndon word.

The factorization (5.1) is called a costandard factorization of a Lyndon word.

Proposition 5.3 ([34, Proposition 5.1.5]). Any word w has a unique factorization

w = ℓ1 . . . ℓk, (5.2)

where ℓ1 ≥ · · · ≥ ℓk are all Lyndon words.

The factorization (5.2) is called a canonical factorization.
Let n+ be a Lie subalgebra of g generated by all {ei}ni=1. The standard bracketing of a Lyndon

word ℓ (with respect to the Lie algebra n+) is defined inductively by the following procedure:

• e[i] = ei ∈ n+ for i ∈ I,

• e[ℓ] = [e[ℓ1], e[ℓ2]] ∈ n+, where ℓ = ℓ1ℓ2 is the costandard factorization (5.1).

The following definition is due to [32].
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Definition 5.4. A Lyndon word ℓ is called standard Lyndon if eℓ cannot be expressed as a linear
combination of em for various Lyndon words m > ℓ.

The major importance of this definition is due to the following result.

Theorem 5.5 ([32]). The set
{
e[ℓ] | ℓ−standard Lyndon word

}
provides a basis of n+.

Due to a root space decomposition n+ =
⊕

α∈Φ+ gα with all gα being 1-dimensional, we get

ℓ : Φ+ ∼−→{standard Lyndon words},

the so-called Lalonde–Ram bijection, evoked in (1.5). This bijection was described explicitly
in [33].

Proposition 5.6 ([33, Proposition 25]). The bijection ℓ is inductively given as follows:

• for simple roots, we have ℓ(αi) = [i],

• for other positive roots, the value of ℓ(α) is determined using Leclerc’s algorithm:

ℓ(α) = max{ℓ(γ1)ℓ(γ2) | α = γ1 + γ2, γ1, γ2 ∈ Φ+, ℓ(γ1) < ℓ(γ2)}.

We shall also need one more important property of ℓ. To the end, let us recall the following.

Definition 5.7. A total order on the set of positive roots Φ+ is convex if

α < α+ β < β

for all α < β ∈ Φ+ such that α+ β is also a root.

The following result is [33, Proposition 28], where it is attributed to [41] (see also [37, Propo-
sition 2.34]).

Proposition 5.8. Consider the order on Φ+ induced from the lexicographical order on standard
Lyndon words:

α < β ⇐⇒ ℓ(α) < ℓ(β) lexicographically. (5.3)

This order is convex.

Finally, recall that given any convex order on Φ+, a pair (α, β) of positive roots is called
a minimal pair for γ = α+ β ∈ Φ+ if

α < β and ∄α < α′ < γ < β′ < β such that α′ + β′ = γ. (5.4)

The following result goes back to [33, 41] (cf. [37, Proposition 2.38]).

Proposition 5.9. For any γ ∈ Φ+, consider the costandard factorization (5.1), so that ℓ1 = ℓ(α)
and ℓ2 = ℓ(β). Then (α, β) is a minimal pair for γ = α+ β.
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5.2 Convex orders for classical types

Let Φ be a root system of classical type, and choose the order of I exactly as in Section 2.3.
Combining Propositions 5.6 and 5.8, we obtain the following explicit convex orders on the sets Φ+

of positive roots:

� Type An:

α1 < α1 + α2 < · · · < α1 + · · ·+ αn < α2 < · · · < αn−1 < αn−1 + αn < αn. (5.5)

� Type Bn:

α1 < α1 + α2 < · · · < α1 + · · ·+ αn

< α1 + · · ·+ αn−1 + 2αn < · · · < α1 + 2α2 + · · ·+ 2αn

< α2 < · · · < αn−1 < αn−1 + αn < αn−1 + 2αn < αn. (5.6)

� Type Cn:

α1 < α1 + α2 < · · · < α1 + · · ·+ αn−1 < 2α1 + · · ·+ 2αn−1 + αn < α1 + · · ·+ αn

< α1 + · · ·+ αn−2 + 2αn−1 + αn < · · · < α1 + 2α2 + · · ·+ 2αn−1 + αn

< α2 < · · · < αn−1 < 2αn−1 + αn < αn−1 + αn < αn. (5.7)

� Type Dn:

α1 < α1 + α2 < · · · < α1 + · · ·+ αn−2 + αn−1 < α1 + · · ·+ αn−2 + αn

< α1 + · · ·+ αn < α1 + · · ·+ αn−3 + 2αn−2 + αn−1 + αn < · · ·
< α1 + 2α2 + · · ·+ 2αn−2 + αn−1 + αn

< α2 < · · · < αn−2 < αn−2 + αn−1

< αn−2 + αn < αn−2 + αn−1 + αn < αn−1 < αn. (5.8)

Remark 5.10. An important feature of these convex orders on root systems of type Xn (with
X = A,B,C,D) is their telescopic structure, that is, erasing all roots containing α1 provides
the order alike on the rank 1 smaller root system of type Xn−1. This will significantly simplify
our calculations in Section 5.4.

Remark 5.11. It is a classical result, due to [38], that the convex orders on Φ+ are in bijection
with the reduced decompositions of the longest element w0 of the Weyl group W of the root
system Φ. In particular, the convex orders (5.5)–(5.8) correspond respectively to the following
reduced decompositions of w0 (with si = sαi denoting the simple reflections):

w0 = (s1s2 . . . sn)(s1s2 . . . sn−1) . . . (s1s2)(s1),

w0 = (s1 . . . sn−1snsn−1 . . . s1)(s2 . . . sn−1snsn−1 . . . s2) . . . (sn−1snsn−1)(sn),

w0 = (s1 . . . sn−1snsn−1 . . . s1)(s2 . . . sn−1snsn−1 . . . s2) . . . (sn−1snsn−1)(sn),

w0 =


(s1 . . . sn−1snsn−2 . . . s1)(s2 . . . sn−2snsn−1 . . . s2) . . .

×(sn−2sn−1snsn−2)(snsn−1) if n is odd,

(s1 . . . sn−1snsn−2 . . . s1)(s2 . . . sn−2snsn−1 . . . s2) . . .

×(sn−2snsn−1sn−2)(sn−1sn) if n is even.
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Let us set up convenient notation for the positive roots in each type, and identify the minimal
pairs arising through the costandard factorization of the corresponding standard Lyndon words,
see Proposition 5.9.

Type An. Let γij = αi + · · · + αj for 1 ≤ i ≤ j ≤ n, so that Φ+ = {γij}i≤j . For γ = γij
with i < j, the minimal pair arising through the costandard factorization of ℓ(γ) is (α, β) =
(γi,j−1, αj).

Type Bn. Let γij = αi+· · ·+αj for 1 ≤ i ≤ j ≤ n, and let βij = αi+· · ·+αj−1+2αj+· · ·+2αn

for 1 ≤ i < j ≤ n. Let us now indicate the minimal pairs arising through the costandard
factorization of ℓ(γ):

� for the roots γ = γij with i < j, the minimal pair is (α, β) = (γi,j−1, αj);

� for the roots γ = βin with 1 ≤ i < n, the minimal pair is (α, β) = (γin, αn);

� for the roots γ = βij with i < j < n, the minimal pair is (α, β) = (βi,j+1, αj).

Type Cn. Let γij = αi + · · · + αj for 1 ≤ i ≤ j ≤ n, and let βij = αi + · · · + αj−1 + 2αj +
· · ·+ 2αn−1 + αn for 1 ≤ i ≤ j < n. Let us now indicate the minimal pairs arising through the
costandard factorization of ℓ(γ):

� for the roots γ = γij with i < j, the minimal pair is (α, β) = (γi,j−1, αj);

� for the roots γ = βij with i < j < n− 1, the minimal pair is (α, β) = (βi,j+1, αj);

� for the roots γ = βii with 1 ≤ i < n, the minimal pair is (α, β) = (γi,n−1, γin);

� for the roots γ = βi,n−1 with 1 ≤ i < n− 1, the minimal pair is (α, β) = (γin, αn−1).

Type Dn. Following (2.16), let γij = εi − εj+1 for 1 ≤ i ≤ j < n, and let βij = εi + εj for
1 ≤ i < j ≤ n. Then γij = αi + · · · + αj for 1 ≤ i ≤ j < n, βin = αi + · · · + αn−2 + αn,
βi,n−1 = αi + · · ·+αn, and βij = αi + · · ·+αj−1 +2αj + · · ·+2αn−2 +αn−1 +αn for j < n− 1.
Let us indicate the minimal pairs arising through the costandard factorization of ℓ(γ):

� for the roots γ = γij with i < j, the minimal pair is (α, β) = (γi,j−1, αj);

� for the roots γ = βin with i ≤ n− 2, the minimal pair is (α, β) = (γi,n−2, αn);

� for the roots γ = βij with i < j < n, the minimal pair is (α, β) = (βi,j+1, αj).

5.3 Root vectors and the PBW theorem

The following construction of (quantum) root vectors eγ , fγ goes back to [30, 31, 33, 41] in
the one-parameter setup, to [10] in the super setup, and to [2, 4, 19, 20] in the two-parameter
setup. For γ = αi ∈ Π, we set eαi = ei, fαi = fi. By induction on the height of a root, for any
γ ∈ Φ+ \Π, define (cf. (1.4))

eγ = eαeβ −
(
ω′β, ωα

)
eβeα, fγ = fβfα −

(
ω′α, ωβ

)−1
fαfβ, (5.9)

where the minimal pair (α, β) for γ corresponds to the costandard factorization of ℓ(γ), see
Proposition 5.9.

We now state a two-parameter version of a classical result of [30, 31, 33, 41] (which was
also adapted to the super case in [10]). A detailed proof of Theorem 5.12 (a), (b), and (5.10)
is presented in [35, Theorem 7.1], and the special case of (5.11) specified in (5.14)–(5.17) is
presented in [35, Theorem 7.2]. Both arguments make crucial use of an embedding of U+

r,s into
an appropriate quantum shuffle algebra. A proof of the recursive formula (5.11) in general is
given in [36], along with an alternative proof of the rest of the theorem.
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Theorem 5.12.

(a) The ordered products{ ←−∏
γ∈Φ+

e
mγ
γ | mγ ≥ 0

}
and

{ ←−∏
γ∈Φ+

f
mγ
γ | mγ ≥ 0

}

are bases for U+
r,s(g) and U−r,s(g), respectively. Here and below, the arrow ← over the

product signs refers to the total order (5.3) on Φ+.

(b) The Hopf pairing (2.9) is orthogonal with respect to these bases. More explicitly, we have( ←−∏
γ∈Φ+

f
nγ
γ ,

←−∏
γ∈Φ+

e
mγ
γ

)
=
∏

γ∈Φ+

(
δnγ ,mγ

(
f
mγ
γ , e

mγ
γ

))
.

(c) For each γ ∈ Φ+ and m ≥ 0, we have (cf. notation (2.3))(
fm
γ , emγ

)
= s−m(m−1)/2

γ (fγ , eγ)
m[m]rγ ,sγ ! (5.10)

Moreover, we have the following recursive formula for the pairing (fγ , eγ):

(fγ , eγ) = (fα, eα)(fβ, eβ)

×
rγ
(
ω′α, ωβ

)−1
(rs)−pβ,α [pβ,α + 1]2r,s(rα − sα)(rβ − sβ)

rαrβ(sγ − rγ)
, (5.11)

where (α, β) is the minimal pair of Proposition 5.9 corresponding to the costandard fac-
torization of ℓ(γ), and

pβ,α = max{k ≥ 0 | β − kα ∈ Φ}.

As an immediate corollary, we obtain the following factorization formula.

Theorem 5.13. The operator Θ of (4.2) can be factorized as follows:

Θ =
←−∏

γ∈Φ+

(∑
m≥0

1(
fm
γ , emγ

)fm
γ ⊗ emγ

)
, (5.12)

with eγ, fγ defined in (5.9) and
(
fm
γ , emγ

)
evaluated in (5.10)–(5.11).

Remark 5.14. In fact, Θ can be expressed in an even more compact form by using (5.12)
in conjunction with (r, s)-exponential

expr,s(z) =
∑
m≥0

sm(m−1)/2 zm

[m]r,s!
.

Indeed, for each γ ∈ Φ+, we have

∑
m≥0

1(
fm
γ , emγ

)fm
γ ⊗ emγ =

∑
m≥0

s
m(m−1)/2
γ

(fγ , eγ)m[m]rγ ,sγ !
fm
γ ⊗ emγ = exprγ ,sγ

(
fγ ⊗ eγ
(fγ , eγ)

)
. (5.13)

Thus, the factorization formula (5.12) simplifies as follows:

Θ =

←−∏
γ∈Φ+

exprγ ,sγ

(
fγ ⊗ eγ
(fγ , eγ)

)
.
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We conclude this subsection by presenting explicit formulas for
(
fm
γ , emγ

)
in all classical types:

� Type An

(
fm
γij , e

m
γij

)
= (−1)ms−m(m−1)/2 [m]r,s!

