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NEW RESULT OF EXISTENCE OF PERIODIC
SOLUTION FOR A HOPFIELD NEURAL

NETWORKS WITH NEUTRAL TIME-VARYING
DELAYS

Chuanzhi Bai and Chunhong Li

Abstract. In this paper, a Hopfield neural network with neutral time-varying delays is investi-

gated by using the continuation theorem of Mawhin’s coincidence degree theory and some analysis

technique. Without assuming the continuous differentiability of time-varying delays, sufficient con-

ditions for the existence of the periodic solutions are given. The result of this paper is new and

extends previous known result.

1 Introduction

In recent years, the cellular neural networks have been extensively studied and ap-
plied in many different fields such as signal and image processing, pattern recognition
and optimization. In implementation of networks, time delays are inevitably encoun-
tered because of the finite switching speed of amplifiers. Thus, it is very important
to investigate the dynamics of delay neural networks. From the view of theory and
application, a number of the existence of periodic solutions of neural networks model
can be found in the papers [1, 2, 3, 4, 5, 6].

Due to the complicated dynamic properties of the neural cells in the real world,
the existing neural network models in many cases cannot characterize the properties
of the neural reaction process precisely. It is natural and important that systems
will contain some information about the derivative of the past state to further de-
scribe and model the dynamics for such complex neural reactions. Therefore, it
is important and, in effect, necessary to introduce a new type of networks - neural
networks of neutral-type. Such networks arise in high speed computers where nearly
lossless transmission lines are used to interconnect switching circuits. Also, the neu-
tral systems often appear in the study of automatic control, population dynamics,
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2 C. Bai and C. Li

and vibrating masses attached to an elastic bar. Recently, the study of the neural
networks with neutral delays has received much attention, see, for instance, Refs,
[7, 8, 9, 10] and the references cited therein.

Recently, Gui, Ge and Yang [11] have investigated the following Hopfield net-
works model with neutral delays

x′i(t) =− bixi(t) +
n∑

j=1

aijgj(xj(t− τij(t))) +
n∑

j=1

bijgj(x′j(t− σij(t)))

+ Ji(t), i = 1, 2, ..., n.

(1.1)

By means of an abstract continuous theorem of k-set contractive operator and some
analysis technique, the existence of periodic solution of system (1) is obtained. But
the condition that the time-varying delays τij(t) and σij(t) are continuously differen-
tiable is required. Furthermore, the criterion for the existence of periodic solutions
of Hopfield neural networks model in [11] depends on the τ ′ij and σ′ij .

In this paper, we consider the Hopfield neural networks with neutral time-varying
delays

x′i(t) = −ci(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t− τij(t))) +
n∑

j=1

bij(t)gj(x′j(t− σij(t))) + Ii(t),

(1.2)
where i = 1, 2, ..., n, xi(t) denotes the potential (or voltage) of cell i at time t;
ci(t) > 0 denotes the neuron firing rate of cell i at time t; aij(t) and bij(t) represent
the delayed strengths of connectivity and neutral delayed strengths of connectivity
between cell i and j at time t, respectively; fj and gj are the activation functions in
system (1.1); Ii(t) is an external input on the ith unit at time t, in which Ii : R → R,
i = 1, ..., n, are continuous periodic functions with period ω; τij(t) and σij(t) ≥ 0
are the transmission delays.

By using the continuation theorem of coincidence degree theory and some anal-
ysis technique, we obtain some new sufficient conditions for the existence of the
periodic solutions of system (1.2). The conditions imposed on the time-varying de-
lays τij(t) and σij(t) do not need the assumptions of continuously differentiable. Our
work in this paper is new and an extension of previous result in [11].

The paper is organized as follows. In Section 2, the basic notations, assumptions
and some preliminaries are given. In Section 3, we present some new criteria to
guarantee the existence of the periodic solutions of system (1.2). In Section 4, an
illustrative example is given to demonstrate the effectiveness of the obtained results.
Conclusions are drawn in Section 5.
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Hopfield neural networks with neutral time-varying delays 3

2 Preliminaries

In this section, we state some notations, definitions and some Lemmas.

Let A = (aij)n×n be a real n×n matrix. A > 0 (A ≥ 0) denotes each element aij

is positive (nonnegative, respectively). Let x = (x1, x2, ..., xn)T ∈ Rn be a vector.
x > 0 (x ≥ 0) denotes each element xi is positive (nonnegative, respectively). For
matrices or vectors A and B, A ≥ B (A > B) means that A−B ≥ 0 (A−B > 0).

