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Abstract. There is an abundance of equations of Painlevé type besides the classical Painlevé
equations. Classifications have been computed by the Japanese school. Here we con-
sider Painlevé type equations induced by isomonodromic families of linear ODE’s having
at most z = 0 and z = ∞ as singularities. Requiring that the formal data at the singular-
ities produce isomonodromic families parametrized by a single variable t leads to a small
list of hierarchies of cases. The study of these cases involves Stokes matrices and moduli for
linear ODE’s on the projective line. Case studies reveal interesting families of linear ODE’s
and Painlevé type equations. However, rather often the complexity (especially of the Lax
pair) is too high for either the computations or for the output. Apart from classical Painlevé
equations one rediscovers work of Harnad, Noumi and Yamada. A hierarchy, probably new,
related to the classical P3(D8), is discovered. Finally, an amusing “companion” of P1 is
presented.
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1 Introduction and background

1.1 Introduction

Every classical Painlevé equation can be obtained by an isomonodromy of a family M of linear
differential equations over the differential field C(z)

(
or connections on P1

)
. The monodromy

space R, associated to M, consists of all possibilities for the ordinary monodromy and the Stokes
data of the solutions for the linear differential equations belonging to M.

An isomonodromic subfamily of M is defined by “the monodromy is constant” condition, in
other words, it is a fibre of the Riemann–Hilbert map RH: M → R which sends a connection
in M to its monodromy data in R. An isomonodromic subfamily turns out to be given by
first-order, nonlinear, differential equations (called here the Painlevé vector field) which can be
transformed into a single higher-order nonlinear differential equation.

For example (see also [23, Section 4.9]),

d2q

dt
=

(dq
dt

)2
2q

+ 4q2 + 2tq − θ20
2q

,

which is the Flaschka–Newell form P2,fn of the second Painlevé equation, is obtained from the
family

z
d

dz
+

(
p

p2−θ20−2qtz+q2z+qz2

q

z − q −p

)
.
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This 4-dimensional family of operators is defined by the conditions: the trace is zero, the sin-
gularities are z = 0, which is regular singular, and z = ∞ which is irregular singular and has
(generalized) eigenvalues ±

(
z3/2 + tz1/2

)
.

For this example, the monodromy space R consists of the ordinary monodromy mon0 at
z = 0 and Stokes data at z = ∞. It can be shown that it consists of Stokes matrices(

1 0
a1 1

)
,
(
1 a2
0 1

)
,
(

1 0
a3 1

)
for directions {di} with 1 > d1 > d2 > d3 > 0. There is one relation,

the monodromy identity: mon0 is conjugated to
(
0 −1
1 0

)(
1 0
a1 1

)(
1 a2
0 1

)(
1 0
a3 1

)
, where

(
0 −1
1 0

)
is the

formal monodromy. Hence R = C3. It can be shown that the fibres of the Riemann–Hilbert
map RH: M → R are parametrized by t. A fibre has the form

z
d

dz
+

(
p

p2−θ20−2qtz+q2z+qz2

q

z − q −p

)

with now p, q functions of t and θ0 a parameter (independent of t).
The functions p, q of t cannot directly be computed by the Riemann–Hilbert map, since

the latter is (in general) highly transcendental and not computable. However, the condi-
tion “isomonodromic” is equivalent to the above operator commuting with an operator of the
form d

dt +B(z, t), where the 2× 2 matrix B(z, t) depends analytically on t and rationally on z.
This is the Lax pair condition and leads to the nonlinear differential equations

dq

dt
= 2p,

dp

dt
= 2q2 + tq +

p2 − θ20/4

q

(the Painlevé vector field) and as consequence to P2,fn. Finally, the system of equations for q, p
is Hamiltonian with function

H =
−p2 + θ20/4

q
+ q2 + tq.

The parameter space P for R consists of the data for the local formal monodromy at z = 0
and z = ∞. The parameter space P+ for M consists of the data of the residue matrices of the
connection at z = 0 and z = ∞. There is an obvious exponential map P+ → P commuting with
the Riemann–Hilbert map RH: M → R.

In the above example, P+ is given by θ0 and P is given by e2πiθ0 .
Apart from the classical cases P1−P6, there is an abundance of familiesM of linear differential

equations over C(z) producing Painlevé type equations. The Japanese school has an extensive
literature on equations of Painlevé type and also developed classifications.

We apologize for citing only a few items from the extensive literature, [7, 12, 13, 14, 15, 16,
17, 19, 20, 21, 22]. In the literature, other methods than isomonodromy, e.g., middle convolution
and constructions with Hamiltonians, are used for producing Painlevé type equations.

Here, we modestly restrict ourselves to classifying and studying rather special cases of M,
namely assuming that at most z = 0 and z = ∞ are singular and assuming that the fibres of
the Riemann–Hilbert map RH: M → R are parametrized by one variable t, called the time
variable. In general there are more times variables.

One reason for this restriction is that the quantum differential equations (see [2, 8, 9, 10]),
associated to algebraic varieties have two singularities z = 0 (regular singular) and z = ∞
(irregular singular). A further reason is that the theory of Stokes matrices, and the algorithm
we describe to make M explicit in the case of at most two singularities, provide most of the
information forR andM used here. Furthermore, we are also interested in hierarchies of families
instead of individual families.

The aim of this paper is to find these familiesM and classify them by their formal singularities
at z = 0 and z = ∞ (see the list in Section 2).
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For each item in this list, we try to make the family of connections M explicit by computing
a matrix differential operator z d

dz+A. This can be rather involved. Further we want to make the
monodromy space R explicit, to produce a Lax pair and compute the Painlevé type equation (or
vector field), produce a Hamiltonian and find an identification (if this exists) with some known
Painlevé type equation.

Due to complexity, we obtained for many items in the list of Section 2, only partial informa-
tion. However, we highlight here: A list of the most detailed and interesting explicit cases. The
formulas give representatives for the Galois orbit(s) of the eigenvalues and n is the rank of the
connection.

� Section 3: z2/n + tz1/n, n ≥ 3. We rediscover the hierarchy studied by Noumi and Ya-
mada [20]. The spaces M and R and the fibres of M → R are made explicit. For any
n ≥ 3, explicit formulas for the Lax pair and the Painlevé vector field are computed.
A Hamiltonian is computed for n = 3, 4, 6. The Painlevé equations for n = 3 and n = 4
are identified with P4 and P5. An identification of the Hamiltonian for n = 6 is missing.

� Section 6.1: z1/2, tz1/2, n = 4. Apart from the Hamiltonian all data are made explicit. The
fibres of the mapR → P are affine cubic surfaces. From their equation we expected, in view
of the list [23, pp. 26–27], that this case is a pull back of P4. Instead, the computation
in [5, Section 1] provides an explicit identification with the sixth Painlevé equation in
Okamoto’s form.

� Section 8: z, tz, (−1 − t)z, n = 3. Except for the Hamiltonian, all data (including the
Stokes matrices) are made explicit. However the expected identification with P6 is not
verified.

In fact, we rediscover the family found by Harnad and studied by Mazzocco, Degano and
Guzetti [4, 11, 18]. They provide the verification of the equivalence to P6.

� Section 10: z2, −z2 − tz, tz, n = 3. The results, including an explicit Hamiltonian, are
complete. The Painlevé type equation is a second-order explicit equation and therefore
related to one of the classical Painlevé equations. From the cubic equation of the fibres
of R → P, we expected a relation with P1. Instead, the computation in [5, Section 2]
provides an explicit identification with the fourth Painlevé equation in Okamoto’s form.

� Section 13: z−1/n and tz1/n, n ≥ 2. This hierarchy is probably new. For n = 2, this
defines the standard family leading to P3(D8). For general n, the spaces of connections
and of monodromy are made explicit. The explicit formulas for the Lax pairs and the
Painlevé vector field have a structure, similar to the ones for the Noumi–Yamada family
in Section 3.

For n = 3, we claim an identification with an item in the classification by Kawakami [14,
p. 35].

� Section 14: z5/2 + tz1/2, n = 2. What we like to call “a companion of P1” is given by
the family of connections of rank 2 with a regular singularity at z = 0 and an irregular
singularity at z = ∞ with generalized eigenvalues ±

(
z5/2 + tz1/2

)
.

We recall that the standard family of connections for P1 has the same definition except
for the assumption “z = 0 is regular”.

For this companion of P1, all data are computed, including the Painlevé equation which
is a nonlinear, explicit, fourth-order differential equation.

The above family is not present in the list of Section 2, since it is a subfamily of the family
with two time variables t1, t2. This family is given by z = 0 is regular singular and z = ∞
has generalized eigenvalues ±

(
z5/2 + t1

2 z
3/2 + t2

2 z
1/2
)
.
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Also in this case an operator z d
dz + A, representing M, is computed. Further, R and the

fibres R → P are made explicit. The Lax pair equations have now the form
[
z d
dz +A, d

dti
+

Bi

]
= 0 for i = 1, 2 for certain matrices B1, B2 depending on z, t1, t2. The Painlevé vector

field, solution of the Lax pairs, is computed. It seems that this companion of P1 and its
extension to a “two time variables system” are new.

1.2 Background

For the convenience of the reader, we describe terminology and results concerning the formal
classification of differential modules, irregular singularities and Stokes matrices etc. More details
can be found in [24].

1.2.1 The formal classification of differential modules

Differential modules M over the field C
((
z−1
))

are classified in terms of tuples (V, {Vq}q, γ).
A tuple consists of a complex vector space V of dimension n with additional structure. The
q’s denote elements of

⋃
r≥1 z

1/rC
[[
z1/r

]]
. For each q there is given a linear subspace Vq ⊂ V

and V = ⊕Vq. The eigenvalues are the finitely many q1, . . . , qr with Vq ̸= 0. The multiplic-
ity m = m(q) is the dimension of Vq. The dimension of V is therefore equal to

∑
m(qj). One

writes (q)m to denote an eigenvalue q with multiplicity m.

The ramification index e is the smallest positive integer such that qj ∈ z1/eC
[[
z1/e

]]
for all j.

The degree of qj is the highest (rational) power of z occurring in qj . The Katz invariant κ
is the maximum of the degrees of the qj ’s. The Galois group of

⋃
r≥1C

((
z−1/r

))
/C
((
z−1
))

has

a topological generator σ which acts by σ
(
zλ
)
= e2πiλzλ for λ ∈ Q.

Further, γ, the formal monodromy, is an automorphism of V and has the property γ(Vq) =
Vσ(q) for all q.

This classification of differential modules M over C
((
z−1
))

by the tuples (V, {Vq}q, γ) is based
upon the fact that the solutions of M

(
where M is represented in the form of an ordinary

scalar linear differential equation with coefficients in C
((
z−1
)))

can be written as a sum of
expressions exp

(∫
q dz

z

)
·G with q as above and G a combination of formal power series in

roots of z and log(z). The space V associated to M is the space of these formal or symbolic
expressions. It has a natural decomposition as ⊕Vq. Further, the formal monodromy γ, is given
by σ applied to the above expressions. The functor M 7→ (V, {Vq}q, γ) is an equivalence of
Tannakian categories.

Let a family of data for eigenvalues q1, . . . , qr, multiplicities and formal monodromies γ be
given. This gives rise to a family of formal differential operators z d

dz + F .

Example 1.1 (see Section 7). Eigenvalues c1z, c2z, c3z with multiplicities 1 and formal mon-
odromy

γ =

b1
b2

b3

 ,

combine to the formal differential operator z d
dz + F , where

F =

c1z + a1
c2z + a2

c3z + a3


and bj = e2πiaj for j = 1, 2, 3.
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The space of connections M is the “universal family” (details later), represented by a family
of differential operators z d

dz +A over C(z) with singular points z = 0 and z = ∞. The condition

is that this operator is at z = ∞ is formally equivalent to z d
dz + F . Moreover, at z = 0 the

operator should be regular, or regular singular, or formally equivalent to another given formal
operator.

1.2.2 Details on Stokes matrices and construction of the space R

Let M be a differential module over C
({

z−1
})

, the field of convergent power series at z = ∞.
Write (V, {Vqk}, γ) for its formal classification, i.e., the classification of M̂ = C

((
z−1
))
⊗M . The

formal solutions of M̂ lift, by multisummation, to solutions of M on sectors at z = ∞. The
jumps of these solutions from one sector to another are measured by Stokes matrices {Std} at
the singular directions d. In fact, M is classified by its formal classification and the Stokes
matrices. Moreover, the formalism, detailed below, produces all possibilities for the Stokes data
and determines therefore the structure of R.

For each difference qk−ql, k ̸= l of eigenvalues, one considers a solution y ̸= 0 of z dy
dz = qk−ql.

