ISSN 1842-6298 (electronic), 1843-7265 (print) Volume **3** (2008), 177 – 182

A UNIQUE COMMON FIXED POINT THEOREM FOR OCCASIONALLY WEAKLY COMPATIBLE MAPS

Hakima Bouhadjera, Ahcène Djoudi and Brian Fisher

Abstract. The aim of this paper is to establish a unique common fixed point theorem for two pairs of occasionally weakly compatible single and multi-valued maps in a metric space. This result improves the result of Türkoğlu et al. [6] and references therein.

1 Introduction and preliminaries

Throughout this paper, (\mathcal{X}, d) denotes a metric space and $CB(\mathcal{X})$ the family of all nonempty closed and bounded subsets of \mathcal{X} . Let H be the Hausdorff metric on $CB(\mathcal{X})$ induced by the metric d; i.e.,

$$H(A,B) = \max\{\sup_{x\in A} d(x,B), \sup_{y\in B} d(A,y)\}$$

for A, B in $CB(\mathcal{X})$, where

$$d(x, A) = \inf\{d(x, y) : y \in A\}.$$

Let f, g be two self-maps of a metric space (X, d). In his paper [5], Sessa defined f and g to be weakly commuting if for all $x \in \mathcal{X}$

$$d(fgx, gfx) \le d(gx, fx).$$

It can be seen that two commuting maps $(fgx = gfx \ \forall x \in \mathcal{X})$ are weakly commuting, but the converse is false in general (see [5]).

Afterwards, Jungck [2] extended the concepts of commutativity and weak commutativity by giving the notion of compatibility. Maps f and g above are compatible if

$$\lim_{n \to \infty} d(fgx_n, gfx_n) = 0$$

²⁰⁰⁰ Mathematics Subject Classification: 47H10; 54H25.

Keywords: weakly commuting maps; compatible maps; weakly compatible maps; occasionally weakly compatible maps; single and multi-valued maps; common fixed point theorem; metric space.

whenever $\{x_n\}$ is a sequence in \mathcal{X} such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$ for some $t \in \mathcal{X}$. Obviously, weakly commuting maps are compatible, but the converse is not true in general (see [2]).

Further, Kaneko and Sessa [4] extended the concept of compatibility for single valued maps to the setting of single and multi-valued maps as follows: $f : \mathcal{X} \to \mathcal{X}$ and $F : \mathcal{X} \to CB(\mathcal{X})$ are said to be compatible if $fFx \in CB(\mathcal{X})$ for all $x \in \mathcal{X}$ and

$$\lim_{n \to \infty} H(Ffx_n, fFx_n) = 0,$$

whenever $\{x_n\}$ is a sequence in \mathcal{X} such that $Fx_n \to A \in CB(\mathcal{X})$ and $fx_n \to t \in A$.

In 2002, Türkoğlu et al. [6] gave another generalization of commutativity and weak commutativity for single valued maps by introducing the next definition: $f : \mathcal{X} \to \mathcal{X}$ and $F : \mathcal{X} \to CB(\mathcal{X})$ are called compatible if

$$\lim_{n \to \infty} d(fy_n, Ffx_n) = 0$$

whenever $\{x_n\}$ and $\{y_n\}$ are sequences in \mathcal{X} such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} y_n = t$ for some $t \in \mathcal{X}$, where $y_n \in Fx_n$ for n = 1, 2, ...

In [3], Jungck and Rhoades weakened the notion of compatibility for single and multi-valued maps by giving the concept of weak compatibility. They define maps f and F above to be weakly compatible if they commute at their coincidence points; i.e., if fFx = Ffx whenever $fx \in Fx$.

Recently, Abbas and Rhoades [1] generalized the concept of weak compatibility in the setting of single and multi-valued maps by introducing the notion of occasionally weak compatibility (owc). Maps f and F are said to be owc if and only if there exists some point x in \mathcal{X} such that

$$fx \in Fx$$
 and $fFx \subseteq Ffx$.

For our main results we need the following lemma which whose proof is obvious.

