ON A FRACTIONAL DIFFERENTIAL INCLUSION WITH FOUR-POINT INTEGRAL BOUNDARY CONDITIONS

Aurelian Cernea

Abstract

We study the existence of solutions for fractional differential inclusions of order $q \in(1,2]$ with four-point integral boundary conditions. We establish Filippov type existence results in the case of nonconvex set-valued maps.

1 Introduction

This paper is concerned with the following boundary value problem

$$
\begin{align*}
& D_{c}^{q} x(t) \in F(t, x(t)) \quad \text { a.e. }([0,1]) \\
& x(0)=\alpha \int_{0}^{\xi} x(s) d s, \quad x(1)=\beta \int_{0}^{\eta} x(s) d s \tag{1.1}
\end{align*}
$$

where $q \in(1,2], D_{c}^{q}$ is the Caputo fractional derivative, $F: I \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ is a set-valued map, $\alpha, \beta \in \mathbf{R}$ and $\xi, \eta \in(0,1)$.

Differential equations with fractional order have recently proved to be strong tools in the modelling of many physical phenomena. As a consequence there was an intensive development of the theory of differential equations of fractional order $([12,14]$ etc.). Recently several qualitative results for fractional differential inclusions were obtained in $[2,6,7,8]$ etc..

The present paper is motivated by a recent paper of Ahmad and Ntouyas ([1]) where existence results for problem (1.1) are established for convex as well as nonconvex set-valued maps. For the motivation, discussion on boundary conditions, examples and a consistent bibliography on these problems we refer to [1] and the references therein. The existence results in [1] are based on a nonlinear alternative of Leray-Schauder type and Covitz-Nadler contraction principle for set-valued maps.

The aim of our paper is to consider the situation when $F(.,$.$) has nonconvex$ values and to present two existence results for problem (1.1) which are Filippov type existence results for this problem.

[^0]In our first approach we obtain an existence result by the application of the set-valued contraction principle in the space of derivatives of solutions instead of the space of solutions as in [1]. We note that the idea of applying the set-valued contraction principle due to Covitz and Nadler ([9]) in the space of derivatives of the trajectories belongs to Tallos ($[11,15]$) and it was already used for similar results obtained for other classes of differential inclusions ([5, 6, 7]).

In our second approach we show that Filippov's ideas ([10]) can be suitably adapted in order to obtain the existence of solutions for problem (1.1). Recall that for a differential inclusion defined by a lipschitzian set-valued map with nonconvex values, Filippov's theorem ([10]) consists in proving the existence of a solution starting from a given "quasi" or "almost" solution. Moreover, the result provides an estimate between the "quasi" solution and the solution obtained.

The paper is organized as follows: in Section 2 we recall some preliminary results that we need in the sequel and in Section 3 we prove our main results.

2 Preliminaries

In this short section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space and consider a set valued map T on X with nonempty values in $X . T$ is said to be a λ-contraction if there exists $0<\lambda<1$ such that:

$$
d_{H}(T(x), T(y)) \leq \lambda d(x, y) \quad \forall x, y \in X,
$$

where $d_{H}(.,$.$) denotes the Pompeiu-Hausdorff distance. Recall that the Pompeiu-$ Hausdorff distance of the closed subsets $A, B \subset X$ is defined by

$$
d_{H}(A, B)=\max \left\{d^{*}(A, B), d^{*}(B, A)\right\}, d^{*}(A, B)=\sup \{d(a, B) ; a \in A\},
$$

where $d(x, B)=\inf _{y \in B} d(x, y)$.
The set-valued contraction principle ([9]) states that if X is complete, and T : $X \rightarrow \mathcal{P}(X)$ is a set valued contraction with nonempty closed values, then $T($.$) has$ a fixed point, i.e. a point $z \in X$ such that $z \in T(z)$.

We denote by $\operatorname{Fix}(T)$ the set of all fixed points of the set-valued map T. Obviously, $\operatorname{Fix}(T)$ is closed.

