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BOUNDARY VALUE PROBLEMS FOR
FRACTIONAL DIFFERENTIAL INCLUSIONS WITH
FOUR-POINT INTEGRAL BOUNDARY
CONDITIONS

Bashir Ahmad and Sotiris K. Ntouyas

Abstract. In this paper, we discuss the existence of solutions for a boundary value problem of
second order fractional differential inclusions with four-point integral boundary conditions involving
convex and non-convex multivalued maps. Our results are based on the nonlinear alternative of

Leray Schauder type and some suitable theorems of fixed point theory.

1 Introduction

This paper is concerned with the existence of solutions of boundary value problems
for fractional order differential inclusions with four-point integral boundary conditions.
More precisely, in Section 3, we consider the following boundary value problem for
fractional differential inclusions with four-point integral boundary conditions

Diz(t) € F(t,xz(t)), 0<t<l1l, 1<q<2,

3 (1.1)
z(0) = 04/0 x(s)ds, x(1)= B/Onm(s)ds, 0<¢n<l,

where ©D? denotes the Caputo fractional derivative of order ¢, F' : [0,1] xR — P(R)
is a multivalued map, P(R) is the family of all subsets of R and «, 5 € R.

Differential equations with fractional order have recently proved valuable tools in
the modeling of many physical phenomena [10], [11], [12], [20], [21]. There has been
a significant theoretical development in fractional differential equations in recent
years; see [17], [18], [23], [24], [25].

In the last few years, there has been much attention focused on boundary value
problems for fractional differential equations and inclusions, see [1], [4], [8], [9], [22]
and the references therein. The existence of solutions for nonlocal boundary value
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problems has been considerably investigated in many publications such as [2], [3],
[13].

The aim of our paper is to present existence results for the problem (1.1), when
the right hand side is convex as well as nonconvex valued. The first result relies
on the nonlinear alternative of Leray-Schauder type. In the second result, we shall
combine the nonlinear alternative of Leray-Schauder type for single-valued maps
with a selection theorem due to Bressan and Colombo for lower semicontinuous
multivalued maps with nonempty closed and decomposable values, while in the
third result, we shall use the fixed point theorem for contraction multivalued maps
due to Covitz and Nadler. The methods used are standard, however their exposition
in the framework of problem (1.1) is new.

The paper is organized as follows: in Section 2 we recall some preliminary facts
that we need in the sequel and in Section 3 we prove our main results.

2 Preliminaries

2.1 Multi-valued Analysis

Let us recall some basic definitions on multi-valued maps [14, 16].

For a normed space (X, |.||), let Py(X) ={Y € P(X) : Y is closed}, Py(X) =
{Y e P(X) :Y is bounded}, Pp(X) ={Y € P(X) : Y is compact}, and Py .(X) =
{Y € P(X) :Y is compact and convex}. A multi-valued map G : X — P(X) is
convex (closed) valued if G(z) is convex (closed) for all x € X. The map G is
bounded on bounded sets if G(B) = U,ecpG(z) is bounded in X for all B € P,(X)
(i.e. supyep{sup{ly| : y € G(x)}} < 00). G is called upper semi-continuous (u.s.c.)
on X if for each zy € X, the set G(x¢) is a nonempty closed subset of X, and if for
each open set N of X containing G(zg), there exists an open neighborhood N of
zg such that G(Np) C N. G is said to be completely continuous if G(B) is relatively
compact for every B € P,(X). If the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
ie., Tp = Tu, Yn = Y, Yn € G(xy) imply y. € G(z4). G has a fixed point if there is
x € X such that x € G(z). The fixed point set of the multivalued operator G will be
denoted by FizG. A multivalued map G : [0;1] — P;(R) is said to be measurable
if for every y € R, the function

t— d(y,G(t)) =inf{ly — z| : z € G(t)}

is measurable.

Let C([0, 1]) denote a Banach space of continuous functions from [0, 1] into R with the
norm [|z[lco = supyeo ] [2(¢)]. Let L([0,1],R) be the Banach space of measurable
functions = : [0,1] — R which are Lebesgue integrable and normed by ||z|;1 =

INEIGIE?
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Definition 1. A multivalued map F : [0,T] x R — P(R) is said to be Carathéodory
if

(i) t — F(t,x) is measurable for each x € R;

(ii) = —— F(t,x) is upper semicontinuous for almost all t € [0,T];
Further a Carathéodory function F is called L'— Carathéodory if
(iii) for each o > 0, there ewists po € L'([0,T],R*) such that
[E(t, z)|| = sup{[v] : v € F(t,2)} < @alt)

for all ||z||cc < « and for a. e. t € [0,T).