The singular directions d ∈ R for qk − ql are defined by the condition that y
(
e2πidr

)
tends to

zero for r → +∞ with maximal speed (maximal descent).
The Stokes matrix Std ∈ GL(V ) for direction d reads 1V +

∑
k,l mk,l, where the sum is taken

over the pairs such that d is singular for qk − ql and mk,l denotes a linear map

V
projection→ Vqk → Vql ⊂ V.

We note that Std = 1V if d is not a singular direction and that Std+1 = γ−1Stdγ holds
for d ∈ R.

Therefore, the Stokes data can be identified with the space of all Stokes matrices Std with
d ∈ [0, 1) and can be identified with a vector space of dimension

N :=
∑
k ̸=l

deg(qk − ql) · dimVqk · dimVql .

The formal data combined with the data of the Stokes matrices classify the analytic singularity
at z = ∞. In particular, mon∞, the topological monodromy at z = ∞, is equivalent to the
product γ ◦ Stds ◦ · · · ◦ Std1 , where ds > · · · > d1 are the singular directions in [0, 1). This
property will be called the monodromy identity. For the construction of R, we have to consider
various cases.

(i) z = 0 is regular singular. Given are V = Vq1 ⊕· · ·⊕Vqr , an action of σ on {q1, . . . , qr}, the
singular directions 1 > ds > · · · > d1 ≥ 0 with the corresponding differences qk − ql. We note, in
passing, that the highest coefficient of a difference qk − ql may depend on t. In such a case the
singular directions also depend on t. In the cases that we computed, R itself is independent of t.

In general, R is defined as the set of equivalence classes of all possibilities for the Stokes data
and the topological monodromies. In the present case, R consists of the equivalence classes of
all possible tuples (γ,Stds , . . . ,Std1) ∈ SL(V )s+1, where, by assumption, γ is supposed to have
distinct eigenvalues. We now make R explicit.

Let (V, {Vq}, γ, {Std}) be given. The action of σ on the eigenvalues has orbits (i.e., Galois
orbits) Q1, . . . , Qr and Qi = {qi,0, . . . , qi,ℓi−1} for all i. Let di = dimVqi,0 . Put d =

∑r
i=1 di and

as before we write

N =
∑

deg(qi,j − qk,l) · dim(Vqi,j ) · dim(Vqk,l).

Lemma 1.2. The monodromy space R is isomorphic to the quotient of the space (C∗)d−1 ×CN

by the action of a group isomorphic to (C∗)d−1. This quotient has an open, affine, dense subspace
isomorphic to (C∗)d−1 × CN−d+1. In particular, dimR = N .
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Proof. There is no restriction on the possibilities for the Stdj . This produces the vector
space CN . In order to make the restrictions on γ explicit, we consider a Galois orbit, here
written as, Q = {q0, . . . , qℓ−1} with dimVq0 = f . Choose a basis e1, . . . , ef of eigenvectors for
the action of γℓ on Vq0 . Let α1, . . . , αf denote the distinct eigenvalues. This basis is unique up
to permuting and scaling of the basis vectors. Consider, for i = 1, . . . , ℓ − 1, the basis of Vqi

to be γi(e1), . . . , γ
i(ef ). One concludes that the data for the matrix of γ on the space ⊕Vqi is

equivalent to the tuple (α1, . . . , αf ). Moreover, the set of all ℓth roots of all αi is the set of
eigenvalues of γ.

Thus the total data for γ on V is given by the eigenvalues of γli on the space Vqi,0 for i =
1, . . . , r. Since, by assumption, γ has determinant 1, the space of possibilities for γ is (C∗)−1+

∑
di .

The automorphisms of (V, {Vq}, γ) are the τ ∈ PGL(V ) such that τ(Vq) = Vq for all q
and τγ = γτ . One concludes that τ is determined by its action on all Vqi,0 . Furthermore, τ has
on this space the same eigenvectors as γℓi . This implies that the group of automorphism is
isomorphic to (C∗)d−1. It is seen that the group acts faithfully on the Stokes data. Finally, by
scaling suitable Stokes data to 1, one obtains this affine, open, dense subspace of R. ■

(ii) z = 0 is regular. As above in (i), but now with the additional restriction γ◦Stds◦· · ·◦Std1 =
1V . For every candidate, a computation is needed to find out whether R is not empty and to
find its dimension.

(iii) z = 0 is irregular singular. Let W denote the solution space at z = 0. It has similar
additional data as V , namely q’s, γ, Std, mon0. The link (in [13] called ‘connection’) is a linear
bijection L : W → V commuting with the mon∗. The space R is the space of equivalence classes
of the data at V , W and the link L.

The parameter space P is defined by data of the topological and the formal monodromies,
more precisely by their characteristic polynomials. By “fibre” we will mean a fibre of R → P,
which has the interpretation as space of initial conditions. Each fibre determines a Painlevé
vector field (or scalar differential equation) of rank (or order) equal to the dimension of the
fibre.

1.2.3 The rules used for composing our list of families of connections

The requirements concern the formal data at z = ∞ (and also at z = 0 if this point irregular
singular).

R1. The (distinct) eigenvalues q1, . . . , qr with multiplicity m1, . . . ,mr satisfy: all qj ̸= 0,∑
mjqj = 0 and (in case e > 1) invariance under the Galois group of C((1/z)) over C((1/z)).

Further, one requires that the formal monodromy γ is “generic”, meaning that it has n
distinct eigenvalues.

R2. If z = 0 is regular, then the formal data are normalized by the action of the group
{z 7→ az+b}. If z = 0 is singular, the formal data are normalized using the group {z 7→ az}.
For the description of all formal data at z = ∞ and at z = 0 (if this point is also irregular
singular) only one variable t is needed. This is the translation of the requirement that the
fibres of M → R are locally parametrized by a single t, called the time variable.

R3. The data should not define a subfamily of a family with more “time variables”. However,
in Section 14, we will consider a “companion of P1”, which is a subfamily of an interesting
“two time variables family”.

R4. Apart from individual families, there is interest in hierarchies. By the latter we mean
a sequence of families defined by certain properties of the eigenvalues. For example, z = 0
regular singular; e = 1, κ = 1 defines the hierarchy given by the eigenvalues and multiplic-
ities (z)m1 , (tz)m2 ,

(
−m1+tm2

m3
z
)
m3

for m1,m2,m3 ≥ 1.
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In Section 2, a complete list for the cases with multiplicities 1 is presented. This includes of
course the classical Painlevé equations with at most two singular points. This list extends in an
obvious way to a complete list of hierarchies by allowing multiplicities.

In the next sections, the cases of the list which are not classical, are studied in more detail.

1.2.4 Details on the definition and construction of the space M

(i) Case z = 0 is regular singular. We start by assuming that the irregular singularity z = ∞ is
unramified and is given by data (V, {Vq}, γ).

We choose a basis of V , consisting of eigenvectors of γ, and consider matrices with respect to
this basis. From this, we choose a standard differential operator z d

dz + S where S is a diagonal
matrix with diagonal entries (Q1+a1, . . . , Qn+an). TheQ1, . . . , Qn are the eigenvalues q1, . . . , qr,
repeated according to their multiplicities. Thus

∑
Qj = 0. The a1, . . . , an ∈ C satisfy

∑
aj = 0

and are chosen such that the monodromy of the operator z d
dz + diag(a1, . . . , an) equals γ.

Now we follow [24, Section 12] and consider the fine moduli space defined by the objects (∇, ϕ)
on P1 with the data:

(a) ∇ is a connection on a trivial vector bundle of rank n on P1,

(b) such that z = 0 is regular singular, and

(c) ϕ is a formal isomorphism of ∇ at z = ∞ with z d
dz + S.

The explicit choice ϕ guarantees that the objects have no automorphisms and that a fine moduli
space U (i.e., a universal family) exists.

According to [24, Corollary 12.15 and its proof], the universal family of this fine moduli
space is represented by the family of differential operators Pr

(
g
(
z d
dz + S

)
g−1
)
where g runs in

the N -dimensional affine space{
1V +

∑
k ̸=ℓ

Hom(Vk, Vℓ)⊗C
(
Cz−1 + · · ·+ Cz−deg(qk−qℓ)

)}
,

seen as subset of the group SLn

(
R
[[
z−1
]])

with R the polynomial ring C
[∑

k ̸=ℓHom(Vk, Vℓ)
]
.

The notation Pr denotes “principal part” and is defined here as

Pr

(
z
d

dz
+
∑
k≪∞

Akz
k

)
= z

d

dz
+

∑
0≤k≪∞

Akz
k.

This ends the construction of the universal family U for the case z = 0 regular singular and z = ∞
is unramified. The group of the automorphisms G of the formal operator z d

dz + S consists of
the diagonal matrices with determinant 1, commuting with S. This group acts on U and M
is obtained by dividing U by the action of G. In other words, M is obtained from U by
“forgetting ϕ”.

In general, this categorical quotient has singularities and, moreover need not be the quotient
for the set of closed points. In practise, we will consider a dense affine subspace of M, obtained
as closed subspace of U by normalizing suitable variables to 1 and so providing representatives
for the G-action.

We note in passing that the above describes a (co-adjoint) orbit of a linear algebraic group
over C. Therefore, M has a natural symplectic structure, see also [1].

For the ramified case, one considers the cyclic covering of P1 of degree e, ramified over 0
and ∞. With respect to the variable z1/e, one computes the universal family z d

dz +A as above,
restricted by the condition of invariance under σ. The next step is a computation of the operator
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on a σ-invariant basis (compare [24, Section 12.5])) and, finally, dividing by the action of the
group G of automorphisms of z d

dz + S (by normalizing suitable variables to 1).
(ii) The case z = 0 regular. From the data (V, {Vq}, γ) one first computes, as above in (i),

a normalized universal family of matrix differential operators z d
dz +

∑
0≤k≪∞Akz

k. We propose
for M the subfamily defined by the condition that all the entries of A0 are zero. An explicit
computation is needed to verify whether M is not empty and to compute its dimension.

(iii) The case z = 0 and z = ∞ irregular singular. One expects a universal family of
differential operators

z
d

dz
+

∑
−∞≪k≪∞

Akz
k.

For the right-hand part
∑

0≤k≪∞Akz
k, the method of (i) produces a proposal. The same holds

for the left-hand part
∑

−∞≪k≤0Akz
k. Gluing of the two proposals may result in a suitable

family. A priori, it is not clear whether the formal data at z = 0 and at z = ∞ can be combined
to a family M and a corresponding monodromy space R.

Comments. The explicit computation of R works quite well. The computation of M in
cases (i) or (ii) may fail or may lead to a result unsuitable for further analysis, due to complexity.
For case (iii), one needs a good guess to start the computation.

The number of cases where a complete computation of the Lax pairs can be given is, again
due to complexity, rather small. In case (i), the differential equations involve

N =
∑
k,ℓ

deg(qk − qℓ) · dimVqk · dimVqℓ

functions of t. This system is mostly too large.
A first step towards simplification is normalization by scaling the basis vectors of V (i.e., the

step from U to M). A next step is to reduce this system by the use of invariants, which are
independent of t (i.e., considering fibres of M → P+ and R → P). This reduces the number of
functions of t involved in the Lax pair equations but can be a source of complexity.

2 List of all cases with one time variable

The computation of this list is straightforward, but somewhat long.
With z = 0 regular singular or regular. The condition “one time variable t” implies

that there are at most three Galois orbits of eigenvalues. A regular singular case can restrict to
a regular case, e.g., z, tz, (−1− t)z and z = 0 regular exists and produces trivial Stokes data. In
the table representatives for the Galois orbits of the eigenvalues are given; the rightmost column
indicates in which section this example is discussed and which classical Painlevé equation Pj it
is related to. As in Section 1.1, the Flaschka–Newell equation which is a deformation of P2, is
denoted P2fn (see [23, Section 4.9] for this case).

� One Galois orbit, z = 0 regular singular,

z3/2 + tz1/2, (P2fn)

z2/e + tz1/e for e ≥ 3. (Section 3, P4, P5)

� One Galois orbit, z = 0 regular,

z5/2 + tz1/2, (P1)

z4/3 + tz2/3. (Section 4)
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� Two Galois orbits, z = 0 regular singular,

z2 + tz, −
(
z2 + tz

)
, (P4)

z + tz1/2, −2z. (Section 5)

z1/e1 , tz1/e2 for e1 ≥ e2 ≥ 2. (Section 6, P6)

� Two Galois orbits, z = 0 regular,

z3 + tz, −
(
z3 + tz

)
. (Section 7, P2)

� Three Galois orbits, z = 0 regular singular,

z, tz, (−1− t)z, (Section 8, P6)

z1/e, tz, −tz with e > 1. (Section 9)

� Three Galois orbits, z = 0 regular,

z2, −z2 − tz, tz. (Section 10, P4)

With both z = 0 and z = ∞ irregular singular.

� 1/z,−1/z at z = 0 and tz, −tz at z = ∞ (Section 11, P3(D6)).

