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IDENTIFIABILITY OF THE MULTIVARIATE
NORMAL BY THE MAXIMUM AND THE

MINIMUM

Arunava Mukherjea

Abstract. In this paper, we have discussed theoretical problems in statistics on identification of

parameters of a non-singular multi-variate normal when only either the distribution of the maximum

or the distribution of the minimum is known.

1 Introduction

Let X1, X2, . . . , Xm, where Xi = (Xi1 , Xi2 , . . . , Xin) be m independent random n-
vectors each with a n-variate non-singular density in some class F . Let Y1, Y2, . . . , Yp

be another such independent family of random n-vectors with each Yi having its n-
variate non-singular density in F . Suppose that

X0 = (X01 , . . . , X0n), where X0j = max{Xij : 1 ≤ i ≤ m},

and
Y0 = (Y01 , . . . , Y0n), where Y0j = max{Yij : 1 ≤ i ≤ p},

have the same n-dimensional distribution function. The problem is to determine if m
must equal p, and the distributions of {X1, X2, . . . Xm} are simply a rearrangement
of those of {Y1, Y2, . . . , Yp}.

This problem comes up naturally in the context of a supply-demand problem in
econometrics, and as far as we know, was considered first in [2], where it was solved
(in the affirmative ) for the class of univariate normal distributions, and also, for
the class of bivariate normal distributions with positive correlations. In [18], it was
solved in the affirmative for the class of bivariate normal distributions with positive
or negative correlations. However, if such distributions with zero correlations are
allowed, then unique factorization of product of such distributions no longer holds,
and this can be verified by considering simply four univariate normal distributions
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F1(x), F2(x), F3(y), F4(y) and observing that for all x, y, we have the equality:

[F1(x)F3(y)][F2(x)F4(y)] = [F1(x)F4(y)][F2(x)F3(y)].

In [19], it was shown in the general n-variate normal case, that when the n-variate
normal distributions of each Xi, 1 ≤ i ≤ m , and each Yj , 1 ≤ j ≤ p , have positive
partial correlations (that is, the off-diagonal entries of the covariance matrix are
all negative), then when Xo and Yo , as defined earlier, have the same distribution
function, we must have m = p, and the distributions of the Xi, 1 ≤ i ≤ m , must
be a permutation of those of the Yj , 1 ≤ j ≤ m . In [17], this problem was solved
in the affirmative for the general n-variate case when the covariance matrices of all
the n-variate normal distributions are of the form: Σij = ρσiσj for i 6= j. As far as
we know, the general problem discussed above is still open.

The maximum problem above occurs in m-component systems where the com-
ponents are connected in parallel. The system lifetime is then given by

max{X1, X2, . . . , Xm},

and this is observable. There are instances where this maximum is observable, but
the individual Xis are not.

It may also be noted that if the distribution function of Y is F (x), and if X1

and X2 are two independent random variables each with distribution
√

F (x), then
max{X1, X2} and Y have the same distribution function.

In [8], a corresponding minimum problem was discussed in the context of a prob-
ability model describing the death of an individual from one of several competing
causes. Let X1, X2, . . . , Xn be independent random variables with continuous dis-
tribution functions, Z = min{X1, X2, . . . , Xi} and I = k iff Z = Xk. If the Xi have
a common distribution function, then it is uniquely determined by the distribution
function of Z. In [8], it was shown that when the distribution of the Xi are not
all the same, then the joint distribution function of the identified minimum (that
is, that of (I, Z)) uniquely determines each Fi(x), the distribution function of Xi,
i = 1, 2, . . . , n.

