A SURVEY ON DILATIONS OF PROJECTIVE ISOMETRIC REPRESENTATIONS

Tania-Luminiţa Costache

Abstract

In this paper we present Laca-Raeburn's dilation theory of projective isometric representations of a semigroup to projective isometric representations of a group [4] and Murphy's proof of a dilation theorem more general than that proved by Laca and Raeburn. Murphy applied the theory which involves positive definite kernels and their Kolmogorov decompositions to obtain the Laca-Raeburn dilation theorem [6].

We also present Heo's dilation theorems for projective representations, which generalize Stinespring dilation theorem for covariant completely positive maps and generalize to Hilbert C^{*}-modules the Naimark-Sz-Nagy characterization of positive definite functions on groups [2].

In the last part of the paper it is given the dilation theory obtained in [6] in the case of unitary operator-valued multipliers [3].

1 Introduction

Throughout this paper the term semigroup will signify a semigroup with unit. A subsemigroup of a semigroup signifies a subset closed under the operation and containing the unit. We shall usually write the operation multiplicatively and denote the unit by e.

An involution on a semigroup S is a function $s \longmapsto s^{*}$ from S to itself having the properties $(s t)^{*}=t^{*} s^{*}$ and $\left(s^{*}\right)^{*}=s$, for all $s, t \in S$. We call a pair consisting of a semigroup together with an involution a $*$-semigroup. If for all $x \in G$, there are $s, t \in S$ such that $x=s^{-1} t$, then we say that S generates G.

A subsemigroup S of a group G is normal if $x S x^{-1} \subseteq S$ for all $x \in G$.
A von Neumann algebra \mathcal{M} is a *-algebra of bounded operators on a Hilbert space H that is closed in the weak operator topology and contains the identity operator.

Definition 1. ([3]) Let S be a semigroup with the unit e and let \mathcal{M} be a von

[^0]Neumann algebra on a Hilbert space H. The $\mathcal{U}(\mathcal{M})$-multiplier on S is a $\mathcal{U}(Z(\mathcal{M}))$ valued map defined on $S \times S$ satisfying :
(i) $\omega(e, s)=\omega(s, e)=1$;
(ii) $\omega(s, t) \omega(s t, u)=\omega(s, t u) \omega(t, u)$, for all $s, t, u \in S$.

Remark 2. ([3]) If \mathcal{M} is a factor, i.e. $Z(\mathcal{M})=\mathbb{C} I$, then the $\mathcal{U}(\mathcal{M})$-multiplier coincides with the unit circle \mathbf{T}-valued multiplier that we shall use in Section 2.

Definition 3. ([3]) Let S be a semigroup with unit, let \mathcal{M} be a be a von Neumann algebra on a Hilbert space H and let ω be a $\mathcal{U}(\mathcal{M})$-multiplier on S. A projective isometric ω-representation of S is a map $\rho: S \rightarrow \mathcal{M}$ having the following properties for all $s, t \in S$:
(i) $\rho(s)$ is an isometry and $\rho(e)=1$;
(ii) $\rho(s t)=\omega(s, t) \rho(s) \rho(t)$.

If $\rho(s)$ is unitary for $s \in S$, we say that ρ is a projective unitary ω-representation. If ρ is a projective isometric ω-representation of a group G, then ρ is automatically a projective unitary ω-representation, in fact $\rho(s)^{*}=\omega\left(s^{-1}, s\right) \rho\left(s^{-1}\right)$ for all $s \in G$.
Remark 4. In particular, if $\mathcal{M}=B(H)$, we obtain the definition of the projective isometric ω-representation that we shall use in Section 2.
Definition 5. ([6]) Let X be a non-empty set, let H be a Hilbert space and let $B(H)$ be the Banach algebra of all bounded operators on H. A map k from $X \times X$ to $B(H)$ is a positive definite kernel if for every positive integer n and $x_{1}, \ldots, x_{n} \in$ X, the operator matrix $\left(k\left(x_{i}, x_{j}\right)\right)_{i j}$ in the C^{*}-algebra $M_{n}(B(H))$ is positive, i.e. $\sum_{i, j}\left\langle k\left(x_{i}, x_{j}\right) h_{j}, h_{i}\right\rangle \geq 0$ for all $h_{1}, \ldots, h_{n} \in H$ and $x_{1}, \ldots, x_{n} \in X$.
Definition 6. ([6]) If k can be written in the form $k(x, y)=V(x)^{*} V(y)$, where $V: X \rightarrow B\left(H, H_{V}\right)$, for some Hilbert space H_{V}, then k is automatically positive definite. Such a map V is said to be a Kolmogorov decomposition of k. Moreover, if, in addition, H_{V} is the closed linear span of the set $\bigcup_{x} V(x) H$, then V is said to be minimal.

Definition 7. ([3]) Let G be a group, let \mathcal{M} be a von Neumann algebra on a Hilbert space H and let ω be a $\mathcal{U}(\mathcal{M})$-multiplier on G. We say that a map $\varphi: G \rightarrow \mathcal{M}$ is ω-positive definite if the map k on $G \times G$ defined by

$$
k(x, y)=\omega\left(x^{-1}, x\right) \omega\left(x^{-1}, y\right)^{*} \varphi\left(x^{-1} y\right)
$$

is positive definite. We define a (minimal) Kolmogorov decomposition for φ to be a (minimal) Kolmogorov decomposition for k.
Remark 8. In particular, if $\mathcal{M}=B(H)$, we obtain the definition of the ω-positive definite map that we shall use in Section 2.

2 Dilation theory in the case of projective isometric representations on Hilbert spaces with T-valued multipliers

The following theorem shows that an isometric ω-representation of S is always the restriction of a ω-representation of S by unitary operators to an invariant subspace.

Theorem 9. ([4]) Suppose ω is a multiplier on a normal generating subsemigroup S of the group G and let ρ be an isometric ω-representation of S on a Hilbert space H. Then there is a unitary ω-representation ρ^{\prime} of S on a Hilbert space H^{\prime} containing a copy of H such that
(i) $\rho^{\prime}(s)$ leaves H invariant and $\left.\rho^{\prime}(s)\right|_{H}=\rho(s)$;
(ii) $\bigcup_{s \in S} \rho^{\prime}(s)^{*} H$ is dense in H^{\prime}.

