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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF
SOLUTION TO A SINGULAR ELLIPTIC PROBLEM

Dragoş-Pătru Covei

Abstract. In this paper we obtain existence results for the positive solution of a singular

elliptic boundary value problem. To prove the main results we use comparison arguments and the

method of sub-super solutions combined with a procedure which truncates the singularity.

1 Introduction

This paper contains contribution of a technical nature to the study of positive
solutions of the equations

−∆u+c(x)u−1 |∇u|2 = a(x) for x ∈ RN , u > 0 in RN , u(x)→ 0 as |x| → ∞ (1.1)

where N > 2, a : RN → R is a function satisfying the following conditions

AC1) a, c ∈ C0,α
loc (RN ) for some α ∈ (0, 1);

AC2) a(x) > 0, c(x) > 0 for all x ∈ RN ;

A3) for ϕ(r) = max|x|=r a(x) we have∫ ∞
0

rϕ(r)dr <∞.

Problems like (1.1) has been intensively studied. Our study is motivated by the
works of Shu [17], Arcoya, Carmona, Leonori, Aparicio, Orsina and Petitta [2],
Arcoya, Barile and Aparicio [3] where the existence, non-existence and uniqueness
of solution for the problem like (1.1) are solved.

In this article we present a new argument in the study of the problem (1.1) more
simple that used in [2], [3], [17] and where the problem is considered just in the case
when Ω ⊂ RN is a bounded domain with smooth boundary.
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128 D.-P. Covei

The above equation contains different quantities, such as: singular nonlinear
term (like u−1), convection nonlinearity (denoted by |∇u|2), as well as potentials
(c and a). The principal difficulty in the treatment of (1.1) is due to the singular
character of the equation combined with the nonlinear gradient term.

The importance of the problem (1.1) is given considering the well know problem

∆u = a(x)h(u), u > 0 in Ω, u(x) =∞ as x→ ∂Ω, (1.2)

because we can easily deduce the following two remarks:

Remark 1. When h(u) = eu, by a transformation of the form w = e−u the problem
(1.2) becomes

−∆w +
|∇w|2

w
= a(x), w > 0 in Ω, w (x)→ 0 as x→ ∂Ω, (1.3)

but this is the problem (1.1) when c(x) = 1.

Remark 2. For h(u) = uδ (δ > 1) and w = C[u]−C
−1
, (C := 1/(δ− 1)) in (1.2) we

have

−∆w + δC
|∇w|2

w
= a(x), w > 0, in Ω, w → 0 as x→ ∂Ω, (1.4)

which is the problem (1.1) when c(x) = δC.

This finish the motivation of our work.
The main results of the article are:

Theorem 3. If Ω ⊂ RN is a bounded domain with boundary ∂Ω of class C2,α for
some α ∈ (0, 1) and a, c ∈ C0,α(Ω), a(x) > 0, c(x) > 0 for any x ∈ Ω, then the
problem

−∆u+ c(x)u−1 |∇u|2 = a(x) in Ω, u|∂Ω = 0, (1.5)

has at least a positive solution u ∈ C(Ω) ∩ C2,α(Ω).

In the next result we establish sufficient condition for the existence of solution
to the problem (1.1) in the case when Ω = RN .

Theorem 4. We suppose that hypotheses AC1), AC2), A3) are satisfied. Then, the
problem (1.1) has a C2,α

loc (RN ) positive solution vanishing at infinity. If, in addition,

lim
|x|→∞

|x|µ ϕ(|x|) <∞, (1.6)

for some µ ∈ (2, N), then

u(x) = O(|x|2−µ) as |x| → ∞. (1.7)

To prove the existence of such a solution to (1.1) we establish some preliminary
results.
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A singular elliptic problem 129

2 Preliminary results

Since we apply sub and super solution method due to Amann [1], we recall the
following definition of sub and super solution which are our main tools in the proof
of the solvability of problem (1.1).