Definition 1. [12]. Matrix A = (aij)n×n is said to be a nonsingular M -matrix, if

(i) aii > 0, i = 1, 2, ..., n;

(ii) aij ≤ 0, for i 6= j, i, j = 1, 2, ..., n;

(iii) A−1 ≥ 0.

Let X and Y be normed vector spaces, L : domL ⊂ X → Y be a linear mapping.
L will be called a Fredholm mapping of index zero if dimKerL = codimImL < +∞
and ImL is closed in Y . If L is a Fredholm mapping of index zero, there exist
continuous projectors P : X → X and Q : Y → Y such that ImP = KerL, KerQ =
ImL = Im(I − Q). It follows that mapping L|domL∩KerP : (I − P )X → ImL is
invertible. We denote the inverse of the mapping by KP . If Ω is an open bounded
subset of X, the mapping N will be called L-compact on Ω if QN(Ω) is bounded
and KP (I − Q)N : Ω → X is compact. Since ImQ is isomorphic to KerL, there
exists an isomorphism J : ImQ → KerL.

Now, we introduce Mawhin’s continuation theorem ([13], p.40) as follows.

Lemma 2. Let X and Y be two Banach spaces, L : domL → Y be a Fredholm
operator with index zero. Assume that Ω is a open bounded set in X, and N is
L-compact on Ω. If all the following conditions hold:

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL, Lx 6= λNx;

(b) QNx 6= 0 for each x ∈ ∂Ω ∩KerL, and deg(JNQ, Ω ∩KerL, 0) 6= 0,

where J is an isomorphism J : ImQ → KerL. Then equation Lx = Nx has at least
one solution in Ω ∩DomL.

The following lemmas will be useful to prove our main result in Section 3.

Lemma 3. [12]. Assume that A is a nonsingular M -matrix and Aw ≤ d, then
w ≤ A−1d.

Lemma 4. [14]. Let A = (aij) with Aij ≤ 0, i, j = 1, 2, ..., n, i 6= j. Then the
following statements are equivalent.
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4 C. Bai and C. Li

(1) A is an M -matrix.

(2) There exists a row vector η = (η1, η2, ..., ηn) > (0, 0, ..., 0) such that ηA > 0.

(3) There exists a column vector ξ = (ξ1, ξ2, ..., ξn)T > (0, 0, ..., 0)T such that
Aξ > 0.

Throughout this paper, we assume that

(H1) aij , bij , Ii ∈ C(R, R), τij , ci(> 0), σij ∈ C(R, R+) (R+ = [0,∞)) are periodic
functions with a common period ω(> 0), i, j = 1, 2, ..., n.

(H2) fj , gj ∈ C(R, R) are Lipschitzian with Lipschitz constants Lj and lj respec-
tively, i.e.,

|fj(x)− fj(y)| ≤ Lj |x− y|, |gj(x)− gj(y)| ≤ lj |x− y|,

for all x, y ∈ R, j = 1, 2, ..., n.

3 Existence of periodic solution

In this section, we will use the continuation theorem of coincidence degree theory to
obtain the existence of an ω-periodic solution to system (1.2).

For convenience, we introduce the following notations:

ci∗ := min
t∈[0,ω]

ci(t)(> 0), c+
i := max

t∈[0,ω]
ci(t),

a+
ij := max

t∈[0,ω]
|aij(t)|, b+

ij := max
t∈[0,ω]

|bij(t)|, I+
i := max

t∈[0,ω]
|Ii(t)|, i, j = 1, 2, ..., n.

Theorem 5. Let (H1) and (H2) hold. Suppose that C and A − B(C−1D) are two
nonsingular M -matrix, where

A = (āij)n×n, āij = ci∗δij − a+
ijLj , B = (b̄ij)n×n, b̄ij = b+

ijlj ,

C = (c̄ij)n×n, c̄ij = δij − b+
ijlj , D = (d̄ij)n×n, d̄ij = c+

i δij + a+
ijLj ,

δij =
{

1, for i = j,
0, for i 6= j.

then system (1.2) has at least one ω-periodic solution.