For each y € C([0,1],R), define the set of selections of F' by
Spy = {v e L'([0,1],R) : v(t) € F(t,y(t)) for a.e. t € [0,1]}.

Let X be a nonempty closed subset of a Banach space E and G : X — P(E)
be a multivalued operator with nonempty closed values. G is lower semi-continuous
(Ls.c.) if the set {y € X : G(y) N B # (0} is open for any open set B in E. Let
A be a subset of [0,1] x R. A is £ ® B measurable if A belongs to the c—algebra
generated by all sets of the form J x D, where J is Lebesgue measurable in [0, 1]
and D is Borel measurable in R. A subset A of L!([0,1],R) is decomposable if for
all z,y € A and measurable J C [0,1] = J, the function xx 7 + yxj—7 € A, where
X7 stands for the characteristic function of J.

Definition 2. Let Y be a separable metric space and let N : Y — P(L'([0,1],R)) be
a multivalued operator. We say N has a property (BC) if N is lower semi-continuous
(I.s.c.) and has nonempty closed and decomposable values.

Let F': [0,1] x R — P(R) be a multivalued map with nonempty compact values.
Define a multivalued operator F : C([0,1] x R) — P(L([0,1],R)) associated with
F as

F(x) ={w € L'([0,1],R) : w(t) € F(t,z(t)) for a.e. t € [0,1]},

which is called the Niemytzki operator associated with F.

Definition 3. Let F': [0,1] x R — P(R) be a multivalued function with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its
associated Nymetzki operator F is lower semi-continuous and has nonempty closed
and decomposable values.
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Let (X,d) be a metric space induced from the normed space (X;||.||). Consider
H;:P(X)xP(X)— RU{oco} given by

Hy(A, B) = max{supd(a, B),supd(A,b)},
acA beB

where d(A,b) = infoca d(a;b) and d(a, B) = infycp d(a;b). Then (P, (X), Hy) is a
metric space and (P (X), Hy) is a generalized metric space (see [16]).

Definition 4. A multivalued operator N : X — P,y(X) is called:

(a) v—Lipschitz if and only if there exists v > 0 such that

Hy(N(x), N(y)) <~vd(z,y) for each z,y € X;

(b) a contraction if and only if it is y— Lipschitz with v < 1.

The following lemmas will be used in the sequel.

Lemma 5. (/19]) Let X be a Banach space. Let F': [0,T] X R — Pepo(X) be an
L'— Carathéodory multivalued map and let © be a linear continuous mapping from
LY([0,1], X) to C([0,1],X). Then the operator

©oSp:C([0,1],X) = Py (C([0,1], X)), z+— (00 Sp)(x)=0(Spz)
is a closed graph operator in C([0,1], X) x C([0,1], X).

Lemma 6. ([5]) Let Y be a separable metric space and let N : Y — P(L([0,1],R))
be a multivalued operator satisfying the property (BC). Then N has a continuous
selection, that is, there exists a continuous function (single-valued) g : Y — L*([0,1],R)
such that g(x) € N(z) for every xz € Y.

Lemma 7. ([7]) Let (X,d) be a complete metric space. If N : X — Py(X) is a
contraction, then FixN # (.
2.2 Fractional Calculus

Let us recall some basic definitions of fractional calculus [17, 23, 25].
Definition 8. For a continuous function x : [0,00) — R, the Caputo derivative of
fractional order q is defined as

t
‘Dix(t) = ! ] / (t— )" M (s)ds, n—1<qg<nn=][q+1,
0

I'(n—gq

where [q] denotes the integer part of the real number q.
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Definition 9. The Riemann-Liouville fractional integral of order q is defined as

1 toa(s
Iz(t) = Q) /0 i —(s))l—qu’ q>0,

provided the integral exists.

Lemma 10. ([17]) For q > 0, the general solution of the fractional differential
equation “Dix(t) = 0 is given by

x(t) =co + a1t + cot? 4+ . eprt"
where c; € R, 1 =0,1,2,....n—1 (n=1g| +1).
In view of Lemma 10, it follows that
I9¢D9%(t) = x(t) 4+ co + 1t + cat? + .. + e t™ L, (2.1)
for some ¢; € R, i=0,1,2,...,n—1 (n=[q] + 1).
In order to define the solution of (1.1), we consider the following lemma.

