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FIXED POINTS FOR MULTIVALUED
CONTRACTIONS ON A METRIC SPACE

Liliana Guran

Abstract. The purpose of this paper is to prove a fixed point theorem for multivalued operators

and a fixed point theorem for multivalued weakly Picard operators in the terms of τ -distance.

1 Introduction

In 2001 T. Suzuki (see [14]) introduced the concept of τ -distance on a metric
space which is a generalization of both w-distance and Tataru’s distance. He gave
some examples of τ -distance and improve the generalization of Banach contraction
principle, Caristi’s fixed point theorem, Ekeland’s variational principle and the
Takahashi’s nonconvex minimization theorem, see [14]. Also, some fixed point
theorems for multivalued operators on a complete metric space endowed with a
τ -distance were established in T. Suzuki [15].

The concept of multivalued weakly Picard operator (briefly MWP operator) was
introduced in close connection with the successive approximation method and the
data dependence phenomenon for the fixed point set of multivalued operators on
complete metric space, by I. A. Rus, A. Petruşel and A. Sântămărian, see [11].

Consider (X,d) be a complete metric space. Let T : X → P (X) be a multivalued
mapping. Define function f : X → R as f(x) = D(x, T (x)). For a positive constant
b ∈ (0, 1) define the set Ix

b ⊂ X as:

Ix
b = {y ∈ T (x) | bd(x, y) ≤ D(x, T (x))}.

In 2006 Y. Feng and S. Liu proved the following theorem, see [1].
Let (X,d) be a complete metric space T : X → Pcl(X) be a multivalued mapping.

If there exists a constant c ∈ (0, 1) such that for any x ∈ X there is y ∈ Ix
b satisfying

D(y, T (y)) ≤ cd(x, y). Then T has a fixed point in X provided c < b and f is lower
semicontinuous on X.
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In [2] and [3] we find some generalizations of this theorem for a metric spaces
endowed with a w-distance.

The purpose of this paper is to extend the above fixed point result for multivalued
operators from [1] in terms of a τ -distance on a complete metric space.

2 Notation and basic notions

Let (X, d) be a complete metric space. We will use the following notations:
P (X) - the set of all nonempty subsets of X ;
Pcl(X) - the set of all nonempty closed subsets of X ;
Pb,cl(X) - the set of all nonempty bounded and closed, subsets of X ;
D : P (X) × P (X) → R+,D(Z, Y ) = inf{d(x, y) : x ∈ Z , y ∈ Y }, Z ⊂ X - the

gap between two nonempty sets.
First we define the concept of L-space.

Definition 1. Let X be a nonempty set and s(X) := {(xn)n∈N|xn ∈ X, n ∈ N}. Let
c(X) ⊂ s(X) a subset of s(X) and Lim : c(X) → X an operator. By definition the
triple (X, c(X),Lim) is called an L-space if the following conditions are satisfied:

(i) If xn = x, for all n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.

(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences,
(xni)i∈N, of (xn)n∈N we have that (xni)i∈N ∈ c(X) and Lim(xni)i∈N = x.

By the definition an element of c(X) is convergent and x := Lim(xn)n∈N is the
limit of this sequence and we can write xn → x as n →∞.

We will denote an L-space by (X,→).
Let us give some examples of L-spaces, see [8].

Example 2. (L-structures on Banach spaces) Let X be a Banach space. We
denote by → the strong convergence in X and by ⇀ the weak convergence in X.
Then (X,→), (X, ⇀) are L-spaces.

Example 3. (L-structures on function spaces) Let X and Y be two metric
spaces. Let M(X, Y ) the set of all operators from X to Y . We denote by

p→ the point

convergence on M(X, Y ), by
unif→ the uniform convergence and by cont→ the convergence

with continuity. Then (M(X, Y ),
p→), (M(X, Y ),

unif→ ) and (M(X, Y ), cont→ ) are L-
spaces.

Definition 4. Let (X,→) be an L-space. Then T : X → P (X) is a multivalued
weakly Picard operator (briefly MWP operator) if for each x ∈ X and each
y ∈ T (x) there exists a sequence (xn)n∈N in X such that:

1. x0 = x, x1 = y;
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2. xn+1 ∈ T (xn), for all n ∈ N;

3. the sequence (xn)n∈N is convergent and its limit is a fixed point of T .