Proof. Let H_{0} be the set of functions $f: S \rightarrow H$ for which there is $s \in S$ such that

$$
\begin{equation*}
f(y)=\omega\left(y s^{-1}, s\right) \rho\left(y s^{-1}\right)(f(s)) \tag{2.1}
\end{equation*}
$$

for $y \in S s$.
Such s will be called admissible for f. Note that if s is admissible for f and $r \in S s$, then r is also admissible for f, for then $S r \subset S s$ and for all $y \in S r$,

$$
\begin{gathered}
f(y)=\omega\left(y s^{-1}, s\right) \rho\left(y s^{-1}\right) f(s)= \\
\omega\left(y s^{-1}, s\right) \omega\left(y r^{-1}, r s^{-1}\right) \rho\left(y r^{-1}\right) \rho\left(r s^{-1}\right) f(s)= \\
\omega\left(y s^{-1}, s\right) \omega\left(y r^{-1}, r s^{-1}\right) \frac{\omega\left(r s^{-1}, s\right) \rho\left(y r^{-1}\right) f(r)=}{\omega\left(y r^{-1}, r\right) \rho\left(y r^{-1}\right) f(r)}
\end{gathered}
$$

by Definition 1.
Suppose now f and g are in H_{0} and s is admissible for both f and g (since S is normal, the product of an admissible value for f and one for g will do). If $y \in S s$, then

$$
\begin{gathered}
\langle f(y), g(y)\rangle=\left\langle\omega\left(y s^{-1}, s\right) \rho\left(y s^{-1}\right) f(s), \omega\left(y s^{-1}, s\right) \rho\left(y s^{-1}\right) g(s)\right\rangle= \\
=\langle f(s), g(s)\rangle
\end{gathered}
$$

because $\rho\left(y s^{-1}\right)$ is an isometry and ω takes values in the unit circle. Thus $\langle f(s), g(s)\rangle$ is constant on the set of values of s which are admissible for both functions and we can define a positive semidefinite sesquilinear functional on H_{0} by $\langle f, g\rangle=\langle f(s), g(s)\rangle$, where s is any value admissible for both f and g.

Let H^{\prime} be the Hilbert space completion of H_{0} under the corresponding seminorm and notice that this identifies functions which coincide on an admissible set of the
form $S s$. To embed the original Hilbert space H, define for each $\xi \in H$, the function $\widehat{\xi}$ by $\widehat{\xi}(s)=\rho(s) \xi$ for $s \in S$. Since ρ is an isometric ω-representation, $\widehat{\xi}$ satisfies (2.1) for any $s \in S$, hence $\widehat{\xi} \in H_{0}$ and every $s \in S$ is admissible for $\widehat{\xi}$. The embedding $\xi \longrightarrow \widehat{\xi}$ is isometric because each $\rho(s)$ is.

Suppose now that $f \in H_{0}$ and $t \in S$ and consider the function f_{t} defined by $f_{t}=\overline{\omega(x, t)} f(x t)$ for $x \in S$. If $s \in S$ is admissible for f, then normality implies that st is also admissible for f, and since $x t \in S s t$, for any $x \in S s$,

$$
\begin{gathered}
f_{t}=\overline{\omega(x, t)} f(x t)=\overline{\omega(x, t)} \omega\left(x t(s t)^{-1}, s t\right) \rho\left(x t(s t)^{-1}\right) f(s t)= \\
\overline{\omega(x, t)} \omega\left(x s^{-1}, s t\right) \rho\left(x s^{-1}\right) f(s t)= \\
\overline{\omega(x, t) \omega(s, t) \omega\left(x s^{-1}, s\right) \omega\left(x s^{-1} s, t\right) \rho\left(x s^{-1}\right) f(s t)=} \\
\overline{\omega(s, t)} \omega\left(x s^{-1}, s\right) \rho\left(x s^{-1}\right) f(s t)= \\
\omega\left(x s^{-1}, s\right) \rho\left(x s^{-1}\right) f_{t}(s)
\end{gathered}
$$

which shows that the same s is admissible for f_{t}; in particular $f_{t} \in H_{0}$.
Evaluating the inner product at a point s admissible for both f and g, we obtain

$$
\left\langle f_{t}, g_{t}\right\rangle=\left\langle f_{t}(s), g_{t}(s)\right\rangle=\langle\overline{\omega(s, t)} f(s t), \overline{\omega(s, t)} g(s t)\rangle=\langle f, g\rangle ;
$$

thus, $\rho^{\prime}(t) f=f_{t}$ for $t \in S$ defines an isometry $\rho^{\prime}(t)$ on H^{\prime}.
If $\xi \in H$, then

$$
\begin{gathered}
\left(\rho^{\prime}(t) \widehat{\xi}\right)(x)=\rho^{\prime}(t) \rho(x) \xi=(\rho(x))_{t} \xi=\overline{\omega(x, t)} \rho(x t) \xi= \\
\overline{\omega(x, t)} \omega(x, t) \rho(x) \rho(t) \xi=\rho(x) \rho(t) \xi=\widehat{\rho(t) \xi}(x)
\end{gathered}
$$

for $x \in S$, so $\rho^{\prime}(t)$ restricts to $\rho(t)$ on the copy of H inside H^{\prime}. Furthermore,

$$
\begin{gathered}
\rho^{\prime}(s) \rho^{\prime}(t) f(x)=\overline{\omega(x, s)} \rho^{\prime}(t) f(x s)=\overline{\omega(x, s) \omega(x s, t)} f(x s t)= \\
\overline{\omega(x, s t) \omega(s, t)} f(x s t)=\overline{\omega(s, t)} \rho^{\prime}(s t) f(x)
\end{gathered}
$$

for all $x \in S$ and $f \in H_{0}$
Thus ρ^{\prime} is a ω-representation of S by isometries and it remains to prove that these isometries are in fact unitaries. Let $t \in S$ and suppose that s is admissible for $g \in H_{0}$. Consider the function defined by

$$
g_{t^{-1}}(x)= \begin{cases}\omega\left(x t^{-1}, t\right) g\left(x t^{-1}\right), & \text { if } x \in S t \\ 0, & \text { otherwise }\end{cases}
$$

Then $s t$ is admissible for $g_{t^{-1}}$: if $x \in S s t$, then $x t^{-1} \in S s$ is admissible for g and

$$
g_{t^{-1}}(x)=\omega\left(x t^{-1}, t\right) g\left(x t^{-1}\right)=\omega\left(x t^{-1}, t\right) \omega\left(x t^{-1} s^{-1}, s\right) \rho\left(x t^{-1} s^{-1}\right) g(s)=
$$

$$
\begin{gathered}
\omega\left(x t^{-1} s^{-1}, s t\right) \omega(s, t) \rho\left(x t^{-1} s^{-1}\right) g(s)= \\
\omega\left(x(s t)^{-1}, s t\right) \rho\left(x(s t)^{-1}\right) g_{t^{-1}}(s t)
\end{gathered}
$$

so $g_{t^{-1}} \in H_{0}$. Since

$$
\rho^{\prime}(t) g_{t^{-1}}(x)=\overline{\omega(x, t)} g_{t^{-1}}(x t)=\overline{\omega(x, t)} \omega(x, t) g(x)=g(x)
$$

for $x \in S, \rho^{\prime}(t)$ is surjective for every $t \in S$. Thus ρ^{\prime} is a unitary ω-representation of the subsemigroup S on H^{\prime}, which finishes the proof of (i).

