# A UNIQUE COMMON FIXED POINT THEOREM FOR OCCASIONALLY WEAKLY COMPATIBLE MAPS 

Hakima Bouhadjera, Ahcène Djoudi and Brian Fisher


#### Abstract

The aim of this paper is to establish a unique common fixed point theorem for two pairs of occasionally weakly compatible single and multi-valued maps in a metric space. This result improves the result of Türkoğlu et al. [6] and references therein.


## 1 Introduction and preliminaries

Throughout this paper, $(\mathcal{X}, d)$ denotes a metric space and $C B(\mathcal{X})$ the family of all nonempty closed and bounded subsets of $\mathcal{X}$. Let $H$ be the Hausdorff metric on $C B(\mathcal{X})$ induced by the metric $d$; i.e.,

$$
H(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(A, y)\right\}
$$

for $A, B$ in $C B(\mathcal{X})$, where

$$
d(x, A)=\inf \{d(x, y): y \in A\} .
$$

Let $f, g$ be two self-maps of a metric space ( $X, d$ ). In his paper [5], Sessa defined $f$ and $g$ to be weakly commuting if for all $x \in \mathcal{X}$

$$
d(f g x, g f x) \leq d(g x, f x)
$$

It can be seen that two commuting maps ( $f g x=g f x \forall x \in \mathcal{X}$ ) are weakly commuting, but the converse is false in general (see [5]).

Afterwards, Jungck [2] extended the concepts of commutativity and weak commutativity by giving the notion of compatibility. Maps $f$ and $g$ above are compatible if

$$
\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0
$$

[^0]whenever $\left\{x_{n}\right\}$ is a sequence in $\mathcal{X}$ such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some $t \in \mathcal{X}$. Obviously, weakly commuting maps are compatible, but the converse is not true in general (see [2]).

Further, Kaneko and Sessa [4] extended the concept of compatibility for single valued maps to the setting of single and multi-valued maps as follows: $f: \mathcal{X} \rightarrow \mathcal{X}$ and $F: \mathcal{X} \rightarrow C B(\mathcal{X})$ are said to be compatible if $f F x \in C B(\mathcal{X})$ for all $x \in \mathcal{X}$ and

$$
\lim _{n \rightarrow \infty} H\left(F f x_{n}, f F x_{n}\right)=0,
$$

whenever $\left\{x_{n}\right\}$ is a sequence in $\mathcal{X}$ such that $F x_{n} \rightarrow A \in C B(\mathcal{X})$ and $f x_{n} \rightarrow t \in A$.
In 2002, Türkoğlu et al. [6] gave another generalization of commutativity and weak commutativity for single valued maps by introducing the next definition: $f$ : $\mathcal{X} \rightarrow \mathcal{X}$ and $F: \mathcal{X} \rightarrow C B(\mathcal{X})$ are called compatible if

$$
\lim _{n \rightarrow \infty} d\left(f y_{n}, F f x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in $\mathcal{X}$ such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} y_{n}=t$ for some $t \in \mathcal{X}$, where $y_{n} \in F x_{n}$ for $n=1,2, \ldots$.

In [3], Jungck and Rhoades weakened the notion of compatibility for single and multi-valued maps by giving the concept of weak compatibility. They define maps $f$ and $F$ above to be weakly compatible if they commute at their coincidence points; i.e., if $f F x=F f x$ whenever $f x \in F x$.

Recently, Abbas and Rhoades [1] generalized the concept of weak compatibility in the setting of single and multi-valued maps by introducing the notion of occasionally weak compatibility (owc). Maps $f$ and $F$ are said to be owc if and only if there exists some point $x$ in $\mathcal{X}$ such that

$$
f x \in F x \text { and } f F x \subseteq F f x .
$$

For our main results we need the following lemma which whose proof is obvious.
Lemma 1. let $A, B$ in $C B(\mathcal{X})$, then for any $a \in A$ we have

$$
d(a, B) \leq H(A, B) .
$$

In their paper [6], Türkoğlu et al. proved the next result.
Theorem 2. Let $(\mathcal{X}, d)$ be a complete metric space. Let $f, g: \mathcal{X} \rightarrow \mathcal{X}$ be continuous maps and $S, T: \mathcal{X} \rightarrow C B(\mathcal{X})$ be $H$-continuous maps such that $T(\mathcal{X}) \subseteq f(\mathcal{X})$ and $S(\mathcal{X}) \subseteq g(\mathcal{X})$, the pair $S$ and $g$ are compatible maps and

