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ON ONE INTERESTING INEQUALITY

Ladislav Matej́ıčka

Abstract. In this paper, we give a classification of points under which the generalization of

Ĉırtoaje’s inequality or the reverse inequality are valid.

1 Introduction

Nowadays, inequalities with power-exponential functions are intensively studied.
The power-exponential functions have many useful applications in mathematical
analysis and in other theories like statistics, biology, optimization, ordinary differential
equations, probability,.... The history and the literature review of some interesting
inequalities with power-exponential functions can be found for example in [2]. Some
other interesting problems concerning inequalities of power-exponential functions
can be found for example in [6]. Ĉırtoaje, in the paper [1], has posted the following
interesting conjecture on the inequalities with power-exponential functions. We note
that the inequality is similar to the reverse arithmetic-geometric mean inequality
with the rearrangement of its terms.

Conjecture 1. If a, b ∈ (0; 1] and r ∈ [0; e], then

2
√
arabrb ≥ arb + bra. (1.1)

The conjecture was proved by Matej́ıčka [3]. Matej́ıčka also proved (1.1) under
other conditions in the papers [4, 5]. For example, it was proved that (1) is valid for
a, b, r ∈ (0; e]. In the paper [5], it was also showed that the certain generalization of
Ĉırtoaje’s inequality fulfils an interesting property with some applications. The one
of this applications is a classification of solution points of Ĉırtoaje’s inequality (CI),
which we make in this paper.
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******************************************************************************
http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v12/v12.html
http://www.utgjiu.ro/math/sma


2 L. Matej́ıčka

2 Notations and preliminaries.

For the convenience of the reader, we provide a summary of the mathematical
notations and definitions used in this paper (see also [5]). Put

F (r) = lnn+
r

n

(
n∑

i=1

xi lnxi

)
− ln

(
erx1 lnxn +

n−1∑
i=1

erxi+1 lnxi

)
. (2.1)

The function F (r) is defined on Rn
+ where n ∈ N, r ≥ 0, Rn

+ = {(x1, ..., xn), xi >
0, i = 1, ..., n}. We note that F (r) ≥ 0 is equivalent to the following generalization
of Ĉırtoaje’s inequality (again CI)

n n

√ n∏
i=1

xrxi
i ≥ xrx1

n +
n−1∑
i=1

x
rxi+1

i . (2.2)

The inequality (2.2) was published for first time as a conjecture in the paper [2]. In
the paper [4] it was shown that (3) for n = 3 does not valid onM = {(x1, x2, x3), 1 ≥
xi > 0, i = 1, 2, 3} for r ∈ [0; e].

The reverse inequality to the generalization of Ĉırtoaje’s inequality

n n

√ n∏
i=1

xrxi
i < xrx1

n +
n−1∑
i=1

x
rxi+1

i (2.3)

we denote by RCI.
The function

g(x1, ..., xn) =
1

n

n∑
i=1

xi log(xi)−mx, (2.4)

where mx = max
1≤m≤n

{xm+1 log(xm)}, x1 = xn+1. (2.5)

we will call characteristic function of CI.
Put

Oε(A) ={X ∈ Rn; | X −A |< ε, ε > 0},
Sn ={(x1, ..., xn) ∈ Rn

+; xi = xj , i, j = 1, ..., n},
Mn

+ ={(x1, ..., xn) ∈ Rn
+; g(x1, ..., xn) > 0},

Mn
0 ={(x1, ..., xn) ∈ Rn

+; g(x1, ..., xn) = 0},
Mn

− ={(x1, ..., xn) ∈ Rn
+; g(x1, ..., xn) < 0}.

Denote rA the positive root of F (r) = 0 (if the root exists) for A ∈ Rn
+-S

n. From
the results of [5] we get that for each A ∈ Rn

+ there is a finite limit

g(A) = lim
r→+∞

F ′(r) =
1

n

n∑
i=1

xi log(xi)−mx.
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3 Main Results

We prove two interesting results, which follow from results of the paper [5]. In
the paper [5] it was showed that F (r) is a concave function for each A ∈ Rn

+-S
n

and F (0) = 0, F ′(0) > 0 again for each A ∈ Rn
+-S

n. The results have significant
consequences.

Proposition 2. CI is valid locally for all X ∈ Rn
+ − Sn.