(r − s)m
for 1 ≤ i ≤ j ≤ n. (5.14)

� Type Bn

(
fm
γij , e

m
γij

)
= (−1)ms−m(m−1) [m]r2,s2 !(

r2 − s2
)m for 1 ≤ i ≤ j < n,

(
fm
γin , e

m
γin

)
= (−1)ms−m(m−1)/2 [m]r,s!

(r − s)m
for 1 ≤ i ≤ n, (5.15)

(
fm
βij

, emβij

)
= (−1)m[2]2mr,s (rs)

−2m(n−j)s−m(m−1) [m]r2,s2 !(
r2 − s2

)m for 1 ≤ i < j ≤ n.

� Type Cn

(
fm
γij , e

m
γij

)
= (−1)ms−m(m−1)/2 [m]r,s!

(r − s)m
for 1 ≤ i ≤ j ≤ n with (i, j) ̸= (n, n),

(
fm
γnn

, emγnn

)
= (−1)ms−m(m−1) [m]r2,s2 !(

r2 − s2
)m ,

(
fm
βii

, emβii

)
= (−1)m[2]2mr,s s

−m(m−1) [m]r2,s2 !(
r2 − s2

)m for 1 ≤ i < n,

(
fm
βij

, emβij

)
= (−1)m(rs)−m(n−j)s−m(m−1)/2 [m]r,s!

(r − s)m
for 1 ≤ i < j < n. (5.16)

� Type Dn

(
fm
γij , e

m
γij

)
= (−1)ms−m(m−1)/2 [m]r,s!

(r − s)m
for 1 ≤ i ≤ j < n,

(
fm
βij

, emβij

)
= (−1)m(rs)−m(n−j)s−m(m−1)/2 [m]r,s!

(r − s)m
for 1 ≤ i < j ≤ n. (5.17)

5.4 R-matrix computation

We shall now use the factorization formula (5.12) to compute Θ and R̂V V for all classical types.
Throughout this subsection, we will use the more convenient notation (cf. (5.13))

Θγ =
∑
m≥0

1(
fm
γ , emγ

)fm
γ ⊗ emγ for any γ ∈ Φ+, (5.18)

so that equation (5.12) becomes

Θ =

←−∏
γ∈Φ+

Θγ .
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5.4.1 Factorized formula in type An

We start by evaluating the action of {eγ , fγ}γ∈Φ+ on the Ur,s(sln+1)-representation V from
Proposition 3.1.

Lemma 5.15. ρ(eγij ) = Ei,j+1 and ρ(fγij ) = Ej+1,i for any 1 ≤ i ≤ j ≤ n.

Proof. The proof is straightforward and proceeds by induction on the height |γij | = j − i+ 1,
where we use

eγij = eγi,j−1ej −
(
ω′j , ωi . . . ωj−1

)
ejeγi,j−1 ,

fγij = fjfγi,j−1 −
(
ω′i . . . ω

′
j−1, ωj

)−1
fγi,j−1fj

and the explicit Ur,s(sln+1)-action on V , cf. (5.9) and Proposition 3.1. ■

Clearly, ρ(eγij )
2 = ρ(fγij )

2 = 0 for all i ≤ j, so that

Θγij = 1⊗ 1 + (s− r)Ej+1,i ⊗ Ei,j+1

on the Ur,s(sln+1)-representation V ⊗ V . To evaluate Θ, let us first set

Θi = ΘγinΘγi,n−1 · · ·Θγi,i+1Θαi ,

so that

Θ = ΘnΘn−1 · · ·Θ1.

Since Ej+1,i ⊗ Ei,j+1 · Ek+1,i ⊗ Ei,k+1 = 0 for any i ≤ k < j, we thus obtain

Θi = 1⊗ 1 + (s− r)

n∑
j=i+1

Ej+1,i ⊗ Ei,j+1.

Moreover, since Ek+1,j ⊗ Ej,k+1 · Eℓ+1,i ⊗ Ei,ℓ+1 = 0 for any k ≥ j > i and ℓ ≥ i, we get

Θ = Θn · · ·Θ1 = 1⊗ 1 + (s− r)
∑

1≤i<j≤n+1

Eji ⊗ Eij . (5.19)

For type An, the function f satisfying (4.3) can be chosen as follows (see [7, Lemma 4.4]):

f(εi, εj) =


s−1 if i < j,

1 if i = j,

r if i > j.

Combining this formula with the formula (5.19) and the flip map τ , we recover the explicit
formula (4.6) for R̂V V = Θ ◦ f̃ ◦ τ : V ⊗ V → V ⊗ V , thus providing an alternative proof
of Theorem 4.3, and giving a factorization of the R-matrix from [5] into “local” operators,
parametrized by the set of positive roots.

5.4.2 Factorized formula in type Bn

We start by evaluating the action of {eγ , fγ}γ∈Φ+ on the Ur,s(so2n+1)-module V from Proposi-
tion 3.2.
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Lemma 5.16.

(a) For i ≤ j ≤ n, we have

ρ(eγij ) = Ei,j+1 − s2(j−i)E(j+1)′,i′ ,

ρ(fγij ) =

{
Ej+1,i − s2(i−j)(rs)−2Ei′,(j+1)′ if j < n,(
r−1 + s−1

)
(En+1,i − s2(i−n)Ei′,n+1) if j = n.

(b) For i < j ≤ n, we have

ρ(eβij
) = (−1)n+1−j(Eij′ − s2(n−i)r−2(n−j)(rs)Eji′

)
,

ρ(fβij
) = (−1)n+1−j(r−1 + s−1

)2 · s2(j−n)(r2(j−n)Ej′i − s2(i−n)(rs)Ei′j

)
.

Proof. The proof is straightforward and proceeds by an increasing induction on j (from j = i
up to j = n) for the roots γ = γij , and then by a descending induction on j (from j = n
till j = i + 1) for the roots γ = βij . Here, we use the explicit Ur,s(so2n+1)-action on V from
Proposition 3.2, the explicit list of minimal pairs (α, β) as specified in Section 5.2, and finally
the inductive construction (5.9). ■

According to Lemma 5.16 (a), we have ρ(eγij )
2 = ρ(fγij )

2 = 0 for 1 ≤ i ≤ j < n, so that

Θγij = 1⊗ 1

+
(
s2 − r2

)(
Ej+1,i − s2(i−j)(rs)−2Ei′,(j+1)′

)
⊗
(
Ei,j+1 − s2(j−i)E(j+1)′,i′

)
(5.20)

for any 1 ≤ i ≤ j < n. In contrast, for j = n, we have

ρ(eγin)
2 = −s2(n−i)Eii′ , ρ(fγin)

2 = −s2(i−n)(r + s)2(rs)−2Ei′i,

ρ(eγin)
3 = ρ(fγin)

3 = 0.

Therefore, we obtain

Θγin = 1⊗ 1 +
(
s2 − r2

)
(rs)−1

(
En+1,i − s2(i−n)Ei′,n+1

)
⊗
(
Ei,n+1 − s2(n−i)En+1,i′

)
+ r−2s−1

(
r2 − s2

)
(r − s)Ei′i ⊗ Eii′ . (5.21)

According to Lemma 5.16 (b), we also have ρ(eβij
)2 = ρ(fβij

)2 = 0 for all i < j ≤ n, so that

Θβij
= 1⊗ 1

+
(
s2 − r2

)
(rs)−2

(
r2(j−n)Ej′i − s2(i−n)(rs)Ei′j

)
⊗
(
r2(n−j)Eij′ − s2(n−i)(rs)Eji′

)
.

To evaluate Θ, let us first set

Θ′′i = Θβi,i+1
Θβi,i+2

· · ·Θβin
, Θ′i = ΘγinΘγi,n−1 · · ·Θγi,i+1Θαi , Θi = Θ′′iΘ

′
i,

so that

Θ = ΘnΘn−1 · · ·Θ1.
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We will now show by induction on n− k that

Θ(k) := ΘnΘn−1 · · ·Θk

= 1⊗ 1 + c

n∑
i=k

(
r−1s− r2(n−i)s2(i−n)

)
Ei′i ⊗ Eii′

+ c
∑

k≤i<j≤n

(
rsEji ⊗ Eij − r2(j−i)−1sEji ⊗ Ej′i′ − r−1s2(i−j)+1Ei′j′ ⊗ Eij

+ (rs)−1Ei′j′ ⊗ Ej′i′
)

+ c
n∑

i=k

(
En+1,i ⊗ Ei,n+1 − r2(n−i)En+1,i ⊗ En+1,i′ − s2(i−n)Ei′,n+1 ⊗ Ei,n+1

+ Ei′,n+1 ⊗ En+1,i′
)

+ c
∑

k≤i<j≤n

(
(rs)−1Ej′i ⊗ Eij′ − r2(n−i)s2(j−n)Ej′i ⊗ Eji′

)
+ c

∑
k≤i<j≤n

(
−r2(n−j)s2(i−n)Ei′j ⊗ Eij′ + rsEi′j ⊗ Eji′

)
, (5.22)

where c =
(
s2 − r2

)
(rs)−1. For k = 1, this provides the desired formula for Θ = Θ(1).

Let us start by computing a single Θi. First, it is easy to see from (5.20) and (5.21) that the
only non-zero products in ΘγinΘγi,n−1 · · ·Θαi involve 1⊗ 1, and thus

Θ′i = 1⊗ 1 + c
(
r−1s− 1

)
Ei′i ⊗ Eii′

+ c
n∑

j=i+1

(
rsEji ⊗ Eij − rs2(j−i)−1Eji ⊗ Ej′i′ − r−1s2(i−j)+1Ei′j′ ⊗ Eij

+ (rs)−1Ei′j′ ⊗ Ej′i′
)

+ c
(
En+1,i ⊗ Ei,n+1 − s2(n−i)En+1,i ⊗ En+1,i′ − s2(i−n)Ei′,n+1 ⊗ Ei,n+1

+ Ei′,n+1 ⊗ En+1,i′
)
.

For similar reasons, we have

Θ′′i = 1⊗ 1 + c
n∑

j=i+1

(
(rs)−1Ej′i ⊗ Eij′ − r2(j−n)s2(n−i)Ej′i ⊗ Eji′

)
+ c

n∑
j=i+1

(
−r2(n−j)s2(i−n)Ei′j ⊗ Eij′ + rsEi′j ⊗ Eji′

)
.

On the other hand, when computing the product Θ′′iΘ
′
i, there are some non-zero products not

involving 1⊗1, namely cr2(n−j)s2(i−n)Ei′j⊗Eij′ ·crs2(j−i)−1Eji⊗Ej′i′ for i < j ≤ n. The overall
contribution of those equals

c2r2n+1s−2n−1

(
n∑

j=i+1

r−2js2j

)
Ei′i ⊗ Eii′ = c2rs2(i−n)+1[n− i]r2,s2Ei′i ⊗ Eii′

= c
(
1− r2(n−i)s2(i−n)

)
Ei′i ⊗ Eii′ ,

and therefore we have

Θi = Θ′′iΘ
′
i = 1⊗ 1 + c

(
r−1s− r2(n−i)s2(i−n)

)
Ei′i ⊗ Eii′
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+ c
n∑

j=i+1

(
rsEji ⊗ Eij − rs2(j−i)−1Eji ⊗ Ej′i′ − r−1s2(i−j)+1Ei′j′ ⊗ Eij

+ (rs)−1Ei′j′ ⊗ Ej′i′
)

+ c
(
En+1,i ⊗ Ei,n+1 − s2(n−i)En+1,i ⊗ En+1,i′ − s2(i−n)Ei′,n+1 ⊗ Ei,n+1

+ Ei′,n+1 ⊗ En+1,i′
)

+ c

n∑
j=i+1

(
(rs)−1Ej′i ⊗ Eij′ − r2(j−n)s2(n−i)Ej′i ⊗ Eji′

)
+ c

n∑
j=i+1

(
−r2(n−j)s2(i−n)Ei′j ⊗ Eij′ + rsEi′j ⊗ Eji′

)
. (5.23)

In particular, for i = n we get

Θn = 1⊗ 1 + c
(
r−1s− 1

)
Ei′i ⊗ Eii′

+ c
(
En+1,n ⊗ En,n+1 − En+1,n ⊗ En+1,n′ − En′,n+1 ⊗ En,n+1 + En′,n+1 ⊗ En+1,n′

)
,

which agrees with the claimed formula (5.22) when k = n, thus establishing the base of our
induction.

