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A SURVEY ON DILATIONS OF PROJECTIVE
ISOMETRIC REPRESENTATIONS

Tania-Luminiţa Costache

Abstract. In this paper we present Laca-Raeburn’s dilation theory of projective isometric
representations of a semigroup to projective isometric representations of a group [4] and Murphy’s
proof of a dilation theorem more general than that proved by Laca and Raeburn. Murphy applied
the theory which involves positive definite kernels and their Kolmogorov decompositions to obtain
the Laca-Raeburn dilation theorem [6].

We also present Heo’s dilation theorems for projective representations, which generalize Stine-
spring dilation theorem for covariant completely positive maps and generalize to Hilbert C∗-modules
the Naimark-Sz-Nagy characterization of positive definite functions on groups [2].

In the last part of the paper it is given the dilation theory obtained in [6] in the case of unitary

operator-valued multipliers [3].

1 Introduction

Throughout this paper the term semigroup will signify a semigroup with unit. A
subsemigroup of a semigroup signifies a subset closed under the operation and con-
taining the unit. We shall usually write the operation multiplicatively and denote
the unit by e.

An involution on a semigroup S is a function s 7−→ s∗ from S to itself having
the properties (st)∗ = t∗s∗ and (s∗)∗ = s, for all s, t ∈ S. We call a pair consisting
of a semigroup together with an involution a ∗-semigroup. If for all x ∈ G, there are
s, t ∈ S such that x = s−1t, then we say that S generates G.

A subsemigroup S of a group G is normal if xSx−1 ⊆ S for all x ∈ G.
A von Neumann algebra M is a *-algebra of bounded operators on a Hilbert

space H that is closed in the weak operator topology and contains the identity
operator.

Definition 1. ([3]) Let S be a semigroup with the unit e and let M be a von
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196 T. L. Costache

Neumann algebra on a Hilbert space H. The U(M)-multiplier on S is a U(Z(M))-
valued map defined on S × S satisfying :

(i) ω(e, s) = ω(s, e) = 1;

(ii) ω(s, t)ω(st, u) = ω(s, tu)ω(t, u), for all s, t, u ∈ S.

Remark 2. ([3]) If M is a factor, i.e. Z(M) = CI, then the U(M)-multiplier
coincides with the unit circle T-valued multiplier that we shall use in Section 2.

Definition 3. ([3]) Let S be a semigroup with unit, let M be a be a von Neumann
algebra on a Hilbert space H and let ω be a U(M)-multiplier on S. A projective
isometric ω-representation of S is a map ρ : S →M having the following properties
for all s, t ∈ S :

(i) ρ(s) is an isometry and ρ(e) = 1;

(ii) ρ(st) = ω(s, t)ρ(s)ρ(t).

If ρ(s) is unitary for s ∈ S, we say that ρ is a projective unitary ω-representation.
If ρ is a projective isometric ω-representation of a group G, then ρ is automatically
a projective unitary ω-representation, in fact ρ(s)∗ = ω(s−1, s)ρ(s−1) for all s ∈ G.

Remark 4. In particular, if M = B(H), we obtain the definition of the projective
isometric ω-representation that we shall use in Section 2.

Definition 5. ([6]) Let X be a non-empty set, let H be a Hilbert space and let
B(H) be the Banach algebra of all bounded operators on H. A map k from X ×X
to B(H) is a positive definite kernel if for every positive integer n and x1, . . . , xn ∈
X, the operator matrix (k(xi, xj))ij in the C∗-algebra Mn(B(H)) is positive, i.e.∑
i,j

〈k(xi, xj)hj , hi〉 ≥ 0 for all h1, . . . , hn ∈ H and x1, . . . , xn ∈ X.

Definition 6. ([6]) If k can be written in the form k(x, y) = V (x)∗V (y), where
V : X → B(H,HV ), for some Hilbert space HV , then k is automatically positive
definite. Such a map V is said to be a Kolmogorov decomposition of k. Moreover,
if, in addition, HV is the closed linear span of the set

⋃
x

V (x)H, then V is said to

be minimal.

Definition 7. ([3]) Let G be a group, let M be a von Neumann algebra on a Hilbert
space H and let ω be a U(M)-multiplier on G. We say that a map ϕ : G → M is
ω-positive definite if the map k on G×G defined by

k(x, y) = ω(x−1, x)ω(x−1, y)∗ϕ(x−1y)

is positive definite. We define a (minimal) Kolmogorov decomposition for ϕ to be
a (minimal) Kolmogorov decomposition for k.

Remark 8. In particular, if M = B(H), we obtain the definition of the ω-positive
definite map that we shall use in Section 2.
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A survey on dilations of projective isometric representations 197

2 Dilation theory in the case of projective isometric rep-
resentations on Hilbert spaces with T-valued multi-
pliers

The following theorem shows that an isometric ω-representation of S is always the
restriction of a ω-representation of S by unitary operators to an invariant subspace.