Proof. Take

Cω = {x(t) = (x1(t), x2(t), ..., xn(t))T ∈ C(R,Rn)

: xi(t + ω) ≡ xi(t), i = 1, ..., n},

******************************************************************************
Surveys in Mathematics and its Applications 5 (2010), 1 – 16

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v05/v05.html
http://www.utgjiu.ro/math/sma


Hopfield neural networks with neutral time-varying delays 5

C1
ω = {x(t) = (x1(t), x2(t), ..., xn(t))T ∈ C1(R,Rn)

: xi(t + ω) ≡ xi(t), i = 1, ..., n}.

Then Cω is a Banach space with the norm

‖x‖0 = max
1≤i≤n

{|xi|0}, |xi|0 = max
t∈[0,ω]

|xi(t)|,

and C1
ω is also a Banach space with the norm ‖x‖ = max{‖x‖0, ‖x′‖0}.

For each x(t) = (x1(t), x2(t), ..., xn(t)) ∈ C1
ω, L : C1

ω → Cω and N : C1
ω → Cω are

defined by

(Lx)(t) =
dx

dt
= (x′1(t), x

′
2(t)..., x

′
n(t))T , and (Nx)(t) =

 (Nx)1(t)
...

(Nx)n(t)

,

where

(Nx)i(t) = −ci(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t− τij(t)))

+
n∑

j=1

bij(t)gj(x′j(t− σij(t))) + Ii(t).

It is easy to see that KerL = Rn,

ImL =
{

(x1(t), ..., xn(t))T ∈ Cω :
∫ ω

0
xi(s)ds = 0, i = 1, ..., n

}
is closed in Cω, and

dimKerL = codimImL = n.

So, L is a Fredholm mapping of index zero. Let

Px =
1
ω

∫ ω

0
x(t)dt =

(
1
ω

∫ ω

0
x1(t)dt, ...,

1
ω

∫ ω

0
xn(t)dt

)T

,

Qy =
1
ω

∫ ω

0
y(t)dt =

(
1
ω

∫ ω

0
y1(t)dt, ...,

1
ω

∫ ω

0
yn(t)dt

)T

,

where

x(t) = (x1(t), ..., xn(t))T ∈ C1
ω, y(t) = (y1(t), ..., yn(t))T ∈ Cω.

Obviously, P,Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I −Q).
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6 C. Bai and C. Li

Moreover, the generalized inverse (to L) KP : ImL → KerP ∩DomL is given by

(KP z)(t) =


∫ t
0 z1(s)ds− 1

ω

∫ ω
0

∫ s
0 z1(u)duds

...∫ t
0 zn(s)ds− 1

ω

∫ ω
0

∫ s
0 zn(u)duds

.

Thus,

(QNx)(t) =


1
ω

∫ ω
0 A1(x, s)ds

...
1
ω

∫ ω
0 An(x, s)ds

,

and
KP (I −Q)Nx)(t)

=


∫ t
0 A1(x, s)ds− 1

ω

∫ ω
0

∫ t
0 A1(x, s)dsdt +

(
1
2 −

t
ω

) ∫ ω
0 A1(x, s)ds

...∫ t
0 An(x, s)ds− 1

ω

∫ ω
0

∫ t
0 An(x, s)dsdt +

(
1
2 −

t
ω

) ∫ ω
0 An(x, s)ds

,

where

Ai(x, t) = −ci(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t− τij(t)))

+
n∑

j=1

bij(t)gj(x′j(t− σij(t))) + Ii(t).

Clearly, QN and KP (I−Q)N are continuous. For any bounded open subset Ω ⊂ C1
ω,

QN(Ω) is obviously bounded. Moreover, applying the Arzela- Ascoli theorem, one
can easily show that KP (I −Q)N(Ω) is compact. Thus, N is L-compact on Ω for
any bounded open subset Ω ⊂ C1

ω.

Now we are in a position to show that there exists an appropriate open, bounded
subset Ω, which satisfies all the requirements given in the continuation theorem.
According to the operator equation Lx = λNx, λ ∈ (0, 1), we have

x′i(t) =λ

−ci(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t− τij(t)))

+
n∑

j=1

bij(t)gj(x′j(t− σij(t))) + Ii(t)

 ,

(3.1)

where i = 1, ..., n. Suppose that x(t) = (x1(t), ..., xn(t))T ∈ X is a solution of
system (3.1) for some λ ∈ (0, 1). Hence, there exist ξi ∈ [0, ω] (i = 1, ..., n) such that
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Hopfield neural networks with neutral time-varying delays 7

|xi(ξi)| = maxt∈[0,ω] |xi(t)| = |xi|0. Thus, x′i(ξi) = 0 for i = 1, ..., n. By (3.1), we
have

ci(ξ)xi(ξi) =
n∑

j=1

aij(ξi)fj(xj(ξi − τij(ξi)))

+
n∑

j=1

bij(ξi)gj(x′j(ξi − σij(ξi))) + Ii(ξi).

