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M-STRONGLY SOLID MONOIDS OF
GENERALIZED HYPERSUBSTITUTIONS

OF TYPE τ = (2)

Sivaree Sudsanit and Sorasak Leeratanavalee

Abstract. The purpose of this paper is to characterizeM -strongly solid monoids of generalized

hypersubstitutions of type τ = (2) which is the extension of M -solid monoids of hypersubstitutions

of the same type.

1 Introduction

The concept of a generalized hypersubstitution is a generalization of the concept
of a hypersubstitution. It is used to study strong hyperidentities and strongly
solid varieties. Firstly, we give briefly the concept of the monoid of all generalized
hypersubstitutions.

Let X := {x1, x2, x3, ...} be a countably infinite set of symbols called variables.
Let (fi)i∈I be an indexed set which is disjoint from X. Each fi is called an ni-ary
operation symbol, where ni ≥ 1 is a natural number. Let τ be a function which
assigns to every fi the number ni as its arity, written as (ni)i∈I and is called a type.

An n-ary term of type τ is defined inductively as follows :

(i) The variables x1, x2, ..., xn are n-ary terms of type τ .

(ii) If t1, t2, ..., tni are n-ary terms of type τ , then fi(t1, t2, ..., tni) is an n-ary term
of type τ .

By Wτ (Xn), we denote the smallest set which contains x1, x2, ..., xn and is closed

under finite application of (ii). Let Wτ (X) :=

∞⋃
n=1

Wτ (Xn) and is called the set of

all terms of type τ .
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78 S. Sudsanit and S. Leeratanavalee

A generalized hypersubstitution of type τ = (ni)i∈I is a mapping σ : {fi|i ∈
I} → Wτ (X) which does not necessarily preserve the arity. We denote the set
of all generalized hypersubstitutions of type τ by HypG(τ). To define a binary
operation on HypG(τ), we define first the concept of a generalized superposition of
terms Sm : Wτ (X)m+1 −→Wτ (X) by the following steps:

(i) If t = xj , 1 ≤ j ≤ m, then Sm(xj , t1, ..., tm) := tj .

(ii) If t = xj ,m < j ∈ N, then Sm(xj , t1, .., tm) := xj .

(iii) If t = fi(s1, .., sni), then
Sm(t, t1, ..., tm) := fi(S

m(s1, t1, ..., tm), .., Sm(sni , t1, ..., tm)).

Every generalized hypersubstitution σ can be extended to a mapping
σ̂ : Wτ (X) −→Wτ (X) inductively defined as follows:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(ti, ..., tni)] := Sni(σ(fi), σ̂[t1], ..., σ̂[tni ]), for any ni-ary operation symbol
fi and supposed that σ̂[tj ], 1 ≤ j ≤ ni are already defined.

Then we define a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦ σ2 where
◦ denotes the usual composition of mapping and σ1, σ2 ∈ HypG(τ). Let σid be
the hypersubstitution which maps each ni-ary operation symbol fi to the term
fi(x1, ..., xni). In [3], S. Leeratanavalee and K. Denecke proved that :

Proposition 1. ([3]) For arbitrary terms t, t1, ..., tn ∈ Wτ (X) and for arbitrary
generalized hypersubstitutions σ, σ1, σ2 we have

(i) Sn(σ[t], σ[t1], ..., σ[tn]) = σ̂[Sn(t, t1, ..., tn)],

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

Proposition 2. ([3]) HypG(τ) = (HypG(τ); ◦G, σid) is a monoid and the set of all
hypersubstitutions of type τ forms a submonoid of HypG(τ).

As usual, instead of f(x, y) we write also xy.

Let τ = (ni)i∈I be a type with the sequence of operation symbols (fi)i∈I . Let
t ∈ Wτ (Xn) for n ∈ N and A = (A; (fAi )i∈I) be an algebra of type τ . The n-ary
term operation tA : An → A of type τ is inductively defined by

(i) tA(a1, a2, ..., an) := ai if t = xi ∈ Xn.

(ii) tA(a1, a2, ..., an) := fAi (tA1 (a1, a2, ..., an), .., tAni
(a1, a2, ..., an)) if t is a compound

term fi(t1, t2, ..., tni).
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M -Strongly Solid Monoids of HypG(2) 79

Let s, t be n-ary terms of type τ and A be an algebra of type τ = (ni)i∈I . An
equation of type τ is a pair (s,t) ; such pair are commonly written as s ≈ t. The set
of all equations of type τ is denoted by Eτ (X).

An equation s ≈ t is an identity of A, denoted by A |= s ≈ t if sA = tA.

Let K be a class of algebras of type τ . The class K satisfies an equation s ≈ t,
denoted by K |= s ≈ t, if for every A ∈ K,A |= s ≈ t.

Let Σ be a set of equations of type τ . The class K is said to satisfy Σ, denoted
by K |= Σ, if K |= s ≈ t for every s ≈ t ∈ Σ. Let

IdK := {s ≈ t ∈ Eτ (X)|K |= s ≈ t},

ModΣ := {A ∈ Alg(τ)|A |= Σ}.

We denote the class of all algebras of type τ by Alg(τ). Let V be a nonempty
subset of Alg(τ). V is called a variety if V = ModIdV .