Lemma 1. ([13]) Let X be a complete metric space and suppose that T_{1}, T_{2} are λ-contractions with closed values in X. Then

$$
d_{H}\left(F i x\left(T_{1}\right), F i x\left(T_{2}\right)\right) \leq \frac{1}{1-\lambda} \sup _{z \in X} d\left(T_{1}(z), T_{2}(z)\right) .
$$

Let $I=[0,1]$, we denote by $C(I, \mathbf{R})$ the Banach space of all continuous functions from I to \mathbf{R} with the norm $\|x(.)\|_{C}=\sup _{t \in I}|x(t)|$ and $L^{1}(I, \mathbf{R})$ is the Banach space of integrable functions $u():. I \rightarrow \mathbf{R}$ endowed with the norm $\|u(.)\|_{1}=\int_{0}^{1}|u(t)| d t$.

Definition 2. ([12]) a) The fractional integral of order $q>0$ of a Lebesgue integrable function $f():.(0, \infty) \rightarrow \mathbf{R}$ is defined by

$$
I^{q} f(t)=\int_{0}^{t} \frac{(t-s)^{q-1}}{\Gamma(q)} f(s) d s
$$

provided the right-hand side is pointwise defined on $(0, \infty)$ and Γ (.) is the (Euler's) Gamma function defined by $\Gamma(q)=\int_{0}^{\infty} t^{q-1} e^{-t} d t$.
b) The Caputo fractional derivative of order $q>0$ of a function $f():.[0, \infty) \rightarrow \mathbf{R}$ is defined by

$$
D_{c}^{q} f(t)=\frac{1}{\Gamma(n-q)} \int_{0}^{t}(t-s)^{-q+n-1} f^{(n)}(s) d s
$$

where $n=[q]+1$. It is assumed implicitly that $f($.$) is n$ times differentiable whose n-th derivative is absolutely continuous.

We recall (e.g., [12]) that if $q>0$ and $f(.) \in C(I, \mathbf{R})$ or $f(.) \in L^{\infty}(I, \mathbf{R})$ then $\left(D_{c}^{q} I^{q} f\right)(t) \equiv f(t)$.
Lemma 3. ([1]) For a given $f(.) \in C(I, \mathbf{R})$ the unique solution of the boundary value problem

$$
\begin{aligned}
& D_{c}^{q} x(t)=f(t) \\
& x(0)=\alpha \int_{0}^{\xi} x(s) d s, \quad x(1)=\beta \int_{0}^{\eta} x(s) d s
\end{aligned}
$$

is given by

$$
\begin{align*}
& x(t)=\frac{1}{\Gamma(q)} \int_{0}^{t}(t-s)^{q-1} f(s) d s+\frac{\alpha}{\gamma \Gamma(q)}\left(\frac{2-\beta \eta^{2}}{2}+(\beta \eta-1) t\right) \int_{0}^{\xi}\left(\int_{0}^{s}(s-m)^{q-1} .\right. \\
& . f(m) d m) d s+\frac{\beta}{\gamma \Gamma(q)}\left(\frac{\alpha \xi^{2}}{2}+(1-\xi \alpha) t\right) \int_{0}^{\eta}\left(\int_{0}^{s}(s-m)^{q-1} f(m) d m\right) d s- \\
& \frac{1}{\gamma \Gamma(q)}\left(\frac{\alpha \xi^{2}}{2}+(1-\xi \alpha) t\right) \int_{0}^{1}(1-s)^{q-1} f(s) d s \tag{2.1}
\end{align*}
$$

where

$$
\gamma=\frac{1}{2}\left[(\alpha \xi-1)\left(\beta \eta^{2}-2\right)-\alpha \xi^{2}(\beta \eta-1)\right] \neq 0
$$

Remark 4. If we denote $A(t, s)=\frac{(t-s)^{q-1}}{\Gamma(q)} \chi_{[0, t]}(s), B(t, s)=\frac{\alpha}{\gamma \Gamma(q)}\left(\frac{2-\beta \eta^{2}}{2}\right.$
$+(\beta \eta-1) t) \frac{(\xi-s)^{q}}{q} \chi_{[0, \xi]}(s), C(t, s)=\frac{\beta}{\gamma \Gamma(q)}\left(\frac{\alpha \xi^{2}}{2}+(1-\xi \alpha) t\right) \frac{(\eta-s)^{q}}{q} \chi_{[0, \eta]}(s), D(t, s)$
$=-\frac{(1-s)^{q-1}}{\gamma \Gamma(q)}\left(\frac{\alpha \xi^{2}}{2}+(1-\xi \alpha) t\right)$ and $G(t, s)=A(t, s)+B(t, s)+C(t, s)+D(t, s)$, where $\chi_{S}($.$) is the characteristic function of the set S$, then the solution $x($.$) in Lemma 3$ may be written as

$$
\begin{equation*}
x(t)=\int_{0}^{1} G(t, s) f(s) d s \tag{2.2}
\end{equation*}
$$

