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ON THE PERIODIC MILD SOLUTIONS TO
COMPLETE HIGHER ORDER DIFFERENTIAL

EQUATIONS ON BANACH SPACES

Lan Nguyen

Abstract. For the complete higher order differential equation

u(n)(t) =

n−1∑
k=0

Aku
(k)(t) + f(t), 0 ≤ t ≤ T,

on a Banach space E, we give necessary and sufficient conditions for the periodicity of mild solutions.

The results, which are proved in a simple manner, generalize some well-known ones.

1 Introduction

In this paper we are concerned with the periodicity of solutions of the complete
higher order differential equation:

u(n)(t) =
n−1∑
j=0

Aju
(j)(t) + f(t), 0 ≤ t ≤ T, (1.1)

where Aj are linear, closed operators on a Banach space E and f is a function from
[0, T ] to E.

The asymptotic behavior and, in particular, the periodicity of solutions of the higher
order differential equation

u(n)(t) = Au(t) + f(t), 0 ≤ t ≤ T, (1.2)

has been an subject of intensive study for recent decades. When n = 1, it is well-
known [7] that, if A is an n×n matrix on Cn, then (1.2) admits a unique T-periodic
solution for each continuous T-periodic forcing term f if and only if λk = 2kπt/T ,
k ∈ Z, are not eigen-values of A. That result was extended by Krein and Dalecki
[4] to the Cauchy problem in an abstract Banach space. It was claimed [4, Theorem
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24 L. Nguyen

II 4.3] that, if A is a linear, bounded operator on E, then (1.2) admits a unique T-
periodic solution for each f ∈ C[0, T ] if and only if 2kπi/T ∈ %(A), k ∈ Z. Here %(A)
denotes the resolvent set of A. For unbounded operator A, the situation changes
dramatically and the above statement generally fails. When A generates a strongly
continuous semigroup, periodicity of solutions of (1.2) has intensively been studied
recently (see e.g. [9, 10, 14, 15]). Corresponding results on the periodic solutions of
the second order differential equation were obtained in [3, 17], when A is generator
of a cosine family. Related results on the periodicity of solutions of (1.2), when A is
a closed operator, can be found in [5, 8, 12, 13, 16] and the references therein.

Unfortunately, for the complete higher differential equations, we have little consideration
about the regularity of their solutions, mainly because of the complexity of the
structure of the equation. In this paper we investigate the periodicity of mild
solutions of the complete higher order differential equation (1.1) when Aj , j =
0, 1, ..., n− 1, are linear, closed operators. The main tool we use here is the Fourier
series method. For an integrable function f(t) from [0, T ] to E, the Fourier coefficient
of f(t) is defined as

fk =
1

T

∫ T

0
f(s)e−2kπis/Tds, k ∈ Z.

Then f(t) can be represented by Fourier series

f(t) ≈
∞∑

k=−∞
e2kπit/T fk.

First, we give a general definition of mild solution to the complete higher order
differential equation (1.1). This definition is an extension of that introduced in
[2, 13], when the equation has the form of (1.2). We then establish the relationship
between the Fourier coefficients of the periodic solutions of (1.1) and those of the
inhomogeneity f . As the main result, we give different equivalent conditions so
that (1.1) admits a unique periodic solution for each inhomogeneity f in a certain
function space. Our result generalizes some well-known ones, as in Section 3 we
present several particular cases, among which, A generates a C0 semigroup and a
cosine family.

Let us fix some notations. A continuous function on [0, T ] is said to be T-periodic if
u(0) = u(T ). For the sake of simplicity (and without loss of generality) we assume
T = 1 and put J := [0, 1]. For p ≥ 1, Lp(J) denotes the space of E-valued integrable

functions on J with ‖f‖Lp(J) =
∫ 1
0 ‖f(t)‖pdt <∞ and C(J) the space of continuous

functions on J with and ‖f‖C(J) = sup
J
‖f(t)‖ <∞. Moreover, for m > 0 we define

the following function spaces:

1) Wm
p (J) := {f ∈ Lp(J) : f ′, f ′′, ..., f (m) ∈ Lp(J)}. Wm

p (J) is then a Banach space
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Periodic Mild Solutions to Complete Higher Order Diff. Eq. on Banach Space 25

with the norm

‖f‖Wm
p

:=
m∑
j=0

‖f (j)‖Lp(J).

2) Pm(J) := {f ∈ C(J) : f, f ′, ..., f (m) are in P (J)}. That means Pm(J) is the space
of all functions on J , which can be extended to 1-periodic, m-times continuously
differentiable functions on R. Pm(J) is a Banach space with the norm

‖f‖Pm(J) :=
m∑
j=0

‖f (j)‖C(J).