Let us give some examples of MWP operators, see [8],[11].

Example 5. Let (X, d) be a complete metric space and T : X → Pcl(X) be a Reich
type multivalued operator, i.e. there exists α, β, γ ∈ R+ with
α + β + γ < 1 such that

H(T (x), T (y)) ≤ αd(x, y) + βD(x, T (x)) + γD(y, T (y)),

for all x, y ∈ X. Then T is a MWP operator.

Example 6. Let (X, d) be a complete metric space and T : X → Pcl(X) be a
closed multifunction for which there exists α, β ∈ R+ with α + β < 1 such that
H(T (x), T (y)) ≤ αd(x, y)+βD(y, T (y)), for every x ∈ X and every y ∈ T (x). Then
T is a MWP operator.

Example 7. Let (X, d) be a complete metric space and T1, T2 : X → Pcl(X) for
which there exists α ∈]0, 1

2 [ such that

H(T1(x), T2(y)) ≤ α[D(x, T1(x)) + D(y, T2(y))],

for each x, y ∈ X. Then T1 and T2 are a MWP operators.

The concept of τ -distance was introduced by T. Suzuki (see[1]) as follows.

Definition 8. Let (X,d) be a metric space, τ : X×X → [0,∞) is called τ−distance
on X if there exists a function η : X × R+ → R+ and the following are satisfied :

(τ1) τ(x, z) ≤ τ(x, y) + τ(y, z), for any x, y, z ∈ X;
(τ2) η(x, 0) = 0 and η(x, t) ≥ t for all x ∈ X and t ∈ R+, and η is concave and

continuous in its the second variable;
(τ3) limn xn = x and limn sup{η(zn, τ(zn, xm)) : m ≥ n} = 0 imply τ(w, x) ≤

lim infn(τ(w, xn)) for all w ∈ X;
(τ4) limn sup{τ(xn, ym)) : m ≥ n} = 0 and limn η(xn, tn) = 0 imply limn η(yn, tn) =

0;
(τ5) limn η(zn, τ(zn, xn)) = 0 and limn η(zn, τ(zn, yn)) = 0 imply limn d(xn, yn) =

0.
We may replace (τ2) by the following (τ2)′:
(τ2)′ inf{η(x, t) : t > 0} = 0 for all x ∈ X, and η is nondecreasing in the second

variable.

Let us give some examples of τ -distance (see[14]).

Example 9. Let (X, d) be a metric space. Then the metric ”d” is a τ -distance on
X.

******************************************************************************
Surveys in Mathematics and its Applications 5 (2010), 191 – 199

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v05/v05.html
http://www.utgjiu.ro/math/sma


194 L. Guran

Example 10. Let (X, d) be a metric space and w : X ×X → R+ be a w-distance
on X. Then w is also a τ -distance on X.

Example 11. Let (X, d) be a metric space and τ be a τ -distance on X, let
h : R+ → R+ be a nondecreasing function such that

∫∞
0

1
1+h(r)dr = ∞, and let

z0 ∈ X be fixed. Then a function q : X ×X → R+ defined by:

q(x, y) =
∫ τ(z0,x)+τ(x,y)

τ(z0,x)

dr

1 + h(r)
, for all x, y ∈ X

is a τ -distance.

For the proof of the main result we need of the definition of the τ -Cauchy
sequence and the following lemmas (see [15]).

Definition 12. Let (X, d) be a metric space and let τ be a τ -distance on X. Then a
sequence {xn} in X is called τ −Cauchy if there exists a function η : X × [0,∞) →
[0,∞) satisfying (τ2)-(τ5) and a sequence {zn} in X such that limn sup{η(zn, τ(zn, xm)) :
m ≥ n} = 0.

A crucial results in order to obtain fixed point theorems by using τ -distance are
the following lemmas.

Lemma 13. Let (X, d) be a metric space and let τ be a τ -distance on X. If a
sequence {xn} in X satisfies limn sup{τ(xn, xm) : m > n} = 0, then {xn} is a τ -
Cauchy sequence. Moreover, if a sequence {yn} in X satisfies limn τ(xn, yn) = 0,
then {yn} is also a τ -Cauchy sequence and limn d(xn, yn) = 0.