Theorem 9. ([4]) Suppose ω is a multiplier on a normal generating subsemigroup
S of the group G and let ρ be an isometric ω-representation of S on a Hilbert space
H. Then there is a unitary ω-representation ρ′ of S on a Hilbert space H ′ containing
a copy of H such that

(i) ρ′(s) leaves H invariant and ρ′(s)|H = ρ(s);

(ii)
⋃
s∈S

ρ′(s)∗H is dense in H ′.

Proof. Let H0 be the set of functions f : S → H for which there is s ∈ S such that

f(y) = ω(ys−1, s)ρ(ys−1)(f(s)) (2.1)

for y ∈ Ss.
Such s will be called admissible for f . Note that if s is admissible for f and

r ∈ Ss, then r is also admissible for f , for then Sr ⊂ Ss and for all y ∈ Sr,

f(y) = ω(ys−1, s)ρ(ys−1)f(s) =

ω(ys−1, s)ω(yr−1, rs−1)ρ(yr−1)ρ(rs−1)f(s) =

ω(ys−1, s)ω(yr−1, rs−1)ω(rs−1, s)ρ(yr−1)f(r) =

ω(yr−1, r)ρ(yr−1)f(r),

by Definition 1.
Suppose now f and g are in H0 and s is admissible for both f and g (since S is

normal, the product of an admissible value for f and one for g will do). If y ∈ Ss,
then

〈f(y), g(y)〉 =
〈
ω(ys−1, s)ρ(ys−1)f(s), ω(ys−1, s)ρ(ys−1)g(s)

〉
=

= 〈f(s), g(s)〉 ,

because ρ(ys−1) is an isometry and ω takes values in the unit circle. Thus 〈f(s), g(s)〉
is constant on the set of values of s which are admissible for both functions and we can
define a positive semidefinite sesquilinear functional on H0 by 〈f, g〉 = 〈f(s), g(s)〉,
where s is any value admissible for both f and g.

Let H ′ be the Hilbert space completion of H0 under the corresponding seminorm
and notice that this identifies functions which coincide on an admissible set of the
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form Ss. To embed the original Hilbert space H, define for each ξ ∈ H, the function
ξ̂ by ξ̂(s) = ρ(s)ξ for s ∈ S. Since ρ is an isometric ω-representation, ξ̂ satisfies (2.1)
for any s ∈ S, hence ξ̂ ∈ H0 and every s ∈ S is admissible for ξ̂. The embedding
ξ −→ ξ̂ is isometric because each ρ(s) is.

Suppose now that f ∈ H0 and t ∈ S and consider the function ft defined by
ft = ω(x, t)f(xt) for x ∈ S. If s ∈ S is admissible for f , then normality implies that
st is also admissible for f , and since xt ∈ Sst, for any x ∈ Ss,

ft = ω(x, t)f(xt) = ω(x, t)ω(xt(st)−1, st)ρ(xt(st)−1)f(st) =

ω(x, t)ω(xs−1, st)ρ(xs−1)f(st) =

ω(x, t)ω(s, t)ω(xs−1, s)ω(xs−1s, t)ρ(xs−1)f(st) =

ω(s, t)ω(xs−1, s)ρ(xs−1)f(st) =

ω(xs−1, s)ρ(xs−1)ft(s)

which shows that the same s is admissible for ft; in particular ft ∈ H0.
Evaluating the inner product at a point s admissible for both f and g, we obtain

〈ft, gt〉 = 〈ft(s), gt(s)〉 =
〈
ω(s, t)f(st), ω(s, t)g(st)

〉
= 〈f, g〉 ;

thus, ρ′(t)f = ft for t ∈ S defines an isometry ρ′(t) on H ′.
If ξ ∈ H, then

(ρ′(t)ξ̂)(x) = ρ′(t)ρ(x)ξ = (ρ(x))tξ = ω(x, t)ρ(xt)ξ =

ω(x, t)ω(x, t)ρ(x)ρ(t)ξ = ρ(x)ρ(t)ξ = ρ̂(t)ξ(x)

for x ∈ S, so ρ′(t) restricts to ρ(t) on the copy of H inside H ′. Furthermore,

ρ′(s)ρ′(t)f(x) = ω(x, s)ρ′(t)f(xs) = ω(x, s)ω(xs, t)f(xst) =

ω(x, st)ω(s, t)f(xst) = ω(s, t)ρ′(st)f(x)

for all x ∈ S and f ∈ H0

Thus ρ′ is a ω-representation of S by isometries and it remains to prove that
these isometries are in fact unitaries. Let t ∈ S and suppose that s is admissible for
g ∈ H0. Consider the function defined by

gt−1(x) =
{

ω(xt−1, t)g(xt−1), if x ∈ St
0, otherwise

Then st is admissible for gt−1 : if x ∈ Sst, then xt−1 ∈ Ss is admissible for g and

gt−1(x) = ω(xt−1, t)g(xt−1) = ω(xt−1, t)ω(xt−1s−1, s)ρ(xt−1s−1)g(s) =
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A survey on dilations of projective isometric representations 199