� z−1/2 at z = 0 and tz, −tz at z = ∞ (Section 12, P3(D7)).

� z−1/n at z = 0 and tz1/n at z = ∞ with n ≥ 2 (Section 13, P3(D8))

More general: n1, n2 ≥ 2 and z−1/n1 at z = 0 and tz1/n2 at z = ∞ (with suitable multiplici-
ties).

We discuss these cases in the indicated sections.

3 z2/n + tz1/n, n ≥ 3, hierarchy of Noumi and Yamada

We study the structure of the moduli spaces Mn, Rn and the Lax pair computations, separately
for n odd and n even.

3.1 The moduli spaces Mn and Rn for odd n

Computations for Rn. A module M ∈ Mn has the eigenvalues qj = σj(q0) = ω2jz2/n + tωjz1/n

for j = 0, . . . , n− 1 at z = ∞, where ω := e2πi/n.

The tuple (V, {Vq}, γ, {Std}) that classifies M at z = ∞ has the form V = Ce0 ⊕ · · · ⊕Cen−1

where Cej = Vqj for j = 0, . . . , n− 1. This basis is chosen such that γ satisfies e0 7→ e1 7→ · · · 7→
en−1 7→ e0.

The space of the Stokes matrices at z = ∞ is isomorphic to CN , where N = n(n − 1) · 2
n =

2(n− 1). Since the basis vectors e0, . . . , en−1 of V are unique up to multiplication by the same
constant, one finds Rn = C2(n−1) (see Lemma 1.2) and dimMn = 1 + dimRn = 1 + 2(n− 1).

For a module M ∈ Mn, the data of the topological monodromy mon0 at z = 0 is the
conjugacy class of a matrix in SLn. A conjugacy class is mapped to its characteristic polyno-
mial Tn + an−1T

n−1 + · · ·+ a1T + (−1)n and the parameter space Pn is the space of all possible
characteristic polynomials and thus isomorphic to Cn−1. The “monodromy identity” and a non-
trivial, explicit computation, similar to the ones in [3], shows:
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Rn → Pn is surjective and the fibres have dimension (n−1). The fibre for n = 3 is computed
in [25] to be the affine surface xyz + x2 + p1x + p2y + p3z = p4 for certain constants pi.
This is expected because the computation of the Lax pair equation leads to an identification
with P4. A further computation shows that mon0 = 1 is not possible, although characteristic
polynomial (T − 1)3 is possible.

For n = 5, we present details of the computation the fibre. Write ω = e2πi/5, q0 = z2/5+tz1/5,
q1 = ω2z2/5 + ωtz1/5, . . . , q4 = ω3z2/5 + ω4tz1/5. The singular directions in [0, 1) are 7/8
for q0 − q2, q3 − q4, 5/8 for q1 − q4, q3 − q2, 3/8 for q1 − q2, q3 − q0 and 1/8 for q1 − q0, q4 − q2.
The fibres of R5 → P5 are rational 4-folds. After eliminating 3 of the 8 variables for R5, the
affine fibre is given by a degree 5 polynomial equation in 5 variables and with 4 parameters.
This computation also shows that mon0 = 1 is not possible for n = 5.

Construction of Mn and the Lax pairs. We make the method explained in Section 1 explicit.
A differential module M ∈ Mn over C(z) is replaced by N := C

(
z1/n

)
⊗ M . Let D denote

the differential operator ∇z d
dz

on M . Now D extends uniquely to a differential operator, also
called D, on N . This D commutes with the semi-linear automorphism σ : N → N , induced by
the automorphism σ of C

(
z1/n

)
, given by σz1/n = ωz1/n. Thus the M ∈ M are replaced by

pairs (N,σ), as above.
Let e0, . . . , en−1 be a basis of N over C

(
z1/n

)
such that the map σ satisfies σ : e0 7→ e1 7→

· · · 7→ en−1 7→ e0. The operator D is determined by D(e0). The formula

D(e0) =
(
z2/n + tz1/n

)
e0 +

n−1∑
i=1

(
ai + biz

1/n
)
ei

is supported by [24, Sections 12.3–12.5] (compare Section 1). For the operator E := d
dt +B such

that {D,E} forms a Lax pair, one can verify the assumption that E is the σ-invariant operator
with E(e0) = z1/ne0 +

∑n−1
j=1 cjej .

One deduces from this the matrix of D with respect to the basis B0, . . . , Bn−1 of M := N ⟨σ⟩,
where Bj :=

∑n−1
k=0 σ

k
(
zj/ne0

)
for 0 ≤ j ≤ n− 1 and Bn := zB0, Bn+1 := zB1. The formula is

D(Bj) =
j

n
Bj +

n−1∑
i=1

aiω
−ijBj + tBj+1 +

n−1∑
i=1

biω
−i(j+1)Bj+1 +Bj+2.

The formula for E on this basis is

E(Bj) = Bj+1 +

(
n−1∑
k=1

ω−kjck

)
Bj .

Put ϵj =
j
n +

∑n−1
i=1 aiω

−ij and fj = t+
∑n−1

i=1 biω
−ij . The operator D is

z
d

dz
+



ϵ0 0 0 ∗ ∗ z zf0
f1 ϵ1 0 0 ∗ 0 z
1 f2 ϵ2 0 ∗ ∗ 0
0 1 f3 ϵ3 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 1 fn−2 ϵn−2 0
∗ ∗ ∗ 0 1 fn−1 ϵn−1


,

note that
∑

ϵj = n−1
2 and

∑
fj = nt. The ϵ0, . . . , ϵn−1 are the parameters of the family.

The
{
e2πiϵj

}
are the eigenvalues of the topological monodromy at z = 0. These can be seen as

parameters for Rn. For an isomonodromic family the ϵj are constant and the f0, . . . , fn−1 are
analytic functions of the parameter t.
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The operator E reads on the above basis

d

dt
+



g0 0 0 0 ∗ ∗ z
1 g1 0 0 ∗ ∗ 0
0 1 g2 0 ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1 gn−2 0
0 0 0 0 0 1 gn−1


with gj =

(∑n−1
k=1 ω

−kjck
)
and

∑
gj = 0. For an isomonodromic family, the {gj} are functions

of t and are in fact eliminated by the Lax pair condition DE = ED.
For n = 5, the Painlevé type differential system for this Lax pair is

f ′
1 = f1(−f1 − 2f2 − 2f4 + t) + 2ϵ1 + ϵ2 + ϵ3 + ϵ4,

f ′
2 = f2(−2f1 + f2 − 2f4 − t)− ϵ1 + ϵ2, f ′

3 = f3(−2f1 − f3 − 2f4 + t)− ϵ2 + ϵ3,

f ′
4 = f4(2f1 + 2f3 + f4 − t)− ϵ3 + ϵ4.

For n = 7, one has
∑

fj = 7t,
∑

ϵj = 3 and

f ′
0 = f0(−f1 + f2 − f3 + f4 − f5 + f6) + ϵ0 − ϵ6 + 1,

f ′
1 = f1(f0 − f2 + f3 − f4 + f5 − f6)− ϵ0 + ϵ1,

f ′
2 = f2(−f0 + f1 − f3 + f4 − f5 + f6)− ϵ1 + ϵ2,

f ′
3 = f3(f0 − f1 + f2 − f4 + f5 − f6)− ϵ2 + ϵ3,

f ′
4 = f4(−f0 + f1 − f2 + f3 − f5 + f6)− ϵ3 + ϵ4,

f ′
5 = f5(f0 − f1 + f2 − f4 + f4 − f6)− ϵ4 + ϵ5,

f ′
6 = f6(−f0 + f1 − f2 + f3 − f4 + f5)− ϵ5 + ϵ6.

The general case for odd n is similar.
Observation. Apart from small changes the above is the symmetric Lax pair introduced by

Noumi, Yamada et al. (see [20, 26]). The changes are

(a) ϵj is changed into ϵj − n−1
2n in order to obtain a matrix with trace zero. This corresponds

to a small change in the definition of D, namely

D(e0) =

(
z2/n + tz1/n − n− 1

2n

)
e0 +

n−1∑
i=1

(
ai + biz

1/n
)
ei.

(b) A notational change of t into t
n .

(c) Transposing the matrix. This is due to the relation between a covariant solution space
and a contravariant solution space.

An alternative method for n = 3, i.e., the Noumi–Yamada form for P4. The Lax pair
equations are equivalent to ED(e0) = DE(e0). The normalized operator D given as

De0 =

(
z2/3 + tz1/3 +

2

3

)
e0 + (a1 + b1z

1/3)e1 +
(
a2 + b2z

1/3
)
e2,

where a1, a2 are constants and b1, b2 are functions of t, commutes with the operator E such
that E(e0) = z1/3e0 + c1e1 + c2e2 (for suitable functions c1, c2 of t) if and only b1, b2 satisfy the
differential equations

b′1 = a1(1− ω) + b1t(2ω + 1) + b22(−2ω − 1),

b′2 = a2(ω + 2) + b21(2ω + 1) + b2t(−2ω − 1).
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This is in fact a Hamiltonian system b′1 =
∂H
∂b2

, b′2 = −∂H
∂b1

with ω = e2πi/3 and

H = −
(
b31
3

+
b32
3

)
(2ω + 1) + b1b2t(2ω + 1)− b1a2(ω + 2)− b2a1(ω − 1).

After a linear change of variables this Hamiltonian coincides with Okamoto’s standard Hamil-
tonian for P4 (see [22, p. 265]).

3.2 The moduli spaces Mn and Rn for even n

We proceed as in Section 3.1. Write n = 2m and ω = e2πi/n. The eigenvalues at z = ∞ are
qj = ωj/mz1/m + ωj/2mtz1/2m for j = 0, . . . , 2m− 1.

Now N :=
∑

i̸=j deg(qi − qj) = 4m − 3, R2m
∼= CN and M2m has dimension 1 + 4m − 3.

The parameter space P2m for the monodromy space consists of the characteristic polynomials
of the monodromy at z = 0. Since Λ2mM is the trivial differential module, this monodromy has
determinant 1. Thus dimP2m = 2m−1. A similar explicit computation as the one mentioned in
Section 3.1 shows: R2m → P2m is surjective and the fibres have dimension 2m−2. We make the
method of construction a differential operator, a Lax pair and Painlevé type equations explicit
for n = 4. The general case is discussed after that.

3.2.1 The case n = 4

Following Section 1, we may assume that the differential operator D has on the basis e0, e1, e2,
e3 the formula

D(e0) =

(
z1/2 +

t

4
z1/4 − 3/8

)
e0 +

(
a1 + b1z

1/4
)
e1 + a2e2 +

(
a3 + b3z

1/4
)
e3,

and D commutes with σ defined by σej = ej+1 for j = 0, 1, 2 and σe3 = e0 and σz1/4 = iz1/4.
Consider the following basis of invariants:

B0 = e0 + e1 + e2 + e3, B1 = z1/4
(
e0 + ie1 + i2e2 + i3e3

)
,

B2 = z1/2(e0 − e1 + e2 − e3), B3 = z3/4(e0 − ie1 − e2 + ie3).

The matrix of D with respect to this basis is
−3

8 + a1 + a2 + a3 0 z z
(
t
4 + b1 + b3

)
t
4 − ib1 + ib3 −1

8 − ia1 − a2 + ia3 0 z
1 t

4 − b1 − b3
1
8 − a1 + a2 − a3 0

0 1 t
4 + ib1 − ib3

3
8 + ia1 − a2 − ia3


and D is equal to the differential operator

z
d

dz
+


ϵ0 0 z zf0
f1 ϵ1 0 z
1 f2 ϵ2 0
0 1 f3 ϵ3


with

∑
ϵj = 0, f0 + f2 = f1 + f3 =

t
2 . The ϵ0, . . . , ϵ3 are parameters.

The operator D is completed to a Lax pair by the differential operator E with respect to d
dt .

This operator, written on the basis e0, e1, e2, e3 is σ-invariant and has the form E(e0) =
z1/4e0 +

∑3
j=1 hjej for suitable functions h1, h2, h3 of t. On the basis B0, B1, B2 one obtains

E :=
d

dt
+


g0 0 0 z
1 g1 0 0
0 1 g2 0
0 0 1 g3


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with
∑

gj = 0. The assumption that E commutes with D produces equations for the derivatives
of f0, f1, f2, f3, seen as functions of t. These formulas are similar to those derived by Noumi–
Yamada. Moreover, combining the differential equations for f0 and f1 leads to the standard P5

equation, see [20, 26] for details.
An alternative computation is a consequence of the observation that isomonodromy is given

by DE(e0) = ED(e0) and a1, a2, a3 ∈ C. This produces equations with parameters a1, a2, a3

4t · db1
dt

= −16ib21b3 + t2b1i + 16ib33 − 4ia1t+ 4a1t− 32a2b3

4t · db3
dt

= −16ib31 + 16ib1b
2
3 − t2b3i + 4ia3t− 32a2b1 + 4a3t,

h1 = −ib1/2 + b1/2, t · h2 = 2b21i− 2b23i + 4a2, h3 = b3i/2 + b3/2.