$$
\begin{aligned}
H^{p}(S x, T y) \leq & \max \left\{a d(f x, g y) d^{p-1}(f x, S x), a d(f x, g y) d^{p-1}(g y, T y),\right. \\
& \left.a d(f x, S x) d^{p-1}(g y, T y), c d^{p-1}(f x, T y) d(g y, S x)\right\}
\end{aligned}
$$

for all $x, y \in \mathcal{X}$, where $p \geq 2$ is an integer, $0<a<1$ and $c \geq 0$. Then there exists a point $z \in \mathcal{X}$ such that $f z \in S z$ and $g z \in T z$, i.e., $z$ is a coincidence point of $f, S$ and of $g$, T. Further, $z$ is unique when $0<c<1$.

Our aim here is to establish and prove a unique common fixed point theorem by dropping the hypothesis of continuity required on the four maps in the above result, and deleting the two conditions $T(\mathcal{X}) \subseteq f(\mathcal{X})$ and $S(\mathcal{X}) \subseteq g(\mathcal{X})$ with $a \geq 0$ in a metric space instead of a complete metric space, by using the concept of occasionally weakly compatible maps given in [6].

## 2 Main results

Theorem 3. Let $(\mathcal{X}, d)$ be a metric space. Let $f, g: \mathcal{X} \rightarrow \mathcal{X}$ and $F, G: \mathcal{X} \rightarrow C B(\mathcal{X})$ be single and multi-valued maps, respectively such that the pairs $\{f, F\}$ and $\{g, G\}$ are owc and satisfy inequality

$$
\begin{align*}
H^{p}(F x, G y) \leq & \max \left\{a d(f x, g y) d^{p-1}(f x, F x), a d(f x, g y) d^{p-1}(g y, G y)\right.  \tag{2.1}\\
& \left.a d(f x, F x) d^{p-1}(g y, G y), c d^{p-1}(f x, G y) d(g y, F x)\right\}
\end{align*}
$$

for all $x, y$ in $\mathcal{X}$, where $p \geq 2$ is an integer, $a \geq 0,0<c<1$. Then $f, g, F$ and $G$ have a unique common fixed point in $\mathcal{X}$.
Proof. Since the pairs $\{f, F\}$ and $\{g, G\}$ are owc, then there exist two elements $u$ and $v$ in $\mathcal{X}$ such that $f u \in F u, f F u \subseteq F f u$ and $g v \in G v, g G v \subseteq G g v$.
First we prove that $f u=g v$. By Lemma 1 and the triangle inequality we have $d(f u, g v) \leq H(F u, G v)$. Suppose that $H(F u, G v)>0$. Then, by inequality (2.1) we get

$$
\begin{aligned}
H^{p}(F u, G v) \leq & \max \left\{a d(f u, g v) d^{p-1}(f u, F u), a d(f u, g v) d^{p-1}(g v, G v),\right. \\
& \left.a d(f u, F u) d^{p-1}(g v, G v), c d^{p-1}(f u, G v) d(g v, F u)\right\} \\
= & \max \left\{0, c d^{p-1}(f u, G v) d(g v, F u)\right\} .
\end{aligned}
$$

Since $d(f u, G v) \leq H(F u, G v)$ and $d(g v, F u) \leq H(F u, G v)$ by Lemma 1, and then

$$
H^{p}(F u, G v) \leq c d^{p-1}(f u, G v) d(g v, F u) \leq c H^{p}(F u, G v)<H^{p}(F u, G v)
$$

which is a contradiction. Hence $H(F u, G v)=0$ which implies that $f u=g v$. Again by Lemma 1 and the triangle inequality we have

$$
d\left(f^{2} u, f u\right)=d(f f u, g v) \leq H(F f u, G v) .
$$

We claim that $f^{2} u=f u$. Suppose not. Then $H(F f u, G v)>0$ and using inequality (2.1) we obtain

$$
\begin{aligned}
H^{p}(F f u, G v) \leq & \max \left\{a d\left(f^{2} u, g v\right) d^{p-1}\left(f^{2} u, F f u\right), a d\left(f^{2} u, g v\right) d^{p-1}(g v, G v),\right. \\
& \left.a d\left(f^{2} u, F f u\right) d^{p-1}(g v, G v), c d^{p-1}\left(f^{2} u, G v\right) d(g v, F f u)\right\} \\
= & c d^{p-1}\left(f^{2} u, G v\right) d(g v, F f u) .
\end{aligned}
$$