Theorem 3. A non-empty subset V of Alg(τ) is a variety if and only if V = ModΣ
for some Σ ⊆ Eτ (X).

Let M be a submonoid of HypG(τ). An identity s ≈ t of a variety V of type
τ is called an M-strong hyperidentity if σ̂[s] ≈ σ̂[t] is an identity in V for any σ ∈M .
If every identity satisfied in the variety V is an M -strong hyperidentity, we call the
variety V be an M-strongly solid. A single semigroup S is called M -strongly solid if
the variety V (S) generated by S is M -strongly solid.

Definition 4. Let M be a submonoid of (HypG(τ); ◦G, σid). M is said to be M-
strongly solid if the reduct (M ; ◦G) is M -strongly solid.

2 M-strongly solid submonoids of HypG(2) which
M is implied to {σid}

Throughout this paper, we restrict ourselves to study on the type τ = (2). Let
f be a binary operation symbol. By σt we denote the generalized hypersubstitution
which maps f to the term t in W(2)(X). Let O+ and E+ be the set of all positive
odd integers and the set of all positive even integers, respectively. For s ∈ W(2)(X)
and 2 < m ∈ N we denote :
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sd := the dual term of s obtained by rearranging all variables
occurring in s from right to left,

s′ := the term obtained by interchanging of x1 and x2 occurring
in s,

s∗ := the term obtained from s by replacing of letter x1 by xm,
s∗∗ := the term obtained from s by replacing of letter x2 by xm,

var(s) := the set of all variables occurring in s,
`(s) := the length of s,

leftmost(s) := the first variable (from the left) occurring in s,
rightmost(s) := the last variable occurring in s,

Wx1 := {s ∈W(2)(X)|var(s) = {x1}},
Wx2 := {s ∈W(2)(X)|var(s) = {x2}},
W := {s ∈W(2)(X)|x1, x2 /∈ var(s)},

WG
(2)({x1}) := {s ∈W(2)(X)|x1 ∈ var(s), x2 /∈ var(s)},

WG
(2)({x2}) := {s ∈W(2)(X)|x2 ∈ var(s), x1 /∈ var(s)},

WG
(2)({x1}) := WG

(2)({x1})\Wx1 ,

WG
(2)({x2}) := WG

(2)({x2})\Wx2 ,

WG
(2)({xi})xj := {s ∈WG

(2)({xi})|leftmost(s) = xj where i ∈ {1, 2}, j ∈ N},
WG

(2)({xi})xk := {s ∈WG
(2)({xi})|rightmost(s) = xk where i ∈ {1, 2}, k ∈ N},

WG
(2)({xi})

xk
xj := {s ∈WG

(2)({xi})|leftmost(s) = xj and rightmost(s) = xk

where i ∈ {1, 2}, j, k ∈ N},
PG(2) := {σxi ∈ HypG(2)|i ∈ N, xi ∈ X},
DG
i := {σti , σtdi |σti ∈ G},

P abi := {σxia , σxib |a, b, i ∈ N},
G := {σs ∈ HypG(2)|s ∈W(2)(X)\X,x1, x2 /∈ var(s)},

Gxm := {σs ∈ G|leftmost(s) = xm, 2 < m ∈ N},
Gxm := {σs ∈ G|rightmost(s) = xm, 2 < m ∈ N},
Gxnxm := {σs ∈ G|leftmost(s) = xm and rightmost(s) = xn,

2 < m,n ∈ N},
Ti := {σti , σt′i} where ti ∈WG

(2)({x1})
x1
x1 or WG

(2)({x2})
x2
x2 ,

Bi := {σti , σt′i , σtdi , σ(t′i)d} where ti ∈WG
(2)({x1})

x1
x1 or WG

(2)({x2})
x2
x2 ,

Ci := {σti , σt∗i } where ti ∈WG
(2)({x1})xm .

Let M be an M -strongly solid submonoid of HypG(2). Clearly, (xy)z ≈ x(yz)
is an identity in V (M) and for all σ ∈ HypG(2), `(σ̂[xy]) ≤ `(σ̂[σ̂[xy]]). Since
σ̂[(xy)z] = S2(σ(f), S2(σ(f), x, y), z), σ̂[x(yz)] = S2(σ(f), x, S2(σ(f), y, z)) and if
there exist x1, x2 occurring in σ(f) k times and l times respectively, then after
substitution there will be x occurs k2 times and z occurs l times in σ̂[(xy)z] and x
occurs k times and z occurs l2 times in σ̂[x(yz)]. Since M is M -strongly solid, so
σ̂[(xy)z] ≈ σ̂[x(yz)] is an identity in V (M). Thus there exist a, b ∈ N, a 6= b such

******************************************************************************
Surveys in Mathematics and its Applications 8 (2013), 77 – 90

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v08/v08.html
http://www.utgjiu.ro/math/sma


M -Strongly Solid Monoids of HypG(2) 81

that xa ≈ xb is an identity in V (M). Hence σa = σb. If `(σ̂[xy]) < `(σ̂[σ̂[xy]]), then
σa 6= σb which is a contradiction. Therefore `(σ̂[xy]) = `(σ̂[σ̂[xy]]).

Let U = {σ|σ ∈ HypG(2) and `(σ̂[xy]) = `(σ̂[σ̂[xy]])}
= {σid, σx2x1} ∪ {σt|t ∈Wx1 ∪Wx2 ∪W ∪WG

(2)({x1}) ∪W
G
(2)({x2})} .