One observes that the equations for b1, b3 form a Hamiltonian system with

t
db1
dt

=
∂H

∂b3
, t

db3
dt

= −∂H

∂b1
,

H =
i
(
b21 − b23

)2
t

+
itb1b3
4

+
4a2
(
b21 − b23

)
t

− (1 + i)a3b1 + (1− i)a1b3.

Comments. The above Hamiltonian H and the differential equations for b1, b3 coincide, after
a linear change of variables, with Okamoto’s standard polynomial Hamiltonian for P5, see [22,
p. 265].

The fibers of R4 → P4. The eigenvalues at z = ∞ are: q0 = z1/2 + tz1/4, q1 = −z1/2 + itz1/4,
q2 = z1/2 − tz1/4, q3 = −z1/2 − itz1/4. The differences q0 − q1, q0 − q3, q2 − q1, q2 − q3 have
the form 2z1/2 + · · · and further q0 − q2 = 2tz1/4 and q1 − q3 = 2itz1/4. There is one singular
direction in [0, 1) for the terms ±2z1/2. For the terms ±2tz1/4, ±2itz1/4 there is only one singular
direction in [0, 1). For a suitable choice of t, this leads to the monodromy identity

mon∞ =


−1

1
1

1



1

1 y
1

1




1
x1 1 x2

1
x3 x4 1

 .

One observes that mon0 = mon−1
∞ cannot be the identity. Thus for the data considered here,

z = ∞ singular with eigenvalues z1/2 + tz1/4 and its conjugates and z = 0 regular cannot be
combined.

The space P4 is parametrized by p1, p2, p3, where the characteristic polynomial of mon∞ is
written as T 4 + p3T

3 + p2T
2 + p1T + 1. For a suitable choice of elimination of two variables

(e.g., x1, x2), the fibres are described by a cubic equation in three variables y, x3, x4 and
parameters p1, p2, p3. The equation reads v1v2v3 + ∗v21 + ∗v22 + ∗v1 + ∗v2 + ∗v3 + ∗ = 0 for
suitable affine expressions ∗’s in the parameters p1, p2, p3. This is expected, since the related
Painlevé equation P5 has the same cubic equation for its monodromy.

3.2.2 The general case with n = 2m

Consider the C(t)
[
z1/2m

]
-lattice with basis e0, . . . , e2m−1, provided with the action of σ given

by the formulas: σzλ = e2πiλzλ and σej = ej+1 for j = 0, . . . , 2m − 2 and σe2m−1 = e0. The
operator D (with respect to the derivation z d

dz ) representing M2m, is σ-invariant and is given by

D(e0) =

(
z1/m +

t

2m
z1/2m − 2m− 1

4m

)
e0 +

2m−1∑
j=1

(
aj + bjz

1/2m
)
ej ,
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with varying aj , bj ∈ C and where bm = 0. On the basis B0, . . . , B2m−1 of invariants, D has the
form z d

dz + A0 + zA1. We make this explicit for n = 6, m = 3. The general n = 2m case is
similar,

D = z
d

dz
+



ϵ0 0 0 0 z z
(
t
6 + f0

)
t
6 + f1 ϵ1 0 0 0 z

1 t
6 + f2 ϵ2 0 0 0

0 1 t
6 + f3 ϵ3 0 0

0 0 1 t
6 + f4 ϵ4 0

0 0 0 1 t
6 + f5 ϵ5

 .

The ϵj are linear combinations of a1, . . . , a5 satisfying
∑

ϵj = 0, and the f0, . . . , f5 are linear
combinations of b1, b2, b4, b5 such that the relations f0 + f2 + f4 = f1 + f3 + f5 = 0 hold.

One observes that the data of the eigenvalues of A0 are equivalent to a1, . . . , a2m−1. Thus for
an isomonodromic family the aj are constant and the b1, . . . , b2m−1 (with the condition bm = 0)
are functions of t. The differential equations for the bj are derived from a Lax pair z d

dz +A0 +

zA1,
d
dt + B with an, a priori, unknown matrix B depending on t and z. The action of the

operator d
dt +B on the C(t)

[
z1/2m

]
-lattice with basis e0, . . . , e2m−1 is called E. It is σ-invariant

and one can prove that E is given by

E(e0) = z1/2me0 +
2m−1∑
j=1

hjej for certain functions h1, . . . , h2m−1 of t.

We make this explicit for n = 6, m = 3 (again, the general case n = 2m is similar),

E =
d

dt
+



g0 0 0 0 0 z
1 g1 0 0 0 0
0 1 g2 0 0 0
0 0 1 g3 0 0
0 0 0 1 g4 0
0 0 0 0 1 g5

 and
∑

gj = 0.

The Painlevé type equations are similar to those in Section 3.2.1.
An alternative computation. From the equation DE(e0) = ED(e0) and all aj are constants,

the differential equations for b1, . . . , b2m−1 follow. For the case n = 6, m = 3, one obtains the
following Painlevé type equations for b1, b2, b4, b5 (b3 = 0, w = e2πi/6)

−18t
db1
dt

= 288b1b2b4w − 2b1t
2w − 24b2b5tw − 288b24b5w + 18a1tw

− 144b1b2b4 + b1t
2 + 12b2b5t+ 144b24b5 − 18a1t+ 216a3b4,

−6t
db2
dt

= − 4b21tw + 96b1b2b5w − 2b2t
2w + 12b24tw − 96b4b

2
5w + 6a2tw

+ 2b21t− 48b1b2b5 + b2t
2 − 6b24t+ 48b4b

2
5 − 12a2t+ 72a3b5,

−6t
db4
dt

= 96b21b2w − 96b1b4b5w − 12b22tw + 2b4t
2w + 4b25tw − 6a4tw

− 48b21b2 + 48b1b4b5 + 6b22t− b4t
2 − 2b25t+ 72a3b1 − 6a4t,

−18t
db5
dt

= 88b1b
2
2w + 24b1b4tw − 288b2b4b5w + 2b5t

2w − 18a5tw

− 144b1b
2
2 − 12b1b4t+ 144b2b4b5 − b5t

2 + 216a3b2.

There is a Hamiltonian function H such that

db5
dt

= −∂H

∂b1
,

db1
dt

=
∂H

∂b5
,

db4
dt

= −∂H

∂b2
,

db2
dt

=
∂H

∂b4
,
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where H is defined by

3tH = (w − 1/2)(b2b4 + b1b5/3)t
2 +

(
(−2w + 1)b32 +

((
2b25 − 3a4

)
w − b25 − 3a4

)
b2

+ (1− 2w)b34 +
((
2b21 − 3a2

)
w − b21 + 6a2

)
b4 − (3a1b5 + 3a5b1)w + 3a1b5

)
t

+ 12(−b1b2 + b4b5)((−b1(2w − 1)b2 + b5(2w − 1)b4 − 3a3),

with w = e2πi/6. This is related to the equations studied in [12].

4 z4/3 + tz2/3 and regular z = 0

The q0 = z4/3 + tz2/3, q1 = ωz4/3 + ω2tz2/3, q2 = ω2z4/3 + ωtz2/3 with ω = e2πi/3 are the
eigenvalues. First, we assume that z = 0 is a regular singular point. Then, the monodromy
space R is isomorphic to C8. The monodromy mon at z = ∞ (or equivalently at z = 0) is
a product of the formal monodromy and 8 Stokes matrices. The singular directions in [0, 1) are
15
16 ,

13
16 ,

11
16 ,

9
16 ,

7
16 ,

5
16 ,

3
16 ,

1
16 for q1 − q2, q1 − q0, q2 − q0, q2 − q1, q0 − q1, q0 − q2, q1 − q2, q1 − q0.

Each Stokes matrix has one nontrivial entry and these are in the same order x12, x10, x20, x21,
x01, x02, y12, y10. A computation shows that the map R → SL3(C), which send the Stokes data
to mon, is birational. Moreover, the preimage of 1 ∈ SL3(C) is one point, namely x01 = −1,
x02 = 1, x10 = 1, x12 = −1, x20 = −1, x21 = 1, y10 = 1, y12 = −1.

The rather curious conclusion is that the monodromy space, for the case that z = 0 is regular,
consists of a single point.

The formal matrix differential operator is

z
d

dz
+

−1
3 tz z2

z 0 tz
t z 1

3

 .

The guess that M is represented by the family of operators of the form

d

dz
+

0 3t
2 z

1 0 3t
2

0 1 0


is confirmed by a Lax pair computation. The corresponding scalar differential equation is y(3)−
3ty(1) − zy = 0.

One concludes that the Stokes matrices, which are nontrivial, in this family do not depend
on t.

5 z + t1/2z1/2, z − t1/2z1/2,−2z and regular singular z = 0

The above formulas are the eigenvalues q0, q1, q2 at z = ∞. For t ∈ R, t > 0, the singular
directions in [0, 1) are 1/2 for q0− q2, q1− q2 and 0 for q1− q0, q2− q0, q2− q1. The monodromy
identity is

mon =

0 −1 0
1 0 0
0 0 1

 1 0 0
0 1 0
x02 x12 1

1 x10 x20
0 1 x21
0 0 1

 .

This presentation is unique up to scaling the third basis vector. One has dimR = 4, dimP = 2
and the fibers are affine cubic surfaces with an equation of the form x1x2x3 + x21 + ∗x1 + ∗x2 +
∗x3 + ∗ = 0. The data do not match with z = 0 regular, since mon = 1 has no solution.
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In order to simplify the computation, the eigenvalues at z = ∞ are replaced by z1/2, −z1/2,
tz, obtained by shifting and scaling the given z±t1/2z1/2, −2z. This has no effect on monodromy
and Lax pairs. The method of [24, Section 12.5], explained in Section 1, produces an explicit
formula for the universal family with these data. It depends on 5 variables. By scaling the basis
vectors, one of the variables is normalized to 1 and the resulting operator has the form z d

dz +A
with

A =

 −2a1 z a4t− a3
1 2a1 + a3t a3t

−(a1 + 2a8)t− 1 tz tz − a3t

 .

The further computations are described as follows. The Lax pair formalism produces a set of
differential equations dai

dt = Ri for i = 1, 3, 4, 8 where the Ri are rational functions in a1, a3, a4,
a8, t. The eigenvalues of the residue matrix of A at z = 0 are independent of t. One of the
eigenvalues is 2a1 + a3t. Adding the equation d(2a1+a3t)

dt = 0 to the above system of equations
eliminates a4 and produces: a1 = c1, a3 = c2/t with constants c1, c2 and a Riccati equation
for a8. In particular, The Painlevé equation of this family is solvable by classical functions.

We remark that the monodromy space for the case ±z1/2, tz produces again a 2-dimensional
family of affine cubic surfaces of the type: x1x2x3 + x21 + ∗x1 + ∗x2 + ∗x3 + ∗ = 0.

However, in this case, there seems to be no relation with P4.

6 z1/e1, tz1/e2, e1 ≥ e2 ≥ 2 and regular singular z = 0

For e1 > e2 ≥ 2, one has dimR = 3e1 + e2 − 3 and dimP = e1 + e2 − 1. For the smallest case
e1 = 3, e2 = 2, one has dimR = 8, dimP = 4, R → P is (generically) surjective and the fibres
have dimension 4. The formulas for the fibres are complicated. This makes the computation
of M and the Lax pair nearly impossible.

For e1 = e2 = m ≥ 2, n = 2m, one has dimR = n(n−1)
m − 1 = 2n − 3, dimP = n − 1. For

the smallest case m = 2, one has dimR − dimP = 2. The computation in Section 6.1 below
produces a second-order Painlevé equation which is probably a pull back of the classical P4

equation.

6.1 The case z1/2, tz1/2. The monodromy space R

The eigenvectors are q1 = z1/2, q2 = −z1/2, q3 = tz1/2, q4 = −tz1/2 with a basis f1, f2, f3, f4 of
eigenvectors is such that γ permutes the two pairs {f1, f2} and {f3, f4}. There are 6 variables
present in the Stokes matrices. Now f1 and f3 can be scaled independently and so dimR =
6−1 = 5. Further P ∼= C3 is the space of the characteristic polynomials T 4−p3T

3+p2T
2−p1T+1

of the elements of SL4.
For the case t = i, the singular directions in [0, 1) are 0 for q2 − q1,

1
4 for q2 − q4 and for

q3 − q1,
1
2 for q3 − q4,

3
4 for q1 − q4 and for q3 − q2.

The topological monodromy mon, which has the above characteristic polynomial, is equal to
the product

1
1

1
1



1 x14

1 x23
1

1



1

1
1
x43 1



1 x13

1
1

x42 1



1 x12

1
1

1

 .

