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RC-CLASS AND LC-CLASS ON FIXED POINT
THEOREMS FOR o-CARISTI TYPE
CONTRACTION MAPPINGS

Arslan Hojat Ansari and Muhammad Usman Ali

Abstract. In this paper, we introduce the notion of (o, Hrc, frc)-Caristi type contraction
mappings and prove fixed point theorem by using this notion on complete metric space. To illustrate

our result, we construct an example.

1 Introduction

Caristi [9] proved that if a self mapping 7" on a complete metric space (X, d) satisfies
the condition:
dz,Tz) < ¢(x) —p(Tx) Ve X (1.1)

where ¢ : X — [0,00) is a lower semicontinuous function, then 7" has a fixed point.
The mapping T satisfying the condition (1.1) is known as Caristi mapping. Kirk
[15] showed that if Caristi mapping for (X,d) has a fixed point, then (X,d) is
complete and viceversa. Semat et al. [19] introduced the notion of a-admissible and
a--contractive type mappings. These notions were extended by several authors,
see for example, [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 20]. Recently,
Ali [1] introduced the notion of a-Caristi type contraction mapping and proved
a fixed point theorem on complete metric space. On the other hand Ansari [2]
introduced the family of functions known as RC-class and LC-class to generalize
some existing fixed point theorems. In this paper we introduce a new Caristi type
contraction condition by combining the above ideas. Note that, we denote by C'L(X)
the space of all nonempty closed subsets of X. For z € X and A € CL(X),
d(xz,A) = inf{d(z,a):a € A}. A function H : CL(X) x CL(X) — [0, 00] defined by

max{sup,c 4 d(a, B),supycp d(b, A)} if exists

oo otherwise

H(A,B) = {

is a generalized Hausdorff metric space induced by metric d.

2010 Mathematics Subject Classification: 47H10; 54H25.
Keywords: a.-admissible; a-admissible; Caristi mappings; RC'—class and LC—class.
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Mohammadi et al. [18] and Asl et al. [8] extended the notion of a-admissible
mapping from singlevalued to multivalued mapping in the following way:

Definition 1. [18] Let o : X x X — [0,00) be a function. A mapping T : X —
CL(X) is a-admissible if for each x € X and y € Tx with a(x,y) > 1, we have
a(y,z) > 1 for each z € Ty.

Definition 2. [8] Let o : X x X — [0,00) be a function. A mapping T : X —
CL(X) is ax-admissible mapping if for each z,y € X with a(x,y) > 1, we have
ax(Tx, Ty) > 1, where a,(Tz, Ty) = inf{a(u,v) : uw € Tx and v € Ty}.

Minak and Altun [17] showed that every a,-admissible mapping is a-admissible,
but converse is not true in general, and gave the following example.

Example 3. Let X = [—1,1]. Define T : X — CL(X) by
{0,1} ifx=-1
Tex = {1} ifz=0
{—2} ifz ¢ {-1,0}
and a: X x X — [0,00) by

(2,y) = 0 ife=y
any) = 1 ifz#y.

This T is a-admissible but not ou.-admissible.

Kutbi and Sintunavarat [16] introduced the notion of a-continuous multivalued
mapping which is more general than continuous multivalued mappings.

Definition 4. Let (X,d) be a metric space and o : X x X — [0,00) be a mapping.
A mapping T : X — CL(X) is said to be an a-continuous, if for each sequence
{zn} in X such that z, — x and a(zp,Tpn41) > 1 for each n € NU {0}, we have
Tz, — Tx, that is, lim, oo H(Txp, Tz) = 0.

Definition 5. [2] Let f : R?> — R be a function. The function f is said to be a
RC-class if f is continuous and satisfies

f(s,t) > 0= s>1;
fltt) = 0;
s < t= f(e,s) > f(e,t) for each e € R;
t < e<s= f(s,e)+ fle,t) < f(s,t);
Jg : R=R, fg(s),9(t) 2 0= s <t,

where s, t,e € R.
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In the following, we can see some examples for RC-class functions.

Example 6. Forn € N and a > 1,

Fls,t) = s—1 o(t) = —t
fs,t) = 154 Tyt =4-1
f(s,t) = g2n+l _ 42n+1 7 g(t) = ¢
f(s,t) =a* —a , g(t) = —t
f(s,t)=a*—a'+t—s , g(t)=—t
f(s,t) = es I g(t) = —t
f(s,t) =es"t =1 , g(t) = —t.

