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APPROXIMATE ANALYTICAL SOLUTION OF
DIFFUSION EQUATION WITH FRACTIONAL

TIME DERIVATIVE USING OPTIMAL HOMOTOPY
ANALYSIS METHOD

S. Das, K. Vishal and P. K. Gupta

Abstract. In this article, optimal homotopy-analysis method is used to obtain approximate

analytic solution of the time-fractional diffusion equation with a given initial condition. The

fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method,

this method contains at the most three convergence control parameters which describe the faster

convergence of the solution. Effects of parameters on the convergence of the approximate series

solution by minimizing the averaged residual error with the proper choices of parameters are

calculated numerically and presented through graphs and tables for different particular cases.

1 Introduction

Fractional diffusion equations model phenomena exhibiting anomalous diffusion have
played an increasing role in the disciplines of Applied mathematics, Physics and
Engineering for last few decades. Fractional diffusion equation is obtained from the
classical diffusion equation in mathematical physics by replacing the first order time
derivative by a fractional derivative of order α(0 < α < 1), which is nowadays a field
of growing interest. An important characteristic of these evolution equations is that
they generate the fractional Brownian motion (FBM) which is a generalization of
Brownian motion (BM). Fractional-order partial differential equations are used by
researchers to model anomalous diffusion and Hamiltonian Chaos. These governing
equations describe the asymptotic behavior of continuous time random walks. Sto-
chastic solutions to the simplest governing equations are Levy motions, generalizing
the Brownian motion solution to the classical diffusion equation. More generally,
these equations invoke pseudo-differential operators that are non-local. Fractional
kinetic equations have proved particularly useful in the context of anomalous sub-
diffusion (Metzler and Klafter [1]). The fractional diffusion equation, which demon-
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strates the prevalence of anomalous sub-diffusion, has led to an intensive effort in
recent years to find the solution accurately in straight forward manner (Langlands
and Henry [2]). The fractional diffusion equation is valuable for describing reactions
in the dispersive transport media ([3]-[4]). Anomalous diffusion processes occur in
many physical systems for various reasons including disorder in terms of energy or
space or both ([5]-[6]). Fractional reaction-diffusion equations or continuous time
random walk models are also introduced for the description of nonlinear reactions,
propagating fronts and two species reactions in sub-diffusive transport media (Henry
and Wearne [7]). In this article we focus our attention to find the numerical solution
of the fractional diffusion equation with external force given as

∂αu(x, t)

∂tα
=

∂2u(x, t)

∂x2
+

∂(xu(x, t))

∂x
, 0 < α ≤ 1, (x, t) ∈ Ω, (1.1)

subject to the initial condition

u(x, 0) = xn. (1.2)

where ∂α

∂tα
is the Caputo derivative of order α.