Let us now prove the step of induction in (5.22). It suffices to treat the k = 1 case, due
to the telescopic structure of the action on V and order on Φ+, see Remark 5.10. It thus
remains to evaluate Θ(1) = Θ(2) · Θ1, where Θ(2) is given by (5.22) and Θ1 was just evaluated
above. In addition to the terms of this product that involve 1 ⊗ 1, we get the following extra
summands:(

−c
n∑

i=2

s2(i−n)Ei′,n+1 ⊗ Ei,n+1

)(
−cs2(n−1)En+1,1 ⊗ En+1,1′

)
=
(
r2 − s2

)2 n∑
i=2

r−2s2i−4Ei′1 ⊗ Ei1′ , (5.24)(
−c

∑
2≤i<j≤n

r2(n−i)s2(j−n)Ej′i ⊗ Eji′

)(
−c

n∑
i=2

rs2i−3Ei1 ⊗ Ei′1′

)

= c2
n−1∑
i=2

n∑
j=i+1

r2(n−i)+1s2(j+i−n−1)−1Ej′1 ⊗ Ej1′

= c2
n∑

j=3

(
j−1∑
i=2

r2(n−i)+1s2(j+i−n−1)−1

)
Ej′1 ⊗ Ej1′

=
(
r2 − s2

)2 n∑
j=2

r2(n−j)+1s2(j−n)−1[j − 2]r2,s2Ej′1 ⊗ Ej1′ , (5.25)(
−c

∑
2≤i<j≤n

r2(n−j)s2(i−n)Ei′j ⊗ Eij′

)(
−c

n∑
j=2

rs2j−3Ej1 ⊗ Ej′1′

)

=
(
r2 − s2

)2 n−1∑
i=2

(
n∑

j=i+1

r2(n−j)−1s2(i+j−n−2)−1

)
Ei′1 ⊗ Ei1′

=
(
r2 − s2

)2 n∑
i=2

r−1s4i−2n−3[n− i]r2,s2Ei′1 ⊗ Ei1′ , (5.26)
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c

n∑
i=2

(
r−1s− r2(n−i)s2(i−n)

)
Ei′i ⊗ Eii′

)(
−c

n∑
i=2

rs2(i−1)−1Ei1 ⊗ Ei′1′

)

=
(
r2 − s2

)2 n∑
i=2

(
r2(n−i)−1s4i−2n−5 − r−2s2(i−2)

)
Ei′1 ⊗ Ei1′ , (5.27)(

−c
∑

2≤i<j≤n
r−1s2(i−j)+1Ei′j′ ⊗ Eij

)(
−c

n∑
j=2

r2(j−n)s2(n−1)Ej′1 ⊗ Ej1′

)

=
(
r2 − s2

)2 n−1∑
i=2

(
n∑

j=i+1

r2(j−n−1)−1s2(n+i−j−1)−1

)
Ei′1 ⊗ Ei1′

=
(
r2 − s2

)2 n∑
i=2

r2(i−n)−1s2i−3[n− i]r2,s2Ei′1 ⊗ Ei1′ , (5.28)(
−c

∑
2≤i<j≤n

r2(j−i)−1sEji ⊗ Ej′i′

)(
−c

n∑
i=2

rs2i−3Ei1 ⊗ Ei′1′

)

=
(
r2 − s2

)2 n∑
i=2

n∑
j=i+1

r2(j−i−1)s2(i−2)Ej1 ⊗ Ej′1′

=
(
r2 − s2

)2 n∑
j=3

(
j−1∑
i=2

r2(j−i−1)s2(i−2)

)
Ej1 ⊗ Ej′1′

=
(
r2 − s2

)2 n∑
j=2

[j − 2]r2,s2Ej1 ⊗ Ej′1′ , (5.29)(
−c

n∑
i=2

r2(n−i)En+1,i ⊗ En+1,i′

)(
−c

n∑
i=2

rs2i−3Ei1 ⊗ Ei′1′

)

=
(
r2 − s2

)2( n∑
i=2

r2(n−i)−1s2(i−2)−1

)
En+1,1 ⊗ En+1,1′

=
(
r2 − s2

)2
(rs)−1[n− 1]r2,s2En+1,1 ⊗ En+1,1′ . (5.30)

Thus, the overall contribution of the terms {Ej1 ⊗ Ej′1′}1<j<n+1 into Θ equals

n∑
j=2

(
r2 − s2

)
s2(j−2)Ej1 ⊗ Ej′1′ +

n∑
j=3

(
r2 − s2

)2
[j − 2]r2,s2Ej1 ⊗ Ej′1′

=
(
r2 − s2

) n∑
j=2

r2(j−2)Ej1 ⊗ Ej′1′ ,

where the first summand arises from 1⊗ 1 ·Θ1 and the second from (5.29). Likewise, the overall
coefficient of En+1,1 ⊗ En+1,1′ in Θ is(

r2 − s2
)
(rs)−1s2(n−1) +

(
r2 − s2

)2
(rs)−1[n− 1]r2,s2 =

(
r2 − s2

)
(rs)−1r2(n−1),

where the first summand arises from 1⊗1 ·Θ1 and the second from (5.30). Finally, the remaining
terms (5.24)–(5.28) contribute to the coefficients of {Ej′1 ⊗ Ej1′}2≤j≤n. Combining these with
the corresponding terms from 1⊗ 1 ·Θ1, one eventually arrives at

(
r2 − s2

)
(rs)−1

n∑
i=2

r2(n−1)s2(i−n)Ei′1 ⊗ Ei1′ .
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Thus, (5.24)–(5.30) and their counterparts from 1⊗1 ·Θ1 match the corresponding part in the
right-hand side of (5.22) for k = 1. On the other hand, it is easy to see that the remaining terms
arising from Θ(2) · 1⊗ 1 and 1⊗ 1 ·Θ1 exactly match with the remaining terms in the right-hand
side of (5.22) for k = 1. This completes our proof of the induction step, thus establishing (5.22).

To derive the formula for R̂V V it only remains to compute the values of f from (4.3) on the
weights of V . In accordance with (4.3), we have

f(λ, µ) =
(
ω′µ, ωλ

)−1
,

where we extend the Hopf pairing to the weight lattice as in (2.12). From the formulas (2.17),
the equality εk = αk + · · ·+ αn for 1 ≤ k ≤ n, and the basic properties of the Hopf pairing, we
derive

f(εi, εj) = f(−εi,−εj) =


(rs)−1 if i < j,

r−1s if i = j,

rs if i > j,

(5.31)

while the remaining values are then determined by

f(εi,−εj) = f(−εi, εj) = f(εi, εj)
−1, f(0, 0) = f(0,±εi) = f(±εi, 0) = 1. (5.32)

We also note that if we set εn+1 = 0 and εi′ = −εi for all 1 ≤ i ≤ n, then we obtain

f(εi, εj) = aij for all i ̸= j, j′, (5.33)

where aij are given by (4.8). Combining the formulas (5.31) and (5.32) with the formula (5.22)
for k = 1 and the flip map τ , we recover the explicit formula (4.7) for R̂V V = Θ ◦ f̃ ◦τ : V ⊗V →
V ⊗ V , thus providing an alternative proof of Theorem 4.4.

5.4.3 Factorized formula in type Cn

The calculations in this case are very similar to those for type Bn, so we highlight only the main
points. As before, we start by deriving explicit formulas for the action of {eγ , fγ}γ∈Φ+ on the
Ur,s(sp2n)-representation V from Proposition 3.3.

Lemma 5.17.

(a) For i ≤ j ≤ n, we have

ρ(eγij ) =

{
Ei,j+1 − sj−iE(j+1)′,i′ if j < n,

Ein′ + sn+1−iEni′ if j = n,

ρ(fγij ) =

{
Ej+1,i − si−j(rs)−1Ei′,(j+1)′ if j < n,

(rs)−1En′i + si−n−1Ei′n if j = n.

(b) For 1 ≤ i < n, we have

ρ(eβii
) = sn−i(r + s)Eii′ ,

ρ(fβii
) = si−n

(
r−1 + s−1

)
Ei′i.

(c) For 1 ≤ i < j < n, we have

ρ(eβij
) = (−1)n−j

(
Eij′ + rj−nsn+1−iEji′

)
,

ρ(fβij
) = (−s)j−n

(
rj−n(rs)−1Ej′i + si−n−1Ei′j

)
.
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Similarly to the above treatment of Bn-type, we define

Θi = Θβi,i+1
· · ·Θβi,n−1

ΘγinΘβii
Θγi,n−1 · · ·Θγi,i+1Θαi for 1 ≤ i ≤ n,

where each factor is evaluated through (5.18) by using Lemma 5.17 and formulas (5.16). The
following formula is derived completely analogously to (5.23):

Θi = 1⊗ 1 + c
(
rn−i+1si−n + s

)
Ei′i ⊗ Eii′

+ c

n∑
j=i+1

(
rsEji ⊗ Eij − rsj−iEji ⊗ Ej′i′ − si−j+1Ei′j′ ⊗ Eij + Ei′j′ ⊗ Ej′i′

)
+ c

n∑
j=i+1

(
Ej′i ⊗ Eij′ + rj−nsn+1−iEj′i ⊗ Eji′ + rn−j+1si−nEi′j ⊗ Eij′

+ rsEi′j ⊗ Eji′
)
, (5.34)

where c = (s − r)(rs)−1. Consider the following family of operators Θ(k) = ΘnΘn−1 · · ·Θk, so
that Θ = Θ(1). We claim that Θ(k) is explicitly given by the following formula:

Θ(k) = 1⊗ 1 + c
n∑

i=k

(
rn−i+1si−n + s

)
Ei′i ⊗ Eii′

+ c
∑

k≤i<j≤n

(
rsEji ⊗ Eij − rj−isEji ⊗ Ej′i′ − si−j+1Ei′j′ ⊗ Eij + Ei′j′ ⊗ Ej′i′

)
+ c

∑
k≤i<j≤n

(
Ej′i ⊗ Eij′ + rn+1−isj−nEj′i ⊗ Eji′ + rn−j+1si−nEi′j ⊗ Eij′

+ rsEi′j ⊗ Eji′
)
. (5.35)

The proof proceeds by an induction on n − k, with the base case k = n following from (5.34).
As per the step of induction, we note that when opening brackets in Θ(1) = Θ(2)Θ1, besides for
the summands where one of the terms is 1⊗ 1, we get the following additional terms:

(s− r)
n∑

j=2

rn−1sj−n−1
(
1− (r−1s)j−2

)
Ej′1 ⊗ Ej1′ ,

(s− r)
n∑

j=2

rn−js2j−2−n
(
1− rj−nsn−j

)
Ej′1 ⊗ Ej1′ ,

−(r − s)2
n∑

j=2

sj−3
(
rn−jsj−n + r−1s

)
Ej′1 ⊗ Ej1′ ,

(s− r)

n∑
j=2

rj−n−1sn−1
(
rn−jsj−n − 1

)
Ej′1 ⊗ Ej1′ ,

(s− r)

n∑
j=2

rj−2
(
r2−jsj−2 − 1

)
Ej1 ⊗ Ej′1′ .

Combining these summands with the appropriate terms from 1⊗ 1 ·Θ1 and Θ(2) · 1⊗ 1 matches
precisely the right-hand side of (5.35) for k = 1, thus providing the formula for Θ.

From (2.18), the equality εk = αk + · · ·+ αn−1 +
1
2αn for 1 ≤ k ≤ n, and basic properties of

the Hopf pairing, we derive

f(εi, εj) = f(−εi,−εj) =


(rs)−1/2 if i < j,(
r−1s

)1/2
if i = j,

(rs)1/2 if i > j,

(5.36)
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while the remaining values are then determined by

f(εi,−εj) = f(−εi, εj) = f(εi, εj)
−1. (5.37)

Furthermore, setting εi′ = −εi for all 1 ≤ i ≤ n, we obtain

f(εi, εj) = aij for all i ̸= j, j′, (5.38)

where aij are given by (4.10). Combining the formulas (5.36) and (5.37) with the formula (5.35)
for k = 1 and the flip map τ , we recover the explicit formula (4.9) for R̂V V = Θ ◦ f̃ ◦τ : V ⊗V →
V ⊗ V , thus providing an alternative proof of Theorem 4.5.

5.4.4 Factorized formula in type Dn

As in the previous types, we start by deriving explicit formulas for the action of {eγ , fγ}γ∈Φ+

on the Ur,s(so2n)-representation V from Proposition 3.4.

Lemma 5.18.

(a) For 1 ≤ i ≤ j < n, we have

ρ(eγij ) = Ei,j+1 − sj−iE(j+1)′,i′ ,

ρ(fγij ) = Ej+1,i − si−j(rs)−1Ei′,(j+1)′ .

(b) For 1 ≤ i < j ≤ n, we have

ρ(eβij
) = (−1)n−j

(
(rs)−1Eij′ − rj−nsn−i−1Eji′

)
,

ρ(fβij
) = (−1)n−j

(
(rs)j−nEj′i − si+j+1−2nEi′j

)
.

