M-STRONGLY SOLID MONOIDS OF GENERALIZED HYPERSUBSTITUTIONS OF TYPE $\tau=(2)$

Sivaree Sudsanit and Sorasak Leeratanavalee

Abstract

The purpose of this paper is to characterize M-strongly solid monoids of generalized hypersubstitutions of type $\tau=(2)$ which is the extension of M-solid monoids of hypersubstitutions of the same type.

1 Introduction

The concept of a generalized hypersubstitution is a generalization of the concept of a hypersubstitution. It is used to study strong hyperidentities and strongly solid varieties. Firstly, we give briefly the concept of the monoid of all generalized hypersubstitutions.

Let $X:=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ be a countably infinite set of symbols called variables. Let $\left(f_{i}\right)_{i \in I}$ be an indexed set which is disjoint from X. Each f_{i} is called an n_{i}-ary operation symbol, where $n_{i} \geq 1$ is a natural number. Let τ be a function which assigns to every f_{i} the number n_{i} as its arity, written as $\left(n_{i}\right)_{i \in I}$ and is called a type.

An n-ary term of type τ is defined inductively as follows :
(i) The variables $x_{1}, x_{2}, \ldots, x_{n}$ are n-ary terms of type τ.
(ii) If $t_{1}, t_{2}, \ldots, t_{n_{i}}$ are n-ary terms of type τ, then $f_{i}\left(t_{1}, t_{2}, \ldots, t_{n_{i}}\right)$ is an n-ary term of type τ.

By $W_{\tau}\left(X_{n}\right)$, we denote the smallest set which contains $x_{1}, x_{2}, \ldots, x_{n}$ and is closed under finite application of $(i i)$. Let $W_{\tau}(X):=\bigcup_{n=1}^{\infty} W_{\tau}\left(X_{n}\right)$ and is called the set of all terms of type τ.

[^0]http://www.utgjiu.ro/math/sma

A generalized hypersubstitution of type $\tau=\left(n_{i}\right)_{i \in I}$ is a mapping $\sigma:\left\{f_{i} \mid i \in\right.$ $I\} \rightarrow W_{\tau}(X)$ which does not necessarily preserve the arity. We denote the set of all generalized hypersubstitutions of type τ by $\operatorname{Hyp}_{G}(\tau)$. To define a binary operation on $\operatorname{Hyp}_{G}(\tau)$, we define first the concept of a generalized superposition of terms $S^{m}: W_{\tau}(X)^{m+1} \longrightarrow W_{\tau}(X)$ by the following steps:
(i) If $t=x_{j}, 1 \leq j \leq m$, then $S^{m}\left(x_{j}, t_{1}, \ldots, t_{m}\right):=t_{j}$.
(ii) If $t=x_{j}, m<j \in \mathbb{N}$, then $S^{m}\left(x_{j}, t_{1}, . ., t_{m}\right):=x_{j}$.
(iii) If $t=f_{i}\left(s_{1}, . ., s_{n_{i}}\right)$, then

$$
S^{m}\left(t, t_{1}, \ldots, t_{m}\right):=f_{i}\left(S^{m}\left(s_{1}, t_{1}, \ldots, t_{m}\right), . ., S^{m}\left(s_{n_{i}}, t_{1}, \ldots, t_{m}\right)\right)
$$

Every generalized hypersubstitution σ can be extended to a mapping $\hat{\sigma}: W_{\tau}(X) \longrightarrow W_{\tau}(X)$ inductively defined as follows:
(i) $\hat{\sigma}[x]:=x \in X$,
(ii) $\hat{\sigma}\left[f_{i}\left(t_{i}, \ldots, t_{n_{i}}\right)\right]:=S^{n_{i}}\left(\sigma\left(f_{i}\right), \hat{\sigma}\left[t_{1}\right], \ldots, \hat{\sigma}\left[t_{n_{i}}\right]\right)$, for any n_{i}-ary operation symbol f_{i} and supposed that $\hat{\sigma}\left[t_{j}\right], 1 \leq j \leq n_{i}$ are already defined.

Then we define a binary operation ${ }_{G}$ on $H y p_{G}(\tau)$ by $\sigma_{1} \circ_{G} \sigma_{2}:=\hat{\sigma}_{1} \circ \sigma_{2}$ where - denotes the usual composition of mapping and $\sigma_{1}, \sigma_{2} \in H y p_{G}(\tau)$. Let $\sigma_{i d}$ be the hypersubstitution which maps each n_{i}-ary operation symbol f_{i} to the term $f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$. In [3], S. Leeratanavalee and K. Denecke proved that :

Proposition 1. ([3]) For arbitrary terms $t, t_{1}, \ldots, t_{n} \in W_{\tau}(X)$ and for arbitrary generalized hypersubstitutions $\sigma, \sigma_{1}, \sigma_{2}$ we have
(i) $S^{n}\left(\sigma[t], \sigma\left[t_{1}\right], \ldots, \sigma\left[t_{n}\right]\right)=\hat{\sigma}\left[S^{n}\left(t, t_{1}, \ldots, t_{n}\right)\right]$,
(ii) $\left(\hat{\sigma}_{1} \circ \sigma_{2}\right)^{\wedge}=\hat{\sigma}_{1} \circ \hat{\sigma}_{2}$.

Proposition 2. ([3]) $\operatorname{Hyp}_{G}(\tau)=\left(\operatorname{Hyp}_{G}(\tau) ; \circ_{G}, \sigma_{i d}\right)$ is a monoid and the set of all hypersubstitutions of type τ forms a submonoid of $\operatorname{Hyp}_{G}(\tau)$.

As usual, instead of $f(x, y)$ we write also $x y$.
Let $\tau=\left(n_{i}\right)_{i \in I}$ be a type with the sequence of operation symbols $\left(f_{i}\right)_{i \in I}$. Let $t \in W_{\tau}\left(X_{n}\right)$ for $n \in \mathbb{N}$ and $\mathcal{A}=\left(A ;\left(f_{i}^{\mathcal{A}}\right)_{i \in I}\right)$ be an algebra of type τ. The n-ary term operation $t^{\mathcal{A}}: A^{n} \rightarrow A$ of type τ is inductively defined by
(i) $t^{\mathcal{A}}\left(a_{1}, a_{2}, \ldots, a_{n}\right):=a_{i}$ if $t=x_{i} \in X_{n}$.
(ii) $t^{\mathcal{A}}\left(a_{1}, a_{2}, \ldots, a_{n}\right):=f_{i}^{\mathcal{A}}\left(t_{1}^{\mathcal{A}}\left(a_{1}, a_{2}, \ldots, a_{n}\right), . ., t_{n_{i}}^{\mathcal{A}}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)$ if t is a compound term $f_{i}\left(t_{1}, t_{2}, \ldots, t_{n_{i}}\right)$.

Let s, t be n-ary terms of type τ and \mathcal{A} be an algebra of type $\tau=\left(n_{i}\right)_{i \in I}$. An equation of type τ is a pair (s, t) ; such pair are commonly written as $s \approx t$. The set of all equations of type τ is denoted by $E_{\tau}(X)$.

An equation $s \approx t$ is an identity of \mathcal{A}, denoted by $\mathcal{A} \models s \approx t$ if $s^{\mathcal{A}}=t^{\mathcal{A}}$.
Let K be a class of algebras of type τ. The class K satisfies an equation $s \approx t$, denoted by $K \models s \approx t$, if for every $\mathcal{A} \in K, \mathcal{A} \models s \approx t$.