Thus M ⊆ U .

Proposition 5. Let M be an M -strongly solid submonoid of HypG(2). If M is one
of all subcases from Case 1-5, then M is implied to {σid}.

Case 1: For i,m, n, k ∈ N (m,n, k > 2).

1.1. M = {σid, σx1} ∪ A, where A is one of these sets :
{
σt|t ∈ WG

(2)({x1})x1
}
,{

σt|t ∈WG
(2)({x1})x1

}
∪
(⋃
∃k
{σxk}

)
, {σt|t ∈WG

(2)({x2})xm , σxm}∪
(⋃
∃k
{σxk}

)
.

1.2. M = {σid, σx1 , σx2}∪A, where A is one of these sets :
{
σt|t ∈WG

(2)({x1})
x1
x1

}
,{

σt|t ∈WG
(2)({x2})

x2
x2

}
,
{
σt|t ∈WG

(2)({x1})
x1
x1

}
∪
(⋃
∃k
{σxk}

)
,
{
σt|t ∈WG

(2)({x2})
x2
x2

}
∪
(⋃
∃k
{σxk}

)
,

(⋃
∃k
{σxk}

)
∪
(⋃
∃i
{σxi1}

)
,

(⋃
∃k
{σxk}

)
∪
(⋃
∃i
{σxi2}

)
.

1.3. {σid, σx1 , σx2} ⊆ M ⊆ A, where A is either {σid, σx1} ∪ {σt|t ∈ Wx2} or
{σid, σx2} ∪ {σt|t ∈Wx1}.

1.4. {σid, σx1 , σt, σxm} ⊆M ⊆ {σid, σx1 , σt, σxm} ∪
(⋃
∃k
{σxk}

)
, where σt ∈ Gxm.

1.5. {σid, σx1 , σx2 , σt, σxm , σxn} ⊆ M ⊆ {σid, σx1 , σx2 , σt, σxm , σxn} ∪
(⋃
∃k
{σxk}

)
,

where σt ∈ Gxnxm.

1.6. {σid, σx1 , σx2 , σt, σxm} ⊆M ⊆ {σid, σx1 , σx2 , σt, σxm} ∪
(⋃
∃k
{σxk}

)
, where t ∈

WG
(2)({x1})

xm
x1 .

1.7. {σid, σx1 , σx2 , σt, σxm} ⊆M ⊆ {σid, σx1 , σx2 , σt, σxm} ∪
(⋃
∃k
{σxk}

)
, where t ∈

WG
(2)({x2})

x2
xm.

1.8. {σid, σx1 , σx2} ∪
(⋃
∃i
Ti

)
⊆M ⊆ {σid, σx1 , σx2} ∪

(⋃
∀i
Ti

)
∪
(⋃
∃k
{σxk}

)
.
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1.9. {σid, σx1 , σxm1xm2 ...xmr
, σx1xm2 ...xmr

, σxm1xm2 ...xmr−1x2
, σxm1

} ⊆M ⊆ {σid, σx1 ,

σxm1xm2 ...xmr
, σx1xm2 ...xmr

, σxm1xm2 ...xmr−1x2
, σxm1

} ∪
(⋃
∃k
{σxk}

)
, where ml >

2 ∀l ∈ N, r ∈ N.

1.10. {σid, σx1 , σx2 , σxm1xm2 ...xmr
, σx1xm2 ...xmr

, σxm1xm2 ...xmr−1x2
, σxm1

, σxmn
} ⊆M ⊆

{σid,

σx1 , σx2 , σxm1xm2 ...xmr
, σx1xm2 ...xmr

, σxm1xm2 ...xmr−1x2
, σxm1

, σxmn
}∪
(⋃
∃k
{σxk}

)
,

where ml > 2 ∀l ∈ N, r ∈ N.

Case 2: For i,m, k ∈ N (m, k > 2).

2.1. {σid} ⊂M ⊆ {σid}∪A, where A is one of these sets : {σt|t ∈Wx1},
(⋃
∀i
P 12
i

)
,(⋃

∀i
P 1m
i

)
.

2.2. M = {σid} ∪
(⋃
∃k
{σxk}

)
∪A, where A is either

(⋃
∃i
{σxi1}

)
or

(⋃
∃i
P 12
i

)
.

Case 3: For i, a,m, k ∈ N, a > 1 (m, k > 2).

3.1. {σid} ⊂M ⊆ {σid} ∪ {σt|t ∈Wx2}.

3.2. {σid, σt, σs} ⊆ M ⊆ {σid} ∪ {σv|v ∈ Wx2 ∪WG
(2)({x2})x2}, where t ∈ Wx2 and

s ∈WG
(2)({x2})x2.

3.3. {σid, σxm}∪
(⋃
∃a
{σxa2}

)
⊆M ⊆ {σid, σxm}∪{σxa2 |a > 1}∪{σt|t ∈WG

(2)({x2})x2}.

3.4. {σid} ∪
(⋃
∃a
{σxa2}

)
∪
(⋃
∃i
{σti |σti ∈ Gxm}

)
∪ {σxam} ⊆ M ⊆ {σid, σxk} ∪

{σxa2 |a > 1} ∪ {σt|σt ∈ Gxm} ∪ {σxam |a > 1}.