3) WPmp (J) := Pm−1(J)∩Wm
p (J). It is easy to see that WPmp (J) is a Banach space

with Wm
p (J)-norm.

We will use the following simple lemma.

Lemma 1. If F is a continuous function on J such that f = F ′ ∈ Lp(J), then for
k 6= 0 we have

Fk =
1

2kπi
fk +

F (0)− F (1)

2kπi
,

where fk and Fk are the Fourier series of f and F , respectively.

Throughout this paper, if not otherwise indicated, we assume that Ai, i =
0, 1, ..., n− 1, are linear, closed and densely defined operators on E with ∩n−1j=0D(Aj)
dense in E, that satisfy the following condition:

Condition F: There exists a linear, closed operator B on E with 0 ∈ %(B) such that
B−1Aj can be extended to bounded operators Bj = B−1Aj for all j = 0, 1, ..., n− 1.

For a number λ ∈ C, define the operator S(λ) by

S(λ) := λn −B(
n−1∑
j=0

λjB−1Aj)

= λn −B(

n−1∑
j=0

λjBj)

with

D(S(λ)) = {x ∈ E :
n−1∑
j=0

λjBjx ∈ D(B)}.

It is not hard to see that ∩n−1j=0D(AJ) ⊆ D(S(λ). Moreover, since B−1S(λ) are
bounded, S(λ) are closed operators. Finally, we define the resolvent %(S) by

%(S) := {λ ∈ C : S(λ) is injective and surjective}

and the spectrum σ(S) := C\%(S). Since S(λ) are closed operators, if λ ∈ %(S),
then S(λ)−1 is a bounded operator on E.
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2 Periodic Mild Solutions of Higher Order Differential
Equations

Let F be either Lp(J) or C(J) space. We define the operator I : F → C(J) by

If(t) :=
∫ t
0 f(s)ds and Ijf := I(Ij−1f).

Definition 2. (1) Suppose f ∈ Lp(J). A continuous function u is called a mild
solution of (1.1) on J , if

∑n−1
j=0 BjI

n−ju(t) ∈ D(B) and there are vector x0,
x1, ..., xn−1 in E such that

u(t) =
n−1∑
j=0

ti

j!
xj +B

( n−1∑
j=0

BjI
n−ju(t)

)
+ Inf(t) (2.1)

for all t ∈ J .

(2) Suppose f is a continuous function on J . A function u is a classical solution of
(1.1) on J , if u is n-times continuously differentiable,

∑n−1
j=0 Bju

(j)u(t) ∈ D(B)
and

u(n)(t) = B

( n−1∑
j=0

Bju
(j)(t)

)
+ f(t)

holds for t ∈ J .

The mild solution to (1.1) defined by (2.1) is really an extension of classical
solution in the sense that every classical solution is a mild solution and conversely, if
a mild solution is n-times continuously differentiable, then it is a classical solution.
That statement is actually contained in the following lemma. For the sake of
simplicity, for j < 0, we denote Iju(t) := u(j)(t).

Lemma 3. Suppose 0 ≤ m ≤ n and u is a mild solution of (1.1), which is m-times
continuously differentiable. Then we have

∑n−1
j=0 BjI

n−m−ju(t) ∈ D(B) and

u(m)(t) =
n−1∑
j=m

tj−m

(j −m)!
xj +B

( n−1∑
j=0

BjI
n−m−ju(t)

)
+ In−mf(t). (2.2)

Proof. If m = 0, then (2.2) coincides with (2.1). We prove for m = 1: Let

v(t) := B

( n−1∑
j=0

BjI
n−ju(t)

)
= u(t)−

n−1∑
j=0

tj

j!
xj − Inf(t).

Then, by the assumptions, v is continuously differentiable and

v′(t) = u′(t)−
n−1∑
j=1

tj−1

(j − 1)!
xj − In−1f(t).
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Periodic Mild Solutions to Complete Higher Order Diff. Eq. on Banach Space 27

Let h > 0 and put

vh :=
n−1∑
j=0

Bj
1

h

∫ t+h

t
In−j−1u(s)ds.

Then vh →
∑n−1

j=0 Bj(I
n−j−1u)(t) for h→ 0 and

Bvh = B

n−1∑
j=0

1

h

(
Bj

∫ t+h

0
In−j−1u(s)ds−Bj

∫ t

0
In−j−1u(s)ds

)

=
1

h
B
n−1∑
j=0

Bj

∫ t+h

0
In−j−1u(s)ds− 1

h
B
n−1∑
j=0

Bj

∫ t

0
In−j−1u(s)ds

=
1

h
(v(t+ h)− v(t))

→ v′(t) for h→ 0.