Let Σ be a set of equations of type τ. The class K is said to satisfy Σ, denoted by $K \models \Sigma$, if $K \models s \approx t$ for every $s \approx t \in \Sigma$. Let

$$
\begin{aligned}
& I d K:=\left\{s \approx t \in E_{\tau}(X) \mid K \models s \approx t\right\} \\
& \qquad \operatorname{Mod} \Sigma:=\{\mathcal{A} \in \operatorname{Alg}(\tau) \mid \mathcal{A} \models \Sigma\}
\end{aligned}
$$

We denote the class of all algebras of type τ by $\operatorname{Alg}(\tau)$. Let V be a nonempty subset of $\operatorname{Alg}(\tau) . V$ is called a variety if $V=\operatorname{ModId} V$.

Theorem 3. A non-empty subset V of $\operatorname{Alg}(\tau)$ is a variety if and only if $V=\operatorname{Mod} \Sigma$ for some $\Sigma \subseteq E_{\tau}(X)$.

Let M be a submonoid of $H y p_{G}(\tau)$. An identity $s \approx t$ of a variety V of type τ is called an M-strong hyperidentity if $\hat{\sigma}[s] \approx \hat{\sigma}[t]$ is an identity in V for any $\sigma \in M$. If every identity satisfied in the variety V is an M-strong hyperidentity, we call the variety V be an M-strongly solid. A single semigroup S is called M-strongly solid if the variety $V(S)$ generated by S is M-strongly solid.

Definition 4. Let M be a submonoid of $\left(\operatorname{Hyp}_{G}(\tau) ;{ }_{G}, \sigma_{i d}\right)$. M is said to be M strongly solid if the reduct $\left(M ; \circ_{G}\right)$ is M-strongly solid.

$2 M$-strongly solid submonoids of $\operatorname{Hyp}_{G}(2)$ which M is implied to $\left\{\sigma_{i d}\right\}$

Throughout this paper, we restrict ourselves to study on the type $\tau=(2)$. Let f be a binary operation symbol. By σ_{t} we denote the generalized hypersubstitution which maps f to the term t in $W_{(2)}(X)$. Let \mathbb{O}^{+}and \mathbb{E}^{+}be the set of all positive odd integers and the set of all positive even integers, respectively. For $s \in W_{(2)}(X)$ and $2<m \in \mathbb{N}$ we denote :

$$
\begin{aligned}
& s^{d}:=\text { the dual term of } s \text { obtained by rearranging all variables } \\
& \text { occurring in } s \text { from right to left, } \\
& s^{\prime}:=\text { the term obtained by interchanging of } x_{1} \text { and } x_{2} \text { occurring } \\
& \text { in } s \text {, } \\
& s^{*}:=\text { the term obtained from } s \text { by replacing of letter } x_{1} \text { by } x_{m}, \\
& s^{* *}:=\text { the term obtained from } s \text { by replacing of letter } x_{2} \text { by } x_{m}, \\
& \operatorname{var}(s):=\text { the set of all variables occurring in } s \text {, } \\
& \ell(s):=\quad \text { the length of } s, \\
& \text { leftmost }(s):=\text { the first variable (from the left) occurring in } s \text {, } \\
& \text { rightmost }(s):=\text { the last variable occurring in } s \text {, } \\
& W_{x_{1}}:=\left\{s \in W_{(2)}(X) \mid \operatorname{var}(s)=\left\{x_{1}\right\}\right\}, \\
& W_{x_{2}}:=\left\{s \in W_{(2)}(X) \mid \operatorname{var}(s)=\left\{x_{2}\right\}\right\}, \\
& W:=\left\{s \in W_{(2)}(X) \mid x_{1}, x_{2} \notin \operatorname{var}(s)\right\}, \\
& W_{(2)}^{G}\left(\left\{x_{1}\right\}\right) \quad:=\left\{s \in W_{(2)}(X) \mid x_{1} \in \operatorname{var}(s), x_{2} \notin \operatorname{var}(s)\right\}, \\
& W_{(2)}^{G}\left(\left\{x_{2}\right\}\right) \quad:=\quad\left\{s \in W_{(2)}(X) \mid x_{2} \in \operatorname{var}(s), x_{1} \notin \operatorname{var}(s)\right\}, \\
& \begin{array}{lll}
\overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)} & :=W_{(2)}^{G}\left(\left\{x_{1}\right\}\right) \backslash W_{x_{1}}, \\
\overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)} & := & W_{(2)}^{G}\left(\left\{x_{2}\right\}\right) \backslash W_{x_{2}},
\end{array} \\
& \frac{\frac{(2)}{W_{(2)}^{G}\left(\left\{x_{i}\right\}\right)_{x_{j}}}}{W^{G}\left(\left\{x_{i}\right\}\right)^{2}}:=\left\{s \in \overline{W_{(2)}^{G}\left(\left\{x_{i}\right\}\right)} \mid \text { leftmost }(s)=x_{j} \text { where } i \in\{1,2\}, j \in \mathbb{N}\right\}, \\
& \overline{\overline{W_{(2)}^{G}\left(\left\{x_{i}\right\}\right)^{x_{k}}}}:=\left\{s \in \overline{W_{(2)}^{G}\left(\left\{x_{i}\right\}\right)} \mid \text { rightmost }(s)=x_{k} \text { where } i \in\{1,2\}, k \in \mathbb{N}\right\} \text {, } \\
& \overline{W_{(2)}^{G}\left(\left\{x_{i}\right\}\right)_{x_{j}}^{x_{k}}} \quad:=\left\{s \in \overline{W_{(2)}^{G}\left(\left\{x_{i}\right\}\right)} \mid \text { leftmost }(s)=x_{j} \text { and rightmost }(s)=x_{k}\right. \\
& \text { where } i \in\{1,2\}, j, k \in \mathbb{N}\} \text {, } \\
& P_{G}(2):=\left\{\sigma_{x_{i}} \in \operatorname{Hyp}_{G}(2) \mid i \in \mathbb{N}, x_{i} \in X\right\}, \\
& D_{i}^{G}:=\left\{\sigma_{t_{i}}, \sigma_{t_{i}^{d}} \mid \sigma_{t_{i}} \in G\right\}, \\
& P_{i}^{a b}:=\left\{\sigma_{x_{a}^{i}}, \sigma_{x_{b}^{i}} \mid a, b, i \in \mathbb{N}\right\}, \\
& G:=\left\{\sigma_{s} \in H y p_{G}(2) \mid s \in W_{(2)}(X) \backslash X, x_{1}, x_{2} \notin \operatorname{var}(s)\right\}, \\
& G_{x_{m}}:=\left\{\sigma_{s} \in G \mid \operatorname{leftmost}(s)=x_{m}, 2<m \in \mathbb{N}\right\}, \\
& G^{x_{m}}:=\left\{\sigma_{s} \in G \mid \text { rightmost }(s)=x_{m}, 2<m \in \mathbb{N}\right\} \text {, } \\
& G_{x_{m}}^{x_{n}}:=\left\{\sigma_{s} \in G \mid \text { leftmost }(s)=x_{m} \text { and } \operatorname{rightmost}(s)=x_{n},\right. \\
& 2<m, n \in \mathbb{N}\} \text {, } \\
& T_{i}:=\left\{\sigma_{t_{i}}, \sigma_{t_{i}^{\prime}}\right\} \text { where } t_{i} \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}^{x_{1}}} \text { or } \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{2}}^{x_{2}}} \text {, } \\
& B_{i}:=\left\{\sigma_{t_{i}}, \sigma_{t_{i}^{\prime}}, \sigma_{t_{i}^{d}}, \sigma_{\left(t_{i}^{\prime}\right)^{d}}\right\} \text { where } t_{i} \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}^{x_{1}}} \text { or } \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{2}}^{x_{2}}}, \\
& C_{i}:=\left\{\sigma_{t_{i}}, \sigma_{t_{i}^{*}}\right\} \text { where } t_{i} \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{m}}} .
\end{aligned}
$$