Since max{X1, X2, . . . , Xn} = −min{−X1,−X2, . . . ,−Xn}, the distribution of
the identified maximum also uniquely determines the distribution of the Xi. Notice
that if we consider n = 2 and the case where the independent random variables X1

and X2 are both exponential such that their density functions are given by

f1(x) =λe−λx, x > 0;
=0, otherwise,

and

f2(x) =µe−µx, x > 0;
=0, otherwise.
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where λ and µ are both positive, then even though the joint distribution of their
identified minimum (that is, that of (I, min{X1, X2}) uniquely determines the pa-
rameters λ and µ, the min{X1, X2}, by itself, does not identify uniquely the pa-
rameters λ and µ. Thus, one natural question comes up: when does the minimum
of a n-variate random vector uniquely determine the parameters of the distribution
of the random vector? In what follows, in the rest of this section, we discuss this
problem.

As far as we know, the problem on identification of parameters of a random vector
(X1, X2, . . . , Xn) by the distribution of the minimum (namely, min{Xi : 1 ≤ i ≤ n})
is still unsolved even in the case of a n-variate normal vector. In the bivariate normal
case, the problem was solved in the affirmative (in the natural sense) in [5] and [16]
independently. The problem was considered also in the tri-variate normal case in [5]
in the context of an identified minimum, and solved partially. The general minimum
problem in the n-variate normal case, in the case of a common correlation, was solved
in [9], and in the case of the tri-variate normal with negative correlations was solved
in [12].

In the next section, we present asymptotic orders of certain tail probabilities for
a multi-variate normal random vector that are useful in the context of the problems
mentioned above. The purpose of this note here is to present some essential results
which are useful in solving the identified minimum problem in the general tri-variate
normal case.

2 Tail probabilities of a multivariate normal

Let (X1, X2, . . . , Xn) be a n-variate normal random vector with a symmetric positive
definite covariance matrix Σ such that the vector 1Σ−1 = (α1, α2, . . . , αn), where
1 = (1, 1, . . . , 1), is positive (that is, each αi is positive). Then it was proven in [9]
that as t →∞, the tail probability

P (X1 > t,X2 > t, . . . , Xn > t)

is of the same (asymptotic) orders as that of

C exp(−1
2
t2[1Σ−11T ]),

where
1
c

= (2π)
n
2

√
|detΣ|(α1α2 . . . αn)tn.

Here we consider two functions f(t) and g(t) having the same order as t → ∞ if
limt→∞

f(t)
g(t) = 1 . Thus, we can state, when n = 2, the following lemma.
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Lemma 1. Let (X1, X2) be a bivariate normal with zero means and variances σ2
1, σ

2
2

(where σ2
1 ≥ σ2

2, and correlation ρ, |ρ| < 1, such that ρ < σ2
σ1

. Then, we have: as
t →∞,

P (X1 > t,X2 > t) ∼ C exp

(
−1

2
t2[

σ2
1 + σ2

2 − 2ρσ1σ2

σ2
1σ

2
2(1− ρ2)

]
)

,

where
1
C

= 2π(1− ρ2)−
3
2 t2(σ2 − ρσ1)(σ1 − ρσ2).

Let us now consider the case ρ > σ2
σ1

for the general bivariate normal (with
zero means, for simplicity) considered in Lemma 1 In this case, we no longer have
1Σ−1 > 0, and thus, we need to use another idea. We can write

P (X1 > t,X2 > t)

=
∫ ∞

t
P (X1 > t|X2 = x)fX2(x)dx

=
∫ ∞

t
fX2(x)dx

∫ ∞

t

1
√

2πσ1

√
1− ρ2

exp

−1
2

y −
(

ρσ1x
σ2

)
σ1

√
1− ρ2

2
 dy

=
∫ ∞

t
fX2(x)dx

∫ ∞

g(x,t)

1√
2π

exp

(
−1

2
z2

)
dz,

where

g(x, t) =
t− ρσ1x

σ2

σ1

√
1− ρ2

.

Since ρ > σ2
σ1

, for t sufficiently large (for a pre-assigned positive δ), we can write:

P (X1 > t,X2 > t) > (1− δ)
∫ ∞

t
fX2(x)dx.