Moreover, for any $t, s \in I$ we have

$$
|G(t, s)| \leq \frac{1}{\Gamma(q)}\left[1+\frac{|\alpha|}{|\gamma|}\left(\left|2-\beta \eta^{2}\right|+|\beta \eta-1|\right) \frac{\xi^{q}}{q}+\right.
$$

$$
\left.\frac{|\beta|}{|\gamma|}\left(\frac{|\alpha| \xi^{2}}{2}+|1-\xi \alpha|\right) \frac{\eta^{q}}{q}+\frac{1}{|\gamma|}\left(\frac{|\alpha| \xi^{2}}{2}+|1-\xi \alpha|\right)\right] .
$$

Since $q \in(1,2]$, if we put $\Lambda_{1}=|\alpha|\left(\left|2-\beta \eta^{2}\right|+2|\beta \eta-1|\right) \xi^{q}$ and $\Lambda_{2}=\left(|\alpha| \xi^{2}+\right.$ $2|1-\xi \alpha|)\left(|\beta| \eta^{q}+1\right)$ we find that

$$
|G(t, s)| \leq \frac{1}{\Gamma(q)}\left(1+\frac{\Lambda_{1}+\Lambda_{2}}{2|\gamma|}\right)=: M
$$

Definition 5. A function $x(.) \in C(I, \mathbf{R})$ with its Caputo derivative of order q existing on $[0,1]$ is a solution of problem (1.1) if there exists a function $f(.) \in$ $L^{1}(I, \mathbf{R})$ such that $f(t) \in F(t, x(t))$ a.e. (I) and (2.1) is satisfied.

3 The main results

We study first problem (1.1) with fixed point techniques. In order to do this we introduce the following hypothesis.

Hypothesis. (i) $F(.,):. I \times \mathbf{R} \rightarrow \mathcal{P}(\mathbf{R})$ has nonempty closed values and for every $x \in \mathbf{R}, F(., x)$ is measurable.
(ii) There exists $L(.) \in L^{1}\left(I, \mathbf{R}_{+}\right)$such that for almost all $t \in I, F(t,$.$) is L(t)-$ Lipschitz in the sense that

$$
d_{H}(F(t, x), F(t, y)) \leq L(t)|x-y| \quad \forall x, y \in \mathbf{R} .
$$

(iii) $d(0, F(t, 0)) \leq L(t) \quad$ a.e. (I)

Denote $L_{0}:=\int_{0}^{1} L(s) d s$.
Theorem 6. Assume that Hypothesis is satisfied and $M L_{0}<1$. Let $y(.) \in C(I, \mathbf{R})$ be such that $y(0)=\alpha \int_{0}^{\xi} y(s) d s, y(1)=\beta \int_{0}^{\eta} y(s) d s$ and there exists $p(.) \in L^{1}\left(I, \mathbf{R}_{+}\right)$ with $d\left(D_{c}^{q} y(t), F(t, y(t))\right) \leq p(t)$ a.e. (I).

Then for every $\varepsilon>0$ there exists $x(.) \in C(I, \mathbf{R})$ a solution of problem (1.1) satisfying for all $t \in I$

$$
|x(t)-y(t)| \leq \frac{M}{1-M L_{0}} \int_{0}^{1} p(t) d t+\varepsilon
$$

Proof. For $u(.) \in L^{1}(I, \mathbf{R})$ define the following set-valued maps

$$
\begin{gathered}
M_{u}(t)=F\left(t, \int_{0}^{1} G(t, s) u(s) d s\right), \quad t \in I, \\
T(u)=\left\{\phi(.) \in L^{1}(I, \mathbf{R}) ; \quad \phi(t) \in M_{u}(t) \quad \text { a.e. }(I)\right\} .
\end{gathered}
$$

It follows from Lemma 3 that $x($.$) is a solution of problem (1.1) if and only if$ $D_{c}^{q} x($.$) is a fixed point of T($.$) .$