Let M be an M-strongly solid submonoid of $H y p_{G}(2)$. Clearly, $(x y) z \approx x(y z)$ is an identity in $V(M)$ and for all $\sigma \in \operatorname{Hyp}_{G}(2), \ell(\hat{\sigma}[x y]) \leq \ell(\hat{\sigma}[\hat{\sigma}[x y]])$. Since $\hat{\sigma}[(x y) z]=S^{2}\left(\sigma(f), S^{2}(\sigma(f), x, y), z\right), \hat{\sigma}[x(y z)]=S^{2}\left(\sigma(f), x, S^{2}(\sigma(f), y, z)\right)$ and if there exist x_{1}, x_{2} occurring in $\sigma(f) k$ times and l times respectively, then after substitution there will be x occurs k^{2} times and z occurs l times in $\hat{\sigma}[(x y) z]$ and x occurs k times and z occurs l^{2} times in $\hat{\sigma}[x(y z)]$. Since M is M-strongly solid, so $\hat{\sigma}[(x y) z] \approx \hat{\sigma}[x(y z)]$ is an identity in $V(M)$. Thus there exist $a, b \in \mathbb{N}, a \neq b$ such
that $x^{a} \approx x^{b}$ is an identity in $V(M)$. Hence $\sigma^{a}=\sigma^{b}$. If $\ell(\hat{\sigma}[x y])<\ell(\hat{\sigma}[\hat{\sigma}[x y]])$, then $\sigma^{a} \neq \sigma^{b}$ which is a contradiction. Therefore $\ell(\hat{\sigma}[x y])=\ell(\hat{\sigma}[\hat{\sigma}[x y]])$.

Let $U=\left\{\sigma \mid \sigma \in \operatorname{Hyp}_{G}(2)\right.$ and $\left.\ell(\hat{\sigma}[x y])=\ell(\hat{\sigma}[\hat{\sigma}[x y]])\right\}$

$$
=\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\} \cup\left\{\sigma_{t} \mid t \in W_{x_{1}} \cup W_{x_{2}} \cup W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)} \cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}\right\} .
$$

Thus $M \subseteq U$.

Proposition 5. Let M be an M-strongly solid submonoid of $\operatorname{Hyp}_{G}(2)$. If M is one of all subcases from Case 1-5, then M is implied to $\left\{\sigma_{i d}\right\}$.

Case 1: For $i, m, n, k \in \mathbb{N}(m, n, k>2)$.
1.1. $M=\left\{\sigma_{i d}, \sigma_{x_{1}}\right\} \cup A$, where A is one of these sets : $\left\{\sigma_{t} \mid t \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}\right\}$, $\left\{\sigma_{t} \mid t \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right),\left\{\sigma_{t} \mid t \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{m}}}, \sigma_{x_{m}}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$.
1.2. $M=\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup A$, where A is one of these sets: $\left\{\sigma_{t} \mid t \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}^{x_{1}}}\right\}$, $\left\{\sigma_{t} \mid t \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{2}}^{x_{2}}}\right\},\left\{\sigma_{t} \mid t \in \overline{\left.W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}^{x_{1}}\right\}} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right),\left\{\sigma_{t} \mid t \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{2}}^{x_{2}}}\right\}\right.$
$\cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right),\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right) \cup\left(\bigcup_{\exists i}\left\{\sigma_{x_{1}^{i}}\right\}\right),\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right) \cup\left(\bigcup_{\exists i}\left\{\sigma_{x_{2}^{i}}\right\}\right)$.
1.3. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \subseteq M \subseteq A$, where A is either $\left\{\sigma_{i d}, \sigma_{x_{1}}\right\} \cup\left\{\sigma_{t} \mid t \in W_{x_{2}}\right\}$ or $\left\{\sigma_{i d}, \sigma_{x_{2}}\right\} \cup\left\{\sigma_{t} \mid t \in W_{x_{1}}\right\}$.
1.4. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{t}, \sigma_{x_{m}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{t}, \sigma_{x_{m}}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $\sigma_{t} \in G_{x_{m}}$.
1.5. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{x_{m}}, \sigma_{x_{n}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{x_{m}}, \sigma_{x_{n}}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $\sigma_{t} \in G_{x_{m}}^{x_{n}}$.
1.6. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{x_{m}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{x_{m}}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $t \in$ $\overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}^{x_{m}}}$.
1.7. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{x_{m}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{x_{m}}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $t \in$ $\overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{m}}^{x_{2}}}$.
1.8. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left(\bigcup_{\exists i} T_{i}\right) \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left(\bigcup_{\forall i} T_{i}\right) \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$.
1.9. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{m_{1}} x_{m_{2}} \ldots x_{m_{r}}}, \sigma_{x_{1} x_{m_{2}} \ldots x_{m_{r}}}, \sigma_{x_{m_{1}} x_{m_{2}} \ldots x_{m_{r-1}} x_{2}}, \sigma_{x_{m_{1}}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}\right.$, $\left.\sigma_{x_{m_{1}} x_{m_{2}} \ldots x_{m_{r}}}, \sigma_{x_{1} x_{m_{2}} \ldots x_{m_{r}}}, \sigma_{x_{m_{1}} x_{m_{2}} \ldots x_{m_{r-1}} x_{2}}, \sigma_{x_{m_{1}}}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $m_{l}>$ $2 \forall l \in \mathbb{N}, r \in \mathbb{N}$.
1.10. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{x_{m_{1}} x_{m_{2}} \ldots x_{m_{r}}}, \sigma_{x_{1} x_{m_{2}} \ldots x_{m_{r}}}, \sigma_{x_{m_{1}} x_{m_{2}} \ldots x_{m_{r-1}} x_{2}}, \sigma_{x_{m_{1}}}, \sigma_{x_{m_{n}}}\right\} \subseteq M \subseteq$ $\left\{\sigma_{i d}\right.$,
$\left.\sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{x_{m_{1}} x_{m_{2}} \ldots x_{m_{r}}}, \sigma_{x_{1} x_{m_{2}} \ldots x_{m_{r}}}, \sigma_{x_{m_{1}} x_{m_{2}} \ldots x_{m_{r-1}} x_{2}}, \sigma_{x_{m_{1}}}, \sigma_{x_{m_{n}}}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $m_{l}>2 \quad \forall l \in \mathbb{N}, r \in \mathbb{N}$.

Case 2: For $i, m, k \in \mathbb{N}(m, k>2)$.
2.1. $\left\{\sigma_{i d}\right\} \subset M \subseteq\left\{\sigma_{i d}\right\} \cup A$, where A is one of these sets : $\left\{\sigma_{t} \mid t \in W_{x_{1}}\right\},\left(\bigcup_{\forall i} P_{i}^{12}\right)$, $\left(\bigcup_{\forall i} P_{i}^{1 m}\right)$.
2.2. $M=\left\{\sigma_{i d}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right) \cup A$, where A is either $\left(\bigcup_{\exists i}\left\{\sigma_{x_{1}^{i}}\right\}\right)$ or $\left(\bigcup_{\exists i} P_{i}^{12}\right)$.