Since B is a closed operator, we obtain that
∑n−1

j=0 Bj(I
n−j−1u)(t) ∈ D(B) and

B
n−1∑
j=0

Bj(I
n−j−1u)(t) = u′(t)−

n−1∑
j=1

tj−1

(j − 1)!
xj − In−1f(t),

from which (2.2) with m = 1 follows. If m > 1, we obtain (2.2) by repeating the
above process (m− 1) times.

In particular, if f is continuous and the mild solution u is n-times continuously
differentiable, i.e. m = n, then (2.2) becomes u(n)(t) = B

∑n−1
j=0 BjI

−ju(t) + f(t) =

B
∑n−1

j=0 Bju
(j)(t) + f(t), i.e. u is a classical solution of (1.1).

We now consider the mild solutions which are (n−1) times continuously differentiable.
The following proposition describes the connection between the Fourier coefficients
of those solutions and those of f(t). Before stating the proposition, we define the
bounded operator on E:

S′(λ) := λnB−1 −
n−1∑
j=0

λjBj .

It is not hard to see that S′(λ) is the bounded extension of B−1S(λ).

Proposition 4. Suppose f ∈ Lp(J) and u is a mild solution of (1.1), which is (n−1)
times continuously differentiable. Then

S′(2kπi)uk −B−1fk =

n−1∑
j=0

(
(2kπi)n−j−1B−1 −

n−1∑
m=j+1

(2kπi)m−j−1Bm

)
[u(j)(0)− u(j)(1)]

(2.3)

for k ∈ Z.
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28 L. Nguyen

Proof. Denote xm := u(m)(0)− u(m)(1). Let u
(m)
k be the kth Fourier coefficient

of u(m). Using the identity

u
(m)
k = [u(m−1)(1)− u(m−1)(0)] + (2kπi)u

(m−1)
k = −xm−1 + (2kπi)u

(m−1)
k (2.4)

for m = 0, 1, 2, ..., n− 1 (by Lemma 1), we obtain

u
(m)
k = −

m−1∑
j=0

(2kπi)m−j−1xj + (2kπi)muk. (2.5)

Let u now be a mild solution of (1.1), which is (n−1) times continuously differentiable.
By Lemma 3, it satisfies the following identity

u(n−1)(t) = u(n−1)(0) +B

( n−1∑
m=1

Bmu
(m−1)(t) +B0

∫ t

0
u(s)ds

)
+

∫ t

0
f(s)ds. (2.6)

First, if k = 0, then using (2.6) with t = 0 and t = 1 we have

0 =
n−1∑
m=1

Bmu
(m−1)(0)

and

−xn−1 = B

( n−1∑
m=1

Bmu
(m−1)(1) +B0u0

)
+ f0,

from which we have

−B−1xn−1 −B−1f0 =

n−1∑
m=1

Bmu
(m−1)(1) +B0u0

= −
n−1∑
m=1

Bmxm−1 +B0u0, (2.7)

which means that (2.3) holds for k = 0.

Next, if k 6= 0, taking the kth Fourier coefficient on both sides of (2.6), we obtain

u
(n−1)
k = B

( n−1∑
m=1

Bmu
(m−1)
k +B0

∫ 1

0
e−2kπis

∫ s

0
u(τ)dτds

)
+

∫ 1

0
e−2kπis

∫ s

0
f(τ)dτds

= B

( n−1∑
m=1

Bmu
(m−1)
k +

B0uk −B0u0
2kπi

)
+
fk − f0
2kπi

,
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Periodic Mild Solutions to Complete Higher Order Diff. Eq. on Banach Space 29

from which we obtain

n−1∑
m=1

Bmu
(m−1)
k +

B0uk −B0u0
2kπi

= B−1u
(n−1)
k +

B−1f0 −B−1fk
2kπi

(2.8)

Here we used Lemma 1 for F (t) =
∫ t
0 u(τ)dτds and F (t) =

∫ t
0 f(τ)dτds. Using (2.5)

for both sides of (2.8) we have

∑n−1
m=1 Bm

(m−2∑
j=0

−(2kπi)m−j−2xj + ((2kπi)m−1uk

)
+
B0uk −B0u0

2kπi

= B−1(
n−2∑
j=0

−(2kπi)n−j−2xj + (2kπi)n−1uk) +
B−1f0 −B−1fk

2kπi
,

from which it implies

S′(2kπ)uk −B−1fk =

=

n−2∑
j=0

(2kπi)n−j−1B−1xj −
n−1∑
m=1

Bm

(m−2∑
j=0

(2kπi)m−j−1xj

)
− (B0u0 +B−1f0).