Lemma 11. For a given g € C|0,1], the unique solution of the boundary value
problem

Dix(t)=g(t), 0<t<l, 1<qg<2,
£
z(0) = a/o z(s)ds, x(1)= ﬂ/onx(s)ds, 0<&n<l,

s given by

‘ -
2

= — )9 Yg(s)ds
") = F /0 (t — )7 g(s)d

2 ) ([l )
_a (“25 sa-gat) [ [s=mrigman) as @2

_7;@ <“§ +(1- £a)t> /0 (1= )T g(s)ds,

!

—+

+

where

7= 3106~ 1)(Br ~2) — a€(Bn — 1)] 0.
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Proof. In view of Lemma 10, for some constants ¢y, c; € R, we have

—5)11

xz(t) =1%(t) —co — 1t = /0 (tr(g

” (s)ds — co — cit. (2.3)

Using the boundary conditions, we find that

(€ — 1)co + 0452201 = aA, (2.4)
2
(Bn—1)co + <5;7 — 1) =pBB-C, (2.5)

where

B = [ ([ mrgmn ) as

*L —8)7 1g(s)ds
c = P(q>/0<1 1Ly (s)ds.

Solving (2.4) and (2.5) for ¢y and c¢;, we have that

o=+ [(O‘ﬂf - a> A— 0‘5523+ 0‘520]

~
and )

1= ~ [B(e€ = 1)B = (af = 1)C — a(Bn — 1) A].
Substituting the values of ¢ and ¢; in (2.3), we obtain (2.2). O

Definition 12. A function x € C([0,1],R) with its Caputo derivative of order q
existing on [0,1] is a solution of the problem (1.1) if there exists a function f €
LY([0,1],R) such that f(t) € F(t,z(t)) a.e. on [0,1] and

- b t —5)97 L f(s)ds
o) = Fo [ = e

- <“f w0 =gae) [ ([ = mp fmon ) a

vrl(q) (afZ +(1- ga)t> /01(1 = 8)17 fls)ds
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3 Main results
Theorem 13. Assume that

(Hy) F:[0,1] x R — P(R) is Carathéodory and has convex values;

(H2) there exists a continuous nondecreasing function ¢ : [0,00) — (0,00) and a
function p € L*([0,1],R") such that

I1E(t,)||lp :=sup{lyl| : y € F(t,2)} < p(t)ip([[zlloc) for each(t,z) € [0,1] x R;

(Hs3) there exists a number M > 0 such that

M
> 1, (3.1)
1 A+ Ay
— |1 M 1
F@@%M)wwm
where
Ay = [af(]2 = Bn?| + 2|87 — 1])¢
and

= (lale? + 2|1 — &al)(|Bln? + 1)
Then the boundary value problem (1.1) has at least one solution on [0, 1].
Proof. Define an operator

h e C(]0,1],R) :

mi Jo (= )77 f(s)ds
Qz) = h®:+%«M+M1”Mk“qVUWW
+vl“ﬂ(q) <% (1—¢a t) Jo (Jg (s =m)?1 f(m)dm) ds
\ _’Y%@) <a762 )fo 5)1~ lf( )ds, t € [0,1]

for f € SF.. We will show that 2 satisfies the assumptions of the nonlinear alternative
of Leray- Schauder type. The proof consists of several steps. As a first step, we show
that Q is convex for each x € C([0, 1],R). For that, let hy, ho € Q. Then there exist
f1, f2 € Sk such that for each ¢ € [0,1], we have

hi(t) = ng) /0 (t — )7L fi(s)ds

+7Fczq) <2 _26772 (B = 1)t> /j </05(5 - m)q_lfi(m)dm> ds
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o () [ ([Tt m somdn ) as

o (- ean) [(a- s =12

Let 0 < w < 1. Then, for each t € [0, 1], we have

[whi + (1 — w)ha](t)
1

t
= — — S -1 s)ds
- 7 /0 (t— 5)0710(s)d

g (i) ([ )
o (v a—can) [ ([T -mrotmam) as
,le(q) (“52 - ga)t> /01(1 )1 lg(s)ds, i—1,2,

where 0(t) = wfi(t) + (1 — w)fa(t). Since Sp, is convex (F has convex values),
therefore it follows that why + (1 — w)ha € Q(z).