(3.2)

In view of (H2) and (3.1), we have

ci∗|xi|0 = ci∗|xi(ξi)| ≤ ci(ξ)|xi(ξi)| ≤
n∑

j=1

|aij(ξi)||fj(xj(ξi − τij(ξi)))|

+
n∑

j=1

|bij(ξi)||gj(x′j(ξi − σij(ξi)))|+ |Ii(ξi)|

≤
n∑

j=1

a+
ij(Lj |xj(ξi − τij(ξi))|+ |fj(0)|)

+
n∑

j=1

b+
ij(lj |x

′
j(ξi − σij(ξi))|+ |gj(0)|) + I+

i

≤
n∑

j=1

(a+
ijLj |xj |0 + b+

ijlj |x
′
j |0) +

n∑
j=1

(a+
ij |fj(0)|+ b+

ij |gj(0)|) + I+
i , i = 1, ..., n,

which implies that

n∑
j=1

(ci∗δij − a+
ijLj)|xj |0 ≤

n∑
j=1

b+
ijlj |x

′
j |0 +

n∑
j=1

(a+
ij |fj(0)|+ b+

ij |gj(0)|) + I+
i , (3.3)

where i = 1, ..., n. The formulas (3.3) may be rewritten in the form

AX ≤ BY + h, (3.4)

where X = (|x1|0, |x2|0, ..., |xn|0)T , Y = (|x′1|0, |x′2|0, ..., |x′n|0)T , h = (hi)n×1, and

hi =
n∑

j=1

(a+
ij |fj(0)|+ b+

ij |gj(0)|) + I+
i .

Let ηi ∈ [0, ω] (i = 1, ..., n) such that |x′i(ηi)| = maxt∈[0,ω] |x′i(t)| = |x′i|0. From
(3.1), (H1) and (H2), we get
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8 C. Bai and C. Li

|x′i|0 = |x′i(ηi)| ≤ |ci(ηi)||xi(ηi)|+
n∑

j=1

|aij(ηi)||fj(xj(ηi − τij(ηi)))|

+
n∑

j=1

|bij(ηi)||gj(x′j(ηi − σij(ηi)))|+ |Ii(ηi)|

≤ c+
i |xi|0 +

n∑
j=1

a+
ij(Lj |xj(ηi − τij(ηi)|+ |fj(0)|)

+
n∑

j=1

b+
ij(lj |x

′
j(ηi − σij(ηi))|+ |gj(0)|) + I+

i

≤ c+
i |xi|0 +

n∑
j=1

(a+
ijLj |xj |0 + b+

ijlj |x
′
j |0) +

n∑
j=1

(a+
ij |fj(0)|+ b+

ij |gj(0)|) + I+
i ,

where i = 1, ..., n, that is

n∑
j=1

(δij−b+
ijlj)|x

′
j |0 ≤

n∑
j=1

(c+
i δij +a+

ijLj)|xj |0+
n∑

j=1

a+
ij |fj(0)|+b+

ij |gj(0)|)+I+
i , (3.5)

where i = 1, ..., n. It is easy to know that formula (3.5) may be rewritten as

CY ≤ DX + h. (3.6)

Since C is a nonsingular M -matrix, we have by (3.6) and Lemma 3 that

Y ≤ C−1DX + C−1k. (3.7)

Substituting (3.7) into (3.4), we get

(A−B(C−1D))X ≤ BC−1h + h := w = (w1, w2, ..., wn)T . (3.8)

Since A−B(C−1D) is a nonsingular M -matrix, it follows from (3.8) and Lemma 3
that

X ≤ (A−B(C−1D))−1w := (R1, R2, ..., Rn)T . (3.9)

Substituting (3.9) into (3.7), we obtain

Y ≤ C−1D(R1, ..., Rn)T + C−1h := (r1, r2, ..., rn)T . (3.10)

Since A − B(C−1D) is an M -matrix, we have from Lemma 4 that there exists a
vector ς = (ς1, ς2, ..., ςn)T > (0, 0, ..., 0)T such that