We shall prove first that $T(u)$ is nonempty and closed for every $u \in L^{1}(I, \mathbf{R})$. The fact that the set valued map $M_{u}($.$) is measurable is well known. For example$ the map $t \rightarrow \int_{0}^{1} G(t, s) u(s) d s$ can be approximated by step functions and we can apply Theorem III. 40 in [4]. Since the values of F are closed with the measurable selection theorem (Theorem III. 6 in [4]) we infer that $M_{u}($.$) admits a measurable$ selection ϕ. One has

$$
\begin{gathered}
|\phi(t)| \leq d(0, F(t, 0))+d_{H}\left(F(t, 0), F\left(t, \int_{0}^{1} G(t, s) u(s) d s\right)\right) \leq \\
\leq L(t)\left(1+M \int_{0}^{1}|u(s)| d s\right)
\end{gathered}
$$

which shows that $\phi \in L^{1}(I, \mathbf{R})$ and $T(u)$ is nonempty.
On the other hand, the set $T(u)$ is also closed. Indeed, if $\phi_{n} \in T(u)$ and $\| \phi_{n}-$ $\phi \|_{1} \rightarrow 0$ then we can pass to a subsequence $\phi_{n_{k}}$ such that $\phi_{n_{k}}(t) \rightarrow \phi(t)$ for a.e. $t \in I$, and we find that $\phi \in T(u)$.

We show next that $T($.$) is a contraction on L^{1}(I, \mathbf{R})$.
Let $u, v \in L^{1}(I, \mathbf{R})$ be given and $\phi \in T(u)$. Consider the following set-valued map

$$
H(t)=M_{v}(t) \cap\left\{x \in \mathbf{R} ; \quad|\phi(t)-x| \leq L(t)\left|\int_{0}^{1} G(t, s)(u(s)-v(s)) d s\right|\right\} .
$$

From Proposition III. 4 in [4], $H($.$) is measurable and from Hypothesis ii) H($. has nonempty closed values. Therefore, there exists $\psi($.$) a measurable selection of$ $H($.$) . It follows that \psi \in T(v)$ and according with the definition of the norm we have

$$
\begin{gathered}
\|\phi-\psi\|_{1}=\int_{0}^{1}|\phi(t)-\psi(t)| d t \leq \int_{0}^{1} L(t)\left(\int_{0}^{1}|G(t, s)| \cdot|u(s)-v(s)| d s\right) d t \\
=\int_{0}^{1}\left(\int_{0}^{1} L(t)|G(t, s)| d t\right)|u(s)-v(s)| d s \leq M L_{0}\|u-v\|_{1} .
\end{gathered}
$$

We deduce that

$$
d(\phi, T(v)) \leq M L_{0}\|u-v\|_{1} .
$$

Replacing u by v we obtain

$$
d_{H}(T(u), T(v)) \leq M L_{0}\|u-v\|_{1},
$$

thus $T($.$) is a contraction on L^{1}(I, \mathbf{R})$.
We consider next the following set-valued maps

$$
F_{1}(t, x)=F(t, x)+p(t)[-1,1], \quad(t, x) \in I \times \mathbf{R},
$$

$$
\begin{gathered}
M_{u}^{1}(t)=F_{1}\left(t, \int_{0}^{1} G(t, s) u(s) d s\right), \\
T_{1}(u)=\left\{\psi(.) \in L^{1}(I, \mathbf{R}) ; \quad \psi(t) \in M_{u}^{1}(t) \quad \text { a.e. }(I)\right\}, \quad u(.) \in L^{1}(I, \mathbf{R}) .
\end{gathered}
$$

Obviously, $F_{1}(.,$.$) satisfies Hypothesis 3.1.$
Repeating the previous step of the proof we obtain that T_{1} is also a $M L_{0^{-}}$ contraction on $L^{1}(I, \mathbf{R})$ with closed nonempty values.

We prove next the following estimate

$$
\begin{equation*}
d_{H}\left(T(u), T_{1}(u)\right) \leq \int_{0}^{1} p(t) d t \tag{3.1}
\end{equation*}
$$

Let $\phi \in T(u)$ and define

$$
H_{1}(t)=M_{u}^{1}(t) \cap\{z \in \mathbf{R} ; \quad|\phi(t)-z| \leq p(t)\} .
$$

With the same arguments used for the set valued map $H($.$) , we deduce that$ $H_{1}($.$) is measurable with nonempty closed values. Hence let \psi($.$) be a measurable$ selection of $H_{1}($.$) . It follows that \psi \in T_{1}(u)$ and one has

$$
\|\phi-\psi\|_{1}=\int_{0}^{1}|\phi(t)-\psi(t)| d t \leq \int_{0}^{1} p(t) d t
$$