Similarly to the previous types, we define

Θi = Θβi,i+1
· · ·Θβi,n−1

Θβin
Θγi,n−1Θγi,n−2 · · ·Θγi,i+1Θαi for 1 ≤ i < n,

(in particular, Θn−1 = ΘαnΘαn−1) and derive the following counterpart of the formulas (5.23)
and (5.34):

Θi = 1⊗ 1 + c(s− rn−isi+1−n)Ei′i ⊗ Eii′ (5.39)

+ c

n∑
j=i+1

(rsEji ⊗ Eij − rsj−iEji ⊗ Ej′i′ − si−j+1Ei′j′ ⊗ Eij + Ei′j′ ⊗ Ej′i′)

+ c
n∑

j=i+1

(Ej′i ⊗ Eij′ − rj+1−nsn−iEj′i ⊗ Eji′ − rn−jsi+1−nEi′j ⊗ Eij′ + rsEi′j ⊗ Eji′),

where c = (s− r)(rs)−1. Consider the following family of operators Θ(k) = Θn−1 · · ·Θk, so that
Θ = Θ(1). We claim that Θ(k) is explicitly given by the following formula:

Θ(k) = 1⊗ 1 + c

n∑
i=k

(
s− rn−isi+1−n)Ei′i ⊗ Eii′

+ c
∑

k≤i<j≤n

(
rsEji ⊗ Eij − rj−isEji ⊗ Ej′i′ − si−j+1Ei′j′ ⊗ Eij + Ei′j′ ⊗ Ej′i′

)
+ c

∑
k≤i<j≤n

(
Ej′i ⊗ Eij′ − rn−isj+1−nEj′i ⊗ Eji′ − rn−jsi+1−nEi′j ⊗ Eij′

+ rsEi′j ⊗ Eji′
)
. (5.40)

The proof proceeds by an induction on n − k − 1, with the base case k = n − 1 following
from (5.39). As per the step of induction, we note that when opening brackets in Θ(1) = Θ(2)Θ1,
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besides for the summands where one of the terms is 1 ⊗ 1, we get the following additional
terms:

n∑
j=2

(r − s)rn−2sj−n
(
1− r2−jsj−2

)
Ej′1 ⊗ Ej1′ ,

n∑
j=2

(r − s)rn−j−1s2j−1−n
(
1− rj−nsn−j

)
Ej′1 ⊗ Ej1′ ,

n∑
j=2

(r − s)2r−1sj−2
(
rn−jsj−n − 1

)
Ej′1 ⊗ Ej1′ ,

n∑
j=2

(r − s)rj−nsn−2
(
rn−jsj−n − 1

)
Ej′1 ⊗ Ej1′ ,

n∑
j=2

(r − s)rj−2
(
1− r2−jsj−2

)
Ej1 ⊗ Ej′1′ .

Combining these summands with the appropriate terms from 1⊗ 1 ·Θ1 and Θ(2) · 1⊗ 1 matches
precisely the right-hand side of (5.40) for k = 1, thus providing the formula for Θ.

Since f is again given by (5.36), we recover the explicit formula (4.11) for

R̂V V = Θ ◦ f̃ ◦ τ : V ⊗ V → V ⊗ V,

thus providing an alternative proof of Theorem 4.6.

6 R-matrices with a spectral parameter

In this section, we generalize the previous constructions to the affine setup of two-parameter
quantum affine algebras, which were introduced and studied in the literature case-by-case,
see [14, 18, 22, 23].

6.1 Two-parameter quantum affine algebras and evaluation modules

We start with a uniform definition of Ur,s(ĝ). To this end, let θ ∈ Φ+ be the highest root of g,
so that the new simple root α0 of ĝ is given by α0 = δ − θ. Define the matrix of structural
constants Ω = (Ωij)

n
i,j=0 by

Ωij =
(
ω′i, ωj

)
, Ω0j =

(
ω′−θ, ωj

)
,

Ωi0 =
(
ω′i, ω−θ

)
, Ω00 =

(
ω′−θ, ω−θ

)
for all 1 ≤ i, j ≤ n.

We also recall that the Cartan matrix Ĉ = (cij)
n
i,j=0 for ĝ is given by

cij =
2(αi, αj)

(αi, αi)
, c0j =

2(−θ, αj)

(θ, θ)
,

ci0 =
2(αi,−θ)
(αi, αi)

, c00 = 2 for all 1 ≤ i, j ≤ n.

Thus, Ĉ is the extended Cartan matrix of the Cartan matrix C for g from Section 2.1.

Remark 6.1. For the reader’s convenience, we specify the new values of Ĉ and Ω in classical
types:
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� Type An (n ≥ 2):

Ω00 = rs−1, Ω01 = r−1, Ω0n = s,

Ω10 = s, Ωn0 = r−1, Ω0i = Ωi0 = 1 for 1 < i < n;

c01 = c0n = c10 = cn0 = −1, c0i = ci0 = 0 for 1 < i < n.

� Type Bn (n ≥ 3):

Ω00 = r2s−2, Ω01 = r−2s−2, Ω02 = r−2,

Ω0n = r2s2, Ω10 = r2s2, Ω20 = s2,

Ωn0 = r−2s−2, Ω0i = Ωi0 = 1 for 2 < i < n;

c02 = c20 = −1, c01 = c10 = 0, c0i = ci0 = 0 for 2 < i ≤ n.

� Type Cn (n ≥ 2):

Ω00 = r2s−2, Ω01 = r−2, Ω0n = r2s2,

Ω10 = s2, Ωn0 = r−2s−2, Ω0i = Ωi0 = 1 for 1 < i < n;

c01 = −1, c10 = −2, c0i = ci0 = 0 for 1 < i ≤ n.

� Type Dn (n ≥ 4):

Ω00 = rs−1, Ω01 = r−1s−1, Ω02 = r−1,

Ω0n = r2s2, Ω10 = rs, Ω20 = s,

Ωn0 = r−2s−2, Ω0i = Ωi0 = 1 for 2 < i < n;

c02 = c20 = −1, c01 = c10 = 0, c0i = ci0 = 0 for 2 < i ≤ n.

Definition 6.2. The two-parameter quantum affine algebra Ur,s(ĝ) is the associative K-algebra
generated by

{
ei, fi, ω

±1
i ,
(
ω′i
)±1}n

i=0
∪
{
γ±1, (γ′)±1

}
∪
{
D±1, (D′)±1

}
with the following defin-

ing relations:

D±1 ·D∓1 = 1, (D′)±1 · (D′)∓1 = 1, DD′ = D′D,

[D,ωi] = 0,
[
D,ω′i

]
= 0,

[
D′, ωi

]
= 0,

[
D′, ω′i

]
= 0,

DeiD
−1 = rδ0ii ei, DfiD

−1 = r−δ0ii fi, D′ei
(
D′
)−1

= sδ0ii ei, D′fi
(
D′
)−1

= s−δ0ii fi,

γ = ωδ = ω0ωθ, γ′ = ω′δ = ω′0ω
′
θ are central elements, (6.1)

[ωi, ωj ] =
[
ωi, ω

′
j

]
=
[
ω′i, ω

′
j

]
= 0, ω±1i ω∓1i = 1 =

(
ω′i
)±1(

ω′i
)∓1

, (6.2)

ωiej = Ωjiejωi, ωifj = Ω−1ji fjωi, (6.3)

ω′iej = Ω−1ij ejω
′
i, ω′ifj = Ωijfjω

′
i, (6.4)

eifj − fjei = δij
ωi − ω′i
ri − si

, (6.5)

1−cij∑
k=0

(−1)k
[
1− cij

k

]
ri,si

(risi)
1
2
k(k−1)Ωk

jis
kcij
i e

1−cij−k
i eje

k
i = 0 ∀i ̸= j,

1−cij∑
k=0

(−1)k
[
1− cij

k

]
ri,si

(risi)
1
2
k(k−1)Ωk

jis
kcij
i fk

i fjf
1−cij−k
i = 0 ∀i ̸= j.

(6.6)

Remark 6.3. We note that the relations (2.8) are compatible with (6.6) as Ωjis
cij
i = (rs)⟨αj ,αi⟩.
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It is often more convenient to work with the version of Ur,s(ĝ) without the degree genera-
tors D, D′.

Definition 6.4. Let U ′r,s(ĝ) be the associative K-algebra generated by
{
ei, fi, ω

±1
i ,
(
ω′i
)±1}n

i=0
∪{

γ±1, (γ′)±1
}
with the defining relations (6.1)–(6.6).

We now extend the Ur,s(g)-modules V from Section 3 to U ′r,s(ĝ)-modules V (u) with u ∈ C×,
depending on two additional parameters a, b ∈ C×. We shall further extend them to Ur,s(ĝ)-
modules V (u) with u viewed as an indeterminate. We call the resulting U ′r,s(ĝ)- and Ur,s(ĝ)-
modules as evaluation representations ρa,bu .

Proposition 6.5 (An, n ≥ 1). For any nonzero a, b ∈ C set c = rs · ab. Then the Ur,s(sln+1)-

action ρ on V from Proposition 3.1 can be extended to a U ′r,s(ŝln+1)-action ρa,bu on the vector
space V (u) = V by setting

ρa,bu (x) = ρ(x) for all x ∈
{
ei, fi, ωi, ω

′
i

}n
i=1

and defining the action of e0, f0, ω0, ω
′
0, γ, γ

′ via

ρa,bu (e0) = au · En+1,1, ρa,bu (f0) = bu−1 · E1,n+1, ρa,bu (γ) = c Id = ρa,bu

(
γ′
)
,

ρa,bu (ω0) = c

(
r−1E11 + r−1s−1

n∑
i=2

Eii + s−1En+1,n+1

)
,

ρa,bu

(
ω′0
)
= c

(
s−1E11 + r−1s−1

n∑
i=2

Eii + r−1En+1,n+1

)
.

Proposition 6.6 (Bn, n ≥ 2). For any nonzero a, b ∈ C set c = (rs)2ab. Then the Ur,s(so2n+1)-
action ρ on V from Proposition 3.2 can be extended to a U ′r,s(ŝo2n+1)-action ρa,bu on the vector
space V (u) = V by setting

ρa,bu (x) = ρ(x) for all x ∈
{
ei, fi, ωi, ω

′
i

}n
i=1

and defining the action of e0, f0, ω0, ω
′
0, γ, γ

′ via

ρa,bu (e0) = au ·
(
E1′2 − r2s2E2′1

)
, ρa,bu (f0) = bu−1 ·

(
E21′ − E12′),

ρa,bu (γ) = c Id = ρa,bu (γ′),

ρa,bu (ω0) = c

(
s2E11 + r−2E22 +

n∑
i=3

(
r−2s−2Eii + r2s2Ei′i′

)
+ r2E2′2′

+ s−2E1′1′ + En+1,n+1

)
,

ρa,bu

(
ω′0
)
= c

(
r2E11 + s−2E22 +

n∑
i=3

(
r−2s−2Eii + r2s2Ei′i′

)
+ s2E2′2′

+ r−2E1′1′ + En+1,n+1

)
.

Proposition 6.7 (Cn, n ≥ 2). For any nonzero a, b ∈ C set c = rs · ab. Then the Ur,s(sp2n)-
action ρ on V from Proposition 3.3 can be extended to a U ′r,s(ŝp2n)-action ρa,bu on the vector
space V (u) = V by setting

ρa,bu (x) = ρ(x) for all x ∈
{
ei, fi, ωi, ω

′
i

}n
i=1
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and defining the action of e0, f0, ω0, ω
′
0, γ, γ

′ via

ρa,bu (e0) = au · E1′1, ρa,bu (f0) = bu−1 · E11′ , ρa,bu (γ) = c Id = ρa,bu (γ′),

ρa,bu (ω0) = c

(
r−1sE11 +

n∑
i=2

(
r−1s−1Eii + rsEi′i′

)
+ rs−1E1′1′

)
,

ρa,bu

(
ω′0
)
= c

(
rs−1E11 +

n∑
i=2

(
r−1s−1Eii + rsEi′i′

)
+ r−1sE1′1′

)
.

Proposition 6.8 (Dn, n ≥ 3). For any nonzero a, b ∈ C set c = rs · ab. Then the Ur,s(so2n)-
action ρ on V from Proposition 3.4 can be extended to a U ′r,s

(
ŝo2n

)
-action ρa,bu on the vector

space V (u) = V by setting

ρa,bu (x) = ρ(x) for all x ∈
{
ei, fi, ωi, ω

′
i

}n
i=1

and defining the action of e0, f0, ω0, ω
′
0, γ, γ

′ via

ρa,bu (e0) = au ·
(
E1′2 − rsE2′1

)
, ρa,bu (f0) = bu−1 ·

(
E21′ − E12′),

ρa,bu (γ) = c Id = ρa,bu (γ′),

ρa,bu (ω0) = c

(
sE11 + r−1E22 +

n∑
i=3

(
r−1s−1Eii + rsEi′i′

)
+ rE2′2′ + s−1E1′1′

)
,

ρa,bu

(
ω′0
)
= c

(
rE11 + s−1E22 +

n∑
i=3

(
r−1s−1Eii + rsEi′i′

)
+ sE2′2′ + r−1E1′1′

)
.