(A−B(C−1D))ς > (0, 0, ..., 0)T ,
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Hopfield neural networks with neutral time-varying delays 9

which implies that we can choose a constant p > 1 such that

p(A−B(C−1D))ς > w, and pςi > Ri, i = 1, 2, ..., n. (3.11)

Combining (3.9) with (3.6), we get

CY ≤ D(R1, ..., Rn)T + h := v = (v1, v2, ..., vn)T . (3.12)

Noticing that C is an M -matrix, we have from Lemma 4 that there exists a vector
γ = (γ1, ..., γn)T > (0, 0, ..., 0)T such that Cγ > (0, 0, ..., 0)T , which implies that we
can choose a constant q > 1 such that

qCγ > v, and qγi > ri, i = 1, 2, ..., n. (3.13)

Set
ς̄ = (ς̄1, ς̄2, ..., ς̄n)T := pς, γ̄ = (γ̄1, γ̄2, ..., γ̄n)T := qγ.

Then, we have by (3.11) and (3.13) that

ς̄i > Ri, (A−B(C−1D))ς̄ > w, γ̄i > ri, and Cγ̄ > v, i = 1, 2, ...n. (3.14)

Now we take

Ω =
{
x(t) = (x1(t), x2(t), ..., xn(t))T ∈ C1

ω : |xi|0 < ς̄, |ẋi|0 < γ̄, i = 1, 2, ..., n
}

.

Obviously, the condition (a) of Lemma 2 is satisfied. If x ∈ ∂Ω ∩KerL = ∂Ω ∩ Rn,
then x(t) is a constant vector in Rn, and there exists some i ∈ {1, 2, ..., n} such that
|xi| = ς̄i. It follows that

(QNx)i =
1
ω

∫ ω

0

−ci(t)xi +
n∑

j=1

aij(t)fj(xj) +
n∑

j=1

bij(t)gj(0) + Ii(t)

 dt. (3.15)

We claim that
|(QNx)i| > 0. (3.16)

In fact, if |(QNx)i| = 0, i.e.,

∫ ω

0

ci(t)xi −
n∑

j=1

fj(xj)aij(t)−
n∑

j=1

gj(0)bij(t)− Ii(t)

 dt = 0.

Then, there exists some t∗ ∈ [0, ω] such that

ci(t∗)xi −
n∑

j=1

fj(xj)aij(t∗)−
n∑

j=1

gj(0)bij(t∗)− Ii(t∗) = 0,
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10 C. Bai and C. Li

which implies that

ci∗ς̄i = ci∗|xi| ≤ |ci(t∗)xi| ≤
n∑

j=1

|fj(xj)|a+
ij +

n∑
j=1

|gj(0)|b+
ij + I+

i

≤
n∑

j=1

(|fj(xj)− fj(0)|+ |fj(0)|)a+
ij +

n∑
j=1

|gj(0)|b+
ij + I+

i

≤
n∑

j=1

a+
ijLj ς̄j +

n∑
j=1

(a+
ij |fj(0)|+ b+

ij |gj(0)|) + I+
i .

This means that
(Aς̄)i ≤ hi. (3.17)

It is easy to know that Dς̄ ≥ (0, 0, ..., 0)T . Since C is a nonsingular M -matrix, we
have from C−1 ≥ 0 (Lemma 3) that C−1Dς̄ ≥ (0, 0, ..., 0)T . Thus, we obtain

B(C−1D)ς̄ ≥ (0, ..., 0)T . (3.18)

Similarly, we have
BC−1h ≥ (0, ..., 0)T . (3.19)

From (3.17), (3.18) and (3.19), we get

(Aς̄)i ≤ hi + (BC−1h)i + (BC−1D)ς̄)i = wi + (BC−1Dς̄)i.

This implies that
((A−BC−1D)ς̄)i ≤ wi.

which contradicts (3.14). Hence, (3.16) holds. Consequently, QNx 6= 0 for each
x ∈ ∂Ω ∩KerL.

Furthermore, let

Ψ(x, µ) = µ(−x) + (1− µ)JQNx µ ∈ [0, 1].

Then for any x = (x1, x2, ..., xn)T ∈ ∂Ω∩KerL, (x1, x2, ..., xn)T is a constant vector
in Rn with |xi| = ς̄ for some i ∈ {1, ..., n}. It follows that

(Ψ(x, µ))i =− µxi + (1− µ)
1
ω

∫ ω

0

−ci(t)xi +
n∑

j=1

fj(xj)aij(t)

+
n∑

j=1

gj(0)bij(t) + Ii(t)

 dt.