To prove (ii), assume $f \in H_{0}$ and fix s admissible for f. Then for $x \in S s$,

$$
\begin{gathered}
\rho^{\prime}(s)(f)(x)=\overline{\omega(x, s)} f(x s)=\overline{\omega(x, s)} \omega\left(x s s^{-1}, s\right) \rho\left(x s s^{-1}\right) f(s)= \\
\rho(x)(f(s))=\widehat{f(s)}(x)
\end{gathered}
$$

Hence $f(x)=\left(\rho^{\prime}(s)^{*} \widehat{f(s)}\right)(x)$ for x in the admissible set $S s$, which implies $f=$ $\rho^{\prime}(s)^{*} \widehat{f(s)}$ in H^{\prime}. Since H_{0} is dense in H^{\prime}, (ii) follows.

For the rest of this section, G will denote a group, ω a multiplier of G and S a normal, generating subsemigroup of G.

The following result is a generalization of Naimark-Sz.-Nagy's theorem of characterization of positive definite functions (Corollary 2.6, [1]), which can be obtained by taking $\omega \equiv 1$.

Theorem 10. ([6]) Let H be a Hilbert space and φ a ω-positive definite map on G with values in $B(H)$. Then there are a Hilbert space H^{\prime}, an operator $T \in B\left(H, H^{\prime}\right)$ and a unitary ω-representation ρ of G on H^{\prime} such that $\varphi(x)=T^{*} \rho(x) T$, for all $x \in G$. Moreover, H^{\prime} is the closed linear span of the set $\bigcup_{x} \rho(x) T H$.

Proof. Let V be a minimal Kolmogorov decomposition of φ and set $H^{\prime}=H_{V}$. Let $x, y, z \in G$. Then it is easy to verify that
$\omega\left(x^{-1} z^{-1}, z x\right) \omega(z, x) \omega\left(x^{-1}, y\right)=\omega\left(x^{-1} z^{-1}, z y\right) \omega(z, y) \omega\left(x^{-1}, x\right)$ and it follows from this that

$$
\begin{gathered}
V(z x)^{*} V(z y)=\omega\left(x^{-1} z^{-1}, z x\right) \overline{\omega\left(x^{-1} z^{-1}, z y\right)} \varphi\left(x^{-1} z^{-1} z y\right)= \\
=\omega\left(x^{-1}, x\right) \overline{\omega\left(x^{-1}, y\right) \omega(z, x)} \omega(z, y) \varphi\left(x^{-1} y\right)=\overline{\omega(z, x)} \omega(z, y) V(x)^{*} V(y)
\end{gathered}
$$

which can be written $\omega(z, x) V(z x)^{*} \overline{\omega(z, y)} V(z y)=V(x)^{*} V(y)$. Hence, the map $x \longmapsto \overline{\omega(z, x)} V(z x)$ is another minimal Kolmogorov decomposition for φ. Consequently, there is a unique unitary $\rho(z) \in B\left(H^{\prime}\right)$ such that $\rho(z) V(x)=\overline{\omega(z, x)} V(z x)$, for all $x \in G$ (by Lemma 1.4, [1]). Since we have

$$
\rho(y) \rho(z) V(x)=\overline{\omega(y, z x) \omega(z, x)} V(y z x)=
$$

$$
\overline{\omega(y, z) \omega(y z, x)} V(y z x)=\overline{\omega(y, z)} \rho(y z) V(x)
$$

and the set $\bigcup_{x} V(x) H$ has dense linear span in H^{\prime} (by minimality of V), therefore $\rho(y z)=\omega(y, z) \rho(y) \rho(z)$. Thus, the map $\rho: x \longmapsto \rho(x)$ is a projective unitary representation of G with ω as associated multiplier.

Set $T=V(e)$. Then $T^{*} \rho(x) T=\overline{\omega(x, e)} V(e)^{*} V(x e)=V(e)^{*} V(x)=\varphi(x)$. Also, $\rho(x) T H=V(x) H$ and therefore H^{\prime} is the closed linear span of the set $\bigcup_{x} \rho(x) T H$.

The projective representation ρ is called a dilation of φ.
Theorem 11. ([6]) Let H be a Hilbert space and let $\rho: S \rightarrow B(H)$ be a projective isometric representation with associated multiplier the restriction of ω to S. Then there is a unique extension ρ^{\prime} of ρ to G having the following properties :
(1) $\rho^{\prime}(x s)=\omega(x, s) \rho^{\prime}(x) \rho(s)$ for all $x \in G$ and $s \in S$;
(2) $\rho^{\prime}(x)^{*}=\omega\left(x^{-1}, x\right) \rho^{\prime}\left(x^{-1}\right)$ for all $x \in G$.

Moreover, ρ^{\prime} is ω-positive definite.
Proof. Since S is a normal generating subsemigroup of G, the uniqueness of ρ^{\prime} is clear.

To prove the existence of ρ^{\prime}, suppose that $x=s^{-1} t, s, t \in S$, because S generates G and set $\rho^{\prime}(x)=\omega\left(s^{-1}, t\right) \overline{\omega\left(s^{-1}, s\right)} \rho(s)^{*} \rho(t)$. We show that ρ^{\prime} is well defined. Suppose that we can also write $x=u^{-1} v$, where $u, v \in S$. Then $u t=u\left(s u^{-1} v\right)=$ $\left(u s u^{-1}\right) v$ and since $u s u^{-1} \in S$ (by the normality of S) and ρ is a projective isometric representation with the multiplier ω, we have

$$
\rho(u t)=\rho\left(\left(u s u^{-1}\right) v\right) \Longrightarrow \omega(u, t) \rho(u) \rho(t)=\omega\left(u s u^{-1}, v\right) \rho\left(u s u^{-1}\right) \rho(v)
$$

However,

$$
\rho\left(\left(u s u^{-1}\right) u\right)=\rho(u s) \Longrightarrow \omega\left(u s u^{-1}, u\right) \rho\left(u s u^{-1}\right) \rho(u)=\omega(u, s) \rho(u) \rho(s)
$$

so $\overline{\omega(u, s)} \omega\left(u s u^{-1}, u\right) \rho(u)^{*} \rho\left(u s u^{-1}\right) \rho(u)=\rho(s)$ and therefore,

$$
\omega(u, s) \overline{\omega\left(u s u^{-1}, u\right)} \rho(u)^{*} \rho\left(u s u^{-1}\right)^{*} \rho(u)=\rho(s)^{*}
$$