ω(xt−1s−1, st)ω(s, t)ρ(xt−1s−1)g(s) =

ω(x(st)−1, st)ρ(x(st)−1)gt−1(st)

so gt−1 ∈ H0. Since

ρ′(t)gt−1(x) = ω(x, t)gt−1(xt) = ω(x, t)ω(x, t)g(x) = g(x)

for x ∈ S, ρ′(t) is surjective for every t ∈ S. Thus ρ′ is a unitary ω-representation
of the subsemigroup S on H ′, which finishes the proof of (i).

To prove (ii), assume f ∈ H0 and fix s admissible for f . Then for x ∈ Ss,

ρ′(s)(f)(x) = ω(x, s)f(xs) = ω(x, s)ω(xss−1, s)ρ(xss−1)f(s) =

ρ(x)(f(s)) = f̂(s)(x)

Hence f(x) = (ρ′(s)∗f̂(s))(x) for x in the admissible set Ss, which implies f =
ρ′(s)∗f̂(s) in H ′. Since H0 is dense in H ′, (ii) follows.

For the rest of this section, G will denote a group, ω a multiplier of G and S a
normal, generating subsemigroup of G.

The following result is a generalization of Naimark-Sz.-Nagy’s theorem of char-
acterization of positive definite functions (Corollary 2.6, [1]), which can be obtained
by taking ω ≡ 1.

Theorem 10. ([6]) Let H be a Hilbert space and ϕ a ω-positive definite map on G
with values in B(H). Then there are a Hilbert space H ′, an operator T ∈ B(H,H ′)
and a unitary ω-representation ρ of G on H ′ such that ϕ(x) = T ∗ρ(x)T , for all
x ∈ G. Moreover, H ′ is the closed linear span of the set

⋃
x

ρ(x)TH.

Proof. Let V be a minimal Kolmogorov decomposition of ϕ and set H ′ = HV . Let
x, y, z ∈ G. Then it is easy to verify that

ω(x−1z−1, zx)ω(z, x)ω(x−1, y) = ω(x−1z−1, zy)ω(z, y)ω(x−1, x) and it follows
from this that

V (zx)∗V (zy) = ω(x−1z−1, zx)ω(x−1z−1, zy)ϕ(x−1z−1zy) =

= ω(x−1, x)ω(x−1, y)ω(z, x)ω(z, y)ϕ(x−1y) = ω(z, x)ω(z, y)V (x)∗V (y)

which can be written ω(z, x)V (zx)∗ω(z, y)V (zy) = V (x)∗V (y). Hence, the map
x 7−→ ω(z, x)V (zx) is another minimal Kolmogorov decomposition for ϕ. Conse-
quently, there is a unique unitary ρ(z) ∈ B(H ′) such that ρ(z)V (x) = ω(z, x)V (zx),
for all x ∈ G (by Lemma 1.4, [1]). Since we have

ρ(y)ρ(z)V (x) = ω(y, zx)ω(z, x)V (yzx) =
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ω(y, z)ω(yz, x)V (yzx) = ω(y, z)ρ(yz)V (x)

and the set
⋃
x

V (x)H has dense linear span in H ′ (by minimality of V ), therefore

ρ(yz) = ω(y, z)ρ(y)ρ(z). Thus, the map ρ : x 7−→ ρ(x) is a projective unitary
representation of G with ω as associated multiplier.

Set T = V (e). Then T ∗ρ(x)T = ω(x, e)V (e)∗V (xe) = V (e)∗V (x) = ϕ(x). Also,
ρ(x)TH = V (x)H and therefore H ′ is the closed linear span of the set

⋃
x

ρ(x)TH.

The projective representation ρ is called a dilation of ϕ.

Theorem 11. ([6]) Let H be a Hilbert space and let ρ : S → B(H) be a projective
isometric representation with associated multiplier the restriction of ω to S. Then
there is a unique extension ρ′ of ρ to G having the following properties :

(1) ρ′(xs) = ω(x, s)ρ′(x)ρ(s) for all x ∈ G and s ∈ S;

(2) ρ′(x)∗ = ω(x−1, x)ρ′(x−1) for all x ∈ G.

Moreover, ρ′ is ω-positive definite.

Proof. Since S is a normal generating subsemigroup of G, the uniqueness of ρ′ is
clear.