Lemma 1. let A, B in $CB(\mathcal{X})$, then for any $a \in A$ we have

$$d(a, B) \le H(A, B).$$

In their paper [6], Türkoğlu et al. proved the next result.

Theorem 2. Let (\mathcal{X}, d) be a complete metric space. Let $f, g : \mathcal{X} \to \mathcal{X}$ be continuous maps and $S, T : \mathcal{X} \to CB(\mathcal{X})$ be H-continuous maps such that $T(\mathcal{X}) \subseteq f(\mathcal{X})$ and $S(\mathcal{X}) \subseteq g(\mathcal{X})$, the pair S and g are compatible maps and

$$H^{p}(Sx, Ty) \leq \max\{ad(fx, gy)d^{p-1}(fx, Sx), ad(fx, gy)d^{p-1}(gy, Ty), \\ ad(fx, Sx)d^{p-1}(gy, Ty), cd^{p-1}(fx, Ty)d(gy, Sx)\}$$

for all $x, y \in \mathcal{X}$, where $p \geq 2$ is an integer, 0 < a < 1 and $c \geq 0$. Then there exists a point $z \in \mathcal{X}$ such that $fz \in Sz$ and $gz \in Tz$, i.e., z is a coincidence point of f, S and of g, T. Further, z is unique when 0 < c < 1.

Our aim here is to establish and prove a unique common fixed point theorem by dropping the hypothesis of continuity required on the four maps in the above result, and deleting the two conditions $T(\mathcal{X}) \subseteq f(\mathcal{X})$ and $S(\mathcal{X}) \subseteq g(\mathcal{X})$ with $a \geq 0$ in a metric space instead of a complete metric space, by using the concept of occasionally weakly compatible maps given in [6].

2 Main results

Theorem 3. Let (\mathcal{X}, d) be a metric space. Let $f, g : \mathcal{X} \to \mathcal{X}$ and $F, G : \mathcal{X} \to CB(\mathcal{X})$ be single and multi-valued maps, respectively such that the pairs $\{f, F\}$ and $\{g, G\}$ are owe and satisfy inequality

(2.1)
$$H^{p}(Fx, Gy) \leq \max\{ad(fx, gy)d^{p-1}(fx, Fx), ad(fx, gy)d^{p-1}(gy, Gy), ad(fx, Fx)d^{p-1}(gy, Gy), cd^{p-1}(fx, Gy)d(gy, Fx)\}$$

for all x, y in \mathcal{X} , where $p \geq 2$ is an integer, $a \geq 0$, 0 < c < 1. Then f, g, F and G have a unique common fixed point in \mathcal{X} .

Proof. Since the pairs $\{f, F\}$ and $\{g, G\}$ are owe, then there exist two elements u and v in \mathcal{X} such that $fu \in Fu$, $fFu \subseteq Ffu$ and $gv \in Gv$, $gGv \subseteq Ggv$. First we prove that fu = gv. By Lemma 1 and the triangle inequality we have

First we prove that fu = gv. By Lemma 1 and the triangle inequality we have $d(fu, gv) \leq H(Fu, Gv)$. Suppose that H(Fu, Gv) > 0. Then, by inequality (2.1) we get

$$\begin{aligned} H^{p}(Fu,Gv) &\leq \max\{ad(fu,gv)d^{p-1}(fu,Fu),ad(fu,gv)d^{p-1}(gv,Gv), \\ &\quad ad(fu,Fu)d^{p-1}(gv,Gv),cd^{p-1}(fu,Gv)d(gv,Fu)\} \\ &= \max\{0,cd^{p-1}(fu,Gv)d(gv,Fu)\}. \end{aligned}$$