Hence,

$$
\begin{gathered}
\rho(s)^{*} \rho(t)=\omega(u, s) \overline{\omega\left(u s u^{-1}, u\right)} \rho(u)^{*} \rho\left(u s u^{-1}\right)^{*} \rho(u) \rho(t)= \\
\omega(u, s) \overline{\omega\left(u s u^{-1}, u\right) \omega(u, t)} \omega\left(u s u^{-1}, v\right) \rho(u)^{*} \rho\left(u s u^{-1}\right)^{*} \rho\left(u s u^{-1}\right) \rho(v)= \\
\omega(u, s) \overline{\omega\left(u s u^{-1}, u\right) \omega(u, t)} \omega\left(u s u^{-1}, v\right) \rho(u)^{*} \rho(v) \Longrightarrow
\end{gathered}
$$

$$
\begin{gathered}
\omega\left(s^{-1}, t\right) \overline{\omega\left(s^{-1}, s\right)} \rho(s)^{*} \rho(t)= \\
\omega\left(s^{-1}, t\right) \overline{\omega\left(s^{-1}, s\right)} \omega(u, s) \overline{\omega\left(u s u^{-1}, u\right) \omega(u, t)} \omega\left(u s u^{-1}, v\right) \rho(u)^{*} \rho(v)
\end{gathered}
$$

It remains to verify that

$$
\begin{equation*}
\omega\left(s^{-1}, t\right) \overline{\omega\left(s^{-1}, s\right)} \omega(u, s) \overline{\omega\left(u s u^{-1}, u\right) \omega(u, t)} \omega\left(u s u^{-1}, v\right)=\omega\left(u^{-1}, v\right) \overline{\omega\left(u^{-1}, u\right)} \tag{2.2}
\end{equation*}
$$

Since $t=s u^{-1} v$, the relation (2.2) becomes:

$$
\begin{array}{r}
\omega\left(s^{-1}, s u^{-1} v\right) \overline{\omega\left(s^{-1}, s\right)} \omega(u, s) \overline{\omega\left(u s u^{-1}, u\right) \omega\left(u, s u^{-1} v\right)} \omega\left(u s u^{-1}, v\right)= \\
=\omega\left(u^{-1}, v\right) \overline{\omega\left(u^{-1}, u\right)} \tag{2.3}
\end{array}
$$

By Definition 1, we have:

$$
\begin{gathered}
\omega\left(s^{-1}, s u^{-1} v\right)=\omega\left(s^{-1}, s u^{-1}\right) \omega\left(s^{-1} s u^{-1}, v\right) \overline{\omega\left(s u^{-1}, v\right)}= \\
\omega\left(s^{-1}, s u^{-1}\right) \omega\left(u^{-1}, v\right) \overline{\omega\left(s u^{-1}, v\right)} \\
\omega\left(u s u^{-1}, u\right)=\omega(u, s) \omega\left(s u^{-1}, u\right) \overline{\omega\left(u, s u^{-1}\right)} \\
\omega\left(u s u^{-1}, v\right)=\omega\left(s u^{-1}, v\right) \omega\left(u, s u^{-1} v\right) \overline{\omega\left(u, s u^{-1}\right)}
\end{gathered}
$$

Hence, the relation (2.3) becomes:

$$
\begin{equation*}
\omega\left(s^{-1}, s u^{-1}\right) \overline{\omega\left(s^{-1}, s\right) \omega\left(s u^{-1}, u\right)}=\overline{\omega\left(u^{-1}, u\right)} \tag{2.4}
\end{equation*}
$$

taking into account that the range of ω is contained in the unit circle \mathbf{T}.
By Definition 1, we get

$$
\omega\left(s^{-1}, s u^{-1}\right) \omega\left(s, u^{-1}\right)=\omega\left(s^{-1}, s\right)
$$

So the relation (2.4) becomes :

$$
\begin{gathered}
\omega\left(s^{-1}, s u^{-1}\right) \overline{\omega\left(s^{-1}, s u^{-1}\right) \omega\left(s, u^{-1}\right) \omega\left(s u^{-1}, u\right)}=\overline{\omega\left(u^{-1}, u\right)} \Longleftrightarrow \\
\omega\left(s, u^{-1}\right) \omega\left(s u^{-1}, u\right)=\omega\left(u^{-1}, u\right) \Longleftrightarrow \\
\omega\left(s, u^{-1} u\right) \omega\left(u^{-1}, u\right)=\omega\left(u^{-1}, u\right) \text { true by Definition } 1
\end{gathered}
$$

Since $x=s^{-1} t$ and ρ is a projective representation with the multiplier ω, the conditions (1) and (2) can be easily verified using Definition 1 and the definition of ρ^{\prime}.

It remains to show that ρ^{\prime} is ω-positive definite. Thus, if $x_{1}, \ldots, x_{n} \in G$, we must show positivity of the operator matrix $\left(V_{i j}\right)$, where

$$
V_{i j}=\omega\left(x_{i}^{-1}, x_{i}\right) \overline{\omega\left(x_{i}^{-1}, x_{j}\right)} \rho^{\prime}\left(x_{i}^{-1} x_{j}\right)
$$

We claim that there is an element $s \in S$ such that $s x_{1}, \ldots, s x_{n} \in S$. To prove this, write $x_{i}=v_{i} u_{i}^{-1}$, where $u_{i}, v_{i} \in S$. Then, for $s=u_{1} \ldots u_{n}$, we have $s x_{i}=$ $u_{1} \ldots u_{i}\left(u_{i+1} \ldots u_{n} v_{i}\right) u_{i}^{-1}$, so $s x_{i} \in S$ as required.