Lemma 14. Let (X, d) be a metric space and let τ be a τ -distance on X. If a
sequence {xn} in X satisfies limn τ(z, xn) = 0 for z ∈ X then {xn} is a τ -Cauchy
sequence. Moreover, if a sequence {yn} in X also satisfies limn τ(z, yn) = 0, then
limn d(xn, yn) = 0. In particular, for x, y, z ∈ X, τ(z, x) = 0 and τ(z, y) = 0 imply
x = y.

Lemma 15. Let (X, d) be a metric space and let τ be a τ -distance on X. If {xn} is a
τ -Cauchy sequence, then {xn} is a Cauchy sequence. Moreover, if {yn} is a sequence
satisfying limn sup{τ(xn, ym) : m > n} = 0, then {yn} is a τ -Cauchy sequence and
limn d(xn, yn) = 0.

3 Main results

Definition 16. Let T : X → P (X) be a multivalued operator, τ : X ×X → [0,∞)
be a τ -distance on X. Define the function f : X → R as f(x) = Dτ (x, T (x)), where
Dτ (x, T (x)) = inf{τ(x, y) | y ∈ T (x)}.

For a positive constant b ∈ (0, 1) define the set Ix
b,τ ⊂ X as follows:

Ix
b,τ = {y ∈ T (x) | bτ(x, y) ≤ Dτ (x, T (x))}.
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We will present now a fixed point theorem for multivalued operators on a complete
metric space endowed with a τ -distance.

Theorem 17. Let (X, d) be a complete metric space, T : X → Pcl(X) a multivalued
operator, τ : X ×X → [0,∞) be a τ -distance on X and b ∈ (0, 1).
Suppose that

(i) there exists c ∈ (0, b), such that for any x ∈ X there is y ∈ Ix
b,τ satisfying

Dτ (y, T (y)) ≤ cτ(x, y);
(ii) f is lower semicontinuous, where f is previous defined.

Then T has a fixed point in X. Moreover, if T (z) = z, then τ(z, z) = 0.

Proof. For any initial point x0 ∈ X, there is x1 ∈ Ix0
b,τ such that:

Dτ (x1, T (x1)) ≤ cτ(x0, x1).

For any x1 ∈ X there is x2 ∈ Ix1
b,τ such that:

Dτ (x2, T (x2)) ≤ cτ(x1, x2).

We obtain an iterative sequence {xn}∞n=0 where xn+1 ∈ Ixn
b,τ and

Dτ (xn+1, T (xn+1)) ≤ cτ(xn, xn+1), forn = 0, 1, 2, . . . .

We will verify that {xn}∞n=0 is a Cauchy sequence.
Indeed:

Dτ (xn+1, T (xn+1)) ≤ cτ(xn, xn+1), n = 0, 1, 2, . . . (3.1)

Since xn+1 ∈ Ixn
b,τ we obtain:

bτ(xn, xn+1) ≤ Dτ (xn, T (xn)), n = 0, 1, 2, . . . (3.2)

By (3.2) it follows : τ(xn, xn+1) ≤ 1
bDτ (xn, T (xn)), n = 0, 1, 2, . . .

Using (3.1)we obtain :

Dτ (xn+1, T (xn+1)) ≤ c
1
b
Dτ (xn, T (xn)), n = 0, 1, 2, . . . (3.3)

By (3.1) we have :

Dτ (xn, T (xn)) ≤ cτ(xn−1, xn), n = 0, 1, 2, . . .

Dτ (xn+1, T (xn+1)) ≤ cτ(xn, xn+1), n = 0, 1, 2, . . .

We replace in (3.3) and we obtain :

cτ(xn, xn+1) ≤
c

b
cτ(xn−1, xn), n = 0, 1, 2, . . .
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If we divide by c we obtain :

τ(xn, xn+1) ≤
c

b
τ(xn−1, xn), n = 0, 1, 2, . . .

then:
τ(xn+1, xn+2) ≤

c

b
τ(xn, xn+1), n = 0, 1, 2, . . . (3.4)

By using an induction argument it is easy to see that:

τ(xn, xn+1) ≤
cn

bn
τ(x0, x1), n = 0, 1, 2, . . .