Case 3: For $i, a, m, k \in \mathbb{N}, a>1(m, k>2)$.
3.1. $\left\{\sigma_{i d}\right\} \subset M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{t} \mid t \in W_{x_{2}}\right\}$.
3.2. $\left\{\sigma_{i d}, \sigma_{t}, \sigma_{s}\right\} \subseteq M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{v} \mid v \in W_{x_{2}} \cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}\right\}$, where $t \in W_{x_{2}}$ and $s \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}$.
3.3. $\left\{\sigma_{i d}, \sigma_{x_{m}}\right\} \cup\left(\bigcup_{\exists a}\left\{\sigma_{x_{2}^{a}}\right\}\right) \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{m}}\right\} \cup\left\{\sigma_{x_{2}^{a}} \mid a>1\right\} \cup\left\{\sigma_{t} \mid t \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}\right\}$.
3.4. $\left\{\sigma_{i d}\right\} \cup\left(\bigcup_{\exists a}\left\{\sigma_{x_{2}^{a}}\right\}\right) \cup\left(\bigcup_{\exists i}\left\{\sigma_{t_{i}} \mid \sigma_{t_{i}} \in G^{x_{m}}\right\}\right) \cup\left\{\sigma_{x_{m}^{a}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{k}}\right\} \cup$ $\left\{\sigma_{x_{2}^{a}} \mid a>1\right\} \cup\left\{\sigma_{t} \mid \sigma_{t} \in G^{x_{m}}\right\} \cup\left\{\sigma_{x_{m}^{a}} \mid a>1\right\}$.
3.5. $\left\{\sigma_{i d}\right\} \cup\left(\bigcup_{\exists i}\left\{\sigma_{t_{i}} \mid \sigma_{t_{i}} \in G^{x_{m}}\right\}\right) \cup\left(\bigcup_{\exists a}\left\{\sigma_{x_{2}^{a}}\right\}\right) \cup\left(\bigcup_{\exists i}\left\{\sigma_{s_{i}} \mid s_{i} \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}\right\}\right) \cup$ $\left(\bigcup_{\exists a}\left\{\sigma_{x_{m}^{a}}\right\}\right) \cup\left\{\sigma_{t_{i}^{* *}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{k}}\right\} \cup\left\{\sigma_{t} \mid \sigma_{t} \in G^{x_{m}}\right\} \cup\left\{\sigma_{x_{2}^{a}} \mid a>1\right\} \cup\left\{\sigma_{s} \mid s \in\right.$ $\frac{\exists a}{\left.W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}\right\} \cup\left\{\sigma_{x_{m}^{a}}\right\} \cup\left\{\sigma_{t^{* *}}\right\} . ~}$

Case 4: For $i, k \in \mathbb{N}(k>2)$.

Surveys in Mathematics and its Applications 8 (2013), 77 - 90
http://www.utgjiu.ro/math/sma
4.1. $M=\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left(\bigcup_{\exists i} T_{i}\right)$.
4.2. $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \subseteq M \subseteq A$, where A is either $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{2}}\right\} \cup\left\{\sigma_{x_{1}^{i}} \mid i \in\right.$ $\left.\mathbb{O}^{+}\right\}$or $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left\{\sigma_{x_{1}^{i}} \mid i \in \mathbb{E}^{+}\right\}$.
4.3. $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \subseteq M \subseteq A$, where A is either $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}\right\} \cup\left\{\sigma_{x_{2}^{i}} \mid i \in\right.$ $\left.\mathbb{O}^{+}\right\}$or $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left\{\sigma_{x_{2}^{i}} \mid i \in \mathbb{E}^{+}\right\}$.
4.4. $M=\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right) \cup A$, where A is one of these sets :

$$
\left(\bigcup_{\exists i \in \mathbb{O}^{+}}\left\{\sigma_{x_{1}^{i}}\right\}\right),\left(\bigcup_{\exists i \in \mathbb{E}^{+}}\left\{\sigma_{x_{1}^{i}}\right\}\right),\left(\bigcup_{\exists i \in \mathbb{O}^{+}}\left\{\sigma_{x_{2}^{i}}\right\}\right),\left(\bigcup_{\exists i \in \mathbb{E}^{+}}\left\{\sigma_{x_{2}^{i}}\right\}\right),\left(\bigcup_{\exists i \in \mathbb{E}^{+}} P_{i}^{12}\right) .
$$

Case 5: $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\} \cup\left(\bigcup_{\exists i \in \mathbb{O}^{+}} P_{i}^{12}\right) \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\} \cup\left(\bigcup_{\forall i \in \mathbb{O}^{+}} P_{i}^{12}\right) \cup$ $\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $i, k \in \mathbb{N}$ and $k>2$.
Proof. For Case 1, we have $V(M) \models x y x \approx y x$. Since M is M-strongly solid, so $\hat{\sigma}[x y x] \approx \hat{\sigma}[y x] \in \operatorname{IdV}(M)$ for all $\sigma \in M$. Since $\sigma_{x_{1}} \in M$ for all M, we get $\hat{\sigma}_{x_{1}}\left[\hat{\sigma}_{t}[x y x]\right] \approx \hat{\sigma}_{x_{1}}\left[\hat{\sigma}_{t}[y x] \in \operatorname{IdV}(M)\right.$ for all $\sigma_{t} \in M$. Thus $x \approx y \in \operatorname{IdV}(M)$. Therefore M is implied to $\left\{\sigma_{i d}\right\}$.

The proof of Case 2-5 are similar to the proof of Case 1 in which for Case 2 $V(M) \models x^{2} \approx x, x y x \approx y x$ and $\sigma_{x_{1}^{a}} \in M$ where $a \in \mathbb{N}$, therefore M is implied to $\left\{\sigma_{i d}\right\}$. Case $3 V(M) \models x^{2} \approx x, x y x \approx x y$ and $\sigma_{x_{2}^{a} \in M \text { where } a \in \mathbb{N} \text {, therefore } M}$ is implied to $\left\{\sigma_{i d}\right\}$. Case $4 V(M) \models x^{2} y^{2} x^{2} \approx y^{2} x^{2}$ and $\sigma_{x_{2}} \in M$ where $a \in \mathbb{N}$, therefore M is implied to $\left\{\sigma_{i d}\right\}$. Case $5 V(M) \models x^{3} \approx x, x^{2} y^{2} x^{2} \approx y^{2} x^{2}$ and $\sigma_{x_{2}^{a}} \in M$ where $a \in \mathbb{O}^{+}$, therefore M is implied to $\left\{\sigma_{i d}\right\}$.

$3 M$-strongly solid submonoids of $H y p_{G}(2)$ which M is not implied to $\left\{\sigma_{i d}\right\}$

In this section, we consider $M \subseteq U$ where M is M-strongly solid submonoid and M is not implied to $\left\{\sigma_{i d}\right\}$. Since M has a lot of elements. It is difficult to write all submonoids M of U in the exactly form. But there are some cases where it is clear that M is not implied to $\left\{\sigma_{i d}\right\}$.
Proposition 6. Let M be an M-strongly solid submonoid of $\operatorname{Hyp}_{G}(2)$. If M is one of all subcases from Case 1-2, then M is not implied to $\left\{\sigma_{i d}\right\}$.

Case 1:
1.1. $M=\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\}$.
1.2. $\left\{\sigma_{i d}\right\} \subset M \subseteq\left\{\sigma_{i d}\right\} \cup A$, where A is one of these sets : $\left\{\sigma_{t} \mid t \in W\right\},\left\{\sigma_{t} \mid t \in\right.$ $\left.\overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}\right\},\left\{\sigma_{t} \mid t \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}\right\},\left(\bigcup_{\forall i \in \mathbb{N}} T_{i}\right)$ and $|M| \geq 2$.
1.3. $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\} \subset M \subseteq\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\} \cup A$, where A is either $\left(\bigcup_{\forall i \in \mathbb{N}} D_{i}^{G}\right)$ or $\left(\bigcup_{\forall i \in \mathbb{N}} B_{i}\right)$ and $|M| \geq 4$.
 either $\overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}$ or $\frac{\left\{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)\right.}{}$.
1.5. $A \cup\left\{\sigma_{t}, \sigma_{s}, \sigma_{v}\right\} \subset M \subseteq A \cup\left\{\sigma_{u} \mid u \in W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)} \cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}\right\}$, where $\left.t \in W, s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}\right\}, v \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}$ and A is either $\left\{\sigma_{i d}\right\}$ or $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\}$.