As above we obtain (3.1).
We apply Lemma 1 and we infer that

$$
d_{H}\left(F i x(T), F i x\left(T_{1}\right)\right) \leq \frac{1}{1-M L_{0}} \int_{0}^{1} p(t) d t .
$$

Since $v()=.D_{c}^{q} y(.) \in \operatorname{Fix}\left(T_{1}\right)$ it follows that for any $\varepsilon>0$ there exists $u(.) \in$ Fix (T) such that

$$
\|v-u\|_{1} \leq \frac{1}{1-M L_{0}} \int_{0}^{1} p(t) d t+\frac{\varepsilon}{M} .
$$

We define $x(t)=\int_{0}^{1} G(t, s) u(s) d s, t \in I$ and we have

$$
|x(t)-y(t)| \leq \int_{0}^{1}|G(t, s)| \cdot|u(s)-v(s)| d s \leq \frac{M}{1-M L_{0}} \int_{0}^{1} p(t) d t+\varepsilon
$$

which completes the proof.
The assumption in Theorem 6 is satisfied, in particular, for $y()=$.0 and thus, via Hypothesis (iii), with $p()=.L($.$) . We obtain the following consequence of Theorem$ 6.

Corollary 7. Assume that Hypothesis is satisfied and $M L_{0}<1$. Then for every $\varepsilon>0$ there exists $x($.$) a solution of problem (1.1) satisfying for all t \in I$

$$
\begin{equation*}
|x(t)| \leq \frac{M L_{0}}{1-M L_{0}}+\varepsilon \tag{3.2}
\end{equation*}
$$

Remark 8. The existence result in Corollary 7 extends Theorem 15 in [1]. The approach in [1], apart from the requirement that the values of $F(.,$.$) are compact,$ does not provides a priori bounds as in (3.2).

We present next the main result of this paper.
Theorem 9. Assume that Hypothesis (i), (ii) is satisfied and $M L_{0}<1$. Let $y(.) \in$ $C(I, \mathbf{R})$ be such that $y(0)=\alpha \int_{0}^{\xi} y(s) d s, y(1)=\beta \int_{0}^{\eta} y(s) d s$ and there exists $p(.) \in$ $L^{1}\left(I, \mathbf{R}_{+}\right)$with $d\left(D_{c}^{q} y(t), F(t, y(t))\right) \leq p(t)$ a.e. (I).

Then there exists $x(.) \in C(I, \mathbf{R})$ a solution of problem (1.1) satisfying for all $t \in I$

$$
\begin{equation*}
|x(t)-y(t)| \leq \frac{M}{1-M L_{0}} \int_{0}^{1} p(t) d t \tag{3.3}
\end{equation*}
$$

Proof. The set-valued map $t \rightarrow F(t, y(t))$ is measurable with closed values and

$$
F(t, y(t)) \cap\left\{D_{c}^{q} y(t)+p(t)[-1,1]\right\} \neq \emptyset \quad \text { a.e. }(I)
$$

It follows (e.g., Theorem 1.14 .1 in [3]) that there exists a measurable selection $f_{1}(t) \in F(t, y(t))$ a.e. (I) such that

$$
\begin{equation*}
\left|f_{1}(t)-D_{c}^{q} y(t)\right| \leq p(t) \quad \text { a.e. }(I) \tag{3.4}
\end{equation*}
$$

Define $x_{1}(t)=\int_{0}^{1} G(t, s) f_{1}(s) d s$ and one has

$$
\left|x_{1}(t)-y(t)\right| \leq M \int_{0}^{1} p(t) d t
$$

We claim that it is enough to construct the sequences $x_{n}(.) \in C(I, \mathbf{R}), f_{n}(.) \in$ $L^{1}(I, \mathbf{R}), n \geq 1$ with the following properties

$$
\begin{gather*}
x_{n}(t)=\int_{0}^{1} G(t, s) f_{n}(s) d s, \quad t \in I \tag{3.5}\\
f_{n}(t) \in F\left(t, x_{n-1}(t)\right) \quad \text { a.e. }(I), n \geq 1 \tag{3.6}\\
\left|f_{n+1}(t)-f_{n}(t)\right| \leq L(t)\left|x_{n}(t)-x_{n-1}(t)\right| \quad \text { a.e. }(I), n \geq 1 \tag{3.7}
\end{gather*}
$$