Consequently, for some elements $s, t_{1}, \ldots, t_{n} \in S$, we have $x_{i}=s^{-1} t_{i}$; hence, since $\omega\left(t_{i}^{-1} s, s^{-1} t_{j}\right)=\overline{\omega\left(t_{i}^{-1}, s\right)} \omega\left(t_{i}^{-1}, t_{j}\right) \omega\left(s, s^{-1} t_{j}\right)$ (by Definition 1), we have

$$
\begin{gathered}
V_{i j}=\omega\left(t_{i}^{-1} s, s^{-1} t_{i}\right) \overline{\omega\left(t_{i}^{-1} s, s^{-1} t_{j}\right)} \rho^{\prime}\left(t_{i}^{-1} t_{j}\right)= \\
\omega\left(t_{i}^{-1} s, s^{-1} t_{i}\right) \overline{\omega\left(t_{i}^{-1} s, s^{-1} t_{j}\right)} \omega\left(t_{i}^{-1}, t_{j}\right) \overline{\omega\left(t_{i}^{-1}, t_{i}\right)} \rho\left(t_{i}\right)^{*} \rho\left(t_{j}\right)= \\
\omega\left(s, s^{-1} t_{i}\right) \overline{\omega\left(s, s^{-1} t_{j}\right)} \rho\left(t_{i}\right)^{*} \rho\left(t_{j}\right) .
\end{gathered}
$$

Thus, $V_{i j}=V_{i}^{*} V_{j}$, where $V_{i}=\overline{\omega\left(s, s^{-1} t_{i}\right)} \rho\left(t_{i}\right)$. Hence, $\left(V_{i j}\right)$ is positive.
Theorem 12. ([6]) Let H be a Hilbert space and $\rho: S \rightarrow B(H)$ a projective isometric representation with associated multiplier the restriction of ω to S. Then there are a Hilbert space H^{\prime}, an isometry $T: H \rightarrow H^{\prime}$ and a unitary ω-representation $\varphi: G \rightarrow B\left(H^{\prime}\right)$ such that $T^{*} \varphi(s) T=\rho(s)$, for all $s \in S$. Moreover, H^{\prime} is the closed linear span of the set $\bigcup_{x \in G} \varphi(x) T(H)$.

Proof. We obtain the proof by applying Theorem 10 to the ω-positive map ρ^{\prime} extending ρ that is given in Theorem 11.

3 Dilation theory in the case of projective isometric representations on Hilbert spaces with unitary operatorvalued multipliers

Theorem 13. ([3]) Let X be a non-empty set, let \mathcal{M} be a von Neumann algebra, let $k: X \times X \rightarrow \mathcal{M}$ be a positive definite kernel and let V be a minimal Kolmogorov decomposition of k. Then there is a *-homomorphism $\phi: \mathcal{U}\left(\mathcal{M}^{\prime}\right) \rightarrow B\left(H_{V}\right)$ such that for any $x \in X$,

$$
V(x) a=\phi(a) V(x) \quad a \in \mathcal{U}\left(\mathcal{M}^{\prime}\right) .
$$

Moreover, for each $a \in \mathcal{U}\left(\mathcal{M}^{\prime}\right), \phi(a)$ is unitary on H_{V}.
Theorem 14. ([3]) Let S be a semigroup and ϕ be the $*$-homomorphism given by Theorem 13. For each $\mathcal{U}(\mathcal{M})$-multiplier ω on $S, \phi(\omega)$ is a $\mathcal{U}(\mathcal{N})$-multiplier, where \mathcal{N} is a von Neumann algebra generated by $\phi(\mathcal{U}(Z(\mathcal{M})))$ and $\phi(\omega)(s, t)=\phi(\omega(s, t))$ for any $s, t \in S$.

Theorem 15. ([3]) Let \mathcal{M} be a von Neumann algebra on a Hilbert space H, let ω be a $\mathcal{U}(\mathcal{M})$-multiplier and let φ be a ω-positive definite map on G with values in $B(H)$. Then there are a Hilbert space H^{\prime}, an operator $T \in B\left(H, H^{\prime}\right)$ and a unitary
$\phi(\omega)$-representation ρ of G on H^{\prime} such that $\varphi(x)=T^{*} \rho(x) T$, for all $x \in G$, where the $*$-homomorphism ϕ is given as in Theorem 13. Moreover, H^{\prime} is the closed linear span of the set $\bigcup_{x} \rho(x) T H$.

Proof. Let V be a minimal Kolmogorov decomposition of φ and set $H^{\prime}=H_{V}$. Let $x, y, z \in G$. Then it is easy to verify that
$\omega\left(x^{-1} z^{-1}, z x\right) \omega(z, x) \omega\left(x^{-1}, y\right)=\omega\left(x^{-1} z^{-1}, z y\right) \omega(z, y) \omega\left(x^{-1}, x\right)$ and it follows from this that

$$
\begin{aligned}
& V(z x)^{*} V(z y)=k(z x, z y)=\omega\left(x^{-1} z^{-1}, z x\right) \omega\left(x^{-1} z^{-1}, z y\right)^{*} \varphi\left(x^{-1} z^{-1} z y\right)= \\
& =\omega\left(x^{-1}, y\right)^{*} \omega(z, x)^{*} \omega(z, y) \omega\left(x^{-1}, x\right) \varphi\left(x^{-1} y\right)=\omega(z, x)^{*} \omega(z, y) V(x)^{*} V(y)
\end{aligned}
$$

which is equivalent to

$$
V(x)^{*} V(y)=\left[V(z x) \omega(z, x)^{*}\right]^{*} V(z y) \omega(z, y)^{*}
$$

Hence for each $z \in G$, the map $x \longmapsto V(z x) \omega(z, x)^{*}$ is another minimal Kolmogorov decomposition for φ. Consequently, there is a unique unitary $\rho(z) \in B\left(H^{\prime}\right)$ such that $\rho(z) V(x)=V(z x) \omega(z, x)^{*}$, for all $x \in G$ (by Lemma 1.4, [1]). Since we have

$$
\begin{gathered}
\rho(y) \rho(z) V(x)=\rho(y) V(z x) \omega(z, x)^{*}=V(y z x) \omega(y, z x)^{*} \omega(z, x)^{*}= \\
V(y z x) \omega(y, z)^{*} \omega(y z, x)^{*}=\rho(y z) V(x) \omega(y, z)^{*}=\rho(y z) \phi\left(\omega(y, z)^{*}\right) V(x)
\end{gathered}
$$

and the set $\bigcup_{x} V(x) H$ has dense linear span in H^{\prime} (by minimality of V), therefore $\rho(y z)=\phi(\omega(y, z)) \rho(y) \rho(z), y, z \in G$.

