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A UNIQUE COMMON FIXED POINT THEOREM
FOR OCCASIONALLY WEAKLY COMPATIBLE

MAPS

Hakima Bouhadjera, Ahcène Djoudi and Brian Fisher

Abstract. The aim of this paper is to establish a unique common fixed point theorem for two

pairs of occasionally weakly compatible single and multi-valued maps in a metric space. This result

improves the result of Türkoğlu et al. [6] and references therein.

1 Introduction and preliminaries

Throughout this paper, (X , d) denotes a metric space and CB(X ) the family of all
nonempty closed and bounded subsets of X . Let H be the Hausdorff metric on
CB(X ) induced by the metric d; i.e.,

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(A, y)}

for A,B in CB(X ), where

d(x,A) = inf{d(x, y) : y ∈ A}.

Let f , g be two self-maps of a metric space (X, d). In his paper [5], Sessa defined
f and g to be weakly commuting if for all x ∈ X

d(fgx, gfx) ≤ d(gx, fx).

It can be seen that two commuting maps (fgx = gfx ∀x ∈ X ) are weakly commut-
ing, but the converse is false in general (see [5]).

Afterwards, Jungck [2] extended the concepts of commutativity and weak com-
mutativity by giving the notion of compatibility. Maps f and g above are compatible
if

lim
n→∞

d(fgxn, gfxn) = 0
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whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t for some t ∈ X .
Obviously, weakly commuting maps are compatible, but the converse is not true in
general (see [2]).

Further, Kaneko and Sessa [4] extended the concept of compatibility for single
valued maps to the setting of single and multi-valued maps as follows: f : X → X
and F : X → CB(X ) are said to be compatible if fFx ∈ CB(X ) for all x ∈ X and

lim
n→∞

H(Ffxn, fFxn) = 0,

whenever {xn} is a sequence in X such that Fxn → A ∈ CB(X ) and fxn → t ∈ A.

In 2002, Türkoğlu et al. [6] gave another generalization of commutativity and
weak commutativity for single valued maps by introducing the next definition: f :
X → X and F : X → CB(X ) are called compatible if

lim
n→∞

d(fyn, Ffxn) = 0

whenever {xn} and {yn} are sequences in X such that lim
n→∞

fxn = lim
n→∞

yn = t for
some t ∈ X , where yn ∈ Fxn for n = 1, 2, . . . .

In [3], Jungck and Rhoades weakened the notion of compatibility for single and
multi-valued maps by giving the concept of weak compatibility. They define maps f
and F above to be weakly compatible if they commute at their coincidence points;
i.e., if fFx = Ffx whenever fx ∈ Fx.

Recently, Abbas and Rhoades [1] generalized the concept of weak compatibility in
the setting of single and multi-valued maps by introducing the notion of occasionally
weak compatibility (owc). Maps f and F are said to be owc if and only if there exists
some point x in X such that

fx ∈ Fx and fFx ⊆ Ffx.

For our main results we need the following lemma which whose proof is obvious.

Lemma 1. let A,B in CB(X ), then for any a ∈ A we have

d(a,B) ≤ H(A,B).

In their paper [6], Türkoğlu et al. proved the next result.

Theorem 2. Let (X , d) be a complete metric space. Let f, g : X → X be continuous
maps and S, T : X → CB(X ) be H-continuous maps such that T (X ) ⊆ f(X ) and
S(X ) ⊆ g(X ), the pair S and g are compatible maps and

Hp(Sx, Ty) ≤ max{ad(fx, gy)dp−1(fx, Sx), ad(fx, gy)dp−1(gy, Ty),
ad(fx, Sx)dp−1(gy, Ty), cdp−1(fx, Ty)d(gy, Sx)}
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for all x, y ∈ X , where p ≥ 2 is an integer, 0 < a < 1 and c ≥ 0. Then there exists
a point z ∈ X such that fz ∈ Sz and gz ∈ Tz, i.e., z is a coincidence point of f , S
and of g, T . Further, z is unique when 0 < c < 1.

Our aim here is to establish and prove a unique common fixed point theorem by
dropping the hypothesis of continuity required on the four maps in the above result,
and deleting the two conditions T (X ) ⊆ f(X ) and S(X ) ⊆ g(X ) with a ≥ 0 in a
metric space instead of a complete metric space, by using the concept of occasionally
weakly compatible maps given in [6].

2 Main results

Theorem 3. Let (X , d) be a metric space. Let f, g : X → X and F,G : X → CB(X )
be single and multi-valued maps, respectively such that the pairs {f, F} and {g,G}
are owc and satisfy inequality

(2.1) Hp(Fx, Gy) ≤ max{ad(fx, gy)dp−1(fx, Fx), ad(fx, gy)dp−1(gy,Gy),
ad(fx, Fx)dp−1(gy, Gy), cdp−1(fx,Gy)d(gy, Fx)}

for all x, y in X , where p ≥ 2 is an integer, a ≥ 0, 0 < c < 1. Then f, g, F and G
have a unique common fixed point in X .

Proof. Since the pairs {f, F} and {g,G} are owc, then there exist two elements u
and v in X such that fu ∈ Fu, fFu ⊆ Ffu and gv ∈ Gv, gGv ⊆ Ggv.
First we prove that fu = gv. By Lemma 1 and the triangle inequality we have
d(fu, gv) ≤ H(Fu, Gv). Suppose that H(Fu, Gv) > 0. Then, by inequality (2.1)
we get

Hp(Fu, Gv) ≤ max{ad(fu, gv)dp−1(fu, Fu), ad(fu, gv)dp−1(gv, Gv),
ad(fu, Fu)dp−1(gv, Gv), cdp−1(fu,Gv)d(gv, Fu)}

= max{0, cdp−1(fu,Gv)d(gv, Fu)}.