To prove the existence of ρ′, suppose that x = s−1t, s, t ∈ S, because S generates
G and set ρ′(x) = ω(s−1, t)ω(s−1, s)ρ(s)∗ρ(t). We show that ρ′ is well defined.
Suppose that we can also write x = u−1v, where u, v ∈ S. Then ut = u(su−1v) =
(usu−1)v and since usu−1 ∈ S (by the normality of S) and ρ is a projective isometric
representation with the multiplier ω, we have

ρ(ut) = ρ((usu−1)v) =⇒ ω(u, t)ρ(u)ρ(t) = ω(usu−1, v)ρ(usu−1)ρ(v).

However,

ρ((usu−1)u) = ρ(us) =⇒ ω(usu−1, u)ρ(usu−1)ρ(u) = ω(u, s)ρ(u)ρ(s),

so ω(u, s)ω(usu−1, u)ρ(u)∗ρ(usu−1)ρ(u) = ρ(s) and therefore,

ω(u, s)ω(usu−1, u)ρ(u)∗ρ(usu−1)∗ρ(u) = ρ(s)∗.

Hence,
ρ(s)∗ρ(t) = ω(u, s)ω(usu−1, u)ρ(u)∗ρ(usu−1)∗ρ(u)ρ(t) =

ω(u, s)ω(usu−1, u)ω(u, t)ω(usu−1, v)ρ(u)∗ρ(usu−1)∗ρ(usu−1)ρ(v) =

ω(u, s)ω(usu−1, u)ω(u, t)ω(usu−1, v)ρ(u)∗ρ(v) =⇒
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ω(s−1, t)ω(s−1, s)ρ(s)∗ρ(t) =

ω(s−1, t)ω(s−1, s)ω(u, s)ω(usu−1, u)ω(u, t)ω(usu−1, v)ρ(u)∗ρ(v)

It remains to verify that

ω(s−1, t)ω(s−1, s)ω(u, s)ω(usu−1, u)ω(u, t)ω(usu−1, v) = ω(u−1, v)ω(u−1, u) (2.2)

Since t = su−1v, the relation (2.2) becomes:

ω(s−1, su−1v)ω(s−1, s)ω(u, s)ω(usu−1, u)ω(u, su−1v)ω(usu−1, v) =
= ω(u−1, v)ω(u−1, u) (2.3)

By Definition 1, we have:

ω(s−1, su−1v) = ω(s−1, su−1)ω(s−1su−1, v)ω(su−1, v) =

ω(s−1, su−1)ω(u−1, v)ω(su−1, v)

ω(usu−1, u) = ω(u, s)ω(su−1, u)ω(u, su−1)

ω(usu−1, v) = ω(su−1, v)ω(u, su−1v)ω(u, su−1)

Hence, the relation (2.3) becomes:

ω(s−1, su−1)ω(s−1, s)ω(su−1, u) = ω(u−1, u), (2.4)

taking into account that the range of ω is contained in the unit circle T.
By Definition 1, we get

ω(s−1, su−1)ω(s, u−1) = ω(s−1, s).

So the relation (2.4) becomes :

ω(s−1, su−1)ω(s−1, su−1)ω(s, u−1)ω(su−1, u) = ω(u−1, u) ⇐⇒

ω(s, u−1)ω(su−1, u) = ω(u−1, u) ⇐⇒

ω(s, u−1u)ω(u−1, u) = ω(u−1, u) true by Definition 1

Since x = s−1t and ρ is a projective representation with the multiplier ω, the
conditions (1) and (2) can be easily verified using Definition 1 and the definition of
ρ′.

It remains to show that ρ′ is ω-positive definite. Thus, if x1, . . . , xn ∈ G, we
must show positivity of the operator matrix (Vij), where

Vij = ω(x−1
i , xi)ω(x−1

i , xj)ρ′(x−1
i xj).
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We claim that there is an element s ∈ S such that sx1, . . . , sxn ∈ S. To prove
this, write xi = viu

−1
i , where ui, vi ∈ S. Then, for s = u1 . . . un, we have sxi =

u1 . . . ui(ui+1 . . . unvi)u−1
i , so sxi ∈ S as required.

Consequently, for some elements s, t1, . . . , tn ∈ S, we have xi = s−1ti; hence,
since ω(t−1

i s, s−1tj) = ω(t−1
i , s)ω(t−1

i , tj)ω(s, s−1tj) (by Definition 1), we have

Vij = ω(t−1
i s, s−1ti)ω(t−1

i s, s−1tj)ρ′(t−1
i tj) =

ω(t−1
i s, s−1ti)ω(t−1

i s, s−1tj)ω(t−1
i , tj)ω(t−1

i , ti)ρ(ti)∗ρ(tj) =

ω(s, s−1ti)ω(s, s−1tj)ρ(ti)∗ρ(tj).