For f1(x, η, ξ) : Ω × R × RN → R and g1 : ∂Ω → R, Amann introduce the
following definitions:

Definition 5. A function u ∈ C2,α(Ω) is called a sub solution for the problem

−∆u = f1(x, u,∇u) in Ω, u = g on ∂Ω, (2.1)

if
−∆u ≤ f1(x, u,∇u) in Ω, u = g on ∂Ω.

Definition 6. A function u ∈ C2,α(Ω) is called a super solution of the problem (2.1)
if

−∆u ≥ f1(x, u,∇u) in Ω, u = g on ∂Ω.

One of the important results from [1] is:

Lemma 7. Let Ω be a bounded domain from RN , with boundary ∂Ω of class C2,α

for some α ∈ (0, 1), g ∈ C2,α(∂Ω) and f1 be a continuous function with the property
that ∂f1/∂η, ∂f1/∂ξ

i, i = 1, N exists and are continuous on Ω × RN+1 and such
that

AM1) f1(·, η, ξ) ∈ Cα(Ω), uniformly for (η, ξ) in bounded subsets of R× RN ;
AM2)there exists a function f2 : R+ → R+ := [0,∞) such that

|f1(x, η, ξ)| ≤ f2(ρ)(1 + |ξ|2), (2.2)

for every ρ ≥ 0 and (x, η, ξ) ∈ Ω× [−ρ, ρ]× RN .
Under these assumption, if the problem (2.1) has a sub solution u and a super

solution u such that u(x) ≤ u(x), ∀x ∈ Ω then there exists at least a function
u(x) ∈ C2+α(Ω) which satisfies u(x) ≤ u(x) ≤ u(x) for all x ∈ Ω and satisfying

(2.1) pointwise. More precisely, there exist a minimal solution
∼
u(x) ∈ [u(x), u(x)]

and a maximal solution
≈
u(x) ∈ [u(x), u(x)], in the sense that every solution u(x) ∈

[u(x), u(x)] satisfies
∼
u(x) ≤ u(x) ≤ ≈u(x).

We will need the following variant of the maximum principle:

Lemma 8. Assume that Ω is a bounded open set in RN . If u : Ω→ R is a smooth
function such that {

−∆u ≥ 0 in Ω,
u ≥ 0 on ∂Ω,

then u ≥ 0 in Ω.

This finishes the auxiliary results. Now we prove the announced Theorems.
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130 D.-P. Covei

3 Proof of the Theorem 3

In the following will we use similarly argument that were used by Crandall, Rabinowitz
and Tartar [7], Noussair [15] and the author [6].

Let ε ∈ (0, 1). The existence will be established by solving the approximate
problems {

−∆u+ c(x)u−1 |∇u|2 = a(x), in Ω, u > ε in Ω,
u = ε, on ∂Ω.

(3.1)

For this, let ϕ1 be the first positive eigenfunction corresponding to the first
eigenvalue λ1 of the problem

−∆u(x) = λu(x), in Ω, u|∂Ω (x) = 0. (3.2)

It is well known that ϕ1 ∈ C2+α(Ω). We note by m2 := minx∈Ω a(x) and M1 :=
maxx∈Ω c(x) to prove that the function u(x) = σ1ϕ

2
1 + ε, where

0 < σ1 ≤ min

{
m2

2λ1 maxx∈Ω ϕ
2
1 + 4M1 maxx∈Ω |∇ϕ1|2

, 1

}
(3.3)

is a sub solution of (3.1) in the sense of Lemma 7. Indeed, by (3.3) we have

−∆u+ c(x)u−1 |∇u|2 − a(x) ≤ −∆u+M1u
−1 |∇u|2 −m2

≤ −2σ1ϕ1∆ϕ1 − 2σ1 |∇ϕ1|2 + 4M1σ1 |∇ϕ1|2 −m2

= 2σ1λ1ϕ
2
1 − 2σ1 |∇ϕ1|2 + 4M1σ1 |∇ϕ1|2 −m2

≤ 2σ1λ1ϕ
2
1 + 4M1σ1 |∇ϕ1|2 −m2 ≤ 0.