The fibres of R → P have the following data. Assume that x42 ̸= 0 (we note that x42 = 0 implies
reducibility). After eliminating x12, x23, there remains one cubic equation in the variables x14,
x42, x43, x13, namely x14x42x43 − p3x43 + x13x42 + x243 + p2 + 2 = 0. After normalizing x13 to 1
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(we note that x13 = 0 produces a similar cubic equation), the cubic equation is almost identical
to the one for P4 (see [23]) which is x1x2x3 + x21 −

(
s22 + s1s3

)
x1 − s22x2 − s22x3 + s22 + s1s

3
2 = 0.

Observation. The monodromy identity depends strongly on t. For instance, if t ∈ R>0,
t ̸= 1, then there is only one singular direction in [0, 1). The fibres of R → P are again rational
surfaces. The dependence of these surfaces on t is somewhat mysterious.

The space of connections M. A differential module M over C(z) in this moduli space can be
considered as a differential module N over C

(
z1/2

)
with an automorphism σ satisfying σ◦z1/2 =

−z1/2 ◦ σ and σ2 = 1. Now N can be given a basis e1, e2, e3, e4 such that σ permutes the two
pairs {e1, e2} and {e3, e4}. The corresponding module M over C(z) has the basis

B1 = e1 + e2, B2 := z1/2(e1 − e2), B3 = e3 + e4, B4 = z1/2(e3 − e4).

Let D denote the operator of the form z d
dz + (a matrix) acting upon N . This operator commutes

with σ and is determined by De1, De3. The formal part D̂ of D is given by D̂e1 = z1/2e1,
D̂e3 = tz1/2e3. Using [24, Section 12], one concludes that D is given by the formulas

De1 = z1/2e1 + a1e2 + a2e3 + a3e4, De3 = tz1/2e3 + a4e1 + a5e2 + a6e4

with constants a1, . . . , a6. For the generic case, one can normalize to a5 = 1. A computation
of D on the basis B1, . . . , B4 produces the operator (normalized to trace equal to zero) z d

dz +A
with

A =


a1 − 1/4 z a4 + a5 0

1 −a1 + 1/4 0 a4 − a5
a2 + a3 0 a6 − 1/4 tz

0 a2 − a3 t −a6 + 1/4

 .

As mentioned above, one may normalize to a5 = 1. Further the coefficients of the charac-
teristic polynomial of residue matrix at z = 0 are the parameters. We conclude that for fixed
parameters, the above family of operators has dimension 2 (not counting the variable t). This
is in agreement with the computation of the fibers of R → P.

The operator z d
dz + A is extended to a Lax pair by an operator of the form d

dt + B with

B = B0 +B1z for matrices B0, B1 depending on t only. The property d
dt(A) = z d

dz (B) + [A,B]

yields a vector field, represented by differential equations d
dtaj = Rj , j = 1, 2, 3, 4, 6 with Rj

rational expressions in a1, . . . , a4, a6, t. The characteristic polynomial of the residue matrix at
z = 0 is written as T 4 + P2T

2 + P1T + P0. We have used the formulas for P1, P2 and another
invariant P0 = a1 + a6 to eliminate (stepwise) the functions a3, a6, a2. For the remaining a1, a4
one obtains the equations

da1
dt

=

(
2P1a

2
4 +

(
−4P 2

0 + (8a1 + 2)P0 − 8a21 − 4P2

)
a4 + 2P1

)(
a24 − 1

)(
t2 − 1

) ,

da4
dt

=

((
−2a24 + 2

)
a1t

2 + 2
(
a24 + 1

)
(P0 − 2a1)t+ 2(a4 − 1)(a4 + 1)(−a1 + P0))(

t3 − t
) .

The second equation can be used to write a1 as an expression in a4 and da4
dt . Substitution in

the first equation yields an explicit (and rather long) second-order differential equation for a4.
The poles with respect to t are 0, 1, −1, ∞. The cubic form of the fibres of R → P suggested
a relation with P4.

Identifying Painlevé equations is in general an almost impossible task; the present manuscript
focuses on constructing Painlevé-type equations rather than identifying them. However, Dzha-
may [5] succeeded in using the geometry of Okamoto–Painlevé spaces and the algorithms of [6],
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to identify the above equation with the standard Okamoto form PVI(q(t), p(t), t;κ0, κ1, κ8, θ) of
the sixth Painlevé equation, where

a4(s) = (s · q(t)− 1)/(s · q(t) + 1), a1(s) = 1/2(−2p(t) + P0 − κ1), t = 1/s2,

P0 = 1/2− κ1, P1 =
(
κ28 − κ20

)
/4, P2 =

(
2P0 − 2P 2

0 − κ20 − κ28
)
/4.

7
(
z3 + tz

)
m1

,
(−m1

m2

(
z3 + tz

))
m2

and regular z = 0

The case m1 = m2 = 1. This is in fact the standard family for P2. One has q1 = z3 + tz,
q2 = −

(
z3 + tz

)
; the singular directions for q1 − q2 are 1,3,5

6 ; the singular directions for q2 − q1
are 0,2,4

6 . The monodromy identity reads

mon =

(
g 0
0 1/g

)(
1 x5
0 1

)(
1 0
x4 1

)(
1 x3
0 1

)(
1 0
x2 1

)(
1 x1
0 1

)(
1 0
x0 1

)
.

The equation mon =
(
1 0
0 1

)
and division by Gm (made explicit by normalizing x5 = 1) produce

an explicit R of dimension 3. Furthermore, dimP = 1 (parameter g). See [23, Section 3.9] for
more details.

Case m1 = 2, m2 = 1, z3 + tz, z3 + tz, −2z3 − 2tz and z = 0 is regular.
Description of R. The Stokes matrices are described by 12 variables, there are 2 variables

describing the formal monodromy. The topological monodromy is supposed to be the identity.
This produces 8 equations.

Actual computation, using the monodromy identity produces a space of dimension 6. Dividing
by the action of G2

m, due to scaling the basis vectors, produces dimR = 4. Moreover, dimP = 2
and the fibers of R → P have dimension 2. One expects a relation with a classical Painlevé
equation with at most two singularities.

We follow the discussion of the cases (i) and (ii) on pages 7–8 for the construction of the
matrix differential operator z d

dz +A. The formal operator

ST := z
d

dz
+ diag

(
z3 + tz + a1, z

3 + tz + a2,−2z3 − 2tz − a1 − a2
)

is conjugated with the matrix 1+M , where

M =

 0 0 b1/z + b2/z
2 + b3/z

3

0 0 b4/z + b5/z
2 + b6/z

3

b7/z + b8/z
2 + b9/z

3 b10/z + b11/z
2 + b12/z

3 0

 .

This produces an operator

z
d

dz
+ Ã = Prin

(
z
d

dz
+ (1+M)ST(1+M)−1

)
.

Then A is obtained from Ã by adding the eight equations given by Ã(0) = 0. After scaling the
basis vectors one has b2 = 1, b11 = 1 and the matrix A depends only on the variables b1, b5,
b7, b8. The substitution b5 = B5b8 removes some denominators. The characteristic polynomial
of the formal monodromy at z = ∞ is written as T 3 + pT + q. The Lax pair equation together
with the equations dp

dt = 0, dq
dt = 0 produce a differential system

dB5

dt
= 0,

db1
dt

= −6B5b
3
1b7 − 6b31b7 − 3b21t− 3,

db7
dt

=
(
27b27(B5 + 1)2b21 + 18tb7(B5 + 1)b1 + 3t2 − p

)
/(3B5 + 3).
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This is a Hamiltonian system db1
dt = ∂H

∂b7
, db7

dt = −∂H
∂b1

, depending on parameters B5, p, with

H = −3(B5 + 1)b27b
3
1 − 3tb7b

2
1 +

−3t2 + p

3B5 + 3
b1 − 3b7.

There is no evident relation between this Hamiltonian and Okamoto’s list of polynomial
Hamiltonians in [22]. Possibly the method described in [6] can be applied here.

8 z, tz, (−1 − t)z, Harnad’s case

The moduli space M for these data is a family with irregular singularities and its isomonodromy
produces the Painlevé VI equation. Classically, P6 is derived from isomonodromy with four
regular singularities. The construction and formulas for this new family are introduced by
Harnad [11]. A more detailed investigation is given by Mazzocco [18]. A formula for the Stokes
data of this new family in terms of invariants for the classical family is computed in [4].

In this section, we compute the Stokes data, the monodromy space R, a matrix differential
operator representing M, its identification with the data in [4, 11, 18] and the Lax pair. A direct
identification of the resulting Painlevé type equations with P6 seems difficult to find. However
this identification is explicitly present in [11, 18].

8.1 Computation of Stokes data and monodromy space R

The formal solution space V at z = ∞ has a basis e0, e1, e2 such that the formal differential
operator has the form

z
d

dz
+

z + a0
tz + a1

(−1− t)z − a0 − a1

 .

The formal monodromy and the Stokes matrices are given with respect to this natural basis.
The basis is unique up to multiplying each ej by a scalar. Since z = 0 is regular singular,
one has dimR = 6. The formal monodromy at z = ∞ is the diagonal matrix diag(g1, g2, g3)
with g1g2g3 = 1 and g1 = e2πia0 , g2 = e2πia1 .

The singular directions depend on t. For t close to i, the singular direction dkl ∈ [0, 1) for
qk − ql are approximated by 0.93, 0.83, 0.62, 0.43, 0.33, 0.12 for d20, d21, d01, d02, d12, d10. This
determines the order of the six Stokes matrices in the monodromy identity, which states that
the topological monodromy mon at z = 0 is, up to conjugation, equal to the productg1

g2
1

g1g2

 1
1

x20 1

1
1
x21 1

1 x01
1

1


×

1 x02
1

1

1
1 x12

1

 1
x10 1

1

 .

If z = 0 is regular (i.e., mon = 1), then the Stokes matrices and the formal monodromy
are equal to the identity. This case is uninteresting. We suppose that z = 0 is any regular
singularity.

Since the basis e0, e1, e2 is unique up to multiplying each ej by a constant, the monodromy
space R is the quotient of the space of tuples {g1, g2, x20, x21, x01, x02, x12, x10} by the action
of G2

m. A dense affine subspace of R is obtained by normalization two of the x∗∗ to 1, for
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instance, x20 = x12 = 1. It can be shown that R → P is surjective. The space P is given by the
tuples (g1, g2, c1, c0) where c0, c1 are the nontrivial coefficients of the characteristic polynomial
of mon. Now dimP = 4 and a computation shows that the fibers of R → P are affine cubic
surfaces with equation xyz+ x2 + y2 + z2 + p1x+ p2y+ p3z+ p4 = 0 with p1, . . . , p4 expressions
in the parameters g1, g2, c1, c0.

This is the expected structure of the monodromy space if one admits the equivalence with the
classical isomonodromy for P6 (see the list in [23, Section 2.2]).

8.2 Constructing the connection and the Lax pair

A Zariski open, dense subspace of the moduli space M is obtained from [24, Theorem 12.4] (see
also Section 1) by considering the family of differential operators of the form

z
d

dz
+

 a0 m1 m2

m3 a1 m4

m5 m6 −a0 − a1

+ z

1 0 0
0 t 0
0 0 −1− t

 .

Changing the eigenvalues 1, t, −1 − t of the irregular part of the operator into 0, 1, t has
no effect on the monodromy and the Lax pair. One obtains in this way the [11, formula (3.62)]
proposed by Harnad and the formula on [18, p. 3].

The Zariski open subspace of M is obtained by taking equivalence classes of the above family.
Indeed, each of the basis vectors for this presentation can be multiplied by nonzero elements
and therefore the family has to be divided by this action of G2

m. A Zariski open part of the
quotient space is obtained by assuming m3m4 ̸= 0 and normalizing m3 = m4 = 1. In this way,
one obtains the following explicit description of an open part of M in terms of

z
d

dz
+

z + a0 v1 v2
1 tz + a1 1
v3 v4 (−1− t)z − a0 − a1

 .

This operator, with v1, . . . , v4 as functions of t and a0, a1 constants, is completed to a Lax pair
with the operator d

dt + B0(t) + zB1(t). The assumption that the two operators commute leads
to a set of differential equations for v1, . . . , v4, namely

v′1 =
−3v3v1 + 3v2v4
2t2 + 5t+ 2

, v′2 =
(6t+ 3)v22 − 3v3(t− 1)v2 − 3v1(t+ 2) + (−9a0t+ 9a1)v2

2t3 + 3t2 − 3t− 2
,

v′3 =
(3t− 3)v23 + (−6t− 3)v2v3 + (9a0t− 9a1)v3 + 3v4(t+ 2)

2t3 + 3t2 − 3t− 2
, v′4 =

3v3v1 − 3v2v4
t2 + t− 2

.

