|
SIGMA 21 (2025), 065, 33 pages arXiv:2302.08363
https://doi.org/10.3842/SIGMA.2025.065
On the Structure of Trans-Series in Quantum Field Theory
Marcos Mariño a, Ramon Miravitllas ab and Tomás Reis cd
a) Département de Physique Théorique et Section de Mathématiques, Université de Genève, Genève, CH-1211, Switzerland
b) HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós u. 29-33, 1121 Budapest, Hungary
c) SISSA, 34136 Trieste, Italy
d) INFN, Sezione di Trieste, 34127 Trieste, Italy
Received March 06, 2025, in final form July 22, 2025; Published online August 01, 2025
Abstract
Many observables in quantum field theory can be expressed in terms of trans-series, in which one adds to the perturbative series a typically infinite sum of exponentially small corrections, due to instantons or to renormalons. Even after Borel resummation of the series in the coupling constant, one has to sum this infinite series of small exponential corrections. It has been argued that this leads to a new divergence, which is sometimes called the divergence of the OPE. We show that, in some interesting examples in quantum field theory, the series of small exponential corrections is convergent, order by order in the coupling constant. In particular, we give numerical evidence for this convergence property in the case of the free energy of integrable asymptotically free theories, which has been intensively studied recently in the framework of resurgence. Our results indicate that, in these examples, the Borel resummed trans-series leads to a well defined function, and there are no further divergences.
Key words: resurgence; quantum field theory; trans-series; asymptotic series.
pdf (1132 kb)
tex (553 kb)
References
- Abbott M.C., Bajnok Z., Balog J., Hegedűs Á., From perturbative to non-perturbative in the $O(4)$ sigma model, Phys. Lett. B 818 (2021), 136369, 6 pages, arXiv:2011.09897.
- Abbot M.C., Bajnok Z., Balog J., Hegedűs Á., Sadeghian S., Resurgence in the $O(4)$ sigma model, J. High Energy Phys. 2021 (2021), no. 5, 253, 37 pages, arXiv:2011.12254.
- Bajnok Z., Balog J., HegedHűs Á., Vona I., Instanton effects vs resurgence in the $O$(3) sigma model, Phys. Lett. B 829 (2022), 137073, 5 pages, arXiv:2112.11741.
- Bajnok Z., Balog J., Hegedűs Á., Vona I., Running coupling and non-perturbative corrections for $O(N)$ free energy and for disk capacitor, J. High Energy Phys. 2022 (2022), no. 9, 001, 52 pages, arXiv:2204.13365.
- Bajnok Z., Balog J., Vona I., Analytic resurgence in the $O$(4) model, J. High Energy Phys. 2022 (2022), no. 4, 043, 35 pages, arXiv:2111.15390.
- Bajnok Z., Balog J., Vona I., The full analytic trans-series in integrable field theories, Phys. Lett. B 844 (2023), 138075, 10 pages, arXiv:2212.09416.
- Bajnok Z., Balog J., Vona I., The complete trans-series for conserved charges in integrable field theories, arXiv:2501.16435.
- Balog J., Naik S., Niedermayer F., Weisz P., Exact mass gap of the chiral ${\rm SU}(n) \times {\rm SU}(n)$ model, Phys. Rev. Lett. 69 (1992), 873-876.
- Beneke M., Braun V.M., Kivel N., The operator product expansion, non-perturbative couplings and the Landau pole: lessons from the $O(N)$ $\sigma$-model, Phys. Lett. B 443 (1998), 308-316, arXiv:hep-ph/9809287.
- Bonet C., Sauzin D., Seara T., València M., Adiabatic invariant of the harmonic oscillator, complex matching and resurgence, SIAM J. Math. Anal. 29 (1998), 1335-1360.
- Campostrini M., Rossi P., Dimensional regularization in the $1/N$ expansion, Internat. J. Modern Phys. A 7 (1992), 3265-3289.
- Costin O., Exponential asymptotics, transseries, and generalized Borel summation for analytic, nonlinear, rank-one systems of ordinary differential equations, Int. Math. Res. Not. 1995 (1995), 377-417, arXiv:math.CA/0608414.