(3.20)
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We claim that
|(Ψ(x, µ))i| > 0. (3.21)

If this is not true, then |(Ψ(x, µ))i| = 0, i.e.,

µxi + (1− µ)
1
ω

∫ ω

0

ci(t)xi −
n∑

j=1

fj(xj)aij(t)−
n∑

j=1

gj(0)bij(t)− Ii(t)

 dt = 0.

Therefore, there exists some t∗ ∈ [0, ω] such that

µxi + (1− µ)
1
ω

ci(t∗)xi −
n∑

j=1

fj(xj)aij(t∗)−
n∑

j=1

gj(0)bij(t∗)− Ii(t∗)

 = 0, (3.22)

which implies that

xi

ci(t∗)xi −
n∑

j=1

fj(xj)aij(t∗)−
n∑

j=1

gj(0)bij(t∗)− Ii(t∗)

 ≤ 0.

Thus, we get

ci∗|xi|2 ≤ |ci(t∗)|x2
i ≤ xi

 n∑
j=1

fj(xj)aij(t∗) +
n∑

j=1

gj(0)bij(t∗) + Ii(t∗)



≤ |xi|

 n∑
j=1

(|fj(xj)− fj(0)|+ |fj(0)|)a+
ij +

n∑
j=1

|gj(0)|b+
ij + I+

i



≤ |xi|

 n∑
j=1

a+
ijLj |xj |+

n∑
j=1

(a+
ij |fj(0)|+ b+

ij |gj(0)|) + I+
i



≤ |xi|

 n∑
j=1

a+
ijLj ς̄j +

n∑
j=1

(a+
ij |fj(0)|+ b+

ij |gj(0)|) + I+
i

 ,

this means that (Aς̄)i ≤ hi. By (3.18) and (3.19), we obtain

((A−BC−1D)ς̄)i ≤ wi.

which contradicts (3.14). Hence, (3.21) holds. By the homotopy invariance theorem,
we get

deg{JQN, Ω ∩KerL, 0} = deg{−x,Ω ∩KerL, 0} 6= 0.

So, condition (b) of Lemma 2 is also satisfied. Therefore, from Lemma 2 we conclude
that system (1.2) has at least one ω-periodic solution. The proof is complete.
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12 C. Bai and C. Li

4 Illustrative examples

In this section, we give two examples to illustrate the effectiveness of our result.

Example 6. Consider the following Hopfield neural networks with neutral time-
varying delays

x′i(t) =− ci(t)xi(t) +
2∑

j=1

aij(t)fj(xj(t− τij(t)))

+
2∑

j=1

bij(t)gj(x′j(t− σij(t))) + Ii(t), i = 1, 2,

(4.1)

where

ci(t) = 4− 1
4

cos t, fi(u) =
1
8

sinu, gi(u) =
1
6
u,

a11(t) =
1
2

cos t, a12(t) =
1
3

sin t, a21(t) =
1
4

sin2 t, a22(t) =
1
5

cos2 t,

b11(t) =
1
3

sin t, b12(t) =
1
4

cos 2t, b21(t) =
1
2

sin 2t, b22(t) =
1
7

cos t,

I1(t) = 2 + sin t, I2(t) = 3− cos t,

τij(u) = σij(u) =
1
2
(| sinu + 1| − | sinu− 1|), i, j = 1, 2.

Obviously, delays τij(t) and σij(t) are not differentiable. fi(u) and gi(u) (i = 1, 2)
satisfy the Lipschitz condition (H2) with constants Li = 1

8 and li = 1
6 , respectively.

aij(t), bij(t), Ii(t), ci(t), τij(t) and σij(t) satisfy the condition (H1) with a common
period 2π. Moreover, we can easily get that a+

11 = 1
2 , a+

12 = 1
3 , a+

21 = 1
4 , a+

22 = 1
5 ,

b+
11 = 1

3 , b+
12 = 1

4 , b+
21 = 1

2 , b+
22 = 1

7 , I+
1 = 3, I+

2 = 4, with ci∗ = 15
4 and c+

i = 17
4 , for

i = 1, 2.