3.5. {σid} ∪
(⋃
∃i
{σti |σti ∈ Gxm}

)
∪
(⋃
∃a
{σxa2}

)
∪
(⋃
∃i
{σsi |si ∈WG

(2)({x2})x2}
)
∪(⋃

∃a
{σxam}

)
∪{σt∗∗i } ⊆M ⊆ {σid, σxk}∪{σt|σt ∈ G

xm}∪{σxa2 |a > 1}∪{σs|s ∈

WG
(2)({x2})x2} ∪ {σxam} ∪ {σt∗∗}.

Case 4: For i, k ∈ N (k > 2).
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4.1. M = {σid, σx2x1 , σx1 , σx2} ∪
(⋃
∃i
Ti

)
.

4.2. {σid, σx2x1 , σx1 , σx2} ⊆ M ⊆ A, where A is either {σid, σx2x1 , σx2} ∪ {σxi1 |i ∈
O+} or {σid, σx2x1 , σx1 , σx2} ∪ {σxi1 |i ∈ E+}.

4.3. {σid, σx2x1 , σx1 , σx2} ⊆ M ⊆ A, where A is either {σid, σx2x1 , σx1} ∪ {σxi2 |i ∈
O+} or {σid, σx2x1 , σx1 , σx2} ∪ {σxi2 |i ∈ E+}.

4.4. M = {σid, σx2x1 , σx1 , σx2} ∪
(⋃
∃k
{σxk}

)
∪ A , where A is one of these sets :( ⋃

∃i∈O+

{σxi1}
)
,

( ⋃
∃i∈E+

{σxi1}
)
,

( ⋃
∃i∈O+

{σxi2}
)
,

( ⋃
∃i∈E+

{σxi2}
)
,

( ⋃
∃i∈E+

P 12
i

)
.

Case 5: {σid, σx2x1} ∪
( ⋃
∃i∈O+

P 12
i

)
⊆ M ⊆ {σid, σx2x1} ∪

( ⋃
∀i∈O+

P 12
i

)
∪(⋃

∃k
{σxk}

)
, where i, k ∈ N and k > 2.

Proof. For Case 1, we have V (M) |= xyx ≈ yx. Since M is M -strongly solid,
so σ̂[xyx] ≈ σ̂[yx] ∈ IdV (M) for all σ ∈ M . Since σx1 ∈ M for all M , we get
σ̂x1 [σ̂t[xyx]] ≈ σ̂x1 [σ̂t[yx] ∈ IdV (M) for all σt ∈ M . Thus x ≈ y ∈ IdV (M).
Therefore M is implied to {σid}.

The proof of Case 2-5 are similar to the proof of Case 1 in which for Case 2
V (M) |= x2 ≈ x, xyx ≈ yx and σxa1 ∈ M where a ∈ N, therefore M is implied to
{σid}. Case 3 V (M) |= x2 ≈ x, xyx ≈ xy and σxa2 ∈ M where a ∈ N, therefore M
is implied to {σid}. Case 4 V (M) |= x2y2x2 ≈ y2x2 and σx2 ∈ M where a ∈ N,
therefore M is implied to {σid}. Case 5 V (M) |= x3 ≈ x, x2y2x2 ≈ y2x2 and
σxa2 ∈M where a ∈ O+, therefore M is implied to {σid}.

3 M-strongly solid submonoids of HypG(2) which
M is not implied to {σid}

In this section, we consider M ⊆ U where M is M -strongly solid submonoid and
M is not implied to {σid}. Since M has a lot of elements. It is difficult to write all
submonoids M of U in the exactly form. But there are some cases where it is clear
that M is not implied to {σid}.

Proposition 6. Let M be an M -strongly solid submonoid of HypG(2). If M is one
of all subcases from Case 1-2, then M is not implied to {σid}.

Case 1:
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1.1. M = {σid, σx2x1}.

1.2. {σid} ⊂ M ⊆ {σid} ∪ A, where A is one of these sets : {σt|t ∈ W},
{
σt|t ∈

WG
(2)({x1})x1

}
,
{
σt|t ∈WG

(2)({x2})x2
}
,

( ⋃
∀i∈N

Ti

)
and |M | ≥ 2.

1.3. {σid, σx2x1} ⊂M ⊆ {σid, σx2x1}∪A, where A is either

( ⋃
∀i∈N

DG
i

)
or

( ⋃
∀i∈N

Bi

)
and |M | ≥ 4.

1.4. {σid, σt, σs} ⊂ M ⊆ {σid} ∪ {σv|v ∈ W ∪ A}, where t ∈ W , s ∈ A and A is

either WG
(2)({x1}) or WG

(2)({x2}).

1.5. A ∪ {σt, σs, σv} ⊂ M ⊆ A ∪ {σu|u ∈ W ∪ WG
(2)({x1}) ∪ W

G
(2)({x2})}, where

t ∈W , s ∈WG
(2)({x1})}, v ∈W

G
(2)({x2}) and A is either {σid} or {σid, σx2x1}.

Case 2: For i, a, b,m, k ∈ N, a, b > 1 (m, k > 2).