(2.9)

Using Identity (2.7) for (2.9) we have

S′(2kπ)uk −B−1fk =

=
n−2∑
j=0

(2kπi)n−j−1B−1xj −
n−1∑
m=1

Bm

(m−2∑
j=0

(2kπi)m−j−1xj

)
− (−B−1xn−1 +

n−1∑
m=1

Bmxm−1)

= B−1xn−1 +

n−2∑
j=0

(2kπi)n−j−1B−1xj −
n−1∑
m=1

Bm

(m−2∑
j=0

(2kπi)m−j−1xj + xm−1

)

= B−1xn−1 +
n−2∑
j=0

(2kπi)n−j−1B−1xj −
n−1∑
m=1

m−1∑
j=0

(2kπi)m−j−1Bmxj

=

n−1∑
j=0

(2kπi)n−j−1xj −
n−2∑
j=0

n−1∑
m=j+1

(2kπi)m−j−1Amxj

= B−1xn−1 +
n−2∑
j=0

(
(2kπi)n−j−1B−1 −

n−1∑
m=j+1

(2kπi)m−j−1Bm

)
xj

=

n−1∑
j=0

(
(2kπi)n−j−1B−1 −

n−1∑
m=j+1

(2kπi)m−j−1Bm

)
xj ,
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from which (2.3) follows.

The interesting point of Proposition 4 is that the Fourier coefficients of the mild
solution u depend not only on u but also on its derivatives. If u is a periodic solution,
then we have a nice relationship between Fourier coefficients of u and those of f , as
the following proposition shows.

Proposition 5. Suppose f ∈ Lp(J) and u is a mild solution of (1.1), which is (n−1)
times continuously differentiable. Then u is 1-periodic if and only if

S(2kπi)uk = fk (2.10)

for every k ∈ Z.

First we prove the following lemma.

Lemma 6. Suppose x0, x1, ..., xn−1 are n vectors in E. Then, from the identities

n−1∑
j=0

(
(2kπi)n−j−1B−1 −

n−1∑
m=j+1

(2kπi)m−j−1Bm

)
xj = 0 (2.11)

for all k ∈ Z we have x0 = x1 = ... = xn−1 = 0.

Proof. We first show x0 = 0. Put

d := max{‖Amxj‖, ‖B−1xj‖ : 1 ≤ m ≤ (n− 1); 0 ≤ j ≤ (n− 1)}

For the sake of simplicity, denote α := 2kπi. From (2.11) we have

‖αn−1B−1x0 −
n−1∑
m=1

αm−1Bmx0‖ = ‖
n−1∑
j=1

(
αn−j−1B−1 −

n−1∑
m=j+1

αm−j−1Bm

)
xj‖

(2.12)
Using triangle inequality for each side of (2.12) we have

‖αn−1B−1x0 −
n−1∑
m=1

αm−1Bmx0‖ ≥ |α|n−1‖B−1x0‖ − d
n−1∑
m=1

|α|m−1

= |α|n−1‖B−1x0‖ − d
|α|n−1 − 1

|α| − 1

(2.13)
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and

‖
n−1∑
j=1

(
αn−j−1B−1 −

n−1∑
m=j+1

αm−j−1Bm

)
xj‖ ≤ d

n−1∑
j=1

(
|α|n−j−1 +

n−1∑
m=j+1

|α|m−j−1
)

= d
n−1∑
j=1

n∑
m=j+1

|α|m−j−1

= d

n−1∑
j=1

|α|n−j − 1

|α| − 1

= d

∑n−1
j=1 |α|n−j − (n− 1)

|α| − 1

= d
(|α|n − |α|)/(|α| − 1)− (n− 1)

|α| − 1

= d
|α|n − n|α|+ (n− 1)

(|α| − 1)2
. (2.14)

Combining (2.13) and (2.14) we obtain

|α|n−1‖B−1x0‖ ≤ d
(
|α|n−1 − 1

|α| − 1
+
|α|n − n|α|+ (n− 1)

(|α| − 1)2

)
,

which implies

‖B−1x0‖ ≤ d
2|α|n − |α|n−1 − (n+ 1)|α|+ n

|α|n+1 − 2|α|n + |α|n−1
.

Replace α = 2kπi back, we have

‖B−1x0‖ ≤ d
2|2kπ|n − |2kπ|n−1 − (n+ 1)|2kπ|+ n

|2kπ|n+1 − 2|2kπ|n + |2kπ|n−1
(2.15)

for all k ∈ Z. Let k → ∞, then the right hand side of (2.15) approaches to zero.
Hence B−1x0 = 0, and thus, x0 = 0. With the same manner, we can show x1 = 0,
and then x2 = 0 and so on, and the lemma is proved.