Next, we show that ©(z) maps bounded sets into bounded sets in C([0,1],R). For
a positive number r, let B, = {x € C([0,1],R) : ||z|lcc < r} be a bounded set in
C([0,1],R). Then, for each h € Q(z),z € B,, there exists f € Sg, such that

b = i [ s
(% ) [M([ = i) as
o (% s o) [
Then
ol = 1 [ ¢ ssas

+,

(2= ool + 20 =) [ 5 ([ s = tsmlam) as
- ’@‘( (ol +11—cal [ ([ = m s ds

1
g+ eal [0 =517 (olds
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( 1 + ’a’(’2_5772’+2’/317—1’)£q N ’ﬂ‘(’a’€2+’1—a€’)nq
= \TI(g) 24| (q) T
‘06‘524_‘1_0[5‘ 1
) [ petielcgas

Wzl ((, At as) 1
() (” o >/0p( Jds.

(]| 2] 00) AL+ A\ (1
Il < 207 <1+ - ) /O p(s)ds.

where we have used (Hs) and (Hs).

Thus,

Now we show that € maps bounded sets into equicontinuous sets of C'([0,1],R). Let
t',t" € 10,1] with ¢ < ¢ and = € B,., where B, is a bounded set of C([0,1],R). For
each h € Q(x), we obtain
¢ t
) = hE)] = | [ s — s [ e sas
° - " -t ‘ Ss—mq_l m)dm | ds
wprs@n = =) [ ([ o= mpr fmyam)
p _ o)t / K SS m) L (m)dm ) ds
topeste g o) [1([ o= mrt fmyam)
g -0 | (18T (s
' (q) 0
L g ng—1 _ (41q—1 s T s
< g [ = o)
1 : "=1y)(s x S
+ g [ @Rl
“ e o [ g1 dm ) d
tls -0 =0 [ ([ = mrtpmidieldn) as
L — )" =t ! Ss—mq_l m T m | ds
|- @@ =) [ ([ - mrtpmsielin)
1 " ! ! —
(=€) =) [ (= p(s)ulell)ds)

Obviously the right hand side of the above inequality tends to zero independently of
x € B, ast” —t' — 0. As Q satisfies the above three assumptions, therefore it follows
by the Arzeld-Ascoli theorem that 2 : C([0,1],R) — P(C([0,1],R)) is completely
continuous.
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In our next step, we show that  has a closed graph. Let x,, — x4, h, € Q(x,) and
hy, — hy. Then we need to show that h, € Q(x,). Associated with h,, € Q(x,,), there
exists f, € S, such that for each ¢ € [0, 1],

ha(t) = F(lq) /0 (t = )9 fu(s)ds

+7Faq) <2 _26772 + (8= 1)t> /0£ </OS(S - m)q_lfn(m)dm) ds
+7F5@ (O‘g +(1—¢a)t > /077 (/Os(s _ m)qlfn(m)dm> s

_vl}@ (“252 +(1-€a)t ) /01(1 — )17 fu(s)ds

Thus we have to show that there exists f, € Sg, such that for each ¢ € [0, 1],

~+

m(0) = f [ =

+7Faq) (2 _25”2 + B = 1)t> /o5 </os(8 - m)qlf*(m)dm> *
(2 a—ean) [1( [ m sman) o

i (5 s ) [

Let us consider the continuous linear operator © : L([0,1],R) — C([0,1],R)
given by

+_

00 = g [ =9 s

o (7 ) ([
o (S a—can) [ ([Tt mr fomdn ) as
1

TA(g) <a§ - 50‘”) /01<1 — 5L (s)ds

Observe that
[ (t h Ol
H L (fuls) — £.(5))ds
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b (B o) ([ 6= Gatom) = gy ) s
o (S ) [ ([ = atm) — Fmjam) as

(
ag? 1
vrl<q> ( e ) /0 (1= 5)77 (fuls) = fu(s))ds

as n — oo. Thus, it follows by Lemma 5 that © o Sg is a closed graph operator.
Further, we have h,,(t) € ©(Spy, ). Since z,, — ., therefore, we have

ha(t) = F(lq) /0 (t— )71 £, (s)ds

»yraq) <2 _25772 + (Bn — 1)t> /Og </05(8 - m)q‘lf*(m)dm> ds
vrﬂ<q> <a§z + (1L~ Lot ) /0 ( /0 G- m)qlf*(m)dm) ds

for some fi € Spg, -
Finally, we discuss a priori bounds on solutions. Let x be a solution of (1.1).
Then there exists f € L1([0,1],R) with f € Sg, such that, for ¢ € [0, 1], we have