In 2000, Metzler and Klafter [8] in their research article suggested that the
fractional Kinetic equations are useful in describing both sub- and super-diffusion
processes. In 2007, Chen et al. [9] proposed an Implicit difference approximation
scheme (ISAS) for solving fractional diffusion equation, where the stability and
convergence of the method analyzed by Fourier method. Schot et al. [10] have given
an approximate solution of the diffusion equation in terms of Fox H-function. Zahran
[11] has offered a closed form solution in Fox H-function of the generalized fractional
reaction-diffusion equation subjected to an external linear force field, one that is
used to describe the transport processes in disorder systems. Recently Wang et al.
[12] develop a fast finite difference method for fractional diffusion equation, where
the authors claim that it requires storage and computational cost while retaining the
same accuracy as the regular difference method. Sprouse et al. [13] have shown that
the fractional diffusion equations are computationally intensive due to the effect of
non-local derivatives in which every previous time derivative contribute to current
iteration. It is to be noted that some work on fractional diffusion equations have
already been done by Angulo et al. [14], Pezat and Zabczyk [15], Schneider and Wyss
[16], Yu and Zhang [17], Mainardi [18], Mainardi et al. [19], Anh and Leonenko [20],
Das and Gupta [21] etc. using various mathematical techniques. But to the best of
authors’ knowledge the solution of the above fractional diffusion equation using the
upgraded version of the HAM whose reliability and effectiveness are much better
than the useful mathematical tools, has not been explored by any researcher.
Homotopy Analysis Method (HAM) proposed by Liao [22] is based on homotopy,
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a fundamental concept in topology and differential geometry. It is an analytical
approach to get the series solution of linear and nonlinear partial differential equations
(PDE’s). The difference with the other perturbation methods is that this method
is independent of small / large physical parameters. Another important advantage
as compared to the other existing perturbation and non-perturbation method lies
in the freedom to choose proper base function to get better approximate solution
of the problems. It also provides a simple way to ensure the convergence of a
series solution. Recently, Liao [23] has claimed that the difference with the other
analytical methods is that one can ensure the convergence of series solution by means
of choosing a proper value of convergence-control parameter. Recently, Das et al.
[24] have successfully applied the method to investigate the influences of auxiliary
parameter to find the region of convergence through h-curve analysis in solving the
considered fractional diffusion equation. Still there are lot of restrictions of the
method e.g., in usual HAM one cannot predict for which value of the convergence
parameter c0 gives better convergence even through the plotting of c0-curve. To
overcome this restriction the authors have used a new mathematical tool optimal
homotopy analysis method, also proposed by Liao [25] to find the approximate
analytical solution of our considered problem where the rate of convergence of the
series solution is faster. The basic difference of the method from usual HAM is that
here we have to consider at the most three parameters c0, c1, c2 (|c1| ≤ 1, |c2| ≤ 1),
which are known as convergence control parameters whereas in usual HAM there was
only one parameter c0. The present approach contains special deformation functions
which are determined completely by two parameters c1 and c2, thus depending on
three parameters c0, c1 and c2. The salient feature of the approach is the introduction
of new type of residual error which helps to find out the optimal values of these
parameters for getting better convergence of the solution.

2 Solution of the problem by optimal homotopy-analysis

method

To solve equation (1.1) by optimal homotopy-analysis method, we choose the initial
approximation

u0(x, t) = xn, (2.1)

and the linear auxiliary operator,

L[φ(x, t; q)] =
∂αφ(x, t; q)

∂tα
, (2.2)

with the property

L[c] = 0, (2.3)
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where c is integral constant, φ(x, t; q) is an unknown function. Furthermore, in the
view of equation (1.1), we have defined the nonlinear operator as

N [φ(x, t; q)] =
∂αφ(x, t; q)

∂tα
− ∂2φ(x, t; q)

∂x2
− ∂(xφ(x, t; q))

∂x
, (2.4)

By means of the optimal homotopy analysis-method, Liao [25] constructs the so-
called zeroth-order deformation equation as

(1−B(q))L[φ(x, t; q)− u0(x, t)] = c0A(q)N [φ(x, t; q)], (2.5)

where q ∈ [0, 1] is the embedding parameter, c0 is convergence control parameter,
A(q) and B(q) are so called deformation function satisfying

A(0) = B(0) = 0 and A(1) = B(1) = 1. (2.6)

The Taylor series of these functions are given by

A(q) =

∞
∑

m=1

µm qm, (2.7)

B(q) =
∞
∑

m=1

σm qm, (2.8)

which exist and convergent for |q| ≤ 1. As given by Liao [25] there exists a large
number of deformations function satisfying these properties, but for the sake of
computer efficiency, we use here so called one parameter deformation functions which
are given as

A(q; c1) =
∞
∑

m=1

µm(c1) q
m, (2.9)

B(q; c2) =
∞
∑

m=1

σm(c2) q
m, (2.10)

where |c1| ≤ 1 & |c2| ≤ 1 are constants, called the convergence control parameter.
One can define µm and σm as