Moreover, for any $x, y \in G, a \in \mathcal{U}(Z(\mathcal{M})), h \in H$, we have, by Theorem 13,

$$
\begin{gathered}
\rho(y) \phi(a) V(x) h=\rho(y) V(x) a h=V(y x) \omega(y, x)^{*} a h= \\
\phi(a) V(y x) \omega(y, x)^{*} h=\phi(a) \rho(y) V(x) h
\end{gathered}
$$

Therefore, for any $y \in G, \rho(y) \in \mathcal{N}^{\prime}$ and $\rho: G \rightarrow \mathcal{N}^{\prime}$ is a projective unitary $\phi(\omega)$ representation of G, where the von Neumann algebra \mathcal{N} is given as in Theorem 14. Moreover,

$$
V(e)^{*} \rho(x) V(e)=V(e)^{*} V(x)=k(e, x)=\varphi(x)
$$

and $\rho(x) V(e) H=V(x) H$. By the minimality of V, the linear span of $\bigcup_{x} V(x) H$ is dense in H^{\prime}. Hence, H^{\prime} is the closed linear span of the set $\bigcup_{x} \rho(x) V(e) H$. Set $T=V(e)$ and the proof is completed.

The projective unitary $\phi(\omega)$-representation ρ is called a dilation of ϕ.

Remark 16. If in Theorem 15, the von Neumann algebra $\mathcal{M}=B(H)$ and $\phi(\omega)=\omega$ a \mathbf{T}-valued multiplier, we obtain Theorem 10.

Theorem 17. ([3]) Let ω be a $\mathcal{U}(\mathcal{M})$-multiplier on G, let S be a normal generating subsemigroup of G and let $\rho: S \rightarrow \mathcal{M}$ be a projective isometric representation with associated $\mathcal{U}(\mathcal{M})$-multiplier the restriction of ω on S. Then there is a unique extension ρ^{\prime} of ρ to G having the following properties :
(1) $\rho^{\prime}(x s)=\omega(x, s) \rho^{\prime}(x) \rho(s)$ for all $x \in G$ and $s \in S$;
(2) $\rho^{\prime}(x)^{*}=\omega\left(x^{-1}, x\right) \rho^{\prime}\left(x^{-1}\right)$ for all $x \in G$.

Moreover, ρ^{\prime} is ω-positive definite.
Proof. Since S is a normal generating subsemigroup of G, the uniqueness of ρ^{\prime} is clear.

To prove the existence of ρ^{\prime}, suppose that $x=s^{-1} t, s, t \in S$, because S generates G and set $\rho^{\prime}(x)=\omega\left(s^{-1}, t\right) \omega\left(s^{-1}, s\right)^{*} \rho(s)^{*} \rho(t)$. We show that ρ^{\prime} is well defined. Suppose that we can also write $x=u^{-1} v$, where $u, v \in S$. Then $u t=u\left(s u^{-1} v\right)=$ $\left(u s u^{-1}\right) v$ and since $u s u^{-1} \in S$ and ρ is a projective isometric representation with the multiplier ω, we have

$$
\rho(u t)=\rho\left(\left(u s u^{-1}\right) v\right) \Longrightarrow \omega(u, t) \rho(u) \rho(t)=\omega\left(u s u^{-1}, v\right) \rho\left(u s u^{-1}\right) \rho(v)
$$

However,

$$
\rho\left(\left(u s u^{-1}\right) u\right)=\rho(u s) \Longrightarrow \omega\left(u s u^{-1}, u\right) \rho\left(u s u^{-1}\right) \rho(u)=\omega(u, s) \rho(u) \rho(s)
$$

so $\omega(u, s)^{*} \omega\left(u s u^{-1}, u\right) \rho(u)^{*} \rho\left(u s u^{-1}\right) \rho(u)=\rho(s)$.
Hence,

$$
\begin{gathered}
\rho(s)^{*} \rho(t)=\omega(u, s) \omega\left(u s u^{-1}, u\right)^{*} \rho(u)^{*} \rho\left(u s u^{-1}\right)^{*} \rho(u) \rho(t)= \\
\omega(u, s) \omega\left(u s u^{-1}, u\right)^{*} \omega(u, t)^{*} \omega\left(u s u^{-1}, v\right) \rho(u)^{*} \rho\left(u s u^{-1}\right)^{*} \rho\left(u s u^{-1}\right) \rho(v)= \\
\omega(u, s) \omega\left(u s u^{-1}, u\right)^{*} \omega(u, t)^{*} \omega\left(u s u^{-1}, v\right) \rho(u)^{*} \rho(v) \Longrightarrow \\
\omega\left(s^{-1}, t\right) \omega\left(s^{-1}, s\right)^{*} \rho(s)^{*} \rho(t)= \\
\omega\left(s^{-1}, t\right) \omega\left(s^{-1}, s\right)^{*} \omega(u, s) \omega\left(u s u^{-1}, u\right)^{*} \omega(u, t)^{*} \omega\left(u s u^{-1}, v\right) \rho(u)^{*} \rho(v)
\end{gathered}
$$

As in the proof of Theorem 11, it can be verified the relation:

$$
\begin{array}{r}
\omega\left(s^{-1}, t\right) \omega\left(s^{-1}, s\right)^{*} \omega(u, s) \omega\left(u s u^{-1}, u\right)^{*} \omega(u, t)^{*} \omega\left(u s u^{-1}, v\right)= \\
=\omega\left(u^{-1}, v\right) \omega\left(u^{-1}, u\right)^{*} \tag{3.1}
\end{array}
$$

Since $x=s^{-1} t$ and ρ is a projective representation with the associated multiplier ω, it can be easily verified the conditions (1) and (2).

To prove that ρ^{\prime} is ω-positive definite, we follow the proof of Theorem 11 and show the positivity of the operator matrix $\left(V_{i j}\right)$, where

$$
V_{i j}=\omega\left(x_{i}^{-1}, x_{j}\right) \omega\left(x_{i}^{-1}, x_{i}\right)^{*} \rho^{\prime}\left(x_{i}^{-1} x_{j}\right),
$$

for $x_{1}, \ldots, x_{n} \in G$.
Theorem 18. ([3]) Let ω be a $\mathcal{U}(\mathcal{M})$-multiplier on G, let S be a normal generating subsemigroup of G and let $\rho: S \rightarrow \mathcal{M}$ be a projective isometric representation with associated $\mathcal{U}(\mathcal{M})$-multiplier the restriction of ω to S. Then there are a Hilbert space H^{\prime}, an isometry $T: H \rightarrow H^{\prime}$ and a unitary $\phi(\omega)$-representation φ such that $T^{*} \varphi(s) T=\rho(s)$, for all $s \in S$. Moreover, H^{\prime} is the closed linear span of the set $\bigcup_{x \in G} \varphi(x) T H$.

Proof. We obtain the proof by applying Theorem 15 to the ω-positive map ρ^{\prime} extending ρ that is given in Theorem 17.

Remark 19. If in Theorem 18, the von Neumann algebra $\mathcal{M}=B(H)$ and $\phi(\omega)=\omega$ a T-valued multiplier, we obtain Theorem 12.