Proof of Proposition 5. Suppose u is a mild 1-periodic solution of (1.1), which is
(n− 1) times continuously differentiable, then u′, u′′, ..., u(n−1) are also 1-periodic,
i.e. u(1) = u(0), u′(1) = u′(0), ..., u(n−1)(1) = u(n−1)(0). Hence (2.10) follows
directly from (2.3). Conversely, suppose (2.10) holds for all k ∈ Z. That means

n−1∑
j=0

(
(2kπi)n−j−1B−1 −

n−1∑
m=j+1

(2kπi)m−j−1Bm

)
[u(j)(0)− u(j)(1)] = 0
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for all k ∈ Z. By Lemma 6 then u(j)(0) − u(j)(1) = 0 for all j = 0, 1, ..., n − 1. In
particular, u is 1-periodic function.

From Proposition 5 we obtain

Corollary 7. Suppose f ∈ Lp(J). Then

(i) If S(2kπi) is injective for k ∈ Z, then Equation (1.1) has at most one 1-periodic
mild solution, which belongs to Pn−1(J).

(ii) If there exists a number k ∈ Z such that fk 6∈ RangeS(2kπi), then Equation
(1.1) has no periodic mild solution which belongs to Pn−1(J).

We now are going to find conditions such that for each function f ∈ Wm
p (J),

Equation (1.1) has a unique 1-periodic mild solution, which is (n−1) times continuously
differentiable. We are in the position to state the main result.

Theorem 8. Let Aj, j = 0, 2, ..., n − 1, be linear, closed operators on E. The
following statements are equivalent.

(i) For each f ∈Wm
p (J), Equation (1.1) admits a 1-periodic mild solution, which

belong to Wn
p (J) (i.e. u ∈ PWn−1(J));

(ii) For each k ∈ Z, 2kπi ∈ %(S) and there exists a constant C > 0 such that

‖
∑
k

S(2kπi)−1e2kπi·xk‖Wn
p
≤ C · ‖

∑
k

e2kπi·xk‖Wm
p

; (2.16)

for any finite sequence {xk} ⊂ E

If E is a Hilbert space , p = 2, and 0 ≤ r ≤ m, then (i) and (ii) are equivalent to

(iii) For each f ∈ W r
p (J), Equation (1.1) admits a 1-periodic mild solution, which

belong to Wn−m+r
p (J);

(iv) For every k ∈ Z, (2kπi) ∈ %(S) and

sup
k∈Z
‖kn−mS(2kπi)−1‖ <∞ (2.17)

We will need the following lemma.

Lemma 9. Let F1 := Wm
p (J) and F2 := WPnp (J). Then the following are equivalent:

(1) For each function f ∈ F1, (1.1) admits a unique mild solution u in F2.

(2) There exists a dense subset D in F1 such that:

(i) For each function f ∈ D, (1.1) admits a unique mild solution u in F2;
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(ii) There exists a constant C > 0 such that

‖u‖F2 ≤ C‖f‖F1 (2.18)

for all f ∈ D.

Proof. (1)⇒ (2): Suppose for each function f ∈ F1, (1.1) admits a unique mild
solution u in F2. Define the operator G : F1 → F2 as follows: For each f ∈ F1,
Gf is the unique mild solution of (1.1) in F2. By the assumptions, G is everywhere
defined. We will show G is bounded by proving it is a closed operator.

To that end , let {fl}l>0 be a sequence in F1 with lim
l→∞

fl = f in F1 and lim
l→∞

ul =

lim
m→∞

Gfl = u in F2. We will show u = Gf . Note that for each t ∈ [0, 1] and

j = 0, 1, 2, ..., (n − 1) we have lim
l→∞

u
(j)
l = u(j)(t), lim

l→∞

∫ t
0 ul(s)ds =

∫ t
0 u(s)ds and

lim
l→∞

∫ t
0 fl(s)ds =

∫ t
0 f(s)ds. Hence, if we denote

vl(t) :=

n−1∑
j=1

Bju
(j−1)
l (t) +B0

∫ t

0
ul(s)ds

then

lim
l→∞

vl(t) =

n−1∑
j=1

Bju
(j−1)(t) +B0

∫ t

0
u(s)ds.

Moreover,

Bvl(t) = B(
n−1∑
j=1

Bju
(i−1)
l (t) +B0

∫ t

0
uj(s)ds)

= u
(n−1)
l (t)− u(n−1)l (0)−

∫ t

0
fl(s)ds

→ u(n−1)(t)− u(n−1)(0)−
∫ t

0
f(s)ds

as l→∞. Since B is a closed operator, we have

n−1∑
j=1

Bju
(j−1)(t) +B0

∫ t

0
u(s)ds ∈ D(B)

and

B

( n−1∑
j=1

Bju
(j−1)(t) +B0

∫ t

0
u(s)ds

)
= u(n−1)(t)− u(n−1)(0)−

∫ t

0
f(s)ds,
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which means that u is a mild solution of (1.1) corresponding to f . So, G is a bounded
operator and (2) is satisfied with C = ‖G‖.
Conversely, suppose (2) is satisfied. Then, for any f ∈ F1 there exists a sequence
{fl} ⊂ D such that fl → f in F1 topology as l → ∞. Let ul be the mild solution
to (1.1) in F2 corresponding to fl, then, by (2.18), lim

l→∞
ul = u for some u ∈ F2 in

F2 topology and ‖u‖F2 ≤ C‖f‖F1 . With the same manner as the above part, we
can show that u is a mild solution corresponding to f . The uniqueness of u can be
easily clarified by using (2.18) and the lemma is proved.