These evaluation U ′r,s(ĝ)-modules ρa,bu can be naturally upgraded to Ur,s(ĝ)-modules in a stan-
dard way.

Proposition 6.9. Let u be an indeterminate and redefine the vector space via V (u) = V ⊗C
C
[
u, u−1

]
accordingly. Then, the formulas defining ρa,bu on the generators from Propositions 6.5–

6.8 together with

ρa,bu (D)
(
v ⊗ uk

)
= rk0 · v ⊗ uk, ρa,bu

(
D′
)(
v ⊗ uk

)
= sk0 · v ⊗ uk for all v ∈ V, k ∈ Z

give rise to the same-named action ρa,bu of Ur,s(ĝ) on V (u).

The proofs of all these results are straightforward, cf. our proof of Proposition 3.2.

6.2 Affine R-matrices

Let U≥r,s(ĝ) be the subalgebra of Ur,s(ĝ) generated by
{
ei, ω

±1
i , γ±1, D±1

}n
i=0

and similarly let
U≤r,s(ĝ) be the subalgebra generated by

{
fi, (ω

′
i)
±1, (γ′)±1, (D′)±1

}n
i=0

. Likewise, we define
the subalgebras U

′,≥
r,s (ĝ) and U

′,≤
r,s (ĝ) of U ′r,s(ĝ). We note that the same formulas as in Sec-

tion 2.1 for Ur,s(g) can be used to define the Hopf algebra structures on both Ur,s(ĝ) and U ′r,s(ĝ),
so that U≥r,s(ĝ), U

≤
r,s(ĝ) and U

′,≥
r,s (ĝ), U

′,≤
r,s (ĝ) are also Hopf subalgebras of Ur,s(ĝ) and U ′r,s(ĝ).

Finally, similarly to Proposition 2.5, one has bilinear Hopf pairings

(·, ·) : U≤r,s(ĝ)× U≥r,s(ĝ)→ K,

(·, ·) : U
′,≤
r,s (ĝ)× U

′,≥
r,s (ĝ)→ K. (6.7)
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We note that the second of these pairings is actually degenerate as
(
γ′ − 1, U

′,≥
r,s (ĝ)

)
= 0 =(

U
′,≤
r,s (ĝ), γ − 1

)
. On the other hand

(
which is one of the key reasons to add the genera-

tors D, D′
)
, the first pairing in (6.7) is non-degenerate, and hence allows to realize the two-

parameter quantum affine algebra Ur,s(ĝ) as a Drinfel’d double of its Hopf subalgebras U≤r,s(ĝ),
U≥r,s(ĝ) with respect to the pairing above.

The above discussion yields the universal R-matrix for Ur,s(ĝ), which induces intertwiners
V ⊗W ∼−→W ⊗ V for suitable Ur,s(ĝ)-modules V,W , akin to Section 4.1. In order to not overbur-
den the paper, we choose to skip the detailed presentation on this standard but rather technical
discussion. Instead, we shall now proceed directly to the main goal of this paper–the evaluation
of such intertwiners when V = ρa,bu , W = ρa,bv are the modules from Section 6.1. In this context,
we are looking for Ur,s(ĝ)-module intertwiners R̂(u/v) satisfying

R̂(u/v) ◦
(
ρa,bu ⊗ ρa,bv

)
(x) =

(
ρa,bv ⊗ ρa,bu

)
(x) ◦ R̂(u/v) (6.8)

for all x ∈ Ur,s(ĝ) (equivalently, one can rather request x ∈ U ′r,s(ĝ) in the context of U ′r,s(ĝ)-
modules). According to [25, Proposition 2], it suffices to check the validity of (6.8) only for
x = fi, 0 ≤ i ≤ n. In fact, the space of such solutions is one-dimensional, see [25, Proposition 1],

which is essentially due to the irreducibility of the tensor product ρa,bu ⊗ ρa,bv (which still holds
when viewing them as U ′r,s(ĝ)-modules as long as u, v are generic), in contrast to Proposition 3.9.
As an immediate corollary, see [25, Proposition 3], the operator R(u/v) = R̂(u/v) ◦ τ satisfies
the aforementioned Yang–Baxter relation with a spectral parameter:

R12(v/w)R13(u/w)R23(u/v) = R23(u/v)R13(u/w)R12(v/w),

R̂12(v/w)R̂23(u/w)R̂12(u/v) = R̂23(u/v)R̂12(u/w)R̂23(v/w), (6.9)

with notation as in Section 4.1. We shall now present explicit formulas for such R̂(z) in all
classical types, generalizing [25] for the one-parameter setup.3 We note that the origin of these
formulas will be explained in the next section, where they will be derived through the so-
called Yang–Baxterization technique of [15]. However, once the formulas are guessed, the above
discussions imply that it suffices to check that they satisfy (6.8) for x = fi, 0 ≤ i ≤ n.

We start with the simplest case of A-type (part (b) of which goes back to [27, Section 2]).

Theorem 6.10 (type An).

(a) Let z = u/v. For Ur,s

(
ŝln+1

)
-modules ρa,bu and ρa,bv from Proposition 6.5, the following

operator R̂(z) satisfies (6.8) whenever ab = (rs)−1:

R̂(z) =
(
1− zrs−1

) n+1∑
i=1

Eii ⊗ Eii + (1− z)r
∑
i>j

Eij ⊗ Eji + (1− z)s−1
∑
i<j

Eij ⊗ Eji

+
(
1− rs−1

)∑
i>j

Eii ⊗ Ejj +
(
1− rs−1

)
z
∑
i<j

Eii ⊗ Ejj . (6.10)

(b) The operator R(z) = R̂(z) ◦ τ given explicitly by

R(z) =
(
1− zrs−1

) n+1∑
i=1

Eii ⊗ Eii + (1− z)r
∑
i>j

Eii ⊗ Ejj + (1− z)s−1
∑
i<j

Eii ⊗ Ejj

+
(
1− rs−1

)∑
i>j

Eij ⊗ Eji +
(
1− rs−1

)
z
∑
i<j

Eij ⊗ Eji

satisfies the Yang–Baxter equation with a spectral parameter (6.9).
3We note that a twist of [39] is needed to recover the formulas of [25, Section 3] due to a different coproduct [25,

equation (2.10)] on Uq(ĝ), cf. Remark 6.14.



42 I. Martin and A. Tsymbaliuk

The main results of this section generalize the above theorem to the other classical series.

Theorem 6.11 (type Bn).

(a) Let z = u/v. For Ur,s

(
ŝo2n+1

)
-modules ρa,bu and ρa,bv from Proposition 6.6, the following

operator R̂(z) satisfies (6.8) whenever ab = (rs)−2:

R̂(z) =
(
z − r−2s2

)
(z − ξ)

i ̸=n+1∑
1≤i≤2n+1

Eii ⊗ Eii +

j ̸=i,i′∑
1≤i,j≤2n+1

aij(z)Eij ⊗ Eji

+
(
1− r−2s2

)
(z − ξ)

j ̸=i′∑
i>j

Eii ⊗ Ejj +
(
1− r−2s2

)
z(z − ξ)

j ̸=i′∑
i<j

Eii ⊗ Ejj

+
2n+1∑
i,j=1

bij(z)Ei′j ⊗ Eij′ , (6.11)

where ξ = r−2n+1s2n−1,

aij(z) =

{
r−1s(z − 1)(z − ξ)(rs)−σiσj if i < j, j′ or i > j, j′,

r−1s(z − 1)(z − ξ)(rs)σiσj if j < i < j′ or j′ < i < j,

bij(z) =



(
r−2s2z − ξ

)
(z − 1) if j = i, i ̸= n+ 1,

r−1s(z − 1)(z − ξ) +
(
r−2s2 − 1

)
(ξ − 1)z if i = j = n+ 1,(

r−2s2 − 1
)(
ξtit
−1
j (z − 1)− δij′(z − ξ)

)
if i < j,(

r−2s2 − 1
)
z
(
tit
−1
j (z − 1)− δij′(z − ξ)

)
if i > j,

with ti, σi precisely as in (4.8).

(b) The operator R(z) = R̂(z) ◦ τ is a solution of the Yang–Baxter equation with a spectral
parameter (6.9).

Theorem 6.12 (type Cn).

(a) Let z = u/v. For Ur,s

(
ŝp2n

)
-modules ρa,bu and ρa,bv from Proposition 6.7, the following

operator R̂(z) satisfies (6.8) whenever ab = (rs)−1:

R̂(z) =
(
z − r−1s

)
(z − ξ)

2n∑
i=1

Eii ⊗ Eii +

j ̸=i,i′∑
1≤i,j≤2n

aij(z)Eij ⊗ Eji

+
(
1− r−1s

)
(z − ξ)

j ̸=i′∑
i>j

Eii ⊗ Ejj +
(
1− r−1s

)
z(z − ξ)

j ̸=i′∑
i<j

Eii ⊗ Ejj

+

2n∑
i,j=1

bij(z)Ei′j ⊗ Eij′ , (6.12)

where ξ = r−n−1sn+1,

aij(z) =

{
r−1/2s1/2(z − 1)(z − ξ)(rs)−

1
2
σiσj if i < j, j′ or i > j, j′,

r−1/2s1/2(z − 1)(z − ξ)(rs)
1
2
σiσj if j < i < j′ or j′ < i < j,

bij(z) =


(
r−1sz − ξ

)
(z − 1) if j = i,(

r−1s− 1
)(
ξtit
−1
j (z − 1)− δij′(z − ξ)

)
if i < j,(

r−1s− 1
)
z
(
tit
−1
j (z − 1)− δij′(z − ξ)

)
if i > j,

with ti, σi precisely as in (4.10).
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(b) The operator R(z) = R̂(z) ◦ τ is a solution of the Yang–Baxter equation with a spectral
parameter (6.9).

Theorem 6.13 (type Dn).

(a) Let z = u/v. For Ur,s

(
ŝo2n

)
-modules ρa,bu and ρa,bv from Proposition 6.8, the following

operator R̂(z) satisfies (6.8) whenever ab = (rs)−1:

R̂(z) =
(
z − r−1s

)
(z − ξ)

2n∑
i=1

Eii ⊗ Eii +

j ̸=i,i′∑
1≤i,j≤2n

aij(z)Eij ⊗ Eji

+
(
1− r−1s

)
(z − ξ)

j ̸=i′∑
i>j

Eii ⊗ Ejj +
(
1− r−1s

)
z(z − ξ)

j ̸=i′∑
i<j

Eii ⊗ Ejj

+

2n∑
i,j=1

bij(z)Ei′j ⊗ Eij′ , (6.13)

where ξ = r−n+1sn−1,

aij(z) =

{
r−1/2s1/2(z − 1)(z − ξ)(rs)−

1
2
σiσj if i < j, j′ or i > j, j′,

r−1/2s1/2(z − 1)(z − ξ)(rs)
1
2
σiσj if j < i < j′ or j′ < i < j,

bij(z) =


(
r−1sz − ξ

)
(z − 1) if j = i,(

r−1s− 1
)(
ξtit
−1
j (z − 1)− δij′(z − ξ)

)
if i < j,(

r−1s− 1
)
z
(
tit
−1
j (z − 1)− δij′(z − ξ)

)
if i > j,

with ti, σi precisely as in (4.12).

(b) The operator R(z) = R̂(z) ◦ τ is a solution of the Yang–Baxter equation with a spectral
parameter (6.9).

Remark 6.14. The careful reader may have noticed that for r = q and s = q−1, the for-
mula (6.11) does not precisely match with the corresponding R-matrix of [25]. This discrepancy
occurs because [25] uses a coproduct ∆′ on Uq(g) that differs from the more standard ∆ of [24].
One may check that

∆′(x) = f̃1/2∆(x)f̃−1/2 for all x ∈ Uq(g),

where both sides are regarded as operators on V ⊗W for any finite-dimensional (type 1) Uq(g)-
modules V and W (see [24, Chapter 7] for the notation) and f̃ denotes the r = q, s = q−1

specialization of the corresponding map from Section 4.1. Using this relationship, one may then
show that

R̂′ = f̃1/2R̂f̃−1/2

is the corresponding intertwiner relative to the coproduct ∆′ of [25]. The Yang–Baxterization
results of Section 7, then imply that the one-parameter specialization of our (6.11)–(6.13) should
be related to the corresponding formulas in [25] via conjugation by f̃−1/2. The latter can be
verified directly case-by-case.
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6.3 Proofs of explicit formulas

We shall now present the proofs of the theorems from the previous subsection. We start with
A-type.

Proof of Theorem 6.10. We shall only prove (a), since (b) follows from it (see also our dis-
cussion in Section 7).