Dτ (xn, T (xn)) ≤ cn

bn
Dτ (x0, T (x0)), n = 0, 1, 2, . . .

Then for m,n ∈ N, m > n, a = c
b and using the previous inequalities we have:

τ(xn, xm) ≤ τ(xn, xn+1) + τ(xn+1, xn+2) + · · ·+ τ(xm−1, xm) ≤

≤ anτ(x0, x1) + an+1τ(x0, x1) + · · ·+ am−1τ(x0, x1) ≤

≤ an

1− a
τ(x0, x1)

For n →∞ we have an → 0, because a = c
b with c < b. Thus

lim
n→∞

τ(xn, xm) = 0, with m > n.

Using Lemma 13 it follows that the sequence {xn}∞n=0 is a τ -Cauchy sequence and
from the Lemma 15 result that this sequence is a Cauchy sequence. Since X is a
complete space, then the sequence {xn}∞n=0 converge to some point z ∈ X. The
sequence

{f(xn)}∞n=0 = {Dτ (xn, T (xn))}∞n=0

is decreasing and from the above construction it converges to 0.
Since f is lower semicontinuous we have:

0 ≤ f(z) ≤ lim
n→∞

f(xn) = 0

Thus f(z) = 0.
Since f(z) = 0, then there exists a sequence (wn) ∈ T (z) such that τ(z, wn) → 0.

Therefore,

0 ≤ lim
n

sup{τ(xn, wm) : m > n} ≤ lim
n

sup{τ(xn, z) + τ(z, wm) : m > n} = 0.

Thus, by Lemma 15 we obtain that wn → z and since T (z) is a closed set we conclude
that

z ∈ T (z).

Since T (z) = z, hence Dτ (z, T (z)) = τ(z, z) ≥ 0 and since by hypothesis Iz
b,τ 6= ∅

we know that bτ(z, z) ≤ τ(z, z) but 0 < b < 1, therefore τ(z, z) = 0.
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The second main result of this paper is a fixed point theorem for MWP operators
on metric spaces endowed with a τ -distance.

Corollary 18. Let (X, d) be a complete metric space, T : X → Pcl(X) a multivalued
operator, τ : X × X → [0,∞) be a τ -distance on X and b ∈ (0, 1). Suppose that
there exists c ∈ (0, 1), with c < b, such that for any x ∈ X there is y ∈ Ix

b,τ satisfying
Dτ (x, T (x)) ≤ cτ(x, y). Then T is a MWP operator.

Proof. As in the proof of the previous theorem we construct inductively a sequence
{xn}∞n=0 such that:

1. xn+1 ∈ T (xn), for every n ∈ N;

2. τ(xn, xn+1) ≤ cn

bn τ(x0, x1), for every n ∈ N;

3. Dτ (xn, T (xn)) ≤ cn

bn Dτ (x0, T (x0)), for every n ∈ N.

Thus x0 = x, x1 = y and xn+1 ∈ T (xn). For m,n ∈ N with m > n and a = c
b we

have the inequality

τ(xn, xm) ≤ an

1− a
τ(x0, x1).

Using Lemma 13 it follows that the sequence {xn}∞n=0 is a τ -Cauchy sequence. From
Lemma 15 we have that the sequence {xn}∞n=0 is a Cauchy sequence. Since (X, d)

is a complete metric space then there exists z ∈ X such that xn
d→ z.

For n ∈ N, from (τ3) we get that:

τ(xn, z) ≤ lim
m→∞

inf τ(xn, xm) ≤ an

1− a
τ(x0, x1).

By hypothesis, for a = c
b , we also have wn ∈ T (z) such that

τ(xn, wn) ≤ aτ(xn−1, z) for every n ∈ N.

So, we have

lim
n→∞

sup τ(xn, wn) ≤ lim
n→∞

sup aτ(xn−1, z) ≤ lim
n→∞

an

1− a
τ(x0, x1) = 0.

By Lemma 13 result that wn converge to z. Since T (z) is closed we obtain that
z ∈ T (z). Then T is MWP operator.
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