Thus, Vij = V ∗
i Vj , where Vi = ω(s, s−1ti)ρ(ti). Hence, (Vij) is positive.

Theorem 12. ([6]) Let H be a Hilbert space and ρ : S → B(H) a projective isomet-
ric representation with associated multiplier the restriction of ω to S. Then there
are a Hilbert space H ′, an isometry T : H → H ′ and a unitary ω-representation
ϕ : G → B(H ′) such that T ∗ϕ(s)T = ρ(s), for all s ∈ S. Moreover, H ′ is the closed
linear span of the set

⋃
x∈G

ϕ(x)T (H).

Proof. We obtain the proof by applying Theorem 10 to the ω-positive map ρ′ ex-
tending ρ that is given in Theorem 11.

3 Dilation theory in the case of projective isometric rep-
resentations on Hilbert spaces with unitary operator-
valued multipliers

Theorem 13. ([3]) Let X be a non-empty set, let M be a von Neumann algebra,
let k : X ×X →M be a positive definite kernel and let V be a minimal Kolmogorov
decomposition of k. Then there is a ∗-homomorphism φ : U(M′) → B(HV ) such
that for any x ∈ X,

V (x)a = φ(a)V (x) a ∈ U(M′).

Moreover, for each a ∈ U(M′), φ(a) is unitary on HV .

Theorem 14. ([3]) Let S be a semigroup and φ be the ∗-homomorphism given by
Theorem 13. For each U(M)-multiplier ω on S, φ(ω) is a U(N )-multiplier, where
N is a von Neumann algebra generated by
φ(U(Z(M))) and φ(ω)(s, t) = φ(ω(s, t)) for any s, t ∈ S.

Theorem 15. ([3]) Let M be a von Neumann algebra on a Hilbert space H, let
ω be a U(M)-multiplier and let ϕ be a ω-positive definite map on G with values in
B(H). Then there are a Hilbert space H ′, an operator T ∈ B(H,H ′) and a unitary
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φ(ω)-representation ρ of G on H ′ such that ϕ(x) = T ∗ρ(x)T , for all x ∈ G, where
the ∗-homomorphism φ is given as in Theorem 13. Moreover, H ′ is the closed linear
span of the set

⋃
x

ρ(x)TH.

Proof. Let V be a minimal Kolmogorov decomposition of ϕ and set H ′ = HV . Let
x, y, z ∈ G. Then it is easy to verify that

ω(x−1z−1, zx)ω(z, x)ω(x−1, y) = ω(x−1z−1, zy)ω(z, y)ω(x−1, x) and it follows
from this that

V (zx)∗V (zy) = k(zx, zy) = ω(x−1z−1, zx)ω(x−1z−1, zy)∗ϕ(x−1z−1zy) =

= ω(x−1, y)∗ω(z, x)∗ω(z, y)ω(x−1, x)ϕ(x−1y) = ω(z, x)∗ω(z, y)V (x)∗V (y)

which is equivalent to

V (x)∗V (y) = [V (zx)ω(z, x)∗]∗V (zy)ω(z, y)∗

Hence for each z ∈ G, the map x 7−→ V (zx)ω(z, x)∗ is another minimal Kol-
mogorov decomposition for ϕ. Consequently, there is a unique unitary ρ(z) ∈ B(H ′)
such that ρ(z)V (x) = V (zx)ω(z, x)∗, for all x ∈ G (by Lemma 1.4, [1]). Since we
have

ρ(y)ρ(z)V (x) = ρ(y)V (zx)ω(z, x)∗ = V (yzx)ω(y, zx)∗ω(z, x)∗ =

V (yzx)ω(y, z)∗ω(yz, x)∗ = ρ(yz)V (x)ω(y, z)∗ = ρ(yz)φ(ω(y, z)∗)V (x)

and the set
⋃
x

V (x)H has dense linear span in H ′ (by minimality of V ), therefore

ρ(yz) = φ(ω(y, z))ρ(y)ρ(z), y, z ∈ G.
Moreover, for any x, y ∈ G, a ∈ U(Z(M)), h ∈ H, we have, by Theorem 13,

ρ(y)φ(a)V (x)h = ρ(y)V (x)ah = V (yx)ω(y, x)∗ah =

φ(a)V (yx)ω(y, x)∗h = φ(a)ρ(y)V (x)h

Therefore, for any y ∈ G, ρ(y) ∈ N ′ and ρ : G → N ′ is a projective unitary φ(ω)-
representation of G, where the von Neumann algebra N is given as in Theorem 14.
Moreover,

V (e)∗ρ(x)V (e) = V (e)∗V (x) = k(e, x) = ϕ(x)

and ρ(x)V (e)H = V (x)H. By the minimality of V , the linear span of
⋃
x

V (x)H

is dense in H ′. Hence, H ′ is the closed linear span of the set
⋃
x

ρ(x)V (e)H. Set

T = V (e) and the proof is completed.