As follows from Section 7, the operator R̂
(
uv−1

)
of (6.10) is a linear combination of R̂

from (4.6) and its inverse R̂−1, hence it satisfies (6.8) for x = ei, fi, 1 ≤ i ≤ n. For the
remaining generators, it will be helpful to record the explicit action of R̂

(
uv−1

)
on the basis

vectors vi ⊗ vj of V (u)⊗ V (v):

R̂
(
uv−1

)
vi ⊗ vj =


(
1− uv−1rs−1

)
vi ⊗ vi if i = j,(

1− rs−1
)
vi ⊗ vj + s−1(1− uv−1)vj ⊗ vi if i > j,

uv−1
(
1− rs−1

)
vi ⊗ vj + r(1− uv−1)vj ⊗ vi if i < j.

(6.14)

In particular, R̂
(
uv−1

)
preserves the weight subspaces, so that (6.8) holds also for x = ωi, ω

′
i,

0 ≤ i ≤ n.

We shall now verify (6.8) for x = e0. First, we note that

a−1(ρu ⊗ ρv)(e0)(vi ⊗ vj) =



0 if i ̸= 1, j ̸= 1,

uvn+1 ⊗ vj if i = 1, j ̸= 1,

uvn+1 ⊗ v1 + vr−1v1 ⊗ vn+1 if i = j = 1,

vs−1vn+1 ⊗ vn+1 if i = n+ 1, j = 1,

vr−1s−1vi ⊗ vn+1 if i ̸= 1, n+ 1, j = 1,

(6.15)

and we have a similar formula for a−1(ρv⊗ρu)(e0)(vi⊗vj) with u and v interchanged. As short-
hand, we shall use the notation Euv and Evu to denote the operators a−1(ρu ⊗ ρv)(e0) and
a−1(ρv ⊗ ρu)(e0), respectively. According to (6.14) and (6.15), we clearly have

R̂
(
uv−1

)
(Euv(vi ⊗ vj)) = 0 = Evu

(
R̂
(
uv−1

)
(vi ⊗ vj)

)
for i, j ̸= 1.

We now consider the remaining cases:

� If i = 1 and j ̸= 1, n+ 1, then

R̂
(
uv−1

)
(Euv(v1 ⊗ vj)) = s−1u

(
1− uv−1

)
vj ⊗ vn+1 + u

(
1− rs−1

)
vn+1 ⊗ vj ,

which is equal to

EvuR̂
(
uv−1

)
(v1 ⊗ vj) = Evu

(
r
(
1− uv−1

)
vj ⊗ v1 + uv−1

(
1− rs−1

)
v1 ⊗ vj

)
= s−1u

(
1− uv−1

)
vj ⊗ vn+1 + u

(
1− rs−1

)
vn+1 ⊗ vj .

� If i = 1 and j = n+ 1, then

R̂
(
uv−1

)
(Euv(v1 ⊗ vn+1)) = u

(
1− uv−1rs−1

)
vn+1 ⊗ vn+1,

which is equal to

EvuR̂
(
uv−1

)
(v1 ⊗ vn+1) = rs−1u

(
1− uv−1

)
vn+1 ⊗ vn+1 + u

(
1− rs−1

)
vn+1 ⊗ vn+1

= u
(
1− uv−1rs−1

)
vn+1 ⊗ vn+1.
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� If i = j = 1, then we have

R̂
(
uv−1

)
(Euv(v1 ⊗ v1)) = R̂

(
uv−1

)(
uvn+1 ⊗ v1 + vr−1v1 ⊗ vn+1

)
= us−1

(
1− uv−1

)
v1 ⊗ vn+1 + u

(
1− rs−1

)
vn+1 ⊗ v1

+ ur−1
(
1− rs−1

)
v1 ⊗ vn+1 + v

(
1− uv−1

)
vn+1 ⊗ v1

= ur−1
(
1− uv−1rs−1

)
v1 ⊗ vn+1 +

(
v − urs−1

)
vn+1 ⊗ v1,

which is equal to

EvuR̂
(
uv−1

)
(v1 ⊗ v1) = Evu

(
1− uv−1rs−1

)
v1 ⊗ v1

=
(
v − urs−1

)
vn+1 ⊗ v1 + ur−1

(
1− uv−1rs−1

)
v1 ⊗ vn+1.

� If i = n+ 1 and j = 1, then

R̂
(
uv−1

)
(Euv(vn+1 ⊗ v1)) = vs−1

(
1− uv−1rs−1

)
vn+1 ⊗ vn+1,

which is equal to

EvuR̂
(
uv−1

)
(vn+1 ⊗ v1) = Evu

(
s−1
(
1− uv−1

)
v1 ⊗ vn+1 +

(
1− rs−1

)
vn+1 ⊗ v1

)
= vs−1

(
1− uv−1

)
vn+1 ⊗ vn+1 + us−1

(
1− rs−1

)
vn+1 ⊗ vn+1

= vs−1
(
1− uv−1rs−1

)
vn+1 ⊗ vn+1.

� Finally, if i ̸= 1, n+ 1 and j = 1, then

R̂
(
uv−1

)
(Euv(vi ⊗ v1)) = vs−1

(
1− uv−1

)
vn+1 ⊗ vi + ur−1s−1

(
1− rs−1

)
vi ⊗ vn+1,

which is equal to

EvuR̂
(
uv−1

)
(vi ⊗ v1) = Evu

(
s−1
(
1− uv−1

)
v1 ⊗ vi +

(
1− rs−1

)
vi ⊗ v1

)
= vs−1

(
1− uv−1

)
vn+1 ⊗ vi + ur−1s−1

(
1− rs−1

)
vi ⊗ vn+1.

This completes our verification of (6.8) for x = e0.
The verification for x = f0 is completely analogous. This completes the proof of Theo-

rem 6.10 (a). ■

Let us now present the proof of Theorem 6.11 (the proofs of Theorems 6.12 and 6.13 are
completely analogous).

Proof of Theorem 6.11. As follows from Section 7, the operator R̂
(
uv−1

)
of (6.11) is a linear

combination of R̂ from (4.7), its inverse R̂−1, and the identity operator Id. Hence, it satisfies (6.8)
for x = ei, fi, 1 ≤ i ≤ n. Moreover, R̂

(
uv−1

)
clearly preserves the weight subspaces, so it also

satisfies (6.8) for x = ωi, ω
′
i, 0 ≤ i ≤ n.

We shall now verify (6.8) for x = f0, proceeding similarly to our proof of Lemma 4.11.
To this end, let Fuv = b−1

(
ρa,bu ⊗ ρa,bv

)
(f0) and Fvu = b−1

(
ρa,bv ⊗ ρa,bu

)
(f0), where we assume that

ab = (rs)−2, so that c = (rs)2ab = 1. Then we need to verify that

R̂
(
uv−1

)
Fuv = FvuR̂

(
uv−1

)
∈ End(V ⊗ V ).

First, let us record the explicit formula for Fuv ∈ End(V ⊗ V ):

Fuv = v−1 · 1⊗ E21′ − v−1 · 1⊗ E12′ + u−1r2E21′ ⊗ E11 + u−1s−2E21′ ⊗ E22



46 I. Martin and A. Tsymbaliuk

+ u−1s2E21′ ⊗ E2′2′ + u−1r−2E21′ ⊗ E1′1′ + u−1E21′ ⊗ En+1,n+1

+

n∑
i=3

(
u−1(rs)−2E21′ ⊗ Eii + u−1(rs)2E21′ ⊗ Ei′i′

)
− u−1r2E12′ ⊗ E11

− u−1s−2E12′ ⊗ E22 − u−1s2E12′ ⊗ E2′2′ − u−1r−2E12′ ⊗ E1′1′

− u−1E12′ ⊗ En+1,n+1 −
n∑

i=3

(
u−1(rs)−2E12′ ⊗ Eii + u−1(rs)2E12′ ⊗ Ei′i′

)
,

while Fvu is given by the same formula with u and v interchanged. As in the proof of Lemma 4.11,
it will be helpful to break the operator R̂

(
uv−1

)
from (6.11) into the following six terms:

R1

(
uv−1

)
=
(
uv−1 − r−2s2

)(
uv−1 − ξ

) i ̸=n+1∑
1≤i≤2n+1

Eii ⊗ Eii

+
(
r−1s

(
uv−1 − 1

)(
uv−1 − ξ

)
+
(
r−2s2 − 1

)
(ξ − 1)uv−1

)
En+1,n+1 ⊗ En+1,n+1,

R2

(
uv−1

)
=
(
r−2s2uv−1 − ξ

)(
uv−1 − 1

) i ̸=n+1∑
1≤i≤2n+1

Ei′i ⊗ Eii′ ,

R3

(
uv−1

)
=

j ̸=i,i′∑
1≤i,j≤2n+1

aij
(
uv−1

)
Eij ⊗ Eji,

R4

(
uv−1

)
=
(
1− r−2s2

)(
uv−1 − ξ

) j ̸=i′∑
i>j

Eii ⊗ Ejj ,

R5

(
uv−1

)
=
(
1− r−2s2

)
uv−1

(
uv−1 − ξ

) j ̸=i′∑
i<j

Eii ⊗ Ejj ,

R6

(
uv−1

)
=

i ̸=j∑
1≤i,j≤2n+1

bij
(
uv−1

)
Ei′j ⊗ Eij′ .

Then a direct computation yields

R1

(
uv−1

)
Fuv = v−1

(
uv−1 − r−2s2

)(
uv−1 − ξ

)
E22 ⊗ E21′

− v−1
(
uv−1 − r−2s2

)(
uv−1 − ξ

)
E11 ⊗ E12′

+ u−1s−2
(
uv−1 − r−2s2

)(
uv−1 − ξ

)
E21′ ⊗ E22

− u−1r2
(
uv−1 − r−2s2

)(
uv−1 − ξ

)
E12′ ⊗ E11,

FvuR1

(
uv−1

)
= u−1

(
uv−1 − r−2s2

)(
uv−1 − ξ

)
E1′1′ ⊗ E21′

− u−1
(
uv−1 − r−2s2

)(
uv−1 − ξ

)
E2′2′ ⊗ E12′

+ v−1r−2
(
uv−1 − r−2s2

)(
uv−1 − ξ

)
E21′ ⊗ E1′1′

− v−1s2
(
uv−1 − r−2s2

)(
uv−1 − ξ

)
E12′ ⊗ E2′2′ ,

R2

(
uv−1

)
Fuv = v−1

(
r−2s2uv−1 − ξ

)(
uv−1 − 1

)
E22′ ⊗ E2′1′

− v−1
(
r−2s2uv−1 − ξ

)(
uv−1 − 1

)
E11′ ⊗ E1′2′

+ u−1s2
(
r−2s2uv−1 − ξ

)(
uv−1 − 1

)
E2′1′ ⊗ E22′

− u−1r−2
(
r−2s2uv−1 − ξ

)(
uv−1 − 1

)
E1′2′ ⊗ E11′ ,

FvuR2

(
uv−1

)
= u−1

(
r−2s2uv−1 − ξ

)(
uv−1 − 1

)
E11′ ⊗ E21

− u−1
(
r−2s2uv−1 − ξ

)(
uv−1 − 1

)
E22′ ⊗ E12
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+ v−1r2
(
r−2s2uv−1 − ξ