µ1(c1) = (1− c1); µm(c1) = (1− c1)c
m−1
1 , m > 1 (2.11)

σ1(c2) = (1− c2); σm(c2) = (1− c2)c
m−1
2 , m > 1 (2.12)
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Thus the zeroth-order deformation equation (2.5) becomes

(1−B(q; c2))L[φ(x, t; q)− u0(x, t)] = c0A(q; c1)N [φ(x, t; q)], (2.13)

In Fig. 1, A(q; c1) is plotted for different values of c1, which can also be found in
Liao [25]. It is obvious that for the embedding parameter q = 0 and q = 1, equation
(2.13) becomes

φ(x, t; 0) = u0(x, t),

φ(x, t; 1) = u(x, t),

respectively. Thus, as q increases from 0 to 1, the solution φ(x, t; q) varies from the
initial guess u0(x, t) to the solution u(x, t). Expanding φ(x, t; q) in Taylor series with
respect to q, one has

φ(x, t; q) = u0(x, t) +
∞
∑

k=1

qk uk(x, t), (2.14)

where uk(x, t) =
1

k!

[

∂kφ(x, t; q)

∂qk

]

q=0

, (2.15)

If the auxiliary linear operator, the initial guess and the convergence control parameters
are properly chosen, the series (2.14) converges at q = 1. In this case one has

φ(x, t; q) = u0(x, t) +
∞
∑

k=1

uk(x, t), (2.16)

which must be one of the solutions of the original equation, as proven by Liao [25].
Let G denotes a function of q ∈ [0, 1] and define the so called mth-order homotopy
derivative as

Dm(G) =
1

m!

[

∂mG

∂qm

]

q=0

, (2.17)

Taking the above operation on both sides of zeroth- order equation (2.13), we have
so called the mth-order deformation equations

L[um(x, t)− χm

m−1
∑

k=1

σm−k(c2)um(x, t)] = c0

m−1
∑

k=0

µm−k(c1)Rk(x, t), (2.18)

where,

χm =

{

0 m ≤ 1
1 m > 0

(2.19)
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and Rk(x, t) = DkN [φ(x, t; q)] =
∂αuk(x, t)

∂tα
− ∂2uk(x, t)

∂x2
− ∂(xuk(x, t))

∂x
, (2.20)

Applying the idea of optimal homotopy- analysis method, we have

um(x, t) = χm

m−1
∑

k=1

σm−k(c2)um(x, t) + c0

m−1
∑

k=0

µm−k(c1)J
α
t Rk(x, t) + c, (2.21)

where, Jα
t (f(t)) =

1
Γ(α)

∫ t

0 (t− ξ)α−1f(ξ)dξ, and the integration constant c is determined

by the initial condition (2.1).
The m-th order approximation series solution is given as

um(x, t) =
m
∑

k=0

uk(x, t), (2.22)

It is clear from equation (2.12) that um(x, t) contains at most three unknown
convergence-control parameters c0, c1andc2, which determine the convergence region
and rate of the homotopy-series solution.
As given by Liao [25], at the mth-order of approximation, one can define the exact
square residual error

∆m =

∫ ∫

Ω

(

N

[

m
∑

i=0

ui(x, t)

])2

dx dt, (2.23)

However, it is proven by Liao [25] that the exact residual error ∆m defined by
equation (2.23) needs too much CPU time to calculate even if the order of approximation
is not very high.
Thus, to overcome this difficulty i.e., to decrease the CPU time, we use here the
so-called averaged residual error defined by

Em =
1

5

5
∑

j=1

5
∑

k=1

(

N

[

m
∑

i=0

ui

(

j

6
,
k

6

)

])2

. (2.24)

3 Numerical Results and Discussion

In this section, the optimal values of convergence control parameters c0, c1, c2 for
better approximation of the series solution are determined through minimizing the
square averaged residual error (