The projective unitary φ(ω)-representation ρ is called a dilation of φ.
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Remark 16. If in Theorem 15, the von Neumann algebra M = B(H) and φ(ω) = ω
a T-valued multiplier, we obtain Theorem 10.

Theorem 17. ([3]) Let ω be a U(M)-multiplier on G, let S be a normal generat-
ing subsemigroup of G and let ρ : S → M be a projective isometric representation
with associated U(M)-multiplier the restriction of ω on S. Then there is a unique
extension ρ′ of ρ to G having the following properties :

(1) ρ′(xs) = ω(x, s)ρ′(x)ρ(s) for all x ∈ G and s ∈ S;

(2) ρ′(x)∗ = ω(x−1, x)ρ′(x−1) for all x ∈ G.

Moreover, ρ′ is ω-positive definite.

Proof. Since S is a normal generating subsemigroup of G, the uniqueness of ρ′ is
clear.

To prove the existence of ρ′, suppose that x = s−1t, s, t ∈ S, because S generates
G and set ρ′(x) = ω(s−1, t)ω(s−1, s)∗ρ(s)∗ρ(t). We show that ρ′ is well defined.
Suppose that we can also write x = u−1v, where u, v ∈ S. Then ut = u(su−1v) =
(usu−1)v and since usu−1 ∈ S and ρ is a projective isometric representation with
the multiplier ω, we have

ρ(ut) = ρ((usu−1)v) =⇒ ω(u, t)ρ(u)ρ(t) = ω(usu−1, v)ρ(usu−1)ρ(v).

However,

ρ((usu−1)u) = ρ(us) =⇒ ω(usu−1, u)ρ(usu−1)ρ(u) = ω(u, s)ρ(u)ρ(s),

so ω(u, s)∗ω(usu−1, u)ρ(u)∗ρ(usu−1)ρ(u) = ρ(s).
Hence,

ρ(s)∗ρ(t) = ω(u, s)ω(usu−1, u)∗ρ(u)∗ρ(usu−1)∗ρ(u)ρ(t) =

ω(u, s)ω(usu−1, u)∗ω(u, t)∗ω(usu−1, v)ρ(u)∗ρ(usu−1)∗ρ(usu−1)ρ(v) =

ω(u, s)ω(usu−1, u)∗ω(u, t)∗ω(usu−1, v)ρ(u)∗ρ(v) =⇒

ω(s−1, t)ω(s−1, s)∗ρ(s)∗ρ(t) =

ω(s−1, t)ω(s−1, s)∗ω(u, s)ω(usu−1, u)∗ω(u, t)∗ω(usu−1, v)ρ(u)∗ρ(v)

As in the proof of Theorem 11, it can be verified the relation:

ω(s−1, t)ω(s−1, s)∗ω(u, s)ω(usu−1, u)∗ω(u, t)∗ω(usu−1, v) =
= ω(u−1, v)ω(u−1, u)∗ (3.1)

Since x = s−1t and ρ is a projective representation with the associated multiplier
ω, it can be easily verified the conditions (1) and (2).

******************************************************************************
Surveys in Mathematics and its Applications 3 (2008), 195 – 209

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v03/v03.html
http://www.utgjiu.ro/math/sma


A survey on dilations of projective isometric representations 205

To prove that ρ′ is ω-positive definite, we follow the proof of Theorem 11 and
show the positivity of the operator matrix (Vij), where

Vij = ω(x−1
i , xj)ω(x−1

i , xi)∗ρ′(x−1
i xj),

for x1, . . . , xn ∈ G.

Theorem 18. ([3]) Let ω be a U(M)-multiplier on G, let S be a normal generat-
ing subsemigroup of G and let ρ : S → M be a projective isometric representation
with associated U(M)-multiplier the restriction of ω to S. Then there are a Hilbert
space H ′, an isometry T : H → H ′ and a unitary φ(ω)-representation ϕ such that
T ∗ϕ(s)T = ρ(s), for all s ∈ S. Moreover, H ′ is the closed linear span of the set⋃
x∈G

ϕ(x)TH.

Proof. We obtain the proof by applying Theorem 15 to the ω-positive map ρ′ ex-
tending ρ that is given in Theorem 17.

Remark 19. If in Theorem 18, the von Neumann algebra M = B(H) and φ(ω) = ω
a T-valued multiplier, we obtain Theorem 12.

4 Dilation theory in the case of projective isometric
representations on Hilbert C∗-modules with T-valued
multipliers

Now we give the generalizations of the notions and theorems in Sections 2 and 3 to
Hilbert C∗-modules.

