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FIXED POINTS OF MAPPINGS WITH
DIMINISHING PROBABILISTIC ORBITAL

DIAMETERS

Irshad Aalam, Naresh Kumar and B. D. Pant

Abstract. In this paper we prove a fixed point theorem for a pair of mappings with probabilis-

tic diminishing orbital diameters on Menger spaces and introduce the notion of generalized joint

diminishing probabilistic orbital diameters (gjdpod) for a quadruplet of mappings.

1 Introduction

The notion of ‘diminishing orbital diameters’ (dod) was introduced by Belluce and
Kirk [1]. Subsequently, Fisher [3], Huang, Huang and Jeng [4], Liu [7], Ranganathan,
Srivastva and Gupta [9], Singh [10], Wong [12] etc. obtained some more results in
this settings.
Istrăţescu and Săcuiu [5] introduced the concept of non-expansive mappings and
mapping with ‘diminishing probabilistic orbital diameters’ (dpod) on probabilistic
metric spaces (PM-spaces). Singh and Pant [11] have shown that a non-expansive
mapping on PM-space having dpod has a fixed point. They have also investigated
that the condition of non-expansiveness of the mapping may be relaxed to the con-
dition of the mapping being with relatively compact orbits.
In this paper we introduce the notion of dpod and gdpod for a pair of mappings
and established a fixed point theorem. Subsequently, we introduced the concept of
gjdpod for a quadruplet of mappings and prove a fixed point theorem. Some of the
previously results of [7], [9], [10], [11] (in different settings) may be derived from our
results.

1.1 Preliminaries

Definition 1. [2].Let A be a non-empty subset of X. The function DA(.) defined
by

DA(x) = sup
ε<x
{ inf

u,v∈A
Fu,v(ε)}
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is called the probabilistic diameter of A.

Definition 2. [2].The function EA,B(.) defined by

EA,B(ε) = lub
x<ε

t{ glb
u∈A

( lub
v∈B

Fu,v(x)), (glb
v∈B

lub
u∈A

Fu,v(x))}

is called the probabilistic distance between A and B.

Let P : X → X and u ∈ X, then OP (u) = (u, Pu, P 2u, · · · , ) is called the orbit
of u with respect to P and OP (u) denotes the closure of OP (u).

Definition 3. [5] Let P be a self map on a PM-space X.P is said to have dpod at
u if for DOP (P (u))(ε) > 0

Lim
n→∞

DOP (P (u))(ε) > DOP (u)(ε)

where H is a distribution function.

We now introduce the following definitions :

Definition 4. A pair of mappings P,Q of a PM-space X is said to have diminishing
probabilistic orbital diameters (dpod) if

Lim
n→∞

EOP (Pn(u)),OQ(Qn(u))(ε) > EOP (u),OQ(u)(ε), ε > 0,

for all u ∈ X with EOP (Pn(u)),OQ(Qn(u))(ε) 6= H.

Definition 5. A pair of mappings P,Q on a PM-space X is said to have generalized
diminishing probabilistic orbital diameters (gdpod) if

Lim
n→∞

EOP (Pn(u)),OQ(Qn(v))(ε) > EOP (u),OQ(v)(ε), ε > 0,

for all u ∈ X with EOP (Pn(u)),OQ(Qn(v))(ε) 6= H.

It is clear that (P,Q) has a dpod if (P,Q) has a gdpod. Also (P, P ) has a dpod
if and only if P has dpod.
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2 Main Result

Theorem 6. Let P and Q are continuous self mappings of a compact Menger space.
If the pair (P,Q) has a gdpod on X, then for each u, v ∈ X, there exists some
subsequences {Pnk(u)} of Pn(u) and {Qnk(u)} of Qn(u) converge to a common fixed
point of P and Q.

Proof. Let u ∈ X,L(u) denotes the set of all points of X which are the limits of the
subsequences Pn(u) Since L(u) 6= φ because X is compact, L(u) is mapped into itself
by P . Also L(u) is closed, so by Zorn’s lemma there exists a minimal P -invariant
non-empty subset A ⊂ L(u) such that A is closed and mapped into itself by P.
Similarly we can find a minimal Q-invariant non-empty subset B ⊂ L(v) such that
B is closed and mapped into itself by Q. For u0 ∈ A, OP (u0) is mapped into itself
by P . Therefore minimality of A implies that A = OP (u0). Similarly for v0 ∈ B, we
have B = OQ(v0).
We now prove that EA,B(ε) = H, ε > 0. Suppose EA,B(ε) 6= H, ε > 0. Since P,Q
has a dpod, we have