Thus, we have

A =
(

59
16 − 1

24
− 1

32
149
40

)
, B =

(
1
18

1
24

1
12

1
42

)
, C =

(
17
18 − 1

24
− 1

12
41
42

)
,,

C−1 =
(

1.0628 0.0454
0.0907 1.0283

)
, D =

(
69
16

1
24

1
32

171
40

)
,,

A−B(C−1D) =
(

3.4151 −0.2382
−0.4234 3.6004

)
,

and
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(A−B(C−1D))−1 =
(

0.2952 0.0195
0.0347 0.2800

)
,

which implies that C and A−B(C−1D) are two nonsingular M -matrix. Hence, all
conditions of Theorem 5 are satisfied. So, by means of Theorem 5, system (4.1) has
at least one 2π-periodic solution.

Example 7. Consider the following Hopfield neural networks with constant coeffi-
cients and neutral time-varying delays

x′i(t) =− bixi(t) +
2∑

j=1

aijgj(xj(t− τij(t)))

+
2∑

j=1

bijgj(x′j(t− σij(t))) + Ji(t), i = 1, 2,

(4.2)

where (
b1

b2

)
=
(

3
4

)
, (aij) =

(
6√
5

6√
10

− 9√
10

4√
5

)
, (bij) =

(
4√
5

− 5√
17

3√
17

6√
5

)
,

and
τ11(t) = τ22(t) = 2π +

4
5

sin t, τ12(t) = τ21(t) =
1
10

cos t,

σ11(t) = σ22(t) = 2π +
4
5

sin t, σ12(t) = σ21(t) =
1
17

sin t,

J1(t) = 1 + sin t, J2(t) = 1− cos t.

It is easy to obtain that pii = qii =
√

5, i = 1, 2, p12 = p21 =
√

10
3 , q12 = q21 =

√
17
4 ,

where pij and qij are as in [11]. Take

gi(u) =
1
8
u, |gi(u)| < 1

8
|u|+ 1

8
, i = 1, 2.

Obviously, gi(u) satisfies the conditions (H1) and (H3) of [11] with αi = 1
8 . Thus,

we have

A1 = (ãij) =
(

9
4 −1

4
−3

8
7
2

)
, C1 = (cij) =

(
9
4 −1

4
−3

8
7
2

)
,

B1 = (̃bij) =
(

1
2

5
32

3
32

3
4

)
, D1 = (dij) =

(
1
2 − 5

32
− 3

32
1
4

)
,

where
ãij = cij = biδij − |aij |αjpij , b̃ij = |bij |αjqij ,
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14 C. Bai and C. Li

dij = δij − |bij |αjqij , δij =
{

1, for i = j,
0, for i 6= j.

We easily check that

(A1 −B1(D−1
1 C1))−1 =

(
−0.0664 −4.8894
−0.9624 −8.6460

)
,

which implies that A1 − B1(D−1
1 C1) is not a nonsingular M -matrix, that is, the

condition (H4) of [11] for system (4.2) is fails. Thus we can not apply the main
result (Theorem 3.1) in [11] to judge that the system (4.2) has at least one periodic
solution. But here Theorem 5 guarantees the existence of periodic solution of system
(4.2). In fact, we have

A =

(
12
√

5−3
4
√

5
− 3

4
√

10

− 9
8
√

10
8
√

5−1
2
√

5

)
, B =

(
1

2
√

5
5

8
√

17
3

8
√

17
3

4
√

5

)
,

C =

(
2
√

5−1
2
√

5
− 5

8
√

17

− 3
8
√

17
4
√

5−3
4
√

5

)
, D =

(
12
√

5+3
4
√

5
3

4
√

10
9

8
√

10
8
√

5+1
2
√

5

)
.

So, we get

C−1 =
(

1.3234 0.3018
0.1811 1.5460

)
, (A−B(C−1D))−1 =

(
5.1515 5.7339
4.1651 5.3365

)
,

which implies that C and A−B(C−1D) are two nonsingular M -matrix. Therefore,
all conditions of Theorem 5 are satisfied, then system (4.2) has at least one 2π-
periodic solution.

5 Conclusion

In this paper, we use the continuation theorem of coincidence degree theory to study
the existence of periodic solution for a Hopfield neural network with neutral time-
varying delays. Without assuming the continuous differentiability of time-varying
delays, sufficient conditions are obtained for the existence of the periodic solution.
Moreover, two examples are given to illustrate the effectiveness of the new result.
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