2.1. {σid, σx2x1} ⊂M ⊆ {σid, σx2x1} ∪
( ⋃
∀i∈E+

P 12
i

)
and |M | ≥ 4.

2.2. {σid, σt, σs, σv} ⊂M ⊆ {σid}∪A∪{σu|u ∈W ∪WG
(2)({x1})xm

}
, where s ∈W ,

v ∈WG
(2)({x1})xm, t ∈ A and A is either {σax1 |a > 1} or {σbx2 |b > 1}.

2.3. M = {σid, σx2x1} ∪
(⋃
∃a
P 12
a

)
∪
(⋃
∃i
Bi

)
.

2.4. {σid, σax1 , σt} ∪ A ⊂ M ⊆ {σid} ∪ {σax1 |a > 1} ∪ {σs|s ∈ W ∪ WG
(2)({x1}) ∪

WG
(2)({x2})xm}, where t ∈W and A is either {σv, σu} with v ∈WG

(2)({x1}), u ∈
WG

(2)({x2})
xk
xm or {σe, σf} with e ∈WG

(2)({x1})xk , f ∈W
G
(2)({x2})xm.

2.5. {σid, σax2 , σt} ∪ A ⊂ M ⊆ {σid} ∪ {σax2 |a > 1} ∪ {σs|s ∈ W ∪WG
(2)({x1})xm ∪

WG
(2)({x2})}, where t ∈W and A is either {σv, σu} with v ∈WG

(2)({x1})
xm
xk , u ∈

WG
(2)({x2}) or {σe, σf} with e ∈WG

(2)({x1})x
m , f ∈WG

(2)({x2})xk .

2.6. {σid, σax1 , σ
b
x2 , σt} ∪ A ⊂ M ⊆ {σid} ∪ {σax1 |a > 1} ∪ {σbx2 |b > 1} ∪ {σs|s ∈

W ∪ WG
(2)({x1}) ∪ W

G
(2)({x2})}, where t ∈ W and A is either {σv, σu} with

v ∈ WG
(2)({x1})xm , u ∈ WG

(2)({x2}) or {σe, σf} with e ∈ WG
(2)({x1}), f ∈

WG
(2)({x2})xm.
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2.7. {σid, σx2x1 , σax1 , σ
b
x2 , σt, σs, σv} ⊂ M ⊆ {σid, σx2x1} ∪ {σxa1 |a > 1} ∪ {σxb2 |b >

1} ∪ {σu|u ∈ W ∪WG
(2)({x1}) ∪W

G
(2)({x2})}, where t ∈ W , s ∈ WG

(2)({x1}),
v ∈WG

(2)({x2}).

Proof. Let M be an M -strongly solid submonoid of HypG(2) and let M is one of all
subcases in Case 1, we have σt /∈M where t ∈Wx1 or Wx2 . And for M in the Case
2, we have σx1 or σx2 /∈ M and M is not idempotent. So we get x ≈ y /∈ IdV (M).
Therefore M is not implied to {σid}.

Next, we consider the remaining cases whichM can be classified into three groups
by using V (M) as a tool.

Proposition 7. Let M be an M -strongly solid submonoid of HypG(2) and i, j, a,m,
k ∈ N, a > 1 with m, k > 2. If M is one of the following cases, then V (M) ⊆
Mod{(xy)z ≈ x(yz), g ≈ h} where leftmost(g) = leftmost(h).

1. {σid, σxa1 , σt, σxam} ⊆M ⊆ {σid, σxm} ∪ {σxa1} ∪ {σs|σs ∈ G}, where σt ∈ Gxm.

2. {σid, σx1 , σxa1 , σt, σxm , σxam} ⊆M ⊆ {σid, σx1 , σxk}∪{σxa1}∪{σs|σs ∈ G}, where
σt ∈ Gxm.

3. {σid, σxm , σxk , σxa1 , σt, σxam} ⊆M ⊆ {σid, σxm , σxk}∪{σxa1}∪{σs|s ∈W}, where
σt ∈ Gxm.

4. {σid, σt, σs} ⊆ M ⊆ {σid} ∪ {σv|v ∈ Wx1 ∪ WG
(2)({x1})x1}, where t ∈ Wx1,

s ∈WG
(2)({x1})x1 and in case of |M | = 3, then σx1 /∈M .

5. M = {σid, σxm} ∪
(⋃
∃a
{σxa1}

)
∪
(⋃
∃i
{σti |ti ∈WG

(2)({x1})x1}
)
.

6. {σid}∪
(⋃
∃a
{σxa1}

)
∪
(⋃
∃i
{σti |σti ∈ Gxm}

)
∪
(⋃
∃j
{σsj |sj ∈WG

(2)({x1})x1}
)
∪

{σxam , σs∗j } ⊆ M ⊆ {σid, σxk} ∪ {σxa1 |a > 1} ∪ {σt|σt ∈ Gxm} ∪ {σs|s ∈
WG

(2)({x1})x1} ∪ {σxam , σs∗j }.