Hilbert C∗-modules are generalizations of Hilbert spaces by allowing the inner-
product to take values in a C∗- algebra rather than in the field of complex numbers.

Definition 20. A pre-Hilbert A-module is a complex vector space E which is also
a right A-module, compatible with the complex algebra structure, equipped with an
A-valued inner product 〈·, ·〉 : E × E → A which is C -and A-linear in its second
variable and satisfies the following relations:

1. 〈ξ, η〉∗ = 〈η, ξ〉 for every ξ, η ∈ E;

2. 〈ξ, ξ〉 ≥ 0 for every ξ ∈ E;

3. 〈ξ, ξ〉 = 0 if and only if ξ = 0.

We say that E is a Hilbert A-module if E is complete with respect to the topology
determined by the norm ‖·‖ given by ‖ξ‖ =

√
‖〈ξ, ξ〉‖.
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Definition 21. Let X be a nonempty set, let A be a C∗-algebra and let E be a
right Hilbert A-module. A map k : X × X → LA(E) is a positive definite kernel
if the matrix (k(xi, xj))ij in Mn(LA(E)) is positive for every integer n and for all
x1, . . . , xn ∈ S, where LA(E) is the algebra of all adjointable module maps from E
to E, i.e. the algebra of all module maps T : E → E for which there is a module
map T ∗ : E → E such that 〈Tξ, η〉 = 〈ξ, T ∗η〉, for all ξ, η ∈ E.

Definition 22. ([2]) If k can be written in the form k(x, y) = V (x)∗V (y) for any
x, y ∈ X, where V is a map from X to LA(E,EV ) for some right Hilbert A-module
EV , then k is positive definite. Such a map V is said to be the Kolmogorov decom-
position for a kernel k. If the linear span of the set

⋃
x∈X

V (x)E is dense in EV , then

V is said to be minimal.

Definition 23. ([2]) Let S be a semigroup. A multiplier on a semigroup S is a
function ω : S × S → T such that

(i) ω(e, s) = ω(s, e) = 1;

(ii) ω(s, t)ω(st, u) = ω(s, tu)ω(t, u)

for all s, t, u ∈ S, where T is the unit circle.

Definition 24. A projective isometric ω-representation of S is a map ρ : S → LA(E)
having the following properties:

(i) ρ(s) is an isometry and ρ(e) = 1;

(ii) ρ(st) = ω(s, t)ρ(s)ρ(t), for all s, t ∈ S.

Definition 25. Let G be a discrete group and let ω be a multiplier on G. A map ρ
from G into LA(E) is said to be ω-positive definite if the map k : G ×G → LA(E)
defined by k(x, y) = ω(x−1, x)ω(x−1, y)ρ(x−1y) is positive definite. We define a
(minimal) Kolmogorov decomposition for ρ to be a (minimal) Kolmogorov decom-
position for k.

The following theorem may be regarded as a generalization of Stinespring dilation
theorem for a covariant completely positive map which determines a positive definite
kernel (Theorem 2.4 and Example 2.2, [7]).

Theorem 26. ([2]) Let G be a group and let ω be a multiplier on G. If a map
ϕ : G → LA(E) is ω-positive definite, then there is a right Hilbert A-module F ,
T ∈ LA(E,F ) and a unitary ω-representation ρ of G on F such that ϕ(x) = T ∗ρ(x)T
for all x ∈ G. Moreover, F is the closed linear span of

⋃
x∈G

ρ(x)TE.
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Proof. From Definition 25, the map k : G × G → LA(E) defined by k(x, y) =
ω(x−1, x)ω(x−1, y)ϕ(x−1y) is positive definite. By (Theorem 2.3, [7]), there is a
minimal Kolmogorov decomposition V ∈ LA(E,EV ) for the map k. That is, V
becomes a minimal Kolmogorov decomposition for ϕ by definition. Take F = EV .
For x, y, z ∈ G, it is not difficult to verify that ω(x−1z−1, zx)ω(z, x)ω(x−1, y) =
ω(x−1z−1, zy)ω(z, y)ω(x−1, x).

Then we obtain

V (zx)∗V (zy) = ω(x−1z−1, zx)ω(x−1z−1, zy)ϕ(x−1z−1zy) =

ω(x−1, x)ω(x−1, y)ω(z, x)ω(z, y)ϕ(x−1y) = ω(z, y)ω(z, x)V (x)∗V (y)

Hence, the map x 7−→ ω(z, x)V (zx) is another minimal Kolmogorov decomposition
for ϕ. By (Theorem 2.3, [7]), there is a unitary ρ(z) ∈ LA(F ) such that ρ(z)V (x) =
ω(z, x)V (zx) for all x ∈ G.