4 Dilation theory in the case of projective isometric representations on Hilbert C^{*}-modules with T-valued multipliers

Now we give the generalizations of the notions and theorems in Sections 2 and 3 to Hilbert C^{*}-modules.

Hilbert C^{*}-modules are generalizations of Hilbert spaces by allowing the innerproduct to take values in a C^{*} - algebra rather than in the field of complex numbers.

Definition 20. A pre-Hilbert A-module is a complex vector space E which is also a right A-module, compatible with the complex algebra structure, equipped with an A-valued inner product $\langle\cdot, \cdot\rangle: E \times E \rightarrow A$ which is \mathbb{C}-and A-linear in its second variable and satisfies the following relations:

1. $\langle\xi, \eta\rangle^{*}=\langle\eta, \xi\rangle$ for every $\xi, \eta \in E$;
2. $\langle\xi, \xi\rangle \geq 0$ for every $\xi \in E$;
3. $\langle\xi, \xi\rangle=0$ if and only if $\xi=0$.

We say that E is a Hilbert A-module if E is complete with respect to the topology determined by the norm $\|\cdot\|$ given by $\|\xi\|=\sqrt{\|\langle\xi, \xi\rangle\|}$.

Definition 21. Let X be a nonempty set, let A be a C^{*}-algebra and let E be a right Hilbert A-module. A map $k: X \times X \rightarrow L_{A}(E)$ is a positive definite kernel if the matrix $\left(k\left(x_{i}, x_{j}\right)\right)_{i j}$ in $M_{n}\left(L_{A}(E)\right)$ is positive for every integer n and for all $x_{1}, \ldots, x_{n} \in S$, where $L_{A}(E)$ is the algebra of all adjointable module maps from E to E, i.e. the algebra of all module maps $T: E \rightarrow E$ for which there is a module map $T^{*}: E \rightarrow E$ such that $\langle T \xi, \eta\rangle=\left\langle\xi, T^{*} \eta\right\rangle$, for all $\xi, \eta \in E$.

Definition 22. ([2]) If k can be written in the form $k(x, y)=V(x)^{*} V(y)$ for any $x, y \in X$, where V is a map from X to $L_{A}\left(E, E_{V}\right)$ for some right Hilbert A-module E_{V}, then k is positive definite. Such a map V is said to be the Kolmogorov decomposition for a kernel k. If the linear span of the set $\bigcup_{x \in X} V(x) E$ is dense in E_{V}, then V is said to be minimal.

Definition 23. ([2]) Let S be a semigroup. A multiplier on a semigroup S is a function $\omega: S \times S \rightarrow \mathbf{T}$ such that
(i) $\omega(e, s)=\omega(s, e)=1$;
(ii) $\omega(s, t) \omega(s t, u)=\omega(s, t u) \omega(t, u)$
for all $s, t, u \in S$, where \mathbf{T} is the unit circle.
Definition 24. A projective isometric ω-representation of S is a map $\rho: S \rightarrow L_{A}(E)$ having the following properties:
(i) $\rho(s)$ is an isometry and $\rho(e)=1$;
(ii) $\rho(s t)=\omega(s, t) \rho(s) \rho(t)$, for all $s, t \in S$.

Definition 25. Let G be a discrete group and let ω be a multiplier on G. A map ρ from G into $L_{A}(E)$ is said to be ω-positive definite if the map $k: G \times G \rightarrow L_{A}(E)$ defined by $k(x, y)=\omega\left(x^{-1}, x\right) \omega\left(x^{-1}, y\right) \rho\left(x^{-1} y\right)$ is positive definite. We define a (minimal) Kolmogorov decomposition for ρ to be a (minimal) Kolmogorov decomposition for k.

The following theorem may be regarded as a generalization of Stinespring dilation theorem for a covariant completely positive map which determines a positive definite kernel (Theorem 2.4 and Example 2.2, [7]).

Theorem 26. ([2]) Let G be a group and let ω be a multiplier on G. If a map $\varphi: G \rightarrow L_{A}(E)$ is ω-positive definite, then there is a right Hilbert A-module F, $T \in L_{A}(E, F)$ and a unitary ω-representation ρ of G on F such that $\varphi(x)=T^{*} \rho(x) T$ for all $x \in G$. Moreover, F is the closed linear span of $\bigcup_{x \in G} \rho(x) T E$.

Proof. From Definition 25, the map $k: G \times G \rightarrow L_{A}(E)$ defined by $k(x, y)=$ $\omega\left(x^{-1}, x\right) \overline{\omega\left(x^{-1}, y\right)} \varphi\left(x^{-1} y\right)$ is positive definite. By (Theorem 2.3, [7]), there is a minimal Kolmogorov decomposition $V \in L_{A}\left(E, E_{V}\right)$ for the map k. That is, V becomes a minimal Kolmogorov decomposition for φ by definition. Take $F=E_{V}$. For $x, y, z \in G$, it is not difficult to verify that $\omega\left(x^{-1} z^{-1}, z x\right) \omega(z, x) \omega\left(x^{-1}, y\right)=$ $\omega\left(x^{-1} z^{-1}, z y\right) \omega(z, y) \omega\left(x^{-1}, x\right)$.

Then we obtain

$$
\begin{gathered}
V(z x)^{*} V(z y)=\omega\left(x^{-1} z^{-1}, z x\right) \overline{\omega\left(x^{-1} z^{-1}, z y\right)} \varphi\left(x^{-1} z^{-1} z y\right)= \\
\omega\left(x^{-1}, x\right) \overline{\omega\left(x^{-1}, y\right) \omega(z, x)} \omega(z, y) \varphi\left(x^{-1} y\right)=\omega(z, y) \overline{\omega(z, x)} V(x)^{*} V(y)
\end{gathered}
$$

Hence, the map $x \longmapsto \overline{\omega(z, x)} V(z x)$ is another minimal Kolmogorov decomposition for φ. By (Theorem 2.3, $[7]$), there is a unitary $\rho(z) \in L_{A}(F)$ such that $\rho(z) V(x)=$ $\overline{\omega(z, x)} V(z x)$ for all $x \in G$.

From a simple computation, we have $\rho(y) \rho(z) V(x)=\overline{\omega(y, z)} \rho(y z) V(x)$. Since V is minimal, the set $\bigcup_{x \in G} V(x) E$ is dense in F. Hence we have $\rho(y z)=\omega(y, z) \rho(y) \rho(z)$, which shows that the map $x \longmapsto \rho(x)$ is a projective unitary representation of G with ω as an associated multiplier. By taking $T=V(e)$, we obtain that $T^{*} \rho(x) T=\varphi(x)$ and $\rho(x) T E=V(x) E$ for all $x \in G$, which completes the proof.