It follows easily that as t →∞, when ρ > σ2
σ1

, we have:

P (X1 > t,X2 > t) ∼ σ2√
2π t

exp

[
−1

2
t2

σ2
2

]
(2.1)

When ρ = σ2
σ1

(< 1) for the bivariate normal considered above, we have, similarly, for
any ε > 0 and all sufficiently large t,

1
2

(1− ε)σ2√
2π t

exp

[
−1

2
t2

σ2
2

]
≤ P (X1 > t,X2 > t) ≤ (1 + ε)σ2√

2π t
exp

[
−1

2
t2

σ2
2

]
(2.2)
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Identifiability of the multivariate normal 315

Lemma 2. Let (X1, X2) be a bivariate normal with zero means, variances each 1,
and correlation ρ, |ρ| < 1. Let α > 0, β > 0 and ρ < α

β . Then we have:

P (X1 ≥ αt,X2 ≥ βt) ∼ 1
C

exp

[
−1

2
t2

(
α2 + β2 − 2ραβ

1− ρ2

)]
, as t →∞,

which is o(exp
[
−1

2β2t2
]
) and also o(exp

[
−1

2α2t2
]
), where

C = 2πt2(α− ρβ)(β − ρα)(1− ρ2)−
3
2 α−2β−2.

Lemma 3. Let (X1, X2) be as in Lemma 2.2 letα > 0, β > 0, α ≤ β and ρ > α
β .

Then we have

P (X1 > αt, X2 > βt) ∼ 1√
2π βt

exp
[
−1

2
β2t2

]
as t →∞.

Both Lemmas 2 and 3 follow from Lemma 1 and equation (2.1) above. In Lemma
3, if we take ρ = α

β , then given ε > 0 and for all all sufficiently large t,

1− ε

2
1√

2π βt
exp

[
−1

2
β2t2

]
≤ P (X1 > αt, X2 > βt) ≤ 1 + ε√

2π βt
exp

[
−1

2
β2t2

]
.

(2.3)

Lemma 4. Let (X1, X2) be as in Lemma 2. Let α > 0, β > 0. Let ρ < min{α
β , β

α}.
Then as t → −∞,

1− P (X1 > αt, X2 > βt) ∼ 1√
2π µ|t|

exp

[
−1

2
µ2t2

]
, µ = min{α, β}.

Proof. Notice that

1− P (X1 > αt,X2 > βt)
=P (X1 ≤ αt,X2 ≤ βt) + P (X1 ≤ αt, X2 ≤ βt) + P (X1 ≤ αt,X2 > βt)

The first term on the right hand side is, by Lemma 2, o

(
1√

2π µ|t|
exp

[
−1

2µ2t2
])

as

t → −∞. The second term there can be written as

P (X2 ≤ βt)− P (−X1 > α(−t),−X2 > β(−t))
∼P (X2 ≤ βt) as t → −∞,

and similarly, the third term is ∼ P (X1 ≤ αt) as t → −∞. The lemma is now clear.
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Lemma 5. Let (X1, X2) be as in Lemma 2. Let α < 0, β > 0,−α > β. Then

P (X1 > αt, X2 > βt) ∼ 1√
2π βt

exp

[
−1

2
β2t2

]
as t →∞

Proof. Let us write:

P (X1 > αt, X2 > βt)
=P (X2 > βt)− P (−X1 > (−α)t), X2 > βt)

Let t →∞. Since the correlation of (−X1, X2) is −ρ , it follows from Lemma 2 that
when −ρ < −β

α ,

P (−X1 > (−α)t, X2 > βt) = o

(
exp

[
−1

2
β2t2

])
.

Also, it follows from Lemma 3 and inequalities in (2.3) that when −ρ ≥ β
α , as t →∞,

P (−X1 > (−α)t, X2 > βt)

∼C(t)
1√

2π|αt|
exp

[
−1

2
α2t2

]
=o

(
exp

[
−1

2
β2t2

])
.

where 1
2 ≤ C(t) ≤ 1. The lemma now follows easily.