- Costin O., On Borel summation and Stokes phenomena for rank-$1$ nonlinear systems of ordinary differential equations, Duke Math. J. 93 (1998), 289-344, arXiv:math.CA/0608408.
- Costin O., Costin R.D., On the formation of singularities of solutions of nonlinear differential systems in antistokes directions, Invent. Math. 145 (2001), 425-485, arXiv:math.CA/0202234.
- Costin O., Garoufalidis S., Resurgence of the Kontsevich-Zagier series, Ann. Inst. Fourier (Grenoble) 61 (2011), 1225-1258, arXiv:math.GT/0609619.
- David F., On the ambiguity of composite operators, IR renormalons and the status of the operator product expansion, Nuclear Phys. B 234 (1984), 237-251.
- David F., The operator product expansion and renormalons: a comment, Nuclear Phys. B 263 (1986), 637-648.
- Delabaere E., Dillinger H., Pham F., Exact semiclassical expansions for one-dimensional quantum oscillators, J. Math. Phys. 38 (1997), 6126-6184.
- Delabaere E., Pham F., Resurgent methods in semi-classical asymptotics, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), 1-94.
- Di Pietro L., Mariño M., Sberveglieri G., Serone M., Resurgence and $1/N$ expansion in integrable field theories, J. High Energy Phys. 2021 (2021), no. 10, 166, 55 pages, arXiv:2108.02647.
- Dimofte T., Gukov S., Lenells J., Zagier D., Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Number Theory Phys. 3 (2009), 363-443, arXiv:0903.2472.
- Écalle J., Les fonctions résurgentes, Université de Paris-Sud, 1981.
- Ellegaard Andersen J., Kashaev R., A TQFT from quantum Teichmüller theory, Comm. Math. Phys. 330 (2014), 887-934, arXiv:1109.6295.
- Fateev V.A., Kazakov V.A., Wiegmann P.B., Large-$N$ chiral field in two dimensions, Phys. Rev. Lett. 73 (1994), 1750-1753.
- Fateev V.A., Kazakov V.A., Wiegmann P.B., Principal chiral field at large $N$, Nuclear Phys. B 424 (1994), 505-520, arXiv:hep-th/9403099.
- Forgács P., Niedermayer F., Weisz P., The exact mass gap of the Gross-Neveu model. I. The thermodynamic Bethe ansatz, Nuclear Phys. B 367 (1991), 123-143.
- Forgács P., Niedermayer F., Weisz P., The exact mass gap of the Gross-Neveu model. II. The $1/N$ expansion, Nuclear Phys. B 367 (1991), 144-157.
- Garoufalidis S., Chern-Simons theory, analytic continuation and arithmetic, Acta Math. Vietnam. 33 (2008), 335-362, arXiv:0711.1716.
- Garoufalidis S., Gu J., Mariño M., Peacock patterns and resurgence in complex Chern-Simons theory, arXiv:2012.00062.
- Garoufalidis S., Gu J., Mariño M., The resurgent structure of quantum knot invariants, Comm. Math. Phys. 386 (2021), 469-493, arXiv:2007.10190.
- Gukov S., Mariño M., Putrov P., Resurgence in complex Chern-Simons theory, arXiv:1605.07615.
- Hasenfratz P., Maggiore M., Niedermayer F., The exact mass gap of the ${\rm O}(3)$ and ${\rm O}(4)$ nonlinear $\sigma$-models in $d=2$, Phys. Lett. B 245 (1990), 522-528.
- Hasenfratz P., Niedermayer F., The Exact mass gap of the $O(N)$ sigma model for arbitrary $N \ge 3$ in $d = 2$, Phys. Lett. B 245 (1990), 529-532.
- Hikami K., Generalized volume conjecture and the $A$-polynomials: the Neumann-Zagier potential function as a classical limit of the partition function, J. Geom. Phys. 57 (2007), 1895-1940, arXiv:math.QA/0604094.
- Japaridze G.I., Nersesyan A.A., Wiegman P.B., Exact results in the two-dimensional ${\rm U}(1)$-symmetric Thirring model, Nuclear Phys. B 230 (1984), 511-547.