Definition 7. [2] We say that H: Rt — R* is a LC-class if h is continuous and
satisfies the following conditions

H(t) > 0 if and only if t > 0;
H(0) = 0;
H(s+1t) < H(s)+ H(t);

and
x<y= H(x) < H(y).

Example 8. Fora >1,m >0 andn € N

t

H(t) = 1—a"

H(t) = mt

H(E) = mVt

H(t) = log, 1+t
H(t) = log, 1+ Vi,

are some examples for LC—class.

2 Main Results

We begin this section with the following definition.

Definition 9. Let (X, d) be a metric space, a : X x X — [0,00) and ¢ : X — [0, 00)
be two mappings, further, f is a RC-class and H is a LC-class function. A mapping
T:X — CL(X) is said to be an (o, Hrc, fro)-Caristi type contraction if for each
z € X and u € Tx with a(x,u) > 1 there exists v € Tu such that

H(d(u,v)) < f(d(x), p(u)). (2.1)
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Remark 10. If we take H(t) =t and f(s,t) = s — t, then above definition reduces
to the Definition 2.1 [1].

Theorem 11. Let (X,d) be a complete metric space and let T : X — CL(X)
be an (o, Hro, fre)-Caristi type contraction mapping. Assume that the following
conditions hold:

(i) there exist o € X and x1 € Txo such that a(xg, x1) > 1;
(ii) T is a-admissible;
(iii) T is a-continuous.

Then T has a fized point.

Proof. By hypothesis (i), we have xyp € X and z; € Tz such that a(xg,z1) > 1.
By Definition 9, for o € X and z; € T'zy with a(zg,z1) > 1 there exists xo € Tx;
such that

H(d(z1,22) < f(d(20), P(1)).
As T is a-admissible, then a(xp,z1) > 1 implies a(x1,22) > 1. Again, by Definition
9, for 1 € X and x9 € Txy with a(x1,x2) > 1 there exists x5 € T'xo such that

H(d(w2,73)) < f(d(21), d(22)).

Continuing in the same way, we get a sequence {z,} in X such that x,, € Tx,_1,
a(rp—1,zy) > 1 and

0 < H(d(xn,zn+1)) < f(p(zn-1), d(zs)) for each n € N. (2.2)

By using the properties of H, f and above inequality, we conclude that the sequence
{¢(zn—1)} is a nonincreasing sequence, there exists » > 0 such that ¢(z,) — r. Now
consider n, p € N, by using the triangular inequality and subadditivity of H, we have
H(d(Tn, Tnip)) < H(d(@n, Tpy1) + d(Tpp1, Toy2) + d(Tpi2, Tni3)

+ -+ d(Tngp-1, Tnp))

< H(d(zn, 2n+1)) + H(d(@nt1, Tns2)) + H(d(@nt2, Tnts))
+- + H(d(Tntp-1, Tntp))
< f(d(@n-1),d(zn)) + f(P(2n), d(Tn+1)) + f(P(Tnt1), d(Tnt2))

+ -+ f(A(@ntp-2), ¢(Tntp-1))
= f(¢(xn—1)a ¢(xn+p—1>)- (2-3)
This implies that {x,} is a Cauchy sequence in X, since ¢ — r. By completeness of
X, we have * € X such that x,, — x*. By hypothesis (iii), we have lim,,_,oc H(T'x,, Tx*) =
0. By using the triangular inequality, we have
d(z*,Tz*) < d(z*,xp41) + d(Tps1, Tx™)
< d(z*,xp1) + H(Txy, Tx™).
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Letting n — oo in the above inequality, we have d(x*, Tz*) = 0. This implies that
x*eTx". O
Example 12. Let X = R be endowed with the usual metric d(x,y) = |z —y|. Define
T:X —CL(X) by
Tw — [0,2] ifx>0
{—€"} ifx <0,
and a1 X x X — [0,00) by

(2.9) 1 ifz,y>0
a w? = .
4 0 otherwise.

Define ¢ : X — [0,00) by

0 otherwise.

b(z) = {ZL’ ifx >0

Take H(x) = § and f(x,y) = v —y for each x,y € X. Then, for each x € X and
u € Tx with a(z,u) = 1, there exists v € T'u such that

H(d(u,v)) < f(d(x), p(u)).