Proof of Theorem 8. First we prove the following note: If x0 and f0 are two
vectors in E with S(2kπi)x0 = f0, then u(t) := e2kπitx0 is a (classical) solution to
(1.1) corresponding to f(t) := e2kπitf0. Indeed, S(2kπi)x0 = f0 means

n−1∑
j=0

(2kπi)jBjx0 ∈ D(B)

and

(2kπi)nx0 −B
n−1∑
j=0

(2kπi)jBjx0 = f0. (2.19)

Multiply both side of (2.19) by e2kπit and note that u(j)(t) = (2kπi)je2kπitx0, we
have

u(n)(t)−B
n−1∑
j=0

Bju
(j)(t) = f(t),

which means u is a classical solution to (1.1).

(i) → (ii): We first show that 2kπi ∈ %(S) for each k ∈ Z. To that end, suppose
x is any vector in E, f(t) = e2kπitx and let u(t) be the unique mild 1-periodic
solution to (1.1) corresponding to f , which is in Wn

p (J). By Proposition 5 we have
S(2kπi)uk = x. Hence S(2kπi) is surjective. On the other side, if S(2kπi) is not
invertible, i.e. there is a non-zero vector x0 ∈ E such that S(2kπi)x0 = 0, then, by
the above note, u1(t) :≡ 0 and u2(t) := e2kπitx0 are two distinct 1-periodic classical,
and hence mild solutions to the homogeneous equation u(n)(t) = Σn−1

j=0Aju
(j)(t). This

is contradicting to the uniqueness of u. So S(2kπi) is invertible, i.e. 2kπi ∈ %(S).

Let now f(t) :=
∑

k e
2kπitxk, where {xk} is any finite sequence in E. Then,

by Proposition 5, u(t) =
∑

k(S(2kπi)−1e2kπitxk is the unique 1-periodic classical
solution to (1.1) corresponding to f . Thus, (2.16) is obtained by inequality ‖u‖Wn

p
≤

‖G‖ · ‖f‖Wm
p

.

(ii) → (i): Put

M := {f(t) =
∑
k

e2kπitxk : {xk} is a finite sequence in E}.

******************************************************************************
Surveys in Mathematics and its Applications 6 (2011), 23 – 41

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v06/v06.html
http://www.utgjiu.ro/math/sma


Periodic Mild Solutions to Complete Higher Order Diff. Eq. on Banach Space 35

Observe that M is dense in Wm
p (J). Moreover, if f is a function in M, i.e., if

f(t) =
∑

k e
2kπtxk, then u(t) =

∑
k(S(2kπi))−1e2kπitxk is a 1-periodic classical

solution of (1.1) corresponding to f and, by Corollary 7(i), it is the unique one.
From (2.16) it follows that ‖u‖Wn

p (J) ≤ C‖f‖Wm
p (J) for all f ∈ M. By Lemma 9,

that implies (i).

If E now is a Hilbert space, then Wm
2 (J) is a Hilbert space for any 0 ≤ m ≤ n with

the norm

‖f‖2Wm
2

=

m∑
j=0

‖f (j)‖2.

We first prove the equivalence (ii)⇔ (iv). Suppose (ii) holds. For any k ∈ Z, take
f(t) := e2kπitx and u(t) = S(2kπi)−1e2kπitx be the corresponding solution to (1.1).
We have

‖f‖2Wm
2 (J) =

m∑
j=0

‖(2kπ)jx‖2 (2.20)

and

‖u‖2Wn
2 (J) =

n∑
j=0

‖(2kπ)jS(2kπi)−1x‖2.

Using (2.16) we have

n∑
j=0

‖(2kπ)jS(2kπi)−1x‖2 ≤ C2
m∑
j=0

‖(2kπ)jx‖2,

which implies

‖S(2kπi)−1x‖2 ≤ C2

∑m
j=0 |2kπ|2j∑n
j=0 |2kπ|2j

· ‖x‖2 (2.21)

for any x ∈ E and any k ∈ Z.

For a positive number λ and an integer m with 0 ≤ m ≤ n it is easy to show the
inequality: ∑m

j=0 λ
2j∑n

j=0 λ
2j
≤ 1

λ2(n−m)
.