_l’_

+

1

= — t —5)T 1 f(s)ds
o) = i [ =

bt (B2 = vn) [ [ 6= m i) as
b <af w-gae) [ ([ =mpt fmo ) a
_71}@ <O‘2§2 +(1- §a)t> /01(1 —5)7 " f(s)ds

In view of (Hs), and using the computations in second step above, for each t € [0, 1],

we obtain
1o (|2 = B |+2|577—1| ¢
o] < g [ Seas+ G [ s
18] (|arl€* + |1*§a\ n* !a\§2+ |1 —&a
" 2[v|T'(q) / s 2[7|C'(q) /

1 A1 + Ag
< - f
I'(q) 2|
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1 Ay + Ag !
< T <1 + 2|’Y’> T/J(quoo)/o p(s)ds.

Consequently, we have

[ET™ -

1 A1+A2 =
o (14 255wl

In view of (Hz3), there exists M such that ||z||. # M. Let us set

U={zecC(0,1],R) : ||z]loc < M +1}.

Note that the operator  : U — P(C([0,1],R)) is upper semicontinuous and
completely continuous. From the choice of U, there is no = € 9U such that x € uQ(x)
for some p € (0,1). Consequently, by the nonlinear alternative of Leray-Schauder
type [15], we deduce that 2 has a fixed point z € U which is a solution of the
problem (1.1). This completes the proof. O

As a next result, we study the case when F is not necessarily convex valued. Our
strategy to deal with this problems is based on the nonlinear alternative of Leray
Schauder type together with the selection theorem of Bressan and Colombo [5] for
lower semi-continuous maps with decomposable values.

Theorem 14. Assume that (Hs), (Hs) and the following conditions hold:

(Hy) F : [0,1] x R — P(R) is a nonempty compact-valued multivalued map such
that

(a) (t,x) — F(t,z) is L ® B measurable,
(b) z+—— F(t,x) is lower semicontinuous for each t € [0, 1];

(Hs) for each o > 0, there exists p, € L*([0,1],RT) such that

|E(t,x)|| =sup{ly| 1y € F(t,2)} < @o(t) for all ||z|lec < o and for a.e.t € [0,1].

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. It follows from (H,) and (Hs) that F is of Ls.c. type. Then from
Lemma 6, there exists a continuous function f : C([0,1],R) — L([0,1],R) such
that f(x) € F(x) for all z € C([0,1],R).

Consider the problem

Diz(t) = f(z(t)), 0<t<l, 1<qg<2

3 (3.2)
z(0) = 04/0 x(s)ds, x(1)= B/Onx(s)ds, 0<¢ém<l.
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Observe that if x is a solution of (3.2), then z is a solution to the problem (1.1).
In order to transform the problem (3.2) into a fixed point problem, we define the
operator €2 as

Wlt) = Fo [ =9 al)as

(B ) [ 5 ([ = statmyan) o
(s a-ean) [M([6-m stemim) s
<

_,Y;q) (0‘5 (- w) /0 (1= ) fas))ds.

—+

_l’_

It can easily be shown that € is continuous and completely continuous. The remaining
part of the proof is similar to that of Theorem 13. So we omit it. This completes
the proof. O

Now we prove the existence of solutions for the problem (1.1) with a nonconvex
valued right hand side by applying a fixed point theorem for multivalued map due
to Covitz and Nadler [7].

Theorem 15. Assume that the following conditions hold:

(Hg) F :[0,1] x R = P,(R) is such that F(-,x) : [0,1] = P.p(R) is measurable for
each v € R.

(H7) Hy(F(t,x),F(t,z)) < m(t)|z — Z| for almost all t € [0,1] and z,T € R with
m € LY([0,1],R") and d(0, F(t,0)) < m(t) for almost all t € [0,1].