EA,B(ε) = EOP (u0),OQ(v0)(ε) < Lim
n→∞

EOP (Pn(u0)),OQ(Qn(v0))(ε)

This implies

E
OP (u0),OQ(v0)

(ε) < Lim
n→∞

E
OP (Pn(u0)),OQ(Qn(v0)

(ε) = EA,B(ε)

contradiction. Hence EA,B(ε) = H, which implies that A = B = (w) (say). Then it
is clear that w is a common fixed point of P and Q. If z is another fixed point of P
and z 6= w Then we have

Lim
n→∞

EOP (Pn(z)),OQ(Qn(w))(ε) > EOP (z),OQ(w)(ε), ε > 0,

or Ez,w(ε) > Ez,w(ε),
a contradiction. Hence w is a unique fixed point of P . Similarly, we may show that
w is a unique fixed point of Q.
This completes the proof of the theorem

Remark 7. If in the above theorem condition gdpod is replaced by the condition
dpod, then it no longer assures the existence of a common fixed point for P and Q.
(see [7])

Corollary 8. Let P be a continuous self mapping of a compact Menger space X. If
(P, P ) has a gdpod, then P has a unique fixed point. Furthermore, for each u ∈ X,
there exists some subsequences of Pn(u) converge to a unique fixed point of P.

Pant, Dimri and Chandola [8] have introduced the concept of joint sequence of
iterates for a quadruplet of mappings as follows:
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Definition 9. [8] Let B = (P,Q, S, T ) be a quadruplet of self mappings on a PM-
space X. For u0 in X, let Tun = QPun−1, if n is odd and Tun = SQun−1 if n is
even, then the sequence

JB(u0) = {u0, Pu0, QPu0, SQPu0, TSQPu0, · · · }

is called the joint sequence of iterates of B at u0

We now introduce the notion of gjdpod for a quadruplet of mappings in PM-
space
Let δu(ε) = Lim

n→∞
DJBn (u)(ε).

Definition 10. B will be called to have gjdpod at u if for DJBn (u)(ε) 6= H, ε > 0,

δu(ε) > DJB(u)(ε).

Theorem 11. Let X be a compact Menger space and B = (P,Q, S, T ) be a quadru-
plet of continuous self mappings on X such that B have gjdpod on X. Then for each
u0 ∈ X, a subsequence of JB(u0) converges to a common fixed point of P,Q, S and
T.

Proof. For u0 ∈ X, let A(u0) denote the set of all points of X which are limit of
subsequences of the sequence JB(u0). Since X is compact, A(u0) 6= φ Also A(u0) is
closed and mapped into itself by P,Q, S and T . Let some subsequence of JB(u0)
converge to a point u in X, so u ∈ A(u0). Further P,Q, S and T are continuous,
therefore JB(u0) ⊂ A(u0). By Zorn’s Lemma, there exists a minimal nonempty
subset K ⊂ A(u0) such that K is closed and mapped into itself by P,Q, S and T .
Also for q0 ∈ K, JB(q0) is mapped into itself by P,Q, S and T . Therefore minimality
of K implies that K = JB(q0). Suppose DK(ε) 6= H, ε > 0. Since B have gjdpod,
then we have

δq0(ε) > DJB(q0)(ε).

This implies that D
JBn (q0)

(ε) > D
JB(q0)

(ε), for some integer n. Thus

DJBn (q0)(ε) > DJB(q0)(ε), ε > 0

This shows that JBn(q0) is a proper subset of K, contradicting the minimality of
K. Hence DK(ε) = H, ε > 0 Thus K consists of a single point q0. So we have
P (q0) = Q(q0) = R(q0) = S(q0) = q0. Therefore q0 is the common fixed point of
P,Q, S and T

Remark 12. With Q = S = T = I (Identity mapping), the notion of gjdpod is
same as dpod and then result of Kirk (Th. A, [6]) follow.
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Remark 13. If any two of P,Q, S, T are taken as identity maps then gjdpod reduces
to jdpod and the result of Singh and Pant (Th. 4, [11]) is obtained as corollary.

Remark 14. It is not necessary that any continuous mapping P in Theorem 11
has dpod on X, since in such a case it might be possible to obtain a family B of
continuous self mappings on X such that B ∪ P has a gjdpod (see, for illustration
[9]).
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