Therefore, T is (o, Hro, fre)-Caristi type contraction mapping. For xo = 3 we have
1 = 3/2 € Tz such that a(xg, 1) = 1. Clearly, T is a-admissible. Let {xy} is
any sequence in X such that , — x* and oy, xpe1) = 1 for each n € N, then by
definition of «, it clear that x, > 0 for each n € N. Since x, — x*, then z* > 0.
Thus, Txy = [0,2,] and Tx* = [0,2*]. Therefore, limy,,_yoo H(Txy,Tz*) = 0. This
shows that T is a-continuous. Thus, by Theorem 11, T has a fixed point.

Example 13. Let X = R be endowed with the usual metric d(x,y) = |z —y|. Define
T:X — CL(X) by
T — 0, 2%4] ifz>0
{—2?} ifz <0,

and a: X x X — [0,00) by

0 otherwise.

oz, y) = {1 if x,y >0

Define ¢ : X — [0,00) by

0 otherwise.

o) = {fg if x>0
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Take H(x) = § and f(x,y) = v —y for each x,y € X. Then, for each x € X and
u € Tx with a(x,u) = 1, there exists v € Tu such that

H(d(u,v)) < f(d(), d(u)).
Therefore, T is (o, Hrc, fro)-Caristi type contraction mapping. It is easy to see

that the rest of the conditions of Theorem 11 hold. Thus, T has a fized point. Note

that Theorem 2.1 of [1] is not applicable here, to see consider x = % and u = % eTx.

Definition 14. Let (X,d) be a metric space, o : X x X — [0,00) and ¢ : X — [0, 00)
be two mappings, further, f is a RC-class and H is a LC-class function. A mapping
T:X — CL(X) is said to be an (ap, Hrc, fre)-Caristi type contraction if for each
x € X and u € Tx there exists v € Tu such that

H(d(u,v)) < f(o(z), p(u)) whenever a(u,v) > 1. (2.4)

Theorem 15. Let (X,d) be a complete metric space and let T : X — CL(X)
be an (ap, Hro, fro)-Caristi type contraction mapping. Assume that the following
conditions hold:

(1) there exist xg € X and x1 € Txg such that a(xg,x1) > 1;
(ii) T is a-admissible;
(iii) T is a-continuous.

Then T has a fixed point.

Proof. The proof of this theorem can be obtained on the same lines as the proof of
last theorem is done. O

3 Consequence

In this section we list some fixed point theorems which can be obtained from our
results:

Theorem 16. Let (X,d, <) be a complete ordered metric space and let T : X —
CL(X) be a mapping such that for each x € X and u € Tx with x < u there exists
v € Tu satisfying

H(d(u,v)) < f(o(x), ¢(u))
where ¢ : X — [0,00) be a function. Assume that the following conditions hold:

(i) there exist o € X and x1 € Txy such that xg 2 x1;

(ii) for each x € X and y € Tz with x <y, we have y < z for each z € Ty;
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(ii) T is ordered-continuous, that is, for each sequence {x,} in X such that x, — x
and xy, X Tpy1 for each n € NU{0}, we have Tx,, — Tx.

Then T has a fized point.
Proof. Define a: X x X — [0,00) by

1 ifx=y
a(w,y)z{ :

0 otherwise.

Then by the hypothesis of this theorem, it is easy to see that all conditions of
Theorem 11 hold. Thus, T has a fixed point. O

In following result, we assume that (X, d) is a metric space and G = (V(G), E(G))
is a directed graph such that the set of its vertices V(G) coincides with X (i.e.,
V(G) = X) and the set of its edges E(G) is such that F(G) 2 A, where A =
{(z,x) : © € X}. Further assume that G has no parallel edges.

Theorem 17. Let (X,d) be a complete metric space endowed with the graph G and
let T : X — CL(X) be a mapping such that for each v € X and u € Tx with
(x,u) € E(G) there exists v € Tw satisfying

H(d(u,v)) < f((z), d(u))
where ¢ : X — [0,00) be a function. Assume that the following conditions hold:
(i) there exist xo € X and x1 € Txo such that (zo,x1) € E(G);

(i) for each x € X andy € Tz with (z,y) € E(G), we have (y,z) € E(G) for each
z€Ty;

(i1i) T is G-continuous, that is, for each sequence {x,} in X such that x,, — x and
(Tn, Tnt1) € E for each n € NU{0}, we have Tz, — Tx.

Then T has a fized point.
Proof. Define a: X x X — [0,00) by

oo, 1) = {1 if (z,y) € E(G)

0 otherwise.

Then by the hypothesis of this theorem, it is easy to see that all the conditions of
Theorem 11 hold. Thus, T has a fixed point. O

Acknowledgment. Authors are thankful to the reviewer for his useful comments.
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