The following theorem may be considered as a generalization of Theorem 11.
Theorem 27. ([2]) Let S be a normal generating subsemigroup of a group G, let ω be a multiplier on G, let E be a right C^{*}-module over a C^{*}-algebra A and let $\rho: S \rightarrow L_{A}(E)$ be a projective isometric representation with associated multiplier the restriction of ω to S. Then there is a unique extension ρ^{\prime} of ρ to G having the following properties :
(1) $\rho^{\prime}(x s)=\omega(x, s) \rho^{\prime}(x) \rho(s)$ for all $x \in G$ and $s \in S$;
(2) $\rho^{\prime}(x)^{*}=\omega\left(x^{-1}, x\right) \rho^{\prime}\left(x^{-1}\right)$ for all $x \in G$.

Moreover, ρ^{\prime} is ω-positive definite.
Proof. Since S is a normal generating subsemigroup of G, the uniqueness of ρ^{\prime} is clear.

To show the existence of ρ^{\prime}, suppose that $x=s^{-1} t, s, t \in S$, because S generates G and set $\rho^{\prime}(x)=\omega\left(s^{-1}, t\right) \overline{\omega\left(s^{-1}, s\right)} \rho(s)^{*} \rho(t)$. We have to show that the map ρ^{\prime} is well-defined. For this it must be checked that for $x=s^{-1} t=u^{-1} v$, $\omega\left(s^{-1}, t\right) \overline{\omega\left(s^{-1}, s\right)} \rho(s)^{*} \rho(t)=\omega\left(u^{-1}, v\right) \overline{\omega\left(u^{-1}, u\right)} \rho(u)^{*} \rho(v)$.

Indeed, we have $u t=u s x=u s u^{-1} v$. Then the element $u s u^{-1} \in S$ because of normality of S in G. Since the restriction of ρ to S is a projective ω-isometric representation, we have that
$\omega(u, t) \rho(u) \rho(t)=\rho(u t)=\rho\left(u s u^{-1} v\right)=\omega\left(u s u^{-1}, v\right) \rho\left(u s u^{-1}\right) \rho(v)$
However, we have the equality

$$
\begin{equation*}
\omega\left(u s u^{-1}, u\right) \rho\left(u s u^{-1}\right) \rho(u)=\rho(u s)=\omega(u, s) \rho(u) \rho(s) \tag{4.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
\rho(s)^{*}=\omega(u, s) \overline{\omega\left(u s u^{-1}, u\right)} \rho(u)^{*} \rho\left(u s u^{-1}\right)^{*} \rho(u) . \tag{4.2}
\end{equation*}
$$

Hence, we obtain from equations (4.1) and (4.2) that

$$
\begin{gathered}
\omega\left(s^{-1}, t\right) \overline{\omega\left(s^{-1}, s\right)} \rho(s)^{*} \rho(t)= \\
=\omega\left(s^{-1}, t\right) \overline{\omega\left(s^{-1}, s\right)} \omega(u, s) \overline{\omega\left(u s u^{-1}, u\right)} \omega\left(u s u^{-1}, v\right) \overline{\omega(u, t)} \rho(u)^{*} \rho(v)
\end{gathered}
$$

Since $t=s u^{-1} v$ and the range of ω is contained in the unit circle \mathbf{T}, we have that

$$
\begin{aligned}
& \omega\left(s^{-1}, t\right) \overline{\omega\left(s^{-1}, s\right)}= \\
& \omega\left(s^{-1}, s u^{-1} v\right) \overline{\omega\left(s^{-1}, s\right)} \omega(u, s) \overline{\omega\left(u s u^{-1}, u\right)} \omega\left(u s u^{-1}, v\right) \overline{\omega\left(u, s u^{-1} v\right)}
\end{aligned}
$$

Hence, ρ^{\prime} is well-defined and it is a routine to check (1) and (2) (see the analogue Theorems in Section 2 and 3).

To show that ρ^{\prime} is ω-positive definite, we follow the proof of Theorem 11.
Corollary 28. ([2]) Let G, S and ω be as in Theorem 27. If $\rho: S \rightarrow L_{A}(E)$ is a projective isometric representation with the restriction of ω to S as the associated multiplier, then there are a right Hilbert A-module $F, T \in L_{A}(E, F)$ and a unitary ω-representation φ of G on F such that $\rho(s)=T^{*} \varphi(s) T$ for all $s \in S$. Moreover, F is the closed linear span of $\bigcup_{x \in G} \varphi(x) T E$.

Proof. The proof follows immediately from Theorem 26 and Theorem 27.

References

[1] D.E. Evans and J.T. Lewis, Dilations of irreversible evolutions in algebraic quantum theory, Commun. of the Dublin Inst. For Advanced Studies Series A (Theoretical Physics), No. 24 (1977). MR0489494(58 \#8915). Zbl 0365.46059.
[2] J. Heo, Hilbert C^{*}-modules and projective representations associated with multipliers, J.Math.Anal.Appl. 331 (2007), 499-505. MR2306019(2008b:46083). Zbl 1121.46044.
[3] Un Cig Ji, Young Yi Kim and Su Hyung Park, Unitary multiplier and dilation of projective isometric representation, J. Math. Anal. Appl. 336 (2007), 399-410. MR2348513. Zbl 1130.47020.
[4] M. Laca and I. Raeburn, Extending multipliers from semigroups, Proc. Amer. Math. Soc., 123, No. 2 (1995), 355-362. MR1227519(95c:20101). Zbl 0841.20058.
[5] E. Lance, Hilbert C^{*}-modules, Cambridge Univ. Press, 1995. MR1325694(96k:46100). Zbl 0822.46080.
[6] G.J. Murphy, Extensions of multipliers and dilations of projective isometric representations, Proc. Amer. Math.Soc., 125, No. 1 (1997), 121-127. MR1343714(97c:46085). Zbl 0860.47003.
[7] G.J. Murphy, Positive definite kernels and Hilbert C^{*}-modules, Proc. of the Edinburg Math. Soc. 40 (1997), 367-374. MR1454031(98e:46074). Zbl 0886.46057.
[8] V.I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, 1986. MR0868472(88h:46111). Zbl 0614.47006.

Tania-Luminiţa Costache
Faculty of Applied Sciences,
University "Politehnica" of Bucharest, Splaiul Independenţei 313, Bucharest, Romania.
e-mail: lumycos@yahoo.com

[^0]: 2000 Mathematics Subject Classification: 20C25; 43A35; 43A65; 46L45; 47A20.
 Keywords: multiplier; isometric projective representation; positive definite kernel; Kolmogorov decomposition; dilation.