If this construction is realized then from (3.4)-(3.7) we have for almost all $t \in I$

$$
\left|x_{n+1}(t)-x_{n}(t)\right| \leq \int_{0}^{1}\left|G\left(t, t_{1}\right)\right| \cdot\left|f_{n+1}\left(t_{1}\right)-f_{n}\left(t_{1}\right)\right| d t_{1} \leq
$$

$$
\begin{gathered}
M \int_{0}^{1} L\left(t_{1}\right)\left|x_{n}\left(t_{1}\right)-x_{n-1}\left(t_{1}\right)\right| d t_{1} \leq M \int_{0}^{1} L\left(t_{1}\right) \int_{0}^{1}\left|G\left(t_{1}, t_{2}\right)\right| \\
\left|f_{n}\left(t_{2}\right)-f_{n-1}\left(t_{2}\right)\right| d t_{2} \leq M^{2} \int_{0}^{1} L\left(t_{1}\right) \int_{0}^{1} L\left(t_{2}\right)\left|x_{n-1}\left(t_{2}\right)-x_{n-2}\left(t_{2}\right)\right| d t_{2} d t_{1} \\
\leq(M)^{n} \int_{0}^{1} L\left(t_{1}\right) \int_{0}^{1} L\left(t_{2}\right) \ldots \int_{0}^{1} L\left(t_{n}\right)\left|x_{1}\left(t_{n}\right)-y\left(t_{n}\right)\right| d t_{n} \ldots d t_{1} \leq \\
\leq\left(M L_{0}\right)^{n} M \int_{0}^{1} p(t) d t
\end{gathered}
$$

Therefore $\left\{x_{n}().\right\}$ is a Cauchy sequence in the Banach space $C(I, \mathbf{R})$, hence converging uniformly to some $x(.) \in C(I, \mathbf{R})$. Therefore, by (3.7), for almost all $t \in I$, the sequence $\left\{f_{n}(t)\right\}$ is Cauchy in \mathbf{R}. Let $f($.$) be the pointwise limit of f_{n}($.$) .$

Moreover, one has

$$
\begin{align*}
& \left|x_{n}(t)-y(t)\right| \leq\left|x_{1}(t)-y(t)\right|+\sum_{i=1}^{n-1}\left|x_{i+1}(t)-x_{i}(t)\right| \leq \\
& M \int_{0}^{1} p(t) d t+\sum_{i=1}^{n-1}\left(M \int_{0}^{1} p(t) d t\right)\left(M L_{0}\right)^{i}=\frac{M \int_{0}^{1} p(t) d t}{1-M L_{0}} \tag{3.8}
\end{align*}
$$

On the other hand, from (3.4), (3.7) and (3.8) we obtain for almost all $t \in I$

$$
\begin{aligned}
& \left|f_{n}(t)-D_{c}^{q} y(t)\right| \leq \sum_{i=1}^{n-1}\left|f_{i+1}(t)-f_{i}(t)\right|+ \\
& +\left|f_{1}(t)-D_{c}^{q} y(t)\right| \leq L(t) \frac{M \int_{0}^{1} p(t) d t}{1-M L_{0}}+p(t)
\end{aligned}
$$

Hence the sequence $f_{n}($.$) is integrably bounded and therefore f(.) \in L^{1}(I, \mathbf{R})$.
Using Lebesgue's dominated convergence theorem and taking the limit in (3.5), (3.6) we deduce that $x($.$) is a solution of (1.1). Finally, passing to the limit in (3.8)$ we obtained the desired estimate on $x($.$) .$

It remains to construct the sequences $x_{n}(),. f_{n}($.$) with the properties in (3.5)-$ (3.7). The construction will be done by induction.