In the next step we prove the existence of a super solution to the problem (3.1). For
this, let v ∈ C2+α(Ω) be the unique solution of the problem

−∆y = a(x) in Ω, y(x) = 0 for x ∈ ∂Ω. (3.4)

We observe that, u = v + ε ∈ C2+α(Ω), fulfils

−∆u(x) + c(x)u−1(x) |∇u(x)|2 = a(x) + c(x)u−1(x) |∇u(x)|2 ≥ a(x) for x ∈ Ω.

Clearly, u is a super solution to (3.1). Now, since{
−∆[u− u] ≥ a(x) + c(x)u−1 |∇u|2 − a(x) ≥ 0, in Ω,

u− u = 0, on ∂Ω,
(3.5)

follows from the maximum principle, Lemma 8, that u(x) ≤ u(x), x ∈ Ω.
We have obtained a sub solution u ∈ C2,α(Ω) and a super solution u ∈ C2,α(Ω)

for the problem (3.1) such that u ≤ u in Ω with the property from Lemma 7. Then,
there exists uε ∈ C2,α(Ω) such that

u(x) ≤ uε(x) ≤ u(x), x ∈ Ω. (3.6)
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and satisfying (pointwisely) the problem (3.1).
The relation (3.6) shows that u > 0 in Ω. We remark that u = σ1v

2 + ε, where
σ1 is a positive constant such that

0 < σ1 ≤ min

{
m2

maxx∈Ω[2v + 4M1 |∇v|2]
, 1

}
, (3.7)

is again a sub solution of (3.1) with the same property from Lemma 7.
In this time we have obtained a function uε ∈ C2,α(Ω) that satisfies pointwisely

the equivalently form of (3.1): −∆u+ c(x) (u+ ε)−1 |∇u|2 = a(x), in Ω,
u > 0, in Ω,
u = 0, on ∂Ω.

(3.8)

Moreover uε ∈ C2,α(Ω) is unique. Indeed, assume that the problem (3.8) has more
that one solution and let vε the second solution. Let us show that uε ≤ vε or,
equivalently, uε (x) + ε ≤ vε (x) + ε for any x ∈ Ω. Assume the contrary. Set

α(x) :=
uε (x) + ε

vε (x) + ε
− 1.

Since we have [α (x)]|∂Ω = 0 we deduce that maxΩ α (x), exists and is positive. At
that point, say x0, we have ∇α(x0) = 0 and ∆α(x0) ≤ 0, which implies(

− (vε + ε) ∆uε + (uε + ε) ∆vε

)
(x0) ≥ 0, (3.9)

and
|∇uε(x0)|2

(uε(x0) + ε)2 =
|∇vε|2

(vε(x0) + ε)2 . (3.10)

By (3.9) and (3.10) we have

a (x0)

uε(x0) + ε
− a (x0)

vε(x0) + ε
+ c(x0)

(
(vε + ε)−1 |∇vε|2

vε + ε
− (uε + ε)−1 |∇u|2

uε + ε

)
(x0) ≥ 0,

(3.11)
or, equivalently

a (x0)
vε(x0)− uε(x0)

(uε(x0) + ε) (vε(x0) + ε)
≥ 0. (3.12)

which is a contradiction with uε(x0) > vε(x0). So uε(x) ≤ vε(x) in Ω. A similar
argument can be made to produce vε(x) ≤ uε(x) forcing uε(x) = vε(x).

We will show that, for any smooth bounded subdomain Ω′ of RN there exists a
constant C4 > 0 such that

‖uε‖C2,α(Ω
′
)
≤ C4. (3.13)
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132 D.-P. Covei

For any bounded C2,α-smooth domain Ω′ ⊂ RN , take Ω1, Ω2 and Ω3 with C2,α-
smooth boundaries, such that Ω′ ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ Ω. Note that

uε(x) ≥ u (x) > 0, ∀x ∈ Ωi, i = 1, 3. (3.14)

Let hε(x) = a(x)− c(x) (uε (x) + ε)−1 |∇uε (x)|2 , x ∈ Ω3. Following, we use Ci=1,4,
to denote positive constants which are independent of ε.