Thus, from (2.21) we have

‖S(2kπi)−1x‖ ≤ C 1

|2kπ|n−m
· ‖x‖

for all k ∈ Z and all x ∈ E, from which (2.17) follows.
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Conversely, suppose (iv) holds, i.e., there is a constant C > 0 such that ‖S(2kπi)−1‖ ≤
C|k|m−n for k ∈ Z. Using that inequality we have

‖
∑
k

(S(2kπi)−1e2kπi·xk‖2Wn
2 (J) =

n∑
j=0

(∑
k

(2kπ)2j‖S(2kπi)−1xk‖2
)

≤ C

n∑
j=0

(∑
k

(2kπ)2jk2m−2n‖xk‖2
)

≤ C1

n∑
j=0

(∑
k

(2kπ)2j+2m−2n‖xk‖2
)

= C1

∑
k

( n∑
j=0

(2kπ)2j+2m−2n
)
‖xk‖2

≤ C1(n+ 1)
∑
k

(2kπ)2m‖xk‖2

≤ C1(n+ 1)
m∑
j=0

(∑
k

(2kπ)2j‖xk‖2
)

= C1(n+ 1)‖
∑
k

e2kπi·xk‖2Wm
2 (J),

where C1 = C(2π)n−m. Thus, (2.16) holds and (ii) is satisfied.

Finally, observe that if E is a Hilbert space and 0 ≤ r ≤ m, then with the same
manner as in the proof (ii)⇔ (iv), we can show that (iv) is equivalent to

(ii′) For each k ∈ Z, 2kπi ∈ %(S) and there exists a constant C > 0 such that

‖
∑
k

(S(2kπi)−1e2kπi·xk)‖Wn−m+r
p

≤ C · ‖
∑
k

e2kπi·xk‖W r
p

(2.22)

for any finite sequence {xk} ⊂ E.

On the other hand, (ii′) is equivalent to (iii) due to Lemma 9. Hence, (iii) is
equivalent to (iv) and the theorem is completely proved.

3 Some special cases

The u(n)(t) = Au(t) +f(t) case: We consider the higher order differential equation

u(n)(t) = Au(t) + f(t), 0 ≤ t ≤ 1, (3.1)

where A is a linear, closed and densely defined operator with %(A) 6= ∅. In this
case, Condition F is satisfied, as we choose B = (λ − A), where λ ∈ %(A). Indeed,
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B−1A = (λ−A)−1A = λ(λ−A)−1−λI is bounded. Also, S(λ) = (λn−A). Hence,
applying Theorem 8, we have

Theorem 10. The following statements are equivalent.

(i) For each function f ∈ Wm
p , Equation (3.1) admits a unique 1 periodic mild

solution in Wn
p ;

(ii) For each k ∈ Z, (2kπi)n ∈ %(A) and there exists a constant C > 0 such that

‖
∑
k

((2kπi)n −A)−1e2kπi·xk‖PWn−1
p
≤ C · ‖

∑
k

e2kπi·xk‖Wm
p

; (3.2)

for any finite sequence {xk} ⊂ E

If E is a Hilbert space, p = 2 and 0 ≤ r ≤ m, then (i) and (ii) are equivalent to

(iii) For each function f ∈ W r
p , Equation (3.1) admits a unique 1-periodic mild

solution in Wn−m+r
p ;

(iv) For every k ∈ Z, (2kπi)n ∈ %(A) and

sup
k∈Z
‖kn−m((2kπi)n −A)−1‖ <∞. (3.3)

The Semigroup case: When n = 1 and A generates a C0-semigroup (T (t))t≥0,
then the mild solution of the differential equation

u′(t) = Au(t) + f(t), 0 ≤ t ≤ 1 (3.4)

can be expressed by

u(t) = T (t)u(0) +

∫ t

0
T (t− s)f(s)ds. (3.5)

We have the following result, in which the equivalence between (i) and (v) is the
Gearhart’s Theorem [6].

Theorem 11. Let A generate a C0-semigroup (T (t))t≥0. Then the following statements
are equivalent:

(i) 1 ∈ %(T (1));

(ii) For every function f ∈ Lp(J), Equation (3.4) admits a unique 1-periodic mild
solution;

(iii) For every function f ∈WP 1
p (J), Equation (3.4) admits a unique mild solution

in WP 1
p (J);
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(iv) For every function f ∈ WP 1
p (J), Equation (3.4) admits a unique 1-periodic

classical solution

If E is a Hilbert space, all the above statements are equivalent to

(v) {2kπi : k ∈ Z} ⊂ %(A) and

sup
k∈Z
‖(2kπi−A)−1‖ <∞.