√
Em) for standard motion α = 1 and Brownian

motions α = 0.9, 0.75 for three specific cases for the initial conditions x and x2. The
numerical results for different particular cases are depicted through Tables 1-8 and
Figs 2-7.
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Order of c0
√
Em

√
Em at c0 = −1

approximation

3 -1.330 1.57722× 10−1 9.77453× 10−1

6 -1.190 8.98950× 10−4 3.40575× 10−2

8 -1.118 4.44214× 10−6 1.65551× 10−3

10 -1.114 4.09087× 10−8 5.06753× 10−5

Table 1: Comparison of square averaged residual error for different values of c0 at
α = 1, n = 1

Order of c0
√
Em

√
Em at c0 = −1

approximation

3 -1.46 2.91315× 10−1 1.51736

6 -1.28 3.63406× 10−3 1.114801× 10−1

8 -1.19 1.03285× 10−4 1.027430× 10−2

10 -1.13 9.94831× 10−7 6.100700× 10−4

Table 2: Comparison of square averaged residual error for different values of c0 at
α = 0.9, n = 1

Case I: optimal c0 for the case of c1 = c2 = 0
In this case, we have only one convergence control parameter c0. Figs. 2-4 are plotted
for exact residual error ∆m and averaged residual error Em vs. c0 for n = 1 and α =
1, 0.9, 0.75. Tables 1- 3 show the comparison of the results of the averaged residual
error for proper choices of c0 with the increase in the order of approximations.
It is clear from the tables that optimal values of c0 are -1.114, -1.13, -1.31 for
α = 1, 0.9, 0.75 respectively for n = 1.

It is also observed from Tables 1, 2 and 3 that as the value of α decreases the
optimal value of c0 goes away from c0 = −1, the case of usual HAM.

Next, Figs. 5-7 are plotted for exact residual error ∆m and averaged residual

Order of c0
√
Em

√
Em at c0 = −1

approximation

3 -1.78 8.20035× 10−1 2.80388

6 -1.31 1.09849× 10−2 6.36651× 10−1

8 -1.32 6.63514× 10−4 1.36230× 10−1

10 -1.31 3.10408× 10−5 2.09136× 10−2

Table 3: Comparison of square averaged residual error for different values of c0 at
α = 0.75, n = 1
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Order of c0
√
Em

√
Em at c0 = −1

approximation

3 -1.58 3.43496 11.7748

6 -1.19 2.56197× 10−2 1.39696

8 -1.19 6.86627× 10−4 1.52833× 10−1

10 -1.09 1.14270× 10−5 1.05264× 10−2

Table 4: Comparison of square averaged residual error for different values of c0 at
α = 1, n = 2

Order of c0
√
Em

√
Em at c0 = −1

approximation

3 0.19 4.11286 18.2787

6 -1.28 9.77028× 10−2 4.70889

8 -1.19 4.30506× 10−3 9.48507× 10−1

10 -1.20 1.51957× 10−4 1.26725× 10−1

Table 5: Comparison of square averaged residual error for different values of c0 at
α = 0.9, n = 2

Order of c0
√
Em

√
Em at c0 = −1

approximation

3 0.19 3.35696 33.7766

6 -1.54 1.13749 26.1141

8 -1.37 8.81268× 10−2 12.5765

10 -1.38 6.45506× 10−3 4.34423

Table 6: Comparison of square averaged residual error for different values of c0 at
α = 0.75, n = 2
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Order of c1 = 0 c1 = 0 c1 = −0.1 c1 = −0.09