Since −∆uε(x) = hε(x), x ∈ Ω3, we see by the interior gradient estimate theorem
of Ladyzenskaya and Ural’tseva [11, Theorem 3.1, p. 266] that there exists a positive
constant C1 independent of ε such that

max
x∈Ω2

‖∇uε (x)‖ ≤ C1 max
x∈Ω3

uε (x) . (3.15)

Using (3.6) and (3.15) we obtain that ‖∇uε‖ is uniformly bounded on Ω2. This final
result, the property of a and c shows that |hε| is uniformly bounded on Ω2 and so
hε ∈ Lp(Ω2) for any p > 1.

Since −∆uε(x) = hε(x) for x ∈ Ω2, we see from [6], that there exists a positive
constant C2 independent of ε such that

‖uε‖W 2,p(Ω1) ≤ C2(‖hε(x)‖Lp(Ω2) + ‖uε‖Lp(Ω2)),

i.e. ‖uε‖W 2,p(Ω1) is uniformly bounded.

Choose p such that p > N and p > N (1− α)−1. Then by Sobolev’s imbedding
theorem, it follows that ‖uε‖C1,α(Ω1) is uniformly bounded by a constant independent

of ε.
Moreover, this say that hε ∈ C0,α(Ω1) and ‖hε‖C0,α(Ω1) , is uniformly bounded.

Using this and the interior Schauder estimates (see [6, 8]), for solutions of elliptic
equations (4.1) we have that there exists a positive constant C3 independent of ε
with the property

‖uε‖C2,α(Ω
′
)
≤ C3

(
‖hε‖C0,α(Ω1) + sup

Ω1

uε

)
. (3.16)

Because ‖hε‖C0,α(Ω1) is uniformly bounded, we see from (3.16) that

‖uε‖C2,α
(

Ω
′) ≤ C4. (3.17)

Thus (3.13) is proved.

Set ε := 1/n and uε := un. Since the sequence un is bounded in C2,α
(

Ω
′
)

for

any bounded domain Ω′ ⊂⊂ Ω by (3.17), using the Ascoli-Arzela theorem and the
standard diagonal process, we can find a subsequence of un, denote again by un and

a function u ∈ C2
(

Ω
′
)

such that ‖un − u‖
C2

(
Ω
′) → 0 for n→∞. In particular

∆un respectively a(x)− c(x)(un(x) + 1/n)−1 |∇un(x)|2
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converge for n→∞ in Ω
′

to

∆u respectively a(x)− c(x)u(x)−1 |∇u(x)|2 .

It follows that u is a solution of

−∆u = a(x)− c(x)u−1(x) |∇u(x)|2 , in Ω
′
, (3.18)

of class C2(Ω
′
), and hence of class C2,α(Ω

′
) by a standard regularity arguments

based on Schauder estimates.

Since Ω′ is arbitrary, we also see that u ∈ C2,α(Ω). We have obtained un
n→∞→ u

(pointwisely) in C2,α(Ω).

For ε := 1/n
n→∞→ 0 in (3.6) we have

u2(x) := σ1ϕ
2
1 ≤ u(x) ≤ u2(x) := v(x), x ∈ Ω. (3.19)

Moreover, by (3.18) and (3.19), we obtain

−∆u = a(x)− c(x)u−1 |∇u|2 a.e. in Ω, u > 0 in Ω, u|∂Ω = 0.

Thus u ∈ C(Ω) ∩ C2,α(Ω) is the solution of the problem (1.5).