)(
uv−1 − 1

)
E21 ⊗ E11′

− v−1s−2
(
r−2s2uv−1 − ξ

)(
uv−1 − 1

)
E12 ⊗ E22′ ,

R3

(
uv−1

)
Fuv − FvuR3

(
uv−1

)
= s2v−1

(
uv−1 − 1

)(
uv−1 − ξ

)
E21 ⊗ E11′ + r−2v−1

(
uv−1 − 1

)(
uv−1 − ξ

)
E21′ ⊗ E1′1′

− r−2v−1
(
uv−1 − 1

)(
uv−1 − ξ

)
E12 ⊗ E22′ − s2v−1

(
uv−1 − 1

)(
uv−1 − ξ

)
E12′ ⊗ E2′2′

+ u−1
(
uv−1 − 1

)(
uv−1 − ξ

)
E11′ ⊗ E21 + r−2s2u−1

(
uv−1 − 1

)(
uv−1 − ξ

)
E1′1′ ⊗ E21′

− r−2u−1
(
uv−1 − 1

)(
uv−1 − ξ

)
E21′ ⊗ E22 − s2u−1

(
uv−1 − 1

)(
uv−1 − ξ

)
E2′1′ ⊗ E22′

− u−1
(
uv−1 − 1

)(
uv−1 − ξ

)
E22′ ⊗ E12 − r−2s2u−1

(
uv−1 − 1

)(
uv−1 − ξ

)
E2′2′ ⊗ E12′

+ s2u−1
(
uv−1 − 1

)(
uv−1 − ξ

)
E12′ ⊗ E11 + r−2u−1

(
uv−1 − 1

)(
uv−1 − ξ

)
E1′2′ ⊗ E11′

− v−1
(
uv−1 − 1

)(
uv−1 − ξ

)
E22 ⊗ E21′ − r−2s2v−1

(
uv−1 − 1

)(
uv−1 − ξ

)
E22′ ⊗ E2′1′

+ v−1
(
uv−1 − 1

)(
uv−1 − ξ

)
E11 ⊗ E12′ + v−1r−2s2

(
uv−1 − 1

)(
uv−1 − ξ

)
E11′ ⊗ E1′2′ ,

FvuR5

(
uv−1

)
−R4

(
uv−1

)
Fuv

=
(
r−2s2 − 1

)(
uv−1 − ξ

)
v−1E1′1′ ⊗ E21′ +

(
1− r−2s2

)(
uv−1 − ξ

)
v−1E22 ⊗ E21′

+
(
1− r−2s2

)(
uv−1 − ξ

)
v−1E2′2′ ⊗ E21′ +

(
1− r−2s2

)(
uv−1 − ξ

)
v−1E22 ⊗ E12′

+
(
1− r−2s2

)(
uv−1 − ξ

)
v−1E2′2′ ⊗ E12′ +

(
r−2s2 − 1

)(
uv−1 − ξ

)
v−1E11 ⊗ E12′

+
(
s2 − r2

)(
uv−1 − ξ

)
u−1E21′ ⊗ E11 +

(
r−4s2 − r−2

)(
uv−1 − ξ

)
uv−2E12′ ⊗ E1′1′ ,

FvuR4

(
uv−1

)
−R5

(
uv−1

)
Fuv

=
(
r−2s2 − 1

)(
uv−1 − ξ

)
uv−2E11 ⊗ E21′ +

(
r−4s2 − r−2

)(
uv−1 − ξ

)
v−1E21′ ⊗ E1′1′

+
(
s−2 − r−2

)(
uv−1 − ξ

)
v−1E12′ ⊗ E22 +

(
s2 − r−2s4

)(
uv−1 − ξ

)
v−1E12′ ⊗ E2′2′

+
(
r−2s2 − 1

)(
uv−1 − ξ

)
u−1E1′1′ ⊗ E12′ +

(
s−2 − r−2

)(
uv−1 − ξ

)
v−1E21′ ⊗ E22

+
(
s2 − r−2s4

)(
uv−1 − ξ

)
v−1E21′ ⊗ E2′2′ +

(
s2 − r2

)(
uv−1 − ξ

)
v−1E12′ ⊗ E11,

R6

(
uv−1

)
Fuv

=
(
r−4s2 − r−2

)(
uv−1 − 1

)
v−1E1′2′ ⊗ E11′ −

(
r−2s2 − 1

)(
uv−1 − 1

)
v−1ξE22′ ⊗ E2′1′

−
(
r−2s2 − 1

)(
uv−1 − ξ

)
v−1E2′2′ ⊗ E21′ −

(
r−2s4 − s2

)(
uv−1 − ξ

)
v−1E21′ ⊗ E2′2′

−
(
r−2s4 − s2

)(
uv−1 − 1

)
v−1E2′1′ ⊗ E22′ +

(
r−2s2 − 1

)(
uv−1 − 1

)
ξv−1E11′ ⊗ E1′2′

−
(
r−2s2 − 1

)(
uv−1 − 1

)(
uv−1 − ξ

)
u−1E1′1′ ⊗ E12′

+
(
r−2s2 − 1

)(
uv−1 − ξ

)
v−1E1′1′ ⊗ E12′

+
(
r−4s2 − r−2

)(
uv−1 − 1

)(
uv−1 − ξ

)
v−1E12′ ⊗ E1′1′

+
(
r−4s2 − r−2

)(
uv−1 − ξ

)
v−1E12′ ⊗ E1′1′ ,

FvuR6

(
uv−1

)
=
(
r2 − s2

)(
uv−1 − ξ

)
u−1E21′ ⊗ E11 +

(
r−2s2 − 1

)(
uv−1 − 1

)
v−1E22′ ⊗ E12

+
(
r−2s2 − 1

)(
uv−1 − ξ

)
v−1E22 ⊗ E12′ +

(
r2 − s2

)(
uv−1 − 1

)
ξv−1E21 ⊗ E11′

+
(
r−2 − s−2

)(
uv−1 − ξ

)
v−1E12′ ⊗ E22 +

(
r−2 − s−2

)(
uv−1 − 1

)
ξv−1E12 ⊗ E22′

−
(
r−2s2 − 1

)(
uv−1 − 1

)
v−1E11′ ⊗ E21 −

(
r−2s2 − 1

)(
uv−1 − ξ

)
uv−2E11 ⊗ E21′ .

Combining the expressions above, we get

R3

(
uv−1

)
Fuv − FvuR3

(
uv−1

)
+R1

(
uv−1

)
Fuv (6.16)

+R2

(
uv−1

)
Fuv − FvuR1

(
uv−1

)
− FvuR2

(
uv−1

)
=
(
1− r−2s2

)(
uv−1 − ξ

)
v−1E22 ⊗ E21′ +

(
r−2s2 − 1

)(
uv−1 − ξ

)
v−1E11 ⊗ E12′
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+
(
s−2 − r−2

)(
uv−1 − ξ

)
v−1E21′ ⊗ E22 +

(
s2 − r2

)(
uv−1 − ξ

)
v−1E12′ ⊗ E11

+
(
r−2s2 − 1

)(
uv−1 − 1

)
ξv−1E22′ ⊗ E2′1′ +

(
1− r−2s2

)(
uv−1 − 1

)
ξv−1E11′ ⊗ E1′2′

+
(
r−2s4 − s2

)(
uv−1 − 1

)
v−1E2′1′ ⊗ E22′ +

(
r−2 − r−4s2

)(
uv−1 − 1

)
v−1E1′2′ ⊗ E11′

+
(
r−2s2 − 1

)(
uv−1 − ξ

)
v−1E1′1′ ⊗ E21′ +

(
1− r−2s2

)(
uv−1 − ξ

)
v−1E2′2′ ⊗ E12′

+
(
r−4s2 − r−2

)(
uv−1 − ξ

)
v−1E21′ ⊗ E1′1′ +

(
s2 − r−2s4

)(
uv−1 − ξ

)
v−1E12′ ⊗ E2′2′

+
(
1− r−2s2

)(
uv−1 − 1

)
v−1E11′ ⊗ E21 +

(
r−2s2 − 1

)(
uv−1 − 1

)
v−1E22′ ⊗ E12

+
(
r2 − s2

)(
uv−1 − 1

)
ξv−1E21 ⊗ E11′ +

(
r−2 − s−2

)(
uv−1 − 1

)
ξv−1E12 ⊗ E22′

and (
FvuR5

(
uv−1

)
−R4

(
uv−1

)
Fuv

)
+
(
FvuR4

(
uv−1

)
−R5

(
uv−1

)
Fuv

)
(6.17)

+ FvuR6

(
uv−1

)
−R6

(
uv−1

)
Fuv

=
(
r−2s2 − 1

)(
uv−1 − ξ

)
v−1E1′1′ ⊗ E21′ +

(
1− r−2s2

)(
uv−1 − ξ

)
v−1E22 ⊗ E21′

+
(
1− r−2s2

)(
uv−1 − ξ

)
v−1E2′2′ ⊗ E12′ +

(
r−2s2 − 1

)(
uv−1 − ξ

)
v−1E11 ⊗ E12′

+
(
r−4s2 − r−2

)(
uv−1 − ξ

)
v−1E21′ ⊗ E1′1′ +

(
s2 − r−2s4

)(
uv−1 − ξ

)
v−1E12′ ⊗ E2′2′

+
(
s−2 − r−2

)(
uv−1 − ξ

)
v−1E21′ ⊗ E22 +

(
s2 − r2

)(
uv−1 − ξ

)
v−1E12′ ⊗ E11

+
(
r−2s2 − 1

)(
uv−1 − 1

)
v−1E22′ ⊗ E12 +

(
r2 − s2

)(
uv−1 − 1

)
ξv−1E21 ⊗ E11′

+
(
r−2 − s−2

)(
uv−1 − 1

)
ξv−1E12 ⊗ E22′ +

(
1− r−2s2

)(
uv−1 − 1

)
v−1E11′ ⊗ E21

+
(
r−2 − r−4s2

)(
uv−1 − 1

)
v−1E1′2′ ⊗ E11′ +

(
r−2s2 − 1

)(
uv−1 − 1

)
ξv−1E22′ ⊗ E2′1′

+
(
r−2s4 − s2

)(
uv−1 − 1

)
v−1E2′1′ ⊗ E22′ +

(
1− r−2s2

)(
uv−1 − 1

)
ξv−1E11′ ⊗ E1′2′ .

The right-hand sides of (6.16) and (6.17) are clearly equal, which completes the proof of (6.8)
for x = f0.

In the same way, one can verify (6.8) for x = e0 (although according to [25], it is actually
sufficient to check (6.8) only for x = fi). This completes the proof of part (a) of Theorem 6.11.
The proof of part (b) actually follows from (a), as in [25, Proposition 3]. ■

Remark 6.15. Similarly to Remark 4.12, we note that the above proofs of Theorems 6.11–6.13
are quite elementary, but they require knowing the correct formulas for R̂(z) at the first place.
In the next section, we present the origin of these formulas, by using the Yang–Baxterization
technique of [15].

7 Yang–Baxterization

In this last section, we present a natural derivation of the rather complicated formulas (6.10)–
(6.13) from their finite counterparts (4.6), (4.7), (4.9) and (4.11). This is based on a so-called
Yang–Baxterization technique of [15], which produces R̂(z) satisfying (6.9) from R̂ satisfy-
ing (4.5) when the latter has 2 or 3 eigenvalues.

Yang–Baxterization in A-type. For a uniform exposition, we start by recalling the deriva-
tion of (6.10) via that technique. As noted in [5], the R-matrix R̂ of (4.6) is diagonalizable with
two eigenvalues λ1 = −rs−1, λ2 = 1, so that

R̂−1 = −λ−11 λ−12 R̂+
(
λ−11 + λ−12

)
Id. (7.1)

In that setup, the Yang–Baxterization of [15, equation (3.15)] produces the following solution
of (6.9):

R̂(z) = λ−12 R̂+ zλ1R̂
−1. (7.2)
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Plugging explicit formulas for R̂, R̂−1 from (4.6) and (7.1) into the right-hand side of (7.2),
we derive precisely the operator (6.10).

Yang–Baxterization in BCD-types. Let us treat the other three classical series. To this
end, we recall that the R-matrices R̂ of (4.7), (4.9) and (4.11) have three distinct eigenvalues λ1,
λ2, λ3, in accordance with Lemmas 4.8, 4.9 and 4.10. In that setup, the Yang–Baxterization
of [15, equations (3.29) and (3.31)] produces the following two solutions to (6.9):

R̂(z) = λ1z(z − 1)R̂−1 +

(
1 +

λ1

λ2
+

λ1

λ3
+

λ2

λ3

)
z Id− 1

λ3
(z − 1)R̂, (7.3)

R̂(z) = λ1z(z − 1)R̂−1 +

(
1 +

λ1

λ2
+

λ1

λ3
+

λ2
1

λ2λ3

)
z Id− λ1

λ2λ3
(z − 1)R̂, (7.4)

provided that R̂ satisfies the additional relations of [15, equation (3.27)] (cf. correction [15,
equation (A.9)]), which, in particular, hold whenever R̂ is a representation of a Birman–Wenzl
algebra.

Remark 7.1. For the purpose of the present section, we shall not really need to verify these
additional relations, since according to Theorems 6.11–6.13 the constructed R̂(z) do manifestly
satisfy the relation (6.9).

To apply formulas above, it remains to evaluate R̂−1. To this end, we consider the C-algebra
involution

σ : Ur,s(g)→ Ur,s(g) (7.5)

given by

ei 7→ ei, fi 7→ fi, ωi 7→ ω′i, ω′i 7→ ωi, r 7→ s, s 7→ r.

Evoking the notation (4.2), we define

Θ =
∑
µ≥0

Θµ with Θµ = (σ ⊗ σ)(Θµ) for all µ.

We also introduce another coproduct homomorphism ∆: Ur,s(g)→ Ur,s(g)⊗ Ur,s(g) via

∆ = (σ ⊗ σ) ◦∆ ◦ σ−1.

Then, for any finite-dimensional Ur,s(g)-modules V and W , we have

∆(u) ◦Θ = Θ ◦∆(u) : V ⊗W → V ⊗W for all u ∈ Ur,s(g),

cf. [7, Lemma 4.10] and [9, Lemma 3.3]. Applying σ ⊗ σ to the equality above, we then
get ∆(σ(u))Θ = Θ∆(σ(u)). Since σ is an automorphism, the last equality can be written
as ∆(u)Θ = Θ∆(u) for any u ∈ Ur,s(g). Let us now also show that ∆(u)f̃ = f̃∆op(u) on V ⊗W .
It suffices to verify this formula when u is one of the generators. For u = ωi or ω

′
i, this is obvious.

