| 
 SIGMA 21 (2025), 072, 7 pages       arXiv:2411.03882     
https://doi.org/10.3842/SIGMA.2025.072 
 
Ricci-Flat Manifolds, Parallel Spinors and the Rosenberg Index
Thomas Tony
 Institute of Mathematics, University of Potsdam, Germany
 
 
Received May 19, 2025, in final form August 21, 2025; Published online August 25, 2025
 Abstract 
Every closed connected Riemannian spin manifold of non-zero $\hat{A}$-genus or non-zero Hitchin invariant with non-negative scalar curvature admits a parallel spinor, in particular is Ricci-flat. In this note, we generalize this result to closed connected spin manifolds of non-vanishing Rosenberg index. This provides a criterion for the existence of a parallel spinor on a finite covering and yields that every closed connected Ricci-flat spin manifold of dimension $\geq 2$ with non-vanishing Rosenberg index has special holonomy.
 Key words: Ricci-flat manifolds; special holonomy; parallel spinor; scalar curvature; higher index theory. 
pdf (347 kb)  
tex (18 kb)  
 
 
References 
- Berger M., Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279-330.
 
- Besse A.L., Einstein manifolds, Ergeb. Math. Grenzgeb. (3), Vol. 10, Springer, Berlin, 1987.
 
- Cheeger J., Gromoll D., The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971), 119-128.
 
- Ebert J., Elliptic regularity for Dirac operators on families of noncompact manifolds, arXiv:1608.01699.
 
- Fischer A.E., Wolf J.A., The structure of compact Ricci-flat Riemannian manifolds, J. Differential Geometry 10 (1975), 277-288.
 
- Friedrich T., Dirac operators in Riemannian geometry, Grad. Stud. Math., Vol. 25, American Mathematical Society, Providence, RI, 2000.
 
- Hanke B., Schick T., Enlargeability and index theory, J. Differential Geom. 74 (2006), 293-320, arXiv:math.GT/0403257.
 
- Hanke B., Schick T., Enlargeability and index theory: infinite covers, $K$-Theory 38 (2007), 23-33, arXiv:math.GT/0604540.
 
- Hatcher A., Algebraic topology, Cambridge University Press, Cambridge, 2002.
 
- Hitchin N., Harmonic spinors, Adv. Math. 14 (1974), 1-55.
 
- Kazdan J.L., Warner F.W., Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry 10 (1975), 113-134.
 
- Lance E.C., Hilbert $C^*$-modules. A toolkit for operator algebraists, London Math. Soc. Lecture Note Ser., Vol. 210, Cambridge University Press, Cambridge, 1995.
 
- Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University Press, Princeton, NJ, 1989.
 
- Mishchenko A.S., Fomenko A.T., The index of elliptic operators over $C^{\ast} $-algebras, Math. USSR. Izv. 15 (1980), 87-112.
 
- Ramras D., Willett R., Yu G., A finite-dimensional approach to the strong Novikov conjecture, Algebr. Geom. Topol. 13 (2013), 2283-2316, arXiv:1203.6168.
 
- Roe J., Lectures on K-theory and operator algebras, AMS Open Math. Notes, 2017, https://www.ams.org/open-math-notes/omn-view-listing?listingId=110719.
 
- Rosenberg J., $C^{\ast} $-algebras, positive scalar curvature, and the Novikov conjecture, Publ. Math. Inst. Hautes Etudes Sci. 58 (1983), 409-424.
 
- Schick T., Wraith D.J., Non-negative versus positive scalar curvature, J. Math. Pures Appl. (9) 146 (2021), 218-232, arXiv:1607.00657.
 
- Tony T., Scalar curvature rigidity and the higher mapping degree, J. Funct. Anal. 288 (2025), 110744, 41 pages, arXiv:2402.05834.
 
- Wang M.Y., Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989), 59-68.
 
 
 | 
 |