- Kneur J.L., Reynaud D., Renormalon disappearance in Borel sum of the $1/N$ expansion of the Gross-Neveu model mass gap, J. High Energy Phys. 2003 (2003), no. 1, 014, 17 pages, arXiv:hep-th/0111120.
- Laenen E., Marinissen C., Vonk M., Resurgence analysis of the Adler function at $\mathcal{O} (1/{N}_f^2)$, J. High Energy Phys. 2023 (2023), no. 9, 103, 84 pages, arXiv:2302.13715.
- Liu Y., Renormalon-like factorial enhancements to power expansion/OPE in a super-renormalizable 2D $O(N)$ quartic model, arXiv:2502.02031.
- Mariño M., Instantons and large $N$. An introduction to non-perturbative methods in quantum field theory, Cambridge University Press, Cambridge, 2015.
- Mariño M., Miravitllas R., Reis T., Testing the Bethe ansatz with large $N$ renormalons, Eur. Phys. J. Spec. Top. 230 (2021), 2641-2666, arXiv:2102.03078.
- Mariño M., Miravitllas R., Reis T., New renormalons from analytic trans-series, J. High Energy Phys. 2022 (2022), no. 8, 279, 60 pages, arXiv:2111.11951.
- Mariño M., Miravitllas R., Reis T., Instantons, renormalons and the theta angle in integrable sigma models, SciPost Phys. 15 (2023), 184, 44 pages, arXiv:2205.04495.
- Mariño M., Reis T., Renormalons in integrable field theories, J. High Energy Phys. 2020 (2020), no. 4, 160, 36 pages, arXiv:1909.12134.
- Peris S., Violation of quark-hadron duality. The missing oscillation in the OPE, Eur. Phys. J. Spec. Top. 230 (2021), 2691-2698, arXiv:2104.08503.
- Polyakov A.M., Wiegmann P.B., Theory of nonabelian goldstone bosons in two dimensions, Phys. Lett. B 131 (1983), 121-126.
- Schepers L., Thompson D.C., Asymptotics in an asymptotic CFT, J. High Energy Phys. 2023 (2023), no. 4, 112, 28 pages, arXiv:2301.11803.
- Schubring D., Sheu C.H., Shifman M., Treating divergent perturbation theory: lessons from exactly solvable 2D models at large $N$, Phys. Rev. D 104 (2021), 085016, 26 pages, arXiv:2107.11017.
- Seara T.M., Sauzin D., Borel summation and the theory of resurgence, Butl. Soc. Catalana Mat. 18 (2003), 131-153.
- Serone M., Spada G., Villadoro G., The power of perturbation theory, J. High Energy Phys. 2017 (2017), no. 5, 056, 41 pages, arXiv:1702.04148.
- Shifman M.A., Theory of preasymptotic effects in weak inclusive decays, in Continuous Advances in QCD, World Scientific, Singapore, 1994, 249-286, arXiv:hep-ph/9405246.
- Shifman M.A., Snapshots of hadrons or the story of how the vacuum medium determines the properties of the classical mesons which are produced, Prog. Theor. Phys. Supp. 131 (1998), 1-71, arXiv:hep-ph/9802214.
- Shifman M.A., New and old about renormalons: in memoriam Kolya Uraltsev, Internat. J. Modern Phys. A 30 (2015), 1543001, 26 pages, arXiv:1310.1966.
- Volin D., From the mass gap at large $N$ to the non-Borel-summability in $O(3)$ and $O(4)$ sigma models, Phys. Rev. D 81 (2010), 105008, 5 pages, arXiv:0904.2744.
- Voros A., Spectre de l'équation de Schrödinger et méthode BKW, Publications Mathématiques d'Orsay 81, Vol. 9, Université de Paris-Sud, Orsay, 1982, available at http://sites.mathdoc.fr/PMO/PDF/V_VOROS-167.pdf.
- Voros A., The return of the quartic oscillator: the complex WKB method, Ann. Inst. H. Poincaré Sect. A (N.S.) 39 (1983), 211-338.
- Wiegmann P.B., Exact solution of the ${\rm O}(3)$ nonlinear $\sigma$-model, Phys. Lett. B 152 (1985), 209-214.
|
|