Then the boundary value problem (1.1) has at least one solution on [0, 1] if

1 ( A1+ Ao
I'(q) 2}9|

Proof. Observe that the set S, is nonempty for each « € C([0,1],R) by the
assumption (Hg), so F' has a measurable selection (see Theorem IIL.6 [6]). Now
we show that the operator {2 satisfies the assumptions of Lemma 7. To show that
Q(z) € Py((C[0,1],R)) for each = € C([0,1],R), let {un}n>0 € Q(x) be such that
up, — u (n — oo) in C([0,1],R). Then u € C([0,1],R) and there exists v, € Sp,
such that, for each t € [0, 1],

)l <1

= L t —8)7 1y, (s)ds
wlt) = For =
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+vraq) <2 _26772 B - Dt) /05 (/os(s - m)q_lv”(m)dm> o

Hrﬁ@) <O‘252 +(1- §a)t> /077 (/Os(s - m)qlvn(m)dm> ds

_71}@ <O§2 + (1 - fa)t) /01(1 — 5)7 L, (s)ds.

As F' has compact values, we pass onto a subsequence to obtain that v, converges
to v in L1([0,1],R). Thus, v € Sg, and for each t € [0,1],

un () = u(t) = qu) /0 (t — )7 Lo(s)ds

e (2 ) [
71:6@) <O‘§2 +(1- §a)t> /On </Os(s - m)qlv(m)dm> ds

1 ag?

i (5 ) [a-s s

—~

+_

+,

Hence, u € Q(x).

Next we show that there exists v < 1 such that
Hg(z), 7)) <vl|lz — Z||oo for each z,z € C([0,1],R).
Let z,z € C([0,1],R) and hy € Q(x). Then there exists v1(t) € F(t,x(t)) such that,
for each t € [0, 1],

hi(t) = (q)/o(t—s)qlvl(s)ds

+7Faq) (2 25772 + (B = W) /o)S </os(8 - m)qlvl(m)dm> ds
(2 a—ean) [1([6—mruiman) o

_7;@ (0‘2’5 (- w) /0 (1= )y (s)ds.

By (H7), we have
Ha(F(t,z), F(t, 7)) < m(t)|z(t) — 2(t)|.

+_

So, there exists w € F(t,Z(t)) such that
v1(t) —w| < m(t)]x(t) — z(t)], tel0,1].
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Define U : [0,1] — P(R) by
U(t) ={w € R:|oi(t) — w| < m(t)|x(t) — Z(t)[}.

Since the multivalued operator V' (t) N F(t,z(t)) is measurable (Proposition III.4
[6]), there exists a function v2(t) which is a measurable selection for V. So va(t) €
F(t,z(t)) and for each t € [0, 1], we have |v1(t) — vo(t)| < m(t)|x(t) — z(t)|.

For each t € [0, 1], let us define

ho(t) = F(lq) /O (t — ) ua(s)ds

_L LfQ — fa ' —5)? 1’0 S
T e g)t>/0(1 1L (s)d
Thus,
|ha(t) — ha(t)]
1 t —8)T Yo (s) — v s
< Fp | = ) — ()l
al(2— B2 + 28— e[S/
* 29T (q) /0 </0 (s =m) 1|vl(m)_v2(m)|dm) @
I D [ ([, o) o)
A (e = oo )
L ale +1 —&af
2[4 (q) / )T or(s) — va(s)lds
1 A1+A2
< i (0 )/m e = z|ds.
Hence,
I =Bl < g5 (14 2550 ) Il = 7l

Analogously, interchanging the roles of x and Z, we obtain

Ha(Q(2), () < Az =2l

1 A+ A2> _
< + m||p1|| T — 7| co-
i (14 250 ) Il = 7l
Since ) is a contraction, it follows by Lemma 7 that {2 has a fixed point  which
is a solution of (1.1). This completes the proof. O
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Example 16. Consider the nonlocal fractional inclusion boundary value problem

cD32x(t) € F(t,z(t)), te[0,1],

1/3 2/3
x(()):/o x(s)ds, m(l):/o x(s)ds,

where ¢ = 3/2, a=1, =1, £€=1/3, n=2/3 and F : [0,1] x R — P(R) is a
multivalued map given by

(3.3)

|z[? 3 kd
— F(t = t 5 t+1].
z (t, ) [\x!3—|—3+ + ’!m\+1+ +
For f € F, we have
If] < T e o
= WAz + 3 [+ 1 =6 reR

Thus,

1E @, 2)|p = supflyl -y € F(t,2)} <T=pB)¢([r]), =R,

with p(t) =1, ¥(||z|lec) = 7. Further, using the condition

we find that M > (20+26v/2 4 68V/3). Clearly, all the conditions of Theorem

14
293
13 are satisfied. So there exists at least one solution of the problem (3.3) on [0, 1].

Acknowledgement. The authors thank the referee for his/her useful comments.
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