In a monodromic family the topological monodromy is constant and then also the characteristic
polynomial of the residue matrix is constant. This means that there are constants δ0, δ1,
explicitly

−a20 − a0a1 − a21 − v2v3 − v1 − v4 = δ1,

a20a1 + a0a
2
1 + a1v2v3 − a0v1 + a0v4 − a1v1 − v1v3 − v2v4 = δ0.

The algebra of functions on the parameter space P+ for the connection is generated by a0, a1,
δ0, δ1. They correspond to the 4 parameters for the moduli space R of the analytic data.

We know by [11, 18], that reduction of the above equations and parameters to the same for P6

is possible. However, we have no explicit computation.

Remark 8.1. There are explicit formulas for reducible loci and the corresponding Riccati equa-
tions. These turn out to be hypergeometric differential equations. This is also expected if one
admits that the Painlevé type system is equivalent to P6.
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Example 8.2. v3 = v4 = 0 and v′1 = 0,

v′2 =
3(2t+ 1)v22 − 3(t+ 2)v1 + 9(−a0t+ a1)v2

(t− 1)(2t+ 1)(t+ 2)
.

8.3 The hierarchy (z)m1, (tz)m2(
−m1−tm2

m3
z)m3

The m1,m2,m3 ≥ 1 stand for multiplicities. A computation shows that “z = 0 is regular” leads
to trivial Stokes matrices and formal monodromy. Consider the case m1 = 2, m2 = m3 = 1.
Then dimR = 10 and dimP = 6. According to [24, Exercise 12.5, p. 300], the universal family
is represented by the operator

z
d

dz
+


z + a1 0 x1 x2

0 z + a2 x3 x4
x5 x6 tz + a3 x7
x8 x9 x10 (−2− t)z − a1 − a2 − a3

 .

Consider a normalization, say, x8 = x9 = x10 = 1, obtained by restricting to the open subspace
defined by x8x9x10 ̸= 0 and multiplying the base vectors by scalars. The Lax pair consists of
the above operator and d

dt + B0 + zB1. An easy computation produces a system of differential
equations (or vector field)

dxj

dt ∈ C(a1, . . . , a4, x1, . . . , x7), j = 1, . . . , 7. Using three coefficients
of the characteristic polynomial of the residue matrix at z = 0, one can eliminate x2, x4, x7 in
a rational way. The resulting vector field of rank 4 is a Painlevé type system. It is unfortunately
too complicated for presentation here. This system contains, of course, many closed subsystems
corresponding to z, tz, (−1− t)z, that produce equations related to P6.

9 z1/e, tz, −tz, e > 1 and regular singular z = 0

Write q1, . . . , qe for the conjugates of z
1/e; write r and s for tz and−tz. The value of the integerN

(i.e., the dimension of the Stokes data) is equal to e(e− 1)1e (for the qk − ql) plus e+ e+ e+ e
(for qk − r, r − qk, qk − s, s − qk) plus 2 (for r − s, s − r) and sums up to 5e+ 1. The formal
monodromy γ depends on 1 parameter. Normalization by the action ofG2

m results in dimR = 5e.
The parameters are the e + 1 coefficients of the characteristic polynomial of the monodromy
at z = 0 and the eigenvalues of γ. This leads to dimP = e+ 2 and dimR− dimP = 4e− 2.

The case e = 2. For t = 1, the singular directions in [0, 1) are d = 1/2 for r − q1, r − q2,
q1 − s, q2 − s, r − s and q2 − q1, q1 − r, q2 − r, s − q1, s − q2, s − r for d = 0. This leads to a
matrix formula for the topological monodromy

mon0 =


−1

1
g

1/g




1 x1
1 x2

1
x3 x4 x5 1




1 x6 x7
1 x8

x9 x10 1 x11
1

 .

One may normalize to x10 = x11 = 1. The parameters are g and three coefficients of the
characteristic polynomial of mon0. A Maple computation verifies that the fibres of R → P are
birational to A6.

The form of the differential operator z d
dz+A is found, using the method explained in Section 1,

namely

A =


a z ∗ ∗
1 −a ∗ ∗
∗ ∗ tz + b ∗
∗ ∗ ∗ −tz − b

 ,
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where a, b and ∗ are variables. Since two of the constants can be normalized to 0, this is a family
of dimension 10 (over the field C(t)). The invariants are three coefficients of the characteristic
polynomial of the residue matrix at z = 0 and b at z = ∞.

The Lax pair
{
z d
dz + A, d

dt + B
}
has the form B = B0 + B1z, where B0, B1 are traceless

matrices depending on t only. The Lax pair calculations for the case e = 2 produces a rational
Painlevé vector field of dimension 6 which is too large to be presented here.

10 z2, −z2 − tz, tz and z = 0 regular

The assumptions: z = 0 is regular and z = ∞ is unramified and has Katz invariant 2 produces
the eigenvalues

(
z2
)
m1

,
(
a2z

2 + a1z
)
m2

, (b1z)m3 such that the m1, m2, m3 satisfy

m1z
2 +m2

(
a2z

2 + a1z
)
+m3b1z = 0.

Then dimR = (n− 1)2, where n = m1 +m2 +m3 ≥ 3.
We present computations for the case m1 = m2 = m3 = 1. Then dimR = 4 and dimP = 2.

The fibers of R → P are affine cubic surfaces, which have, after an affine linear change of the
variables, the equation xyz + x + y + 1 = 0. We note that the monodromy space of standard
family which produces the first Painlevé equation P1 is the affine cubic surface with the same
equation (see [23, Section 3.10]). Despite this similarity, we did not find a relation between the
case under consideration and P1.

We propose a normalized differential operator

d

dz
+

 z a1 1
1 −z − t a2
a3 a4 t

 .

The reasoning for this proposal is the following. We observe that

z
d

dz
+

z2 + c1 0 0
0 −z2 − tz + c2 0
0 0 tz − c1 − c2


has at z = ∞ the universal deformation

z
d

dz
+

z2 + c1 ∗ ∗
∗ −z2 − tz + c2 ∗
∗ ∗ tz − c1 − c2

 .

Here the ∗’s are arbitrary polynomials in z of degree ≤ 1. The assumption that z = 0 is regular
implies that c1 = c2 = 0 and the ∗ are elements of Cz. Finally, in the general case one can, by
a change of the basis, arrive at two entries being z. Dividing by z produces the above proposal.

For the Lax pair situation, a1, a2, a3, a4 are functions of t and the above operator is supposed
to commute with d

dt + B(z, t), where B(z, t) has degree 1 in the variable z. The resulting
differential equations are

a′1 = −3a1a2a3 + 3a4, a
′
2 = −3

2
a1a

2
2 + 3a22a3 −

9

2
a2t− 3/2,

a′3 =
3

2
a3a1a2 −

3

2
a4, a

′
4 =

3

2
a4a1a2 − 3a4a2a3 +

3

2
a1a3 +

9

2
a4t.

The two parameters describing the parameter space P are p1 = a1+2a3 and p2 := a1+a3+a2a4
(thus p′1 = 0, p′2 = 0). Elimination of a1, a3 leads to the system of differential equations

a′2 = −3

2
+ 6a32a4 +

9p1 − 12p2
2

a22 −
9a2t

2
,

a′4 =
3(−p1 + 2p2)(−p2 + p1)

2
+

9t

2
a4 + (−9p1 + 12p2)a2a4 − 9a22a

2
4.
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The first equation can be used to write a4 as rational expression in a2, a
′
2. Substitution in the

second equation yields an explicit second-order equation. The Hamiltonian H is equal to

−3a24a
3
2 −

9p1 − 12p2
2

a4a
2
2 −

3p21 − 9p1p2 + 6p22
2

a2 +
3

2
a4 +

9a2a4
2

t,

where a′4 =
∂H
∂a2

, a′2 = − ∂H
∂a4

and p1, p2 are parameters (constants).
We did not find a relation with a classical Painlevé equation, but Dzhamay [5, Section 2],

using the geometry of Okamoto–Painlevé spaces and the algorithms of [6], computed that the
case at hand corresponds to a P4 equation. More precisely, the above equation is equivalent to
the standard Okamoto form PIV(q(t), p(t), t;κ0, θ8) of the fourth Painlevé equation, via a2(s) =
−i/q(t), a4(s) = −iq(t)(q(t)p(t)− θ8), s = 2it/3, and p1 = −2κ0, p2 = θ8 − 2κ0.

11 1/z,−1/z at z = 0 and tz, −tz at z = ∞
The data above is the m = 1 case of the hierarchy Mm defined for m ≥ 1 by the eigenvalues(
z−1
)
m
, −mz−1 at z = 0 and (tz)m, −mtz at z = ∞. One shows that dimRm = 4m and

dimP = 2m. The case m = 1 is the family for P3(D6).
For m = 2, a computation reveals that R → P is surjective with fibres of dimension 4.

A computation of M, indicated in Section 1, and a choice of normalizations give rise to an
operator z d

dz +A representing an open affine subset of M, with

A = z−1

1 0 0
0 1 0
0 0 −2

+

c1 0 −3m1

0 c2 −3
3 3m3 −c1 − c2

+ tzP

1 0 0
0 1 0
0 0 −2

P−1,

where

P =

 1 0 x1
0 1 x2
x3 x4 1

 .

A straightforward Lax pair computation produces formulas for dxi
dt , i = 1, . . . , 4, as rational

functions in x1, x2, x3, x4, t. These are however too large to be displayed here. A computation
verifies that in an isomonodromic family the c1, c2, m3, m1 are constant.

12 z−1/2 at z = 0 and tz, −tz at z = ∞
The data above defines the usual family for P3(D7). By attaching multiplicities, e.g.,

(
z−1/2

)
m
,

(tz)m, (−tz)m and m ≥ 1, one obtains a hierarchy. For the case m = 2, the space R
is given by the equation L ◦ mon0 = mon∞ ◦L with L : V (0) → V (∞) a linear bijection
where mon0 : V (0) → V (0), mon∞ : V (∞) → V (∞) are the topological monodromies. The link L
is considered up to multiplication by C∗ and the matrices of mon0 and mon∞ have the form

mon0 =


∗

∗
1

1



1 ∗ ∗

1 ∗ ∗
1

1

 ,

mon∞ =


∗

∗
∗

∗



1 ∗ ∗

1 ∗ ∗
1

1



1

1
∗ ∗ 1
∗ ∗ 1

 .
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After normalization, one obtains dimR = 12 and dimP = 4. Therefore, the relative dimension
of M over C(t) is also 12. The construction of a differential operator for M and the Lax pair
computations seem to be out of reach.

13 z−1/n and tz1/n, a hierarchy related to P3(D8)

The assumption that z = 0 and z = ∞ are both irregular singular and totally ramified leads,
after normalization, to the Galois orbit of z−1/n at z = 0 and the Galois orbit tz1/n at z = ∞.
In the sequel, we replace t by t1/n. The moduli spaces will be denoted by Mn and Rn. The
standard isomonodromic family for P3(D8) is derived from M2. First we study the structure
of Rn.

13.1 The structure of the monodromy space Rn

We refer to Section 1 and [24, Sections 8 and 9] for notation and results. For a connection
M ∈ Mn, the solution space V (∞) at z = ∞ has the structure: V (∞) =

⊕n−1
j=0 Cej with

Cej = V (∞)qj , qj = σj
(
t1/nz1/n

)
= ζjnt1/nz1/n, where ζn = e2πi/n. The basis {ej} is chosen such

that the formal monodromy γV (∞) acts by e0 7→ e1 7→ · · · 7→ en−1 7→ (−1)n−1e0.

By Lemma 1.2, the space of the Stokes data at z = ∞ can be identified with Cn−1. The
monodromy identity for the topological monodromy mon∞ at z = ∞ has been studied in detail
in [3, pp. 146–147]. The surprising property is:

Let the Stokes data be (x1, . . . , xn−1) ∈ Cn−1. Then the characteristic polynomial of the
topological monodromy mon∞ is

Tn + xn−1T
n−1 + · · ·+ x1T + (−1)n.

Thus the map from the Stokes data to the characteristic polynomial of mon∞ is bijective.

The local solution space V (0) at z = 0 has a similar description. The map from the space
of the Stokes matrices to the (nontrivial) coefficients of the characteristic polynomial of the
topological monodromy mon0 at z = 0, is bijective.

The monodromy space Rn consists of the local analytic data at z = ∞ and z = 0 together
with a link which glues the solution space above P1 \ {∞} to the solution space above P1 \ {0}.
More precisely, the link L : V (0) → V (∞) is a linear bijection such that L◦(mon0)

−1 = mon∞ ◦L.
The “inverse sign” reflects the difference in directions of the paths for mon0 and mon∞.