For u = ei and any v ∈ V [λ], w ∈ V [µ]:

∆(ei)f̃(v ⊗ w) = f(λ, µ)
(
eiv ⊗ w +

(
ω′i, ωλ

)−1
v ⊗ eiw

)
and

f̃(∆op(ei)(v ⊗ w)) = f(λ, µ+ αi)v ⊗ eiw + f(λ+ αi, µ)
(
ω′µ, ωi

)
eiv ⊗ w,
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which are equal due to the properties (4.3) satisfied by f . The proof for u = fi is completely
analogous. Putting all of this together, we find

τ ◦ f̃−1 ◦Θ ◦∆(u) = τ ◦ f̃−1 ◦∆(u) ◦Θ = τ ◦∆op(u) ◦ f̃−1 ◦Θ = ∆(u) ◦ τ ◦ f̃−1 ◦Θ

as linear maps V ⊗W →W ⊗ V . Thus R = τ ◦ f̃−1 ◦Θ: V ⊗W →W ⊗ V is a Ur,s(g)-module
isomorphism.

Specializing now to the case where V = W is one of the representations from Propositions 3.2–
3.4, one can easily see from the defining formulas that ρ(σ(u)) = σ̃(ρ(u)) for any u ∈ Ur,s(g).
Here, we regard ρ(u) as an element of MatN (K), and σ̃ : MatN (K)→ MatN (K) is the C-algebra
automorphism defined by

σ̃(rksℓEij) = rℓskEij ∀k, ℓ ∈ Z, 1 ≤ i, j ≤ N.

By abuse of notation, we shall use σ̃ to denote similar C-algebra automorphisms MatN (K)⊗2 →
MatN (K)⊗2 and K → K. To obtain explicit formulas for R, which we present in equations
(7.6)–(7.8) below, we just need to evaluate τ ◦ f̃−1 ◦ σ̃

(
R̂ ◦ τ ◦ f̃−1

)
from the respective formulas

for R̂ given in (4.7), (4.9) and (4.11), see (4.4). Most of the terms transform easily into the
corresponding terms in (7.6)–(7.8), due to the equalities

σ̃(f(εj , εi)) = f(εi, εj)
−1 for all i, j,

but some additional explanation is necessary for two of them. First, the term
∑

i ̸=j,j′ aijEij⊗Eji

transforms into the corresponding one in (7.6)–(7.8) due to the following identities satisfied by aij
of (4.8), (4.10) and (4.12):

aij = f(εi, εj) and a−1ji = aij for all i ̸= j, j′.

For the former equality, see (5.33) and (5.38).
Second, the term

∑
i<j ̸=i′ tit

−1
j Ei′j ⊗ Eij′ transforms into the corresponding one in (7.6)–(7.8)

due to the additional observations that, unless i = n+1 or j = n+1 in type Bn, we have (with
εi′ = −εi as defined prior to (5.33) and (5.38))

f(−εi, εi) = f(εj ,−εj) and σ̃
(
ti′t
−1
j′
)
= tit

−1
j for all 1 ≤ i, j ≤ N.

The former equality follows from our formulas (5.31) and (5.32) for type Bn and (5.36) and (5.37)
for types Cn, Dn. When i = n+1 or j = n+1 in type Bn, we rather use the following equalities:

f(0, 0) = 1, σ̃(tn+1)rs
−1 = tn+1, σ̃(ti′) = ti for i ̸= n+ 1.

These results allow us to prove the following lemmas.

Lemma 7.2 (type Bn). The inverse of the operator R̂ : V ⊗ V → V ⊗ V from Theorem 4.4 is
equal to

R = τ ◦ f̃−1 ◦Θ

= rs−1
i ̸=n+1∑

1≤i≤2n+1

Eii ⊗ Eii + En+1,n+1 ⊗ En+1,n+1 + r−1s

i ̸=n+1∑
1≤i≤2n+1

Eii′ ⊗ Ei′i

+

j ̸=i,i′∑
1≤i,j≤2n+1

aijEij ⊗ Eji +
(
s2 − r2

)
(rs)−1

n∑
i=1

(
r2(i−n)−1s2(n−i)+1 − 1

)
Eii ⊗ Ei′i′

+
(
r2 − s2

)
(rs)−1

j ̸=i′∑
i<j

Eii ⊗ Ejj +
(
s2 − r2

)
(rs)−1

j ̸=i′∑
i>j

tit
−1
j Ei′j ⊗ Eij′ , (7.6)

with the constants ti and aij given explicitly by (4.8).
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Lemma 7.3 (type Cn). The inverse of the operator R̂ : V ⊗ V → V ⊗ V from Theorem 4.5 is
equal to

R = τ ◦ f̃−1 ◦Θ

= r1/2s−1/2
2n∑
i=1

Eii ⊗ Eii + r−1/2s1/2
2n∑
i=1

Eii′ ⊗ Ei′i

+

j ̸=i,i′∑
1≤i,j≤2n

aijEij ⊗ Eji + (r − s)(rs)−1/2
n∑

i=1

(
ri−n−1sn+1−i + 1

)
Eii ⊗ Ei′i′

+ (r − s)(rs)−1/2
j ̸=i′∑
i<j

Eii ⊗ Ejj + (s− r)(rs)−1/2
j ̸=i′∑
i>j

tit
−1
j Ei′j ⊗ Eij′ , (7.7)

with the constants ti and aij given explicitly by (4.10).

Lemma 7.4 (type Dn). The inverse of the operator R̂ : V ⊗ V → V ⊗ V from Theorem 4.6 is
equal to

R = τ ◦ f̃−1 ◦Θ

= r1/2s−1/2
2n∑
i=1

Eii ⊗ Eii + r−1/2s1/2
2n∑
i=1

Eii′ ⊗ Ei′i

+

j ̸=i,i′∑
1≤i,j≤2n

aijEij ⊗ Eji + (r − s)(rs)−1/2
n∑

i=1

(
1− ri−nsn−i

)
Eii ⊗ Ei′i′

+ (r − s)(rs)−1/2
j ̸=i′∑
i<j

Eii ⊗ Ejj + (s− r)(rs)−1/2
j ̸=i′∑
i>j

tit
−1
j Ei′j ⊗ Eij′ , (7.8)

with the constants ti and aij given explicitly by (4.12).

Since R is a Ur,s(g)-module intertwiner by the above discussions, it suffices to verify that the
eigenvalues of R on the highest weight vectors w1, w2, w3 from our proof of Proposition 3.9
are inverse to those of R̂ as specified in Lemmas 4.8–4.10. As the arguments are very similar,
we shall only present the proof in type Bn.

Proof of Lemma 7.2. For w1 = v1 ⊗ v1, the eigenvalue of R̂ is λ1 = r−1s, while we clearly
have

R(w1) = R(v1 ⊗ v1) = rs−1v1 ⊗ v1 = λ−11 w1.

For w2, we have

R(w2) = R
(
v1 ⊗ v2 − rs−1v2 ⊗ v1

)
=
(
rs−1 − r−1s

)
v1 ⊗ v2 + v2 ⊗ v1 − rs−1v1 ⊗ v2

= −r−1s
(
v1 ⊗ v2 − rs−1v2 ⊗ v1

)
for n = 1, and

R(w2) = R
(
v1 ⊗ v2 − r2v2 ⊗ v1

)
=
(
rs−1 − r−1s

)
v1 ⊗ v2 + rsv2 ⊗ v1 − rs−1v1 ⊗ v2

= −r−1s
(
v1 ⊗ v2 − r2v2 ⊗ v1

)
for n > 1. Thus, we obtain R(w2) = λ−12 w2 for all n.

Finally, the eigenvalue of the R-action on w3 equals the ratio of coefficients of v1′⊗v1 in R(w3)
and w3. To compute the former, we note that only the third summand of (7.6) makes a nontrivial
contribution of r−1s ·v1′⊗v1. As the coefficient of v1′⊗v1 in w3 equals r

2n−1s−2n+1, we conclude
that R(w3) = r−2ns2nw3. Thus, the eigenvalue of w3 for R is indeed equal to λ−13 = r−2ns2n. ■
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With these preliminaries out of the way, we can now present our formulas for R̂(z), which
we obtain from (7.3) in types Bn and Dn, and from (7.4) in type Cn (the key reason to use
a different formula in type Cn is because (7.3) does not produce a solution that also satisfies the
intertwining property (6.8)):

� Type Bn:

R̂(z) = r−1sz(z − 1)R+
(
1− r−2n+1s2n−1

)(
1− r−2s2

)
z Id− r−2ns2n(z − 1)R̂,

which after a direct computation simplifies to (6.11).

� Type Cn:

R̂(z) = r−1/2s1/2z(z − 1)R+
(
1− r−n−1sn+1

)(
1− r−1s

)
z Id

− r−n−3/2sn+3/2(z − 1)R̂,

which after a direct computation simplifies to (6.12).

� Type Dn:

R̂(z) = r−1/2s1/2z(z − 1)R+
(
1− r−n+1sn−1

)(
1− r−1s

)
z Id

− r−n+1/2sn−1/2(z − 1)R̂,

which after a direct computation simplifies to (6.13).
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[4] Benkart G., Kang S.-J., Lee K.-H., Poincaré–Birkhoff–Witt bases for two-parameter quantum groups, avail-
able at https://www2.math.uconn.edu/~khlee/Papers/PBW.pdf.

[5] Benkart G., Witherspoon S., Representations of two-parameter quantum groups and Schur–Weyl duality,
in Hopf Algebras, Lecture Notes in Pure and Appl. Math., Vol. 237, Dekker, New York, 2004, 65–92.

https://doi.org/10.1002/cpa.3160440804
https://doi.org/10.1142/S100538670800059X
http://arxiv.org/abs/math.QA/0605179
https://doi.org/10.1007/BF02099742
http://arxiv.org/abs/hep-th/9407003
https://www2.math.uconn.edu/~khlee/Papers/PBW.pdf


Two-Parameter Quantum Groups and R-Matrices: Classical Types 53

[6] Benkart G., Witherspoon S., Restricted two-parameter quantum groups, in Representations of Finite Dimen-
sional Algebras and Related Topics in Lie Theory and Geometry, Fields Inst. Commun., Vol. 40, American
Mathematical Society, Providence, RI, 2004, 293–318.

[7] Benkart G., Witherspoon S., Two-parameter quantum groups and Drinfel’d doubles, Algebr. Represent.
Theory 7 (2004), 261–286, arXiv:math.QA/0011064.

[8] Bergeron N., Gao Y., Hu N., Drinfel’d doubles and Lusztig’s symmetries of two-parameter quantum groups,
J. Algebra 301 (2006), 378–405, arXiv:math.RT/0505614.

[9] Bergeron N., Gao Y., Hu N., Representations of two-parameter quantum orthogonal and symplectic groups,
in Proceedings of the International Conference on Complex Geometry and Related Fields, AMS/IP Stud.
Adv. Math., Vol. 39, American Mathematical Society, Providence, RI, 2007, 1–21, arXiv:math.QA/0510124.

[10] Clark S., Hill D., Wang W., Quantum shuffles and quantum supergroups of basic type, Quantum Topol. 7
(2016), 553–638, arXiv:1310.7523.

[11] Ding J.T., Frenkel I.B., Isomorphism of two realizations of quantum affine algebra Uq(gl(n)), Comm. Math.
Phys. 156 (1993), 277–300.

[12] Drinfel’d V.G., A new realization of Yangians and of quantum affine algebras, Dokl. Math. 36 (1988),
212–216.

[13] Frenkel I.B., Jing N.H., Vertex representations of quantum affine algebras, Proc. Nat. Acad. Sci. USA 85
(1988), 9373–9377.

[14] Gao Y., Hu N., Zhang H., Two-parameter quantum affine algebra of type G
(1)
2 , Drinfeld realization and

vertex representation, J. Math. Phys. 56 (2015), 011704, 27 pages.

[15] Ge M.L., Wu Y.-S., Xue K., Explicit trigonometric Yang–Baxterization, Internat. J. Modern Phys. A 6
(1991), 3735–3779.

[16] Hayaishi N., Miki K., L operators and Drinfeld’s generators, J. Math. Phys. 39 (1998), 1623–1636, arXiv:q-
alg/9705018.

[17] Hu N., Pei Y., Notes on 2-parameter quantum groups. I, Sci. China Ser. A 51 (2008), 1101–1110,
arXiv:math.QA/0702298.

[18] Hu N., Rosso M., Zhang H., Two-parameter quantum affine algebra Ur,s(ŝln), Drinfel’d realization and
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