Lemma 6. Let (X1, X2) be as in Lemma 2. Let α < 0. Then as t →∞,

P (X1 > αt, X2 > (−α)t) ∼ 1√
2π |α|t

exp

[
−1

2
α2t2

]

Proof. It is enough to observe that

P (X1 > αt, X2 > (−α)t)
=P (X2 > (−α)t)− P (−X1 > (−α)t, X2 > (−α)t)

and then Lemma 2 applies.
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3 The pdf of the identified minimum

Let (X1, X2, X3) be a tri-variate normal random vector with zero means and vari-
ances σ2

1, σ
2
2, σ

2
3, and a non-singular covariance matrix Σ, where Σij = ρijσiσj , i 6= j,

Σii = σ2
i .

We assume, with no loss of generality, that σ2
1, σ

2
2, σ

2
3. Let Y = min{X1, X2, X3}.

We define the random variable I by I = i iff Y = Xi, i = 1, 2, 3. Let F (y, i) be the
joint distribution of (Y, I) such that

F (y, 1) = P (Y ≤ y, I = 1),
F (y, 2) = P (Y ≤ y, I = 2),
F (y, 3) = P (Y ≤ y, I = 3).

Then we have:

P (Y ≤ y, I = 1)
=P (X1 ≤ y, X1 ≤ X2, X1 ≤ X3)

=
∫ y

−∞
P (X2 ≤ x1, X3 ≤ x1|X1 = x1)fX1(x1)dx1

Now by differentiating with respect to y, we obtain:

f1(y)

=
d

dy
F (y, 1)

=fX1(y)P (X2 ≥ y, X3 ≥ y|X1 = y)

Notice that the conditional density of (X2, X3), given X1 = y, is a bivariate normal
with means ρ12(σ2

σ1
)y, ρ13(σ3

σ1
)y, and variances σ2

2(1 − ρ12
2), σ2

3(1 − ρ13
2). Thus, we

can write:

f1(y) =
1
σ1

ϕ

(
y

σ1

)
P

W21 ≥
1− ρ12

(
σ2
σ1

)
σ2

√
1− ρ12

2
y, W31 ≥

1− ρ13

(
σ3
σ1

)
σ3

√
1− ρ13

2
y

 (3.1)

where (W21,W31) is a bivariate normal with zero means, variances each one, and
correlation ρ23.1 = ρ23−ρ12ρ13√

1−ρ12
2
√

1−ρ13
2
, and ϕ is the standard normal density. Similarly,

we also get the expressions for f2(y) and f3(y), where f2(y) = d
dy [F (y, 2)] and

f3(y) = d
dy [F (y, 3)] given in (3.2) and (3.3) below. We have

f2(y) =
1
σ2

ϕ

(
y

σ2

)
P

W12 ≥
1− ρ12

(
σ1
σ2

)
σ1

√
1− ρ12

2
y, W32 ≥

1− ρ23

(
σ3
σ2

)
σ3

√
1− ρ23

2
y

 (3.2)
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f3(y) =
1
σ3

ϕ

(
y

σ3

)
P

W13 ≥
1− ρ13

(
σ1
σ3

)
σ1

√
1− ρ13

2
y, W23 ≥

1− ρ23

(
σ2
σ3

)
σ2

√
1− ρ23

2
y

 (3.3)

where (W12,W32) and (W13,W23) are both bivariate normals with zero means and
variances all ones, and correlations given, respectively, by ρ13.2 = ρ13−ρ12ρ23√

1−ρ12
2
√

1−ρ23
2

and ρ12.3 = ρ12−ρ13ρ23√
1−ρ13

2
√

1−ρ23
2
. Now the problem of identified minimum is the follow-

ing: we will assume that the functions f1(y), f2(y) and f3(y) are given, and we need
to prove that there can be only a unique set of parameters σ2

1, σ
2
2, σ

2
3, ρ12, ρ23, ρ13

that can lead to the same three given functions f1, f2 and f3.

The proof, besides other arguments, uses mainly the lemmas given in section 2.
The proof is rather involved and will appear elsewhere in full.
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