|
SIGMA 21 (2025), 075, 32 pages arXiv:2404.15767
https://doi.org/10.3842/SIGMA.2025.075
Isomonodromy and Painlevé Type Equations, Case Studies
Marius van der Put and Jaap Top
Bernoulli Institute, Nijenborgh 9, 9747 AG Groningen, The Netherlands
Received July 02, 2024, in final form August 28, 2025; Published online September 11, 2025
Abstract
There is an abundance of equations of Painlevé type besides the classical Painlevé equations. Classifications have been computed by the Japanese school. Here we consider Painlevé type equations induced by isomonodromic families of linear ODE's having at most ${z=0}$ and $z=\infty$ as singularities. Requiring that the formal data at the singularities produce isomonodromic families parametrized by a single variable $t$ leads to a small list of hierarchies of cases. The study of these cases involves Stokes matricesand moduli for linear ODE's on the projective line. Case studies reveal interesting families of linear ODE's and Painlevé type equations. However, rather often the complexity (especially of the Lax pair) is too high for either the computations or for the output. Apart from classical Painlevé equations one rediscovers work of Harnad, Noumi and Yamada. A hierarchy, probably new, related to the classical $P_3(D_8)$, is discovered. Finally, an amusing ''companion'' of $P_1$ is presented.
Key words: moduli space for linear connections; irregular singularities; Stokes matrices; monodromy spaces; isomonodromic deformations; Painlevé equations; Lax pairs; Hamiltonians.
pdf (600 kb)
tex (43 kb)
References
- Boalch P., Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001), 137-205, arXiv:2002.00052.
- Cotti G., Dubrovin B.A., Guzzetti D., Helix structures in quantum cohomology of Fano varieties, Lecture Notes in Math., Vol. 2356, Springer, Cham, 2024, arXiv:1811.09235.
- Cruz Morales J.A., van der Put M., Stokes matrices for the quantum differential equations of some Fano varieties, Eur. J. Math. 1 (2015), 138-153, arXiv:1211.5266.
- Degano G., Guzzetti D., The sixth Painlevé equation as isomonodromy deformation of an irregular system: monodromy data, coalescing eigenvalues, locally holomorphic transcendents and Frobenius manifolds, Nonlinearity 36 (2023), 4110-4168, arXiv:2108.07003.
- Dzhamay A., On some examples of identifying Painlevé equations using the geometry of the Okamoto space of initial conditions, arXiv:2508.12052.
- Dzhamay A., Filipuk G., Ligęza A., Stokes A., Different Hamiltonians for differential Painlevé equations and their identification using a geometric approach, J. Differential Equations 399 (2024), 281-334, arXiv:2109.06428.
- Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu., Painlevé transcendents. The Riemann-Hilbert approach, Math. Surveys Monogr., Vol. 128, American Mathematical Society, Providence, RI, 2006.
- Galkin S., Golyshev V., Iritani H., Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures, Duke Math. J. 165 (2016), 2005-2077, arXiv:1404.6407.
- Guest M.A., From quantum cohomology to integrable systems, Oxf. Grad. Texts Math., Vol. 15, Oxford University Press, Oxford, 2008.
- Guest M.A., Differential equations aspects of quantum cohomology, in Geometric and Topological Methods for Quantum Field Theory, Cambridge University Press, Cambridge, 2010, 54-85, arXiv:0906.0641.
- Harnad J., Dual isomonodromic deformations and moment maps to loop algebras, Comm. Math. Phys. 166 (1994), 337-365, arXiv:hep-th/9301076.
- Hiroe K., Kawakami H., Nakamura A., Sakai H., 4-dimensional Painlevé-type equations, MSJ Mem., Vol. 37, Mathematical Society of Japan, Tokyo, 2018.
- Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function, Phys. D 2 (1981), 306-352.
- Kawakami H., Four-dimensional Painlevé-type equations associated with ramified linear equations III: Garnier systems and Fuji-Suzuki systems, SIGMA 13 (2017), 096, 50 pages, arXiv:1703.01379.
- Kawakami H., Four-dimensional Painlevé-type equations associated with ramified linear equations II: Sasano systems, J. Integrable Syst. 3 (2018), xyy013, 36 pages, arXiv:1609.05263.
- Kawakami H., Four-dimensional Painlevé-type equations associated with ramified linear equations I: Matrix Painlevé systems, Funkcial. Ekvac. 63 (2020), 97-132, arXiv:1608.03927.
- Kawakami H., Nakamura A., Sakai H., Degeneration scheme of 4-dimensional Painlevé-type equations, in 4-dimensional Painlevé-type equations, MSJ Mem., Vol. 37, Mathematical Society of Japan, Tokyo, 2018, 25-111, arXiv:1209.3836.
- Mazzocco M., Painlevé sixth equation as isomonodromic deformations equation of an irregular system, in The Kowalevski Property (Leeds, 2000), CRM Proc. Lecture Notes, Vol. 32, American Mathematical Society, Providence, RI, 2002, 219-238.
- Miwa T., Painlevé property of monodromy preserving deformation equations and the analyticity of $\tau $ functions, Publ. Res. Inst. Math. Sci. 17 (1981), 703-721.
- Noumi M., Yamada Y., Higher order Painlevé equations of type $A^{(1)}_l$, Funkcial. Ekvac. 41 (1998), 483-503, arXiv:math/9808003.
- Ohyama Y., Okumura S., R. Fuchs' problem of the Painlevé equations from the first to the fifth, in Algebraic and geometric aspects of integrable systems and random matrices, Contemp. Math., Vol. 593, American Mathematical Society, Providence, RI, 2013, 163-178, arXiv:math/0512243.
- Okamoto K., Polynomial Hamiltonians associated with Painlevé equations. I, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 264-268.
- van der Put M., Saito M.-H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble) 59 (2009), 2611-2667, arXiv:0902.1702.
- van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren Math. Wiss., Vol. 328, Springer, Berlin, 2003.
- van der Put M., Top J., A Riemann-Hilbert approach to Painlevé IV, J. Nonlinear Math. Phys. 20 (2013), 165-177, arXiv:1207.4335.
- Sen A., Hone A.N.W., Clarkson P.A., On the Lax pairs of the symmetric Painlevé equations, Stud. Appl. Math. 117 (2006), 299-319.
|
|