approx- c2 = 0 c2 = 0 c2 = −0.1 c2 = −0.09

imation c0 = −1 c0 = −1.1 c0 = −1 c0 = −1.067

3 9.77453× 10−1 6.97991× 10−1 6.97991× 10−1 5.21029× 10−1

6 3.40575× 10−2 1.84513× 10−3 1.84513× 10−3 1.65726× 10−3

8 1.65551× 10−3 1.98049× 10−5 1.98049× 10−5 3.18427× 10−5

10 5.06753× 10−5 1.76189× 10−7 1.76189× 10−7 3.14832× 10−7

Table 7: Comparison of square averaged residual error
√
Em at α = 1, n = 1

Order of c1 = 0 c1 = 0 c1 = −0.128 c1 = −0.07

approx- c2 = 0 c2 = 0 c2 = −0.128 c2 = −0.07

imation c0 = −1 c0 = −1.1 c0 = −1 c0 = −1.05

3 11.7748 10.7968 10.3136 9.56604

6 1.39696 5.07662× 10−1 2.52837× 10−1 2.41372× 10−2

8 1.52833× 10−1 1.34014× 10−2 1.06664× 10−3 1.07976× 10−3

10 1.05264× 10−2 1.14270× 10−5 4.16127× 10−6 1.53751× 10−5

Table 8: Comparison of square averaged residual error
√
Em at α = 1, n = 2

error Em vs. c0 for n = 2 and α = 1, 0.9, 0.75 respectively. It is clear from Tables 4, 5
and 6 that optimal values of c0 are -1.09, -1.20, -1.38 for α = 1, 0.9, 0.75 respectively
for the case of n = 2. It is also clear from the tables that as the value of α decreases
the optimal value of c0 goes away from c0 = −1, which is similar to the case of n = 1.

Case II: optimal c0 for the case of c1 = c2 6= 0

In this case, we have at most two convergence parameters viz., c0 and c1. It is
seen through Table 7 that optimal value of c0 in the case of c1 = c2 = −0.09 is -1.067
for n = 1. Also it is observed from Table 8 that optimal value of c0 in the case of
c1 = c2 = −0.07 is -1.05 for n = 2.

Case III: optimal c1 = c2 for the case of c0 = −1

Here, we have only one convergence control parameter c1. Table 7 shows that
optimal value of c1 is -0.1 for n = 1 and Table 8 shows that optimal value of c1
is -0.128 for n = 2. Table 7 clearly demonstrates that the values of the square
averaged residual error

√
Em is the same for two cases c0 = −1.1, c1 = c2 = 0 and

c0 = −1, c1 = c2 = −0.1, which proves that there is freedom to chose any set of
parameters for better approximation of the solution.
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Conclusion

From the numerical computation given in Tables, it is clear that optimal homotopy
analysis method gives better approximation than the usual HAM (c1 = c2 = 0).
Faster convergence of the series solution with the proper choices of the parameters
renders the procedure appropriate for solving fractional diffusion equations in different
dimension. Thus we may conclude that the study of finding the ’best’ deformation
function among all the existing ones for getting faster convergent series solution has
been very useful.

Applying the method successfully in solving the diffusion equation with fractional
time derivative, we may also conclude that the present method is very effective and
efficient even for solving fractional PDEs.

Figure 1: plot of A(p; c1) for different value of cl Solid line : cl = 3/4; Dashed
line: cl = 1/2; Dotted line: cl = −3/4; Dash-dotted line: cl = −1/2.
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Figure 2: Plots of exact residual error △m and averaged residual error Em vs. c0
for α = 1 and n = 1 for different order of approximation

Figure 3: Plots of exact residual error △m and averaged residual error Em vs. c0
for α = 0.9 and n = 1 for different order of approximation

Figure 4: Plots of exact residual error △m and averaged residual error Em vs. c0
for α = 0.75 and n = 1 for different order of approximation
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Figure 5: Plots of exact residual error △m and averaged residual error Em vs. c0
for α = 1 and n = 2 for different order of approximation

Figure 6: Plots of exact residual error △m and averaged residual error Em vs. c0
for α = 0.9 and n = 2 for different order of approximation

Figure 7: Plots of exact residual error △m and averaged residual error Em vs. c0
for α = 0.75 and n = 2 for different order of approximation
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