Case 2: For $i, a, b, m, k \in \mathbb{N}, a, b>1(m, k>2)$.
2.1. $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\} \subset M \subseteq\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\} \cup\left(\bigcup_{\forall i \in \mathbb{E}^{+}} P_{i}^{12}\right)$ and $|M| \geq 4$.
2.2. $\left\{\sigma_{i d}, \sigma_{t}, \sigma_{s}, \sigma_{v}\right\} \subset M \subseteq\left\{\sigma_{i d}\right\} \cup A \cup\left\{\sigma_{u} \mid u \in W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{m}}}\right\}$, where $s \in W$, $v \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{m}}}, t \in A$ and A is either $\left\{\sigma_{x_{1}}^{a} \mid a>1\right\}$ or $\left\{\sigma_{x_{2}}^{b} \mid b>1\right\}$.
2.3. $M=\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\} \cup\left(\bigcup_{\exists a} P_{a}^{12}\right) \cup\left(\bigcup_{\exists i} B_{i}\right)$.
2.4. $\left\{\sigma_{i d}, \sigma_{x_{1}}^{a}, \sigma_{t}\right\} \cup A \subset M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{x_{1}}^{a} \mid a>1\right\} \cup\left\{\sigma_{s} \mid s \in W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)} \cup\right.$ $\left.\overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{m}}}\right\}$, where $t \in W$ and A is either $\left\{\sigma_{v}, \sigma_{u}\right\}$ with $v \in \overline{W_{(2)}^{G}}\left(\left\{x_{1}\right\}\right), u \in$ $\overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{m}}^{x_{k}}}$ or $\left\{\sigma_{e}, \sigma_{f}\right\}$ with $e \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{k}}}, f \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{m}}}$.
2.5. $\left\{\sigma_{i d}, \sigma_{x_{2}}^{a}, \sigma_{t}\right\} \cup A \subset M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{x_{2}}^{a} \mid a>1\right\} \cup\left\{\sigma_{s} \mid s \in W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)^{x_{m}}} \cup\right.$ $\left.\overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}\right\}$, where $t \in W$ and A is either $\left\{\sigma_{v}, \sigma_{u}\right\}$ with $v \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{k}}^{x_{m}}}, u \in$ $\overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}$ or $\left\{\sigma_{e}, \sigma_{f}\right\}$ with $e \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)^{x^{m}}}, f \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{k}}}$.
2.6. $\left\{\sigma_{i d}, \sigma_{x_{1}}^{a}, \sigma_{x_{2}}^{b}, \sigma_{t}\right\} \cup A \subset M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{x_{1}}^{a} \mid a>1\right\} \cup\left\{\sigma_{x_{2}}^{b} \mid b>1\right\} \cup\left\{\sigma_{s} \mid s \in\right.$ $\left.W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)} \cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}\right\}$, where $t \in W$ and A is either $\left\{\sigma_{v}, \sigma_{u}\right\}$ with $v \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{m}}}, u \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}$ or $\left\{\sigma_{e}, \sigma_{f}\right\}$ with $e \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}, f \in$ $\overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{m}}}$.
2.7. $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}^{a}, \sigma_{x_{2}}^{b}, \sigma_{t}, \sigma_{s}, \sigma_{v}\right\} \subset M \subseteq\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\} \cup\left\{\sigma_{x_{1}^{a}} \mid a>1\right\} \cup\left\{\sigma_{x_{2}^{b}} \mid b>\right.$ $1\} \cup\left\{\sigma_{u} \mid u \in W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)} \cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}\right\}$, where $t \in W, s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}$, $v \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}$.

Proof. Let M be an M-strongly solid submonoid of $H y p_{G}(2)$ and let M is one of all subcases in Case 1, we have $\sigma_{t} \notin M$ where $t \in W_{x_{1}}$ or $W_{x_{2}}$. And for M in the Case 2 , we have $\sigma_{x_{1}}$ or $\sigma_{x_{2}} \notin M$ and M is not idempotent. So we get $x \approx y \notin \operatorname{IdV}(M)$. Therefore M is not implied to $\left\{\sigma_{i d}\right\}$.

Next, we consider the remaining cases which M can be classified into three groups by using $V(M)$ as a tool.

Proposition 7. Let M be an M-strongly solid submonoid of $H y p_{G}(2)$ and i, j, a, m, $k \in \mathbb{N}, a>1$ with $m, k>2$. If M is one of the following cases, then $V(M) \subseteq$ $\operatorname{Mod}\{(x y) z \approx x(y z), g \approx h\}$ where leftmost $(g)=$ leftmost (h).

1. $\left\{\sigma_{i d}, \sigma_{x_{1}^{a}}, \sigma_{t}, \sigma_{x_{m}^{a}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{m}}\right\} \cup\left\{\sigma_{x_{1}^{a}}\right\} \cup\left\{\sigma_{s} \mid \sigma_{s} \in G\right\}$, where $\sigma_{t} \in G_{x_{m}}$.
2. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{1}^{a}}, \sigma_{t}, \sigma_{x_{m}}, \sigma_{x_{m}^{a}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{k}}\right\} \cup\left\{\sigma_{x_{1}^{a}}\right\} \cup\left\{\sigma_{s} \mid \sigma_{s} \in G\right\}$, where $\sigma_{t} \in G_{x_{m}}$.
3. $\left\{\sigma_{i d}, \sigma_{x_{m}}, \sigma_{x_{k}}, \sigma_{x_{1}^{a}}, \sigma_{t}, \sigma_{x_{m}^{a}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{m}}, \sigma_{x_{k}}\right\} \cup\left\{\sigma_{x_{1}^{a}}\right\} \cup\left\{\sigma_{s} \mid s \in W\right\}$, where $\sigma_{t} \in G_{x_{m}}$.
4. $\left\{\sigma_{i d}, \sigma_{t}, \sigma_{s}\right\} \subseteq M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{v} \mid v \in W_{x_{1}} \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}\right\}$, where $t \in W_{x_{1}}$, $s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}$ and in case of $|M|=3$, then $\sigma_{x_{1}} \notin M$.
5. $M=\left\{\sigma_{i d}, \sigma_{x_{m}}\right\} \cup\left(\bigcup_{\exists a}\left\{\sigma_{x_{1}^{a}}\right\}\right) \cup\left(\bigcup_{\exists i}\left\{\sigma_{t_{i}} \mid t_{i} \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}\right\}\right)$.
6. $\left\{\sigma_{i d}\right\} \cup\left(\bigcup_{\exists a}\left\{\sigma_{x_{1}^{a}}\right\}\right) \cup\left(\bigcup_{\exists i}\left\{\sigma_{t_{i}} \mid \sigma_{t_{i}} \in G_{x_{m}}\right\}\right) \cup\left(\bigcup_{\exists j}\left\{\sigma_{s_{j}} \mid s_{j} \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}\right\}\right) \cup$ $\left\{\sigma_{x_{m}^{a}}, \sigma_{s_{j}^{*}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{k}}\right\} \cup\left\{\sigma_{x_{1}^{a}} \mid a>1\right\} \cup\left\{\sigma_{t} \mid \sigma_{t} \in G_{x_{m}}\right\} \cup\left\{\sigma_{s} \mid s \in\right.$
$\left.W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}\right\} \cup\left\{\sigma_{x_{m}^{a}}, \sigma_{s_{j}^{*}}\right\}$.
7. $\left(\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{t}, \sigma_{s}\right\} \subset M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{v} \mid v \in W \cup W_{x_{1}} \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}\right\}\right) \backslash M_{1}$, where $t \in W, s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}$ and $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{m}}, \sigma_{u}\right\} \subseteq M_{1} \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{u}\right\} \cup$ $\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $u \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}$.

Proof. Let M be an M-strongly solid submonoid of $\operatorname{Hyp}_{G}(2)$. Clearly, $(x y) z \approx x(y z)$ is an identity in $V(M)$. Let $g \approx h$ be an arbitrary identity in $V(M)$ and $c, d \in \mathbb{N}$, where $c \neq d$. From $\sigma_{x_{1}^{c}} \in M$ and $\sigma_{x_{1}^{c}} \circ \sigma_{x_{1}^{c}}=\sigma_{x_{1}^{c}} \circ \sigma_{x_{1}^{d}}=\sigma_{x_{1}^{c}}$ and for all $\sigma \in$ $M, \hat{\sigma}[g] \approx \hat{\sigma}[h] \in \operatorname{IdV}(M)$ it follows that the first variables in g and h are the same. Thus $V(M) \subseteq \operatorname{Mod}\{(x y) z \approx x(y z), g \approx h\}$ where leftmost $(g)=l e f t m o s t(h)$.