7.
(
{σid, σx1 , σt, σs} ⊂ M ⊆ {σid} ∪ {σv|v ∈ W ∪ Wx1 ∪ WG

(2)({x1})}
)
\ M1,

where t ∈ W , s ∈ WG
(2)({x1}) and {σid, σx1 , σxm , σu} ⊆ M1 ⊆ {σid, σx1 , σu} ∪(⋃

∃k
{σxk}

)
, where u ∈WG

(2)({x1})x1.
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Proof. Let M be an M -strongly solid submonoid of HypG(2). Clearly, (xy)z ≈ x(yz)
is an identity in V (M). Let g ≈ h be an arbitrary identity in V (M) and c, d ∈ N,
where c 6= d. From σxc1 ∈ M and σxc1 ◦ σxc1 = σxc1 ◦ σxd1 = σxc1 and for all σ ∈
M, σ̂[g] ≈ σ̂[h] ∈ IdV (M) it follows that the first variables in g and h are the same.
Thus V (M) ⊆Mod{(xy)z ≈ x(yz), g ≈ h} where leftmost(g) = leftmost(h).

The examples of M and V (M) corresponding to Proposition 7 as follows.

1. {σid, σxa1 , σt, σxam} ⊆M ⊆ {σid, σxm} ∪ {σxa1} ∪ {σs|σs ∈ G}, where σt ∈ Gxm .

2. {σid, σt, σs} ⊆ M ⊆ {σid} ∪ {σv|v ∈ Wx1 ∪ WG
(2)({x1})x1}, where t ∈ Wx1 ,

s ∈WG
(2)({x1})x1 and in case of |M | = 3, then σx1 /∈M .

3. M = {σid, σxm} ∪
(⋃
∃a
{σxa1}

)
∪
(⋃
∃i
{σti |ti ∈WG

(2)({x1})x1}
)

.

4. {σid}∪
(⋃
∃a
{σxa1}

)
∪
(⋃
∃i
{σti |σti ∈ Gxm}

)
∪
(⋃
∃j
{σsj |sj ∈WG

(2)({x1})x1}
)
∪

{σxam , σs∗j } ⊆ M ⊆ {σid, σxk} ∪ {σxa1 |a > 1} ∪ {σt|σt ∈ Gxm} ∪ {σs|s ∈
WG

(2)({x1})x1} ∪ {σxam , σs∗j }.

For M in each case, we have V (M) ⊆Mod{(xy)z ≈ x(yz), x2 ≈ x, xyx ≈ xy}.

Proposition 8. Let M be an M -strongly solid submonoid of HypG(2) and a,m, k ∈
N, , a > 1 with m, k > 2. If M is one of the following cases, then V (M) ⊆
Mod{(xy)z ≈ x(yz), g ≈ h} where rightmost(g) = rightmost(h).

1. {σid, σx2 , σxm} ⊆M ⊆ {σid, σt} ∪ {σxa2 |a > 1} ∪
(⋃
∃k
{σxk}

)
, where σt ∈ G.

2. {σid, σxa2 , σxm , σxk} ⊆M ⊆ {σid} ∪ {σxa2 |a > 1} ∪ {σt|t ∈W}.

3. {σid, σx2 , σt, σs} ⊂M ⊆ {σid, σx2} ∪ {σv|v ∈W}, where σt, σs ∈ G.

4. {σid, σx2 , σxa2 , σt} ⊂M ⊆ {σid, σx2}∪{σxa2 |a > 1}∪{σs|s ∈W}, where σt ∈ G.

5. M = {σid, σx2 , σt} ∪
(⋃
∃k
{σxk}

)
, where t ∈WG

(2)({x2})x2.

6.
(
{σid, σx2 , σt, σs} ⊂ M ⊆ {σid} ∪ {σv|v ∈ W ∪ Wx2 ∪ WG

(2)({x2})}
)
\ M1,

where t ∈ W , s ∈ WG
(2)({x2}) and {σid, σx2 , σxm , σv} ⊆ M1 ⊆ {σid, σx2 , σv} ∪(⋃

∃k
{σxk}

)
, where v ∈WG

(2)({x2})x2.
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7. {σid, σxa2 , σxm , σxk , σt} ⊆M ⊆ {σid}∪{σxa2 |a > 1}∪{σs|s ∈W∪WG
(2)({x2})x2},

where t ∈WG
(2)({x2})x2.

Proof. Let M be an M -strongly solid submonoid of HypG(2). Clearly, (xy)z ≈ x(yz)
is an identity in V (M). Let g ≈ h be an arbitrary identity in V (M) and c, d ∈ N,
where c 6= d. From σxc2 ∈M and σxc2 ◦σxc2 = σxc2 ◦σxd2 = σxc2 and for all σ ∈M, σ̂[g] ≈
σ̂[h] ∈ IdV (M) it follows that the last variables in g and h are the same. Thus
V (M) ⊆Mod{(xy)z ≈ x(yz), g ≈ h} where rightmost(g) = rightmost(h).

The examples ofM and V (M) corresponding to Proposition 5 (4.3) are as follows.

1. {σid, σx2 , σxm} ⊆M ⊆ {σid, σt} ∪ {σxa2 |a > 1} ∪
(⋃
∃k
{σxk}

)
, where σt ∈ G.

2. M = {σid, σx2 , σt} ∪
(⋃
∃k
{σxk}

)
, where t ∈WG

(2)({x2})x2 .

For M in each case, we have V (M) ⊆Mod{(xy)z ≈ x(yz), x2 ≈ x, xyx ≈ yx}.