Proof. Proof follows from the following Lemma 3.

Lemma 3. • Let A ∈ Mn
+. Then there is Oε(A) ⊂ Rn

+ such that CI is valid for
all r ≥ 0 on Oε(A),

• Let A ∈ Mn
0 . Then CI is valid for all r ≥ 0 in A,

• Let A ∈ Mn
−. Then there is Oε(A) ⊂ Rn

+, 0 < p ≤ q < ∞ such that CI is valid
for all 0 ≤ r ≤ p on Oε(A) and RCI is valid for all r > q on Oε(A).

Proof. If A ∈ Mn
+ then we have g(A) > 0. From continuity of g we get there is

Oε(A) ⊂ Rn
+ such that g(X) > 0 on Oε(A). If g(X) > 0 then from F (0) = 0,

F ′(0) > 0, F ′′(r) < 0 and lim
r→+∞

F ′(r) = g(X) > 0 (see [5]) we obtain that CI is

valid in X for all r ≥ 0.

If A ∈ Mn
− then we have g(A) < 0. From F (0) = 0, F ′(0) > 0, we have

F (A, r00) > 0 for some r00 > 0. From continuity of F we obtain F (X, r0) > 0 for
some r0 > 0 and X ∈ O1(A) and from lim

r→+∞
F ′(r) = g(A) < 0 we have F (A, s0) < 0

for some s0 ≥ r0. It implies F (X, r) > 0 for X ∈ O1(A) and 0 ≤ r ≤ r0. We also
have there is O2(A) ⊂ Rn

+ such that F (X, s0) < 0 for X ∈ O2(A). So F (X, r) < 0 for
X ∈ O2(A) and for r > s0. Put Oε(A) = O1(A)∩O2(A). The proof is complete.

From results of the paper [5] we can obtain even more information about points
where CI and RCI is valid.

For example it is easy to show that:

• There is no A ∈ Rn
+ such that RCI is valid in A for all r > 0.

• If M ⊂ Mn
− is a compact set, then there is 0 < p ≤ q < ∞ such that CI is

valid for all 0 ≤ r ≤ p on M and RCI is valid for all r > q on M.
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A suitable choices of points from Rn
+ give that Mn

+, M
n
−, M

n
0 ̸= ∅ for n ≥ 2. Indeed,

Mn
0 ̸= ∅ is evident.

Put x1 = 1,...xn−1 = 1, xn = e. Then

g(X) =
1

n

n∑
i=1

xi log(xi)−mx =
e

n
− 1.

It implies g(X) > 0 for n = 2 and g(X) < 0 for n ≥ 3.

Put x1 = 1,...xn−1 = 1, xn = en. Then

g(X) =
1

n

n∑
i=1

xi log(xi)−mx = en − n.

It implies g(X) > 0 for n ≥ 2.

Put n = 2, x1 = e2, x2 = e3. Then

g(X) =
1

n

n∑
i=1

xi log(xi)−mx = e2 − e3

2
< 0.

It implies Mn
+, M

n
− ̸= ∅ for n ≥ 2.

Example 4. Using Matlab for fitting of the curves which are solution of the characteristic
equation g(X) = 0 for n=2 we obtain the following figure 1 of points of solution of
CI and RCI. In the figure 1 we denote by CI +RCI points where CI and also RCI
are locally valid. By CI we denote points where CI is valid for all r > 0.

Figure 1:
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Remark 5. Our method can be used for the analysis of other suitable power-exponential
inequalities.

Remark 6. Let n ≥ 2. We note that CI is not valid globally for any r > 0.

Indeed, let n ≥ 2 is a natural number, and a real number such that a > 4n2.
Put x1 = x2 = ...xn−1 = a, xn = 2a, r = 1/a. Easy to see that

H(X) = n n

√ n∏
i=1

xrxi
i ≥ xrx1

n −
n−1∑
i=1

x
rxi+1

i < 0.

It follows from

H(X) = na
n
√
4a− na− a2 < na2

√
a− a2 < a

√
a(2n−

√
a) < 0.
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[7] Thomas M. Cover, Joy A. Thomas, Elements of Information Theory, John Wiley
and Sons, Inc, 1991. MR2239987. Zbl 0762.94001.

Ladislav Matej́ıčka
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