Since the first step is already realized, assume that for some $N \geq 1$ we already constructed $x_{n}(.) \in C(I, \mathbf{R})$ and $f_{n}(.) \in L^{1}(I, \mathbf{R}), n=1,2, \ldots N$ satisfying (3.5), (3.7) for $n=1,2, \ldots N$ and (3.6) for $n=1,2, \ldots N-1$. The set-valued map $t \rightarrow$ $F\left(t, x_{N}(t)\right)$ is measurable. Moreover, the map $L().\left|x_{N}()-.x_{N-1}().\right|$ is measurable. By the lipschitzianity of $F(t,$.$) we have that for almost all t \in I$

$$
F\left(t, x_{N}(t)\right) \cap\left\{f_{N}(t)+L(t)\left|x_{N}(t)-x_{N-1}(t)\right|[-1,1]\right\} \neq \emptyset
$$

Theorem 1.14.1 in [3] yields that there exist a measurable selection $f_{N+1}($.$) of$ $F\left(., x_{N}().\right)$ such that

$$
\left|f_{N+1}(t)-f_{N}(t)\right| \leq L(t)\left|x_{N}(t)-x_{N-1}(t)\right| \quad \text { a.e. }(I)
$$

We define $x_{N+1}($.$) as in (3.5) with n=N+1$. Thus $f_{N+1}($.$) satisfies (3.6) and$ (3.7) and the proof is complete.

Remark 10. Obviously, Theorem 9 extends Theorem 6. We do not suppose that $d(0, F(t, 0)) \leq L(t)$ a.e. (I) and the estimate in (3.3) is better than the one in Theorem 6 .

Even if Theorem 9 improves Theorem 6, we chosen to present both results; on one hand because the methods used in their proofs are different and on the other hand to show that there exists situations when the fixed point approaches are less powerful.

References

[1] B. Ahmad, S. K. Ntouyas, Boundary value problems for fractional differential inclusions with four-point integral boundary conditions, Surveys Math. Appl. 6 (2011), 175-193. MR2970722.
[2] E. Ait Dads, M. Benchohra, S. Hamani, Impulsive fractional differential inclusions involving Caputo fractional derivative, Fract. Calc. Appl. Anal. 12 (2009), 15-38. MR2494428(2009m:34018). Zbl 1179.26012.
[3] J. P. Aubin, A. Cellina, Differential Inclusions, Springer, Berlin, 1984. MR0755330(85j:49010). Zbl 0538.34007.
[4] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977. MR08467319(57 \#7169). Zbl 0346.46638.
[5] A. Cernea, An existence result for a Fredholm-type integral inclusion, Fixed Point Theory 9 (2008), 441-447. MR2464124(2009i:34019). Zbl 1162.45003.
[6] A. Cernea, On the existence of solutions for fractional differential inclusions with boundary conditions, Fract. Calc. Appl. Anal. 12 (2009), 433-442. MR2598190(2010m:34018). Zbl 1206.34011.
[7] A. Cernea, A note on the existence of solutions for some boundary value problems of fractional differential inclusions, Fract. Calc. Appl. Anal. 15 (2012), 183-194. MR2897772. Zbl 06194281.
[8] Y.K. Chang, J.J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Mathematical and Computer Modelling 49 (2009), 605-609. MR2483665(2009m:34020).
[9] H. Covitz, S.B. Nadler jr., Multivalued contraction mapping in generalized metric spaces, Israel J. Math. 8 (1970), 5-11. MR0263062(41 \#7667). Zbl 0192.59802.

Surveys in Mathematics and its Applications 8 (2013), 115-124
http://www.utgjiu.ro/math/sma
[10] A.F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5 (1967), 609-621. MR0220995(36 \#4047). Zbl 0238.34010 .
[11] Z. Kannai, P. Tallos, Stability of solution sets of differential inclusions, Acta Sci. Math. (Szeged) 61 (1995), 197-207. MR1377359(96m:34027). Zbl 0851.34015.
[12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. MR2218073(2007a:34002). Zbl 1092.45003.
[13] T.C. Lim, On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436-441. MR0805266(86m:47086). Zbl 0593.47056.
[14] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. MR1658022(99m:26009). Zbl 0924.34008.
[15] P. Tallos, A Filippov-Gronwall type inequality in infinite dimensional space, Pure Math. Appl. 5 (1994), 355-362. MR1343457(96e:34033). Zbl 0827.34008.

[^1]
[^0]: 2010 Mathematics Subject Classification: 34A60; 34B10; 34B15.
 Keywords: Fractional differential inclusion; Caputo fractional derivative; Boundary value problem; Integral boundary conditions.

[^1]: Aurelian Cernea
 Faculty of Mathematics and Computer Science, University of Bucharest,
 Academiei 14, 010014 Bucharest, Romania.
 e-mail: acernea@fmi.unibuc.ro