The examples of M and $V(M)$ corresponding to Proposition 7 as follows.

1. $\left\{\sigma_{i d}, \sigma_{x_{1}^{a}}, \sigma_{t}, \sigma_{x_{m}^{a}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{m}}\right\} \cup\left\{\sigma_{x_{1}^{a}}\right\} \cup\left\{\sigma_{s} \mid \sigma_{s} \in G\right\}$, where $\sigma_{t} \in G_{x_{m}}$.
2. $\left\{\sigma_{i d}, \sigma_{t}, \sigma_{s}\right\} \subseteq M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{v} \mid v \in W_{x_{1}} \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}\right\}$, where $t \in W_{x_{1}}$, $s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}$ and in case of $|M|=3$, then $\sigma_{x_{1}} \notin M$.
3. $M=\left\{\sigma_{i d}, \sigma_{x_{m}}\right\} \cup\left(\bigcup_{\exists a}\left\{\sigma_{x_{1}^{a}}\right\}\right) \cup\left(\bigcup_{\exists i}\left\{\sigma_{t_{i}} \mid t_{i} \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}\right\}\right)$.
4. $\left\{\sigma_{i d}\right\} \cup\left(\bigcup_{\exists a}\left\{\sigma_{x_{1}^{a}}\right\}\right) \cup\left(\bigcup_{\exists i}\left\{\sigma_{t_{i}} \mid \sigma_{t_{i}} \in G_{x_{m}}\right\}\right) \cup\left(\bigcup_{\exists j}\left\{\sigma_{s_{j}} \mid s_{j} \in \overline{\left.W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}\right\}}\right) \cup\right.$ $\frac{\left\{\sigma_{x_{m}^{a}}, \sigma_{s_{j}^{*}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{k}}\right\} \cup\left\{\sigma_{x_{1}^{a}} \mid a>1\right\} \cup\left\{\sigma_{t} \mid \sigma_{t} \in G_{x_{m}}\right\} \cup\left\{\sigma_{s} \mid s \in\right.}{\left.W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}\right\} \cup\left\{\sigma_{x_{m}^{a}}, \sigma_{s_{j}^{*}}\right\} .}$.
For M in each case, we have $V(M) \subseteq \operatorname{Mod}\left\{(x y) z \approx x(y z), x^{2} \approx x, x y x \approx x y\right\}$.
Proposition 8. Let M be an M-strongly solid submonoid of $H y p_{G}(2)$ and $a, m, k \in$ $\mathbb{N}, a>1$ with $m, k>2$. If M is one of the following cases, then $V(M) \subseteq$ $\operatorname{Mod}\{(x y) z \approx x(y z), g \approx h\}$ where $\operatorname{rightmost}(g)=\operatorname{rightmost}(h)$.
5. $\left\{\sigma_{i d}, \sigma_{x_{2}}, \sigma_{x_{m}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{t}\right\} \cup\left\{\sigma_{x_{2}^{a}} \mid a>1\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $\sigma_{t} \in G$.
6. $\left\{\sigma_{i d}, \sigma_{x_{2}^{a}}, \sigma_{x_{m}}, \sigma_{x_{k}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{x_{2}^{a}} \mid a>1\right\} \cup\left\{\sigma_{t} \mid t \in W\right\}$.
7. $\left\{\sigma_{i d}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{s}\right\} \subset M \subseteq\left\{\sigma_{i d}, \sigma_{x_{2}}\right\} \cup\left\{\sigma_{v} \mid v \in W\right\}$, where $\sigma_{t}, \sigma_{s} \in G$.
8. $\left\{\sigma_{i d}, \sigma_{x_{2}}, \sigma_{x_{2}^{a}}, \sigma_{t}\right\} \subset M \subseteq\left\{\sigma_{i d}, \sigma_{x_{2}}\right\} \cup\left\{\sigma_{x_{2}^{a}} \mid a>1\right\} \cup\left\{\sigma_{s} \mid s \in W\right\}$, where $\sigma_{t} \in G$.
9. $M=\left\{\sigma_{i d}, \sigma_{x_{2}}, \sigma_{t}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $t \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}$.
10. $\left(\left\{\sigma_{i d}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{s}\right\} \subset M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{v} \mid v \in W \cup W_{x_{2}} \cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}\right\}\right) \backslash M_{1}$, where $t \in W, s \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}$ and $\left\{\sigma_{i d}, \sigma_{x_{2}}, \sigma_{x_{m}}, \sigma_{v}\right\} \subseteq M_{1} \subseteq\left\{\sigma_{i d}, \sigma_{x_{2}}, \sigma_{v}\right\} \cup$ $\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $v \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}$.
11. $\left\{\sigma_{i d}, \sigma_{x_{2}^{a}}, \sigma_{x_{m}}, \sigma_{x_{k}}, \sigma_{t}\right\} \subseteq M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{x_{2}^{a}} \mid a>1\right\} \cup\left\{\sigma_{s} \mid s \in W \cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}\right\}$, where $t \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}$.

Proof. Let M be an M-strongly solid submonoid of $H y p_{G}(2)$. Clearly, $(x y) z \approx x(y z)$ is an identity in $V(M)$. Let $g \approx h$ be an arbitrary identity in $V(M)$ and $c, d \in \mathbb{N}$, where $c \neq d$. From $\sigma_{x_{2}^{c}} \in M$ and $\sigma_{x_{2}^{c}} \circ \sigma_{x_{2}^{c}}=\sigma_{x_{2}^{c}} \circ \sigma_{x_{2}^{d}}=\sigma_{x_{2}^{c}}$ and for all $\sigma \in M, \hat{\sigma}[g] \approx$ $\hat{\sigma}[h] \in I d V(M)$ it follows that the last variables in g and h are the same. Thus $V(M) \subseteq \operatorname{Mod}\{(x y) z \approx x(y z), g \approx h\}$ where $\operatorname{rightmost}(g)=\operatorname{rightmost}(h)$.

The examples of M and $V(M)$ corresponding to Proposition 5 (4.3) are as follows.

1. $\left\{\sigma_{i d}, \sigma_{x_{2}}, \sigma_{x_{m}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{t}\right\} \cup\left\{\sigma_{x_{2}^{a}} \mid a>1\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $\sigma_{t} \in G$.
2. $M=\left\{\sigma_{i d}, \sigma_{x_{2}}, \sigma_{t}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right)$, where $t \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}$.

For M in each case, we have $V(M) \subseteq \operatorname{Mod}\left\{(x y) z \approx x(y z), x^{2} \approx x, x y x \approx y x\right\}$.
Proposition 9. Let M be an M-strongly solid submonoid of $H y p_{G}(2)$ and i, j, a, m, n, $k \in \mathbb{N}, a>1$ and $m, n, k>2$. If M is one of the following cases, then $V(M) \subseteq$ $\operatorname{Mod}\{(x y) z \approx x(y z), g \approx h\}$ where leftmost $(g)=$ leftmost (h) and rightmost $(g)=$ rightmost (h).

1. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{s}\right\} \subset M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{v} \mid v \in W_{x_{1}} \cup W_{x_{2}} \cup W \cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}\right\}$, where $t \in W, s \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}$ and M is not implied to $\sigma_{i d}$.
2. $\left\{\sigma_{i d}, \sigma_{x_{1}^{a}}, \sigma_{t}, \sigma_{s}, \sigma_{v}\right\} \subseteq M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{x_{1}^{a}} \mid a>1\right\} \cup\left\{\sigma_{u} \mid u \in W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}} \cup\right.$ $\left.\overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{m}}^{x_{2}}}\right\}$, where $t \in W, s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}, v \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{m}}^{x_{2}}}$.
3. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{t}, \sigma_{s}, \sigma_{v}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}\right\} \cup\left\{\sigma_{u} \mid u \in W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)} \cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{m}}}\right\}$, where $t \in W, s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}, v \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{m}}}$ and M do not implies to $\sigma_{i d}$.
4. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left(\bigcup_{\exists i}\left\{\sigma_{t_{i}} \mid \sigma_{t_{i}} \in G_{x_{m}}^{x_{k}}\right\}\right) \cup\left\{\sigma_{x_{m}}, \sigma_{x_{k}}\right\} \cup A \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}\right\} \cup$ $\left\{\sigma_{t} \mid t \in W \cup W_{x_{2}}\right\}$, where A is either $\left(\bigcup_{\exists a}\left\{\sigma_{x_{1}^{a}}\right\}\right) \cup\left\{\sigma_{x_{k}^{a}}\right\}$ or $\left(\bigcup_{\exists a}\left\{\sigma_{x_{2}^{a}}\right\}\right) \cup\left\{\sigma_{x_{k}^{a}}\right\}$.
5. $\left\{\sigma_{i d}\right\} \cup\left(\bigcup_{\exists i} P_{i}^{12}\right) \cup\left(\bigcup_{\exists j}\left\{\sigma_{t_{j}} \mid \sigma_{t_{i}} \in G_{x_{m}}^{x_{k}}\right\}\right) \cup\left\{\sigma_{x_{m}^{i}}, \sigma_{x_{k}^{i}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}\right\} \cup$ $\left(\bigcup_{\forall i} P_{i}^{12}\right) \cup\left\{\sigma_{t_{j}} \mid \sigma_{t_{i}} \in G_{x_{m}}^{x_{k}}\right\} \cup\left\{\sigma_{x_{m}^{i}}, \sigma_{x_{k}^{i}}\right\} \cup\left(\bigcup_{\exists n}\left\{\sigma_{x_{n}}\right\}\right)$.

Surveys in Mathematics and its Applications 8 (2013), 77 - 90 http://www.utgjiu.ro/math/sma
6. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left(\bigcup_{\exists i}\left\{\sigma_{t_{i}} \mid \sigma_{t_{i}} \in G_{x_{m}}^{x_{k}}\right\}\right) \cup\left\{\sigma_{x_{m}}, \sigma_{x_{k}}\right\} \subseteq M \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup$ $\left\{\sigma_{t} \mid t \in W\right\}$.
7. $M=\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right) \cup\left(\bigcup_{\exists i \in \mathbb{O}^{+}} P_{i}^{12}\right) \cup\left(\bigcup_{\exists j \in \mathbb{E}^{+}} P_{j}^{12}\right)$.
8. $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left(\bigcup_{\exists i}\left\{\sigma_{t_{i}} \mid \sigma_{t_{i}} \in G_{x_{m}}^{x_{k}}\right\}\right) \cup\left\{\sigma_{x_{m}}, \sigma_{x_{k}}\right\} \cup\left\{\sigma_{t_{i}^{d}}\right\} \subseteq M \subseteq$ $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left\{\sigma_{t_{i}} \mid \sigma_{t_{i}} \in G_{x_{m}}^{x_{k}}\right\} \cup\left\{\sigma_{x_{m}}, \sigma_{x_{k}}\right\} \cup\left\{\sigma_{t_{i}^{d}}\right\} \cup\left(\bigcup_{\exists n}\left\{\sigma_{x_{n}}\right\}\right)$.
9. $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\} \cup\left(\bigcup_{\exists i}\left\{\sigma_{t_{i}}, \sigma_{t_{i}^{d}} \mid \sigma_{t_{i}} \in G_{x_{m}}^{x_{k}}\right\}\right) \cup\left(\bigcup_{\exists j} P_{j}^{12}\right) \cup\left\{\sigma_{x_{m}^{j}}, \sigma_{x_{k}^{j}}\right\} \subseteq M \subseteq$ $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\} \cup\left(\bigcup_{\forall i}\left\{\sigma_{t_{i}}, \sigma_{t_{i}^{d}} \mid \sigma_{t_{i}} \in G_{x_{m}}^{x_{k}}\right\}\right) \cup\left(\bigcup_{\forall j} P_{j}^{12}\right) \cup\left\{\sigma_{x_{m}^{j}}, \sigma_{x_{k}^{j}}\right\} \cup\left(\bigcup_{\exists n}\left\{\sigma_{x_{n}}\right\}\right)$.
10. $M=\left\{\sigma_{i d}\right\} \cup\left(\bigcup_{\exists i} P_{i}^{12}\right) \cup\left(\bigcup_{\exists j}\left\{\sigma_{t_{j}} \mid t_{j} \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}^{x_{1}}}\right\}\right)$.
11. $M=\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup A$, where A is either $\left(\bigcup_{\exists a}\left\{\sigma_{x_{1}^{a}}\right\}\right) \cup\left(\bigcup_{\exists i}\left\{\sigma_{t_{i}} \mid t_{i} \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}^{x 1}}\right\}\right)$ $\operatorname{or}\left(\bigcup_{\exists a}\left\{\sigma_{x_{2}^{a}}\right\}\right) \cup\left(\bigcup_{\exists i}\left\{\sigma_{t_{i}} \mid t_{i} \in \overline{\left.W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{2}}^{x_{2}}\right\}}\right)\right.$.
12. $\left\{\sigma_{i d}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{s}\right\} \subset M \subseteq\left\{\sigma_{i d}, \sigma_{x_{2}}\right\} \cup\left\{\sigma_{v} \mid v \in W \cup \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)^{x_{m}}}\right\}$, where $t \in W, s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)^{x_{m}}}$.
13. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{x_{1}^{a}}, \sigma_{x_{m}}, \sigma_{t}\right\} \subset M \subseteq\left\{\sigma_{i d}, \sigma_{x_{2}}\right\} \cup\left\{\sigma_{s} \mid s \in W \cup W_{x_{1}} \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}\right\}$, where $t \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}$.
14. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup A \subset M \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left\{\sigma_{t} \mid t \in W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}\right\}$, where A is either $\left\{\sigma_{s}, \sigma_{u}\right\}$ with $\sigma_{s} \in G, u \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}$ or $\left\{\sigma_{x_{k}}, \sigma_{v}\right\}$ with $v \in$ $\overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{k}}}$.
15. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{x_{m}}, \sigma_{t}, \sigma_{s}\right\} \subset M \subseteq\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}\right\} \cup\left(\bigcup_{\exists k}\left\{\sigma_{x_{k}}\right\}\right) \cup\left\{\sigma_{u} \mid u \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}\right\}$, where $t, s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}$.
16. $\left\{\sigma_{i d}, \sigma_{t}, \sigma_{s}, \sigma_{v}, \sigma_{u}\right\} \subset M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{w} \mid w \in W_{x_{1}} \cup W_{x_{2}} \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}^{x_{1}}} \cup \in\right.$ $\left.\overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{2}}^{x_{2}}}\right\}$, where $t \in W_{x_{1}}, s \in W_{x_{2}}, v \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}^{x_{1}}}, u \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{2}}^{x_{2}}}$ and M is not implied to $\sigma_{i d}$.
17. $\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{s}\right\} \subset M \subseteq\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\} \cup\left\{\sigma_{v} \mid v \in W_{x_{1}} \cup W_{x_{2}} \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}^{x_{1}}}\right.$ $\left.\cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{2}}^{x_{2}}}\right\}$, where $t \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}^{x_{1}}}, s \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)_{x_{2}}^{x_{2}}}$.
18. $\left\{\sigma_{i d}, \sigma_{x_{2}}, \sigma_{x_{m}}, \sigma_{t}, \sigma_{s}\right\} \subset M \subseteq\left\{\sigma_{i d}, \sigma_{x_{2}}\right\} \cup\left\{\sigma_{v} \mid v \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)^{x_{k}}} \cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)} \cup\right.$ $W\}$, where $t \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)^{x_{k}}}, s \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}$.
19. $\left\{\sigma_{i d}, \sigma_{x_{2}^{a}}, \sigma_{t}, \sigma_{s}, \sigma_{v}\right\} \subset M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{x_{1}}^{a} \mid a>1\right\} \cup\left\{\sigma_{u} \mid u \in W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)^{x_{m}}} \cup\right.$ $\left.\overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}\right\}$, where $t \in W, s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}^{x_{m}}}, v \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}$.
20. $\left\{\sigma_{i d}, \sigma_{x_{1}^{a}}, \sigma_{x_{2}^{a}}, \sigma_{t}, \sigma_{s}, \sigma_{v}\right\} \subset M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{x_{1}}^{a} \mid a>1\right\} \cup\left\{\sigma_{x_{2}}^{b} \mid b>1\right\} \cup\left\{\sigma_{u} \mid u \in\right.$ $\left.W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}} \cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}\right\}$, where $t \in W, s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)_{x_{1}}}, v \in$ $\overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)^{x_{2}}}$.
21. $\left\{\sigma_{i d}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{s}, \sigma_{v}\right\} \subset M \subseteq\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{u} \mid u \in W_{x_{1}} \cup W_{x_{2}} \cup W \cup \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)} \cup\right.$ $\left.\overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}\right\}$, where $t \in W, s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}, v \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}$ and M is not implied to $\sigma_{i d}$.
22. $\frac{\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}, \sigma_{x_{1}}, \sigma_{x_{2}}, \sigma_{t}, \sigma_{s}, \sigma_{v}\right\} \subset M \subseteq\left\{\sigma_{i d}, \sigma_{\left.x_{x_{2} x_{1}}\right\} \cup\left\{\sigma_{u} \mid u \in W_{x_{1}} \cup W_{x_{2}} \cup W \cup\right.}^{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)} \cup \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)}\right\} \text {, where } t \in W, s \in \overline{W_{(2)}^{G}\left(\left\{x_{1}\right\}\right)}, v \in \overline{W_{(2)}^{G}\left(\left\{x_{2}\right\}\right)} \text {. }}{l}$