Proposition 9. LetM be anM -strongly solid submonoid of HypG(2) and i, j, a,m, n,
k ∈ N, a > 1 and m,n, k > 2. If M is one of the following cases, then V (M) ⊆
Mod{(xy)z ≈ x(yz), g ≈ h} where leftmost(g) = leftmost(h) and rightmost(g) =
rightmost(h).

1. {σid, σx1 , σx2 , σt, σs} ⊂ M ⊆ {σid} ∪ {σv|v ∈ Wx1 ∪Wx2 ∪W ∪WG
(2)({x2})},

where t ∈W , s ∈WG
(2)({x2}) and M is not implied to σid.

2. {σid, σxa1 , σt, σs, σv} ⊆M ⊆ {σid} ∪ {σxa1 |a > 1} ∪ {σu|u ∈W ∪WG
(2)({x1})x1 ∪

WG
(2)({x2})

x2
xm}, where t ∈W , s ∈WG

(2)({x1})x1, v ∈W
G
(2)({x2})

x2
xm.

3. {σid, σx1 , σt, σs, σv} ⊆M ⊆ {σid, σx1}∪{σu|u ∈W∪WG
(2)({x1})∪W

G
(2)({x2})xm},

where t ∈W , s ∈WG
(2)({x1}), v ∈W

G
(2)({x2})xm and M do not implies to σid.

4. {σid, σx1 , σx2} ∪
(⋃
∃i
{σti |σti ∈ Gxkxm}

)
∪ {σxm , σxk} ∪ A ⊆ M ⊆ {σid, σx1} ∪

{σt|t ∈W∪Wx2}, where A is either

(⋃
∃a
{σxa1}

)
∪{σxak} or

(⋃
∃a
{σxa2}

)
∪{σxak}.

5. {σid} ∪
(⋃
∃i
P 12
i

)
∪
(⋃
∃j
{σtj |σti ∈ Gxkxm}

)
∪ {σxim , σxik} ⊆ M ⊆ {σid} ∪(⋃

∀i
P 12
i

)
∪ {σtj |σti ∈ Gxkxm} ∪ {σxim , σxik} ∪

(⋃
∃n
{σxn}

)
.
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6. {σid, σx1 , σx2} ∪
(⋃
∃i
{σti |σti ∈ Gxkxm}

)
∪ {σxm , σxk} ⊆ M ⊆ {σid, σx1 , σx2} ∪

{σt|t ∈W}.

7. M = {σid, σx2x1 , σx1 , σx2} ∪
(⋃
∃k
{σxk}

)
∪
( ⋃
∃i∈O+

P 12
i

)
∪
( ⋃
∃j∈E+

P 12
j

)
.

8. {σid, σx2x1 , σx1 , σx2} ∪
(⋃
∃i
{σti |σti ∈ Gxkxm}

)
∪ {σxm , σxk} ∪ {σtdi } ⊆ M ⊆

{σid, σx2x1 , σx1 , σx2} ∪ {σti |σti ∈ Gxkxm} ∪ {σxm , σxk} ∪ {σtdi } ∪
(⋃
∃n
{σxn}

)
.

9. {σid, σx2x1} ∪
(⋃
∃i
{σti , σtdi |σti ∈ Gxkxm}

)
∪
(⋃
∃j
P 12
j

)
∪ {σ

xjm
, σ

xjk
} ⊆ M ⊆

{σid, σx2x1}∪
(⋃
∀i
{σti , σtdi |σti ∈ G

xk
xm}

)
∪
(⋃
∀j
P 12
j

)
∪{σ

xjm
, σ

xjk
}∪
(⋃
∃n
{σxn}

)
.

10. M = {σid} ∪
(⋃
∃i
P 12
i

)
∪
(⋃
∃j
{σtj |tj ∈WG

(2)({x1})
x1
x1}
)
.

11. M = {σid, σx1 , σx2}∪A, where A is either

(⋃
∃a
{σxa1}

)
∪
(⋃
∃i
{σti |ti ∈WG

(2)({x1})x1x1}
)

or

(⋃
∃a
{σxa2}

)
∪
(⋃
∃i
{σti |ti ∈WG

(2)({x2})
x2
x2}
)
.

12. {σid, σx2 , σt, σs} ⊂ M ⊆ {σid, σx2} ∪ {σv|v ∈ W∪ ∈ WG
(2)({x1})xm}, where

t ∈W , s ∈WG
(2)({x1})xm.

13. {σid, σx1 , σx2 , σxa1 , σxm , σt} ⊂M ⊆ {σid, σx2}∪{σs|s ∈W ∪Wx1∪WG
(2)({x1})},

where t ∈WG
(2)({x1}).

14. {σid, σx1 , σx2} ∪ A ⊂ M ⊆ {σid, σx1 , σx2} ∪ {σt|t ∈ W ∪WG
(2)({x1})}, where

A is either {σs, σu} with σs ∈ G, u ∈ WG
(2)({x1}) or {σxk , σv} with v ∈

WG
(2)({x1})xk .