Since $d(fu, Gv) \leq H(Fu, Gv)$ and $d(gv, Fu) \leq H(Fu, Gv)$ by Lemma 1, and then

$$H^{p}(Fu, Gv) \leq cd^{p-1}(fu, Gv)d(gv, Fu) \leq cH^{p}(Fu, Gv) < H^{p}(Fu, Gv)$$

which is a contradiction. Hence H(Fu, Gv) = 0 which implies that fu = gv. Again by Lemma 1 and the triangle inequality we have

$$d(f^2u, fu) = d(ffu, gv) \le H(Ffu, Gv).$$

We claim that $f^2 u = f u$. Suppose not. Then H(Ffu, Gv) > 0 and using inequality (2.1) we obtain

$$\begin{aligned} H^{p}(Ffu,Gv) &\leq & \max\{ad(f^{2}u,gv)d^{p-1}(f^{2}u,Ffu),ad(f^{2}u,gv)d^{p-1}(gv,Gv), \\ & & ad(f^{2}u,Ffu)d^{p-1}(gv,Gv),cd^{p-1}(f^{2}u,Gv)d(gv,Ffu)\} \\ &= & cd^{p-1}(f^{2}u,Gv)d(gv,Ffu). \end{aligned}$$

But $d(f^2u, Gv) \leq H(Ffu, Gv)$ and $d(gv, Ffu) \leq H(Ffu, Gv)$ by Lemma 1 and so $H^p(Ffu, Gv) \leq cH^p(Ffu, Gv) < H^p(Ffu, Gv),$

a contradiction. This implies that H(Ffu, Gv) = 0, thus $f^2u = fu = gv$. Similarly, we can prove that $g^2v = gv$.

Putting fu = gv = z, then, fz = z = gz, $z \in Fz$ and $z \in Gz$. Therefore z is a common fixed point of maps f, g, F and G.

Now, suppose that f, g, F and G have another common fixed point $z' \neq z$. Then, by Lemma 1 and the triangle inequality we have

$$d(z, z') = d(fz, gz') \le H(Fz, Gz').$$

Assume that H(Fz, Gz') > 0. Then the use of inequality (2.1) gives

$$\begin{aligned} H^{p}(Fz,Gz') &\leq \max\{ad(fz,gz')d^{p-1}(fz,Fz),ad(fz,gz')d^{p-1}(gz',Gz'), \\ &\quad ad(fz,Fz)d^{p-1}(gz',Gz'),cd^{p-1}(fz,Gz')d(gz',Fz)\} \\ &= cd^{p-1}(fz,Gz')d(gz',Fz). \end{aligned}$$

Then since $d(fz, Gz') \leq H(Fz, Gz')$ and $d(gz', Fz) \leq H(Fz, Gz')$, we have

$$H^p(Fz, Gz') \le cH^p(Fz, Gz') < H^p(Fz, Gz'),$$

a contradiction. Then H(Fz, Gz') = 0 and hence z' = z.

If we put in Theorem 3 f = g and F = G, we obtain the following result.

Corollary 4. Let (\mathcal{X}, d) be a metric space and let $f : \mathcal{X} \to \mathcal{X}, F : \mathcal{X} \to CB(\mathcal{X})$ be a single and a multi-valued map respectively. Suppose that f and F are owc and satisfy the inequality

$$H^{p}(Fx, Fy) \leq \max\{ad(fx, fy)d^{p-1}(fx, Fx), ad(fx, fy)d^{p-1}(fy, Fy), \\ ad(fx, Fx)d^{p-1}(fy, Fy), cd^{p-1}(fx, Fy)d(fy, Fx)\}$$

for all x, y in \mathcal{X} , where $p \geq 2$ is an integer, $a \geq 0$ and 0 < c < 1. Then, f and F have a unique common fixed point in \mathcal{X} .

Now, letting f = g we get the next corollary.

Corollary 5. Let (\mathcal{X}, d) be a metric space, $f : \mathcal{X} \to \mathcal{X}$ be a single map and $F, G : \mathcal{X} \to CB(\mathcal{X})$ be two multi-valued maps such that (i) the pairs $\{f, F\}$ and $\{f, G\}$ are owc, (ii) the inequality

$$\begin{aligned} H^{p}(Fx,Gy) &\leq \max\{ad(fx,fy)d^{p-1}(fx,Fx), ad(fx,fy)d^{p-1}(fy,Gy), \\ & ad(fx,Fx)d^{p-1}(fy,Gy), cd^{p-1}(fx,Gy)d(fy,Fx)\} \end{aligned}$$

holds for all x, y in \mathcal{X} , where $p \geq 2$ is an integer, $a \geq 0$ and 0 < c < 1. Then, f, F and G have a unique common fixed point in \mathcal{X} .