Proof. Let M be an M-strongly solid submonoid of $H y p_{G}$ (2). Clearly, $(x y) z \approx x(y z)$ is an identity in $V(M)$. Let $g \approx h$ be an arbitrary identity in $V(M)$ and $c, d \in \mathbb{N}$ where $c \neq d$. From $\sigma_{x_{1}^{c}}, \sigma_{x_{2}^{d}} \in M$ and $\sigma_{x_{1}^{c}} \circ \sigma_{x_{2}^{d}}=\sigma_{x_{2}^{c}}, \sigma_{x_{2}^{c}} \circ \sigma_{x_{1}^{d}}=\sigma_{x_{1}^{c}}$ and for all $\sigma \in M, \hat{\sigma}[g] \approx \hat{\sigma}[h] \in I d V(M)$ it follows that the first variables in g and h are the same and the last variables in g and h are the same. Thus $V(M) \subseteq$ $\operatorname{Mod}\{(x y) z \approx x(y z), g \approx h\}$ where leftmost $(g)=\operatorname{leftmost}(h)$ and $\operatorname{rightmost}(g)=$ rightmost(h).

$4 \quad M$-strongly solid monoids of generalized hypersubstitutions of type $\tau=(2)$

From the previous section, we can characterize M-strongly solid monoids of generalized hypersubstitutions of type $\tau=(2)$ which are implied to $\left\{\sigma_{i d}\right\}$ and M strongly solid submonoids which are not implied to $\left\{\sigma_{i d}\right\}$. So in this section, we collect M-strongly solid monoids of generalized hypersubstitutions of type $\tau=(2)$.

Theorem 10. Let M be a submonoid of $\operatorname{Hyp}_{G}(2)$. Then the following are equivalent:
(i) M is M-strongly solid.
(ii) M is one of all cases in Proposition 5 and Proposition 6-9.

Proof. Let M be an M-strongly solid submonoid of $H y p_{G}$ (2). Then (ii) follows from Proposition 5 and Proposition 6-9.

On the other hand, if M is one of the cases in Proposition 5. We get M is implied to $\left\{\sigma_{i d}\right\}$. So $V(M)=I$ is the trivial variety. Clearly, I is M-strongly solid.

For M is one of Case 1 in Proposition 6 , we consider $M=\left\{\sigma_{i d}, \sigma_{x_{2} x_{1}}\right\}$, we have the commutative law is an identity in the variety $V(M)$. And $\hat{\sigma}_{x y}[u]=\hat{\sigma}_{y x}[v]$ is also an identity in $V(M)$. Thus $V(M)$ is M-strongly solid. And if $M=\left\{\sigma_{i d}\right\} \cup\left\{\sigma_{t} \mid t \in\right.$ $W\}$,then we have $t=\hat{\sigma}_{t}[u]=\hat{\sigma}_{t}[v]=t$. Thus $V(M)$ is M-strongly solid. For other cases. Let $g \approx h$ be an arbitrary identity in $V(M)$. Then we can derive new identities $\hat{\sigma}[g] \approx \hat{\sigma}[h] \in I d V(M) \forall \sigma \in M$. Consequently, $V(M)$ is M-strongly solid.

Next, if M is one of the cases in Proposition 7. We get $V(M) \subseteq \operatorname{Mod}\{(x y) z \approx$ $x(y z), u \approx v\}$ where leftmost $(u)=\operatorname{leftmost}(v)$. For all $\sigma \in M$, we have $\hat{\sigma}[(x y) z]=$ $\hat{\sigma}[x(y z)]$ and $\hat{\sigma}[u]=\hat{\sigma}[v]$. Consequently, $V(M)$ is M-strongly solid.

The proof for Proposition 8 and Proposition 9 are similar to Proposition 7.

References

[1] K. Denecke and J. Koppitz, All M-solid monoids of hypersubstitutions of type $\tau=(2)$, Semigroup Forum, 57 (1998), 430-434. MR1640883. Zbl 0922.20062.
[2] J. Koppitz and K. Denecke, M-Solid Varieties of Algebras, Springer Science+Business Media, Inc., New York, 2006. MR2199924(2006m:08001). Zbl 1094.08001.
[3] S. Leeratanavalee and K. Denecke, Generalized Hypersubstitutions and Strongly Solid Varieties, General Algebra and Applications, Proc. of "59 th Workshop on General Algebra", "15 th Conference for Young Algebraists Potsdam 2000 ", Shaker Verlag(2000), 135-145.
[4] W. Puninagool, Monoids of generalized hypersubstituions of type $\tau=(n)$, Ph.D. Thesis, Chiang Mai University, Chiang Mai 50200, Thailand, 2010.

Sivaree Sudsanit	Sorasak Leeratanavalee (corresponding author)
Department of Mathematics,	Department of Mathematics,
Faculty of Science,	Faculty of Science,
Chiang Mai University,	Chiang Mai University,
Chiang Mai 50200, Thailand.	Chiang Mai 50200, Thailand.
e-mail: sivaree_sudsanit@hotmail.com	e-mail: sorasak.l@cmu.ac.th

[^0]: 2010 Mathematics Subject Classification: 08A02; 08A55.
 Keywords: M-strongly solid variety; M-strongly solid monoids; Generalized hypersubstitution.
 This work was supported by the Graduate school, Chiang Mai University, Chiang Mai 50200, Thailand. S. Leeratanavalee (corresponding author) is partially supported by Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