Since d(fu,Gv) ≤ H(Fu, Gv) and d(gv, Fu) ≤ H(Fu, Gv) by Lemma 1, and then

Hp(Fu, Gv) ≤ cdp−1(fu,Gv)d(gv, Fu) ≤ cHp(Fu, Gv) < Hp(Fu, Gv)

which is a contradiction. Hence H(Fu, Gv) = 0 which implies that fu = gv.
Again by Lemma 1 and the triangle inequality we have

d(f2u, fu) = d(ffu, gv) ≤ H(Ffu,Gv).

We claim that f2u = fu. Suppose not. Then H(Ffu,Gv) > 0 and using inequality
(2.1) we obtain

Hp(Ffu,Gv) ≤ max{ad(f2u, gv)dp−1(f2u, Ffu), ad(f2u, gv)dp−1(gv, Gv),
ad(f2u, Ffu)dp−1(gv, Gv), cdp−1(f2u, Gv)d(gv, Ffu)}

= cdp−1(f2u, Gv)d(gv, Ffu).
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But d(f2u, Gv) ≤ H(Ffu,Gv) and d(gv, Ffu) ≤ H(Ffu,Gv) by Lemma 1 and so

Hp(Ffu,Gv) ≤ cHp(Ffu,Gv) < Hp(Ffu,Gv),

a contradiction. This implies that H(Ffu,Gv) = 0, thus f2u = fu = gv.
Similarly, we can prove that g2v = gv.
Putting fu = gv = z, then, fz = z = gz, z ∈ Fz and z ∈ Gz. Therefore z is a
common fixed point of maps f, g, F and G.
Now, suppose that f, g, F and G have another common fixed point z′ 6= z. Then,
by Lemma 1 and the triangle inequality we have

d(z, z′) = d(fz, gz′) ≤ H(Fz,Gz′).

Assume that H(Fz,Gz′) > 0. Then the use of inequality (2.1) gives

Hp(Fz,Gz′) ≤ max{ad(fz, gz′)dp−1(fz, Fz), ad(fz, gz′)dp−1(gz′, Gz′),
ad(fz, Fz)dp−1(gz′, Gz′), cdp−1(fz, Gz′)d(gz′, F z)}

= cdp−1(fz, Gz′)d(gz′, F z).

Then since d(fz, Gz′) ≤ H(Fz,Gz′) and d(gz′, F z) ≤ H(Fz,Gz′), we have

Hp(Fz,Gz′) ≤ cHp(Fz,Gz′) < Hp(Fz,Gz′),

a contradiction. Then H(Fz,Gz′) = 0 and hence z′ = z.

If we put in Theorem 3 f = g and F = G, we obtain the following result.

Corollary 4. Let (X , d) be a metric space and let f : X → X , F : X → CB(X )
be a single and a multi-valued map respectively. Suppose that f and F are owc and
satisfy the inequality

Hp(Fx, Fy) ≤ max{ad(fx, fy)dp−1(fx, Fx), ad(fx, fy)dp−1(fy, Fy),
ad(fx, Fx)dp−1(fy, Fy), cdp−1(fx, Fy)d(fy, Fx)}

for all x, y in X , where p ≥ 2 is an integer, a ≥ 0 and 0 < c < 1. Then, f and F
have a unique common fixed point in X .

Now, letting f = g we get the next corollary.

Corollary 5. Let (X , d) be a metric space, f : X → X be a single map and F,G :
X → CB(X ) be two multi-valued maps such that
(i) the pairs {f, F} and {f,G} are owc,
(ii) the inequality

Hp(Fx, Gy) ≤ max{ad(fx, fy)dp−1(fx, Fx), ad(fx, fy)dp−1(fy, Gy),
ad(fx, Fx)dp−1(fy, Gy), cdp−1(fx,Gy)d(fy, Fx)}

holds for all x, y in X , where p ≥ 2 is an integer, a ≥ 0 and 0 < c < 1. Then, f, F
and G have a unique common fixed point in X .
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Now, we give an example which illustrate our main result.

Example 6. Let X = [0, 2] endowed with the Euclidean metric d. Define f, g : X →
X and F,G : X → CB(X ) as follows:

fx =
{

x if 0 ≤ x ≤ 1
2 if 1 < x ≤ 2,

Fx =
{

{1} if 0 ≤ x ≤ 1
{0} if 1 < x ≤ 2,

gx =
{

1 if 0 ≤ x ≤ 1
2 if 1 < x ≤ 2,

Gx =
{

{1} if 0 ≤ x ≤ 1
{x

2} if 1 < x ≤ 2.

First, we have

f(1) = 1 ∈ F (1) = {1} and fF (1) = {1} = Ff(1)

and
g(1) = 1 ∈ G(1) = {1} and gG(1) = {1} = Gg(1);

i.e., f and F as well as g and G are owc.
Also, for all x and y in X , inequality (2.1) is satisfied for a large enough a.
So, all hypotheses of Theorem 3 are satisfied and 1 is the unique common fixed point
of f, g, F and G.
On the other hand, it is clear to see that maps f, g, F and G are discontinuous at
t = 1.
Further, we have

F (X ) = {0, 1} ⊂ f(X ) = [0, 1] ∪ {2} but G(X ) =]
1
2
, 1] * g(X ) = {1, 2}.

So, this example illustrate the generality of our result.

Acknowledgement. The authors thank very much the referee for his valuable
comments and suggestions.
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[6] D. Türkoğlu, O. Özer and B. Fisher, A coincidence point theorem for multi-
valued contractions, Math. Commun., 7(1)(2002), 39-44. MR1932542. Zbl
1016.54022.

Hakima Bouhadjera Ahcène Djoudi
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