But $d\left(f^{2} u, G v\right) \leq H(F f u, G v)$ and $d(g v, F f u) \leq H(F f u, G v)$ by Lemma 1 and so

$$
H^{p}(F f u, G v) \leq c H^{p}(F f u, G v)<H^{p}(F f u, G v)
$$

a contradiction. This implies that $H(F f u, G v)=0$, thus $f^{2} u=f u=g v$.
Similarly, we can prove that $g^{2} v=g v$.
Putting $f u=g v=z$, then, $f z=z=g z, z \in F z$ and $z \in G z$. Therefore $z$ is a common fixed point of maps $f, g, F$ and $G$.
Now, suppose that $f, g, F$ and $G$ have another common fixed point $z^{\prime} \neq z$. Then, by Lemma 1 and the triangle inequality we have

$$
d\left(z, z^{\prime}\right)=d\left(f z, g z^{\prime}\right) \leq H\left(F z, G z^{\prime}\right)
$$

Assume that $H\left(F z, G z^{\prime}\right)>0$. Then the use of inequality (2.1) gives

$$
\begin{aligned}
H^{p}\left(F z, G z^{\prime}\right) \leq & \max \left\{a d\left(f z, g z^{\prime}\right) d^{p-1}(f z, F z), a d\left(f z, g z^{\prime}\right) d^{p-1}\left(g z^{\prime}, G z^{\prime}\right),\right. \\
& \left.a d(f z, F z) d^{p-1}\left(g z^{\prime}, G z^{\prime}\right), c d^{p-1}\left(f z, G z^{\prime}\right) d\left(g z^{\prime}, F z\right)\right\} \\
= & c d^{p-1}\left(f z, G z^{\prime}\right) d\left(g z^{\prime}, F z\right)
\end{aligned}
$$

Then since $d\left(f z, G z^{\prime}\right) \leq H\left(F z, G z^{\prime}\right)$ and $d\left(g z^{\prime}, F z\right) \leq H\left(F z, G z^{\prime}\right)$, we have

$$
H^{p}\left(F z, G z^{\prime}\right) \leq c H^{p}\left(F z, G z^{\prime}\right)<H^{p}\left(F z, G z^{\prime}\right)
$$

a contradiction. Then $H\left(F z, G z^{\prime}\right)=0$ and hence $z^{\prime}=z$.
If we put in Theorem $3 f=g$ and $F=G$, we obtain the following result.
Corollary 4. Let $(\mathcal{X}, d)$ be a metric space and let $f: \mathcal{X} \rightarrow \mathcal{X}, F: \mathcal{X} \rightarrow C B(\mathcal{X})$ be a single and a multi-valued map respectively. Suppose that $f$ and $F$ are owc and satisfy the inequality

$$
\begin{aligned}
H^{p}(F x, F y) \leq & \max \left\{a d(f x, f y) d^{p-1}(f x, F x), a d(f x, f y) d^{p-1}(f y, F y),\right. \\
& \left.a d(f x, F x) d^{p-1}(f y, F y), c d^{p-1}(f x, F y) d(f y, F x)\right\}
\end{aligned}
$$

for all $x, y$ in $\mathcal{X}$, where $p \geq 2$ is an integer, $a \geq 0$ and $0<c<1$. Then, $f$ and $F$ have a unique common fixed point in $\mathcal{X}$.

Now, letting $f=g$ we get the next corollary.
Corollary 5. Let $(\mathcal{X}, d)$ be a metric space, $f: \mathcal{X} \rightarrow \mathcal{X}$ be a single map and $F, G$ : $\mathcal{X} \rightarrow C B(\mathcal{X})$ be two multi-valued maps such that
(i) the pairs $\{f, F\}$ and $\{f, G\}$ are owc,
(ii) the inequality

$$
\begin{aligned}
H^{p}(F x, G y) \leq & \max \left\{a d(f x, f y) d^{p-1}(f x, F x), a d(f x, f y) d^{p-1}(f y, G y),\right. \\
& \left.a d(f x, F x) d^{p-1}(f y, G y), c d^{p-1}(f x, G y) d(f y, F x)\right\}
\end{aligned}
$$

holds for all $x, y$ in $\mathcal{X}$, where $p \geq 2$ is an integer, $a \geq 0$ and $0<c<1$. Then, $f, F$ and $G$ have a unique common fixed point in $\mathcal{X}$.