15. {σid, σx1 , σx2 , σxm , σt, σs} ⊂M ⊆ {σid, σx1 , σx2}∪
(⋃
∃k
{σxk}

)
∪{σu|u ∈WG

(2)({x1})},

where t, s ∈WG
(2)({x1})x1.
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16. {σid, σt, σs, σv, σu} ⊂ M ⊆ {σid} ∪ {σw|w ∈ Wx1 ∪ Wx2 ∪ WG
(2)({x1})

x1
x1∪ ∈

WG
(2)({x2})

x2
x2}, where t ∈ Wx1, s ∈ Wx2, v ∈ WG

(2)({x1})
x1
x1, u ∈ WG

(2)({x2})
x2
x2

and M is not implied to σid.

17. {σid, σx2x1 , σx1 , σx2 , σt, σs} ⊂M ⊆ {σid, σx2x1}∪{σv|v ∈Wx1∪Wx2∪WG
(2)({x1})

x1
x1

∪WG
(2)({x2})

x2
x2}, where t ∈WG

(2)({x1})
x1
x1, s ∈WG

(2)({x2})
x2
x2.

18. {σid, σx2 , σxm , σt, σs} ⊂M ⊆ {σid, σx2} ∪ {σv|v ∈WG
(2)({x1})xk ∪W

G
(2)({x2})∪

W}, where t ∈WG
(2)({x1})xk , s ∈W

G
(2)({x2}).

19. {σid, σxa2 , σt, σs, σv} ⊂M ⊆ {σid}∪{σ
a
x1 |a > 1}∪{σu|u ∈W ∪WG

(2)({x1})xm ∪
WG

(2)({x2})x2}, where t ∈W , s ∈WG
(2)({x1})

xm
x1 , v ∈WG

(2)({x2})x2.

20. {σid, σxa1 , σxa2 , σt, σs, σv} ⊂ M ⊆ {σid} ∪ {σax1 |a > 1} ∪ {σbx2 |b > 1} ∪ {σu|u ∈
W ∪ WG

(2)({x1})x1 ∪ W
G
(2)({x2})x2}, where t ∈ W , s ∈ WG

(2)({x1})x1, v ∈
WG

(2)({x2})x2.

21. {σid, σx1 , σx2 , σt, σs, σv} ⊂M ⊆ {σid}∪{σu|u ∈Wx1 ∪Wx2 ∪W ∪WG
(2)({x1})∪

WG
(2)({x2})}, where t ∈ W , s ∈ WG

(2)({x1}), v ∈ WG
(2)({x2}) and M is not

implied to σid.

22. {σid, σx2x1 , σx1 , σx2 , σt, σs, σv} ⊂M ⊆ {σid, σx2x1}∪ {σu|u ∈Wx1 ∪Wx2 ∪W ∪
WG

(2)({x1}) ∪W
G
(2)({x2})}, where t ∈W , s ∈WG

(2)({x1}), v ∈W
G
(2)({x2}).

Proof. Let M be an M -strongly solid submonoid of HypG(2). Clearly, (xy)z ≈ x(yz)
is an identity in V (M). Let g ≈ h be an arbitrary identity in V (M)and c, d ∈ N
where c 6= d. From σxc1 , σxd2

∈ M and σxc1 ◦ σxd2 = σxc2 , σxc2 ◦ σxd1 = σxc1 and

for all σ ∈ M, σ̂[g] ≈ σ̂[h] ∈ IdV (M) it follows that the first variables in g and
h are the same and the last variables in g and h are the same. Thus V (M) ⊆
Mod{(xy)z ≈ x(yz), g ≈ h} where leftmost(g) = leftmost(h)and rightmost(g) =
rightmost(h).

4 M-strongly solid monoids of generalized
hypersubstitutions of type τ = (2)

From the previous section, we can characterize M -strongly solid monoids of
generalized hypersubstitutions of type τ = (2) which are implied to {σid} and M -
strongly solid submonoids which are not implied to {σid}. So in this section, we
collect M -strongly solid monoids of generalized hypersubstitutions of type τ = (2).
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Theorem 10. LetM be a submonoid of HypG(2). Then the following are equivalent:

(i) M is M-strongly solid.

(ii) M is one of all cases in Proposition 5 and Proposition 6-9.

Proof. Let M be an M -strongly solid submonoid of HypG(2). Then (ii) follows from
Proposition 5 and Proposition 6-9.

On the other hand, if M is one of the cases in Proposition 5. We get M is implied
to {σid}. So V (M) = I is the trivial variety. Clearly, I is M -strongly solid.

For M is one of Case 1 in Proposition 6, we consider M = {σid, σx2x1}, we have
the commutative law is an identity in the variety V (M). And σ̂xy[u] = σ̂yx[v] is also
an identity in V (M). Thus V (M) is M -strongly solid. And if M = {σid} ∪ {σt|t ∈
W},then we have t = σ̂t[u] = σ̂t[v] = t. Thus V (M) is M -strongly solid. For
other cases. Let g ≈ h be an arbitrary identity in V (M). Then we can derive new
identities σ̂[g] ≈ σ̂[h] ∈ IdV (M) ∀σ ∈M . Consequently, V (M) is M -strongly solid.

Next, if M is one of the cases in Proposition 7. We get V (M) ⊆ Mod{(xy)z ≈
x(yz), u ≈ v} where leftmost(u) = leftmost(v). For all σ ∈M , we have σ̂[(xy)z] =
σ̂[x(yz)] and σ̂[u] = σ̂[v]. Consequently, V (M) is M -strongly solid.

The proof for Proposition 8 and Proposition 9 are similar to Proposition 7.
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