Proof. The equivalence (i) ⇔ (ii) was proved in [14]. The equivalence (ii) ⇔
(iv) can be shown by using standard arguments and, if E is a Hilbert space, (iii) ⇔
(v) follows from Theorem 10. The inclusion (iv) ⇒ (iii) is obvious. So, it remains
to show (iii) → (iv).

To this end, let u be the unique mild solution of (3.4), which belong to WP 1
p (J).

Since
∫ t
0 T (t−s)f(s)ds ∈ D(A) and t→

∫ t
0 T (t−s)f(s)ds is continuously differentiable

for any f ∈W 1
p (J) (see e.g. [11]), we obtain that T (·)u(0) ∈W 1

p (J). It follows that
T (t)u(0) ∈ D(A) for t > 0 (since t 7→ T (t)x is differentiable at t0 if and only if
T (t0)x ∈ D(A)). Hence, u(1), and thus, x = u(1) belongs to D(A). So u is a
classical solution. The uniqueness of the 1-periodic classical solution is obvious.

A cosine family case: We now consider the second order differential equation:

u′′(t) = Au(t) + f(t) 0 ≤ t ≤ 1, (3.6)

where A is generator of a cosine family (C(t))t∈R on E. Recall (see u.g. [1]) that in
this case there exists a Banach space F such that D(A) ↪→ F ↪→ E and such that
the operator

A :=

(
0 I
A 0

)
with D(A) = D(A) × F generates the C0-semigroup T (t) :=

(
C(t) S(t)
C ′(t) C(t)

)
on

F×E, where S(t) is the associated sine family. Moreover, it is not hard to check that
u is a mild solution of (3.6), which is continuously differentiable (a mild solution,
which is in WP 2

p (J), or a classical solution of (3.6), respectively), if and only if

U = (u, u′)T is a mild solution (a mild solution, which is in WP 1
p (J), or a classical

solution, respectively) of the first order differential equation

U ′(t) = AU(t) + (0, f(t))T , 0 ≤ t ≤ 1 (3.7)

in space F × E. Using (3.5), we have the explicit form of u by

u(t) = C(t)u(0) + S(t)u′(0) +

∫ t

0
S(s− τ)f(τ)dτ.
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We have the following result, in which the equivalence between (i) and (ii) is proved
in [17] and the equivalence among (ii), (iii), (iv) and (v) follows from the above
observation and Theorem 11.

Theorem 12. Let A generate a cosine family (C(t))t∈R in E. Then the following
statements are equivalent.

(i) 1 ∈ %(C(1));

(ii) For each function f ∈ Lp(J), Equation (3.6) has a unique 1-periodic mild
solution, which is continuously differentiable;

(iii) For each function f ∈WP 1
p (J), Equation (3.6) admits a unique mild solution

in WP 2
p (J);

(iv) For each function f ∈ WP 1
p (J), Equation (3.6) admits a unique 1-periodic

classical solution;

If E is a Hilbert space, all the above statements are equivalent to

(v) {−4k2π2 : k ∈ Z} ⊂ %(A) and

sup
k∈Z
‖k(4k2π2 +A)−1‖ <∞.

A complete case: We consider the following differential equation:

n∏
j=1

(
d

dt
− ajA)u(t) = f(t), 0 ≤ t ≤ 1, (3.8)

where aj , j = 1, 2, ..., n are non-zero complex numbers and A is a linear and closed
operator on E with %(A) 6= ∅. We can re-write (3.8) as the following:

u(n)(t) +

n−1∑
j=0

bjA
n−ju(j)(t) = f(t), (3.9)

where bj are certain, corresponding coefficients. So, in this case Aj = −bjAn−j and
they satisfy Condition F with B = (λ−A)n. Moreover, by a short calculation, S(λ)
is

S(λ) = λn +

n−1∑
j=0

λjbjA
n−j

=

n∏
j=1

(λ− ajA)
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with D(S(λ)) = D(An). It is not hard to show that λ ∈ %(S) if and only if λ/aj ∈
%(A) and

S(λ)−1 =
n∏
j=1

(λ− an−j+1A)−1 =
n∏
j=1

(λ− ajA)−1.

Hence, from Theorem 8 we have:

Theorem 13. Let A be a linear and closed operator on a Hilbert space E with
%(A) 6= ∅ and 0 ≤ m ≤ r ≤ n. Then, for each function f ∈ Wm

2 , Equation (3.8)
admits a unique 1-periodic mild solution in W r

2 (J), if for all k ∈ Z, the following
conditions are satisfied:

(i) 2kπi
aj
∈ %(A) for j = 1, 2, ..., n;

(ii) There exists a constant C such that |k|(r−m)/n‖(2kπi− ajA)−1‖ < C.
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