Now, we give an example which illustrate our main result.

Example 6. Let $\mathcal{X} = [0, 2]$ endowed with the Euclidean metric d. Define $f, g : \mathcal{X} \to \mathcal{X}$ and $F, G : \mathcal{X} \to CB(\mathcal{X})$ as follows:

$$fx = \begin{cases} x & if \ 0 \le x \le 1\\ 2 & if \ 1 < x \le 2, \end{cases} \quad Fx = \begin{cases} \{1\} & if \ 0 \le x \le 1\\ \{0\} & if \ 1 < x \le 2, \end{cases}$$
$$gx = \begin{cases} 1 & if \ 0 \le x \le 1\\ 2 & if \ 1 < x \le 2, \end{cases} \quad Gx = \begin{cases} \{1\} & if \ 0 \le x \le 1\\ \{\frac{x}{2}\} & if \ 1 < x \le 2. \end{cases}$$

First, we have

$$f(1) = 1 \in F(1) = \{1\}$$
 and $fF(1) = \{1\} = Ff(1)$

and

$$g(1) = 1 \in G(1) = \{1\}$$
 and $gG(1) = \{1\} = Gg(1)$

i.e., f and F as well as g and G are owc.

Also, for all x and y in \mathcal{X} , inequality (2.1) is satisfied for a large enough a. So, all hypotheses of Theorem 3 are satisfied and 1 is the unique common fixed point of f, q, F and G.

On the other hand, it is clear to see that maps f, g, F and G are discontinuous at t = 1.

Further, we have

$$F(\mathcal{X}) = \{0,1\} \subset f(\mathcal{X}) = [0,1] \cup \{2\} \text{ but } G(\mathcal{X}) =]\frac{1}{2}, 1] \nsubseteq g(\mathcal{X}) = \{1,2\}.$$

So, this example illustrate the generality of our result.

Acknowledgement. The authors thank very much the referee for his valuable comments and suggestions.

References

- M. Abbas, B.E. Rhoades, Common fixed point theorems for hybrid pairs of occasionally weakly compatible mappings satisfying generalized contractive condition of integral type, Fixed Point Theory Appl. 2007, Art. ID 54101, 9 pp. MR2346334(2008i:54034). Zbl pre05237660.
- G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9(4)(1986), 771-779. MR0870534(87m:54122). Zbl 0613.54029.
- [3] G. Jungck, B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3)(1998), 227-238. MR1617919. Zbl 0904.54034.

- H. Kaneko, S. Sessa, Fixed point theorems for compatible multi-valued and single-valued mappings, Internat. J. Math. Math. Sci., 12(2)(1989), 257-262. MR0994907(90i:54097). Zbl 0671.54023.
- [5] S. Sessa, On a weak commutativity condition in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.), **32**(46)(1982), 149-153. MR0710984(85f:54107). Zbl 0523.54030.
- [6] D. Türkoğlu, O. Özer and B. Fisher, A coincidence point theorem for multivalued contractions, Math. Commun., 7(1)(2002), 39-44. MR1932542. Zbl 1016.54022.

Hakima Bouhadjera	Ahcène Djoudi
Laboratoire de Mathématiques Appliquées,	Laboratoire de Mathématiques Appliquées,
Université Badji Mokhtar,	Université Badji Mokhtar,
B. P. 12, 23000, Annaba	B. P. 12, 23000, Annaba
Algérie.	Algérie.
e-mail: b_hakima2000@yahoo.fr	e-mail: adjoudi@yahoo.com

Brian Fisher Department of Mathematics, University of Leicester, Leicester, LE1 7RH, U.K. e-mail: fbr@le.ac.uk