It follows that all the structure of V (0) is determined by mon∞ and the link. In particular,
mon−1

0 has the same characteristic polynomial as mon∞. Furthermore, the Stokes matrices
at z = 0 are the same as those at z = ∞, however taken in the opposite order.

Let L0 be a fixed choice for the link. Any other link has the form M ◦L0 where M = (mi,j) ∈
GL(V (∞)) commutes with mon∞. Then Rn can be identified with the tuples (M,x1, . . . , xn−1)
as above and M taken modulo multiplication by a scalar (since the basis of V (0) and V (∞) can
be scaled).

A computation, using the formulas in [3, Sections 3.3 and 3.4] for mon∞, shows that M is
determined by its last row (mn,1, . . . ,mn,n) and that this space can be identified with the open
subspace of Pn−1 × An−1 consisting of the tuples

((mn,1 : · · · : mn,n), (x1, . . . , xn−1)) ∈ Pn−1 × An−1

such that the determinant F of the matrix M is not zero. One easily sees that F is homogeneous
of degree n in the n variables mn,1, . . . ,mn,n and its coefficients are polynomials in x1, . . . , xn−1.
In particular, Rn is smooth, connected, quasi projective of dimension 2(n− 1).



Isomonodromy and Painlevé Type Equations, Case Studies 25

Example 13.1 (example R2). The local analytic data at z = ∞ are

V (∞) = V (∞)√tz ⊕ V (∞)−
√
tz = Ce0 + Ce1, γ : e0 7→ e1 7→ −e0.

The singular directions depend on t1/2. For t1/2 in a neighbourhood of 1, the monodromy
identity is

mon∞ =

(
0 −1
1 0

)(
1 0
x 1

)
=

(
−x −1
1 0

)
.

As above, there is a surjective morphism R2 → A1 = Spec(C[x]). The fibres consist of the
(b3 : b4) ∈ P1 such that the determinant F = −b3b4x + b23 + b24 of the matrix M :=

(
b1 b2
b3 b4

)
,

commuting with mon∞, is nonzero. Thus R2 ⊂ P1 × A1 is the complement of the quadratic
curve F = 0 over A1.

We note that the description in [23, Section 3.6] of monodromy space for the classical
case P3(D8) is slightly different. There the link L is normalized by the assumption detL = 1.

Example 13.2 (example R3). The local analytic data at z = ∞ are V (∞) = Ce0 + Ce1 +
Ce2 with Cej = V (∞)qj for j = 0, 1, 2 and q0 = t1/3z1/3, q1 = ζ3t

1/3z1/3, q2 = ζ23 t
1/3z1/3 and

ζ3 = e2πi/3. The basis vectors e0, e1, e2 are chosen such that the formal monodromy γ satisfies
e0 7→ e1 7→ e2 7→ e0. The basis e0, e1, e2 is unique up to a simultaneous multiplication by
a scalar.

For t1/3 equal to 1, the topological monodromy mon∞ at z = ∞ is mon∞ = γSt3/4St1/4
which is explicitly

mon∞ =

0 0 1
1 0 0
0 1 0

1 0 0
0 1 0
0 x21 1

1 x01 0
0 1 0
0 0 1

 =

0 x21 1
1 x01 0
0 1 0

 .

The characteristic polynomial of mon∞ is X3 − x01X
2 − x21X − 1.

The space A2 of the topological monodromies at z = ∞, consists of the pairs (x01, x21) ∈ C2.
The fibres of the obvious map R3 → A2 consist of the elements (m3,1 : m3,2 : m3,3) ∈ P2 such
that the determinant F of M is invertible. Explicitly,

F = a37x1x2 + a27a8x
2
1 + a27a9x

2
2 + a7a8a9x1x2 − a27a8x2 + a27a9x1

− 2a7a
2
8x1 + 2a7a

2
9x2 − a28a9x2 + a8a

2
9x1 + a37 − 3a7a8a9 + a38 + a39,

where (a7, a8, a9) = (m3,1,m3,2,m3,3) and x1 = x0,1, x2 = x2,1. Thus R3 ⊂ P2 × A2 is the
complement of the cubic curve over A2 with equation F = 0.

13.2 Construction of Mn by using a cyclic covering

The space Mn will be represented by the “universal” matrix differential operator L = z d
dz +A

of size n× n over C(z). This operator has only at z = 0 and z = ∞ singularities and these are
given by the Galois orbits of z−1/n at z = 0 and tz1/n at z = ∞. As in Section 3, we use the
n-cyclic covering of P1 to produce explicit formulas.

Now L is seen as a map on a vector space V of dimension n over C(z). Let σ denote the
automorphism of C

(
z1/n

)
over C(z), given by σ

(
z1/n

)
= ωz1/n with ω = e2πi/n. Then σ acts as

semi-linear map on W := C
(
z1/n

)
⊗ V and L extends uniquely to a derivation D on W . The

operator D has no ramification. Define the trace tr : W → V by tr(w) =
∑n−1

j=0 σ
j(w).

We apply the method of [23, Chapter 12], to construct a universal family (see also Section 1).
One considers a basis e0, e1, . . . , en−1 of W over C

(
z1/n

)
such that σ acts by e0 7→ e1 7→ · · · 7→
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en−1 7→ e0 and D has, with respect to this basis, poles of order 1 at z1/n = 0 and at z1/n = ∞
and no further singularities. By construction, D commutes with σ. In particular, D(e0) deter-
mineD andD(e0) has the form

∑n−1
j=0

(
ajz

−1/n + bj + cjz
1/n
)
ej where the aj , bj , cj are variables,

parametrizing the family.

Define the basis {B0, B1, . . . , Bn−1} of V by Bj = tr
(
zj/ne0

)
for all j. In the computations,

we change Bn−1 into z−1Bn−1. The given data for D(e0) induces a formula z d
dz + A for D on

the basis B0, . . . , Bn−1.

It is seen that the matrix A has at most singularities at z = 0 and z = ∞ (in fact poles of
order at most 1). The characteristic polynomial of A is seen to have the form

Tn + pn−1T
n−1 + · · ·+ p1T + p0 −

(
αz−1 + βz

)
with all entries p0, . . . , pn−1, α, β are in C[a0, b0, c0, . . . , bn−1, cn−1]. In particular, there are ex-
plicit expressions ̸= 0 for α and β. In the family given by A, we require that α and β are
invertible. Indeed, this follows from the assumption that z = 0 and z = ∞ are totally ramified
and have Katz invariant 1

n for the operator z d
dz +A.

The resulting affine family of operators z d
dz +A is parametrized by

Spec

(
C
[
a0, b0, . . . , cn−1,

1

α
,
1

β

])
.

Next, we make the following restrictions and normalizations. We require that A has trace zero.
This is equivalent to giving b0 the value 3−n

2n . The variable z is scaled such that α = 1 and
we write t for β. The next step is to divide by the action, by conjugation, of the group of the
(constant) diagonal matrices on the differential operator z d

dz + A. In examples this is done by
replacing (n−1) suitable entries of A by 1 (for example, resulting in a1 = 1, a2 = · · · = an−1 = 0).
One sees that the dimension of the final family (not counting t) is 3n− 1− 2− (n− 1) = 2n− 2
(with −1 for b0 and −2 for α, β and −(n − 1) for conjugation). This is in accordance with
dimRn = 2(n− 1).

We do not attempt to describe the full moduli space Mn, but claim that the constructed
family D = z d

dz + A describes an affine open subset. The operator E := d
dt + B such that

{D,E} forms a Lax pair is also considered as σ-equivariant operator on W and is determined
by E(e0). One computes that E(e0) = z1/n

∑n−1
j=0 cjej holds, under the assumption that a0 = 1,

a1 = · · · = an−1 = 0. Below, the above construction is made explicit for n = 3, extended to
n = 4 and to general n ≥ 3. For n = 2, it is compared to the classical formula.

13.2.1 Case n = 3

The matrix of D with respect to the basis B0, B1, z
−1B2 is b0 + b1 + b2 a0 + a1 + a2 c0 + c1 + c2

c0 + c1ω
2 + c2ω

1
3 + b0 + b1ω

2 + b2ω z−1(a0 + a1ω
2 + a2ω)

a0 + a1ω + a2ω
2 z(c0 + c1ω + c2ω

2) −1/3 + b0 + b1ω + b2ω
2


with α = (a0 + a1 + a2)

(
a0 + a1ω + a2ω

2
)(
a0 + a1ω

2 + a2ω
)
and β = (c0 + c1 + c2)

(
c0 + c1ω +

c2ω
2
)(
c0 + c1ω

2 + c2ω
)
.

Normalization: (a0 + a1 + a2) =
(
a0 + a1ω + a2ω

2
)
=
(
a0 + a1ω

2 + a2ω
)
= 1 (equivalently

a0 = 1, a1 = a2 = 0), b0 = 0 and β = t. This produces

z
d

dz
+

d0 1 f0
f1 d1

1
z

1 f2z d2

 with f0f1f2 = t and d0 + d1 + d2 = 0.
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It is completed to a Lax pair by

t
d

dt
+

 0 0 f0
f1 0 0
0 f2z 0

 .

The Painlevé type equations are

t
f ′
0

f0
= d0 − d2, t

f ′
1

f1
= d1 − d0, t

f ′
2

f2
= d2 − d1 + 1,

td′0 = f1 − f0, td′1 = f2 − f1, td′2 = f0 − f2.

The system of equations has symmetries ρ and σ defined by ρ : f0, f1, f2 7→ f1, f2, f0 and
d0, d1, d2 7→ d1− 1/3, d2+2/3, d0− 1/3, σ : f0, f1, f2 7→ f1, f0, f2 and d0, d1, d2 7→ −d0,−d2,−d1,
and generating D3 = S3.

The above formulas are almost identical to the ones of Kawakami [14, p. 35]. In the latter
the trace of the operator is +1 instead of 0 and the entries of the matrix are written in terms of
canonical variables p1, p2, q1, q2 for a certain Hamiltonian.

One substitutes F = f0, G = f1 and obtains the equivalent system

F ′′ =
(F ′)2

F
− F ′

t
+

FG− 2F 2

t2
+

1

tG
,

G′′ =
(G′)2

G
− G′

t
+

FG− 2G2

t2
+

1

tF
.

For a solution (f0, f1, f2, d0, d1, d2), invariant under the symmetry f0 ↔ f1, one has F = G
and resulting equation

F ′′ =
(F ′)2

F
− F ′

t
+

−F 2

t2
+

1

tF
.

The substitution t = x4, F (t) = xf(x) produces a solution f of P3(D8), i.e., P3 with param-
eters (α, β, γ, δ) = (−16, 0, 0, 16). The invariant solutions under D3 = S3 are F = G = ζt1/3

with ζ3 = 1.

13.2.2 The general case

We make the following normalization:

D(e0) =
(
z−1/n + b0 + c0z

1/n
)
e0 +

n−1∑
j=1

(
bj + cjz

1/n
)
en−1, b0 =

3− n

2n
, β = t

and E(e0) = z1/n
∑n−1

j=0 cjej and basis B0, . . . , Bn−2, z
−1Bn−1.

For general n ≥ 3, the formulas for the Lax pair are

z
d

dz
+



d0 1 0 . 0 f0
f1 d1 1 . 0 0
0 f2 d2 . 0 0
. . . . 1 .
0 . . fn−2 dn−2

1
z

1 0 . 0 fn−1z dn−1

 , t
d

dt
+



0 0 0 . 0 f0
f1 0 0 . 0 0
0 f2 0 . 0 0
. . . . 0 .
0 . . fn−2 0 0
0 0 . 0 fn−1z 0


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with
∑

dj = 0,
∏

fj = t. The Painlevé type equations are

t
f ′
0

f0
= d0 − dn−1, t

f ′
1

f1
= d1 − d0, . . . , t

f ′
n−1

fn−1
= dn−1 − dn−2 + 1,

td′0 = f1 − f0, td′1 = f2 − f1, . . . , td′n−1 = f0 − fn−1.

The symmetries observed for n = 3 generalize to n ≥ 3 as follows

ρ : (f0, f1, . . . , fn−1) 7→ (f1, f2, . . . , fn−1, f0),

(d0, d1, . . . , dn−1) 7→
(
d1 −

1

n
, . . . , dn−2 −

1

n
, dn−1 +

n− 1

n
, d0 −

1

n

)
and

σ : (f0, f1, . . . , fn−1) 7→ (fn−1, fn−2, . . . , f1, f0),

combined with σ(dj) = −dπ(j) + cj for a permutation π satisfying π2 = 1 and constants cj ∈{
− 1

n ,
n−1
n

}
such that

∑
cj = 0. These symmetries generate the dihedral group Dn of order 2n.

Taking Dn-invariants f0 = · · · = fn−1 := t1/n and corresponding dj ’s produces algebraic
solutions of the Painlevé type equations.