Now, we give an example which illustrate our main result.
Example 6. Let $\mathcal{X}=[0,2]$ endowed with the Euclidean metric d. Define $f, g: \mathcal{X} \rightarrow$ $\mathcal{X}$ and $F, G: \mathcal{X} \rightarrow C B(\mathcal{X})$ as follows:

$$
\begin{aligned}
& f x=\left\{\begin{array}{ll}
x & \text { if } 0 \leq x \leq 1 \\
2 & \text { if } 1<x \leq 2,
\end{array} \quad F x= \begin{cases}\{1\} & \text { if } 0 \leq x \leq 1 \\
\{0\} & \text { if } 1<x \leq 2,\end{cases} \right. \\
& g x=\left\{\begin{array}{ll}
1 & \text { if } 0 \leq x \leq 1 \\
2 & \text { if } 1<x \leq 2,
\end{array} \quad G x= \begin{cases}\{1\} & \text { if } 0 \leq x \leq 1 \\
\left\{\frac{x}{2}\right\} & \text { if } 1<x \leq 2 .\end{cases} \right.
\end{aligned}
$$

First, we have

$$
f(1)=1 \in F(1)=\{1\} \text { and } f F(1)=\{1\}=F f(1)
$$

and

$$
g(1)=1 \in G(1)=\{1\} \text { and } g G(1)=\{1\}=G g(1) ;
$$

i.e., $f$ and $F$ as well as $g$ and $G$ are owc.

Also, for all $x$ and $y$ in $\mathcal{X}$, inequality (2.1) is satisfied for a large enough $a$.
So, all hypotheses of Theorem 3 are satisfied and 1 is the unique common fixed point of $f, g, F$ and $G$.
On the other hand, it is clear to see that maps $f, g, F$ and $G$ are discontinuous at $t=1$.
Further, we have

$$
\left.F(\mathcal{X})=\{0,1\} \subset f(\mathcal{X})=[0,1] \cup\{2\} \text { but } G(\mathcal{X})=] \frac{1}{2}, 1\right] \nsubseteq g(\mathcal{X})=\{1,2\}
$$

So, this example illustrate the generality of our result.
Acknowledgement. The authors thank very much the referee for his valuable comments and suggestions.

## References

[1] M. Abbas, B.E. Rhoades, Common fixed point theorems for hybrid pairs of occasionally weakly compatible mappings satisfying generalized contractive condition of integral type, Fixed Point Theory Appl. 2007, Art. ID 54101, 9 pp. MR2346334(2008i:54034). Zbl pre05237660.
[2] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9(4)(1986), 771-779. MR0870534(87m:54122). Zbl 0613.54029.
[3] G. Jungck, B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3)(1998), 227-238. MR1617919. Zbl 0904.54034.
[4] H. Kaneko, S. Sessa, Fixed point theorems for compatible multi-valued and single-valued mappings, Internat. J. Math. Math. Sci., 12(2)(1989), 257-262. MR0994907(90i:54097). Zbl 0671.54023.
[5] S. Sessa, On a weak commutativity condition in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.), 32(46)(1982), 149-153. MR0710984(85f:54107). Zbl 0523.54030.
[6] D. Türkoğlu, O. Özer and B. Fisher, A coincidence point theorem for multivalued contractions, Math. Commun., 7(1)(2002), 39-44. MR1932542. Zbl 1016.54022.

| Hakima Bouhadjera | Ahcène Djoudi |
| :--- | :--- |
| Laboratoire de Mathématiques Appliquées, | Laboratoire de Mathématiques Appliquées, |
| Université Badji Mokhtar, | Université Badji Mokhtar, |
| B. P. 12, 23000, Annaba | B. P. 12, 23000, Annaba |
| Algérie. | Algérie. |
| e-mail: b_hakima2000@yahoo.fr | e-mail: adjoudi@yahoo.com |
|  |  |
| Brian Fisher |  |
| Department of Mathematics, |  |
| University of Leicester, |  |
| Leicester, LE1 7RH, U.K. |  |
| e-mail: fbr@le.ac.uk |  |


[^0]:    2000 Mathematics Subject Classification: 47H10; 54H25.
    Keywords: weakly commuting maps; compatible maps; weakly compatible maps; occasionally weakly compatible maps; single and multi-valued maps; common fixed point theorem; metric space.