From a simple computation, we have ρ(y)ρ(z)V (x) = ω(y, z)ρ(yz)V (x). Since V

is minimal, the set
⋃
x∈G

V (x)E is dense in F . Hence we have ρ(yz) = ω(y, z)ρ(y)ρ(z),

which shows that the map x 7−→ ρ(x) is a projective unitary representation of G with
ω as an associated multiplier. By taking T = V (e), we obtain that T ∗ρ(x)T = ϕ(x)
and ρ(x)TE = V (x)E for all x ∈ G, which completes the proof.

The following theorem may be considered as a generalization of Theorem 11.

Theorem 27. ([2]) Let S be a normal generating subsemigroup of a group G, let
ω be a multiplier on G, let E be a right C∗-module over a C∗-algebra A and let
ρ : S → LA(E) be a projective isometric representation with associated multiplier
the restriction of ω to S. Then there is a unique extension ρ′ of ρ to G having the
following properties :

(1) ρ′(xs) = ω(x, s)ρ′(x)ρ(s) for all x ∈ G and s ∈ S;

(2) ρ′(x)∗ = ω(x−1, x)ρ′(x−1) for all x ∈ G.

Moreover, ρ′ is ω-positive definite.

Proof. Since S is a normal generating subsemigroup of G, the uniqueness of ρ′ is
clear.

To show the existence of ρ′, suppose that x = s−1t, s, t ∈ S, because S gen-
erates G and set ρ′(x) = ω(s−1, t)ω(s−1, s)ρ(s)∗ρ(t). We have to show that the
map ρ′ is well-defined. For this it must be checked that for x = s−1t = u−1v,
ω(s−1, t)ω(s−1, s)ρ(s)∗ρ(t) = ω(u−1, v)ω(u−1, u)ρ(u)∗ρ(v).

Indeed, we have ut = usx = usu−1v. Then the element usu−1 ∈ S because
of normality of S in G. Since the restriction of ρ to S is a projective ω-isometric
representation, we have that
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ω(u, t)ρ(u)ρ(t) = ρ(ut) = ρ(usu−1v) = ω(usu−1, v)ρ(usu−1)ρ(v)
However, we have the equality

ω(usu−1, u)ρ(usu−1)ρ(u) = ρ(us) = ω(u, s)ρ(u)ρ(s), (4.1)

so that

ρ(s)∗ = ω(u, s)ω(usu−1, u)ρ(u)∗ρ(usu−1)∗ρ(u). (4.2)

Hence, we obtain from equations (4.1) and (4.2) that

ω(s−1, t)ω(s−1, s)ρ(s)∗ρ(t) =

= ω(s−1, t)ω(s−1, s)ω(u, s)ω(usu−1, u)ω(usu−1, v)ω(u, t)ρ(u)∗ρ(v)

Since t = su−1v and the range of ω is contained in the unit circle T, we have
that

ω(s−1, t)ω(s−1, s) =

ω(s−1, su−1v)ω(s−1, s)ω(u, s)ω(usu−1, u)ω(usu−1, v)ω(u, su−1v)

Hence, ρ′ is well-defined and it is a routine to check (1) and (2) (see the analogue
Theorems in Section 2 and 3).

To show that ρ′ is ω-positive definite, we follow the proof of Theorem 11.

Corollary 28. ([2]) Let G, S and ω be as in Theorem 27. If ρ : S → LA(E) is a
projective isometric representation with the restriction of ω to S as the associated
multiplier, then there are a right Hilbert A-module F , T ∈ LA(E,F ) and a unitary
ω-representation ϕ of G on F such that ρ(s) = T ∗ϕ(s)T for all s ∈ S. Moreover, F

is the closed linear span of
⋃
x∈G

ϕ(x)TE.

Proof. The proof follows immediately from Theorem 26 and Theorem 27.
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Splaiul Independenţei 313, Bucharest,
Romania.
e-mail: lumycos@yahoo.com

******************************************************************************
Surveys in Mathematics and its Applications 3 (2008), 195 – 209

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=1227519
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0841.20058 &format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0841.20058 &format=complete
http://www.ams.org/mathscinet-getitem?mr=1325694
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0822.46080 &format=complete
http://www.ams.org/mathscinet-getitem?mr=1343714
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0860.47003 &format=complete
http://www.ams.org/mathscinet-getitem?mr=1454031
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an: 0886.46057 &format=complete
http://www.ams.org/mathscinet-getitem?mr=0868472
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an: 0614.47006 &format=complete
http://www.utgjiu.ro/math/sma/v03/v03.html
http://www.utgjiu.ro/math/sma

	Introduction
	Dilation theory in the case of projective isometric representations on Hilbert spaces with T-valued multipliers
	Dilation theory in the case of projective isometric representations on Hilbert spaces with unitary operator-valued multipliers
	Dilation theory in the case of projective isometric representations on Hilbert C*-modules with T-valued multipliers