Case n = 4. For invariant solutions under f0 ↔ f1, f2 ↔ f3 one has (f0, f1, f2, f4) =(
f, f,

√
t

f ,
√
t

f

)
and d0 = −1/8, d1 = tf

′

f − 1/8, d2 = 3/8, d3 = −tf
′

f − 1/8 and the equation

f ′′ =
(f ′)2

f
− f ′

t
− f2

t2
+

1

t3/2
.

Substitution t = x4, f(t) = xF (x) yields the equation P3(D8) for F .

The D4-symmetric solutions are f = f0 = f1 = f2 = f3 = ζt1/4 with ζ4 = 1.

Case n = 5. Consider solutions invariant under f0 ↔ f4, f1 ↔ f3. Then (f0, f1, f2, f3, f4) =(
f, g, t

f2g2
, g, f

)
. Moreover,

(d0, d1, d2, d3, d4) =

(
t
f ′

f
− 2

5
, t
f ′

f
+ t

g′

g
− 2

5
,−t

f ′

f
− t

g′

g
+

3

5
, t
f ′

f
+

3

5
,
−2

5

)
.

The system of equations for f , g reads

f ′′ =
(f ′)2

f
− f ′

t
+

fg − f2

t2
, g′′ =

(g′)2

g
− g′

t
+

fg − 2g2

t2
+

1

f2gt
.

The D5-invariant solutions are f = g = ζt1/5 with ζ5 = 1.

The presented examples for small n suggest that subgroups of Dn produce interesting sub-
systems.

For completeness, we consider also the case n = 2. The Lax pair is

z
d

dz
+

(
d0

1
z + f0

1 + f1z d1

)
, t

d

dt
+

(
0 f0
f1z 0

)
with f0f1 = t and d0 + d1 = 0. The equations are

t
f ′
0

f0
= d1 − d0, t

f ′
1

f1
= d0 − d1 + 1, td′0 = f1 − f0, td′1 = f0 − f1.
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One observes that q = f0 satisfies the classical equation for P3(D8), namely

q′′ =
(q′)2

q
− q′

t
+

2q2

t2
− 2

t
.

There is a symmetry ρ, given by f0, f1 7→ f1, f0 and d0, d1 7→ d1 − 1/2, d0 + 1/2.
The symmetry means that if q is a solution, then so is t

q . Further the invariant element
r = q + t

q satisfies the equation

r′′ =
r

r2 − 4t
(r′)2 − r2

t
(
r2 − 4t

)r′ + 2r4 − 16tr2 + tr + 32t2

t2
(
r2 − 4t

) .

The symmetric solutions are q = ±
√
t and r = ±2

√
t.

14 A companion of P1

What we like to call the companion of P1 is the family M of connections, given by the set of
differential modules M over C(z) with dimension 2, Λ2M is trivial, z = 0 is regular singular and
the generalized eigenvalues at z = ∞ are ±w with w = z5/2 + t

2z
1/2. This is the P1 case except

for allowing a regular singularity at z = 0.
Description of R. The singular directions at z = ∞, lying in [0, 1) are 1

5 ,
3
5 for the difference

of eigenvalues w − (−w), and 0, 2
5 ,

4
5 for (−w) − w. Thus R ∼= A5. Let mon: R → SL2(C)

denote the morphism which sends the Stokes matrices to the monodromy matrix at z = 0.
The fibre of mon above

(
a b
c d

)
∈ SL2 is given by the monodromy identity(

0 −1
1 0

)(
1 0
x5 1

)(
1 x4
0 1

)(
1 0
x3 1

)(
1 x2
0 1

)(
1 0
x1 1

)
=

(
a b
c d

)
.

One eliminates x1, x2 by x1 = −c(x3 + x5 + x3x4x5)− a(1 + x3x4) and x2 = d(1 + x4x5) + bx4.
Since ad− bc = 1 we are left with the equation d(x3 + x5 + x3x4x5) + b(1 + x3x4) + 1 = 0.

For d ̸= 0, the fibre is (as often) an affine cubic surface with three lines at infinity. Its
equation coincides with the one for the standard family which produces the classical P1 (see [23,
Section 3.10]).

For d = 0, the equation of the fibre reads x3x4 = −b−1 − 1 and x5 has no relations. For
b ̸= −1 it is the surface C∗×C. In particular, R → SL2 is surjective. Furthermore, the parameter
space P has dimension 1.

Description of M. Since the fibres of RH: M → R are parametrized by t, one has dimM = 6.
The isomorphic classes of the residue matrix at z = 0 form the parameter space. It can be shown
that the family

z
d

dz
+

(
0 1
0 0

)
z3 +

(
0 b2
1 0

)
z2 +

(
a1 b1
c1 −a1

)
z +

(
a0 b0
c0 −a0

)
,

with t = b1−b22+c0, is the universal family of connections M. We eliminate b1 by b1 = t+b22−c0.
Furthermore, p0 := a20 + b0c0 is the basic parameter (i.e., independent of t in an isomonodromic
family).

For the Lax pair computation, we suppose that the above operator commutes with

d

dt
+

(
y1 y2
y3 −y1

)
+ z

(
y4 y5
y6 −y4

)
and that

d(a20+b0c0)
dt = 0. This eliminates y1, . . . , y6 and produces the equations a′0 = 2b2c0 − b0,

b′0 = −4a0b2, a
′
1 = −3b22 + 2c0 − t, b′2 = −2a1, c

′
0 = 2a0.
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For c0 = 0, and also for a fixed residue matrix (i.e., a′0 = b′0 = c′0 = 0), one obtains the P1

equation. For c0 ̸= 0, one eliminates b0 =
(
p0 − a20

)
/c0 and b′0 =

(
−2a0a

′
0c0 −

(
p0 − a20

)
c′0
)
/c20.

This results in the Painlevé type vector field

a′0 = 2b2c0 −
p0 − a20

c0
, c′0 = 2a0, a′1 = −3b22 + 2c0 − t, b′2 = −2a1.

One eliminates a0, a1, and c0 in the above equations by a1 = −1
2b

′
2, c0 = t

2 + 3
2b

2
2 − 1

4b
′′
2,

a0 =
1
4 + 3

2b2b
′
2 − 1

8b
(3)
2 . The remaining equation produces the following fourth-order explicit

differential equation for f := b2

−2
(
6f2 − f (2) + 2t

)
f (4) = 288f5 − 240f3f (2) + 192tf3 − 24ff (1)f (3) + 32f

(
f (2)

)2
−80tff (2) + 32ft2 + 24

(
f (1)

)2
f (2) − 48

(
f (1)

)2
+ 48ff (1) +

(
f (3)

)2 − 4f (3) + 64p0 + 4

with f = b2, f (j) :=
(
d
dt

)j
(b2) for j = 1, 2, 3, 4. We note that the denominator of the for-

mula for f (4) is the equation for P1. It seems probable, but we have no proof, that the field
C(t)

(
b2,

d
dtb2,

(
d
dt

)2
b2,
(
d
dt

)3
b2
)
has, for generic p0, transcendence degree 4 over C(t). Indeed, this

would fit with the observation that the fibres of R → P have dimension 4.
Comments. There are two reasons why this “companion of P1” is not in the classical list

P1 − P6. The Painlevé type equations describe in fact a vector field of rank 4 (written above as
explicit differential equation of order 4).

Secondly, the monodromic family is a subfamily of the natural monodromic family with “two
time variables” given by the data: z = 0 is regular singular and z = ∞ is irregular singular
with generalized eigenvalues ±

(
z5/2+ t1

2 z
3/2+ t2

2 z
1/2
)
with time variables t1, t2. We extend our

computations to this case.
Isomonodromy and Lax pairs for q =

(
z5/2+ t1

2 z
3/2+ t2

2 z
1/2
)
. As in the case q = z5/2 + t

2z
1/2

the family of connections z d
dz +A can be normalized to

z
d

dz
+

(
0 1
0 0

)
z3 +

(
0 b2
1 0

)
z2 +

(
a1 b1
c1 −a1

)
z +

(
a0 b0
c0 −a0

)
,

where c0 = b22 − b2t1 +
1
4 t

2
1 − b1 + t2 and c1 = −b2 + t1. The variables a0, a1, b0, b1, b2 are seen

as functions of t1, t2. The Lax pairs are expressed by
[
z d
dz +A, d

dti
+Bi

]
= 0 for i = 1, 2 and Bi

a matrix depending on t1, t2, z and polynomial in z of degree ≤ 2. One obtains in terms of
closed one-forms d(a0), . . . , d(b2) the system

d(a0) =
{
16b42 − 16b32t1 + 4b2t

3
1 − t41 − 48b1b

2
2 + 32b1b2t1 − 4b1t

2
1

+ 32b22t2 − 16b2t1t2 − 16b0b2 + 8b0t1 + 32b21 − 48b1t2 + 16t22
}dt1
48

+

{
3b22t1 − 2b32 −

3b2t
2
1

2
+

t31
4
+ 2b1b2 − b1t1 − 2b2t2 + t1t2 + b0

}
dt2,

d(a1) =
{
−16b32 + 20b22t1 − 4b2t

2
1 − t31 + 16b1b2 − 16b1t1 − 16b2t2

+ 12t1t2 + 8b0
}dt1
24

+

{
b22 − 2b2t1 +

3

4

(
t21
)
+ 2b1 − t2

}
dt2,

d(b0) =
{
a0t

2
1 − 4a0b

2
2 + 8a0b1 − 4a0t2 − 4a1b0

}dt1
6

+ {(4b2 − 2t1)a0}dt2,

d(b1) =
{
−4a1b

2
2 + a1t

2
1 + 4a0b2 − 2a0t1 + 4a1b1 − 4a1t2 + 2b2 − t1

}dt1
6

+ {4a1b2 − 2a1t1 + 2a0 + 1}dt2,

d(b2) = {−a1t1 + 2a0 + 2}dt1
3

+ 2a1dt2.

Note that p0 := a20 + b0c0 satisfies d(p0) = 0 and p0 is a generating parameter for this system.
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tions and their identification using a geometric approach, J. Differential Equations 399 (2024), 281–334,
arXiv:2109.06428.

[7] Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu., Painlevé transcendents. The Riemann–Hilbert
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[14] Kawakami H., Four-dimensional Painlevé-type equations associated with ramified linear equations III: Gar-
nier systems and Fuji–Suzuki systems, SIGMA 13 (2017), 096, 50 pages, arXiv:1703.01379.
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Math. 117 (2006), 299–319.

https://doi.org/10.1090/conm/593/11876
https://doi.org/10.1090/conm/593/11876
http://arxiv.org/abs/math/0512243
https://doi.org/10.5802/aif.2502
http://arxiv.org/abs/0902.1702
https://doi.org/10.1007/978-3-642-55750-7
https://doi.org/10.1080/14029251.2013.862442
http://arxiv.org/abs/1207.4335
https://doi.org/10.1111/j.1467-9590.2006.00356.x
https://doi.org/10.1111/j.1467-9590.2006.00356.x

	1 Introduction and background
	1.1 Introduction
	1.2 Background
	1.2.1 The formal classification of differential modules
	1.2.2 Details on Stokes matrices and construction of the space R
	1.2.3 The rules used for composing our list of families of connections
	1.2.4 Details on the definition and construction of the space M


	2 List of all cases with one time variable
	3 n-th root of z squared plus t times n-th root of z, hierarchy of Noumi and Yamada
	3.1 The moduli spaces M_n and R_n for odd n
	3.2 The moduli spaces M_n and R_n for even n
	3.2.1 The case n=4
	3.2.2 The general case with n=2m


	4 z-power(4/3)+t*z-power(2/3) and regular z=0
	5 z plus sqrt(tz), z-sqrt(tz), -2z and regular singular z=0
	6 e1-th root of z, t times e2-th root of z, e1 at least e2 at least 2 and regular singular z=0
	6.1 The case sqrt(z), t*sqrt(z). The monodromy space R

	7 (z-cubed plus tz) with multiplicity m1, -m1*(z-cubed plus tz)/m2 with multiplicity m2 and regular z=0
	8 z, tz, (-1-t)z, J. Harnad's case 
	8.1 Computation of Stokes data and monodromy space R
	8.2 Constructing the connection and the Lax pair
	8.3 The hierarchy z-sub(m1), (tz)-sub(m2), ((-m1-tm2)z/m3(-sub(m3)

	9 e-th root of z, tz, -tz for e at least 2 and regular singular z=0
	10 z*z, -z*z-tz, tz and z=0 regular
	11 1/z, -1/z at z=0 and tz, -tz at z=infty
	12 1/sqrt(z) at z=0 and tz, -tz at z=infty
	13 1/(n-th root z) and t*(n-th root z), a hierarchy related to P3(D8)
	13.1 The structure of the monodromy space R_n
	13.2 Construction of M_n by using a cyclic covering
	13.2.1 Case n=3
	13.2.2 The general case


	14 A companion of P_1
	References