4 Proof of the Theorem 4

To prove the existence of solution to (1.1) we consider the following boundary value
problem

−∆u+ c(x)u−1 |∇u|2 = a(x), u > 0 in Bk, u = 0 on ∂Bk, (4.1)

where Bk := {x ∈ RN ||x| < k} is the ball of center 0 and radius k = 1, 2, ...
Put Ω = Bk in Theorem 3. Then the problem (4.1) has at least one solution
uk ∈ C(Bk) ∩ C2,α(Bk), which satisfies

u2 ≤ uk ≤ u2 in Bk, (4.2)

for u2 (resp. u2) the corresponding functions from Theorem 3 when Ω = Bk. In
outside of Bk we put uk = 0. The resulting function is in RN . Now, we observe that

w(r) :=

∫ ∞
r

ξ1−N
∫ ξ

0
σN−1ϕ(σ)dσdξ, r := |x| (4.3)

is the unique radial solution of the problem −∆w = ϕ(| x |) in RN , w > 0 in RN ,

w
|x|→∞→ 0. We prove that w is bounded. Using integration by parts and L’ Hôpital
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rule, we have∫ ∞
r

ξ1−N
∫ ξ

0
σN−1ϕ(σ)dσdξ = − 1

N − 2

∫ ∞
r

d

dξ

(
ξ2−N) [

∫ ξ

0
σN−1ϕ(σ)dσ]dξ

=
1

N − 2
lim
R→∞

{∫ R

r
ξϕ(ξ)dξ −R2−N

∫ R

0
σN−1ϕ(σ)dσ + r2−N

∫ r

0
σN−1ϕ(σ)dσ

}
=

1

N − 2
lim
R→∞

RN−2[
∫ R
r ξϕ(ξ)dξ + r2−N ∫ r

0 ξ
N−1ϕ(ξ)dξ]−

∫ R
0 ξN−1ϕ(ξ)dξ

RN−2

=
1

N − 2

[∫ ∞
r

ξϕ(ξ)dξ + r2−N
∫ r

0
ξN−1ϕ(ξ)dξ

]
, R > r. (4.4)

Now, by the second mean value theorem for integrals follows that there exists
r1 ∈ (0, r) such that∫ r

0
ξN−1ϕ(ξ)dξ =

∫ r

0
ξN−2ξϕ(ξ)dξ

= rN−2

∫ r

r1

ξϕ(ξ)dξ ≤ rN−2

∫ r

0
ξϕ(ξ)dξ (4.5)

for N > 2. By (4.4)-(4.5) we obtain w(r) ≤ K := 1
N−2

∫∞
0 ξϕ(ξ)dξ. We observe,

in addition, that w satisfies −∆w(|x|) + c(x)w−1(|x|) |∇w(|x|)|2 ≥ a(x), x ∈ RN ,
0 < w ≤ K and w(r)→ 0 as r →∞.

We prove that
uk ≤ w(|x|), x ∈ RN , k = 1, 2, 3, ... (4.6)

Since w(|x|) > 0 in RN and uk = 0 in RN\Bk it is enough to prove that uk ≤ w in
Bk, k = 1, 2, 3, ... To prove this we observe that w ∈ C2

(
Bk

)
and{

−∆[w(x)− uk(x)] ≥ c(x)u−1
k (x) |∇uk(x)|2 − a(x) + a(x) ≥ 0, in Bk,

w(x)− uk(x) > 0, on ∂Bk.

As a consequence of the maximum principle, Lemma 8, we have that uk ≤ w in Bk.
So (4.6) holds.

To finish the proof, use the standard convergence procedure (see [6] or [15]) and
so uk has a subsequence, denoted again by uk, such that uk → u (pointwise) in
C2,α
loc (RN ) and that u is a solution for the problem (1.5) that vanishing at infinity.

In order to show (1.7), from the above arguments we have

u ≤ w in RN . (4.7)

On the other hand, using (4.3) we have

lim
|x|→∞

w(|x|)
|x|2−µ

=
1

2− µ
lim
|x|→∞

w′(x)

|x|1−µ
=

1

µ− 2
lim
|x|→∞

[∫ |x|
0

σN−1ϕ(σ)dσ/ |x|N−µ
]

=
1

µ− 2
lim
|x|→∞

|x|µ ϕ(|x|) <∞.
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A singular elliptic problem 135

The above relation imply

w(x) = O(|x|2−µ) as |x| → ∞. (4.8)

Now, (1.7) follows from (4.8) and (4.7). The proof of Theorem 4 is completed.
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